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We present results from three-dimensional hybrid-kinetic simulations of Alfvénic turbulence in a high-β,
collisionless plasma. The key feature of such turbulence is the interplay between local wave-wave
interactions between the fluctuations in the cascade and the nonlocal wave-particle interactions associated
with kinetic microinstabilities driven by anisotropy in the thermal pressure (namely, firehose, mirror, and
ion cyclotron). We present theoretical estimates for, and calculate directly from the simulations, the
effective collisionality and plasma viscosity in pressure-anisotropic high-β turbulence, demonstrating that,
for strong Alfvénic turbulence, the effective parallel-viscous scale is comparable to the driving scale of the
cascade. Below this scale, the kinetic-energy spectrum indicates an Alfvénic cascade with a slope steeper
than −5=3 due to the anisotropic viscous stress. The magnetic-energy spectrum is shallower than −5=3 near
the ion-Larmor scale due to fluctuations produced by the firehose instability. Most of the cascade energy
(≈80%–90%) is dissipated as ion heating through a combination of Landau damping and anisotropic
viscous heating. Our results have implications for models of particle heating in low-luminosity accretion
onto supermassive black holes, the effective viscosity of the intracluster medium, and the interpretation of
near-Earth solar-wind observations.
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I. INTRODUCTION

Many space and astrophysical plasmas are so hot and
dilute that the mean free path between particle-particle
binary interactions is comparable to (or even larger than)

the characteristic scales of the system. Examples of such
weakly collisional plasmas include the intracluster medium
(ICM) of galaxy clusters (characteristic scale L ∼ 100 kpc,
Coulomb-collisional mean free path λmfp ∼ 1–10 kpc [1]),
low-luminosity accretion flows onto supermassive black
holes (e.g., for the accretion flow around Sgr A⋆ at the
Bondi radius, λmfp ∼ L ∼ 0.1 pc [2]), and the near-Earth
solar wind (λmfp ∼ L ∼ 1 A.U. [3]). All of these plasmas
also have particle Larmor radii ρmany orders of magnitude
smaller than macroscopic scales (e.g., ρ=L≲ 10−14 for the
ICM, ≲10−10 for Sgr A⋆, and ≲10−6 for the solar wind).
Despite this strong magnetization, the magnetic fields in
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these systems are typically energetically subdominant, with
the ratio of thermal pressure p and magnetic pressure
B2=8π, β≡ 8πp=B2 ≳ 1.
A particularly interesting question in such high-β, low-

collisionality plasmas is how the kinetic physics, which acts
on extremely small (and often unobservable) scales,
influences the global evolution of the system and impacts
the interpretation of current and future observations. The
deviations from local thermodynamic equilibrium allowed
by the low collisionality of these plasmas can have a dramatic
effect on the transport of energy and momentum and
the evolution of cosmic magnetic fields. For example, the
viscous stress caused by velocity-space anisotropy in the
particle distribution function can provide an order-unity con-
tribution to the mass-accretion rate, enhancing or reducing it
depending on the shape of the particle distribution [4–7]. In
addition, the electrons may have a different temperature than
the poorly radiating ions [8,9], thereby complicating the
interpretation of interferometric images of black-hole accre-
tion flows (such as those taken by the Event Horizon
Telescope [10,11]). As a result, in order to understand
high-β astrophysical systems, one must discover how the
energy injected in these systemsby large-scale processes gets
transferred to the electron and ion distribution functions, and
how these distributions are shaped by field-particle inter-
actions and various kinetic instabilities.
In this paper, we explore energy transfer and dissipation

in collisionless high-β turbulence. This problem is of
fundamental importance for the aforementioned astrophysi-
cal systems because all of them are observed or thought to
host a broadband cascade of turbulent fluctuations. Most
theories of magnetohydrodynamic (MHD) turbulence
assume that the local nonlinear turbulent interactions are
the main process by which energy is transferred from large
scales to kinetic scales (see Ref. [12] for a recent review). In
collisionless systems, additional energy-transfer channels
are available, not only via phase mixing to small scales in
velocity space [13] but also through the action of a number
of kinetic microinstabilities at ion [firehose [14–17], mirror
[18–20], and Alfvén ion cyclotron (AIC) [21] ] and electron
(firehose, mirror, and whistler [21]) scales. These insta-
bilities feed off the free energy associated with field-
anisotropic deviations from local thermodynamic equilib-
rium (e.g., pressure anisotropies). In the absence of
collisions (including any effective collisionality due to
wave-particle interactions), such deviations are expected
to be largest within the injection range of the cascade,
where the amplitude of the turbulent motions is largest [22].
The implication is a nonlocal transfer of energy from large
“fluid” scales to astrophysically microscopic kinetic scales,
instead of a scale-by-scale cascade that is customarily
believed to occur in more mundane systems [23]. This is
not necessarily the case in weakly collisional plasmas, in
which the (effective) collisionality is large enough to
efficiently isotropize the distribution at the injection scale
but not throughout the inertial range. In such plasmas, the

pressure anisotropy is driven by the motions between the
injection scale and the effective viscous scale, the latter of
which being mediated by the wave-particle interactions
frommicroinstabilities. As we show in Sec. II, this effective
viscous scale can be comparable to the injection scale of the
cascade, making the interactions between microinstabilities
and the cascade crucial for the dynamics even at macro-
scopic scales.
The effect of kinetic microinstabilities on the plasma has

been studied with pressure anisotropies driven either exter-
nally (with large-scale shear [24,25] or expansion [26,27]) or
by individual nonlinearwaves (Alfvén [28], ion acoustic [29],
magnetosonic [30]). Here we explore, for the first time, and
using six-dimensional hybrid-kinetic numerical simula-
tions, the interaction between the local cascade of strong
turbulence and the nonlocal excitation of microscale kinetic
instabilities that are self-consistently produced by the
fluctuations in the cascade themselves.
The article is organized as follows.Webegin inSec. IIwith

a summary of analytical and numerical results on the
properties of waves and turbulence in pressure-anisotropic,
high-β plasmas. We use these results to obtain analytical
estimates for the effective collisionality and effective vis-
cosity in such plasmas. We then test these results with self-
consistent numerical simulations in Sec. III, which allow us
to measure the effective collisionality and viscosity and to
determine the dominant energy dissipation mechanisms in
collisionless high-β turbulence. In Sec. IV our results and
their range of validity are discussed and put in the context of
observations of turbulence in the ICM and in the solar wind.
We close in Sec. V with a summary of our results.

II. THEORETICAL EXPECTATIONS

Modern theories of strong plasma turbulence in mag-
netized plasmas (starting with Goldreich and Sridhar [23])
stipulate a dynamical balance between the linear physics of
plasma fluctuations and their nonlinear interactions. In
Alfvénic turbulence, the typical linear timescale for a given
eddy is determined by the time it takes for an Alfvén
wave to cross that eddy. For an eddy whose extent along the
local mean magnetic field B0 is lk, this timescale is
τlin ∼ lk=vA0, where vA0 is the associated Alfvén speed.
The nonlinear timescale, on which the mutual shearing and
advection of the fluctuations decorrelates the eddy, is
estimated as τnl ∼ l⊥ =δu⊥ ∼ l⊥ =ðvA0δB⊥ =B0Þ, where
l⊥ is the size of the fluctuation across (“perpendicular” to)
B0, and δu⊥ and δB⊥ are the amplitudes of the fluid-
velocity and magnetic-field perturbations. The relationship
between linear and nonlinear timescales determines how
many nonlinear interactions are required to decorrelate the
eddies. If τnl ≪ τlin, different parts of an eddy decorrelate
before they can be in causal contact via Alfvén-wave
propagation, which leads to a decrease in lk and thus τlin
[31]. On the other hand, if τnl ≫ τlin, the turbulence is
considered to be “weak,” and it evolves in a way such
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that these timescales become comparable to one another,
τnl ∼ τlin at small scales [32]. This causes the system
ultimately to settle into a scale-by-scale “critical balance”
between the linear and nonlinear timescales [23,33]. The
result is a Kolmogorov [34] spectrum in the direction
perpendicular to the magnetic field, k−5=3⊥ , where k⊥ ∼
1=l⊥ is the perpendicular wave number, shown schemati-
cally in Fig. 1(a). The associated scale-dependent anisotropy,
lk ∝ l2=3

⊥ , was confirmed numerically by Refs. [35,36] and
subsequently measured in the solar wind using spacecraft
data by Ref. [37] (and many others; see Refs. [38,39]
for reviews).
In collisionless plasmas, nonlinear wave-wave inter-

actions are accompanied by additional linear and nonlinear
physics related to wave-particle interactions. For example,
changes in magnetic-field strength caused by turbulent
fluctuations on scales much larger than the kinetic scales
lead to changes in perpendicular pressure through the
conservation of particles’ magnetic moments [40]. The
pressure then becomes anisotropic with respect to the local
magnetic-field direction, with the field-perpendicular com-
ponent of the pressure p⊥ differing from the field-parallel
component of the pressure pk. This pressure anisotropy
effectively modifies the Alfvén speed by contributing a
field-aligned viscous stress [41–43], thereby changing the
characteristic linear timescale that features in the critical
balance [44,45]. To see that, consider the equation for the
evolution of the fluid velocity u in the presence of pressure
anisotropy:

ϱ
du
dt

¼ −∇ ·

�
Pþ B2

8π
I −

B2

4π
b̂b̂

�
; ð1Þ

where d=dt≡ ∂=∂tþ u ·∇ is the comoving time derivative,
ϱ is the mass density, P is the pressure tensor, I is the unit
dyadic, and b̂≡ B=B is the unit vector in the direction of
the magnetic field B. For a magnetized plasma in which the
characteristic timescales are much longer than ion-Larmor
period 2π=Ωi, the pressure tensor is predominantly diago-
nal in a coordinate frame defined by the field direction [40]:

P ¼ p⊥ ðI − b̂b̂Þ þ pkb̂b̂ ¼ p⊥ I − Δpb̂b̂; ð2Þ

the latter equality defining the pressure anisotropy
Δp≡ p⊥ − pk. Equation (1) may then be rewritten as

ϱ
du
dt

¼ −∇
�
B2

8π
þ p⊥

�
− ∇ ·

��
B2

4π
þ Δp

�
b̂b̂

�
: ð3Þ

The final term in Eq. (3) highlights the role of the pressure
anisotropy in modifying the magnetic tension force com-
pared to MHD, viz.,

B ·∇B
4π

¼ ∇ ·

�
B2

4π
b̂b̂

�
→ ∇ ·

��
B2

4π
þ Δp

�
b̂b̂

�
: ð4Þ

As a result of this modification, the effective Alfvén speed
in the plasma,

vA;eff ≡ vA

�
1þ β

2
Δ
�

1=2
; ð5Þ

where Δ≡ Δp=p, β≡ 8πp=B2, and p ¼ ð2p⊥ þ pkÞ=3
may depart significantly from vA when jΔj ∼ 1=β. In parti-
cular, as the firehose instability thresholdΔ ¼ −2=β, below
which vA;eff becomes imaginary, is approached, it becomes

(a) (b)

FIG. 1. Qualitative picture of how the cascade proceeds in low-β (a) and high-β (b) kinetic turbulence. For β ≲ 1, the energy flux,
injected at some large scale L, remains constant in the inertial range, and is eventually dissipated by ions and electrons at the
corresponding kinetic scales. In contrast, high-β plasma allows for the nonlocal energy transfer by kinetic microinstabilities. The
effective viscosity of such a plasma can convert bulk kinetic energy into thermal energy. The goal of this paper is to examine the effects
of this physics on the turbulent cascade and on the distribution of energy between species.
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energetically “cheaper” for the fluid motions to bend the
magnetic-field lines [46]. Thus, with β ≫ 1, even small
departures from pressure isotropy can influence the plasma
dynamics in a dramatic way.
What makes this influence particularly complicated in a

turbulent environment is the associated spatiotemporal
inhomogeneity of the pressure anisotropy. Pressure aniso-
tropy is generated by the (approximate) conservation of
each particle’s adiabatic invariants, μ≡mw2⊥ =2B and
J ≡ H mwk · dx, where n is plasma number density, m is
the particle mass, and w⊥ ;k are the velocities of the peculiar
(“thermal”) motions of the particle perpendicular and
parallel to the local magnetic field. As the magnetic-field
strength fluctuates, the perpendicular and parallel energies
of the particles therefore fluctuate as well, resulting in a
pressure anisotropy that varies both in space and time. To
describe this evolution, if only heuristically, we use the
Chew et al. [40] equations with jΔj≲ 1=β ≪ 1 to write, to
the lowest order in Δ,

dΔ
dt

≈ 3b̂b̂∶∇u − 3νΔ: ð6Þ

Here we assume incompressible motions, include the
isotropizing effect of collisions not present in the original
equations, and neglect contributions from heat fluxes. The
first term on the right-hand side of Eq. (6) captures the
adiabatic production of pressure anisotropy caused by
changes in magnetic-field strength as measured in the fluid
frame. Indeed, adopting an ideal Ohm’s law and assuming
incompressibility, Faraday’s law of induction provides
d ln B=dt ¼ b̂b̂∶∇u. In this case, pressure anisotropy is
driven by field-parallel gradients of field-parallel flows, i.e.,
the “parallel rate of strain.” The second term in Eq. (6)
represents the relaxation of the pressure anisotropy by
collisions, a process that isotropizes the distribution func-
tion on a characteristic timescale ν−1. In collisionless
plasmas, such isotropization may be provided by the
field-particle interactions, and may depend on the local
distribution function and magnetic-field strength.
Adapting the Goldreich-Sridhar theory to account for

the effective Alfvén speed Eq. (5) only works as long as
the pressure anisotropy is small compared to 1=β. For
example, an attempt to construct such a theory in the
gyrokinetic limit was made in Refs. [44,46]; in this theory,
background pressure anisotropy modifies the fluctuations
and their nonlinear interactions, while the pressure
anisotropy associated with the fluctuations is too small
to feed back nonlinearly on the fluctuations themselves. If
instead the pressure anisotropy (either background or
fluctuation driven) exceeds any of the thresholds of the
various kinetic microinstabilities (at high plasma β,
mostly firehose and mirror), it can cause energy to be
transferred nonlocally [see Fig. 1(b) for a schematic
picture of the cascade]. The behavior of turbulence in

such a situation is the topic of this paper. In the remainder
of this section, we provide analytical estimates for the
effective collisionality and viscosity of a high-β, kineti-
cally unstable plasma supporting a turbulent cascade of
electromagnetic fluctuations.
We begin by supposing that energy is injected in the

form of bulk motions at an outer scale L and initiates a
turbulent cascade of Alfvénically polarized fluctuations
with amplitudes δu⊥ and δB⊥ ∼ ðδu⊥ =vAÞB0, where vA is
the Alfvén speed associated with the mean magnetic field
B0. We further assume that these fluctuations satisfy
δB⊥ =B0 ≳ 1=

ffiffiffi
β

p
above some scale, so that the pressure

anisotropy generated adiabatically by the fluctuating
magnetic-field strength is large enough to trigger firehose
and/or mirror instabilities [28,47]. In this case, the instabil-
ities grow to wrinkle the magnetic field sharply on ion-
Larmor scales, ultimately leading to pitch-angle scattering of
ions at an effective collision frequency νeff that is large
enough to limit the fluctuating pressure anisotropy tomargin-
ally (un)stable values, viz., jΔpj=p∼ jb̂b̂∶∇uj=νeff∼1=β
[24,48]. With jb̂b̂∶∇uj ∼ ωAðδB⊥ =B0Þ2 for Alfvénic fluc-
tuations that have a linear frequencyωA, the effective collision
frequency νeff then satisfies

