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Orbital degrees of freedom play an essential role in metals, semiconductors, and strongly confined
electronic systems. Experiments with ultracold atoms have used highly anisotropic confinement to explore
low-dimensional physics, but they typically eliminate orbital degrees of freedom by preparing atoms in the
motional ground states of the strongly confined directions. Here, we prepare multiband systems of spin-
polarized fermionic potassium (40K) in the quasi-one-dimensional (q1D) regime and quantify the strength
of atom-atom correlations using radio-frequency spectroscopy. The activation of orbital degrees of freedom
leads to a new phenomenon: a low-energy scattering channel that has even particle-exchange parity along
the q1D axis, as if the underlying interactions were s-wave. This emergent exchange symmetry is enabled
by orbital singlet wave functions in the strongly confined directions, which also confer high-momentum
components to low-energy q1D collisions. We measure both the q1D odd-wave and even-wave “contact”
parameters for the first time and compare them to theoretical predictions of one-dimensional many-body
models. The strength and spatial symmetry of interactions are tuned by a p-wave Feshbach resonance and
by transverse confinement strength. Near resonance, the even-wave contact approaches its theoretical
unitary value, whereas the maximum observed odd-wave contact remains several orders of magnitude
below its unitary limit. Low-energy scattering channels of multi-orbital systems, such as those found here,
may provide new routes for the exploration of universal many-body phenomena.
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I. INTRODUCTION

Strong confinement of many-body systems has proven to
be a fruitful approach for the creation of novel and
emergent quantum states. For instance, the confinement
of an electron gas in a two-dimensional quantum well
with a strong perpendicular magnetic field leads to the
manifestation of the integer and fractional quantum Hall
effects, which exhibit exceptional transport properties [1].
Similarly, relaxing the electron spin degrees of freedom can
result in the emergence of novel excitations such as
skyrmions [2,3]. In ultracold atomic gases, recent advances
in the manipulation of quantum gases in low dimensions
have led to similar progress. For instance, fractional spin
and charge degrees of freedom have been observed in

atomic gases under strong transverse confinement [4,5].
Moreover, confinement-induced resonances [6] can be used
to change the interaction between atoms, providing a
platform to investigate many-body physics in a disorder-
free environment [7].
In studies with cold atoms, research has typically focused

on regimes where transverse excitations along the strong
confinement directions are irrelevant, with some exceptions,
such as Ref. [8]. For instance, in a highly elongated trap, it is
commonly assumed that the atoms occupy the lowest
transverse oscillator state, such that the only active degrees
of freedom are those along the weakly confined (axial)
direction. As a result, three-dimensional (3D) systems of
spin-polarized bosons and spin-half fermions under such
confinement have been successfully modeled as quasi-one-
dimensional (q1D) systems whose interactions are even-
wave, i.e., described by one-dimensional (1D) pair wave
functions that have exchange-even symmetry [6,9–15].
Here, we investigate the role of transverse orbital degrees

of freedom in a simplified setting: a spin-polarized Fermi
gas of 40K with p-wave interactions confined in a q1D
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geometry. By eliminating the spin degree of freedom, the
possibility of spin-singlet s-wave scattering is excluded, so
the role of orbital degrees of freedom is clearly exhibited.
Our work builds on prior studies of odd-wave interactions,
i.e., those described by 1D pair wave functions that
have exchange-odd symmetry. Experimental works with
low-dimensional p-wave systems have suppressed colli-
sions along the strongly confined directions [16–19]. Q1D
p-wave systems have been the subject of numerous
theoretical studies [20–33], including a proposal to enable
a p-wave halo dimer state [34,35] and to use strong
confinement to reduce the three-body recombination
loss [34,36] that plagues 3D p-wave gases [37–41].
In our experiment, we activate the orbital degrees of

freedom through the controlled population of the first
excited transverse band. We discover conditions under
which fermions interact through wave functions with even
particle-exchange symmetry for the q1D degree of freedom
along the axial direction. We explain how fermionic
symmetry is preserved by exchange-antisymmetric trans-
verse orbital states. The magnetic Feshbach resonance
used to tune p-wave interactions also adds an anisotropic
nature to scattering. This vector character determines the
magnetic-field values that can host emergent s-wave
resonances and can be used to unambiguously identify
the nature of the observed interactions.
We find clear signatures of interaction-induced correla-

tions between atoms through rf spectroscopy for both
odd- and even-wave scattering along the axial direction.
Experimental investigations are supplemented by a theo-
retical analysis that reexamines the two-body problem and
presents a unified treatment for arbitrary energies when
multiple transverse bands are relevant. This allows us to
describe emergent even-wave scattering on equal footing
with odd-wave scattering and to relate this to novel
correlations observed in rf spectroscopy. Specifically, we
relate the high-frequency limit of the rf transfer rate
between two internal spin states to the short-range corre-
lations between atoms through universal contact rela-
tions [42–57]. Our theoretical treatment delineates the
conditions under which the rf spin-flip rate is a measure
of the 1D contact parameter. Notably, the rf spectra match
true 1D scaling up to 2ω⊥, where ℏω⊥ is the single-particle
band gap. We extract the odd-wave contact parameter,
anticipated by Refs. [27–29,31,32], and also measure the
even-wave contact parameter [58–60]. A distinguishing
feature of the latter is a novel singular structure at 2ω⊥ that
is anticipated by our analysis.
Our work suggests that introducing energy-gapped

orbital degrees of freedom can be used more broadly to
engineer the low-energy exchange symmetry of few-body
and many-body systems. Our theoretical analysis provides
a framework for understanding how these novel, orbit-
dressed collision channels emerge from the one- to three-
dimensional crossover. Both the conceptual paradigm and

the measurement protocols introduced here could be
expanded to bosonic systems, spin mixtures, quasi-two-
dimensional systems, and alternative partial waves.
This paper is structured as follows. In Sec. II, we provide

an overview of the experimental protocol. In Sec. III, we
describe p-wave scattering in the presence of strong q1D
confinement and orbital degrees of freedom. Adapted to the
experimental scenario, our treatment identifies three scat-
tering continua with distinct pair wave functions. In
Sec. IV, we measure the q1D odd-wave correlation strength
and delineate the range of confinement strengths and
magnetic fields in which the contact parameter is governed
by the q1D odd-wave scattering length. We also demon-
strate that the maximum contact parameter remains 2 orders
of magnitude below its expected unitary value. In Sec. V,
we present three experimental investigations of emergent
s-wave interactions. The even-wave contact parameter
approaches its expected unitary value, and we estimate
that the inferred interaction strength is at least an order of
magnitude stronger than that of odd-wave interactions. We
conclude in Sec. VI with a summary of key findings and a
discussion of future prospects enabled by multi-orbital
scattering in low-dimensional systems.

II. EXPERIMENTAL PROTOCOL
AND SUMMARY OF OBSERVATIONS

Our ensemble of q1D systems is prepared as follows.
A bulk sample of 40K, spin polarized in the lowest hyper-
fine-Zeeman state jai, is confined in an optical trap and
cooled sympathetically with bosonic 87Rb. After the final
cooling stage, Ntot ¼ 7ð1Þ × 104 spin-polarized 40K atoms
at T ∼ 300 nK are loaded into a lattice of tubelike aniso-
tropic traps [see Fig. 1(a)]. The confinement along the x and
z directions is created by two orthogonal standing waves,
produced with retroreflected beams of light with wave-
length λL ¼ 760.6 nm.
In the deep-lattice limit where tunneling between adja-

cent tubes can be neglected, each lattice site is harmonic
near its minimum, with longitudinal oscillation frequency
ωy ≈ 2π × 400 Hz. The transverse confinement, in turn, is
set by the lattice depth VL, measured in units of the recoil
energy, ER ¼ h2=ð2mλ2LÞ ≈ h × 8.6 kHz, where m is the
atomic mass of 40K. With confinement in both transverse
directions set to VL ¼ 40ER, for instance, the transverse
oscillation frequency is ω⊥ ≈ 2π × 100 kHz. The trans-
formation of the 3D cloud into an array of q1D clouds
begins with a ramp of the lattice intensity, across a duration
tramp (typically 300 ms), to a modest depth, less than 10ER

[Fig. 1(b)(i)]. Tubes are then isolated with a more rapid
ramp to 40ð2ÞER. We use the loading model described in
Appendix F to estimate the final number of atoms and
temperature distribution in the tubes. For typical exper-
imental parameters, the peak number per tube is N ≈ 30
and T=TF ≈ 0.8, where TF is the 1D Fermi temperature.
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Band populations are measured using band-mapped
time-of-flight imaging. We adjust the chemical potential
of the gas by tuning the optical trap depth and thereby
optimizing for either ground-band loading or multiband
loading. For the latter, when the chemical potential of the
bulk gas is comparable to ER, some atoms are loaded into
the first excited state of each transverse direction since
loading at the band edge cannot be adiabatic [Fig. 1(b)(ii)].
The fraction of atoms loaded into the first excited state is
typically 15% in each direction.
To prepare for dedicated experiments measuring odd-

wave correlations without orbital excitations (Sec. IV), we
deplete the excited-band population using amplitude modu-
lation (AM). The power of both optical standing waves is
modulated for a time tAM at a frequency resonant with the
transition from the single-atom first-to-third excited bands
[see Fig. 1(b)(iii)]. Because of the anharmonicity of the
standing-wave confinement, this modulation is off-resonant
from the zero-to-two excitation, leaving the number of
atoms in the lowest band relatively unaffected. When
optimizing for ground-band loading, band mapping after
AM [Fig. 1(b)(iv)] indicates that the excited-band popula-
tion is reduced to approximately 5% in each lattice
direction. Lattice depth calibration is performed via AM
of the single-particle zero-to-two excitation, with 5%
uncertainty. Ensembles for even-wave correlation measure-
ments (Sec. V) are prepared without AM or with phase
modulation of the lattice to enhance population in the first
excited bands (Appendix E).

