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The theory of circuit quantum electrodynamics has successfully analyzed superconducting
circuits on the basis of the classical Lagrangian, and the corresponding quantized Hamiltonian
describing these circuits. In many simplified versions of these networks, the modeling involves a singular
Lagrangian that employs Kirchhoff’s laws to eliminate inherent constraints of the system. In this work, we
demonstrate the failure of such singular theories for the quantization of realistic, nearly singular
superconducting circuits. Instead, we rigorously prove the validity of a perturbative analysis within the
Born-Oppenheimer approximation. In particular, we find that the limiting behavior of the low-energy
dynamics obtained from the regularized approach exhibits a fixed-point structure flowing to one of a few
universal fixed points as parasitic capacitance values go to zero. This singular limit of the regularized
analysis is, in many cases, completely unlike the singular theory. Consequently, we conclude that classical
network synthesis techniques which build on Kirchhoff’s laws must be critically examined prior to
applying circuit quantization.
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I. INTRODUCTION

Superconducting circuits facilitate a highly promising
architecture for the realization of a universal quantum
computer [1,2], whose potential to outperform a classical
computer in special tasks [3–5] is the driving force of an
entire area of research. However, although superconducting
qubits have existed for more than two decades [6–8], state-
of-the-art quantum technology is still too noisy to allow for
accurate calculations of arbitrary length [9]. Many efforts
are put into the improvement of currently existing super-
conducting qubits as well as into the invention and
fabrication of entirely new designs. Purposeful design of
new circuits has been successful; for instance, the 0-π qubit
[10–14] constitutes a prototypical example of an intrinsi-
cally noise-protected superconducting qubit that has
recently been experimentally realized [15].
Theoretical work has been a successful contributor to

this effort. Ideally, superconducting circuits are described
by a lossless dynamics of a discrete set of degrees of
freedom. These circuits are described classically on the

Hamiltonian level, where fluxes and charges are considered
as pairs of conjugate variables. The quantization of these
macroscopic Hamiltonians has been successful [16–19],
with quantitatively accurate predictions of many observed
phenomena.
It may be noted that more advanced superconducting

qubit designs that strive for an inherent protection can be
expected to have a large number of independent degrees of
freedom [20]. In such systems, one often sees the emer-
gence of a pronounced hierarchy of the involved energy (or
time) scales. The consequences of such a hierarchy will be
the subject of this paper.
The purposeful use of this hierarchy is one aspect of a set

of four very simple design principles, which have enabled
the large number of successful circuit designs that are in use
today: (1) use only the standard lossless circuit elements,
the capacitor and the inductor (obviously) avoiding resis-
tors, (2) achieve long-distance coupling by transmission
lines, but used in such a way that they again can be
effectively represented by a small assembly of capacitors
and inductors, (3) use metallization to, on purpose, make
some node-to-node capacitances very large, while keeping
many node-to-node capacitances at their small, parasitic
values, resulting in a range of capacitance values of perhaps
7 orders of magnitude [21] (this is the hierarchy we study
here), and (4) use linear as well as nonlinear inductors.
Of course, principle 4 is a centerpiece of qubit circuits,

with the use of a particular nonlinearity, that given by the

*martin.rymarz@rwth-aachen.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 021017 (2023)

2160-3308=23=13(2)=021017(24) 021017-1 Published by the American Physical Society

https://orcid.org/0000-0002-8253-2080
https://orcid.org/0000-0003-4332-645X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.021017&domain=pdf&date_stamp=2023-05-01
https://doi.org/10.1103/PhysRevX.13.021017
https://doi.org/10.1103/PhysRevX.13.021017
https://doi.org/10.1103/PhysRevX.13.021017
https://doi.org/10.1103/PhysRevX.13.021017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Josephson junction. In contrast to a linear inductance
described by a linear current-versus-flux characteristic
I ¼ ϕ=L, the Josephson nonlinear inductor has the two-
terminal characteristic I ¼ Ic sinð2πϕ=Φ0Þ (Φ0 ¼ h=2e).
The availability of this low-loss nonlinearity permits the
quantum eigenspectrum of these circuits to be atomiclike,
in that it can make the j0i − j1i energy difference unique,
making it possible to perform quantum-logic gates by
resonant Rabi driving.
We show here that principles 3 and 4 interact in a novel

and, potentially, dangerous way. A first, seemingly natural
step in the analysis of circuits is, given the capacitance
hierarchy of real structures, to declare a certain capacitance
threshold Cth, and to set all capacitances below this value
equal to zero. This considerably simplifies the analysis and
leads to a straightforward way of conceptualizing very
useful composite effective inductance structures, including
the superinductor [11,22–26] and the superconducting
nonlinear asymmetric inductive element (SNAIL) [27–
29] to be discussed below.
This simplification often leads to an important conse-

quence for the mechanics of the circuit. Adopting the
common procedure of describing this mechanics using a
Lagrangian L with node fluxes ϕi as dynamical variables
[16–19], one finds that some dynamical variables can
become constrained. A constrained variable is one whose
conjugate variable ∂L=∂ _ϕi cannot be properly inverted to
obtain _ϕi, and whose classical dynamics is slaved to other
independent variables, i.e., ϕ1ðtÞ ¼ g(ϕ2ðtÞ;ϕ3ðtÞ;…), at
all times. Constrained (or “frozen”) variables are indeed
considered a useful simplification in current treatments of
superconducting circuits, singled out in currently available
software [30].
Singular mechanics and its quantization have received

considerable attention in modern physics. The first sys-
tematic treatments of singular Lagrangians and proposals
for their quantization were proposed independently by
Dirac and Bergmann in the early 1950s [31–36]. Since
then, the proposed procedure of progressively identifying
and classifying certain constraints of the system, known as
the Dirac-Bergmann algorithm [37–39], has been fre-
quently applied to various singular gauge theories. Often
these theories are applied in cases where the singularity is
viewed as fundamental, for example, when a particle is
expected to have exactly zero mass. There also exist
singular Lagrangians that approximate a limiting case of
a nonsingular system, e.g., when a particle has very small
but nonzero mass. We consider the circuit problem to be in
the latter category: Capacitances play the role of masses,
and, according to basic electrostatics, node-to-node capac-
itances are never exactly zero.
The Dirac-Bergmann algorithm can be worked out for

general lossless electric networks. For the circuits consid-
ered in this work, the Dirac-Bergmann algorithm amounts
to applying Kirchhoff’s current law, eliminating variables

by using basic series-combination rules. For example, the
algorithm says that a series combination of inductances L1

and L2 can be replaced by a single inductance L1 þ L2

(thus neglecting any capacitance to the joining node). This
indeed turns out to be correct from all points of view.
But, the Dirac-Bergmann algorithm makes predictions

also for nonlinear circuits, i.e., involving Josephson
elements. Do its predictions also agree with a “regular-
ized” approach, in which one considers the limit as all
small capacitances are taken to zero? The answer is,
absolutely, no. A sign of trouble already appears when we
consider a series combination of a linear inductance and a
Josephson inductor. While the resulting effective inductor
depends in detail on the parameters of the two elements,
for certain parameters the effective inductive energy is
predicted to be multivalued.
Suggestions exist in the literature for how such a

multivaluedness should be interpreted; see the theory of
“branched Hamiltonians” [40,41] (see also Appendix A).
However, we find no existing approach that matches
the result of regularizing the singularity by taking small
capacitances Cs < Cth into account. Our result is in
complete contrast to Dirac and Bergmann, where the
effective Hamiltonian depends in detail on the parameters
of the nonlinear element; in the regularized treatment, the
result has the structure of a renormalization flow, in the
sense that the limit Cs → 0 gives a universal result with
only a few possible fixed points.
To understand this fixed-point structure more compre-

hensively, we find it valuable to adopt the point of view,
perhaps due to Heaviside, stated routinely in many text-
books on electrical theory [42–44]: An inductor is a two-
terminal element exhibiting an instantaneous relationship
between current and flux IðtÞ ¼ f(ϕðtÞ), with arbitrary
function fð·Þ; see Fig. 1. While distinctions are made
between bijective, current-controlled, and flux-controlled
inductors (the Josephson characteristic is flux controlled),
in all cases this generalized inductor is a proper energy
storage device. Thus, such an element can be incorporated
into a circuit Lagrangian for arbitrary fð·Þ [45].
This generalization is highly valuable in that it reveals

that there are generically three fixed points asCs → 0. They
are exemplified by our simple series-combination scenario,
in which a linear inductance L is in series with a nonlinear
inductor with antisymmetric characteristic I ∼ signðϕÞjϕjβ.
The renormalization flow is determined by β. For all

FIG. 1. Lumped element symbol of a nonlinear inductor. In
particular, a flux-controlled inductor relates the electric current
IðtÞ flowing through it and the magnetic flux difference
ϕðtÞ ¼ ϕ2ðtÞ − ϕ1ðtÞ at its terminals [with ϕiðtÞ being the time-
integrated node voltages; cf. Eq. (3)] via IðtÞ ¼ f(ϕðtÞ), with an
arbitrary function fð·Þ.
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“sublinear” cases (0 < β < 1), the flow erases the two
elements from the circuit; i.e., they are replaced by an open
circuit. For the “superlinear” cases (β > 1), the flow results
in the nonlinear element being replaced by a short circuit.
The linear β ¼ 1 case is marginal, and it is the one case
where the combination procedure given by Dirac and
Bergmann is essentially correct.
The Josephson case is in the sublinear universality class

and flows to the open-circuit fixed point. To show this,
and to determine the universality class of a large set of
fð·Þ, we calculate as follows: (1) For sufficiently small Cs,
the variable to be eliminated becomes “fast” and can be
accurately dealt with using the Born-Oppenheimer
approximation. (2) With suitable rescaling, the fast-
variable Schrödinger equation is one in which one term
can be treated perturbatively.
To prove that the flow goes to our fixed points, we must

prove the convergence of the resulting perturbation prob-
lem. Particularly for the sublinear case, we successfully
treat a large class of functions fð·Þ dealing with the
perturbation theory rigorously using primarily the Kato-
Rellich theorem [47] as provided by Reed and Simon [48].
We cannot prove that all fð·Þ flow to one of the fixed points;
we find that the flow has additional complexities when
nonsymmetric characteristics are studied. We also show an
amusing example of a self-similar fð·Þ for which the flow is
successively attracted by two different fixed points as
Cs → 0, but never reaches either of them.
One can finally say that the physics of our results has to

do with the diverging quantum fluctuations of the variables
to be eliminated as Cs → 0. This is the complete opposite
of the Dirac-Bergmann treatment, in which these variables
have no independent quantum fluctuations, being simply
slaved to other variables in the circuit. But while these zero-
point fluctuations diverge, the character of these divergen-
ces shows three different varieties, giving rise to the three
fixed points that we identify.
The remainder of this paper is organized as follows.

In Sec. II, we review both the concepts of singular
Lagrangians and the application of the Dirac-Bergmann
algorithm. Based on two concrete examples, we demon-
strate that the results of the systematically applied Dirac-
Bergmann algorithm have to be handled with care if the
system is supposed to be quantized. In Sec. III, we analyze
the series combination of a linear inductance and a generic
nonlinear inductor, and we provide an expression for the
effective replacement of this series combination. In
particular, we compare the results obtained from the
Dirac-Bergmann algorithm with the limiting case of the
low-energy dynamics derived from the Born-Oppenheimer
approximation after the inclusion of small parasitic capac-
itances that lift the singularity of the system. In Sec. IV, we
revise the frequently used single-phase approximation for
the simplified analysis of arrays of Josephson junctions. We
show that such a single-phase approximation is akin to the

application of the Dirac-Bergmann algorithm although an
opposite limit of capacitances is considered. In particular,
we provide a leading-order correction term to the single-
phase approximation due to the finite intrinsic capacitances
of the Josephson junctions. Finally, we summarize our
results and provide a perspective for possible future work
in Sec. V.

