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Since the discovery of magic-angle twisted bilayer graphene, flat bands in Dirac materials have become a
prominent platform for realizing strong correlation effects in electronic systems. Here we show that the
symmetry group protecting the Dirac cone in such materials determines whether a Dirac band may be
flattened by the tuning of a small number of parameters. We devise a criterion that, given a symmetry
group, allows for the calculation of the number of parameters required to make the Dirac velocity vanish.
This criterion is employed to study band flattening in twisted bilayer graphene and in surface states of
3D topological insulators. Following this discussion, we identify the symmetries under which the vanishing
of the Dirac velocity implies the emergence of perfectly flat bands. Our analysis allows us to construct
additional model Hamiltonians that display perfectly flat bands at certain points in the space of parameters:
the first is a toy model of two coupled 3D topological insulator surfaces, and the second is a quasicrystalline
generalization of the chiral model of twisted bilayer graphene.
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I. INTRODUCTION

Since the discovery of superconductivity and correlated
insulating states in magic-angle twisted bilayer graphene
(TBG) [1–4], moiré materials have drawn tremendous
attention as a tunable platform for creating novel electronic
effects. The main feature of TBG is that by tuning the twist
angle between the graphene layers one can tune the Dirac
velocity at the Dirac cones to vanish to a remarkable degree
of precision. The vanishing of the Dirac velocity is
accompanied by a large density of states (DOS) at charge
neutrality, thereby enhancing correlation effects. Following
the example of magic-angle TBG, similar fine-tuned
systems were shown to exhibit band flattening, with some
examples being twisted trilayer graphene [5–8], twisted
superconductors [9,10], and moiré patterns on the surfaces
of 3D topological insulators (TIs) [11–13].
The emerging plethora of flat-band Hamiltonians in fine-

tuned materials raises the question of how generic this
phenomenon is. In other words, what characterizes the set
of systems for which fine-tuning a small set of parameters
leads to the formation of flat bands or almost flat bands?

This question is interesting both from the theoretical and a
practical point of view, as a criterion for band flatness
should be a useful guide in searching for new materials
where exotic correlated phenomena may be found.
In this work, we focus on flat bands in systems harboring

Dirac fermions, and more specifically on the conditions for
flattening a band by making the Dirac velocity vanish. This
scenario is relatively convenient to analyze theoretically, as
it requires the knowledge of the Bloch Hamiltonian at only
a single k point. The choice to focus on the Dirac velocities
can also be motivated by noting that generically an upper
bound to the bandwidth may be estimated by a Debye-like
approximation to the band dispersion. More rigorously, in
many cases of interest (see the examples discussed below)
the quadratic order of the band dispersion near the k point
vanishes by symmetry. In these cases, the vanishing of the
Dirac velocity guarantees that the DOS diverges at least as
ðδEÞ−1=3 near the Dirac point. Note that a quadratic band
touching (QBT) cannot be obtained when the Dirac points
are fixed by the symmetries of the system (for example, by
a rotation symmetry) as a result of the π Berry phase of the
Dirac cone [14].
We begin in Sec. II by defining an algebraic criterion:

We show that the symmetry group G acting on the Dirac
cones determines the number of parameters (e.g., twist
angle, pressure, etc.) that should generically be tuned to
make the Dirac velocities vanish. This criterion is used to
analyze different symmetry groups which can protect a
Dirac cone and to find the classes which allow for the
tuning of a small number of parameters to obtain vanish-
ing Dirac velocities.
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In Sec. III we apply our criterion to the analysis of two
systems of interest. The first one is band flattening
of TBG, where we show that the existence of an
approximate particle-hole symmetry is necessary for the
vanishing of the Dirac velocity. The second system is
surface states of 3D TIs under a periodic potential. We
show for such systems that the Dirac velocity at charge
neutrality can be made to vanish entirely by varying a
C2-symmetric potential. The resulting system might en-
able a platform for realizing strongly interacting phases on
the surface of a TI.
The vanishing of the Dirac velocity may be the first step

toward a further increase of the DOS that culminates in a
perfectly flat band [15–17]. The first example of a model
that exhibits such a band was a toy model of TBG [15]. In
Sec. IV we extend the ideas raised by Ref. [17] and our
discussion of the vanishing Dirac velocity to discuss the
symmetry requirements that are needed to obtain exactly
flat bands in general settings. We show that such flat-band
Hamiltonians naturally arise in Dirac Hamiltonians with an
external SU(2) gauge field by tuning a small number of
parameters. For Hamiltonians in class CI of the Altland-
Zirnbauer classification [18], we show that the flat-bands
condition is equivalent to the vanishing of the Dirac
velocity. For Hamiltonians with more general symmetries,
we show that the flat bands can be found by considering the
vanishing of the velocity in a modified version of the
original Hamiltonian, which is in class CI.
We employ our discussion of exactly flat bands in