With either preparation, the q1D ensembles of atoms in
the lowest hyperfine-Zeeman state jai are long-lived and
weakly interacting. A p-wave Feshbach resonance [37–39]
exists in the bb collision channel, where jbi is the second-
lowest hyperfine Zeeman state, adiabatically connected to
the jF ¼ 9=2; mF ¼ −7=2i state at low magnetic field.
After setting the field B and lattice depth VL for a particular
measurement, interactions are snapped on by transferring
the atoms to the state jbi using a 40-μs-long rf pulse [see
Fig. 1(b)(v)].
After a hold time thold of typically 160 μs, a spectro-

scopic pulse of duration τ ¼ 120 μs is applied. The
frequency is offset ω above the single-particle jbi-to-jci
resonant frequency, where jci is the third-lowest hyperfine-
Zeeman state (assumed to be weakly interacting; see
Appendix C). The number of atoms transferred, Nc, is
assessed by state-sensitive imaging after time-of-flight
expansion, shown in Fig. 1(b)(vi). The spectroscopic pulse
has a Blackman envelope to minimize Fourier broadening,
such that the measured transfer rate Γ is given by Nc=τ
times a corrective envelope factor.
Figure 2 provides a side-by-side comparison of

correlations found with and without activated orbital
degrees of freedom. The normalized rf transfer rate Γ̃ ¼
EFΓ=ðℏπΩ2NtotÞ is shown versus lattice depth and mag-
netic field, where Ω is the Rabi frequency and EF is the
calculated Fermi energy of the central tube. As will be
discussed in Sec. III A, Γ is proportional to short-range
correlations, which are quantified by so-called contact

t

Time

(ii) (iv)

a

b

c

Spin flip Spectroscopy

thold

(v)

Nc

Nb

(vi)

L
a
tt
ic

e
 d

e
p
th

 

AM

tramp

(i)

b

rf
 a

m
p

lit
u

d
e

(iii)

AM

PositionL
a

tt
ic

e
 p

o
te

n
ti
a

l

0

1

2
3

(a)

z x

y
rf w

ire
s

B

L/2

g

(b)

y

X

FIG. 1. Experimental overview. (a) Array of q1D traps aligned in the vertical (y) direction created by two orthogonal standing waves of
light at wavelength λL. A static magnetic field B is oriented along z. Radio-frequency fields are generated by a pair of proximate
microfabricated conductors. (b) Experimental sequence, depicting the potential depth of the confining two-dimensional optical lattice
versus time. In part (i), we show that, following the creation of a degenerate Fermi gas, the optical standing waves are ramped on to
generate the array of q1D traps. The two-part ramp includes a slow increase (in tramp) to minimize heating followed by a fast jump to
isolate q1D ensembles. Part (ii) shows that, at this stage, time-of-flight band mapping typically indicates that the majority of atoms are in
the ground band (central dashed box), but some atoms are also loaded into the first excited band (lateral boxes). In part (iii), the lattice
depth is optionally modulated for tAM before being ramped to its full depth. The frequency is chosen to drive excited-band atoms
resonantly into the third excited band, from which they leave the trap. In part (iv), time-of-flight images confirm that AM reduces
population in the excited band. Part (v) shows that Feshbach-enhanced p-wave interactions are activated by a spin flip from jai to jbi.
After a time thold, the system is probed with a spectroscopic pulse at detuning ω. In part (vi), the fraction of atoms transferred from jbi to
jci by the spectroscopic rf pulse is measured with state-selective imaging.
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parameters [42–57] and have been the subject of prior
experimental studies in 3D for both s-wave and p-wave
systems [55,61–63] and in quasi-two-dimensional systems
with s-wave interactions [64,65].
Without active orbital degrees of freedom, atom-atom

correlations are found just above the odd-wave resonance
(By

0 as defined later) indicated by a solid line in Fig. 2(a). At
By
0, the q1D odd-wave scattering length ao is predicted to

diverge because of interactions along the longitudinal
direction. The observed normalized transfer rate Γ̃ is largest
at magnetic fields between By

0 and where ao ¼ −ð10kFÞ−1
(dashed line), where kF is the Fermi momentum in the
central tube. In Sec. IV, we show that the observed
correlations agree well with those expected from weakly
attractive odd-wave interactions.
Figure 2(b) displays the same quantities, but with orbital

degrees of freedom activated. The normalized rf transfer
rate Γ̃ now reveals that atom-atom correlations appear well
beyond the odd-wave parameter range (still bracketed by
the solid and dashed lines). In Sec. V, we provide a clear
assignment of these correlations to even-wave interactions
and compare their strength to that predicted by theory.

III. p-WAVE SCATTERING IN A
QUASI-ONE-DIMENSIONAL TRAP

Low-energy scattering in the q1D trap has been considered
previously for even-wave scattering [6,9–15] of both iden-
tical bosons and spinmixtures of fermions, aswell as for odd-
wave scattering [20–26,34,35] of identical fermions. These
treatments consider atoms to reside in the ground state
of the transverse confinement, such that higher-energy
orbital states are only relevant as closed channels. Our
experimental scenario requires a generalization that includes

the population of asymptotic states with transverse orbital
excitation. When these additional orbital states are hybrid-
ized with 3D p-wave dimer states, whose internuclear
separation is typically much smaller than the transverse
oscillator length, the new scattering resonances that emerge
include both even- and odd-wave q1D symmetries.
To obtain the effective scattering parameters in q1D, let

us first recall that the p-wave scattering amplitude in 3D,
f3D, is given by

−ðkf3DÞ−1 ¼ iþ ðV3Dk3Þ−1 þ ðkR3DÞ−1 þOðkÞ; ð1Þ

whereV3D andR3D > 0 are thep-wave scatteringvolume and
effective range, respectively, andℏk is the relativemomentum.
Near a p-wave Feshbach resonance, V3D is widely tuna-
ble [66–68], but the Wigner bound [69–71] constrains the
maximumvalue ofR3D to be on the order of the van derWaals
length, which is small compared to typical k−1 in the ultracold
regime. Thus, ðkR3DÞ−1 ≫ 1, and according to Eq. (1), it
remains numerically important for 3D p-wave resonant
scattering. In fact, it is crucial to include the effective-range
term inEq. (1) to describemanyphysical properties ofp-wave
Fermi gases appropriately [54,55,71–76].
Now, let us consider a Fermi gas of identical atoms,

such as 40K in a single hyperfine-Zeeman state, confined
in a highly anisotropic potential. The single-particle
Hamiltonian within a single tube is, neglecting anharmonic
corrections,

H0 ¼
1

2m
p2 þ 1

2
mðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ; ð2Þ

where p ¼ ðpx; py; pzÞ is the 3D momentum of the atom.
Quasi-one-dimensional confinement is achieved when the
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FIG. 2. Overview of observed correlations. The normalized rf transfer rate Γ̃, which is a measure of atom-atom correlation strength, is
indicated by color across a range of magnetic fields and optical lattice depths. The depth of the confining optical lattice, VL, is given in
units of the recoil energy ER ¼ h2=2mλ2L. The first peak in Γ̃ lies between the odd-wave resonance (indicated by a solid black line at By

0,
where a−1o ¼ 0 as discussed in Sec. III) and ðkFaoÞ−1 ¼ −10 (indicated by a black dashed line). Panel (a) shows that, without active
orbital degrees of freedom, atom-atom correlations are found only within this range. Panel (b) shows that, with multiband loading,
correlations beyond the odd-wave regime are found. We show that these additional correlations are due to even-wave interactions along
the q1D direction. The structure of Γ̃ðB; VLÞ is further explored in Figs. 5–8.
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transverse harmonic frequencies in the x and z directions
are much larger than in the y direction: fωx;ωzg ≫ ωy.
This allows a separation of energy scales, in which the
collision energy (determined by the 1D Fermi energy EF
at low temperature, T ≲ EF=kB) is much smaller than
the energy quanta of the transverse motion, namely,
EF ≪ fℏωx;ℏωzg. For a true 1D system of N ≫ 1 spinless
fermions, the Fermi energy is EF ¼ Nℏωy, so the condition
for q1D collisions is

Nλ ≪ 1; ð3Þ

where λ≡ ωy=ω⊥ is the trap aspect ratio, written in the
case of cylindrically symmetric confinement, ωx ¼
ωz ≡ ω⊥. For our typical confinement strength and atom
numbers (see Sec. II), Nλ ∼ 0.1, i.e., well within the q1D
regime.

A. Scattering in q1D regime

For noninteracting atoms of equal mass, the two-body
Schrödinger equation can be separated into center-of-
mass (c.m.) and relative (rel) motion, each described by a
Hamiltonian with the same form as Eq. (2) except for the
replacement of the mass m with the total mass 2m or the
reduced mass μ ¼ m=2, respectively [77–80]. In the limit
N ≫ 1, we can treat the relative momentum k along the
q1D axis (y) as continuous but retain the quantization of
the transverse motion. Note that ℏ has been set to unity
here and for the remainder of this subsection.
In the c.m. frame, setting ωx ¼ ωz ¼ ω⊥ and ωy ¼ 0, we

can write the two-body Hamiltonian as

H0;2b ¼
1

2μ
p2rel þ

1

2
μω2⊥ρ2; ð4Þ

where prel is the relative momentum and ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
(and ϕ below) are the standard cylindrical coordinates.
The noninteracting relative wave function can be charac-
terized conveniently by the principal quantum number
in the radial direction, N , and the azimuthal quantum
number m. Up to a normalization factor, the transverse
spatial wave functions of the noninteracting eigen-
states are

ΨN ;mðρ;ϕÞ ¼
eimϕρjmj

ajmjþ1
⊥

e
− ρ2

2a2⊥Ljmj
N ðρ2=a2⊥Þ; ð5Þ

where Ljmj
N ðxÞ is the generalized Laguerre polynomial and

a⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=μω⊥

p
is the radial oscillator length. Including

the kinetic energy in the 1D direction, k2=ð2μÞ, the energies
of the full jN ; m; ki states are EN ;m;k ¼ ðk2=2μÞ þ
ð2N þ jmj þ 1Þω⊥, which we also write in dimensionless
form as

Em ≡ Erel − ðjmj þ 1Þω⊥
2ω⊥

¼
�
ka⊥
2

�
2

; ð6Þ

where Erel is the total energy not including the c.m. motion
or c.m. confinement.
Now, let us include the interatomic interaction described

in detail in Appendix A. We assume for now that the
interaction is cylindrically symmetric, such that m remains
a good quantum number; the extension to anisotropic
interactions is discussed in Sec. III C. For an underlying
p-wave interaction, interacting eigenstates can be sorted
intom ¼ −1,m ¼ 0, andm ¼ þ1 and will, in general, be a
superposition of jN ; m; ki states with different N .
The symmetry of the asymptotic wave function along the

axial direction can be seen in the emergent 1D wave
functions, which are solely a function of y. For an incident
wave with momentum k in continuum N and with
symmetry m, the scattered wave component with quantum
numbers N 0 and m0 is given by