νeff ∼ βωA
δB2⊥
B2
0

: ð7Þ

For a critically balanced cascade, ωA is always comparable
to the inverse of the turnover time at each scale. Namely,
for an Alfvénic fluctuation with parallel extent lk
and perpendicular extent l⊥ , we have ωA∼vA=lk∼
δu⊥=l⊥ ∼ ðvA=l⊥ÞðδB⊥=B0Þ. Equation (7) then becomes

νeff ∼ β
vA
l⊥

δB3⊥
B3
0

: ð8Þ

If the cascade is approximately conservative [49], then we
furthermore have δB3⊥l−1⊥ ∼ const, so that Eq. (8) implies an
effective collision frequency independent of l⊥ and large
enough to regulate the pressure anisotropies generated at all
scales in the cascade. Evaluating Eq. (8) at the outer scale L,
we find that

νeff ∼ β
vA
L

δB3⊥ ;L

B3
0

∼ β
vA
L
M3

A; ð9Þ

where MA ≡ δuL=vA is the Alfvénic Mach number of the
outer-scale motions.
The collisionality given by Eq. (9) implies an effective

(field-parallel) Reynolds number:

Rekeff ≡ δuLL
v2thi=νeff

∼M4
A: ð10Þ
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From this effective Reynolds number, one can define an
effective viscous scale lν ≡ LRe−3=4keff , which is appropriate

if the dissipation rate due to the effective viscosity is
proportional to ∇2δu2 [50]. Equation (10) then implies

lν=L ∼M−3
A : ð11Þ

The viscous scale given by Eq. (11) is equivalent to the
Alfvén scale on which the turbulent velocity is approx-
imately Alfvénic. As a result, for strong Alfvénic turbu-
lence, the collisionless viscous scale due to kinetic
microinstabilities is comparable to the outer scale of the
turbulence. This conclusion does not depend on the plasma
β or on the exact instability that regulates the pressure
anisotropy (so long as its threshold is proportional to 1=β
and it is saturated via an enhancement of the plasma’s
collisionality).
One of the caveats of the above derivation is that we

assume asymptotic scalings for the cascade, which are
valid only for scales much smaller than the driving scale
and much larger than the dissipation scale (i.e., in the
inertial range). In this case, we interpret any implied value
of lν > L as indicating lν ∼ L. Indeed, our results
suggest that the dissipation scale (∼lν) is comparable
to the forcing scale (∼L) when MA ∼ 1. An alternative
derivation of the viscous scale could be obtained by
assuming kkδuk ∼ k⊥ δu⊥ , which is equivalent to incom-
pressibility forMA ∼ 1 fluctuations. With this assumption,
jb̂b̂∶∇ujk ∼ k⊥ δu⊥ increases with k⊥ for a Goldreich-
Sridhar-like cascade until it reaches its maximum value of
ðlν=LÞ2=3MAvA=L at k⊥lν ∼ 1. This different scaling of
the parallel rate of strain leads to the same value of the
effective Reynolds number, Rekeff ∼M4

A, implying that
our results hold for nonasymptotic fluctuations. Note that
our assumptions about the cascade are expected to hold
only for MA ≲ 1. For MA ≫ 1, dynamo is expected to
increase the magnetic-field strength until the Mach num-
ber decreases sufficiently [51,52]. In the opposite limit
of MA ≪ 1, it is possible that the cascade is in the
weak-turbulence regime, which has δuk ∝ k−1=2⊥ and kk ∝
constðk⊥Þ [53,54]. Assuming such a cascade with Lk ∼ L

gives Rek;eff ∼M3
A and lν=L ∼M−9=4

A .
Yet another caveat to these scaling arguments is that the

pressure-anisotropy stress can backreact on the motions
to reduce b̂b̂∶∇u below the simple Alfvénic estimate
used in Eq. (7) (an effect termed magneto-immutability
by Ref. [55]). This would reduce the drive of pressure
anisotropy, and thus νeff would in turn decrease compared
to the above estimates. However, this effect seems unlikely
to be important if lν is comparable to the scale of an
external forcing, because then the dominant contribution to
Δp will be from the forcing motions rather than from
somewhere in the inertial range.

To determine the importance of the effective collision-
ality in astrophysical systems, we use Eq. (9) to compute
the effective ion mean free path:

λkmfp;eff ∼
vthi
νeff

∼M−2
A

vthiL
βδuL

∼ L
M−3

Affiffiffi
β

p : ð12Þ

In weakly collisional high-β systems like the ICM, this
effective mean free path could be smaller than the mean
free path due to Coulomb collisions (λCoulomb) even if the
latter is smaller than the system size. For example,
using physical parameters relevant to the Coma cluster
of galaxies [56–58],

λkmfp;eff

λCoulomb
≈
LM−3

A =
ffiffiffi
β

p
3
ffiffi
2

p
4
ffiffi
π

p T2
i

niΛie4

≈ 0.05

�
δuL

200 km s−1

�
−3
�

L
100 kpc

��
B

2 μG

�
4

×

�
ne

10−3 cm−3

�
−1
�

Te

108 K

�
−5=2

; ð13Þ

where Λi is ion Coulomb logarithm, and the temperatures
Ti;e and densities ni;e of ions and electrons are assumed to
be equal. This simple estimate predicts more than an order-
of-magnitude suppression in the effective viscosity of
the ICM, consistent with the observationally based con-
clusion by Refs. [58,59]. Note that the scenario sketched
out above for the effective mean free path is very sensitive
to the magnetic-field strength (∝ B4) and can change easily
by an order of magnitude given current measurement
uncertainties.

III. NUMERICAL EXPERIMENTS

A. Method of solution

Astrophysical high-β plasmas typically have extremely
large-scale separations that are not computationally feasible
to capture in numerical simulations. Because of our focus
on the interplay between inertial-range turbulence and ion-
scale kinetic instabilities, we adopt a hybrid-kinetic model,
in which the ions are treated as kinetic while the electrons
are assumed to be fluidlike. Such an approximation ignores
the potential effects of electron-scale microinstabilities on
the cascade. We argue in Sec. IV that these instabilities are
likely to be less important than ion-scale ones (particularly
in the weakly collisional ICM, in which the electron pres-
sure anisotropy is expected to be too small to produce
instabilities), but this should be verified with fully kinetic
simulations in the future.

1. Model equations

The hybrid-kinetic approach that we employ assumes the
plasma to be nonrelativistic with all relevant scales much
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larger than the Debye length. Plasma on these scales is
quasineutral, so ne ¼ Zini, where Zi ≡ qi=e. The displace-
ment current in Ampère’s law is negligible; hence,

neue ¼ Ziniui −
c

4πe
∇×B: ð14Þ

The electric field in hybrid kinetics is obtained from the
equation of motion for the electron fluid,

mene
due
dt

¼ −∇ ·Pe − ene

�
Eþ ue ×B

c

�
; ð15Þ

after neglecting electron inertia (the left-hand side) and
specifying the form of the electron pressure tensor Pe. For
simplicity, we assume the electrons to be isothermal and
isotropic, Pe ¼ neTeI, with Te ¼ Ti0 ¼ const. As a result,
the electric field in our model is given by

E ¼ −
ui ×B

c
þ ð∇×BÞ×B

4πeniZi
−
Te∇ni
eni

; ð16Þ

where the first term is the (MHD) motional electric field,
the second is associated with the Hall effect, and the third
represents the thermoelectric effect. The magnetic field
evolves according to the induction equation,

1

c
∂B
∂t

¼ −∇×E; ð17Þ

and satisfies ∇ ·B ¼ 0. Note that the final term in Eq. (16)
does not contribute to Faraday’s law [Eq. (17)], as it may be
written as a full derivative ∝ ln ni and is thus electrostatic.
The ion distribution function fðt; x; vÞ evolves according

to the collisionless Vlasov equation:

∂f
∂t

þ v ·
∂f
∂x

þ
�
Zie
mi

�
Eþ v×B

c

�
þ F
mi

�
·
∂f
∂v

¼ 0; ð18Þ

where F is an external force that we use to drive turbulence
at the largest scales of the simulation box (specified in
Sec. III A 3). The number density niðt; xÞ and flow velocity
uiðt; xÞ of ions are then obtained by taking the zeroth and
first moments of f.

2. PEGASUS++

Equations (16)–(18) are solved using a new hybrid-
kinetic code, PEGASUS++ [60], which is based on the
algorithms of its predecessor PEGASUS [61] and on the
infrastructure of the popular magnetohydrodynamic code
ATHENA++ [62]. PEGASUS++ is much better optimized to
take advantage of modern supercomputing architectures
than PEGASUS, thereby making the simulations reported in
this paper possible.

PEGASUS++ solves Eq. (18) using a particle-in-cell
approach, in which the distribution function is repre-
sented with a finite number of macroparticles. These

macroparticles’ positions and velocities evolve along the
characteristics of Eq. (18), with electric and magnetic fields
interpolated from the computational grid to the particle
positions using a second-order (triangular) shape function.
The latter ensures that, in the limit of infinite resolution, the
moments of the ion distribution function and their deriv-
atives are continuous in space. PEGASUS++ solves Eqs. (17)
and (18) with the electric field given by Eq. (16) using a
predictor-predictor-corrector method that is second-order
accurate in both time and space. The code employs a
staggered grid to preserve ∇ · B ¼ 0.

3. Simulation parameters

The ion macroparticles in our simulations are initia-
lized to have a Maxwell-Boltzmann distribution with
spatially uniform density niðt ¼ 0; xÞ ¼ ni0 and temper-
ature Ti0. The electron temperature is constant, Te ¼ Ti0,
and Zi ¼ 1. The initial magnetic (“guide”) field is uniform,
Bðt ¼ 0; xÞ ¼ B0ẑ.
Bulk flows in the ion species are driven on large scales

by an external force F, which is oriented perpendicular to
the guide field (F⊥ ẑ) and constructed to be solenoidal
(∇ · F ¼ 0). This results in almost incompressible fluctu-
tations with typical density variation of ∼5%. The force is
correlated in time using an Ornstein-Uhlenbeck process
with a correlation time equal to the Alfvén crossing time,
tcorr ¼ ðkfkvA0Þ−1, associated with the smallest parallel

wave number of the forcing kfk . This forcing results in

fluctuations that are primarily Alfvénically polarized, a
feature that makes our simulations relevant to many space
and astrophysical plasmas. For example, observations of
turbulence in the solar wind find that most of the power is in
fluctuations that are Alfvénically polarized [63–65].
Outside of the solar wind, Hitomi observations of the
ICM [66] show that the turbulent motions in the Perseus
cluster of galaxies have δu ∼ 160 km=s, consistent with
subsonic turbulence and an Alfvénic Mach number
MA ≳ 1, given typical values of the plasma β ∼ 100 implied
by Faraday rotation measurements of the intracluster
magnetic field in several clusters [57,67–70]. Similarly,
the turbulence in black-hole accretion flows is expected to
be composed of incompressible fluctuations, as indicated
by local shearing-box simulations of the magnetorotational
instability [5,71,72] (although a recent study shows a
comparable amount of slow-mode fluctuations [73]).
We perform multiple simulations of driven turbulence

in high-β, collisionless plasmas. All simulations employ
an elongated computational domain spanning a size of
Lx × Ly × Lz ≈ ð120.5ρi0Þ2 × 241ρi0 with 3842 × 768

grid cells and 1000 macroparticles per cell. These dimen-
sions imply perpendicular wave numbers k⊥ that span both
an inertial range, with k⊥ ;minρi0 ≈ 0.05, and a kinetic (sub-
Larmor) range, with k⊥ ;maxρi0 ¼ 10. While it is not
computationally feasible to run even larger simulations,
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we have tested the convergence with smaller simulations
and obtained qualitatively similar results. The majority of
the results we present in this paper (the exception being
Figs. 11 and 12) are drawn from two simulations that have
βi0 ¼ 4 and 16, but identical energy injection rates per
volume εdr ¼ ni0ðLx=LzÞ2v2A0=2tcorr. The latter is expected
to drive critically balanced fluctuations at the outer scale of
the box with amplitudes δuL=vA0 ∼ Lx=Lz ¼ 0.5; the
actual strength of the fluctuations is time dependent and
can be different from this value, depending on the response
of the plasma to the driving (the values measured in our
runs are MA ≈ 0.35 for βi0 ¼ 16 and MA ≈ 0.48 for
βi0 ¼ 4). In these two simulations, the forcing excites
fluctuations with k⊥ ∈ ½1; 2�k⊥ ;min and kk ∈ ½1; 2�kk;min.
We also test driving with k⊥ ¼ k⊥ ;min and kk ¼ kk;min in
an additional run, which produces more coherent large-
scale modes than does the other forcing scheme (see
Fig. 11). We also reproduce our results qualitatively and
quantitatively using smaller runs with δuL=vA0 ∼ Lx=Lz ¼
Ly=Lz ¼ 1.0. Each simulation is run for several Alfvén
crossing times tcross ≡ Lk=vA0 to achieve quasisteady state
(these simulations are never in a true steady state because of
continued energy injection from driving and, consequently,
continued heating of the underlying ion distribution). For
our βi0 ¼ 16 simulations, tcross ≈ 964Ω−1

i0 ; for βi0 ¼ 4

simulations, tcross ≈ 482Ω−1
i0 .