II. SINGULAR SUPERCONDUCTING CIRCUITS
AND THE DIRAC-BERGMANN ALGORITHM

The theory of circuit quantum electrodynamics [16–19]
provides a very powerful tool for the description of
superconducting circuits. Generally, it starts with a circuit
modeling the electrical network under consideration. With
a particular choice of variables, each circuit element
usually can be associated with a contribution to the total
Lagrangian describing the system [49]. After the assembly
of the total Lagrangian, a Legendre transformation
converts the Lagrangian formalism to the Hamiltonian
formalism, which, in turn, is the starting point for a
quantized theory. However, depending on both the physi-
cal precision and the details of the model that describes the
system, the Legendre transformation is not always appli-
cable, viz., invertible. Given a Lagrangian Lðfxig; f_xig; tÞ,
which depends on generalized positions xi, generalized
velocities _xi ¼ dxi=dt, and time t, the canonical momenta
are defined as pi ¼ ∂L=∂_xi and the corresponding
Hamiltonian

Hðfxig; fpig; tÞ ¼
X
i

pi _xi − Lðfxig; f_xig; tÞ ð1Þ

must be expressed as a function of xi, pi, and t. In this
process, the correct application of the Legendre trans-
formation requires that every generalized velocity can be
expressed as function of the generalized positions, the
conjugate momenta, and the time, i.e.,

_xi ≡ _xiðfxjg; fpjg; tÞ: ð2Þ

If it is not possible to obtain such a functional dependence
for each generalized velocity, the Lagrangian is said to
be singular, and a Legendre transformation is not well
defined and thus not applicable. The terminology arises
from the observation that for many physical systems,
the Lagrangian contains a kinetic part that is quadratic
in the generalized velocities, and solving for the velocities
as in Eq. (2) corresponds to the inversion of a quadratic
coupling matrix, which is not possible if this matrix is
singular [50].
Accordingly, we refer to a superconducting circuit as

singular if it is described by a singular Lagrangian. A
singular Lagrangian implies that the physical system that is
described has some underlying constraints [31–39] and that
the canonical variables xi and pj within the Hamiltonian
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description are not independent as assumed for the appli-
cation of the variational principle. In particular, the classical
phase-space variables are no longer necessarily canonical
as the constraints restrict the dynamics to a subspace of the
entire phase space. We stress that it might depend on the
level of details of the system’s description and on the choice
of variables whether the corresponding Lagrangian is
singular or not, as will be seen in examples below.
As elaborated in Refs. [31–39], a possible strategy to

derive a quantized theory on a Hamiltonian level, starting
from a singular Lagrangian, is accomplished by determin-
ing and classifying the system’s underlying constraints and
involves a subsequent reduction of the number of variables,
remaining with independent variables only. This, however,
is accompanied by a redefinition of the conventional
Poisson brackets—defining the Dirac brackets—and hence,
of the commutator in quantum mechanics as well. In
general, this approach, which is known as the Dirac-
Bergmann algorithm, can be rather involved, even for
seemingly simple systems [51]. However, as pointed out
by Dirac [36], the arguably simplest class of singular
Lagrangians is the one in which one generalized momen-
tum vanishes, say, p1 ¼ 0, while the corresponding gen-
eralized position can be expressed as a function of all the
other canonical variables, i.e., x1 ≡ x1ðfxigi≠1; fqigi≠1; tÞ.
In this case, x1 can be substituted in the Hamiltonian such
that this degree of freedom can be discarded.
In the remainder of the paper, we focus on this simple

class of singular Lagrangians in the setting of circuit
quantization. In this context, the generalized positions
are usually taken to be the magnetic fluxes associated with
the nodes of the circuit,

ϕi ¼
Z

t

t0

dt0Viðt0Þ; ð3Þ

where Viðt0Þ is the voltage of the ith node with respect to
ground [55]. For singular superconducting circuits, which
are described by a Lagrangian that gives rise to vanishing
generalized momenta, a full algebraic application of the
Dirac-Bergmann algorithm can be worked out (including
the systematic description of nonreciprocal superconduct-
ing circuits) [57,58], leading to a circuit Hamiltonian. But
note that, as detailed later in this paper, we find this Dirac-
Bergmann Hamiltonian to be an incorrect description of the
circuit dynamics in many cases.
In order to get familiar with the Dirac-Bergmann

algorithm in its arguably simplest form, and to indicate
its limitations when applied to describe realistic super-
conducting circuits, we analyze two exemplary electrical
networks that give rise to singular Lagrangians.

A. Addition of linear inductances in series

First, we consider an apparently “trivial” example, a
series combination of two linear inductances L1 and L2 that

is shunted by a capacitance C; see Fig. 2(a). The two-
dimensional Lagrangian of this electrical network

L ¼ C _ϕ2

2
−
ðϕ − ϕcÞ2

2L1

−
ϕ2
c

2L2

ð4Þ

is singular because one cannot solve for the generalized
velocity _ϕc as a function of the generalized positions and
momenta. However, since _ϕc does not appear in the
Lagrangian, we find that the corresponding generalized
conjugate momentum vanishes, i.e., Qc ¼ ∂L=∂ _ϕc ¼ 0.
Exploiting the classical Euler-Lagrange equation of motion
for the ϕc degree of freedom,

0 ¼ d
dt

�
∂L

∂ _ϕc

�
−

∂L
∂ϕc

; ð5Þ

we find the holonomic constraint

ϕc ¼
L2

L1 þ L2

ϕ; ð6Þ

which essentially is Kirchhoff’s current conservation law at
the node ϕc. Inserting this expression in the Lagrangian in
Eq. (4) renders it one dimensional and regular,

L ¼ C _ϕ2

2
−
ϕ2

2L
; ð7Þ

with the total inductanceL ¼ L1 þ L2. Thus, the elimination
of the constrained variable ϕc reproduces what one would
expect, the addition of two inductances in a series con-
nection. This shows that the circuit in Fig. 2(a) is effectively
equivalent to an ordinaryLC resonator; see Fig. 2(b). Finally,
defining the conjugate charge Q ¼ ∂L=∂ _ϕ ¼ C _ϕ, the
Legendre transformation is applicable and results in the
harmonic-oscillator Hamiltonian,

FIG. 2. (a) Series combination of two linear inductances L1 and
L2 with a shunting capacitance C, and (b) the effective equivalent
LC circuit obtained by eliminating the constrained variable and
adding the inductances L ¼ L1 þ L2. (c) Series combination of a
linear inductance L and a nonlinear inductor (red) with a shunting
capacitance C.
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H ¼ Q2

2C
þ ϕ2

2L
; ð8Þ

which is quantized by imposing the canonical commutation
relation ½ϕ; Q� ¼ iℏ.
This analysis demonstrates the application of the Dirac-

Bergmann algorithm for a simple linear system, and the
resulting total inductance L agrees with the well-known
series-combination formula. If, however, the system is not
linear, the Dirac-Bergmann algorithm will possibly result in
a bizarre description of the dynamics. In the following, we
highlight emerging inconsistencies in the Dirac-Bergmann
algorithm by replacing one of the linear inductances with a
nonlinear inductor—specifically, a Josephson junction.

B. Addition of a linear and a nonlinear
inductor in series

In the previous subsection, we consider a system with a
constraint in the form of a one-to-one functional depend-
ence between variables; see Eq. (6). However, the effective
description of singular electrical networks might involve
constraints of a different type as well. In this subsection, we
demonstrate the possible emergence of multivalued con-
straints. In particular, we consider a series combination of a
linear inductance L and a generic nonlinear inductor that is
shunted by a capacitance C; see Fig. 2(c).
The Lagrangian of the electrical network,

L ¼ C _ϕ2

2
−
ðϕ − ϕcÞ2

2L
−UNLðϕcÞ; ð9Þ

in which UNLðϕcÞ describes the nonlinear inductor, is
singular because it does not contain the generalized
velocity _ϕc, and, as a consequence, the associated gener-
alized momentum vanishes. For the Lagrangian in Eq. (9),
the Dirac-Bergmann algorithm effectively reduces to an
evaluation of the classical Euler-Lagrange equation of

motion, i.e., Kirchhoff’s law of current conservation, for
the ϕc degree of freedom in order to eliminate it. Thus,
setting the current through the linear inductor equal to that
through the nonlinear one, we find the constraint

ϕ ¼ ϕc þ LU0
NLðϕcÞ; ð10Þ

which must be inverted in order to obtain the functional
dependence ϕcðϕÞ. Then, after eliminating the constrained
variable ϕc in the Lagrangian, the series combination of
both the inductors can be replaced by an effective inductor
that is described by the effective potential

UeffðϕÞ ¼
½ϕ − ϕcðϕÞ�2

2L
þUNL½ϕcðϕÞ�: ð11Þ

By construction, the resulting Hamiltonian of the initially
singular system

Hs ¼
Q2

2C
þUeffðϕÞ ð12Þ

depends on one pair of conjugate variables only. However,
as we show in the following, both the classical Hamiltonian
description of the system as well as its quantization is not
always straightforward.
To this end, we specify the nonlinear inductor as a

Josephson junction with Josephson energy EJ; i.e., we set
UNLðϕcÞ ¼ −EJ cosð2πϕc=Φ0Þ. The corresponding total
circuit is shown in Fig. 3(a). After introducing the rescaled
phase variables φ ¼ 2πϕ=Φ0, φc ¼ 2πϕc=Φ0, and the
screening parameter β ¼ LEJð2π=Φ0Þ2 [59], Eq. (10)
reduces to Kepler’s transcendental equation [60]

φ ¼ φc þ β sinðφcÞ; ð13Þ

which can be inverted numerically in order to solve for the
constrained variable φc ≡ φcðφÞ. Note that for β ≤ 1, the

FIG. 3. Series combination of a linear inductance L and a Josephson junction EJ with a shunting capacitance C. (a) Circuit model.
(b) Constraint relating the rescaled flux variables φ and φc [see Eq. (13)] for the different cases β ≤ 1 (blue) and β > 1 (red), in which the
constrained variable φcðφÞ is either a well-defined function of φ or multivalued, respectively. (c) Effective one-dimensional potential
[cf. Eq. (11)] obtained by substituting the constrained variable for the different cases β ≤ 1 (blue) and β > 1 (red), in which UeffðφÞ is
either a well-defined function of φ or multivalued, respectively.
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right-hand side of Eq. (13) is strictly monotonically
increasing as φc increases. However, for β > 1, it can be
separated into infinitely many regimes in which it is either
monotonically increasing or decreasing, respectively; see
Fig. 3(b).
As a result, for β ≤ 1, the constrained variable φc is a

well-defined single-valued function of φ, whereas it is
multivalued for β > 1. In the latter case, for a given value of
φ, there might exist several values of φc satisfying the
constraint in Eq. (13). Consequently, while the effective
potential UeffðφÞ [cf. Eq. (11)] can be single valued, it can
also be multivalued, depending on the value of β [57,61];
see Fig. 3(c).
In the single-valued case (β ≤ 1), the Hamiltonian Hs in

Eq. (12) is a mathematically well-defined function of a pair
of two conjugate variables, and it can be used in the usual
way to describe the dynamics of the system [57,61]. In
particular, a quantized description is obtained by promoting
the canonical variables to operators and imposing the
canonical commutation relation ½ϕ; Q� ¼ iℏ.
In contrast, in the multivalued case (β > 1), the alter-

native might be to describe the system by a so-called
branched Hamiltonian [40,41], but both the classical as
well as the quantum description become subtle. Branched
Hamiltonians emerge in various other contexts outside of
electrical network theory, e.g., in extensions of Einstein’s
theory of gravitation [62] or in effective models of systems
with finite response times [63]. All branched Hamiltonians
have in common that the system is not uniquely described
by its phase-space coordinates; one requires further infor-
mation to determine the state of the system. As a conse-
quence, the classical motion of the system might not be
predictable for a given set of initial variables [40].
As we show in Appendix A, for the electric network in

Fig. 3(a), the multivaluedness of the Hamiltonian can be
avoided at the expense of working with nonsymplectic
coordinates.
The aim of the present work, however, is not to provide

the general description of systems that potentially
involve branched Hamiltonians. Instead, focusing on
the quantized description of electrical networks, we note
that from the point of view of electrostatics, nonzero
(“parasitic”) capacitances occur between every node of a
physical network [64], e.g., those of Josephson junctions,
which, in practical realizations, always exist [65]. Thus, a
more physical description of the system renders the
Lagrangian regular, and, within this approach, the physi-
cal origin and interpretation of the multivaluedness
becomes clear as the individual branches of the
Hamiltonian correspond to classical (meta)stable points.
But the limit of small but finite capacitances throughout
the network reveals a qualitative mismatch between the
effective dynamics of the system and that obtained from
the Dirac-Bergmann algorithm applied to the singular
counterpart [57].