ψN 0;m0;kðyÞ ¼ δm0;m

�
δN 0;N eiky

þfðmÞ
N 0 e

− 2
a⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 0−Em−iε

p
jyj
�
y
jyj

�jmjþ1
�
; ð7Þ

where ε is an infinitesimal positive quantity. Here, fðmÞ
N 0 are

the scattering amplitudes into the N 0 radial state,

fð0ÞN 0 ¼ −iμkTo

and fð�1Þ
N 0 ¼ −iμ

a⊥
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 0 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 −N 0 þ iε

p Te; ð8Þ

parametrized by odd-wave and even-wave scattering
transition matrices (T-matrices) To and Te, which are
defined below.
For the m ¼ 0 sector, the two-body wave function is

exchange symmetric along the transverse direction,
as is evidenced by Eq. (5) under parity transformation
ϕ → ϕþ π. The overall exchange antisymmetry of the
two-body wave function then requires the axial wave
function to be antisymmetric under exchange, as is observed
in the scattered wave of Eq. (7). Thus, two particles undergo
odd-wave scattering along the q1D direction (also called 1D
p-wave scattering).
Consider the incident state jN ¼ 0; m ¼ 0; ki just above

the lowest noninteracting band energy, such that E0 ≪ 1.
The interacting wave function consists of all jN ; m ¼ 0; ki
states, starting with N ¼ 0, for which both atoms are in
the single-particle ground-state orbital of the transverse
confinement potential. From Eq. (7), we see that for
higher-energy states with N 0 > 0, the associated evanes-
cent scattering wave vanishes for jyj ≫ a⊥. Therefore,
only the component with N 0 ¼ 0 and m ¼ 0 survives
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asymptotically, a state that describes two particles in the
single-particle ground state of the transverse oscillator.
For the m ¼ 1 and m ¼ −1 sectors, the transverse wave

function is odd [see, again, Eq. (5) for ϕ → ϕþ π] such
that the scattering wave function is exchange symmetric
along y, the longitudinal direction [81,82]. Consider an
incoming state jN ¼ 0; m ¼ 1; ki, with collision energies
just above the lowest-energy m ¼ 1 band, such that
E1 ≪ 1. Similarly to the m ¼ 0 sector, we see from
Eq. (7) that all the N 0 > 0 components of the scattered
wave function decay at jyj ≫ a⊥. Therefore, the asymptotic
q1D wave function features a transverse component that is
characterized by N ¼ 0 and m ¼ 1. Similar arguments
hold for the m ¼ −1 sector.
The separation between the odd- and even-wave chan-

nels in the presence of interactions leads to two low-energy
scattering matrices. For m ¼ 0, and in the low-energy limit
[0 < E0 ¼ ðErel − ω⊥Þ=2ω⊥ ≪ 1], we find that the effec-
tive 1D scattering T matrix To is given by

T−1
o ¼ 2μ

2

�
1

ao
þ k2ro þ ik

�
; with

1

ao
¼ a2⊥

6

�
1

V3D
þ 2

R3Da2⊥

�
−

2

a⊥
ζð−1=2Þ

and ro ¼
a2⊥
6R3D

þ a⊥
4
ζð1=2Þ; ð9Þ

where ζðsÞ≡ ζðs; 1Þ is the Riemann zeta function, ao is
the 1D odd-wave scattering length, and ro > 0 is the 1D
odd-wave effective range. The key steps in our derivation
are described in Appendix A. These equations define the
effective 1D parameters for the odd-wave scattering ampli-
tude fo as

−f−1o ¼ 1 − iðaokÞ−1 − irokþOðk3Þ: ð10Þ

This result connects the strongly confined laboratory
scenario to a scattering theory with a true 1D form and
is consistent with previous calculations of p-wave scatter-
ing in strongly confined q1D systems [20–26,34]. Effective
scattering in the m ¼ 0 sector asymptotically resembles
that of a spinless Fermi gas in 1D.
Unitary odd-wave scattering, for which fo → −1,

extends across the range of collision momenta
jaoj−1 ≪ k ≪ r−1o . The effective range ro decreases with
stronger transverse confinement because it scales as
a2⊥=R3D and thus as ω−1⊥ . Experiments in this universal
regime have not yet been realized because a typical kFro is
of order unity; thus, the effective-range contribution must
be kept. The persistent relevance of r0 is due to the large
ratio between the (optical) confinement length scale and the
3D effective range: λL=R3D is approximately 300. We also
note that since the q1D approach uses a 3D interaction
model at short range, our treatment would break down for

a⊥ ≲ R3D. The question of universality is discussed further
in Sec. III D.
For atoms in the lowest even-wave scattering continuum,

i.e., N ¼ 0 and m ¼ �1, or equivalently 0 < E1 ¼
ðErel − 2ω⊥Þ=2ω⊥ ≪ 1, the even-wave T matrix Te in
the low-energy limit reduces to

T−1
e ¼ 2μ

2

�
−ae þ k2re þ

i
k

�
; with

ae ¼ −
a⊥
2

�
a3⊥
6V3D

þ 2a⊥
3R3D

þ ζð−1=2Þ þ ζð1=2Þ
�

and re ¼
a3⊥
16

�
4a⊥
3R3D

þ ζð1=2Þ þ ζð3=2Þ
�
; ð11Þ

where ae is the 1D even-wave scattering length and re > 0
is the 1D even-wave effective range. (See Table I for a
summary of scattering parameters.) This result is identical
to a 1D calculation with true s-wave interactions [6,9–15]
with the effective range re included. The corresponding 1D
even-wave scattering amplitude is

−f−1e ¼ 1þ iaek − irek3 þOðk5Þ: ð12Þ

Compared to the odd-wave effective range term in Eq. (9),
we see that the effective-range term, k3re here, is smaller
than kro by a factor of k2a2⊥, which must be small in the
q1D limit. As a result, both the resonant kjaej ≪ 1 and
zero-range k3re ≪ 1 limits are achieved at low energy, with
no necessary hierarchy between ae and re. At the largest
lattice depth in our experiments, k3Fre ∼ 0.1, which enables
q1D even-wave scattering to enter a universal regime in
which the effective range can be neglected.

B. RF spectrum

The T matrices (9) and (11) allow us to calculate the rf
line shape because, at high frequency, the rf spectrum is
related to the short-range correlations in the many-body
system. Our starting point is the relation between Γ and the
3D correlation strength [45,83]:

ΓðωÞ¼Ω2

4
Im i

Z
dteiðωþiεÞt

Z
d3R

Z
d3r

×

�
Ttψ̂

†
bψ̂c

�
Rþ1

2
r; t

�
ψ̂†
cψ̂b

�
R−

1

2
r;0

��
; ð13Þ

TABLE I. Summary of notation used to parametrize scattering
in this work.

Resonance type Scattering amplitude Scattering parameters

3D p-wave f3D V3D, R3D
1D odd-wave fo ao, ro
1D even-wave fe ae, re
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where Ω is the Rabi frequency, r and R are the relative and
center-of-mass positions, Tt is the time-ordering operator,
and ψ̂b and ψ̂c are the fermionic annihilation operators for a
fermion in hyperfine-Zeeman states jbi and jci, respec-
tively. Full expressions for the transfer rate are reported in
Appendix B. In the experimentally relevant regime, where
ω ≫ EF and ω < 4ω⊥,

Γð0ÞðωÞ ¼ Ω2Co

2

�
θðωÞ
ω3=2 þ

θðω − 2ω⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω − 2ω⊥

p
ω2

�
ð14Þ

and

Γð�1ÞðωÞ ¼ Ω2Cð�1Þ
e

2

�
θðωÞ
ω5=2 þ

2θðω − 2ω⊥Þ
ðω − 2ω⊥Þ1=2ω2

�
; ð15Þ

where Co is the 1D odd-wave contact, Cð�1Þ
e are the 1D

even-wave contacts, and θðxÞ is the Heaviside step func-
tion. In both expressions, the first term represents the
contribution from those continuum states that are below
the first orbital gap. The step function θðω − 2ω⊥Þ in the
second term indicates the opening of a new transverse band,
when the rf photon energy exceeds the energy difference
from the N ¼ 1 scattering continuum, thus making the
final scattering states within the new transverse band
available. Each continuum has a density of states that
scales as 1=

ffiffiffiffiffiffi
Em

p
, as is characteristic of a 1D system. This

gives rise to a cusplike ðω − 2ω⊥Þ1=2 dependence for Γð0Þ

and a singular dependence ðω − 2ω⊥Þ−1=2 for Γð�1ÞðωÞ.
The latter is observed experimentally; see Sec. V B.
As discussed in Appendix B, both Eqs. (14) and (15) are

constrained to match the odd-wave contact relation with a
characteristic ω−3=2 spin-flip rate for ω < 2ω⊥ [27],

lim
EF=ℏ≪ω<2ω⊥

Γð0ÞðωÞ ¼ Ω2

2

ffiffiffiffiffi
2μ

ℏ

r
Co

ω3=2 ; ð16Þ

and the even-wave contact relation with a leading ω−5=2

rate,

lim
EF=ℏ≪ω<2ω⊥

Γð�1ÞðωÞ ¼ Ω2

2

1ffiffiffiffiffiffiffiffi
2ℏμ

p Cð�1Þ
e

ω5=2 ; ð17Þ

where factors of ℏ have now been restored. These relations
will be used to find the contact parameters in the measured
spectra.

C. Anisotropic interactions

Our treatment so far has assumed isotropic 3D interactions
and radially symmetric trapping potentials. For the exper-
imental system, however, interactions are anisotropic: the 3D
xy dimer branch is split byΔEdd=h ∼ 100 kHz from the 3D z
dimer branch due to dipole-dipole interactions in 40K [84],

leading to direction-dependent scattering volumes Vi
3D

and effective ranges Ri
3D, where i ¼ x, y, or z [see

Fig. 1(a) for axis orientation]. Furthermore, the cylindrical
anisotropy can be tuned by adjusting the confinement
strength independently along the x and z axes, as depicted
by Fig. 3(a) in the case of ωz > ωx.
For broken cylindrical symmetry,N andm are no longer

good quantum numbers. Instead, we use nx and nz to index
quanta of relative motion in the Cartesian axes of confine-
ment [85] and write the states as jnx; nz; kirel. Even parity in
y occurs for odd nx þ nz, and vice versa. The exchange
antisymmetry of the j1x; 0zirel and j0x; 1zirel states can be
seen by decomposing them back into a single-particle basis.
Labeling the colliding particles A and B, a j1irel state with
no c.m. excitation is ðj1iAj0iB − j0iAj1iBÞ=

ffiffiffi
2

p
or, in other

words, a singletlike state in which two particles share a
single quantum of orbital excitation.
The emergence of q1D resonances is due to the hybridi-

zation of the 1D bands of scattering states with p-wave
dimers that are now labeled as x, y, and z dimers due to
dipole splitting [see Table II and Fig. 3(a)]. Because of the
symmetry of the 3D dimers, a selection rule arises regard-
ing the coupling to the scattering states. For example, the x
dimer has the short-range symmetry corresponding to the
spherical harmonic Y1x ∼ x=r. As a result, the x dimer can
only be hybridized with continuum states in the j1x; 0z; kirel
band above the threshold energy Ezp þ ℏωx, where Ezp is
the zero-point energy 1

2
ℏðωx þ ωzÞ. The magnetic field at

which this crossing occurs is labeled Bx
0 in Fig. 3(a). Similar

analyses also apply to the y and z scattering: the y dimer
enhances odd-wave scattering within the j0x; 0z; kirel band,
and the z dimer enhances even-wave scattering in the
j0x; 1z; kirel band (see Table II). The three distinct reso-
nances are shown in Fig. 3(a) and are labeled in order of
increasing magnetic field: By

0 (“zeroth”), Bx
0 (“first”), and

Bz
0 (“second”). The nature of the scattering state is

illustrated in Figs. 3(d)–3(f).
In the presence of anisotropic interactions, we still

calculate the q1D scattering parameters using Eqs. (9)
and (11), but we now replace V3D and R3D with the values
of Vi