Most of the energy injected by forcing leads to particle
energization. The remaining energy cascades below the
ion Larmor scale, which can eventually lead to a pileup
of magnetic energy at the grid scale (because we
employ hybrid-kinetic model, there are no electron-kinetic
and -inertial effects to absorb this energy or unfreeze
the magnetic flux). To mitigate this effect, we add

hyper-resistive dissipation with the value of resistivity just
large enough to dissipate energy at the grid scale. This hyper-
resistivity is implemented as an additional electric-field
component in Eq. (17) of the form Ehyper ¼ −ηhyper∇2J,
where J ¼ ðc=4πÞ∇×B is the electric current.

B. Evolution of high-β turbulence

In this section, we summarize the evolution of turbulent
fluctuations in our simulations of high-β turbulence. This
evolution is illustrated with three-dimensional snapshots of
the magnetic field in Fig. 2 and is separated into several
stages: the excitation of mirror and AIC instabilities at
early times, when the external driving dominates; an
intermediate steady state dominated by Landau damping;
and a quasisteady state characterized by the coexistence of
a turbulent cascade and microfluctuations associated with
the firehose instability.

1. Excitation of mirror and ion-cyclotron instabilities

In our simulations of high-β turbulence, large-scale
fluctuations in the bulk ion velocity are driven by the
external forcing. These motions cause the volume-averaged
magnetic-field strength to increase, which produces posi-
tive temperature anisotropy, ΔT ≡ T ⊥ − Tk > 0, through
adiabatic invariance. Figure 3 shows the evolution of the
box-averaged parallel (red line) and perpendicular (blue
line) temperatures during the simulation at βi0 ¼ 16.
(Density fluctuations in our simulation are small, so
adopting density-weighted averaging does not change
the results significantly.) The box-averaged temperature
anisotropy, ΔT ¼ δT ⊥ − δTk, where δT ⊥ ;k ≡ T̄ ⊥ ;k − Ti0,
is shown with the purple line. Very early in the simulation,

FIG. 2. Time evolution of the magnetic-field strength along the guide field (δBz ≈ δBk, upper row) and perpendicular to the guide field

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δB2

x þ δB2
y

q
≈ δB⊥ , lower row). We show three snapshots: t ≈ 0.4tcross, when we see the first mirror fluctuations (see also Fig. 16 in

Appendix A and further discussion there); t ≈ 0.6tcross, when we detect AIC fluctuations (see also Fig. 17); and in the quasisteady state
(t ≈ 6.7tcross), when we can instead identify firehose fluctuations (see also Fig. 6).
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the box-averaged temperature anisotropy ΔT=T̄k reaches
the 1=βk threshold for the mirror instability. Some parts
of the box also cross the threshold for rapid growth of the
AIC instability, which we take to be 0.5=

ffiffiffiffiffi
βk

p
following

Refs. [21,74]. (The AIC instability is technically thresh-
oldless, but its growth rate decreases exponentially for
pressure anisotropies below≈0.5=

ffiffiffiffiffi
βk

p
; see Refs. [27,75,76]

for additional details on the AIC instability’s thresholds.) As
a result, mirror and AIC fluctuations appear at small scales.
These fluctuations can be seen in the three-dimensional
snapshot of δBk in Fig. 2 (left-hand column), and in more
detail in Fig. 16 in Appendix A, where we also present a
detailed structure-function analysis of mirror and AIC
modes. Ultimately (after ≈2–3 Alfvén crossing times), the
temperature anisotropy falls below the mirror threshold and

positive-pressure-anisotropy instabilities are no longer
driven, meaning that the mirror and AIC stages are just
transient in our simulations. In the quasisteady state, only a
small portion of the simulation box is above the mirror
threshold, and mirror fluctuations are not obviously present
(see Fig. 5 for more detail).

2. Landau-damping stage

After this initial transient, the simulation reaches an
intermediate quasisteady state. Its key characteristic is
growth of the parallel temperature of the plasma. As we
show in Fig. 3, at the start of the βi0 ¼ 16 simulation (before
t ≈ 0.3tcross), the temperatures evolve adiabatically: conser-
vation of particles’ adiabatic invariants implies T ⊥ ∝ B and
Tk ∝ B−2, and thus the temperature anisotropy is driven
toward positive values as B increases. Once ΔT=Tk reaches
the 1=βk threshold of the mirror instability, Larmor-scale
magnetic mirrors are produced, which limit further growth of
pressure anisotropy by trapping particles in the deepening
troughs of the mirrors where the total magnetic-field strength
is approximately constant [24,48,77].
Further evolution of the system is influenced by two

processes. Pitch-angle scattering off the AIC fluctuations
and the edges of strong mirror fluctuations reduces the
average magnetic moments of particles [Fig. 3(b)]. At the
same time, the parallel temperature steadily grows during
this period. Part of this growth can be attributed to pitch-
angle scattering, occurring at a rate that can be estimated
from the evolution of the average magnetic moment
[Fig. 3(b)]. From Ωi0t ¼ 2000 to 3500 (or from ∼2 to
∼3.5 tcross), it changes by δμ=μthi0 ∼ 0.035, corresponding
to δT ⊥ =Ti0 ∼ 0.035. Assuming that this change is due to

(a)

(b)

FIG. 3. (a) Time evolution of box-averaged perpendicular and
parallel temperatures of the plasma (δT ⊥ ;k ≡ T̄ ⊥ ;k − Ti0) and
box-averaged temperature anisotropy ΔT ¼ δT ⊥ − δTk in
βi0 ¼ 16 simulation. Different stages of the simulation are marked
with vertical lines. See text for more details about individual
stages: Sec. III B 1 and Appendix A for mirror and AIC stage,
Sec. III B 2 for Landau-damping stage, and Sec. III B 3 for
quasisteady-state firehose stage. (b) Evolution of box-averaged
magnetic moment of particles (δμ≡ μ̄ − μthi0). During the mirror,
AIC, and Landau-damping stages, the average magnetic moment
decreases due to scattering off mirror and AIC fluctuations. In the
quasisteady state, it slowly increases, because of ion heating and
coupling of perpendicular and parallel temperatures due to
scattering of ions off firehose fluctuations.

FIG. 4. Time evolution of the magnetic-energy spectra in the
βi0 ¼ 16 simulation. In the initial phase of the simulation (red
line, Sec. III B 1), mirror instability is triggered, and the spectrum
has a bump at kinetic scales. In the Landau-damping stage (green
and orange lines, Sec. III B 2), the spectrum is steeper than k−5=3⊥
due to dissipation of turbulence. In the quasisteady state (blue
line, Sec. III B 3), firehose fluctuations are produced, and the
spectrum becomes slightly shallower than k−5=3⊥ .
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pitch-angle scattering, δTk=Ti0 ∼ 2δT ⊥ =Ti0 ∼ 0.07, which
is only enough to explain ∼25% of the parallel heating
during the same time period. We interpret the remaining
energization as caused by the Landau damping of Alfvénic
fluctuations. This interpretation is also supported by the
spectrum of magnetic energy (EB) being much steeper
than −5=3 (see Fig. 4), in agreement with gyrokinetic
results [78]. In contrast, in kinetic simulations of β ≲ 1
turbulence [79,80], a spectrum with a slope of −5=3
develops within ∼1–2 Alfvén crossing times. Additional
evidence for Landau damping can be found in the evolution
of the ion distribution function, which shows flattening
near the Alfvén speed (see Fig. 19) and from analysis of the
field-particle correlation function (not included in the
paper), which exhibits resonant features near vA, consistent
with expectations from Landau damping [81]. Details of
this diagnostic can be found in Refs. [79,80].
This Landau-damping phase continues until the pressure

anisotropy becomes negative, the firehose instability is
triggered, and the simulated turbulence reaches a quasis-
teady state. A very rough estimate for the time required for
Landau damping to drive the pressure anisotropy beyond
the firehose threshold may be obtained by supposing that
the entire cascade rate were dissipated as parallel energiza-
tion. In this case, the parallel temperature would grow large
enough to produce a firehose-unstable pressure anisotropy
within a time t=tcross ∼ nΔTkε−1dr t

−1
cross ∼ Δpkn−1M−2

A v−2A ∼
v2thβ

−1M−2
A v−2A ¼ M−2

A . For our simulations having
MA ≈ 0.5, this time is ∼4tcross.

3. Quasisteady state

Once the combination of pitch-angle scattering and
Landau damping drives the pressure anisotropy beyond
the firehose threshold, magnetic-field fluctuations grow on
ion-Larmor scales at the expense of the anisotropy in the
distribution function. A quasisteady state results in which
the magnetic spectrum acquires power at small scales that
locally flattens it to be shallower than k−5=3⊥ and the box-
averaged pressure anisotropy is close to zero but slightly
negative (see Figs. 3 and 4, respectively). Figure 5 provides
further information on the pressure anisotropy in the
quasisteady state by showing its distribution versus βk
(so-called “Brazil” plots, extensively used in the solar-wind
community [82,83]). The accompanying dashed lines
indicate the thresholds of the mirror instability (1=βk)
and of the fluid firehose instability (−2=βk), beyond which
the Alfvén speed becomes imaginary. The dot-dashed line
at positive pressure anisotropy represents the threshold of
the AIC instability (≈0.5=

ffiffiffiffiffi
βk

p
), which is active in the

beginning of the run. At negative pressure anisotropy,
the dot-dashed line shows the approximate threshold
(≈ − 1.4=βk) of the kinetic firehose instability [45,84].
Unlike in the mirror and AIC snapshots (Figs. 16 and 17 of
Appendix A), the pressure anisotropy is bound between the

mirror and firehose instability thresholds, hugging the latter
more closely. The average pressure anisotropy is negative,
and its absolute value is smaller than 1=β.
This distribution of pressure anisotropy in the quasis-

teady state is very different from what has been found
in comparable Braginskii-MHD simulations of Alfvénic
guide-field turbulence [55] and of magnetorotational tur-
bulence [7], in which a significant amount of the simulated
plasma sits up against either the mirror or the firehose
threshold [85]. There are (at least) two reasons for this
difference. First, our kinetic simulations allow for colli-
sionless damping, which we find constantly pushes the
simulated plasma toward the firehose threshold by parallel
heating the ions. Second, once the kinetic instabilities
are triggered, they self-consistently produce Larmor-scale
mirror and firehose fluctuations, which regulate the pres-
sure anisotropy. These fluctuations decay rather slowly
[29,48], and continue to scatter particles toward isotropy
even after the pressure anisotropy has returned below the
instability thresholds. As a result, Δp is reduced much
more efficiently and its mean quasisteady-state value is
smaller than seen in Braginskii-MHD simulations, which
account for these instabilities with a large “limiter” colli-
sionality that is active only when the plasma ventures
beyond the stability thresholds.
Figure 6 shows slices of the magnetic-field strength,

plasma fluid velocity, and pressure anisotropy normalized
to magnetic pressure 8πΔp=B2, all in the quasisteady state
of the βi0 ¼ 16 simulation. Mirror fluctuations, manifest at
the beginning of the run (Fig. 16), are no longer visible.
This is likely due to their decay and shearing by the
fluctuations associated with the turbulent cascade. One can

FIG. 5. A probability density function of pressure anisotropy
and parallel plasma β for simulations with βi0 ¼ 4 and βi0 ¼ 16.
Histograms are normalized so that the integral over βk and
p⊥ =pk − 1 equals 1. Black dots indicate the positions of these
simulations at the start of each run. Dashed and dot-dashed lines
represent the threshold of various kinetic microinstabilities (see
text for more detail). Despite being initially driven toward
positive values, the quasisteady-state pressure anisotropy is
negative, and is close to the −1.4=βk threshold of kinetic firehose
instability (dot-dashed line).
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still see some quasiparallel fluctuations in regions with
positive pressure anisotropy (e.g., near z ≈ 25ρi0; y ≈ 75ρi0
and z ≈ 130ρi0; y ≈ 10ρi0), which we attribute to AIC
instability. Additionally, one can notice small-scale oblique
modes of large amplitude (such as those at y ≈ 75ρi0
and z ≈ 200ρi0), which are correlated with regions of
negative pressure anisotropy. Studies of localized firehose
instability [24] show that this instability produces similar

oblique modes, and so we interpret those fluctuations
as firehose modes produced continually in the quasisteady
state.
In the quasisteady state, the box-averaged magnetic

moment of the particles slowly increases with time
[Fig. 3(b)]. The reason for this is that the perpendicular
and parallel components of the temperature are coupled to
one another via pressure-anisotropy regulation by the

FIG. 6. Snapshots of the magnetic-field-strength fluctuations (a),(b), fluctuations of the flow velocity (c),(d), and of pressure
anisotropy normalized to the magnetic pressure (e),(f), all taken in the quasisteady state of βi0 ¼ 16 simulation. There is much more
small-scale structure in the magnetic field relative to the flow velocity, which indicates that the effective magnetic Prandtl number
is large. Mirror and AIC fluctuations are not apparent, unlike in the earlier stages of the same simulation (Figs. 16 and 17). Instead,
there are small-scale oblique modes in the regions with large negative pressure anisotropy (e.g., near z ≈ 25ρi0; y ≈ 75ρi0 and
z ≈ 130ρi0; y ≈ 10ρi0). We associate these fluctuations with the firehose instability.
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firehose instability (although many different instabilities
are present in our simulations, the firehose is much more
efficient at scattering particles than mirror [24], so the
temperatures are well coupled only after firehose is
triggered). As a result, as turbulence is dissipated into
particle heat, those components increase together, which
causes slow growth of the average magnetic moment. In
our simulation setup, kinetic energy is constantly injected
into the box, so we expect such an increase in average
magnetic moment to continue indefinitely. The changes of
the magnetic moments of some individual particles are
much more rapid, as we discuss in Sec. III E.