III. FAILURE OF THE DIRAC-BERGMANN
ALGORITHM

In the previous section, we apply the Dirac-Bergmann
algorithm, which reduces to an evaluation of Kirchhoff’s
current conservation law, to derive the Hamiltonian descrip-
tion of two simple superconducting circuits. For singular
circuits with nonlinearities, however, the system’s quantum
dynamics resulting from this approach differs from a more
appropriate treatment in which the singularities are lifted.
In electrical networks, the singularity of the capacitance
matrix is lifted by taking into account the small but finite
intrinsic (or parasitic) capacitance of one or several network
elements in the corresponding branch of the circuit. In this
section, we determine in detail the discrepancy mentioned
above between the singular and the regular approach, and
we classify different types of nonlinearities. Our results
justify the conclusion that one should not use Kirchhoff’s
current law to eliminate variables in the Lagrangian.
To provide a simple example that demonstrates the

failure of the Dirac-Bergmann algorithm when applied to
electrical networks, we consider the series combination of a
linear inductance L and a generic nonlinear inductor with
intrinsic capacitance C0, all in parallel with a total shunting
capacitance C; see Fig. 4.
In the following, we analyze and compare the two

cases: (1) absent intrinsic capacitance C0 ¼ 0 indicating
the application of the Dirac-Bergmann algorithm and
(2) extremely small but nonzero intrinsic capacitance
C0 > 0. In the first case, the Lagrangian of the circuit

L ¼ C _ϕ2

2
þ C0 _ϕ2

c

2
−
ðϕ − ϕcÞ2

2L
−UNLðϕcÞ ð14Þ

is singular, while in the second case it is regular. In
particular, we allow the nonlinear inductor to be a generic
flux-controlled inductor [42–44] that can be modeled via
the potential UNLðϕcÞ, which we do not further specify at
this point.

FIG. 4. Series combination of a linear inductance L and a
nonlinear inductor (red) in parallel to a shunting capacitance C.
The blue branch highlights the intrinsic capacitance C0 of the
nonlinear inductor, which we consider to be either vanishingly
small (regular case) or absent (singular case).
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The treatment of the singular case is already presented in
Sec. II B. There, we also discuss the potential ambiguities
in the construction of the effective potential UeffðϕÞ in
Eq. (11). In the remainder of this work, the effective
potential of the singular system will serve for a comparison
with the limiting behavior of the regular case, which we
analyze next.

A. Approaching the singular limit:
Born-Oppenheimer analysis

The consideration of nonzero but finite values of C0 (see
Fig. 4) is motivated by the observation that any physical
realization of a network element contains some residual
intrinsic or stray capacitance. For C0 > 0, the Lagrangian in
Eq. (14) describing the circuit shown in Fig. 4 is regular,
and the Hamiltonian is straightforwardly obtained via an
ordinary Legendre transformation resulting in

Hr ¼
Q2

2C
þ Q2

c

2C0 þ
ðϕ − ϕcÞ2

2L
þ UNLðϕcÞ: ð15Þ

Here, ϕ; Q and ϕc; Qc denote two independent pairs of
conjugate variables, and Hr is quantized by imposing the
canonical commutation relations ½ϕðcÞ; QðcÞ� ¼ iℏ.
In what follows, we compare the Hamiltonian of the

regular circuit (Hr for C0 > 0) with that of the singular one
(Hs for C0 ¼ 0), and thus, we consider the limit of
vanishingly small but finite C0 in the regular system. We
immediately note that Hr is two dimensional, whereas Hs
describes the dynamics of 1 effective degree of freedom
only. The fact that models with different numbers of
dynamical variables could describe the same system can
be understood by the observation that for C0=C ≪ 1 the
timescales on which the dynamics of ϕ and ϕc change, as
mediated by Hr, are vastly different.
In light of this, the Born-Oppenheimer approximation

[66,67] will allow us to derive an effective low-energy
Hamiltonian as a function of ϕ and Q only. To this end, we
first solve the stationary Schrödinger equation associated
with the fast degree of freedom ϕc for fixed values of ϕ and
Q. Thus, we identify the fast part [68] of Hr as

Hfast ¼
Q2

c

2C0 þ
ðϕ − ϕcÞ2

2L
þ UNLðϕcÞ; ð16Þ

and we solve

Hfastψϕ;nðϕcÞ ¼ Eϕ;nψϕ;nðϕcÞ ð17Þ

for the eigenstates ψϕ;nðϕcÞ and the associated eigenener-
gies Eϕ;n, which both are labeled by n ∈ N0 and para-
metrized by ϕ. The ground-state energy (n ¼ 0) is then
considered as an effective low-energy potential for the slow

variable ϕ, whose dynamics is captured by the effective
Hamiltonian

Hr;eff ¼
Q2

2C
þUBOðϕÞ; ð18Þ

with the Born-Oppenheimer potential that we define as

UBOðϕÞ ¼ Eϕ;0 − E0;0: ð19Þ
Here, we choose the energy offset of UBOðϕÞ such that
UBOð0Þ ¼ 0 in order to avoid divergent additive constants.
In summary, the Born-Oppenheimer approximation pro-

vides an effective Hamiltonian Hr;eff for the regular case
(C0 > 0), which is suitable for a comparison withHs that is
obtained in the singular case (C0 ¼ 0). Note that the Born-
Oppenheimer approximation becomes more accurate the
smaller the ratio C0=C, which is exactly the regime of
interest for the aforementioned comparison.

B. Types of network branches leading to the failure of
the Dirac-Bergmann algorithm

In the following, we evaluate the Born-Oppenheimer
potential for a generic nonlinear inductor. Unless stated
otherwise, we generally restrict our considerations to poten-
tials UNLðϕcÞ that are Riemann integrable on any finite
domain, and that are symmetric in ϕc, i.e., UNLðϕcÞ ¼
UNLð−ϕcÞ, and that do not diverge for jϕcj < ∞.
Furthermore, we assume that the nonlinear inductor can
be categorized into one of the following three types,
depending on the behavior of its potential for large values
of ϕc [69]:

(1) Type 1 (sublinear [70]):
(a) UNLðϕcÞ ¼ UNLð−ϕcÞ,∃ γ ∈ ð0; 2Þ∶limϕc→�∞UNLðϕcÞ=jϕcjγ ¼ 0

(b) UNLðϕcÞ ≠ UNLð−ϕcÞ,∃ γ ∈ ð0; 1Þ∶limϕc→�∞UNLðϕcÞ=jϕcjγ ¼ 0

(2) Type 2 (superlinear [70]):
limϕc→�∞ ϕ2

c=UNLðϕcÞ ¼ 0
(3) Type L (quasilinear):

∃L> 0∶ limϕc→�∞UNLðϕcÞ=ϕ2
c ¼ 1=2L and

UNLðϕcÞ−ϕ2
c=2L describes a type-1 inductor

Note that not all possible nonlinear inductors can
be classified into one of the three types we provide.
In Sec. III C, we discuss a nonlinear inductor whose
potential does not have a well-defined leading term for
large values of ϕc. In Sec. III D, we provide an example for
a nonlinear inductor with an asymmetric potential that is
not of type 1(b).
As we show in the following, in the limit C0=C → 0, the

dynamics of the regular circuit shown in Fig. 4 strongly
depends on which type of nonlinear inductor is considered.
In particular, we prove the validity of a perturbative
treatment in which, depending on the type of the nonlinear
inductor in the circuit in Fig. 4, either the potential of the
linear inductor or that of the nonlinear one can be identified
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as the perturbation to the rest of the Hamiltonian. Finally,
for each type of nonlinear inductor, we provide expressions
for UBOðϕÞ in the limit of C0=C → 0, and we associate an
effective inductor with the Born-Oppenheimer potential in
that limit.

1. Effective potential for sublinear inductors (type 1)

We start with the analysis of nonlinear inductors of type
1. In the following theorem, we show that for a nonlinear
inductor of type 1(a), the Born-Oppenheimer potential
vanishes as C0=C → 0; the nonlinear branch is replaced
by an open circuit.
After presenting our formal results, we examine in

Sec. IV the practical manifestations and consequences of
this tendency to open-circuit behavior.
Theorem 1. Consider Hfast as defined in Eq. (16) with

UNLðϕcÞ describing a nonlinear inductor of type 1(a).
Then, UBOðϕÞ as defined in Eq. (19) satisfies

∀ϕ ∈ R∶ lim
C0→0

UBOðϕÞ ¼ 0:

The general strategy of the proof, which we present in
Appendix B 1, is as follows: While all the eigenvalues of
Hfast in Eq. (16) diverge like 1=

ffiffiffiffiffi
C0p

as C0 → 0, we note that
if this diverging factor is scaled out, the Hamiltonian can be
brought into the form of a standard harmonic oscillator plus
an additional term that can be considered a perturbation for
all potentials UNLðϕcÞ of type 1(a). With the use of several
auxiliary bounding Hamiltonians, we show that the results
from analytic perturbation theory can be used [despite the
fact that UNLðϕcÞ may not be analytic in ϕc] to show that
the resulting Rayleigh-Schrödinger series is well behaved
and absolutely convergent. An evaluation of the appropriate
terms in this series gives the result of the theorem.
One can lift the restriction that UNLðϕcÞ is symmetric

and also obtain a Born-Oppenheimer potential that van-
ishes in the limit C0 → 0 if limϕc→�∞UNLðϕcÞ=jϕcjγ ¼ 0

with γ ∈ ð0; 1Þ, as the following theorem shows.
Theorem 2. Consider Hfast as defined in Eq. (16) with

UNLðϕcÞ describing a nonlinear inductor of type 1(b).
Then, UBOðϕÞ as defined in Eq. (19) satisfies

∀ϕ ∈ R∶ lim
C0→0

UBOðϕÞ ¼ 0:

We refer to Appendix B 2 for a proof of Theorem 2.
Note that in this theorem the potential UNLðϕcÞ need not

be symmetric, i.e., UNLðϕcÞ ≠ UNLð−ϕcÞ. Also, we note
that nonlinear inductors of type 1(b) include the large class
of nonlinear inductors that are described by a bounded
potential, i.e., jUNLðϕcÞj ≤ M for all ϕc and some M > 0.
The Josephson junction, the superconducting quantum
interference device (SQUID), and the SNAIL are probably
the most important representatives of this class of induc-
tors. For example, besides the SNAIL, Josephson junctions

with broken time-reversal symmetry are described by an
asymmetric potential UNLðϕcÞ; see p. 414 in Ref. [71] and
references therein.
To recap, within the framework of the Born-

Oppenheimer approximation, which becomes more accu-
rate the smaller the capacitance ratio C0=C is, we show that
the inductive branch in the circuit in Fig. 4, i.e., the series
combination of the linear inductance and the generic
nonlinear inductor of type 1 (including its intrinsic capaci-
tance), effectively becomes an open circuit as C0=C → 0.

2. Effective potential for superlinear inductors (type 2)

Next, we consider the Born-Oppenheimer potential for
nonlinear inductors of type 2. Here, we focus on nonlinear
inductors of type 2 that are described by the following
infinite set of potentials:

UNLðϕcÞ ¼ βjϕcjγ; β > 0; γ ∈ Q>2: ð20Þ
In the following, we show that for a nonlinear inductor of
type 2 with a potential of the form of Eq. (20), the Born-
Oppenheimer potential approaches the potential of the
linear inductance L as C0=C → 0. Thus, in this limit, the
nonlinear branch is replaced by a short circuit, meaning that
one sets ϕc ¼ 0. To show this, our strategy is to identify
the contribution of the linear inductance L in the fast
Schrödinger equation in Eq. (17) as a perturbation, the
opposite of the type-1 scenario. To this end, we provide the
following theorem.
Theorem 3. Consider Hfast as defined in Eq. (16) with

UNLðϕcÞ as defined in Eq. (20) describing a subset of
nonlinear inductors of type 2. Then, UBOðϕÞ as defined in
Eq. (19) satisfies

∀ϕ ∈ R∶ lim
C0→0

UBOðϕÞ ¼
ϕ2

2L
:

The proof of Theorem 3 is presented in Appendix B 3. At
this point, we do not attempt to provide a general proof, but
we conjecture that Theorem 3 holds for any generic
nonlinear inductor of type 2 and is not restricted to
potentials of the form of Eq. (20).