3D and Ri
3D specific to the underlying 3D reso-

nance [68]. The low-energy scattering parameters in
Eqs. (9) and (11) can then be tuned by changing the 3D
scattering parameters in order to engineer arbitrarily strong
odd- or even-wave interactions.
In terms of the 3D quasi-bound-state energy [68,84],

approximately −ℏ2Ri
3D=ð2μVi

3DÞ, the resonance condition
a−1o ¼ 0 for odd-wave scattering is, from Eq. (10),

−
ℏ2Ry

3D

2μVy
3D

¼ Ezp

�
1 − 6

Ry
3D

a⊥
ζð−1=2Þ

�
; ð18Þ

while for even-wave scattering, the resonant conditions
(axe ¼ 0 or aze ¼ 0) are, from Eq. (12),
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−
ℏ2Rx;z

3D

2μVx;z
3D

¼ ðEzp þ ℏωx;zÞ

×

	
1þ 3

2

Rx;z
3D

a⊥
½ζð1=2Þ þ ζð−1=2Þ�



: ð19Þ

Since Ri
3D=a⊥ is typically small in our experiments, these

relations show that resonant odd- and even-wave scattering

occurs approximately when the 3D quasi-bound state
reaches the relevant scattering continuum, as depicted in
Fig. 3(a).
The interaction anisotropy is observed in radio-frequency

spectroscopy and thus the contact parameters. We note that
the odd-wave contact relation is only governed by the
interactions along the y direction, so Eq. (14) is not altered.
On the other hand, even-wave interactions now appear as x
and z correlation peaks at distinct magnetic-field values,
instead of the degenerate m ¼ �1 correlation peaks in
Eq. (15). Asymptotic rf transfer rates are now proportional
to Cx

e and Cz
e, respectively.

D. Width of the universal regime

The qualitative departure of even-wave scattering from
odd-wave scattering is illustrated from its energetic width,
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FIG. 3. Scattering resonances in q1D. (a) Asymptotic states jnx; nz; kirel with confinement energies of ðnx þ 1=2Þℏωx þ ðnz þ
1=2Þℏωz plus a continuum of ℏ2k2=2μ from motion along y. The three lowest continua, shown here, become strongly interacting when
magnetically tuned to resonance with an appropriate 3D p-wave dimer state (labeled x, y, and z). The resonant location for j1x; 0z; kirel
states (blue square at Bx

0) is at an energy shifted above the ground band by the transverse excitation energy ℏωx. The resonance for
j0x; 1z; kirel states (red square at Bz

0) is further displaced by the dipole-dipole splitting ΔEdd of the xy and z dimer states and any
cylindrical asymmetry for which the case ωz > ωx is shown. Corrections to this approximate picture are given by Eqs. (18) and (19).
(b) Effective 1D scattering cross section jfj2 at resonance versus q1D collision energy. The broader resonance for asymptotic states with
nx ¼ 1 or nz ¼ 1 states can be attributed to their even-wave character, as discussed in the text. (c) jfj2 versus magnetic field, for a typical
in-tube scattering energy of 10 kHz. (d) q1D odd-wave continuum characterized by a transverse wave function Ψrelðx; zÞ with even
spatial parity. A contour plot shows the jfoj2 versus magnetic field and collision energy. (e,f) q1D even-wave continua, each
characterized by an asymptotic transverse wave function Ψrelðx; zÞ with odd spatial parity. The contour plots of jfej2 versus magnetic
field and collision energy combine the trends of panels (b) and (c) and emphasize the growing magnetic width in the k → 0 limit that is
characteristic of s-wave collisions. Scattering amplitudes in panels (b)–(f) are based on Eq. (10) with parameters in Eq. (9), or Eq. (12)
with parameters in Eq. (11), with equal Vx

L ¼ Vz
L ¼ 40ER.

TABLE II. Exchange parity and spatial orientation of the two-
atom states in the lowest three scattering continua.

Continuum
Asymptotic

state
Transverse
parity

q1D
parity

Resonant
dimer

Zeroth j0x; 0z; kirel Even Odd y dimer
First j1x; 0z; kirel Odd Even x dimer
Second j0x; 1z; kirel Odd Even z dimer
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i.e., the scaling of elastic scattering versus momentum k of
the q1D collision. Figures 3(b)–3(f) show the scattering
probabilities jfoj2 and jfej2, as a function of both energy
and magnetic field. A key feature is the enhanced width, in
either parameter, of jfej2. Near resonance, the energy range
of unitary scattering is determined by the effective-range
term of Eqs. (10) and (12). For odd-wave interactions, this
energetic width can be characterized by Δo ≡ ðℏ2=2μÞr−2o ,
while for even-wave interactions, the energetic width is
Δe ≡ ðℏ2=2μÞr−2=3e . From Eqs. (9) and (11), we find that
Δo=Δe ¼ 182=3ðR3D=a⊥Þ4=3, which is small in experi-
ments. This behavior is illustrated in Fig. 3(b) on reso-
nance, which is a vertical cut at the resonant magnetic field
in the contour plots of jfo;ej2 seen in panels (d)–(f).
If ae is tuned to zero [for instance, at B ¼ Bz

0 defined by
Eq. (19)], then the unitary limit fe → −1 is achieved for
rek3 ≪ 1. The range of scattering energies in which this
occurs is given by ℏ2k2=2μ ≲ Δe. In terms of transverse
confinement strength, the leading-order width is [86]

Δe ≈ ℏω⊥ð3
ffiffiffi
2

p
R3D=a⊥Þ2=3: ð20Þ

Within a degenerate Fermi gas, the range of two-body
collision energies is 2EF. Scattering is unitary when the
energetic width Δe ≳ 2EF, or

Nλ≲ ð3R3D=2a⊥Þ2=3: ð21Þ

The rhs of Eq. (21) is around 0.2 for the confinement
strength typically used in low-dimensional quantum gas
experiments and thus poses a comparable constraint to the
q1D criterion Nλ ≪ 1. For the Nλ ∼ 0.1 conditions in our
experiments, resonant even-wave scattering is already
energetically broad [see Fig. 3(b)].
Elastic odd-wave collisions also have a zero-range limit.

A parallel argument finds that when jaoj−1 → 0, the
energetic width of the unitary regime (Δo ¼ ℏ2=2μr2o) is
Δo ≈ ℏω⊥ð18R2

3D=a
2⊥Þ to leading order [87]. Comparing

this width to 2EF, one finds that the confinement condition
for Δo ≳ 2EF is

Nλ≲ ð3R3D=a⊥Þ2: ð22Þ

The rhs of Eq. (22) is about 0.02 for our typical conditions;
thus, it is much more restrictive than the q1D criterion, and
it is not satisfied for our experiments.
The magnetic width of low-energy resonant scattering

reveals qualitatively different scaling in the odd- and
even-wave cases. From Eq. (10), at constant ao, as
k → 0, we see that jfoj2 → 0, and scattering is thus
progressively narrower in B at lower energy [Fig. 3(d)].
A similar analysis for Eq. (12), however, shows that
fe → −1 for a progressively broader range in B at lower
energy [Figs. 3(e) and 3(f)]. At a constant scattering energy,

both odd- and even-wave resonances become broader in
field with increasing confinement. However, the odd-wave
field width scales with the square root of the lattice depth,
while the even-wave field width scales linearly with lattice
depth. Therefore, confinement can lead to a significantly
broadened resonance for even-wave scattering, even though
the energetic width of the underlying 3D resonance is still
narrow [88].
In the zero-range limit identified here, the emergent

even-wave scattering channel has a solitary relevant
parameter that is tunable. This provides a regime in which
a spin-polarized Fermi gas can be considered universal.
Without the need for effective-range terms, its behavior
can be understood with models independent of the par-
ticular element used in experiments, similar to 3D fer-
mionic spin mixtures near an s-wave scattering resonance
or two-dimensional bosons near their noninteracting fixed
point [89,90].

IV. OBSERVATION OF ODD-WAVE
CORRELATIONS

We probe odd-wave interactions by performing rf
spectroscopy at magnetic fields near By

0 using the procedure
outlined in Sec. II. Figure 4 shows the dimensionless
transfer fraction Γ̃ðω̃Þ versus dimensionless rf detuning
ω̃≡ ℏω=EF, both rescaled by the calculated Fermi energy
of the central tube (see Appendix F). Correlations are
revealed by an asymmetric spectrum, i.e., spectral weight
that appears at a large positive ω but not at a large negative
ω of equal magnitude. The strength of correlations can be
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FIG. 4. RF spectrum of odd-wave interactions. The normalized
rf transfer rate Γ̃ versus dimensionless detuning ω̃ from the
single-particle resonance [see Fig. 1(b)(v)]. Two spectra are
shown, both for VL ¼ 40ER: at B ¼ 203.0 G (squares), the
gas is weakly interacting; at B ¼ 199.2 G (circles), odd-wave
interactions are Feshbach enhanced [−1=kFao ∼ 5; see Fig. 2(a)].
The interacting gas shows an increased Γ̃ for positive ω̃. The inset
shows Γ̃ðω̃Þ on the same axes, with a ω̃−3=2 fit to the high-
frequency tail of the interacting spectrum, allowing the determi-
nation of Co from Eq. (14). Error bars represent one standard
deviation.
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quantified through Eq. (16), in the range 4≲ ω̃≲ 15 (for
which ω < 2ω⊥), where we observed the characteristic
ω̃−3=2 power-law decrease. In the strongly interacting
regime, we fit the experimental data to extract Co, thereby
measuring the odd-wave correlations in a q1D ultracold
gas for the first time, to our knowledge. At magnetic
fields far from resonance, correlations are weak, and there
is no observable asymmetry, as can be seen in the inset
of Fig. 4.
Figure 5 shows the contact strength and atom number

measured across a range of magnetic fields and lattice
depths. The contact was measured using the transfer
fraction at a single frequency, typically ω̃ ¼ 5, which
fulfills the condition EF=ℏ ≪ ω < 2ω⊥ and selects the
first term of Eq. (14). Since we are optimizing for
ground-band loading, we can assume that Γð�1Þ ≪ Γð0Þ,

which allows for a single-shot determination of the
contact:

C̃o

N
¼ 4

ffiffiffi
2

p
πω̃3=2Γ̃; ð23Þ

where

C̃o ≡ 4m
ℏ2kF

Co ð24Þ

is the dimensionless odd-wave contact [91].
The observed value of C̃o=N is up to 2 × 10−2, with the

maximum near the q1D scattering resonance. In Figs. 5(b)
and 5(d), both atom loss and correlations shift to higher
magnetic field with increasing lattice depth, primarily due
to the increasing zero-point energy Ezp associated with
the transverse harmonic confinement. When comparing
Figs. 5(a) and 5(b), or comparing Fig. 5(c) and 5(d), we see
that field-dependent data collapse to a single curve when
plotted as a function of −1=kFao, indicating that we are
probing the physics in the q1D regime.
Consider first the weakly repulsive regime. No signifi-

cant correlations are seen in the range−20<−1=kFao<−2,
which can be understood from Fig. 3(a): the 3D quasibound
p-wave dimer has yet to emerge above the odd-wave
scattering threshold. Similar to the 3D p-wave case [55],
we conclude that the dimer state is not significantly
populated. For stronger repulsive interactions [92],
−5≲−1=kFao<0, a finite C̃o is observed; however, con-
currently with strong losses, which are perhaps due to the
instability of the repulsive odd-wave gas, its value
remains small.
Next, consider the regime with relatively weak attractive

interactions, 4≲ −1=kFao ≲ 15. In the absence of strong
loss, we can compare the measured values of Co to
equilibrium calculations: zero-temperature Bethe ansatz
theory [31] and a high-temperature expansion theory [32]
(Appendix D). These are shown in Fig. 5(a). The theory
band for the high-temperature expansion reflects the weak
1D effective-range dependence on lattice depth and
includes a correction for the inhomogeneous density and
tube number discussed in Appendix F. In this weakly
interacting regime, the measurements overlap with both the
zero-temperature and the high-temperature predictions,
with no adjustable parameters, and they follow the antici-
pated monotonic decrease with a−1o .
At higher magnetic fields, where −1=kFao ≳ 15, the

apparent contact deviates from these predictions. We
attribute this departure to overlapping even-wave correla-
tions (see Sec. V), due to a remaining population in the
excited bands, such that Γ can no longer be associated
purely with Γð0Þ.
Finally, consider magnetic fields close to resonance

(B ∼ By
0), where we observe a smaller contact than is

anticipated by theory. The unitary high-temperature value
of the contact is C̃o=N ¼ 8=π in a uniform system [32]
while at zero temperature C̃o=N ¼ 4=π [27,29,93]. This far
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FIG. 5. Odd-wave contact and loss. (a) Contact per atom versus
odd-wave scattering length, −1=kFao. Per Eq. (23), the dimen-
sionless odd-wave contact per atom is related to the scaled
transfer from spectroscopy. The zero-temperature Bethe ansatz
prediction for kFro ¼ 1 is shown by the dashed-black line, and
the high-temperature prediction for T=TF ¼ 0.8 is shown as a
band covering the range of experimental lattice depths. (b) Inset:
same C̃o=N data versus magnetic field, emphasizing the data
collapse in (a). (c) Total atom number after the spectroscopy
sequence, as a fraction of initial atom number, shown as a
function of −1=kFao. In the gray-shaded parameter range, 30% or
more of the atoms are lost. The peak loss occurs at the calculated
a−1o ¼ 0. (d) Inset: atom-number data as a function of magnetic
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exceeds the highest C̃o=N observed. Instead, within the
range −2≲ −1=kFao ≲ 4, indicated in Fig. 5(c) with a gray
band, the contact per atom is decreased. This is attributed to
the onset of strong loss: we find that more than 30% of the
initial population is lost by the end of thold, from which we
infer a three-body loss coefficient L3 ≥ 10−5 cm2=s. As in
prior studies of atom loss in q1D Fermi gases [18,19], we
find that the loss rate is independent of lattice depth, as
indicated by the data collapse in Fig. 5(c).
Limited by losses, the system does not develop a contact

parameter larger than C̃o=N ∼ 2 × 10−2. We can interpret
this magnitude by estimating the odd-wave interaction
energy that would be found in an equilibrium cloud with
the same correlation strength and negligible effective range.
The adiabatic relation for 1D odd waves is [27]

∂F
∂ð−a−1o Þ ¼ Co; ð25Þ

where F is the free energy of the gas. Integrating under the
observed contact outside of the loss-dominated regime, we
find that between ð−kFaoÞ−1 ¼ 10 and ð−kFaoÞ−1 ¼ 4, the
interaction energy is ΔF ∼ −0.03N EF. Therefore, at least
in the conditions realized here, an odd-wave Fermi gas can
be stable only in the weakly interacting regime.

V. OBSERVATION OF EVEN-WAVE
CORRELATIONS

We now turn our attention to the features that appear
when multi-orbital loading is allowed, i.e., those features
appearing in Fig. 2(b) but not in Fig. 2(a). In order to test
the hypothesis that these spectral features are due to q1D
even-wave correlations and to elucidate their nature, we
undertake a sequence of experiments: spectroscopy with
variable asymmetric confinement (Sec. VA), spectroscopy
at variable frequency (Sec. V B), and spectroscopy with
variable coupling strength (Sec. V C). The sample prepa-
ration common to all these tests does not use AM (see
Sec. II and Appendix E), such that about 15% of the atoms
are in each of the transverse excited bands as measured by
band mapping.

A. Vector character of the even-wave resonances

The resonance condition for even-wave interactions is
given by Eq. (19), which, for our small value of R3D=a⊥,
can be approximated for the i ¼ x or i ¼ z continua as

−
ℏ2Ri

3D

2μVi
3D

����
B¼Bi

0

≈ Ezp þ ℏωi; ð26Þ

where the lhs is the 3D p-wave dimer energy, linear in B, as
shown in Fig. 3(a). The incorporation of an extra vibra-
tional excitation quantum (shared between the atoms in a
j1xirel or j1zirel motional state) shifts the even-wave

resonances from the odd-wave resonance condition,
which is

−
ℏ2Ry

3D

2μVy
3D

����
B¼By

0

≈ Ezp; ð27Þ

from Eq. (18). In the following, we investigate the
dependence of Bi

0 on ωi.
Figure 6(a) shows Γ̃ðBÞ at VL ¼ 40ER, a depth at which

three distinct peaks can be resolved in multiband loading.
To subtract the common shift from the zero-point energy,
we show the displacements of each peak (ΔB0th, ΔB1st, and
ΔB2nd) from By

0 [94]. Since Γ ¼ P
Γi, additional tests are

necessary to confirm the origin of these peaks.
The first peak also appears with a ground-band loading

procedure [as shown in Figs. 6(a) and 2(a)], so it can be
unambiguously associated with odd-wave interactions. As
shown in Fig. 5, the correlation peak is not at the resonance
location, due to strong loss near resonance. For the
parameters of Fig. 6, the magnetic-field location of the
peak correlation B0th is shifted about 0.2 G above By

0.
A vector assignment of these two higher peaks can be

made using unequal confinement, Vx
L ≠ Vz

L, whose antici-
pated effect on Bx

0 and Bz
0 is illustrated in Fig. 3(a) for

ωz > ωx. Figure 6(b) shows the best-fit peak displacements
ΔB0th, ΔB1st, and ΔB2nd from repeated Γ̃ðBÞ scans at
variable Vz

L, with fixed Vx
L ¼ 40ER. We see how ΔB1st is

insensitive to Vz
L (similarly to ΔB0th) while ΔB2nd has a

stronger dependence on Vz
L. Based on this trend, we can

conclude that the peak at B2nd must be associated with
confinement along the z direction, which would be
expected for the even-wave threshold Bz

0, where scattering
states hybridize with the 3D z dimer.
Cylindrical symmetry is broken in our experiments by

the applied magnetic-field direction (z) orthogonal to the
q1D direction (y). The field aligns the magnetic dipole
moments of 40K and thus splits the Feshbach resonances for
the two even-wave features (see Sec. III C). This 0.5-G
splitting is evident upon the comparison of B1st and B2nd at
equal lattice depth, which is Vz

L ¼ 40ER for Fig. 6.
A similar experimental study with variable Vx

L and fixed
Vz
L indicates that the peak at B1st is associated with

confinement along x. In summary, the vector character
and dependence on the lateral confinement is consistent
with the assignment of the correlation peak at B1st in Fig. 6
to the x even-wave continuum, and at B2nd to the z even-
wave continuum.

B. Spectroscopic signatures

The strongest evidence for the observation of even-wave
correlations in our system comes from the functional form
of the rf spectra. As discussed in Sec. III B, within the range
of frequencies ω < 2ω⊥, in which a q1D system resembles
a true 1D system, the rf transfer rate should scale as ω−5=2
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(as opposed to ω−3=2 found for odd-wave correlations in
Sec. IV). Furthermore, for larger rf frequencies, Γ̃ðωÞ
should exhibit a singularity at ω ¼ 2ω⊥: see Eq. (15).
The experimentally measured ΓðωÞ is a sum of all Γi, but it
will be dominated by only one Cartesian component near
its resonant magnetic field.
Figure 7 shows the rf spectrum observed at B ≈ B1st. For

frequencies between 0.7ω⊥ and 1.7ω⊥, we observe a clear

−5=2 power law consistentwith 1D s-wave correlations (see
Fig. 7 inset). In this region, it is possible to extract the 1D
even-wave contact parameters Cx;z

e . We note that once Cx
e

and Cz
e are fixed, the general form of Γ̃ðωÞ [Eq. (B2) and, in

particular, Eq. (15)] is then determined for higher frequen-
cies, no matter what the relative strengths of Cx

e and Cz
e are.

We do not understand why the −5=2 power law does not
extend to lower frequencies, below 0.7ω⊥=2π ∼ 90 kHz.
This may be due to incomplete equilibration of the long-
wavelength degrees of freedom [95–97].
A sharp peak in Γ̃ðωÞ appears, as anticipated, at twice the

band gap [98]. Here, atom pairs are promoted from incident
states with principal radial quantum numberN ¼ 0 to final
states withN ¼ 1 and hyperfine-Zeeman state jci. Since rf
transitions cannot modify the spatial wave functions, the
presence of the feature demonstrates that the scattering
states are dressed by higher-N orbital states at short range,
i.e., y≲ a⊥ in Eq. (7). The singular feature in the theory
results from a combination of two factors: the divergence of
the 1D density of final states (see Sec. III B) and the
k-independent even-wave matrix element [see the jmj ¼ 1
term of Eq. (A1)]. As observed, the 2ω⊥ singularity is
softened by the distributions of a finite range of collision
energies, the average over variable lattice depths of 1D
tubes, and the Fourier broadening of the rf pulse.
The observation of these two even-wave signatures in

ΓðωÞ gives strong evidence for the emergence of effective
s-wave correlations in the q1D gas.
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FIG. 6. Vector assignment of the second even-wave correlation
peak. (a) Normalized rf transfer rate Γ̃ at constant ω̃ ≈ 5 versus
magnetic fieldB applied in the z direction. Three peaks in Γ̃ðBÞ are
resolved for multiband loading (circles), while a single clear peak
is observed for ground-band loading (squares). Here, confinement
is cylindrically symmetric, with Vx

L ¼ Vz
L ¼ 40ER. The mag-

netic-field displacements from the resonance position By
0 are

indicated for maximum Γ̃ by colored arrows and reported as
ΔB in the subsequent panel. Error bars in panel (a) represent one
standard deviation. (b) Magnetic-field displacements for the three
peaks in Γ̃ðBÞ shown for variable Vz

L, with fixed Vx
L ¼ 40ER.