C. Energy transfer in high-β turbulence

The results we describe in the previous sections suggest
that collisionless high-β turbulence contains a superposi-
tion of local interactions (a Kolmogorov-like cascade from
large to small scales) and nonlocal processes mediated by
kinetic microinstabilities (mirror and AIC during the
driving stage, and firehose in the quasisteady state). In
this section, we explore the relative importance of different
energy-transfer channels. To do that, we calculate various
“transfer functions” that diagnose quantitatively the scale-
to-scale transfer of energy in the turbulence caused by
different bulk forces [87,88]. A detailed derivation of these
diagnostics is given in Appendix B. In brief, the equations
for the bulk kinetic, thermal, and magnetic energies are
written in a form that makes explicit the transfer of energy
between different “reservoirs” of energy and different wave
numbers. These reservoirs are defined as vector fields a
with associated energy a2=2. For the bulk kinetic energy,
the corresponding vector field is au ≡ ffiffiffi

ϱ
p

u; for the
magnetic energy it is aB ≡ B=

ffiffiffiffiffiffi
4π

p
. For the thermal energy,

multiple definitions are possible. In this paper, we choose
aΔp ≡ ffiffiffiffiffiffiffiffiffiffijΔpjp

b̂, so that the viscous stress in the momentum
equation may be written as aΔpaΔp, similar to the Maxwell
stress. Only the part of the thermal energy associated with
Δ (“anisotropic thermal energy”) is included in our
definition of aΔp; the remaining part of thermal energy,
“isotropic thermal energy,” is equal to 3p⊥ =2. Our defi-
nition of aΔp is also consistent with the expression for the
free energy in the “kinetic reduced MHD” limit (i.e., the
long-wavelength limit of gyrokinetics) [46]:

WΔ
KRMHD ¼ B2

0

8π

Z
βk;i

Δi

2

δB2⊥
B2
0

d3x

¼ B2
0

8π

Z
ϑΔp

ðδaΔpÞ2
2

d3x; ð19Þ

where ϑΔp ≡ sgnðΔpÞ, δb̂ ¼ δB⊥ =B0 ≪ 1, and the pres-
sure anisotropy is assumed to have an absolute value
much larger than its fluctuation due to δB [viz.,
Δi ¼ Δi þOðjδb̂j2Þ, which allows us to neglect terms

proportional to δΔ2
i and δΔiδB⊥ and write δaΔp ¼ffiffiffiffiffiffiffiffiffiffijΔpjp

δb̂]. The definition of aΔp contains the absolute
value of the pressure anisotropy. Such a choice was made
from a purely technical standpoint, in order to avoid
imaginary values when computing this vector at each point
of the simulation domain. This choice also forces us to
include the sign of Δp in various expressions, such as in
Eq. (19), which can make results hard to interpret if ϑΔp
changes significantly throughout the domain. Fortunately,
as we show in Fig. 5, most of the domain has negative
pressure anisotropy, and the volume fraction with positive
Δp is small.
Given the definitions of the energy reservoirs, some

terms in the equation for the bulk kinetic energy can be
written in the form of shell-to-shell transfer functions.
The most important transfer functions in that equation are
the transfer function due to the Reynolds stress,

T Re
q⊥→k⊥ ≡ −

Z
hauik⊥ · u ·∇hauiq⊥ d

3x; ð20Þ

the transfer function due to the Maxwell stress,

T Max
q⊥→k⊥ ≡

Z
hauik⊥ ·

Bffiffiffiffiffiffiffiffi
4πϱ

p ·∇haBiq⊥ d
3x; ð21Þ

and the transfer function due to the anisotropic viscous
stress,

T visc
q⊥→k⊥ ≡

Z
hauik⊥ · ϑΔp

ffiffiffiffiffiffiffiffiffiffi
jΔpj
ϱ

s
b̂ ·∇haΔpiq⊥ d

3x: ð22Þ

Each of these transfer functions represents the rate of
energy transfer between fluctuations whose wave numbers
lie within the logarithmic perpendicular-wave-number
shells centered on q⊥ and k⊥ (from kinetic to kinetic in
the case of T Re, from magnetic to kinetic for T Max, and
from anisotropic thermal energy to kinetic for T visc).
Figure 7 shows the flow of kinetic energy through

Fourier space as calculated by the transfer functions
[Eqs. (20)–(22)] in the two-dimensional plane of wave
numbers q⊥ and k⊥ in quasisteady state of βi0 ¼ 16
simulation at Ωi0t ¼ 6000. Results from the same diag-
nostic obtained during earlier stages of this simulation are
in Appendix B, Fig. 18. The sign of the transfer terms in
Fig. 7 represents the change in bulk kinetic energy in shell
k⊥ . In the early stages of the simulation, including the
mirror, AIC and the Landau-damping stages, the transfers
are mostly local, and are similar to those found previously
in simulations of MHD turbulence [88]. In contrast, in the
quasisteady state, there is considerable nonlocal energy
transfer associated with the Maxwell and viscous stresses
[see the q⊥ > k⊥ part of Figs. 7(b) and 7(c)]. This
nonlocal transfer takes energy from the large-scale fluid
motions and transfers it into small-scale magnetic fields, as
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is expected from the firehose instability. We thus conclude
that kinetic microinstabilities are active even in the qua-
sisteady state and that they contribute a non-negligible
amount of energy transfer. Out of the three instabilities that
we see in our simulations, the one most responsible for the
nonlocal energy transfer appears to be the firehose, as this
nonlocal transfer becomes competitive with the local
transfers only after the box-averaged pressure anisotropy
approaches the firehose threshold and localized patches of
the plasma exceed that threshold. The viscous stress in the
quasisteady state has both local and nonlocal components,
which we discuss in more detail in Sec. III F, and is mostly
negative, indicating that the viscous stress mostly removes
energy from the bulk motions. This transfer causes the
conversion of energy between bulk kinetic and anisotropic
thermal energies, and subsequently steepens the kinetic-
energy spectrum (as we show in Sec. III D).
The energy transfer quantified by the transfer functions

Eqs. (20)–(22) is, in principle, reversible. Indeed, for any
energy transfer term of the form a1 · f ·∇a2 for some vector
field f , there is another term of the form a2 · f ·∇a1 (see
Appendix B for the transfer terms in the induction equation
and in the equation forΔp). The total energy transfer due to
such terms,

X
k⊥ ;q⊥

T a1→a2
q⊥→k⊥ þ T a2→a1

q⊥→k⊥ ¼
Z

ða1 · f ·∇a2 þ a2 · f ·∇a1Þd3x

¼
Z

f ·∇ða1 ·a2Þd3x

¼ −
Z

ða1 ·a2Þ∇ · fd3x; ð23Þ

is zero if ∇ · f is zero, which is one of the assumptions we
are making in our transfer-function analysis. We check this

assumption a posteriori in Appendix B by computing
“compressive” terms and comparing them to “advection-
like” terms such as Eqs. (20)–(22). Although Eq. (23) is
valid for arbitrary f, this vector in practice is proportional to
u or B. We refer the reader to Appendix B, and Fig. 18 in
particular, for more information. One of the terms, which
we do not consider explicitly, is the transfer of energy due
to an effective collisionality [i.e., the last term in Eq. (6)].
This term is quite important in the quasisteady state, as it is
responsible for the conversion of energy between the
anisotropic (Δp=2) and isotropic (3p⊥ =2) thermal ener-
gies: it reduces the pressure anisotropy and leads to
irreversible heating. It is not feasible to compute this term
directly in our simulations because, unlike the last term of
Eq. (6), the effective collisionality in our runs comes from
wave-particle interactions and its analysis requires compu-
tation of high-order moments of the distribution function.
The only other irreversible term is resistive dissipation,
which we find to be relatively less important.

D. Effective viscous scale and subviscous turbulence

In Sec. II we argue that, in critically balanced turbulence,
the effective viscous scale associated with scattering by ion-
Larmor-scale kinetic instabilities satisfies lν ∼ LM−3

A . This
means that, for our simulations with MA ≲ 1, the viscous
scale is expected to be close to, or, formally speaking, even
above, the driving scale. Formally, we define the viscous
scale as the scale at which the pressure anisotropy peaks.
We obtain this scale in a way analogous to the regular
energy-containing scale of the turbulence: if the velocity
field has a spectrum of Euðk⊥ Þ, then the energy-containing
scale corresponds to the peak of δu2k ∼ k⊥ Euðk⊥ Þ. For the
viscosity, this means that the effective viscous scale lν;eff

corresponds to the value of k⊥ at which the spectrum of
pressure anisotropy EΔp has a slope of −1. It is possible to

(a) (b) (c)

FIG. 7. Energy-transfer functions [Eqs. (20)–(22)] due to the Reynolds (a), Maxwell (b), and viscous stresses (c) in the quasisteady
state of our βi0 ¼ 16 simulation. There is a considerable amount of nonlocal energy transfer due to the firehose instability, which is not
present during the early stages of the simulation (see Appendix B for an analogous plot featuring the earlier stages).
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define the effective viscous scale in other ways, e.g., by
looking at the k-space peak of viscous dissipation. We do
not use such a definition because of the nonlocal nature of
the viscous dissipation (e.g., the spatial scale at which most
of the kinetic energy is removed is not necessarily the same
as the scale at which most of the thermal energy is
deposited; see Sec. III C).
Figure 8 shows the spectra of the parallel and per-

pendicular pressures, as well as of the pressure anisotropy,
in the quasisteady state of the βi0 ¼ 16 and βi0 ¼ 4
simulations. The effective viscous scale for each simulation
is indicated by a vertical dashed line: at k⊥ ρi0 ≈ 0.126 for
βi0 ¼ 16 and at k⊥ ρi0 ≈ 0.144 for βi0 ¼ 4. These scales are
close to the outer scale of the turbulence, consistent with
the expectations presented in Sec. II. An interesting feature
seen in Fig. 8 is that the parallel-pressure spectrum is much
larger in magnitude than the perpendicular-pressure spec-
trum. This difference may be explained as follows. If we
assume perpendicular pressure balance, which is a natural
outcome in high-β anisotropic turbulence [13,46], and is
also observed in our simulations (gray lines in Fig. 8
correspond to the sum of electron pressure, pe ¼ neTe ¼
niTi0, and magnetic pressure, pmag ¼ B2=8π), that would
imply p⊥ þB2=8π≈const, and therefore δp⊥ ∼−δB2=8π.
At the same time, pressure anisotropy at subviscous scales
(where the effective collisionality is less important [89])
behaves nearly adiabatically: dΔp=dt ∼ pd ln jBj=dt. This
leads to pressure-anisotropy fluctuation of δΔp ∼ βδB2 ≫
δB2 ∼ δp⊥ , and therefore δpk ≫ δp⊥ . In the subviscous

range, δpk is passively advected, its spectrum has a similar
slope to δuk, and the parallel pressure remains larger than
the perpendicular pressure throughout the subviscous
range. Landau damping, viscous heating, and pitch-angle
scattering off microfluctuations produced by kinetic micro-
instabilities gives rise to large-scale fluctuations of δpk to

achieve a value of pressure anisotropy close to ν−1eff b̂b̂∶∇u.
To examine how the effective viscosity affects the

cascade, we plot in Fig. 9 the quasisteady-state spectra
of magnetic energy (blue) and bulk kinetic energy (red)
from both simulations. The magnetic-energy spectra have
larger amplitudes than the kinetic-energy spectra at the
driving scales due to changes in the effective Alfvén speed
caused by the mean negative pressure anisotropy in the box
(cf. Fig. 5). These spectra have similar slopes above the
viscous scale. The kinetic-energy spectrum is steeper than
−5=3 (close to −2), which is an indication of the viscous
dissipation. Below the viscous scale, the kinetic-energy
spectrum continues to steepen because of the subviscous
ion heating (see Sec. III F for more details on ion heating).
In contrast, the magnetic-energy spectrum becomes shal-
lower. We attribute this flattening to small-scale energy
injection by kinetic microinstabilities [90]. Given that the
majority of the simulation box is near the threshold for the
firehose instability (see Fig. 5), we interpret this bump in
the magnetic-energy spectrum as the spectrum of the
firehose fluctuations.
The deviation of the magnetic spectrum from the

kinetic spectrum at sub-parallel-viscous scales indicates

(a) (b)

(c) (d)

FIG. 8. (a),(b) Spectra of parallel (orange) and perpendicular (green) pressures, pressure anisotropy (purple), and the sum of electron
pressure and magnetic pressure (gray). We define the effective viscous scale lν;eff as the scale at which the pressure anisotropy
fluctuation amplitude ∼k1=2⊥ Δpk peaks. This scale is close to the driving scale, in line with the analytical prediction of Sec. II.
(c),(d) Spectral indices as a function of wave number for the spectra from upper panels.
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an important feature of high-β turbulence: the small-scale
firehose fluctuations are decoupled from the Alfvénic
cascade. To illustrate this point, we plot in Figs. 9(e)
and 9(f) the wave number anisotropy kkðk⊥ Þ for δu and δB
fluctuations. This dependence is computed using the values
of the quasisteady-state structure functions at l ¼ l⊥ and
l ¼ lk. The wave number anisotropy appears to have a

scaling of kk ∝ k1=2⊥ in the inertial range, consistent with
critical balance:

kkvA ∼ k⊥ δu⊥ ∝ k3=2⊥ E1=2
u ∝ k1=2⊥ ; ð24Þ

where in the final step we adopt a k−2⊥ spectrum. It is
interesting that this critical balance is measured to hold at
what are notionally sub-parallel-viscous scales, which

suggests that the viscous backreaction on the cascade is
not purely dissipative. The anisotropy computed using the
magnetic-field fluctuations has the same scaling, despite
the magnetic energy having a shallower spectrum. This
means that the firehose modes, which are oblique and affect
neither the parallel nor the perpendicular structure func-
tions, do not participate in the critically balanced cascade.
The magnetic spectrum is a superposition of the critically
balanced cascade with a slope close to −2 and an additional
spectrum of the firehose fluctuations, which peaks at
kinetic scales. Independence of the firehose fluctuations
from the Alfvénic cascade has also been shown by Ref. [45]
using an expanding box, in which the dominant contribu-
tion to the pressure anisotropy is from plasma expansion
perpendicular to the mean field (rather than from the
fluctuations).

(a) (b)

(c) (d)

(e) (f)

FIG. 9. (a),(b) Quasisteady-state spectra of magnetic (blue) and kinetic (red) energies in the βi0 ¼ 16 (a) and βi0 ¼ 4 (b) simulations.
These spectra have similar slopes near the driving scale, but deviate from one another at scales below the effective viscous scale (defined
in Sec. III D and in the caption of Fig. 8, and indicated by the dotted lines). The kinetic-energy spectra are steeper than −5=3 because of
the anisotropic viscous stress; the slope of the kinetic-energy spectrum becomes close to −2. The magnetic-energy spectrum becomes
shallower toward k⊥ ρi0 ∼ 1 because firehose fluctuations are injected at these scales in the quasisteady state. (c),(d) Spectral indices as
functions of wave number for the magnetic- and kinetic-energy spectra. (e),(f) Parallel wave number (kk) of the fluctuations as a function
of their perpendicular wave number (k⊥ ) obtained from magnetic-field structure-function analysis. The value of spectral anisotropy
kk=k⊥ agrees with critical-balance predictions.
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E. Effective collisionality

In this section, we estimate the effective collisionality
from the results of our hybrid-kinetic simulations. For that,
we use two independent methods: one based on the
evolution of the pressure stress in the simulations
(Sec. III E 1) and one based on the motion of individual
particles (Sec. III E 2).