3. Effective potential for quasilinear inductors (type L)

Next, we analyze nonlinear inductors of type L. Note
that an inductor of type L is not in general linear, but it is
clear from the definition that its potential is the sum of that
of a linear inductance L with that of a nonlinear inductor,
with a potentialUNLðϕcÞ − ϕ2

c=2L that is of type 1. In other
words, the type-L inductor can always be represented as the
parallel combination of a linear inductance and a nonlinear
inductor of type 1. This equivalence will be useful later.
In the following, we show that for a nonlinear inductor of

type L, the Born-Oppenheimer potential approaches the
potential of a total linear inductance Lþ L as C0=C → 0.
Thus, in this limit, the nonlinear branch is replaced by a
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linear inductance L, and the node ϕc is removed by adding
the linear inductances L and L in a series connection,
resulting in a total inductance Lþ L between the nodes ϕ
and ground. This analysis results in the following theorem.
Theorem 4. Consider Hfast as defined in Eq. (16) with

UNLðϕcÞ describing a nonlinear inductor of type L. Then,
UBOðϕÞ as defined in Eq. (19) satisfies

∀ϕ ∈ R∶ lim
C0→0

UBOðϕÞ ¼
ϕ2

2ðLþ LÞ

with L ¼ limϕc→∞ ϕ2
c=2UNLðϕcÞ > 0.

We prove Theorem 4 in Appendix B 4.

C. A pathological potential

Not all series combinations of a linear inductance and a
nonlinear inductor (cf. Fig. 4) necessarily have a well-
defined effective limiting behavior as the internal capaci-
tance vanishes. To illustrate the potentially ambiguous
limit, we analyze a pathological example of a nonlinear
inductor with a potential energy that cannot be classified as
falling into one of our categories.
First, we focus on an isolated nonlinear inductor accom-

panied by its internal shunting capacitance. Working with
dimensionless variables, the Hamiltonian of this system can
be written as

H ¼ p2
y

2m
þUNLðyÞ; ð21Þ

in which m denotes the rescaled shunting capacitance. The
rescaled canonical variables satisfy the dimensionless
commutation relation ½y; py� ¼ i. In the following, we
consider a nonlinear inductor that is described by the
following symmetric, differentiable potential (n ∈ Z):

UNLðyÞ

¼
�
10ð3−4nþ2log10jyjÞ3þ8n−7y−2 for 102n−2 ≤ jyj ≤ 102n−1

10−4ny4 for 102n−1 ≤ jyj ≤ 102n:

ð22Þ

The potential UNLðyÞ and the corresponding ground-state
wave function of the Hamiltonian in Eq. (21) for different
values of m are shown in Fig. 5. Because of the self-
similarity of the potential

UNLð102yÞ ¼ 104UNLðyÞ; ð23Þ

the eigensystem of H associated with the mass m relates to
that with a rescaled mass m0 ¼ 10−8m. In that case, the
eigenenergies and the eigenstates satisfy E0

ν ¼ 104Eν and
ψ 0
νðyÞ ∝ ψνðy=100Þ, respectively.

We partition the range of m into three distinct regions in
which the eigensystem of H behaves qualitatively differ-
ently; see also Fig. 6. First, there is a region of m in which
both the ground-state energy and the ground-state wave
function are well approximated by that of a purely quartic
potential ∝ y4 (red wave function in Fig. 5). Second, there
is a disjoint region of m in which the ground-state wave
function resembles that of a double-well potential (green
wave function in Fig. 5). Within these two regions, the
scaling of, e.g., the eigenenergies with respect to m, is
fundamentally different. Last, there are intermediate values
of m in which the system transitions between both the
previously mentioned regions. Thus, by construction of
UNLðyÞ, there is no well-defined asymptotic behavior of the
eigensystem as m → 0.

FIG. 5. Pathological potential UNLðyÞ in Eq. (22) (blue)
together with the ground-state wave function of the Hamiltonian
in Eq. (21) for m ¼ 10−4 (red) and m ¼ 1 (green). Different
choices of m correspond to different values of the internal
shunting capacitance. For m ¼ 10−4, the ground-state wave
function of the potential y4=104 is shown for comparison (black
dashed lines for both wave function and potential). For better
visibility, all wave functions are scaled by a factor 10 and shifted
by their corresponding ground-state energies.

FIG. 6. Pathological potential UNLðyÞ in Eq. (22) (blue)
together with the global trend y2=10 (red). For jyj ∈
½102n−1; 102n� with n ∈ Z, UNLðyÞ grows faster than a second-
order polynomial, in particular, UNLðyÞ ∝ y4 (indicated with
black lines). However, in the limit y → ∞, the ratio
UNLðyÞ=y2 remains ill-defined.
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Next, we embed such a nonlinear inductor in the
circuit shown in Fig. 4. We choose the linear inductance
such that the total system is described by the Hamiltonian
[cf. Eq. (15)]

Hr ¼
p2
x

2M
þ p2

y

2m
þ UNLðyÞ þ

ðy − xÞ2
10

; ð24Þ

in which M is the rescaled outer capacitance, and x and y
can be interpreted as slow and fast variables, respectively.
The ground-state energy E0 of the fast part of Hr
[cf. Eq. (16)]

Hfast ¼
p2
y

2m
þ UNLðyÞ þ

ðy − xÞ2
10

ð25Þ

is shown in Fig. 7 for x ¼ 0. For the special choice x ¼ 0,
the total potential entering Hfast remains self-similar in y.
As a consequence, E0 scales linearly by 104 as 1=m is
scaled by a factor 108. For certain regimes ofm, the ground-
state energy is well approximated by that of a bare quartic
potential; see black lines in Fig. 7. However, if the mass m
is considered over several orders of magnitude, E0 follows
the “global trend” given by the ground-state energy
corresponding to that of a quadratic potential; see red line
in Fig. 7.
For fixed values of m, we use the ground-state energy of

Hfast at x ¼ 0 to shift the Born-Oppenheimer potential such
thatUBOð0Þ ¼ 0. The Born-Oppenheimer potentialUBOðxÞ
for the specific choice x ¼ 10 is shown in Fig. 8 as a
function of 1=m. As before, we note that for certain regimes
of m, the Born-Oppenheimer potential associated with
UNLðyÞ in Eq. (22) is well approximated by that corre-
sponding to a nonlinear inductor that is described by a
purely quartic potential ∝ y4; see black curves in Fig. 8. In
fact, recall that for nonlinear inductors of type 2 (to which

quartic potentials belong) the Born-Oppenheimer potential
approaches the value of x2=10 (cf. Theorem 3) in the limit
ofm → 0. However, such a convergence is not observed for
UBOðxÞ involving UNLðyÞ in Eq. (22) as this potential does
not describe a nonlinear inductor of type 2. In order to
analyze the behavior of UBOðxÞ for small values of m, we
note that Hfast in Eq. (25) corresponding to m and x relates
to that corresponding to m0 ¼ 10−8m and x0 ¼ 102x. In
particular, we find that H0

fast ¼ 104Hfast. As a consequence,
for small enough values of m, nonzero values of x can be
incorporated with second-order perturbation theory (red
dashed line in Fig. 8), which in fact becomes more precise
asm becomes smaller. As a result, we find that (up to small
corrections) UBOðxÞ is periodic in logð1=mÞ for small
values of m.
In total, the nonlinear inductor described by the patho-

logical potential in Eq. (22) exemplifies that not every
series combination of inductances gives rise to a well-
defined single effective inductance as the internal capaci-
tance vanishes. In particular, we conclude that if one cannot
classify a nonlinear inductor at hand by means of the results
presented in Secs. III B 1–III B 3, then one is required to
know the particular value of its internal capacitance in order
to derive a reliable one-mode replacement.

D. An asymmetric potential

The following shows that the result of Theorem 2 is tight:
The Born-Oppenheimer potential does not vanish for a
linear, asymmetric inductive potential. We provide the
Born-Oppenheimer analysis for this simple asymmetric
example: We consider the piecewise linear potential

UNLðϕcÞ ¼ b½1þ aΘðϕcÞ�jϕcj; b > 0; ð26Þ

FIG. 7. Ground-state energy E0 of Hfast in Eq. (25) for a fixed
value x ¼ 0 as a function of 1=m (blue). For certain regimes ofm,
E0 is well approximated by the ground-state energy correspond-
ing to a purely quartic potential (indicated with black lines). On
large scales of m, however, E0 follows the global trend of the
ground-state energy corresponding to a purely quadratic
potential (red).

FIG. 8. Born-Oppenheimer potential UBOðxÞ evaluated at
x ¼ 10 as a function of 1=m (blue). The red dashed line showing
the result of the second-order perturbation theory in x is periodic
in logð1=mÞ; see main text. For nonlinear inductors of type 2,
UBOð10Þ approaches the value of 10 in the limit of m → 0 (gray
dashed line). For comparison, black lines show the Born-
Oppenheimer potential at x ¼ 10 with a nonlinear inductor that
is described by a purely quartic potential (dashed, y4=104; dotted,
y4=108).
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in which a > 0 tunes the asymmetry. Here, b is some
arbitrary positive prefactor, and ΘðϕcÞ denotes the
Heaviside step function.Despite the asymmetry ofUNLðϕcÞ,
the fact that limϕc→�∞UNLðϕcÞ=ϕ2

c ¼ 0 allows the Born-
Oppenheimer potential following the steps in the proof of
Theorem 1 (cf. Sec. III B 1). In particular, recall that the
zero-point fluctuation ΦZPF as defined in Eq. (B2) diverges
as the intrinsic capacitanceC0 vanishes. Thus,we proceed by
treatingUNLðϕcÞ in Eq. (26) as part of a perturbation around
the harmonic-oscillator Hamiltonian; expanding the Born-
Oppenheimer potential in powers of 1=ΦZPF yields

UBOðϕÞ ¼
abϕ
2

þ ð2þ aÞbϕ2 − að2þ aÞb2Lϕ
2

ffiffiffi
π

p
ΦZPF

; ð27Þ

where we omit terms of the order Oð1=Φ2
ZPFÞ. We observe

that UBOðϕÞ does not vanish as 1=ΦZPF → 0 if the asym-
metric case a ≠ 0 is considered. To interpret this result, we
rewrite UBOðϕÞ in Eq. (27) in normal form,

UBOðϕÞ ¼
ð2þ aÞb
2

ffiffiffi
π

p
ΦZPF

�
ϕþ a

2

� ffiffiffi
π

p
ΦZPF

2þ a
− bL

��
2

; ð28Þ

in which we drop an additive constant that does not depend
on ϕ. Thus, if no further network element besides the
shunting capacitance C is attached to the node flux ϕ (see
Fig. 4), the slow degree of freedom of the system is well
approximated byHr;eff in Eq. (18), and its ground-statewave
function is a Gaussian whose center position and standard
deviation are given by

ϕm ¼−
a
2

� ffiffiffi
π

p
ΦZPF

2þa
−bL

�
; Δϕ¼

ffiffiffi
ℏ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π
p

ΦZPF

ð2þaÞbC
4

s
;

ð29Þ

respectively. In the limit of large zero-point fluctuations, we
find that Δϕ=ϕm → 0, while Δϕ → ∞. Thus, when capac-
itively shunted, the series combination of a linear inductance
and our nonsymmetric, nonlinear inductor is effectively
replaced by an open circuit, as in the case of a nonlinear
inductor of type 1.However, if the nodeϕ is embedded into a
larger circuit, the displacement ϕm has the effect of an
effective magnetic flux through a closed loop formed by the
inductive branch and further inductive elements. This
effective magnetic flux does not affect the dynamics of
the total system as long as the larger circuit involves linear
inductances only. If, however, the system contains further
nonlinear inductors, the actual value of ϕm and thus that of
the small intrinsic capacitance C0 becomes of central
importance. In that case, an effective replacement of the
inductive branch in the circuit in Fig. 4 is not well defined as
the internal capacitance C0 vanishes.

IV. JOSEPHSON-JUNCTION DEVICES

We turn now to applications. The primary nonlinear
inductance available in the lab is, of course, the Josephson
junction. But from this specific nonlinearity a wide variety
of effective inductances are built, for specific novel
characteristics in fluxonium [22] and the 0-π qubit
[10,11,72], for emergent linear devices (superinductors
[73]) with large effective L value, and for optimal couplers
and amplifier structures [74,75]. Many workers view these
complex devices as key to fundamentally improving the
superconducting qubit [20,76–78].
Even the original flux qubit [79,80] was thought of as a

realization of our simple circuit Fig. 3(a) with the linear
inductor being approximately realized by a series combi-
nation of two large-EJ junctions. This original work
avoided any singular treatment, but subsequent work has
not always been so careful.
The Josephson junction has an additional feature that we

do not treat above, namely, that its potential characteristic is
periodic. This has the consequence that the flux variable ϕ
can be treated as compact on the domain ð0;Φ0�, leading
also to the charge on the nodes of the junction being
constrained by the uncertainty relationship ΔϕΔQ ≈ ℏ (see
Secs. 2B and 5.10 of Ref. [81]). Thus, the tendency
identified in our analysis of Δϕ to diverge as C0 becomes
small is associated with the emergence of a definite value of
the node charge. This is precisely the phenomenon of the
Coulomb blockade [82]. The Coulomb blockade has been
known, in experiments long predating the emergence of
qubits, to be associated with the occurrence of a super-
conducting-insulating transition [83]. The open-circuit
behavior that we obtain above is a few-body version of
this many-body phase transition.
The need to avoid this fluctuation-dominated, insulating

regime was recognized in one of the first proposals for a
protected qubit, the current-mirror qubit [10,72]. In its
simplified version, the 0-π qubit, it was recognized [11] that
the desired superinductor should operate at very high
impedance value, which has been approached only very
gradually in subsequent experiments [15].
To link these active areas of work to our formalism, we

now provide a full Born-Oppenheimer analysis of one of the
simpler multijunction structures in current use, the SNAIL.