WhileB0th andB1st shift with the zero-point energy included inB
y
0,

B2nd has a stronger dependence on Vz
L. This trend supports the

hypothesis that the third resolved peak in Γ̃versusB corresponds to
scattering in the z continuum, whose energy is ℏωz above the odd-
wave continuum. This coincides with the resonance condition for
even-wave scattering, Eq. (26); more direct evidence of even-wave
character is given in Sec. V B. Best-fit peak centers in panel (b) are
calculated by fitting to three Gaussians with the Monte Carlo
Bootstrap method, and the asymmetric error bars represent
67% confidence intervals.
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with VL ¼ 80ER. Between 0.7ω⊥ and 1.7ω⊥, the signature even-
wave scaling Γ̃ ∝ ω−5=2 is observed [see Eq. (B5)]. The solid
lines show Eq. (15), with a free vertical scale factor. The
singularity in the transfer rate (a unique signature of 1D even
waves) manifests as a peak near ω ≈ 2ω⊥, as described in the
main text. The inset shows Γ̃ðωÞ on a linear vertical scale in
the ω−5=2 regime; a single-parameter fit determines the sum of the
even-wave contacts. For these conditions, kFaze ≈ 0.4, compared
to kFaxe ≈ 1.6, so scattering is dominated by the j0x; 1z; kirel
states. Error bars here represent one standard deviation.
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C. Even-wave contact parameter

The correlations appearing in Fig. 2(b) across a broad
range in magnetic field can now be quantified through the
even-wave contact. At each magnetic field, the even-wave
contactsCx;z

e can be probed with a single-shot measurement
of Γ at a fixed detuning with the range 0.7ω⊥ ≲ ω≲ 1.7ω⊥,
as discussed in Sec. V B. In the regime where Γð0Þ ≪ Γðx;zÞ,
we find

C̃x
e þ C̃z

e ¼ 2
ffiffiffi
2

p
πNω̃5=2Γ̃; ð28Þ

where

C̃x;z
e ≡ 4m

ℏ2k3F
Cx;z
e ð29Þ

is the dimensionless even-wave contact. Since only about
15% of atoms populate each transverse excited band, we
base kF on the total atom number, just as in the odd-wave
case. We show in Appendix E that rf transfer is proportional
to the excited-band population, motivating us to report the
contact divided by the number of atoms in one single-
particle motional excited band N1, which we assume to be
equal for both the x and z directions. In Fig. 8, we report
C̃e=N1 for various interaction strengths, tuning the scatter-
ing length aze across a range of 200G to 205G, away from
the odd-wave feature. We observe data collapse between
different lattice depths and single-shot detunings ω ∼ ω⊥
chosen to be within the −5=2 power-law regime described
in Sec. V B.
For kFaze ≳ 2.5, the observed trend matches that of a

high-temperature model (Appendix D) that maps the
imbalanced band mixture in our system onto a spin mixture
with true 1D s-wave interactions. For the large lattice
depths in Fig. 8, the distinct even-wave resonances overlap
[see Fig. 2(b)], and the slightly larger axe is shown on the
upper axis of Fig. 8. Both experiment and theory include
both x and z even-wave interactions. However, in the region
of interest, correlations are dominated by even-wave z
pairing, as indicated by the agreement with a solid line that
shows C̃z

e=N1 alone.
For 0 ≤ kFaze ≲ 2, the observed C̃e=N1 plateaus to

0.5(1). The expected near-unitary contact can be estimated
using a zero-temperature theory [60] developed for 1D
s-wave spin mixtures, again using a mapping of imbal-
anced band populations to imbalanced spin populations in
the model. In the homogeneous case, we find C̃z

e=N1 ≈ 1.0,
on the same order of magnitude as the observed value. A
full description of the unitary regime would need to include
loss [see inset of Fig. 8], inhomogeneity, and the contri-
bution of Cx

e. The contrast with the q1D odd-wave case,
where the observed contact is at most 10−2 of the unitary
value, is already striking.

We can interpret the strength of the observed contact
using the adiabatic relation from 1D s-waves [59]:

∂F
∂aze

¼ Cz
e: ð30Þ

Assuming thermal equilibrium, the interaction energy is
then found by integrating under the observed contact, which
contains contributions from both x and z resonances but is
dominated by C̃z

e. As a lower estimate for the total interaction
energy, we find that between kFaze ¼ 5 and kFaze ¼ 2, it is
around ΔF ∼ −0.2N1EF, whereas integrating between
kFaze ¼ 5 and kFaze ¼ 0, we find ΔF ∼ −0.7N1EF. The
q1D even-wave gas is thus strongly interacting, with an
attractive energy that is at least an order of magnitude larger
than is observed in the low-loss range of the odd-wave
interactions.

Scattering length  k  aF e
z

80 ER

120 ER

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0 2 4 6
0.6

0.8

1.0

A
to

m
n
o
.
(a

rb
.)

C
  

/N
e

1
C

o
n
ta

c
t

0.8
2 3 4 5 6 7

Scattering length  k  aF e
x

3 5 7

FIG. 8. Even-wave correlations. The even-wave contact C̃e ¼
C̃x
e þ C̃z

e normalized by N1 is plotted versus even-wave scattering
lengths aze (bottom) and axe (top). The scattering lengths ae are
tuned by the magnetic field across a range of 200 G to 205 G and
scaled by the calculated kF of the central tube. Single-shot
measurements of Ce use Eq. (28), repeated here for two different
single-shot detunings: ω=2π ¼ 100 kHz (squares) and ω=2π ¼
125 kHz (diamonds). Two lattice depths are shown: red
and blue points are 80ER and 120ER, respectively. The shaded
purple band gives a high-temperature expansion prediction for
C̃x
e=N1 þ C̃z

e=N1, from Eq. (D5), with no fit parameters. The
width of the band reflects one standard deviation of systematic
uncertainties (atom number and band-population fractions) and
the variation of effective-range contributions. Both experiment
and theory include both x and z even-wave interactions. However,
in the region of interest, correlations are dominated by even-wave
z pairing: a solid line shows C̃z

e=N1 alone. The inset shows the
relative atom number after spectroscopy, for the same ranges of
kFaze (bottom) and kFaxe (top). Error bars represent one standard
deviation.

EMERGENT s-WAVE INTERACTIONS BETWEEN IDENTICAL … PHYS. REV. X 13, 021013 (2023)

021013-13



We can understand the enhanced strength of q1D even-
wave interactions through the proportionality of p-wave
coupling to momentum, as indicated by Eq. (A1). For odd
waves, the relevant momentum that leads to a finite
interaction is in the y direction, along the tube. For even
waves, p-wave coupling is achieved through the transverse
gradient in the spatial wave function, which is proportional
to a−1⊥ [see Eq. (A2)]. For a typical momentum kF, the ratio
of even- to odd-wave coupling is thus 2=a2⊥k2F, which is of
order 1=Nλ, and thus necessarily large in the q1D regime.

VI. DISCUSSION AND CONCLUSION

The extension of low-dimensional systems to include
multi-orbital scattering opens the door to several new
prospects. We have shown that one result is the emergence
of q1D even-wave interactions in a spin-polarized Fermi
gas. The range of many-body physics accessible with this
new interaction channel will be constrained by atom loss,
including the three-body recombination. Odd-wave atom
loss processes have been studied both theoretically [36] and
experimentally [18,19]; similar studies in the q1D even-
wave scenario, which also address band relaxation, are
needed.
Future work could also include a more detailed under-

standing of rf spectra, as shown in Figs. 4 and 7, especially
the low-frequency deviations from the high-frequency
power law. In this regime, the subleading contacts, con-
jugate to ro for odd waves [32] and re for even waves, are
expected to appear as additional higher-order power-law
contributions to the rf spectral function Γ.
A shallow q1D dimer state lies below threshold both in

the repulsive ao > 0 gas and in the attractive ae > 0 gas
probed in our experiment. Searching for these dimer states
and characterizing their stability would further examine the
paradigm of an emergent q1D symmetry. In the even-wave
case, the binding energy is expected to be large even near
resonance.
Another prospect is to search for emergent s-waves in

quasi-two-dimensional (q2D) ensembles of identical fer-
mions. A similar mechanism would apply: that antisym-
metric orbital wave functions in a strong confinement
direction would enable exchange-even collisional wave
functions in the low-energy q2D degrees of freedom. In
either q1D or q2D, a study of the universal dynamics and
thermodynamics would be an interesting comparison to
true s-wave systems.
Using a multichannel framework, new universal contact

relations should be found to clarify, for instance, the corre-
spondence to the closed-channel fraction. Qualitatively, a
q1D (or q2D) polarized gas with emergent s-wave inter-
actions is expected to be similar to a spin mixture with true
s-wave interactions.However, for systems such asmetastable
helium [99,100] or dipolar gases with strong spin-orbit
relaxation [101], spin polarization is necessary for collisional
stability. For fermionic isotopes in these systems, emergent

s-wave interactions in the quasi-low-dimensional regime
could provide a new pathway to low-energy universality.
The paradigm introduced here can be extended to higher

partial waves. For example, it could be used to study
bosons with d-wave interactions [102–104]. The d-wave
generalization of Eq. (A2) would havem ¼ 0, jmj ¼ 1, and
jmj ¼ 2 components. The jmj ¼ 1 matrix element would
be proportional to kk0=a4⊥ and would enable odd-wave
scattering, i.e., emergent q1D p-wave interactions between
identical bosons, which is forbidden by exchange sym-
metry in true 1D systems. The even-m matrix elements
would be proportional to 1=a6⊥, which is in contrast to free
space, where low-energy d-wave scattering is suppressed at
low k. Analogous to the emergent q1D s-wave observed
here, strong confinement enhances coupling by the high
momentum of the confined wave function.
In summary, our study provides a comprehensive under-

standing of the behavior of quasi-one-dimensional fer-
mions interacting with short-range p-wave interactions.
Our observations and analyses reveal that multi-orbital
scattering in strongly confined systems opens the door to
the exploration of alternate exchange symmetries in low-
energy scattering channels. The energy dependence of
higher partial-wave scattering is dominated by the inter-
orbital gap, which offers a new approach to suppressing
finite-range corrections and studying universal many-body
phenomena. Our work indicates the potential of cold-atom
experiments with fully activated orbital, spin, and mass
degrees of freedom, whose interplay gives rise to a wealth
of phenomena in electronic materials.
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APPENDIX A: q1D LIMIT
OF p-WAVE SCATTERING