1. Effective collisionality from pressure-stress evolution

In Sec. II, we employ a simple model [Eq. (6)], where
pressure anisotropy grows with the local parallel rate of
strain S≡ b̂b̂∶∇u and is relaxed by Coulomb collisions
between particles at the rate ν. A common assumption in
reduced fluid models, such as Braginskii MHD, is that the
typical frequency of fluctuations satisfies ω ≪ ν, so dΔ=dt
is much smaller than other terms in Eq. (6). Then Δ ≃ S=ν.
To test whether such a closure works in kinetic high-β
turbulence, we plot in Fig. 10 the spectra of Δp (blue) and
pb̂b̂∶∇u (red). The spectrum of pressure anisotropy is
multiplied by a coefficient hνeffi ∼ 0.01Ωi0, which is the
value of ðpb̂b̂∶∇uÞk=Δpk averaged over scales satisfying
k⊥lν;eff < 1. In what follows, we refer to the latter [which
we also label as ðpb̂b̂∶∇uÞL=ΔpL] as the “Braginskii
estimate,” because the pressure anisotropy in a weakly
collisional plasma when the fluid motions are incompress-
ible is given by Braginskii [43] as Δp ¼ pb̂b̂∶∇u=ν.

νeff represents our approximation for the effective colli-
sionality, which in our simulations is mediated by wave-
particle interactions [91]. Shaded regions in Fig. 10 indicate
root-mean-square fluctuations in pressure anisotropy and
rate of strain measured during the quasisteady state. The
pressure-anisotropy spectrum follows the rate of strain
down to the viscous scale, below which the pressure
anisotropy starts to decrease while the parallel rate of
strain increases. This increase corresponds to the injection
of small-scale firehose fluctuations in quasisteady state.
Despite their being comparable in magnitude, pb̂b̂∶∇u

and νeffΔp are not directly proportional to one another,
as in the standard Braginskii closure. Instead, there is a
phase difference between the two, a feature that may be
explained as follows. If the local rate of strain behaves as
SðtÞ ¼ S0 expð−iωtÞ, and Δðt ¼ 0Þ ¼ 0, then Eq. (6) has
the simple solution

ΔðtÞ ¼ 3S0
−iωþ 3ν

e−iωt ¼ SðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ ω2=9

p eiϕ; ð25Þ

where cosϕ ¼ ν=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ ω2=9

p
and ϕ is the phase lag

between the pressure anisotropy and the rate of strain.
This phase lag is relatively small at the injection scale,
where ν ∼ βω ≫ ω, but becomes increasingly larger
toward the smaller scales. Nonzero phase lag makes the
energy transfer due to effective viscosity non-sign-definite,
and makes the behavior of kinetic plasma different from a
Braginskii-MHD plasma.
Another effect neglected in the Braginskii model is the

growth of small-scale magnetic fields associated with
kinetic microinstabilities (mostly firehose). Kinetic insta-
bilities increase the ion-Larmor-scale contribution to the
shear b̂b̂∶∇u and cause it to deviate from Δp. Structure-
function analysis of the rates of strain (not shown) suggests
that b̂b̂∶∇u peaks at kkρi0 ≈ k⊥ ρi0 ≈ 0.4, which corre-
sponds to the wave number of fastest growth for the oblique
firehose instability [24].

2. Effective collisionality from particle motion

Figure 10 provides just one way of estimating the
effective collisionality of an (otherwise collisionless)
high-β plasma. This method relies on the assumption that
pressure anisotropy evolves according to Eq. (6), which is
not necessarily true if strong heat fluxes are present. To
provide an independent measurement of the effective
collisionality, we examine to what extent the magnetic
moments μ of the particles are conserved. In the absence of
scattering, the only way to change μ is through non-
adiabatic heating or cooling. Although there has not yet
been a self-consistent study of heating in collisionless high-
β plasmas, existing studies suggest that nonadiabatic
heating is small; e.g., stochastic heating is suppressed at
β ≫ 1 [80,92]. Additionally, in the absence of pressure

FIG. 10. Comparison between the spectra of pressure
anisotropy (blue lines) and pb̂b̂∶∇u (red lines), the latter of
which is proportional to the rate of growth of the magnetic
field [see Eq. (6)]. Above the effective viscous scale lν;eff

(vertical dotted line), the pressure anisotropy is proportional to
pb̂b̂∶∇u. The proportionality coefficient between the two (the
“Braginskii estimate” for the effective collision frequency) is
hνeffi ∼ 0.01Ωi0. At scales smaller than lν;eff , this effective
collisionality is not large enough relative to the dynamical
frequencies, so the pressure anisotropy deviates significantly
from the Braginskii estimate. Note the bump in b̂b̂∶∇u
near k⊥ ρi0 ∼ 1, which corresponds to firehose fluctuations in
quasisteady state (the additional peak at k⊥ ρi0 ≈ 3 is due to
particle noise).
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(a) (b)

(c) (d)

(e) (f)

FIG. 11. Trajectory of a tracked particle from the βi0 ¼ 16 simulation with single-mode driving (see Sec. III A 3). This particle moves
through a region with firehose-unstable pressure anisotropy (c),(d). The same region shows small-scale oblique magnetic-field
fluctuations (a),(b), which we interpret as firehose modes. As the particle passes through the region, its magnetic moment starts to break
(e), and it experiences pitch-angle scattering at almost constant total energy (f). The gray shaded regions in (e) and (f) indicate the period
of time over which the trajectory in (a)–(d) is plotted.
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anisotropy, Landau damping can dissipate a significant
portion of the cascade [78], leaving little energy for
additional nonadiabatic channels.
An example of this process is shown in Fig. 11. The

black lines in Figs. 11(a)–11(d) show the trajectory of a
particle from the βi0 ¼ 16 simulation (see Sec. III A 3) in
the planes perpendicular and parallel to the guide field,
plotted over a snapshot of fluctuations in magnetic-field
strength [Figs. 11(a) and 11(b)] and in pressure anisotropy
[Figs. 11(c) and 11(d)]. The fluctuations themselves evolve
over time, while Figs. 11(a)–11(d) only show them at a
fixed moment; this should not present a problem of
interpretation given that, at high plasma β, the fluctuations
evolve much more slowly than the particles stream across
them (kkvA ≪ kkvth). This particular particle has been
chosen because it moves through a region with firehose-
unstable pressure anisotropy, and the magnetic-field slices
exhibit clear firehose fluctuations. These fluctuations cause
the particle’s magnetic moment to break by pitch-angle
scattering [Fig. 11(e)], during which the total energy of the
particle is almost constant [Fig. 11(f)].
One way of measuring collisionality from particle

trajectories is to look at the particles’ magnetic moments
as functions of time and compute a histogram of times τcoll

needed for the magnetic moment of each tracked particle to
change by one factor of e. In Figs. 12(a) and 12(c), we
show such a histogram, computed using the trajectories of
>104 tracked particles from our βi0 ¼ 16 and βi0 ¼ 4
simulations. Solid lines in this figure show the distribution
functions of τcoll, but evaluated during the simulation time
using all available particles (>1011 particles in total) [93].
These solid lines are then used to evaluate hτcolli at different
times during the simulations. The effective collisionality is
then obtained as νeff ¼ 1=hτcolli. We use 1=hτcolli as a
definition of the effective collisionality because it is the
maximum likelihood estimator for an exponential distri-
bution (which is our hypothesis for collision events).
Figures 12(b) and 12(d) compare the effective collision-
alities computed in this manner with those computed from
the ratio of rate of strain and pressure anisotropy at large
scales L≳ lν;eff (Sec. III E 1).
In the beginning of each simulation, the collisionality is

smaller than the Braginskii estimate, which is to be
expected because the simulation is not yet in quasisteady
state. After the microinstabilities are triggered [vertical
dashed and dot-dashed lines in Fig. 12(b)], the collision-
ality grows rapidly, and its value in quasisteady state is
consistent with the Braginskii estimate. The values of

(a) (b)

(c) (d)

FIG. 12. Histograms of collision times of tracked particles in the βi0 ¼ 16 (a) and βi0 ¼ 4 (c) simulations averaged over the duration of
the simulations. Solid lines denote the probabilities obtained with the collisionality diagnostic described in Sec. III E, which uses all
particles in the simulation (Sec. III E 2). (b),(d) Comparison of effective collisionalities obtained by computing Δpk and ðpb̂b̂∶∇uÞk at
large scales (k⊥lν;eff < 1; see Fig. 10) and those obtained from hτcolli based on the distributions in (a) and (c). A good agreement
between these independent methods indicates that the collisionality is similar to the Braginskii estimate [Eq. (26)]. Vertical dashed and
dot-dashed lines in (b) show the values of time for the snapshots in Figs. 16 and 17.
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collisionality are also consistent with our expectations from
Sec. II. Namely, for βi0 ¼ 16,

νeff ∼ βi0b̂b̂∶∇ujmax ∼ βi0M3
A
vA0
L⊥

≈ 0.01Ωi0: ð26Þ

Although the collisionality is expected to scale proportion-
ally to

ffiffiffiffiffiffi
βi0

p
[based on Eq. (26) with L⊥ ∝ ρi0], we find a

larger value of collisionality in the βi0 ¼ 4 simulation than
in the βi0 ¼ 16 simulation. We attribute this to differences
between Mach numbers and the quasisteady-state pressure
anisotropies in the simulations (the βi0 ¼ 4 simulation ends
up closer to the firehose threshold; see Fig. 5). If positive
pressure anisotropies are mediated by the AIC instability
with threshold ∝ 1=

ffiffiffi
β

p
, then νeff ¼

ffiffiffiffiffiffi
βi0

p
b̂b̂∶∇ujmax, and

thus both runs should have the same collisionality.
However, our simulations are continuously driven, and after
a long enough time, the firehose instability is triggered,
which increases the collisionality to βi0b̂b̂∶∇ujmax.

F. Ion heating

In Sec. II, we present theoretical arguments, sub-
sequently supported by our numerical results presented
in Secs. III D and III E, that suggest that the viscous scale in
collisionless high-β turbulence is close to the outer scale.
Here we ask whether this means that most of the heating
happens at the effective viscous scale, rather than at kinetic
scales. Heating close to kinetic scales has been found
numerically in low-β kinetic turbulence [79,80,94], and
also in gyrokinetic simulations of high-β turbulence [78]. In
the latter, it came from the Landau damping of Alfvén
waves, expected to peak at a scale [44,78,95]

ρ⋆ ≡ ð3=4π1=4
ffiffiffi
2

p
Þβ1=4i ρi: ð27Þ

Both low-β simulations and gyrokinetic studies lack
dynamically important viscous stresses, which can cause
a significant portion of the cascade to be dissipated at the
viscous scale. The precise amount of such dissipation might
be difficult to estimate given the dynamical backreaction of
the parallel-viscous stress, which tends to rearrange fields
so as to reduce the amount of parallel-viscous heating
[7,55]. In this section, we ask whether most of the heating
happens at small scales due to Landau damping or at large
scales due to the pressure-anisotropic viscous stress, and
show that the latter is the case in our simulations.
We first note that the velocity spectrum in Fig. 9 has a

slope steeper than −5=3, instead of closer to −2. There are
two potential explanations: either the nonlinear interactions
of turbulent eddies are modified in such a way as to steepen
the spectrum or the large-scale ion heating causes dis-
sipation of a considerable portion of the cascade energy
flux. As we explain in Sec. III D, for the former explanation
to be valid, the conservative critically balanced cascade
should satisfy kkδu2k ∼ const, which for a k−2⊥ spectrum
means that kk ∝ k⊥ . As we show in Figs. 6(e) and 6(f), this

is not the case, as kk scales as k
1=2
⊥ in the quasisteady state.

This means that the cascade is not conservative, and some
part of the cascade is dissipated as ion heating. Our energy-
transfer function for the viscous stress (Fig. 7) also suggests
considerable dissipation in the inertial range.
To determine the wave number dependence of the ion

heatingQi, we employ the energy-transfer functions for the
thermal-energy equation (see Sec. III C and Appendix B)
and separate the total heating into its local (q⊥ ¼ k⊥ )
and nonlocal (q⊥ ≠ k⊥ ) components averaged over the
quasisteady state. These averages are computed from two-
dimensional transfer functions by summing over q⊥ shells,
T nonloc ≡Pq⊥≠k⊥ T q⊥→k⊥ and T loc ≡ T k⊥→k⊥ . Such a
definition can, in principle, depend upon the choice of

(a) (b)

FIG. 13. The dependence of anisotropic viscous heatingΠ∶∇u in the βi0 ¼ 16 simulation on time (a) and wave number (b). Heating is
separated into local (red line) and nonlocal (blue line) components, as defined in Sec. III F, with total heating indicated by the green
dashed line. The purple dot-dashed line denotes the nonlocal transfer from kinetic to magnetic energy, which we attribute to the growth
of small-scale firehose fluctuations.
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wave number shells; for simplicity, we ignore this depend-
ence, while noting that the local and nonlocal contri-
butions to the transfer functions in Fig. 7 are quite distinct.
Figure 13 shows the dependence of local and nonlocal ion
heating Π∶∇u on time [Fig. 13(a)] and on perpendicular
wave number [Fig. 13(b)] for the βi0 ¼ 16 simulation. The
simulation starts with most ofΠ∶∇u being local. This is the
reversible energy transfer between bulk kinetic and thermal
energies; indeed, it changes sign several times during this
stage of the simulation. After sufficiently negative pressure
anisotropy has built up, so that the simulation becomes
unstable to the firehose instability, the nonlocal ion heating
becomes the dominant component of the energy transfer.
During this stage, nonlocal heating approximately follows
the nonlocal energy transfer between kinetic and magnetic
energies due to firehose instability. In the quasisteady state,
there are comparable amounts of local and nonlocal
heating, while the effective collisionality makes the transfer
of energy due to anisotropic viscosity Π∶∇u irreversible.
The quasisteady-state value of T Max

nonloc is comparable to, or
even larger than, the total heating, which indicates that
nonlocal transfer due to firehose growth is comparable to
the overall energy flux in the system and that the firehose
instability is important in the quasisteady state. We interpret
all nonlocal transfer due to magnetic tension (T Max

nonloc) as
firehose growth (see Sec. III C).
The steep spectrum of dQi=dk⊥ implies that most of the

energy is dissipated at large scales, close to the effective
viscous scale (and hence outer scale) of the system. Such
dissipation is not present in low-β simulations of collision-
less Alfvénic turbulence [79,80], in which heating typically
peaks at subion scales. That being said, there is some
dissipation at small scales as well: the spectrum of
dQi=dk⊥ continues even after the cutoff of the kinetic-
energy spectrum. There are several heating mechanisms
that can operate in this range. Cyclotron heating, which can
be important at β ∼ 1 [79], is expected to have a localized
peak at the wave number at which the frequency of kinetic
Alfvén waves ωKAW ∼ Ωi; this behavior is inconsistent
with the results in Fig. 13 (assuming Alfvénic nature of
sub-ρi fluctuations, which is not exactly true if firehose
instability is present). Similarly, stochastic heating [80,92,96]
is expected to have a localized peak at k⊥ ρi0 ∼ 1. Both of
these mechanisms are expected to be relatively unimportant
at β ≫ 1. It is likely that the subviscous dissipation in our
high-β simulations is caused instead by Landau damping,
which is the dominant energization mechanism seen in
gyrokinetic simulations at high β [78]. That being said, the
importance of Landau damping changes as the simulation
progresses. Figure 14 shows the wave number and velocity
dependence of ion energization during three time intervals:
the mirror and AIC stages, Ωi0t ≤ 2000; the Landau-
damping stage, 2000 < Ωi0t ≤ 4000; and the quasisteady
state, Ωi0t > 4000. The first two intervals have consider-
able heating near k⊥ ρ⋆ ∼ 1 [recall the definition of ρ⋆

given by Eq. (27)]. In contrast, Larmor-scale heating is
considerably suppressed in the final stage [97]. The phase-
space energization is defined as the product hEk ·wki of the
local parallel electric field and the parallel component of
particle peculiar velocity (w≡ v − u) averaged over all
particles within a given region of the velocity space (Fig. 14
shows only the dependence on wk). The origin of the sign
reversal around wk ∼�vthi0 remains uncertain, but could
relate to the Landau damping of acoustic fluctuations or
could be a signature of the viscous heating (though if so,
exactly how this arises remains poorly understood). The
Landau-damping signatures at wk ∼�vA0 are present at
early times, but recede as the simulation progresses. This
indicates that Landau damping is suppressed (but still
important), and a significant fraction of the heating in
the quasisteady state is due to the pressure-anisotropic