A. Josephson-junction arrays: Single-phase
approximation revised

So far, we analyzed a series connection of a linear
inductance and a nonlinear inductor. In this section, we
generalize this analysis, and we consider the series con-
nection of multiple nonlinear inductors. This is important
because, as we have just discussed, arrays of Josephson
junctions are commonly fabricated to realize effective
devices such as superinductances [11,22,23] or SNAILs
[27–29]. Therefore, in the following, we revise the
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single-phase approximation [84] that is commonly used to
simplify the description of these multinode Josephson-
junction chains. Here, we focus our analysis on the case of a
capacitively-shunted SNAIL with N ¼ 2 large Josephson
junctions [85]; see Fig. 9.
Typically, SNAILs are embedded into larger electrical

networks in order to provide nonlinearity in the form of
effective nonlinear inductors, or for the amplification of
signals. In any case, the internal degrees of freedom of the
SNAIL (here ϕ2) are commonly discarded such that it can
be considered to be an element of 1 degree of freedom only
(here ϕ1). This simplification is known as the single-phase
approximation.
We introduce the dimensionless parameters ki ¼ Ci=C

that relate the intrinsic capacitances Ci of the Josephson
junctions to the large capacitance C of the shunt. In the
following model, we consider all the intrinsic capacitances
of the Josephson junctions to be finite, i.e., ki > 0. As a
consequence, every branch of a SNAIL network, such as
shown in Fig. 9, contains at least one capacitor, and the
capacitance matrix

C ¼
�
1þ k1 þ k3 −k3

−k3 k2 þ k3

�
ð30Þ

is invertible. Thus, the circuit is regular, and the corre-
sponding Hamiltonian is straightforwardly obtained as

H ¼ 4ECnTC−1nþ UðϕÞ ð31Þ

with the charging energy EC ¼ e2=2C, and the vector
notation is ϕ ¼ ðϕ1;ϕ2ÞT; n ¼ ðn1; n2ÞT . The Josephson
junctions constitute the total potential energy

UðϕÞ ¼ −EJ;1 cosðϕ1Þ − EJ;2 cosðϕ2Þ
− EJ;3 cosðϕ1 − ϕ2 þΦÞ; ð32Þ

in which Φ ¼ Φext=Φ0 is the rescaled external magnetic
flux through the loop formed by the Josephson junctions.
Similarly, the chosen variables ϕi and nj are dimensionless,

and the system is quantized by imposing the usual
commutation relations ½ϕi; nj� ¼ iδij.
In order to proceed, we diagonalize the kinetic term of

the Hamiltonian in Eq. (31). As we see, in the limit of small
intrinsic capacitances (ki ≪ 1), this diagonalization clearly
separates the dynamics of the system into a fast variable
and a slow one. In principle, such a decoupling can be
achieved by means of several different variable trans-
formations. Here, we define the canonical (but nonorthog-
onal) variable transformation obtained from a Cholesky
decomposition:

p ¼ A−1n; x ¼ ATϕ; A ¼
�
1 −k3

k2þk3

0 1

�
; ð33Þ

which transforms the Hamiltonian of the system to

H ¼ 4ECðd1p2
1 þ d2p2

2Þ þ Uðx1; x2Þ ð34Þ

with the diagonal kinetic matrix elements

d1¼
k2þk3

k2þk3þk1k2þk2k3þk3k1
; d2¼

1

k2þk3
; ð35Þ

and the total potential energy Uðx1; x2Þ in terms of the new
positionlike variables x1 and x2,

Uðx1; x2Þ ¼ −EJ;1 cosðx1Þ − EJ;2 cos

�
k3

k2 þ k3
x1 þ x2

�

− EJ;3 cos

�
k2

k2 þ k3
x1 − x2 þΦ

�
: ð36Þ

Note that, per construction, the variable transformation
in Eq. (33) ensures that ½xi; pj� ¼ iδij and x1 ¼ ϕ1. The
latter property will be crucial for the single-phase approxi-
mation of the SNAIL if it is coupled inductively to some
further circuitry, as the relevant coupling variable will be ϕ1

in that case. The effect of the nonorthogonal transformation
matrix A on the boundary conditions of the wave function
is discussed in Sec. IVA 3.
In the following, we analyze the limit of small intrinsic

capacitances, i.e., ki ≪ 1. In that limit, we find that
d2 ≫ d1 such that the dynamics in the x2 direction becomes
much faster than that in the x1 direction. As we elaborate in
Sec. III, such different timescales for the dynamics in the
two directions make the Born-Oppenheimer approximation
applicable. Thus, we first solve the Schrödinger equation
for the fast variable x2, keeping the slow variable x1 as a
fixed parameter. To further simplify the analysis, the
following calculations are carried out for a symmetric
SNAIL; i.e., for the remainder of this section, we focus
on the special case of k2 ¼ k3 and EJ;2 ¼ EJ;3.

FIG. 9. Capacitively-shunted SNAIL with N ¼ 2 large Joseph-
son junctions. The external magnetic flux Φ pierces the loop
formed by the Josephson junctions.
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1. Classical approach

Instead of solving the fast Schrödinger equation
for its quantum-mechanical ground-state energy, it has
been typical to focus on the classical minimal energy of
Uðx1; x2Þ in the x2 direction for fixed values of x1 [28,84].
As we illustrate in Sec. II, this simplification corresponds to
the singular case (k2 ¼ 0), in which quantum fluctuations
in ϕ2 are assumed to be absent, and the Dirac-Bergmann
algorithm has to be applied in order to obtain the
Hamiltonian. However, for the regular case (k2 > 0), this
classical approach is a good approximation only if the
eigenfunction is well localized in x2, which is true
if all the individual Josephson junctions in the array are
deeply in the transmon regime, EC=k2EJ;2 ≪ 1 [86]. Note
that these two conditions on k2 are not automatically
compatible and need to be examined individually for each
given set of circuit parameters; see also Appendix A
in Ref. [28].
For the symmetric SNAIL and a fixed value of x1, the

condition for a minimal potential [Eq. (36)] in the fast
direction evaluates to x2 ¼ Φ=2. Inserting this value for x2
in Uðx1; x2Þ results in an effective one-dimensional poten-
tial for the slow x1 variable, namely,

Ucl
BOðx1Þ ¼ −EJ;1 cosðx1Þ − 2EJ;2 cos

�
x1 þΦ

2

�
: ð37Þ

This classically obtained Born-Oppenheimer potential
is known as the single-phase approximation and simplifies
the circuit in Fig. 9 as it discards the dynamics of the
slow internal degree of freedom. However, note that
Uðx1; x2Þ is minimal in the fast direction at x2 ¼ Φ=2
only if jx1 þΦj < π (discarding the periodicity). In par-
ticular, for x1 ¼ π −Φ, we find that Uðπ −Φ; x2Þ does not
depend on x2, and thus, x2 is not unambiguously a fast
variable compared to x1, which might have consequences
for the validity of the Born-Oppenheimer approximation.
For this reason, one must also require the wave function in
x1 to be localized “far enough away” from these critical
points. Keeping this potential breakdown of the Born-
Oppenheimer approximation in mind, we proceed with the
analysis of finite but small quantum fluctuations in the fast
variable x2.

2. Harmonic oscillator approach

In order to obtain a more accurate approximation for the
Born-Oppenheimer potential than that in Eq. (37), we
expand the potential Uðx1; x2Þ up to second order in x2
around its minimum in the fast direction,

Uðx1; x2Þ ¼ Ucl
BOðx1Þ þ EJ;2 cos

�
x1 þΦ

2

��
x2 −

Φ
2

�
2

;

ð38Þ

and we omit terms of the order O½ðx2 −Φ=2Þ3�. Then, the
ground-state energy of the resulting harmonic oscillator in
the x2 direction is taken to define the effective Born-
Oppenheimer potential for x1,

UHO
BOðx1Þ ¼ Ucl

BOðx1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k2
ECEJ;2 cos

�
x1 þΦ

2

�s
: ð39Þ

As in the purely classical approach, the harmonic
approximation is valid only if the wave function is well
localized in x2, i.e., if EC=k2EJ;2 ≪ 1 (the transmon limit
mentioned above). Also, we again require jx1 þ ϕj < π
(discarding the periodicity) in order to expand around an
actual minimum and not around a maximum. Equation (39)
already improves the classical Born-Oppenheimer potential
as the additional correction term takes account of the zero-
point energy due to finite quantum fluctuations.
The result for UHO

BOðx1Þ can be used to improve the
classical Born-Oppenheimer potential by renormalizing the
Josephson energy EJ;2 instead of adding a correction term
[87]. To this end, we note that the second-order Maclaurin
polynomial of both the functions 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðϵÞp

and cosðϵÞ þ 1

coincides. Therefore, after dropping a constant shift in
energy, we approximate UHO

BOðx1Þ as

UHO
BOðx1Þ ≈Ucl

BOðx1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2k2
ECEJ;2

s
cos

�
x1 þΦ

2

�
: ð40Þ

Finally, this approximation is used to identify the renor-
malized Josephson energy

ẼJ;2 ¼ EJ;2

�
1 −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2k2

EC

EJ;2

s �
ð41Þ

such that UHO
BOðx1Þ ≈ Ũclðx1Þ with

Ũcl
BOðx1Þ ¼ −EJ;1 cosðx1Þ − 2ẼJ;2 cos

�
x1 þΦ

2

�
: ð42Þ

We conclude the analysis of small finite quantum
fluctuations of the internal degrees of freedom in the
SNAIL with the remark that a similar renormalization of
the Josephson energy was reported in Ref. [89]. There, an
effective single-mode theory for the fluxonium qubit is
derived that incorporates possible capacitances to ground as
well as disorder in the circuit elements. Specializing to a
symmetric SNAIL with N ¼ 2 Josephson junctions in the
array, the reported renormalization coincides with Eq. (41)
up to leading order in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=k2EJ;2

p
≪ 1.

Nevertheless, we see that other current analyses, even
those specifically set up to understand the effect of
capacitive effects in array structures as in fluxonium
[23], do not fully account for the EJ renormalization effect.
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In any of the many current structures in which inductive
structures are built from Josephson arrays, these renorm-
alization effects must be evaluated.