To incorporate the correct momentum dependence of
p-wave scattering, a model interatomic pseudopotential
Uðy; ρÞ can be written in the following way. Given two
arbitrary two-body states ϕ and χ, the matrix element
of U is

hϕjUjχi ¼ g∇ϕ�ð0Þ · ∇χð0Þ; ðA1Þ

evaluated at zero separation between the two fermions,
where g is a coupling constant [21,25,105–107]. We note
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that the potential, as written, is isotropic. In the q1D regime,
the relevant two-particle states are denoted as jN ; m; ki,
and the matrix elements of U are

hN 0; m0; k0jUjN ; m; ki
¼ g

πa2⊥
kk0δm;0δm;m0

þ 2g
πa4⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 0 þ 1

p
δjmj;1δm;m0 ; ðA2Þ

where ℏ and atomic mass factors have been suppressed.
Since the relative wave function vanishes as ΨN ;m ∝ ρjmj,
this pseudopotential only has nonzero matrix elements for
jmj ≤ 1. The structure of Eq. (A2) is as follows. The first
term on the rhs corresponds to m ¼ 0, where the gradient
operator acts along the y direction (parallel to k and k0).
This produces the correct form factor for odd-wave
scattering in the q1D direction, kk0. As a result, it inherits
the low-momentum behavior of the 3D p-wave scattering
and vanishes at low energy. On the other hand, the second
term corresponds to the gradient operator acting along the
transverse directions and, as such, requires antisymmetric
radial wave functions (m ¼ �1) to give rise to a non-
vanishing matrix element. This term is proportional to a
constant at low k and k0, which is a hallmark of s-wave
scattering.
The matrix elements in Eq. (A2) carry forward to a

similar structure for the low-energy T matrix in the q1D
geometry, which we take to have the following form:

hN 0;m0; k0jTq1DjN ;m; ki

¼ kk0

πa2⊥
Tð0Þ
q1DðErelÞδm;0δm;m0

þ 2

πa4⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 0 þ 1

p
TðmÞ
q1DðErelÞδjmj;1δm;m0 ; ðA3Þ

where TðmÞ
q1D is the T matrix in the q1D geometry with

relative angular momentum m. To evaluate TðmÞ
q1D, we make

use of its relation to the free-space T matrix, T3D [10]:

TðmÞ
q1DðErelÞ
¼TðmÞ

3D ðErelÞ
þTðmÞ

3D ðErelÞ½GðmÞ
q1DðErelÞ−GðmÞ

3D ðErelÞ�TðmÞ
q1DðErelÞ; ðA4Þ

where GðmÞ
q1D and GðmÞ

3D are the propagators in the q1D
geometry and 3D free space, respectively, with definite
angular momentum m, and T3D ¼ −ð2π=μk2Þf3D.
Equation (A4) can be evaluated analytically for both the

odd-wave (m ¼ 0) and even-wave (m ¼ �1) sectors with
respective solutions given by

T−1
o ≡

�
1

πa2⊥
Tð0Þ
q1DðErelÞ

�
−1

¼ 2μ

2

�
a2⊥
6

�
1

V3D
þ 2μErel

R3D

�
−

2

a⊥
ζ

�
−
1

2
;−E0 − iε

��
;

ðA5Þ

T−1
e ≡

�
2

πa4⊥
Tð�1Þ
q1D ðErelÞ

�
−1

¼ 2μ

2

�
a4⊥
12

�
1

V3D
þ 2μErel

R3D

�
þ a⊥

2
ζ

�
−
1

2
;−E1 − iε

�

þ a⊥
2

Erel

2ω⊥
ζ

�
1

2
;−E1 − iε

��
: ðA6Þ

Here, ζðs; xÞ is the Hurwitz zeta function, ε is an
infinitesimally small positive quantity, and Em ¼
½Erel − ðjmj þ 1Þω⊥�=2ω⊥ ¼ ðka⊥=2Þ2. We have also
defined the appropriate renormalized q1D scattering T
matrices To (odd wave) and Te (even wave) that have a
direct correspondence with scattering T matrices in true 1D
systems.
The resonance condition for q1D scattering is a−1o ¼ 0

for the odd-wave case or ae ¼ 0 for the even-wave case. In
the low-energy regime Em ≪ 1, the bound-state energies
for the odd-wave and even-wave sectors are given by

EB;o ¼ ω⊥ −
κ2o
2μ

with κo ¼
1

ao
− κ2oro ðA7Þ

and

EB;e ¼ 2ω⊥ −
κ2e
2μ

with
1

κe
¼ ae þ κ2ere; ðA8Þ

where κo > 0 and κe > 0 are the odd-wave and even-wave
bound-state wave numbers, respectively. The binding
energies are consistent with true 1D calculations in the
shallow-dimer limit (κa⊥ ≪ 1): for repulsive odd waves,
ao > 0, ω⊥ − EB;o ≈ 1=ð2μa2oÞ, and for attractive even
waves, ae > 0, 2ω⊥ − EB;e ≈ 1=ð2μa2eÞ.

APPENDIX B: RF SPECTRAL
FORM IN THE q1D REGIME

Here, we derive the analytic expressions for the rf
transition rate ΓðωÞ at high frequency, taking into account
the multiple transverse excited bands. From standard
arguments [108], the dominant contribution to the rf
transfer rate at high frequencies is determined by the
short-range part of the many-body wave function, which
is essentially the same as the two-body case at zero energy,
apart from a normalization constant (which we will
introduce as γ0 or γ1 momentarily) that depends on the
many-body physics. Since we have evaluated the two-body
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T matrix exactly for cylindrically symmetric q1D scattering
in Sec. III A, we can evaluate Eq. (13) in the high-
frequency limit [45,83], which gives the exact functional
dependencies of ΓðωÞ apart from overall constants that
characterize the many-body states. We find that the rf
transfer rate can be written as ΓðωÞ ¼ Pþ1

m¼−1 ΓðmÞðωÞ,
with

Γð0ÞðωÞ ¼ γ0
Ω2

8π

ð2ω⊥Þ3=2
ω2

×
X∞
N¼0

�
ω

2ω⊥
−N

�
1=2

θ

�
ω

2ω⊥
−N

�
ðB1Þ

and

Γð�1ÞðωÞ ¼ γ1
Ω2

8π

ð2ω⊥Þ3=2
ω2

×
X∞
N¼0

ðN þ 1Þ
�

ω

2ω⊥
−N

�
−1=2

θ

�
ω

2ω⊥
−N

�
:

ðB2Þ

Equations (B1) and (B2) are valid for large positive
detuning ω ≫ EF. For both Γð0ÞðωÞ and Γð�1ÞðωÞ, the
sum over N represents the contributions from all radially
excited states. The physical interpretation of this expression
is similar to Eqs. (14) and (15) given in the main text but
now generalized: the step function θðω=2ω⊥ −N Þ indi-
cates the opening of the transverse band for which the rf
photon energy exceeds the energy difference to the N th
scattering continuum.
This calculation clarifies the condition in which true-1D

scaling in the rf spectrum is observed. Specifically, the
1D odd- and even-wave contact relations apply when
jωj < 2ω⊥, a regime in which only the continuum states
with N ¼ 0 are relevant. In this case,

Γð0ÞðωÞ ¼ γ0Ω2
2ω⊥
8π

1

ω3=2 ; ðB3Þ

Γð�1ÞðωÞ ¼ γ1Ω2
ð2ω⊥Þ2
8π

1

ω5=2 : ðB4Þ

These two relations should be identified with the expres-
sions for ΓðωÞ from the exact 1D odd-wave [27] and even-
wave scattering calculations:

Γð0ÞðωÞ ¼ Ω2

2ω3=2 Co and Γð�1ÞðωÞ ¼ Ω2

2ω5=2 Ce; ðB5Þ

where Co and Ce are the 1D odd-wave and even-wave
contacts, respectively. We thus identify γ0 and γ1 as

γ0 ¼
4π

2ω⊥
Co and γ1 ¼

4π

ð2ω⊥Þ2
Ce: ðB6Þ

Using these relations in Eqs. (B1) and (B2), we obtain the
limiting forms in Eqs. (14)–(17) in the main text, which are
relevant to q1D physics. However, in the limit ω → ∞,
increasingly shorter length scales are probed as the con-
tinuum final states of higher transverse bands are made
available, eventually approaching the 3D limit; this behav-
ior is also present in Eqs. (B1) and (B2). Replacing the sum
over transverse radial states with an integral, one repro-
duces the correct leading-order ω−1=2 rf spectral law for a
p-wave Fermi gas in 3D. A related discussion of the q1D
momentum distribution is presented in Ref. [109].

APPENDIX C: FINAL-STATE EFFECTS
IN EVEN-WAVE SPECTROSCOPY

The ideal scenario of rf spin-flip spectroscopy is that an
atom is transferred from an interacting state to a non-
interacting state. This is a good approximation when
interactions in the initial spin state are near resonant,
and the final states at the same magnetic field are far from
resonance. In the situation probed in our experiments,
atoms are spin flipped from jbi to jci, so bb p-wave
interactions should be large compared to bc p-wave
interactions. Coupled-channel calculations indicate that
the z-dimer bc p-wave Feshbach resonance is located at
B0 ¼ 217.12 G, with a scattering volume that can be
parametrized as VbcðBÞ=Vbg ¼ 1 − Δ=ðB − B0Þ, with
Vbg ¼ ð−107.95a0Þ3 and Δ ¼ −8.98 G, where a0 is the
Bohr radius. This yields a zero crossing near 208 G, such
that Vbc is below its background value in the range of
fields across which we measure q1D contacts, typically
200 G–205 G, and can hence be considered as weakly
interacting in this regime.
For even-wave spectroscopy, adding final-state effects to

Eq. (17), the relation between Γ and Ce is

lim
ω→∞

ΓðωÞ ¼ Ω2

2
ffiffiffiffiffiffiffi
ℏm

p Ce

ω5=2

ðae − a0e −mωðre − r0eÞ=ℏÞ2
ðmωr0e=ℏ − a0eÞ2 þ ðmω=ℏÞ−1 ;

ðC1Þ

where a0e and r0e are the 1D scattering parameters for the bc
channel. Equation (C1) predicts a deviation of ΓðωÞ from
its asymptotic form; however, within the range of frequency
and scattering parameters relevant to the experiment, it does
not explain the deviation of the even-wave rf spectrum from
the −5=2 scaling shown in Fig. 7.
In our regime of interest, Eq. (C1) can be approxi-

mated as

lim
ω→∞

ΓðωÞ ¼ Ω2

2
ffiffiffiffiffiffiffi
ℏm

p Ce

ω5=2

ðae − a0eÞ2
a0e2

: ðC2Þ
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This allows us to bound the final-state effects to corrections
between 0.90 and 1.05 using Vbc and a typical value of R3D
in the field and depth range used in Fig. 8. Since this is less
than the scatter of the experimental data, we can safely
neglect final-state effects.

APPENDIX D: HIGH-TEMPERATURE
EXPANSION FOR THE

ODD- AND EVEN-WAVE CONTACTS

In the high-temperature regime of small fugacity, z ≪ 1,
analytic forms of the many-body contact can be found from
a virial expansion [32,110–113]. Although we explore
systems with T comparable to TF, the high-temperature
approximation provides a qualitative comparison between
theory and experiment with no adjustable parameters. Here,
we consider a homogeneous 1D system with length L,
uniform density n, and total number N ¼ Ln. For com-
parison to experimental data, we use a correction for
inhomogeneity as described in Appendix F.