(a)

(b)

FIG. 14. (a) Wave number dependence of particle energization
during three time intervals in the βi0 ¼ 16 simulation. The first
two stages have a considerable amount of heating at k⊥ ρ⋆ ∼ 1,
where Landau damping is expected to be important. Subviscous
heating is suppressed in the quasisteady state, and most of the
heating occurs close to the effective viscous scale. (b) Phase-
space dependence of parallel energization of particles during the
same time intervals. The peaks at wk ∼�vA0 (vertical dotted
lines), indicative of Landau damping, are present during the early
stages, but disappear in the quasisteady state.
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viscous stress. We measure large-scale viscous heating to
be responsible for approximately one-half of the overall
heating rate.
We defer an investigation of how heating and scattering

affect the ion distribution function to Appendix C.

IV. DISCUSSION

A. Simulation dynamics and effective viscosity

In this paper, we explore the evolution of turbulent
fluctuations in a collisionless, high-β plasma. The initially
driven fluctuations become unstable to mirror and, later, to
AIC instabilities. These instabilities result in ion-Larmor-
scale perturbations of the magnetic field, which cause ions
to scatter with a characteristic scattering frequency ∼Sβ,
where S≡ b̂b̂∶∇u is the growth rate of the magnetic-field
strength. This scattering limits the (otherwise adiabatically
driven) pressure anisotropy. The average value of the
pressure anisotropy ultimately becomes negative (i.e.,
pk > p⊥ ), thereby triggering the firehose instability. The
pressure anisotropy then fluctuates across the box and has a
broadband spectrum that peaks at the viscous scale, which,
for the effective collisionality ν ∼ Sβ and Alfvénic Mach
numberMA ∼ 1, is always comparable to the driving scale.
The root-mean-square value of pressure anisotropy is
consistent with the Braginskii value of ν−1b̂b̂∶∇u with ν
measured directly from the particles, although there is a
phase lag between it and the parallel rate of strain, which
makes the dynamical impact of pressure anisotropy some-
what different than found in Braginskii MHD [55]. The
parallel viscous stress associated with the instability-
regulated pressure anisotropy leads to irreversible dissipa-
tion, which peaks at a scale lν;eff that is close to the outer
scale of the turbulence, and steepens the kinetic-energy
spectrum below that scale to a spectral slope close to −2.

B. Ion energization

At high values of β, the viscous heating, to which we
attribute the steepening of the kinetic-energy spectrum,
dissipates the majority of the cascade energy flux. This
heating mechanism should persist, no matter the scale
separation in the system, as long as the outer-scale
fluctuations are above the Alfvén-wave interruption limit
(i.e., as long as their amplitudes are such that the pressure
anisotropy that they adiabatically produce ventures beyond
the β-dependent kinetic-instability thresholds). In addition
to large-scale viscous heating, there is considerable heating
at subviscous scales, especially during the early stages of
the simulations. We attribute this heating, which peaks at
k⊥ ρi ∼ β−1=4 [see Eq. (27)], to Landau damping, the
dominant mechanism in gyrokinetic simulations [78].
The ion-to-electron heating ratio is ∼5–10 in all our
simulations (electron heating is measured via the hyper-
resistive dissipation at k⊥ ρi0 ≫ 1). There is also consid-
erable nonlocal energy transfer from driving scales to

kinetic scales due to the firehose instability (comparable
to overall energy flux; see Fig. 13).
For studies of high-β turbulence in fully collisionless

plasmas, there is an important physical ingredient missing
from our simulations: realistic electron physics. Imagine a
turbulent plasma composed of collisionless ions and
electrons. The large-scale fluctuations make the distribution
functions of both ions and electrons anisotropic, and at
sufficiently large β unstable to pressure-anisotropy-driven
instabilities. If the quasisteady-state anisotropy of both
species is Braginskii-like, withΔp=p ∼ ν−1b̂b̂∶∇u—as it is
for ions in our simulations—the ion-to-electron heating
ratio should be

Qi

Qe
∼

pi=νi
pe=νe

: ð28Þ

Therefore, the partition of energy is determined by the
effective collisionality of the species. If the collisionality of
both species is ν ∼ Sβ, then p=ν ∝ β=ν ¼ const is inde-
pendent of both β and the species. It is therefore possible
that ions and electrons receive the same amounts of energy,
which contradicts, e.g., the models used in the interpreta-
tion of Event Horizon Telescope images of black-hole
accretion flows in M87 and around Sgr A⋆ [98,99]. This
estimate depends on the exact thresholds of the instabilities
that regulate the particle velocity distributions. For exam-
ple, Sharma et al. [100] argue that, for AIC and electron-
whistler instabilities, Qi=Qe ∼ 10, consistent with some
theories of radiatively inefficient black-hole accretion
flows.
Additionally, in the presence of cooling, the electron

temperature can decrease due to radiation. This would lead
to a decrease in Te, and thus βe. If βe decreases to a point
where the plasma is stable to electron microinstabilities,
this can lead to a state with Qi=Qe ≫ 1 and, thus,
Ti=Te ≫ 1. The resulting large temperature ratios may
persist, as there are no known collisionless mechanisms for
efficient electron-ion thermal coupling [101].
One particularly important application of the results of

this section is to the interpretation of Event Horizon
Telescope images of black-hole accretion flows. This
interpretation involves carrying out general-relativistic
magnetohydrodynamic simulations with some prescription
for the heating rate of the electrons [98,99], which is
typically informed from gyrokinetic calculations [78,102].
In Fig. 15, we display a summary plot of the ion-to-electron
heating ratio obtained from our hybrid-kinetic simulations
done with PEGASUS++ as a function of plasma β. The low-β
values are taken from our earlier work on ion energization
in strong Alfvénic turbulence [79,80], while the high-β
points represent the results of this paper. Averaged over the
final 3.5tcross, about 83% of the total cascaded energy is
absorbed by ions in the βi0 ¼ 16 simulation, and about
82% at βi0 ¼ 4. The remaining energy flux cascades further
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until it is removed by hyperresistivity near the grid scale.
We estimate the electron heating in hybrid kinetics as this
hyperresistive dissipation εη. We also plot (dashed line) the
predicted Qi=Qe from a series of simulations with gyro-
kinetic ions and fluid electrons [78]. Note that gyrokinetics
assumes δB=B ≪ 1, while the fluctuations in our simu-
lations have finite amplitudes. Our results differ signifi-
cantly from these hybrid-gyrokinetic predictions, which
indicates the importance of including nonadiabatic proc-
esses (such as kinetic microinstabilities and nonadiabatic
heating channels) that are ordered out of gyrokinetics (the
only available dissipation channels in gyrokinetics are
parallel Landau damping and nonlinear perpendicular
phase mixing).
Finally, it is important to understand the caveats related

to using Fig. 15(a) for black-hole accretion models. Other
than missing electron physics, an important limitation of
our work is limited scale separation between the energy-
injection scale and the dissipation scale of the cascade. For
the low-β runs [79,80], the effective scale separation is
∼104 (the separation between ρi and the scale at which
δu=vA ∼ 1). Such a scale separation is realistic for the solar
wind, but not for accretion flows, where it is expected to be
∼1010. Dissipation mechanisms used to explain the low-β
results (stochastic and cyclotron heating) are expected to
diminish with scale separation, so it is unclear whether the
conclusions from Refs. [79,80] will hold at scale separa-
tions relevant to black-hole accretion. That being said,
astrophysical turbulence can be imbalanced (e.g., the solar-
wind turbulence is measured to be imbalanced [103]).
Recent work on imbalanced cascades [94,104] concluded
that the imbalanced portion of the energy flux could not
cascade beyond the ion-Larmor scale and was eventually

dissipated through AIC heating. Such dissipation is
expected to be controlled solely by the degree of imbalance
and not by the scale separation in the cascade.
For high-β turbulence, the results of this paper

(Sec. III F) indicate that the majority of dissipation happens
at the outer scale of the cascade. Therefore, ion heating may
depend on the properties of the forcing, and may require a
better understanding of realistic turbulence injection (e.g.,
through kinetic magnetorotational instability [5,72,73]).
The results from high-β hybrid-kinetic simulations are
likely to depend upon the amplitude of the forcing and
on the scale separation (e.g., through their impact on
spectral anisotropy at ion-Larmor scale). To test the latter,
we conduct a test for the amplitude dependence by running
a βi0 ¼ 16 simulation with δuL=vA ∼ 1, having a lower ion-
scale spectral anisotropy than other runs used in this work.
In this simulation, a slightly larger fraction of the cascade
rate, ∼90%, is dissipated on ions.

C. Dependence on scale separation

Given the limited size of our simulations, it is important
to understand whether our results are expected to hold at
scale separations relevant to astrophysical systems. One
important (although transient) feature of our runs is Landau
damping, which eventually pushes the pressure anisotropy
over the firehose-instability threshold by raising the parallel
temperature. If the effective collisionality from the insta-
bilities is strong enough to interfere with the maintenance
of the Landau resonance (namely, νeff ≫ kkvthi), then the
Landau damping can be shut off. From our estimates in
Sec. II, νeff ∼ βM3

AvA=L, and thus at kkρ⋆ ∼ 1, whereLandau
damping is expected to become important, kkvthi=νeff ∼
ðL=ρiÞ=ðβ3=4i M3

AÞ ≫ 1, the inequality following from the

(b)(a)

FIG. 15. (a) The ratio of ion to electron energization Qi=Qe as a function of plasma β from several hybrid-kinetic simulations
(βi0 ¼ 1=9 simulation from Ref. [80], βi0 ¼ 1 and 0.3 simulations from Ref. [79], and βi0 ¼ 16 and 4 simulations herein). Ion heating is
measured directly from the evolution of the thermal energy of the particles. Electron heating is inferred from hyperresistive dissipation
near the grid scale. For comparison, the dashed line shows the results from the hybrid-gyrokinetic simulations of Ref. [78]. (b) Time
dependence of ion heating (Qi) and hyperresistive dissipation (εη) in the high-β hybrid-kinetic simulations. All lines are normalized to
the total energy dissipation _ε averaged over the final 3.5tcross of each simulation.
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typically enormous astrophysical scale separation betweenL
and ρi. Therefore, Landau damping is expected to be
important (arguably more important than in our simulations)
and the plasma will approach the firehose-instability thresh-
old in approximately one large-scale dynamical time (assum-
ing that the entire cascade with MA ∼ 1 is dissipated as
parallel heating; our simulations approach it in∼4tcross given
the smaller fluctuation amplitude of MA ∼ 0.5).
In order to estimate the amplitude of firehose fluctuations

at the Larmor scale, we can leverage some results from
recent PEGASUS++ expanding-box simulations [45,84],
which have shown for Ωi=S≳ 30β3=2i that the kinetic
firehose threshold is ≈ − 1.4=βi and that the instability
saturates at an amplitude ðδB⊥ =BÞ2FH ∼ ðS=ΩiÞ1=2 ∼
M3=2

A ðρi=LÞ1=2β−1=4i for S ∼M3
AvA=L. For comparison,

the amplitude of fluctuations in an Alfvénic cascade with
the Goldreich-Sridhar spectrum evaluated at k⊥ ρi ∼ 1 is
ðδB⊥ =BÞ2AW ∼M2

Aðρi=LÞ2=3 ≪ ðδB⊥ =BÞ2FH for MA ∼ 1

and ρi=L ≪ β−3=2i . For a k−2⊥ spectrum, ðδB⊥ =BÞ2AW is even
smaller at the ion-Larmor scale. We therefore conclude
that in astrophysical systems, as found in our simulations,
ion-Larmor-scale magnetic-field fluctuations are expected
to be composed mostly of firehose modes rather than of
Alfvénic fluctuations. Therefore, ion-Larmor-scale fluctua-
tions in our simulations are similar to those expected in
astrophysical systems.