3. Limit of small internal capacitances

Both the Born-Oppenheimer potential based on the
classical minimal energy (Sec. IVA 1) and that based
on the harmonic-oscillator approximation (Sec. IVA 2)
require the wave function to be localized at or close to
the minimum in the fast x2 direction, respectively. As
discussed, this requirement is fulfilled if EC=k2EJ;2 ≪ 1.
For intermediate values EC=k2EJ;2 ≃ 1, quantum fluctua-
tions in x2 are too large to allow for a quadratic expansion
of the potential. In that case, one must solve the fast part of
the Schrödinger equation numerically or attempt to find an
(approximate) analytic solution. However, for vanishingly
small but finite internal capacitances EC=k2EJ;2 ≫ 1,
quantum fluctuations in x2 dominate the eigenenergies
of the fast Schrödinger equation. In the following, we
compare this limit with the singular case (k2 ¼ 0) accord-
ing to the Dirac-Bergmann algorithm. We expect the wave
function to be widely extended, and therefore we first
analyze its boundary conditions. Given the initial flux
variables ϕ1 and ϕ2, the boundary conditions on the full
two-dimensional wave function Ψðϕ1;ϕ2Þ read [90]

Ψðϕ1 þ 2π;ϕ2Þ ¼ ei2πν1Ψðϕ1;ϕ2Þ; ð43aÞ
Ψðϕ1;ϕ2 þ 2πÞ ¼ ei2πν2Ψðϕ1;ϕ2Þ: ð43bÞ

Here, ν1 and ν2 take account of possible offset charges on
the superconducting islands of the network in Fig. 9.
However, we want to evaluate the wave function in the
x1-x2 representation, and the nonorthogonal variable trans-
formation in Eq. (33) imposes “spiral” boundary conditions
on Ψðx1; x2Þ, namely,

Ψðx1 þ 2π; x2 − πÞ ¼ ei2πν1Ψðx1; x2Þ; ð44aÞ
Ψðx1; x2 þ 2πÞ ¼ ei2πν2Ψðx1; x2Þ: ð44bÞ

The Born-Oppenheimer approximation assumes that the
total wave function factorizes

Ψðx1; x2Þ ¼ χðx1Þψx1ðx2Þ; ð45Þ

where the individual factors describe the fast and the slow
degree of freedom, respectively. In particular, ψx1ðx2Þ
solves the fast part of the Schrödinger equation in which x1
is treated as a fixed parameter. The resulting eigenenergy—
the Born-Oppenheimer potential—is then used as the
potential for the effective slow part of the Schrödinger
equation, which is solved by χðx1Þ.
In the limit of vanishingly small internal capacitances, a

convenient basis for solving the fast Schrödinger equation
is set up by the plane waves

unðx2Þ ¼
1ffiffiffiffiffiffi
2π

p eiðν2þnÞx2 ; n ∈ Z; ð46Þ

as they comply with the boundary conditions in Eq. (44)
and already diagonalize the kinetic term of the fast
Hamiltonian,

humj4ECd2p2
2juni ¼ 4ECd2ðν2 þ nÞ2δm;n: ð47Þ

Furthermore, the potential energy Uðx1; x2Þ is tridiagonal
in that basis. In particular, using the notation Um;nðx1Þ ¼
humjUðx1; x2Þjuni, we find that

Un;nðx1Þ ¼ −EJ;1 cosðx1Þ; ð48aÞ

Un;n�1ðx1Þ ¼ −
EJ;2

2
ðe∓ix1=2 þ e�ix1=2e�iΦÞ; ð48bÞ

while all the other matrix elements vanish.
For simplicity, in the following analysis we focus on the

case ν2 ¼ 0. Then, in the limit of vanishingly small internal
capacitances, u0ðx2Þ is a good approximation of the ground
state of the fast Hamiltonian. In particular, in first-order
perturbation theory, the resulting Born-Oppenheimer
potential for the slow x1 variable

UBOðx1Þ ¼ EJ;1½1 − cosðx1Þ� ð49Þ

is essentially that of the Josephson junction shunting the
Josephson-junction array; see Fig. 9. Thus, we conclude
that in the limit of vanishingly small intrinsic capacitances
in the Josephson-junction array, the entire branch compris-
ing it can be efficiently modeled as an open circuit. We see
that this is similar to the case of a type-1 inductor in series
with a linear inductance; see Sec. III B 1.
Also, the kinetic term corresponding to the x1 variable,

i.e., the ϕ1-node shunting capacitance, is in agreement with
this result. In particular, in the limit of small k2, k3, we find

d1EC ≈ ð1=EC þ 1=EC;1Þ−1; ð50Þ

which is the effective charging energy of the parallel
connection of C and C1. This again coincides with the
interpretation of the central branch in the circuit in Fig. 9
being absent.

V. CONCLUSION AND OUTLOOK

Taking a final look at the fixed-point structure that our
work uncovers, we offer a schematic “flow diagram” in
Fig. 10. We of course do not use the tools of renormaliza-
tion-group theory here, but flows are well defined in our
work, obtained implicitly from the calculation of ground-
state energies of fast-variable Hamiltonians in the Born-
Oppenheimer treatment. While these flows are in a function
space (i.e., infinite dimensional), they can usefully be
schematized in the two-dimensional space shown.
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Indeed, we strive to render this illustration so that it
resembles the well-known renormalization-group flows and
fixed-point structure of the quantum conductance of the 1D
interacting Luttinger liquid, as reported by Kane and Fisher
[91]. At some level, the resemblance is accidental, as the
physical problems considered are very different. But there
is an intriguing similarity in the phenomenology of the two
cases: In Kane and Fisher, the fixed-point cases are those of
perfect quantum conductors vs insulators, resembling our
short- and open-circuit fixed points. Their marginal case is
the noninteracting electron case, closely analogous to the
“type-L’ case of our work. Our flows have, in some sense, a
higher level of complexity in that they are not captured by
just the two parameters shown. But it would be intriguing to
consider whether the two problems have some deeper level
of resemblance.
To give a final perspective on our work: We present a

general approach based on Born-Oppenheimer theory to
derive the Hamiltonian description of a large class of
electrical networks, which are nearly singular due to the
occurrence of a hierarchy of capacitance values. We also
offer a full development of the well-known treatment of
“exactly singular” systems, as applied to our electric
circuits, based on the Dirac-Bergmann algorithm. We

compare the quantum dynamics obtained by the two
treatments. The discrepancy of the two approaches is
absolute: The Dirac-Bergmann algorithm is a failure. In
the language of electric circuit theory, this main finding of
our work can be stated as follows:
The equations of motion obtained from the Lagrangian

description of an electrical network must coincide with
Kirchhoff’s laws of current (voltage) conservation for each
node (loop). However, these classical conservation laws
must not be used to eliminate variables or to change the
topology of the electrical network.
In particular, for a quantized description of the system,

such an elimination of variables on the Lagrangian level
should be handled with care, and, strictly speaking, is valid
for linear systems only. The classical elimination of vari-
ables, motivated by the singularity of the Lagrangian, must
be deemed an incorrect procedure as it completely misses
quantum-fluctuation effects, which become large as the
singular limit is approached.
As an alternative, we provide the techniques to analyze

the regularized system in the singular limit. More specifi-
cally, we generalize results from analytic perturbation
theory to study large classes of generic nonanalytic
perturbations. This allows us to classify network elements
with the same effective quantum dynamics as the singular
limit is approached, i.e., in the limit of a small intrinsic
capacitance, identifying the dominant idea of fixed-point
behavior as the correct overall paradigm.
We finally feature one direction in which our work is

incomplete and offer intriguing new questions for circuit
quantization. In equivalence to the concept of generic
nonlinear inductors, a similar formulation of generic non-
linear capacitors exists, and the consideration of such
generalized capacitors would complement the analysis
presented in this work. While this consideration is not
viewed as very relevant for superconducting qubit circuits,
the phenomenon of quantum capacitance could provide a
route to such nonlinearities [92–94]. More relevant may be
the phenomenon of quantum phase slip junctions; it is
argued [95] that such junctions act as effective nonlinear
capacitors, whose contribution to the kinetic energy has the
interesting convex functional form∝ _x arcsin _xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _x2

p
,

with the dimensionless generalized velocity _x ¼ _ϕ=Vc.
When considering not only parasitic capacitances but

parasitic inductances, we note instances of circuits that,
even though formally nonsingular, show problems in
treating small parameter values going to zero. We expect
that a full study of both node (flux) quantization and the
dual (loop charge) quantization is necessary to fully
understand these problems [56]. Finally, we point out that
if one had strongly nonlinear, nonconvex characteristics in
both inductor and capacitor in a simple resonator, no
consistent performance of the Legendre transformation
could be done to obtain a Hamiltonian for this circuit;
this leaves open the question of how one should quantize
this perfectly well-defined lossless classical circuit.

FIG. 10. A conceptual flow diagram describing the fixed-point
structure of a nearly singular circuit. Referring to Fig. 4, flows are
parametrized by the small capacitor C0, with the fixed points (red
dots) reached when C0 → 0. Actual computations of the flows are
performed by finding the ground state of the fast-variable
Schrödinger equation in the Born-Oppenheimer treatment. The
object that flows is the entire Born-Oppenheimer potential
function UBOð·Þ exemplified here as just one parameter, the
value UBOðϕÞ at some particular value of the slow variable ϕ.
The flows are shown for different forms of the potential of the
nonlinear inductor schematized here by parameter γ, as in the
potential form UNLðϕcÞ ∼ jϕcjγ; cf. Eq. (20). Flows start at some
nonuniversal values (black dots); the flows are in reality in a high-
dimensional parameter space and are not necessarily monotone,
as schematized by the waviness of the flow lines. We show that
sublinear cases (0 < γ < 2, type 1) all flow to the universal open-
circuit fixed point with UBOðϕÞ ¼ 0; superlinear cases (γ > 2,
type 2) all flow to the universal short-circuit fixed point with
UBOðϕÞ ¼ ϕ2=2L. Linear or quasilinear cases (type L) remain
fixed at γ ¼ 2, flowing to a point on the dashed line determined
by the starting parameter L; cf. Theorem 4.
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To conclude, our work highlights the importance of
critically examining the validity of well-tried theorems
or simplifications from classical network synthesis,
which build on Kirchhoff’s conservation laws (e.g., the
Y-Δ transformation or Tellegen’s replacement rules for
terminated gyrators [58,96]), prior to applying circuit
quantization. We can envision our work to provide the
basis for the quantization of unconventional electrical
networks yet to be designed that, e.g., involve nonrecip-
rocal elements or more general nonlinear elements going
beyond the Josephson junction. Encouraged by the con-
tinuous progress in fabricating novel network elements
such as on-chip nonreciprocal devices [97–101], non-
linear kinetic inductances [102,103], or nonlinear quan-
tum capacitances [92–94], continuing development of the
theoretical description of electrical networks containing
such elements is highly motivated by the vast new
possibilities they offer. Perhaps, someday, superconduct-
ing qubits with a nonlinear capacitor [104,105] or intrinsi-
cally protected qubits based on the nonreciprocity of the
device [88] might open new, exciting pathways to the
realization of a large-scale quantum processor.

ACKNOWLEDGMENTS

We are most grateful to our colleague Fabian Hassler
for many important suggestions and impulses at the early
stages of the work reported here, as well as for suggesting
the use of Youla’s decomposition to effectively represent
antisymmetric matrices. We thank Daniele Tampieri of
TTlabs for insightful observations about convergence
criteria for series. We thank Barry Simon for pointing
out Ref. [106]. Thanks also to Alex Altland for observing
the resemblance of the present work to the renormaliza-
tion-group analysis of Kane and Fisher. We acknowledge
support from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy—Cluster of Excellence Matter and
Light for Quantum Computing (ML4Q) EXC 2004/1—
390534769. D. D. V. gratefully acknowledges funding by
the German Federal Ministry of Education and Research
within the funding program “Photonic Research
Germany” under Contract No. 13N14891, and within the
funding program “Quantum Technologies—From Basic
Research to the Market” (project GeQCoS), Contract
No. 13N15685.