1. Odd-wave contact

The high-temperature calculation of the odd-wave con-
tact comes from a two-channel model of interacting atoms
and closed-channel molecules [32]. For weak attractive
interactions jaoj=ΛT ≪ 1 and ao < 0,

Co ¼
2πℏ2Nna2o

mΛ2
T

�
1 − 6π

aoro
Λ2
T

�
; ðD1Þ

where ΛT ¼ ð2πℏ2β=mÞ1=2 is the single-particle thermal de
Broglie wavelength. As assumed in Appendix F, the contact
is Nn times a function of T, ao, and ro. A convenient form
uses kF and EF of the central tube as reference values:

Co

N
¼ ℏ2k3FT̃a

2
o

2πm

�
1þ 3

2
k2FroaoT̃

�
; ðD2Þ

where we have used Λ−2
T ¼ T̃k2F=4π and kF ¼ πn.

2. Even-wave contact

The calculation technique for the even-wave contact
follows the high-temperature treatment for odd waves [32],
i.e., using a two-channel model of spin-half fermions
coupled to closed-channel molecules to evaluate the con-
tacts for arbitrary interaction strengths. To model the
anisotropic nature of the interactions and the trapping
potential, we assume that the x and z resonances are
independent 1D systems. The expression for the contact
Cx;z
e has a contribution from the scattering continuum

(Cejat) and a contribution from the two-body bound state
(Cejmol). Omitting the direction label ðx; zÞ, these two
terms are

Cejat ¼ N1np0

Z
∞

0

du
2π−1=2u1=2e−u

mu
ℏ2 ðae − mu

ℏ2β reÞ2 þ β
; ðD3Þ

where the integration variable is dimensionless, p0 ≡
N0=ðN0 þ N1Þ is the population fraction of ground-band
atoms, and

Cejmol ≈ N1np0

ℏ2

m

ffiffiffi
2

p
ΛTθðaeÞ

re þ jaej3=2
eβℏ

2=ðma2eÞ; ðD4Þ

where θðÞ is the Heaviside step function. Note that in
Eq. (D4), we use the shallow-dimer limit instead of the full
Eq. (A8), which is a good approximation in the kFae > 2
range for which the high-temperature Ce is considered in
Fig. 8. Just like the odd-wave case, the even-wave contact is
a function of Nn but now multiplied by the fraction in
each band.
Scaling by kF and EF of the central tube, the sum of

these contributions is

Ce

N1

¼ 2p0ℏ2k3F
π3=2m

	 ffiffiffi
2

p
πe2=ðk2Fa2eT̃Þ

k3Fre þ jkFaej3=2
T̃−1=2

þ
Z

∞

0

du
u1=2e−u

uðkFae − uk3FreT̃=2Þ2 þ 2T̃−1



; ðD5Þ

which is plotted in Fig. 8. In the weakly interacting limit,
the even-wave contacts are given by

Ce

N1

≈
2p0ℏ2kF

πm
a−2e : ðD6Þ

In the resonantly interacting limit, the high-temperature
theory breaks down, as the binding energy proportional to
1=a2e quickly exceeds the temperature, invalidating the
high-temperature assumption.

APPENDIX E: RF SPECTROSCOPY WITH
VARIABLE BAND POPULATIONS

The odd- and even-wave contacts are extensive
quantities that are proportional to population in the relevant
bands at high temperature. We are able to manipulate
band populations with two types of lattice modulations—
amplitude modulation (AM) and frequency modulation
(FM). In this appendix, we show their effects on the
measured contacts.
Figure 9(a) illustrates AM and its primary effect on

band populations. Due to anharmonicity of the lattice, the
resonant frequency for transfer between the first and third
excited states is lower than for transfer between the
ground state and the second excited state. Since atoms in
the third band leave the trap, this process distills the
ground band.
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Phase modulation of the optical standing wave is imple-
mented experimentally by FM of the light, which creates a
time-dependent displacement of local potential minima
where atoms are trapped, due to the optical propagation to
the retroreflectingmirror and back. Figure 9(b) illustrates this
local position displacement of the lattice potential. Unlike
AM, phase modulation provides the necessary parity-break-
ing time-dependent gradient to transfer atoms from the
ground band to the first excited band.
The effects of AM on the odd- and even-wave contacts

are shown in Fig. 9(c). Here, circles and squares report Γ at
magnetic fields near the odd-wave and even-wave peaks,
respectively, proportional to the (extensive) contact. We see
that increasing AM strength has no noticeable trend in Γ at
the odd-wave peak, which is consistent with odd-wave
correlations being due to scattering between ground-band
atoms. At the even-wave peak, the decrease of Γ with AM
is also consistent with even-wave correlations being pro-
portional to the excited-band population.
Similarly, the effect of FM is shown in Fig. 9(d). Since

FM modulates atoms from the ground band to the excited
band, one might expect an equal change in the strength of
correlations for odd and even waves. Instead, we observe
that increasing modulation strength only slightly decreases
transfer at the odd-wave peak and causes comparatively
large increases in transfer for the even-wave peak. Thus, we
remark that the relatively equal weights for the peaks seen
in Fig. 2(b) are coincidental for the nearly 15% of excited-
band atoms populated by our multiband loading procedure.
Figure 9(e) demonstrates how transfer at the even-

wave peak is correlated with the product of ground- and

excited-state atom populations, counted in band-mapped
time-of-flight imaging. A linear fit of the measurements has
a zero crossing within uncertainty of zero and a reduced χ2

of 1.07. This measurement provides us with the confidence
to attribute the transfer seen at the even-wave peaks to a
measure of correlations between ground- and excited-
band atoms.

APPENDIX F: INHOMOGENEOUS AVERAGING

The theoretical description of atom-atom correlations
throughout this paper assumes a single q1D system with a
homogeneous atomic density. Our experimental measure-
ments average across two types of inhomogeneities: the
density profile within a single tube, and tube-to-tube
variation in N. In the high-temperature limit, Chom=Nn1D
for a uniform-density gas is solely a function of temper-
ature, scattering parameters, and confinement strength (see
Appendix D), i.e., variables that are uniform across our
ensemble. We can thus account for inhomogeneities by
separating out the dependence of contact on atom number
and density as

hCiobs ¼ hNn1Di
Chom

Nn1D
; ðF1Þ

where hNni is an average across the ensemble.
The inhomogeneity within each tube is treated with a

local density approximation: that each differential length dy
contributes n21DðyÞdy to Nn1D. In the high-temperature
limit, the density distribution is given by a Maxwell-
Boltzmann distribution, so
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FIG. 9. Correlation of transfer with modulation type and strength. (a) Amplitude modulation of the lattice potential causing a single-
particle first-to-third transition that removes atoms from the first excited band. (b) Frequency modulation causing a single-particle zero-
to-first transition to populate the excited band while also depleting the ground band. (c) Number of atoms transferred to the probe state
from ω̃=2π ¼ 50 kHz for 40ER confinement with varying AM strength. There is no significant change in transfer at the odd-wave peak
(199.25 G). Less transfer is noticed at the even-wave (x) peak (199.75 G). Transfer is plotted relative to the transfer with no modulation.
(d) Transferred atoms for various frequency modulations. A slight decrease in transfer for the odd-wave peak is seen as atoms are
transferred out of the ground band. Transfer is increased for the even-wave peak. (e) Transfer at even-wave peak plotted versus the
population product excited- and ground-state populations (see text) divided by Ntot and compared to a linear fit. All error bars in this
figure represent one standard deviation.

KENNETH G. JACKSON et al. PHYS. REV. X 13, 021013 (2023)

021013-18



hNn1Ditube ¼
Z

n21DðyÞdy ¼ ð4πÞ−1=2N2=RT; ðF2Þ

where RT ¼ ðkBT=mω2
yÞ1=2 is the thermal length of the

cloud.Bycomparison, thepeak1Ddensity is ð2πÞ−1=2N=RT ,
such that hNn1Ditube ¼ Nnpk=

ffiffiffi
2

p
.

We model the distribution of q1D ensembles by assum-
ing that the transfer between a 3D Fermi gas and an array of
tubes is isentropic. This approach neglects the fraction of
atoms that appear in higher bands since edges of the
Brillouin zone cannot be adiabatic. This transfer occurs
during the first tramp phase of Fig. 1(b)(i), up to a modest
depth (VL < 10ER). The density of states of the low-depth
array is a convolution of a harmonic-lattice density of states
ρðϵÞ ¼ 2

ffiffiffiffiffiffi
ER

p
=πℏω⊥

ffiffiffi
ϵ

p
[114,115] in the x and z direc-

tions, with a 1D harmonic oscillator ρðϵÞ ¼ 1=ℏωy along
the tube, where ϵ is energy. We find the chemical potential
and temperature of the transformed tube array by imposing
entropy and number conservation between the preloaded
gas to the array of tubes. After this loading phase, energy
and particle transport between the tubes are suppressed as
the lattice depths increase to their final values. Including a
−20% corrective factor for atom loss observed in round-trip
loading calibrations, we find the number and temperature
of the central tube to be N� ≈ 30 and T̃ ≈ 0.8 for typical
conditions, where T̃ ¼ kBT=EF; here and below, we useN�
to define a reference value of the 1D Fermi energy EF. The
atom-number distribution of this adiabatic loading model is
compared to a diabatic model in which the initial 3D
density distribution is partitioned into a square array of
parallelepipeds. In both models, the distribution of N is
found to be roughly uniform: i.e., the number of tubes that
have near-peak atom number is the same as the number of
tubes that have only one atom.
We define a distribution function wN of atom number

that satisfies
P

N wN ¼ M, where M is the total number of
tubes, and

P
N wNN ¼ Ntot. Without a dispersion in atom

number, each of the M tubes would have N� atoms, so that
Ntot ¼ N�M, and the distribution function would be
wN ¼ NtotδN;N�=N�. Instead, in the distribution found by
these loading models, wexp

N is approximately constant
between N ¼ 1 and N ¼ N�, and zero otherwise. This
gives

Ntot ¼ wexp
N

XN�

N¼1

N ¼ 1

2
ðN� þ 1ÞN�wexp

N : ðF3Þ

We can rearrange this expression to find wexp
N ¼

2Ntot=½ðN� þ 1ÞN�� for 1 ≤ N ≤ N�. Since the contact is
proportional to N2 in the high-temperature limit [see
Eq. (F2)], the ratio of the contacts in these two cases is
given by

hN2iexp
ðN�Þ2 ¼ 1

NtotN�
XN�

N¼1

wexp
N N2 ¼ 1þ 2N�

3N� ; ðF4Þ

which approaches 2=3 for large N�.
Combining the intratube and intertube inhomogeneity

effects yields a correction in the estimated value of the
contact,

hCtubeiexp
Chom

¼ 2

3

ffiffiffi
π

8

r
T̃−1=2: ðF5Þ

The theoretical curves shown in Figs. 5 and 8 use the
uniform-gas prediction multiplied by this correction, which
is about 0.4 for typical loading parameters.
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