D. Observational implications

Unfortunately, outside of the solar wind, observations of
turbulence in high-β systems are limited. And the solar-
wind observations are in a slightly different regime than our
simulations: the solar wind starts as a low-β plasma, which
expands and reaches the high-β regime. In this situation,
which we studied in Ref. [45], the expansion is also an
important source of pressure anisotropy. Nevertheless, the
solar wind shows a pressure anisotropy with an average
value close to zero, and with a spread consistent with the
1=β instability thresholds (although the collisional age at
∼1 au, being comparable to outer-scale dynamical time-
scales, is short enough to matter [83]). Our simulations show
very similar behavior (see Fig. 5), with a spread in the
pressure anisotropy comparable to 1=β and an average value
that is negative but smaller than the firehose threshold.
Outside the solar wind, the most promising system in

which high-β turbulence can be studied is the ICM, which
has β ∼ 100. There have been several attempts to measure
plasma-velocity fluctuations in the ICM. The x-ray obser-
vations presented in Ref. [58] use bremsstrahlung emission
from the hot intracluster plasma to determine the density
fluctuations, from which the velocity fluctuations are then
inferred. Their energy spectrum is consistent with the
Kolmogorov prediction and extends to scales consi-
derably smaller than the viscous scale expected from
Coulomb collisions alone. This implies that the effective
collisionality of the ICM is appreciably enhanced. One

explanation for this enhancement is scattering from kinetic
microinstabilities, which can be triggered for turbulence
with Alfvénic Mach numbersMA ≳ 1=β ≪ 1. The value of
collisionality required to explain the spectra in Ref. [58] is
consistent with our analytical estimate Eq. (13).
Our simulations show that, although the effective viscous

scale is large, the spectrum in this case is closer to
Kolmogorov than ∇2u dissipation would imply (it steepens
to approximately k−2⊥ instead of exhibiting an exponential
decrease; current observations [58] cannot distinguish
between −5=3 and −2 spectral slopes). Reference [59]
used optical emission from cold gas in the ICM to measure
the spectrum of plasma velocity. Their observations show a
slightly steeper spectrum than −5=3; for some clusters, it is
close to −2. Our simulations predict similar spectra: the
effective viscosity does not produce an exponential cutoff
in the spectrum, but rather steepens it slightly. Optical
measurements are much more precise than those taken in
the x ray, but their connection to turbulence in the bulk ICM
is unclear (optical measurements are dominated by the
interiors of cluster cores, which are expected to be much
more collisional than ICM outskirts). Future observations
are required to determine better the relationship between
our simulations and the ICM turbulence.
Of course, even though we have a testable prediction for

the slope of the subviscous spectra, the scale separation
we use in our simulations is much smaller than in actual
astrophysical systems; our simulations have only ∼1
decade in scale between lν;eff and ρi, which is much
smaller than the ∼12 decades in the ICM. Relatively small-
scale separation leads to firehose fluctuations being pro-
duced relatively close to lν;eff , which may impact the
spectral slopes and the comparison between the rate of
strain and the pressure anisotropy. However, we are
encouraged that our numerical results agree well with
the analytical estimates presented in Sec. II, which we
expect to hold for any scale separation. Given the steep
scaling of the computational cost of kinetic simulations
with scale separation (as the fourth power), future efforts
should concentrate on the development of realistic subgrid
models for kinetic physics in high-β plasmas.

V. SUMMARY

We present analytical estimates of effective collisionality
and viscosity in collisionless high-β turbulence and test
those estimates by performing first-principles hybrid-
kinetic simulations. We explore the interplay between local
nonlinear turbulent cascades and kinetic instabilities, which
tap the free energy of large-scale deviations from local
thermodynamic equilibrium (e.g., pressure anisotropies)
to produce small-scale magnetic-field fluctuations. Our
results are summarized as follows.

(i) Large-scale fluctuations (continuously driven by a
random, incompressible force in our simulations)
generate pressure anisotropy through approximate
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adiabatic invariance and ultimately excite rapidly
growing kinetic instabilities, thereby transferring
energy nonlocally to small (ion-Larmor) scales.

(ii) At the beginning of the simulations, the main kinetic
instabilities are mirror and AIC, because the
magnetic-field strength in our box is mostly increas-
ing, which drives positive-pressure anisotropy.

(iii) Turbulence reaches an intermediate steady state, in
which the cascade energy is dissipated primarily by
Landau damping, causing parallel heating.

(iv) The parallel heating pushes the system toward the
firehose-instability threshold.

(v) In the quasisteady state, the turbulence is primarily
mediated by the firehose instability with nonlocal
energy transfer due to the growth of small-scale
firehose fluctuations that is comparable to the overall
energy flux. The mean pressure anisotropy is
slightly negative, with some parts of the box below
the kinetic-firehose threshold.

(vi) Firehose instability creates small-scale magnetic
fluctuations, which scatter particles. The effective
collisionality in the quasisteady state is consistent
with an estimate based on incompressible Braginskii
MHD with the pressure anisotropy regulated by
firehose instability, viz., νeff ∼ βb̂b̂∶∇u.

(vii) The effective viscous scale due to the firehose-
induced collisionality is close to the driving scale
of the turbulence. For a cascade with Alfvénic
Mach number MA, our analytical estimates suggest
that the ratio of effective viscous scale and the outer
scale is lν=L ∼M−3

A . In our simulations, MA ∼ 1 at
the outer scale.

(viii) In addition to small-scale dissipation due to Landau
damping, there is a considerable amount of viscous
heating at the effective viscous scale.

(ix) Ion heating removes the majority of the cascading
energy, ∼80%–90% for β ¼ 4 and 16.

(x) Viscous heating steepens the kinetic-energy spec-
trum of the turbulence. The spectrum is approxi-
mately k−2⊥ . Large-scale viscous heating dissipates
≈40%–45% of the cascade as ion heating.

(xi) The magnetic-energy spectrum is shallower than
k−5=3⊥ near the ion-Larmor scale due to the presence
of firehose fluctuations.

This work provides the first self-consistent estimate of
the effective viscosity in a turbulent collisionless high-β
plasma. It makes observational predictions, which can be
tested in the solar wind [105] and in the intracluster
medium, and raises important complications for models
of radiatively inefficient black-hole accretion flows.
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APPENDIX A: MIRROR AND AIC
INSTABILITIES IN βi0 = 16 SIMULATION

In the early stages of our simulations, the external
driving excites large-scale modes, which produce large
coherent patches of positive-pressure anisotropy, owing to
the conservation of the particles’ magnetic moments. Once
this pressure anisotropy grows above the ∼1=β threshold,
the mirror instability is triggered. This instability produces
“cross-patterned” oblique structures in δBk, which act to
reduce the magnetic-field strength locally. Particles trapped
in these structures “see” an almost constant-in-time mag-
netic field, which prevents the pressure anisotropy of the
trapped-particle population to grow beyond the mirror-
instability threshold. Eventually the mirrors become large
enough and their edges sharp enough to scatter particles
[24,48].
We illustrate this process in Fig. 16, which shows

snapshots of δBk in the planes perpendicular [Fig. 16(a)]
and parallel [Fig. 16(b)] to the background magnetic
field, two-dimensional histograms [Fig. 16(c)] of pressure
anisotropy and plasma β, and structure functions of the
magnetic-field fluctuations [Fig. 16(d)], defined as

SnðlÞ≡ hjBðxþ lÞ − BðxÞjnix; ðA1Þ
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where n is the order of the structure function and h · ix
represents the spatial average over the simulation domain.
In addition to the full structure function Eq. (A1), we also
compute the structure functions of magnetic-field fluctua-
tions oriented parallel and perpendicular to the local, scale-
dependent magnetic-field direction. To determine the latter,
we define

Blocðl; xÞ≡ ½Bðxþ lÞ þ BðxÞ�=2; ðA2Þ
and then compute the structure functions of those fluctuat-
ing magnetic-field components parallel and perpendicular
to b̂loc ≡ Bloc=Bloc [107], e.g., Sk represents the structure

function computed using Bkðl; xÞ≡ ½BðxÞ · b̂locðl; xÞ� ×
b̂locðl; xÞ, and S⊥ represents a structure function

computed using B⊥ ðl; xÞ≡ BðxÞ − Bkðl; xÞ. For addi-
tional details concerning structure-function analyses of
turbulence simulations, see Ref. [108].
Figure 16 shows a snapshot from the βi0 ¼ 16 simulation

at a relatively early time. One can see several large-scale
modes, which have not yet had time to shear one another.
These large-scale fluctuations produce appreciable positive
pressure anisotropy (Δp > 0), with a considerable fraction
of the box being above both the mirror and AIC instability
thresholds. We choose this particular snapshot because it
highlights the mirror instability being triggered by pressure
anisotropy—throughout the box, one can see oblique
fluctuations predominantly of δB ≈ δBk. To examine these
fluctuations further, we plot the sixth-order structure
functions of δB⊥ (blue) and δBk (red). The high order

(a) (b)

(c) (d)

FIG. 16. (a),(b) Snapshots of parallel magnetic-field fluctuations δBk (relative to B0) during the early stage of the βi0 ¼ 16 simulation
(t ≈ 0.4tcross). Panel (a) shows a slice perpendicular to the guide field; panel (b) shows a slice along the guide field. There is a clear
“cross” pattern in both slices, indicating oblique mirror fluctuations. (c) The distribution function of points in the box as a function of
their β and pressure anisotropy. Dashed lines show the thresholds for mirror [18–20] and fluid-firehose [14–17] instabilities; dot-dashed
line represents a threshold for the AIC instability [21,74] and kinetic firehose instabilities [45,84]. In this snapshot, the majority of the
box is above the mirror threshold. The black dot indicates the initial position of the simulation box. (d) Sixth-order structure function of
the fluid velocity- and magnetic-field fluctuations. High-order structure functions are chosen to highlight intense small-scale
fluctuations, which for this snapshot are mirror modes: oblique modes producing kinetic-range peaks in both parallel and perpendicular
structure functions of parallel magnetic-field fluctuations of parallel magnetic field.
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of these structure functions is chosen to highlight localized,
high-amplitude structures, such as those expected to be
produced by kinetic microinstabilities [24]. This analysis
clearly shows that there is considerable magnetic energy at
the driving scales of the simulation and some energy at the
kinetic scales (due to instabilities), with very little energy in
between. This is an indication that the energy stored in the
anisotropic distribution function has been transferred non-
locally from the driving scales (which have the largest
pressure anisotropy) to the kinetic scales.
At the scale separations achieved in our simulations,

trapping of particles by mirror fluctuations and the con-
sequent regulation of the pressure anisotropy toward the
mirror thresholds occur relatively slowly. Because of this,
the unstable pressure anisotropy [24,48,77] overshoots the
mirror threshold enough to reach the AIC instability
threshold (this is unlikely to occur in real astrophysical
systems, which have significantly larger scale separations).
Figure 17 shows a simulation snapshot at t ≈ 0.6tcross, by
which time the AIC instability has had enough time to

grow, as indicated by the strong quasiparallel fluctuations
in δB⊥ (cf. Fig. 16). Examination of the structure functions
indicates that this instability is cleanly separated from the
previously triggered mirrors: in addition to “bumps” in the
structure functions due to the mirror instability, an extra
bump in δB⊥ appears, with no obvious indication of
interactions between the two instabilities. Finally, the
histogram of pressure anisotropy and βk shows that the
pressure anisotropy has decreased from the previous snap-
shot even though the fluctuation amplitude at the driving
scale has increased, suggesting that the instabilities have
already backreacted on the plasma and reduced its depar-
tures from isotropy.

APPENDIX B: ENERGY TRANSFER IN KINETIC
HIGH-β TURBULENCE

In this appendix, we summarize the energy-transfer
analysis that we use to study nonlocal interaction in
high-β kinetic turbulence. Energy is injected by the external

(a) (b)

(c) (d)

FIG. 17. The same as Fig. 16, but for a slightly later time t ≈ 0.6tcross, at which quasiparallel fluctuations are manifest. The
perpendicular component of magnetic field is shown instead of the parallel one. Those fluctuations are produced by the AIC instability.
The structure functions show two predominant modes of fluctuations: oblique fluctuations in δBk caused by mirror instability and
quasiparallel fluctuations in δB⊥ , which are AIC waves.
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forcing in the form of bulk kinetic energy Ebulk ≡ ϱu2=2.
Part of this energy is then converted into magnetic energy
Emag ≡ B2=8π through electromagnetic induction. This
energy is ultimately dissipated by increasing the thermal
energy of ions (Eth ≡ p⊥ þ pk=2) or by hyperresistivity at
small scales.
The evolution of bulk kinetic energy follows from the

momentum equation for ions (assuming gyrotropy of the
ion distribution function):

∂ϱu
∂t

¼ −∇ ·

�
ϱuuþ

�
p⊥ þ nTe þ

B2

8π

�
I

−
�
B2

4π
þ Δp

�
b̂b̂

�
þ F: ðB1Þ

Similarly, the evolution of magnetic energy follows from
Faraday’s and Ohm’s laws:

∂B
∂t

¼−c∇×E

¼∇×

�
u×B−

ð∇×BÞ×B
4πne=c

þηhyper∇2

�
∇×B
4π=c

��
; ðB2Þ

where the last term represents dissipation due to hyper-
resistivity. Equations for the evolution of kinetic and
magnetic energies can be obtain by multiplying Eqs. (B1)
and (B2) by u and B correspondingly. Thermal energy Eth
in the system increases due to viscous dissipation and
compressive heating:

dEth

dt
¼ −

Z
P∶∇ud3x

¼ −
Z

½p⊥∇ · u − ðΔpb̂b̂Þ∶∇u�d3x: ðB3Þ

In what follows, it is useful to define the energy
“reservoirs” corresponding to kinetic, magnetic, and ther-
mal energies, with each reservoir associated with a certain
vector field a, so that Ea ≡ a2=2. For the bulk kinetic
energy, au ¼ ffiffiffi

ϱ
p

u, so

Ebulk ¼
Z ð ffiffiffi

ϱ
p

uÞ2
2

d3x

¼ 1

ð2πÞ3
Z

1

2
ð ffiffiffi

ϱ
p

uÞk · ð
ffiffiffi
ϱ

p
uÞ�kd3k: ðB4Þ

The definition for magnetic energy is also straightforward,
aB ≡ B=

ffiffiffiffiffiffi
4π

p
, so

Emag ¼
Z ðB= ffiffiffiffiffiffi

4π
p Þ2
2

d3x

¼ 1

ð2πÞ3
Z

1

8π
ðBÞk · ðBÞ�kd3k: ðB5Þ

The definition of the energy reservoir associated with
anisotropic thermal energy is less straightforward. In this
article, we use aΔp ≡ ffiffiffiffiffiffiffiffiffiffijΔpjp

b̂. This definition is motivated
by two facts. First, in the KRMHD limit, ðδaΔpÞ2=2
matches up to a sign with the corresponding term in the
plasma free energy [46]:

WΔ
KRMHD ¼

Z
βki

Δi

2

δB2⊥
B2
0

d3x: ðB6Þ

Second, the thermal energy of the plasma can be written as

Eth ¼
Z

nð2T ⊥ þ TkÞ
2

d3x ¼
Z �

3

2
p⊥ −

1

2
Δp
�
d3x

¼ Eiso
th −

Z
ϑΔp
2

ð
ffiffiffiffiffiffiffiffiffiffi
jΔpj

p
b̂Þ2d3x

¼ Eiso
th −

1

ð2πÞ3
Z

ϑΔp
2

ð
ffiffiffiffiffiffiffiffiffiffi
jΔpj

p
b̂Þk · ð

ffiffiffiffiffiffiffiffiffiffi
jΔpj

p
b̂Þ�kd3k;