APPENDIX A: AVOIDING THE BRANCHED
HAMILTONIAN

In this appendix, we further analyze the singular
Lagrangian

L ¼ m_x2

2
−
ðx − yÞ2

2
þ β cosðyÞ; ðA1Þ

which is a relabeled version of the Lagrangian in Eq. (9)
describing the circuit in Fig. 3(a). As we elaborate in
Sec. II B, after eliminating the variable y in the Lagrangian,
the corresponding one-dimensional Hamiltonian Hs [see
Eq. (12)] is branched if β > 1.
As opposed to this result, here we demonstrate that such

a branched Hamiltonian can be avoided at the price of
choosing different variables that are noncanonical. To this
end, we apply the Dirac-Bergmann algorithm. The con-
jugate momenta px ¼ ∂L=∂_x, py ¼ ∂L=∂_y give rise to one
primary constraint

G1 ¼ py ≃ 0; ðA2Þ

in which the weak equality sign ≃ reminds us that one must
not use the equation before the Poisson brackets are
evaluated. Accounting for this primary constraint via the
Lagrange multiplier μ, the primary Hamiltonian of the
system reads

HP ¼ px _xþ py _y − Lþ μG1; ðA3Þ

and it governs the time evolution of the system. In
particular, requiring that the time evolution of the primary
constraint

_G1 ≃ fG1; HPg ðA4Þ

vanishes, results in a consistency condition that leads to the
secondary constraint

G2 ¼ x − y − β sinðyÞ ≃ 0; ðA5Þ

which is essentially the Euler-Lagrange equation of motion
for the y degree of freedom. Note that _G2 does not give rise
to further constraints.
In the following, both the primary constraint and

the secondary constraint are used to define the Dirac
brackets—a redefinition of the Poisson brackets. To this
end, we introduce the matrix

M ¼
�

0 fG1; G2g
fG2; G1g 0

�
; ðA6Þ

which collects the mutual Poisson brackets of the con-
strains. In particular, we find

fG1; G2g ¼ 1þ β cosðyÞ; ðA7Þ

which, in general, does not vanish. Thus, both constraints
G1 and G2 are second-class constraints. Next, Dirac’s
version of the Poisson brackets of two general functions
A and B are defined as
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fA; BgD ≔ fA;Bg −
X2
i;j¼1

fA;GigðM−1ÞijfGj; Bg: ðA8Þ

The only nonvanishing Dirac brackets of position and
momentum variables are

fx; pxgD ¼ 1; fy; pxgD ¼ 1

1þ β cosðyÞ : ðA9Þ

Having introduced the Dirac brackets, the weak equality
signs in Eqs. (A2) and (A5) can be replaced by strong
equality signs, keeping in mind that one must not work with
the usual Poisson brackets but Dirac’s version. As a
consequence, x and py can be eliminated in the primary
Hamiltonian in Eq. (A3), thus resulting in the final
Hamiltonian

H ¼ p2
x

2m
þ β2 sin2ðyÞ

2
− β cosðyÞ; ðA10Þ

which is not branched but a function of nonsymplectic
coordinates.
The classical Hamiltonian equations of motion for y and

px are two coupled differential equations of first order and
evaluate to

_y ¼ fy;HgD ¼ px

m½1þ β cosðyÞ� ; ðA11aÞ

_px ¼ fpx;HgD ¼ −β sinðyÞ: ðA11bÞ

As a consistency check, they can be combined to obtain the
second-order differential equation

mÿ ¼ β sinðyÞ
1þ β cosðyÞ ðm_y2 − 1Þ; ðA12Þ

which coincides with the Euler-Lagrange equation of
motion derived from the Lagrangian in Eq. (A1) after
eliminating the x degree of freedom.
At this point, for β ≥ 1, we note that the matrix M in

Eq. (A6) is not invertible if

1þ β cosðyÞ ¼ 0; ðA13Þ

which results in a singularity of the Dirac brackets in
Eq. (A9). However, the values of y that satisfy the condition
in Eq. (A13) correspond to critical values of the final
Hamiltonian in Eq. (A10) [107] where the symplectic
structure of phase space vanishes [108]. In fact, as the
agreement of the classical Hamiltonian and Lagrangian
equations of motion shows, such a singularity does not
affect the validity of the Dirac-Bergmann algorithm.
Finally, we remark that one can also construct a single-

valued Hamiltonian with a set of symplectic coordinates by
introducing the new momentum

p ¼ px½1þ β cosðyÞ� ðA14Þ

such that fy; pgD ¼ 1. Given these variables, however, the
system is described by the Hamiltonian

H0 ¼ p2

2mðyÞ þ
β2 sin2ðyÞ

2
− β cosðyÞ; ðA15Þ

which involves the position-dependent mass

mðyÞ ¼ m½1þ β cosðyÞ�2 ðA16Þ

that vanishes at 1þ β cosðyÞ ¼ 0.
Similar to our approach in the main text in Sec. II B, here

we do not attempt to provide a quantized theory for the
system that is described by the Lagrangian in Eq. (A1).
Despite the aforementioned singularities for β ≥ 1, it turns
out that the quantization of H in Eq. (A10) would require a
systematic noncanonical quantization process, while H0 in
Eq. (A15) would need to be brought into a Hermitian form
prior quantization. As we show in the main text, for the
description of electrical networks, both of these procedures
can be circumvented by removing the singularity of the
initial Lagrangian.

APPENDIX B: PROOFS OF THE THEOREMS

In this appendix, we collectively work out the proofs of
the theorems that we present in Sec. III to demonstrate the
failure of the Dirac-Bergmann algorithm. To this end, we
provide two helpful lemmas.
Lemma 1. Suppose that a nonlinear inductor of type 1 is

described by the potential UNLðϕcÞ. Then, for some
γ ∈ ð0; 2Þ and all ϕc,

∀ β > 0 ∃M > 0∶ jUNLðϕcÞj ≤ βjϕcjγ þM:

Proof.—Fix β > 0 for the remainder of the proof. From
the definition of a nonlinear inductor of type 1, it follows that
there exist some γ ∈ ð0; 2Þ such that limjϕcj→∞ jUNLðϕcÞj=
βjϕcjγ¼0. Thus, there exists ϕ̃c ∈Rþ such that jUNLðϕcÞj≤
βjϕcjγ for all jϕcj≥ ϕ̃c.WithM ¼ maxϕc∈½−ϕ̃c;ϕ̃c� jUNLðϕcÞj,
the inequality jUNLðϕcÞj ≤ βjϕcjγ þM holds for all
ϕc ∈ R. ▪
In the next lemma, we introduce a new dynamical

variable y, in anticipation of the rescaling that is done in
the proof of the upcoming theorem:
Lemma 2. Suppose that two Hamiltonians H1

and H2 satisfy H2 ¼ H1 þ δVðyÞ with δVðyÞ ≥ 0 for all y.
Then, the ground-state energies of H1 and H2 satisfy
E0ðH2Þ ≥ E0ðH1Þ.
Proof.—Let jψi be the normalized ground state of H2.

Then, with the variational method applied to H1, one
obtains for the ground-state energy of H2:
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E0ðH2Þ ¼ hψ jH2jψi
¼ hψ jH1jψi þ hψ jδVðyÞjψi ≥ E0ðH1Þ: ðB1Þ

Thus, the ground-state energy of H2 is lower bounded by
the ground-state energy of H1. ▪
It follows that the ground-state energy of a particle in a

potentialV2ðyÞ, with y being the position variable, is always
larger than or equal to the ground-state energy of the same
particle in a potential V1ðyÞ if V2ðyÞ ≥ V1ðyÞ for all values
of y. Furthermore, suppose that a third Hamiltonian
H3 satisfies H3 ¼ H2 þ ΔVðyÞ with ΔVðyÞ ≥ 0. Then,
using same reasoning, we obtain the useful “sandwich”
E0ðH3Þ ≥ E0ðH2Þ ≥ E0ðH1Þ.

1. Proof of Theorem 1

We start with the proof of Theorem 1 in Sec. III B 1,
which states that for a nonlinear inductor of type 1(a), the
Born-Oppenheimer potential vanishes as C0=C → 0.
Proof.—We introduce the LC0-resonator frequency and

the flux zero-point fluctuation defined as

ω0
r ¼

1ffiffiffiffiffiffiffiffi
LC0p ; ΦZPF ¼

ffiffiffi
ℏ

p ffiffiffiffiffi
L
C0

4

r
; ðB2Þ

respectively, and we express Hfast as

Hfast ¼ ℏω0
r

�
p2
y þ ðy − ϕ=ΦZPFÞ2

2
þ UNLðyΦZPFÞ

ℏω0
r

�
: ðB3Þ

The dimensionless conjugate variables y and py are defined
as y ¼ ϕc=ΦZPF and py ¼ QcΦZPF=ℏ, and they satisfy the
canonical commutation relation ½y; py� ¼ i.

We define the parameter ϵ ¼ 1=
ffiffiffiffiffiffiffiffi
ℏω0

r

p
¼ ffiffiffiffi

L
p

=ΦZPF, and
we divide out the prefactor in Eq. (B3), obtaining

ϵ2Hfast ¼ H0 þ
ϵ2ϕ2

2L
−
ϵϕyffiffiffiffi
L

p þ ϵ2UNLð
ffiffiffiffi
L

p
y=ϵÞ; ðB4Þ

with the dimensionless harmonic-oscillator Hamiltonian
H0 ¼ ðp2

y þ y2Þ=2. By definition of a type-1 inductor, there
exists a parameter γ ∈ ð0; 2Þ such that

lim
ϵ→0

ϵγUNLð
ffiffiffiffi
L

p
y=ϵÞ ¼ 0 ðB5Þ

for all values of y. With this property of UNLðϕcÞ in mind,
we introduce the auxiliary Hamiltonian

ϵ2Haux ¼ H0 þ
ϵ2ϕ2

2L
−
ϵϕyffiffiffiffi
L

p þ ϵ2−γαγUNLð
ffiffiffiffi
L

p
y=αÞ; ðB6Þ

which generalizes Hfast as it involves a new independent
parameter α. The fast Hamiltonian is recovered from the
auxiliary one by setting α ¼ ϵ as Haux ¼ Hfast in that case.

Without loss of generality, we choose γ ∈ Q, and there-
fore, we set γ ¼ p=q with p; q ∈ N satisfying 2q − p ∈ N.
We substitute ϵ ¼ λq in the auxiliary Hamiltonian to obtain

λ2qHaux ¼ H0 þ
λ2qϕ2

2L
−
λqϕyffiffiffiffi

L
p þ λ2q−pαγUNLð

ffiffiffiffi
L

p
y=αÞ:

ðB7Þ

The operator domain D of λ2qHaux is independent of λ, and
for each jψi ∈ D, λ2qHauxjψi is a vector-valued analytic
function of λ. Thus, λ2qHaux is an analytic family in the sense
of Kato [in particular, an analytic family of type (A); see
p. 16 in Ref. [48] ] and theKato-Rellich theorem applies; see
p. 15, Theorem XII.8 in Ref. [48]. It follows that for any
value of ϕ and α > 0, the nth eigenenergy λ2qEϕ;nðλ; αÞ of
λ2qHaux is an analytic function in λ with a nonvanishing
radius of convergence λnðϕ; αÞ; i.e., for all λ < λnðϕ; αÞ we
can write the eigenenergy as Rayleigh-Schrödinger series
(p. 1 in Ref. [48]):

λ2qEϕ;nðλ; αÞ ¼
X∞
k¼0

EðkÞ
ϕ;nðαÞλk: ðB8Þ

By construction, and since the auxiliary Hamiltonian in
Eq. (B7) is a polynomial in ϕ, the Rayleigh-Schrödinger

coefficients EðkÞ
ϕ;nðαÞ are polynomials in ϕ of the order

j ≤ k=q.
We have not yet established that the Rayleigh-

Schrödinger coefficients are well behaved as α → 0. We
now show this for the ground state: Consider the pair of
new auxiliary Hamiltonians

λ2qH� ¼ H0 þ
λ2qϕ2

2L
−
λqϕyffiffiffiffi

L
p � λ2q−p½βj

ffiffiffiffi
L

p
yjγ þ αγM�;

ðB9Þ

with β;M > 0. Since αγ enters Eq. (B9) as the prefactor of
the identity operator on the right-hand side, the eigene-
nergies λ2qE�

ϕ;nðλ; αÞ of λ2qH� depend linearly on αγ .
According to Lemma 1, the parameters β and M can be
chosen such that jUNLðϕcÞj ≤ βjϕcjγ þM, and there-
fore, λ2qðHþ −HauxÞ ≥ 0, λ2qðHaux −H−Þ ≥ 0. Applying
Lemma 2 twice gives

λ2qE−
ϕ;0ðλ; αÞ ≤ λ2qEϕ;0ðλ;αÞ ≤ λ2qEþ

ϕ;0ðλ; αÞ: ðB10Þ

Furthermore, it follows from Sturm-Liouville theory
and its extensions (p. 719ff in Ref. [109]) that
jλ2qE�

ϕ;0ðλ; αÞj < ∞. Thus, the ground-state energy
λ2qEϕ;0ðλ; αÞ remains finite for any α < ∞, and, within
the radius of convergence, the Rayleigh-Schrödinger

coefficients satisfy limα→0 jEðkÞ
ϕ;0ðαÞj < ∞; thus, these
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coefficients are guaranteed to be “well behaved,” including
when α → 0.
Since λ2qHaux is an analytic family of type (A), the

radius of convergence of Eq. (B8) λnðϕ; αÞ can be lower
bounded (see p. 379, Remark 2.9 in Ref. [47]) by a function
rnðϕ; αÞ > 0 that remains finite as α → 0 (in fact, it
increases monotonically as α decreases; see below).
Thus, there exists α̃0ðϕÞ > 0 such that

r0(ϕ; α̃0ðϕÞ) ¼ α̃0ðϕÞ1=q ≡ λ̃0ðϕÞ: ðB11Þ

It follows that the Rayleigh-Schrödinger series in Eq. (B8)
converges at least if λ < λ̃0ðϕÞ and α < α̃0ðϕÞ. Thus, for
λ < λ̃0ðϕÞ, the ground-state energy of ϵ2Hfast is given by
Eq. (B8) with the substitution α ¼ λq.
Because of the symmetry of UNLðϕcÞ for nonlinear

inductors of type 1(a), the eigenenergies λ2qEϕ;nðλ; αÞ
are symmetric in ϕ, i.e.,

Eϕ;nðλ; αÞ ¼ E−ϕ;nðλ; αÞ ðB12Þ

for any value of λ and α > 0. Thus, the Rayleigh-

Schrödinger coefficients EðkÞ
ϕ;nðαÞ must contain only even

powers of ϕ. It follows that EðkÞ
ϕ;nðαÞ − EðkÞ

0;nðαÞ ¼ 0 for
k < 2q. Thus, the Born-Oppenheimer potential as defined
in Eq. (19) can be expressed as

UBOðϕÞ ¼ Eϕ;0ðλ; αÞ − E0;0ðλ; αÞjα¼λq

¼
X∞
k¼0

½Eð2qþkÞ
ϕ;0 ðλqÞ − Eð2qþkÞ

0;0 ðλqÞ�λk: ðB13Þ

The limit of vanishingly small intrinsic capacitance C0
corresponds to the limit λ → 0. To analyze UBOðϕÞ in this
limit, the addition and multiplication rules for limits as well

as a straightforward evaluation of Eð2qÞ
ϕ;0 ðλqÞ yield

lim
λ→0

UBOðϕÞ ¼ lim
λ→0

½Eð2qÞ
ϕ;0 ðλqÞ − Eð2qÞ

0;0 ðλqÞ� ¼ 0: ðB14Þ

Thus, for any value of ϕ, the Born-Oppenheimer potential
vanishes in the limit C0 → 0. ▪
More information on analytic perturbation theory can be

found in Refs. [106,110], supplementing the results we use
directly in our proofs [47,48].

a. Evaluation of the radius of convergence

The proof of Theorem 1 requires the Rayleigh-
Schrödinger series in Eq. (B8) to converge. Here, we derive
a lower bound of its radius of convergence λnðϕ; αÞ. In the
following, we consider all parameters and variables to be
dimensionless, and we assume ϕ ≥ 0.
By definition, any analytic family of type (A) in the

sense of Kato can be written as [47]

TðλÞ ¼ T þ λTð1Þ þ λ2Tð2Þ þ… ðB15Þ

with T being a closable operator with domain D, and TðkÞ
being operators with domains containing D. Furthermore,
for any analytic family of type (A), there exist constants a,
b, c > 0 such that (see p. 378, Remark 2.8 in Ref. [47])

kTðkÞuk≤ck−1ðakukþbkTukÞ; u∈D; k∈N: ðB16Þ

A comparison of λ2qHaux in Eq. (B7) with Eq. (B15)
identifies T ¼ H0, TðkÞ ¼ 0 for k ∉ fq; 2q; 2q − pg, and

TðqÞ ¼−
yϕffiffiffiffi
L

p ; Tð2qÞ ¼ ϕ2

2L
; Tð2q−pÞ ¼ αγUNL

� ffiffiffiffi
L

p
y

α

�
:

ðB17Þ

In the following, we show that each operator in Eq. (B17) is
T bounded. As Tð2qÞ ∝ 1, it follows trivially that

kTð2qÞuk ≤
ϕ2

2L
kuk: ðB18Þ

For constants A; B > 0 satisfying 4AB ≥ 1, the inequality
jyj ≤ Aþ By2 holds, and therefore (cf. Secs. II.1. and II.9.
in Ref. [106]),

kTðqÞuk ≤
ϕðAþ 2BÞffiffiffiffi

L
p kuk þ 2ϕBffiffiffiffi

L
p kTuk: ðB19Þ

Recall that UNLðϕcÞ describes a nonlinear inductor of
type 1. Lemma 1 guarantees the existence of constants
β;M > 0 such that jUNLðϕcÞj ≤ βjϕcjγ þM. Furthermore,
for γ ∈ ð0; 2Þ, there exist constants A0; B0 > 0 such that
jyjγ ≤ B0y2 þ A0. It follows that

kTð2q−pÞuk ≤ ½αγM þ Lγ=2βðA0 þ 2B0Þ�kuk
þ 2Lγ=2βB0kTuk: ðB20Þ

Thus, the inequality in Eq. (B16) is satisfied with the choice

a ¼ max

�
ϕ2

2L
;
ϕðAþ 2BÞffiffiffiffi

L
p ; αγM þ Lγ=2βðA0 þ 2B0Þ

�
;

ðB21Þ

b ¼ max

�
2ϕBffiffiffiffi
L

p ; 2Lγ=2βB0
�
; ðB22Þ

c ¼ 1: ðB23Þ

In the following, we set A ¼ ϕ=2
ffiffiffiffi
L

p
and B ¼ ffiffiffiffi

L
p

=2ϕ.
Furthermore, for any value of ϕ, we can choose β such that
a ¼ αγM þ Lγ=2βðA0 þ 2B0Þ and b ¼ 2Lγ=2βB0. Note that
a≡ aðαÞ increases monotonically as α increases.
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Following p. 379, Remark 2.9 in Ref. [47], the Rayleigh-
Schrödinger series Eq. (B8) is convergent at least for

λ < min
ζ∈Γn

½akRðζÞk þ bkTRðζÞk þ c�−1; ðB24Þ

where Γn is a closed curve in the complex plane separating
the nth eigenenergy of T from the rest of its spectrum and
RðζÞ ¼ ðT − ζÞ−1 is the resolvent of T.
Recall that T ¼ H0 is the unperturbed harmonic-

oscillator Hamiltonian with the spectrum nþ 1=2,
n ∈ N0. We choose Γn to be a circle with radius 1=2
centered at nþ 1=2 such that kRðζÞk ¼ 2 for ζ ∈ Γn.
Moreover, for ζ ∈ Γ0, we find the inequality
kTRðζÞk ≤ 3. Thus, for the ground-state energy, the radius
of convergence of the Rayleigh-Schrödinger series is lower
bounded by

r0ðϕ; αÞ ¼
1

2aðαÞ þ 3bþ 1
; ðB25Þ

which is always positive and increases as α decreases.

2. Proof of Theorem 2

Next, we present the brief proof of Theorem 2 in
Sec. III B 1, which complements Theorem 1 by considering
nonlinear inductors of type 1(b).
Proof.—For nonlinear inductors of type 1(b), all argu-

ments in the proof of Theorem 1 remain applicable until
Eq. (B12), but the further argument cannot rely on the even
parity of the eigenvalues with respect to ϕ. For γ ∈ ð0; 1Þ,
an explicit and straightforward evaluation of the Rayleigh-

Schrödinger coefficients shows that EðkÞ
ϕ;nðαÞ − EðkÞ

0;nðαÞ ¼ 0

for k ≤ 2q [111]. Thus, the Born-Oppenheimer potential
can be expressed as in Eq. (B13), and Eq. (B14)
remains valid. ▪

3. Proof of Theorem 3

Here, we prove Theorem 3 in Sec. III B 2, which states
that the Born-Oppenheimer potential approaches ϕ2=2L as
C0=C → 0 if the nonlinear inductor is of type 2 with
UNLðϕcÞ as defined in Eq. (20).
Proof.—We introduce the pair of rescaled conju-

gate variables y ¼ C0 1
γþ2ϕc and py ¼ Qc=C0 1

γþ2 satisfying
the canonical commutation relation ½y; py� ¼ iℏ. The
Hamiltonian Hfast expressed in these variables reads

Hfast ¼ C0− γ
γþ2

�
p2
y

2
þ βjyjγ

�
þ y2

2LC0 2
γþ2

−
ϕy

LC0 1
γþ2

þ ϕ2

2L
:

ðB26Þ

We define the Hamiltonian H0 ¼ p2
y=2þ βjyjγ and the

parameter ϵ ¼ C0 1
γþ2.Multiplying Eq. (B26)with ϵγ results in

ϵγHfast ¼ H0 þ ϵγ−2
y2

2L
− ϵγ−1

ϕy
L

þ ϵγ
ϕ2

2L
: ðB27Þ

Since γ ∈ Q>2, we set γ ¼ p=q with p; q ∈ N satisfying
p − 2q ∈ N. We substitute ϵ ¼ λq in the fast Hamiltonian
and obtain

λpHfast ¼ H0 þ λp−2q
y2

2L
− λp−q

ϕy
L

þ λp
ϕ2

2L
; ðB28Þ

which is an analytic family of type (A) in the sense of Kato.
Since the spectrum of H0 is nondegenerate (p. 719ff in
Ref. [109]), the Kato-Rellich theorem applies, and the nth
eigenenergy of λpHfast is an analytic function in λ with a
nonvanishing radius of convergence λnðϕÞ > 0; i.e., for all
λ < λnðϕÞ we can write the eigenenergy as the Rayleigh-
Schrödinger series

λpEϕ;nðλÞ ¼
X∞
k¼0

EðkÞ
ϕ;nλ

k: ðB29Þ

For k < p, the Rayleigh-Schrödinger coefficients EðkÞ
ϕ;n

do not depend on ϕ, and it follows that EðkÞ
ϕ;n − EðkÞ

0;n ¼ 0

for k < p.
Within the radius of convergence, i.e., for λ < λ0ðϕÞ, the

Born-Oppenheimer potential as defined in Eq. (19) can be
expressed as

UBOðϕÞ ¼ Eϕ;0ðλÞ − E0;0ðλÞ ¼
X∞
k¼0

½EðpþkÞ
ϕ;0 − EðpþkÞ

0;0 �λk:

ðB30Þ

The limit of vanishingly small intrinsic capacitance C0
corresponds to the limit λ → 0. To analyze UBOðϕÞ in this
limit, the addition and multiplication rules for limits as well

as a straightforward evaluation of EðpÞ
ϕ;0 yield

lim
λ→0

UBOðϕÞ ¼ EðpÞ
ϕ;0 − EðpÞ

0;0 ¼ ϕ2

2L
: ðB31Þ

Thus, for any value of ϕ, the Born-Oppenheimer potential
approaches the potential of the linear inductance L in the
limit C0 → 0. ▪

4. Proof of Theorem 4

Finally, we provide a proof of Theorem 4 in Sec. III B 3,
stating that a quasilinear inductor can be considered linear
in the limit C0 → 0. To show this, we combine ideas of the
proofs of Theorems 1 and 3. In particular, with regard to
the fast Hamiltonian in Eq. (16), we split the potential of the
type-L inductor into two parts, with one part rescaling
the underlying harmonic-oscillator Hamiltonian, while the
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other part is identified as contribution to the perturbation of
that system.
Proof.—It follows from the definition of a type-L non-

linear inductor that there exists a constant L > 0 such that
its potential can be written as

UNLðϕcÞ ¼
ϕ2
c

2L
þ Ut1ðϕcÞ; ðB32Þ

whereUt1ðϕcÞ describes a nonlinear inductor of type 1. We
define the effective parallel combination inductance l and
the characteristic flux scale Φ as

l ¼ LL
Lþ L

; Φ ¼
ffiffiffi
ℏ

p ffiffiffiffiffi
l
C0

4

r
; ðB33Þ

respectively. We further introduce the dimensionless con-
jugate variables y ¼ ϕc=Φ and py ¼ QcΦ=ℏ satisfying the
canonical commutation relation ½y; py� ¼ i.
With ϵ ¼ ffiffi

l
p

=Φ and H0 ¼ ðp2
y þ y2Þ=2, the fast

Hamiltonian in Eq. (16) can be expressed as [cf. Eq. (B4)]

ϵ2Hfast ¼ H0 þ
ϵ2ϕ2

2L
−
ϵ

ffiffi
l

p
ϕy

L
þ ϵ2Ut1ð

ffiffi
l

p
y=ϵÞ: ðB34Þ

For the remainder of this proof, all arguments in the proofs
of Theorem 1 for nonlinear inductors of type 1(a) and
Theorem 2 for nonlinear inductors of type 1(b) remain
applicable until Eq. (B14). In particular, the Born-
Oppenheimer potential can be expressed as in Eq. (B13).
However, as opposed to type-1 nonlinear inductors, here, a

straightforward evaluation of Eð2qÞ
ϕ;0 ðλqÞ yields

lim
λ→0

UBOðϕÞ ¼ lim
λ→0

½Eð2qÞ
ϕ;0 ðλqÞ − Eð2qÞ

0;0 ðλqÞ� ¼ ϕ2

2ðLþ LÞ :

ðB35Þ

Thus, for any value of ϕ, the Born-Oppenheimer potential
approaches the potential of a linear inductance Lþ L in the
limit C0 → 0. ▪
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