ðB7Þ

where ϑΔp ≡ sgnðΔpÞ and Eiso
th is the “isotropic thermal

energy” associated with p⊥ . The proposed definition of the
anisotropic thermal energy allows us to consider the “advec-
tionlike” terms in Eqs. (B3) and (B4) associated with Δp
separately from the “compressionlike” terms proportional to
divergences of various vector fields in the system and terms
proportional to gradients of p⊥ and B2=2.
The rates of exchange of energy between different

reservoirs follow from Eqs. (B1)–(B3). Let us consider
the individual terms in Eq. (B1) separately. As we show
later (Fig. 18), the most dominant terms are related to the
Reynolds, Maxwell, and anisotropic viscous stresses. The
rate of change of kinetic energy due to the Reynolds stress is

dERe
bulk

dt
¼ −

Z ð ffiffiffi
ϱ

p
uÞffiffiffi
ϱ

p ·f∇ · ½ð ffiffiffi
ϱ

p
uÞð ffiffiffi

ϱ
p

uÞ�gd3x

¼ −
Z

auffiffiffi
ϱ

p · ½∇ · ðauauÞ�d3x

¼ −
Z �

au ·

�
auffiffiffi
ϱ

p ·∇au
�
þ ðauÞ2ffiffiffi

ϱ
p ∇ ·au

�
d3x: ðB8Þ

The second term in the integrand of the final expression is
related to compressive motions (∝ ∇ · au). As we show later
(Fig. 18), in high-β turbulence, this term is smaller than the
first, advectionlike term. To explore the locality of this
cascade, we define k-shell averaged fields:

haiK ≡ 1

ð2πÞ3
Z
k∈K

ake−ik · xd3k: ðB9Þ

We choose cylindrical k⊥ shells with width dk⊥ ∝ k⊥ , so
that the shells have equalwidth in log k⊥ .With such a choice
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(b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(a)

FIG. 18. Nonlocal energy transfer functions averaged over the quasisteady state due to the Reynolds stress (left), Maxwell stress
(center), and anisotropic viscous stress (right) in βi0 ¼ 16 simulation. Most of the transfer in the early stages of the simulation is local,
but there is considerable nonlocal transfer mediated by the Maxwell stress in the quasisteady state. Panels (j)–(l) show the remaining
transfer terms in the momentum equation as well as terms in the induction equation and the equation for thermal energy. Note that terms
associated with compressions and gradients of isotropic pressures are smaller than “advectionlike” terms.
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of shells, haiK is proportional to the fluctuation amplitude
δak⊥ (i.e., δa2k⊥ ¼ Rk⊥ jakj2d3k). As a result, an energy

transfer rate of the form huiK · ½huiK ·∇�huiK ∼ k⊥ δu3k⊥ ∼ ε

approximates the cascade rate. For a conservative cascade,
this energy transfer rate is the same for each k⊥ shell.
For nonoverlapping shells, the shell-averaged vectors aK

satisfy by construction

a ¼
X
K

haiK; ðB10Þ

and, therefore,

dERe
bulk

dt
¼
X
K

Z
dhaui2K
dt

d3x

≈ −
X
K

Z
hauiK · ðu ·∇auÞd3x≡X

KPQ

Z
TRe
KPQd

3x;

ðB11Þ

where in the last step we define three-shell correlators (see,
e.g., Ref. [87] for details):

TRe
KPQ ≡ −hauiK · ðhuiP ·∇ÞhauiQ: ðB12Þ

These correlators describe the transfer of energy associated
with field au from shell Q to shell K, mediated by field
huiP, i.e., Z

dhaui2K
dt

				
PQ

d3x ¼
Z

TRe
KPQd

3x: ðB13Þ

The energy cannot go from shell P to shellsK andQ or vice
versa. This can be easily seen from the sum of the energies
in the shells K and Q during their mutual interaction
mediated by the shell P:

Z
dhaui2K
dt

				
PQ

þdhaui2Q
dt

				
PK

d3x

¼−
Z

½hauiK · ðhuiP ·∇hauiQÞþhauiQ · ðhuiP ·∇hauiKÞ�d3x

¼−
Z

huiP ·∇hauiK · hauiQd3x

¼
Z

hauiK · hauiQ∇ · huiPd3x; ðB14Þ

so that the total energy during the interaction can only come
from the compressive motions of the mediator shell, which
are small in high-β turbulence. As we are not interested in
specific mediator shells, we can sum over P and introduce a
shell-to-shell energy transfer function, i.e., the energy-
transfer function due to the Reynolds stress [88]:

T Re
q⊥→k⊥ ≡ −

Z
hauik⊥ · ðu ·∇hauiq⊥ Þd3x: ðB15Þ

Similar transfer functions could be defined for any field a
and any mediator function f :

T a1fa2
q⊥→k⊥ ≡

Z
ha1ik⊥ · ðf ·∇ha2iq⊥ Þd3x: ðB16Þ

Of particular importance to us are the transfer-function
rates due to the Reynolds stress Eq. (B15), the Maxwell
stress,

T Max
q⊥→k⊥ ≡

Z
hauik⊥ ·

�
Bffiffiffiffiffiffiffiffi
4πϱ

p ·∇haBiq⊥

�
d3x; ðB17Þ

and the anisotropic viscous stress,

T visc
q⊥→k⊥ ≡

Z
hauik⊥ ·

 
ϑΔp

ffiffiffiffiffiffiffiffiffiffi
jΔpj
ϱ

s
b̂ ·∇haΔpiq⊥

!
d3x:

ðB18Þ

The mediator field for the Maxwell stress has a form of
local Alfvén speed, and the mediator for the viscous stress
has the form of the sound speed directed along the local
magnetic field, but computed using the pressure anisotropy
Δp. Both transfer functions have corresponding terms (of
opposite signs) in the equations for magnetic energy and
the anisotropic thermal energy. Namely,

dEmag

dt

				
MHD

¼
Z

1

4π
B · ½∇×ðu×BÞ�d3x

¼
Z

½aB ·ðaB ·∇uÞ−u ·∇ðaBÞ2=2−ðaBÞ2∇ ·u�d3x

¼
X
q⊥k⊥

T MHD
q⊥→k⊥ þðcompressive termsÞ; ðB19Þ

where we only used the “MHD” electric field u×B=c and

T MHD
q⊥→k⊥ ≡

Z
haBik⊥ ·

�
Bffiffiffiffiffiffiffiffi
4πϱ

p ·∇hauiq⊥

�
d3x; ðB20Þ

and

dEvisc
th

dt
¼
Z

Δpb̂b̂∶∇ud3x

¼
Z ffiffiffi

ϱ
p

aΔp · ðaΔp ·∇uÞ

¼
X
q⊥ k⊥

T th
q⊥→k⊥ þ ðcompressive termsÞ; ðB21Þ

where
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T th
q⊥→k⊥ ≡

Z
haΔpik⊥ ·

 
ϑΔp

ffiffiffiffiffiffiffiffiffiffi
jΔpj
ϱ

s
b̂ ·∇hauiq⊥

!
d3x:

ðB22Þ

To summarize, we write the time derivative of the bulk
kinetic energy as a sum of five terms:

dEbulk

dt
¼
X
q⊥ k⊥

½T Re
q⊥→k⊥ þ T Max

q⊥→k⊥ þ T visc
q⊥→k⊥

þT C
q⊥→k⊥ þ T F

q⊥→k⊥ �; ðB23Þ

where T F
q⊥→k⊥ represents energy injection due to large-

scale external forcing, and T C
q⊥→k⊥ is the sum of all terms

neglected in other transfer functions, which are related to
compressive motions and various pressure forces:

T C
q⊥→k⊥ ≡

Z �
−hauik⊥ ·hauiq⊥

∇ ·u
2

−hauik⊥ ·
1ffiffiffi
ϱ

p ∇hp⊥ þnTeiq⊥

−hauik⊥ ·
�

1

2
ffiffiffiffiffiffiffiffi
4πϱ

p ∇ðB ·haBiq⊥ Þ
�

þhauik⊥ ·haΔpiq⊥ϑΔp
∇ ·

ffiffiffiffiffiffiffiffiffiffijΔpjp
b̂ffiffiffi

ϱ
p

�
d3x: ðB24Þ

The magnetic energy evolves according to a similar sum
of energy-transfer functions:

dEmag

dt
¼
X
q⊥ k⊥

½T MHD
q⊥→k⊥ þ T kin

q⊥→k⊥ þ T A
q⊥→k⊥

þT C;B
q⊥→k⊥ þ T diss

q⊥→k⊥ �; ðB25Þ
where

T MHD
q⊥→k⊥ ≡

Z
haBik⊥ ·

�
Bffiffiffiffiffiffiffiffi
4πϱ

p ·∇hauiq⊥

�
d3x; ðB26Þ

T kin
q⊥→k⊥ ≡

Z
−haBik⊥ ·

�
Bffiffiffiffiffiffiffiffi
4πϱ

p ·∇

 ffiffiffi

ϱ
p

J

ne

�
q⊥

�
d3x; ðB27Þ

T A
q⊥→k⊥ ≡

Z
−haBik⊥ ·

��
u−

J
ne

�
·∇haBiq⊥

�
d3x; ðB28Þ

T C;B
q⊥→k⊥ ≡

Z �
−haBik⊥ ·haBiq⊥∇·uþhaBik⊥ ·haBiq⊥∇·

J
ne

−
1

2
haBik⊥ ·

�
hauiq⊥−


 ffiffiffi
ϱ

p
J

ne

�
q⊥

�
Bffiffiffiffiffiffiffiffi
4πϱ

p ·
∇ϱ
ϱ

�
d3x;

ðB29Þ

T diss
q⊥→k⊥ ≡

Z haBik⊥ffiffiffiffiffiffi
4π

p ·

�
∇×
�
∇2



ηhyperJ

ne

�
q⊥

��
d3x: ðB30Þ

Finally, the thermal energy evolves according to

dEth

dt
¼
X
q⊥ k⊥

½T th
q⊥→k⊥ þ T C;th

q⊥→k⊥ �; ðB31Þ

where

T th
q⊥→k⊥ ≡

Z
haΔpik⊥ ·

 
ϑΔp

ffiffiffiffiffiffiffiffiffiffi
jΔpj
ϱ

s
b̂ ·∇hauiq⊥

!
d3x;

ðB32Þ

T C;th
q⊥→k⊥ ≡

Z (
−
∇·hauik⊥ffiffiffi

ϱ
p hp⊥iq⊥ −

hauik⊥ ·hauiq⊥
2

∇·u

−
1

2
haΔpik⊥ ·hauiq⊥ϑΔp

ffiffiffiffiffiffiffiffiffiffi
jΔpj
ϱ

s
b̂·
∇ϱ
ϱ

)
d3x: ðB33Þ

The transfer functions T Re
q⊥→k⊥ , T

Max
q⊥→k⊥ , and T visc

q⊥→k⊥
for our βi0 ¼ 16 simulation are shown in Fig. 18. The
energy transfer due to Reynolds stress is consistent with a
local cascade (see, e.g., Ref. [88]): there is a positive energy
flux coming from large scales to small scales (q⊥ < k⊥ )
and a similar negative flux from small scales to large scales
(q⊥ > k⊥ ). The energy transfers due to Maxwell and
viscous stresses are mostly local: there is a positive energy-
transfer rate at q⊥ ¼ k⊥ coming from the magnetic
tension, and a negative transfer mediated by pressure
anisotropy at the same q⊥ . However, unlike in a local
MHD cascade, there is a considerable energy transfer at
q⊥ > k⊥ mediated by the Maxwell stress. This corre-
sponds to the transfer of large-scale kinetic energy to small-
scale magnetic energy, as we discuss in Sec. III C.
Finally, we note that the largest, advectionlike energy-

transfer terms correspond to turbulent dynamics and
microfluctuations produced by instabilities. These terms,
however, do not describe thermalization of anisotropic
thermal energy due to the effective collisionality. Studying
this thermalization requires considering the full equation for
pressure anisotropy,which involves higher-ordermoments of
the distribution functions, such as the heat fluxes. Such an
analysis goes beyond the scope of this paper.

APPENDIX C: ION DISTRIBUTION FUNCTION

Figure 19 shows the ion parallel and perpendicular
distribution functions at the end of the βi0 ¼ 4 and
βi0 ¼ 16 runs, defined as fðwkÞ≡ R dw2⊥ fðwk; w⊥ Þ and
fðw⊥ Þ≡

R
dwkfðwk; w⊥ Þ. Both runs produce distribution

functions close to a bi-Maxwellian with Tk > T ⊥ . The
core of the parallel distribution function is flattened, which

KINETIC TURBULENCE IN COLLISIONLESS HIGH-β … PHYS. REV. X 13, 021014 (2023)

021014-29



(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 19. Parallel (a),(c) and perpendicular (b),(d) ion distribution function at the end of the βi0 ¼ 16 (a),(b) and βi0 ¼ 4
(c),(d) simulations. Parallel distribution functions (a),(c) have a flat core, which we associate with the Landau damping and the
firehose instability [45]. Dashed lines show best-fit Maxwellians to fðwkÞ at wk ≈ 1.6vthi0 (in particular, from 1.59 to 1.61vthi0 to
exclude the flattened part of the core) and to fðw⊥ Þ at w⊥ < vthi0. (e)–(h) The same distribution functions, plotted on logarithmic scale.
The core and the tail of the distributions may be approximated with Gaussians (straight lines in these coordinates). It is apparent that the
wings of the distribution functions are much more isotropic than the cores (T tail

k ∼ T tail⊥ , while Tcore
k > Tcore⊥ ).
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we attribute to Landau damping (mostly active in the early
stages of the simulations) and to the nonlinear phase of the
firehose instability [109].
Although the final distribution functions are not iso-

tropic, the tails of those distributions are, as we show in
Figs. 19(e)–19(h). This implies that pitch-angle scattering
due to kinetic instabilities affects different parts of the
distribution function differently, and causes the wings of
the distribution function to be much more collisional, and
therefore isotropic, than the cores. Similar features had
been seen in the distribution functions of prior β ∼ 1
simulations [79], in which pitch-angle scattering was
present without instabilities, and in simulations of mag-
netized turbulence in an expanding box [45], in which
anomalous scattering was associated with firehose fluctua-
tions. Understanding such distribution functions requires
careful examination of the particle-energy dependence of
the effective collisionality, which falls beyond the scope of
this paper.
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