Sec. V where we discuss two new model Hamiltonians
which realize such exactly flat bands, along with an in-
depth analysis of a recently proposed model. The first
example is a continuum model with a C4 symmetry, which
can be thought of as a toy model of two TI surfaces
with spin-flipping tunneling and an in-plane position-
dependent magnetic field. The second example is a model
of a quadratic band-touching Hamiltonian first proposed
by [19], on which our analysis can be used to prove
analytically the existence of exactly flat bands. The last
model is a quasicrystalline generalization of the chiral
TBG Hamiltonian. While the latter model does not have
well-defined bands, we show it to host “magic angles”
with an extensive degeneracy at charge neutrality.
Section VI concludes with a discussion of possible future

directions. The appendixes contain a more rigorous defi-
nition of our algebraic criterion, reviews of known results
published elsewhere, technical proofs, and a discussion of
edge cases that are not treated in the main text.

II. CONDITIONS FOR THE VANISHING
OF THE DIRAC VELOCITY

A. Zero-velocity codimension

Consider a two-dimensional Bloch Hamiltonian HðkÞ
whose band structure has Dirac points for certain values of
k. The velocity operators at the Dirac points are defined by

vi ¼
∂HðkÞ
∂ki

: ð1Þ

The Dirac velocities (that is, the dispersion of the Dirac
cone close to the Dirac point) are calculated using first-
order perturbation theory of v acting on the degenerate
wave functions at the Dirac cone. They are the eigenvalues
of the matrices

ρðviÞmn ¼ hψmjvijψni; ð2Þ

where ψm are the degenerate Bloch wave functions at
the Dirac cone. We use the notation ρðÔÞ to denote the
projection of the operator Ô onto the subspace spanned
by fψmg. Most commonly m ¼ 1, 2, but we also consider
the cases of nD degenerate Dirac cones, for which
m ¼ 1;…; 2nD. We note that when the degenerate Dirac
cones are protected by a local unitary symmetry [such as
SU(2) spin rotation or a translation symmetry], we can
consider each eigenspace of the symmetry separately as a
single Dirac cone.
Our main interest is the condition for the Dirac velocities

to vanish at some points in the space of parameters. We
assume that H is controlled by a set of d parameters
α1;…; αd. We define the zero-velocity codimension δZ
to be the codimension of the manifold in the space of αi
for which ρðvxÞ ¼ ρðvyÞ ¼ 0. Roughly speaking, if the
Hamiltonian H can have a vanishing Dirac velocity, δZ is
the number of parameters that should be tuned to make the
velocity vanish. Our goal in this section is to show how δZ
can be calculated from the symmetries that preserve the
Dirac cone.
Let G be the group of symmetries that preserve the Dirac

cone. For such symmetries ρðGÞ is a representation of G,
for g ∈ G being a unitary operator. In the case where g is an
antiunitary operator we obtain an antiunitary representation
by multiplying the matrix ρðgÞmn by the complex-
conjugation operator K. Since the elements g relate states
jψ ii only to one another, they satisfy

ρðgÞρðviÞρðgÞ−1 ¼ ρðgvig−1Þ; ð3Þ

for all g ∈ G. Note that lattice symmetries can relate vx and
vy. The tuples (ρðvxÞ; ρðvyÞ) are therefore elements of the
linear subspace V of tuples of 2nD-dimensional Hermitian
matrices that satisfy Eq. (3). We have

�
ρðvxÞ
ρðvyÞ

�
¼

XδZ
l¼1

flðα1;…; αdÞ
�
Ml;x

Ml;y

�
; ð4Þ

where flðα1;…; αdÞ are real-valued and ðMl;x;Ml;yÞ give a
basis for V. Consequently, δZ is the dimension of V.
Equation (4) is then the statement of how the symmetries
of the Dirac cones define δZ. In the absence of symmetries
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protecting the Dirac cones, Eq. (4) means trivially that the
matrices ρðviÞ can be expanded in a basis of Hermitian
matrices, and δZ is the dimension of all possible tuples of
such matrices, given by 8n2D (for example, with nD ¼ 1,Mi
could be any of σ0;x;y;z, giving a total of 8 tuples).
In the case of δZ ¼ 1, Eq. (4) reduces to

�
ρðvxÞ
ρðvyÞ

�
¼ fðα1;…; αnÞ

�
Mx

My

�
: ð5Þ

ρðviÞ are then fixed up to a real parameter and we obtain a
vanishing Dirac velocity whenever f vanishes (see Fig. 1).
In that case, we can make the Dirac velocity vanish exactly
by tuning a single parameter. In Fig. 1 we show the
trajectory for ρðvxÞ for δZ ¼ 2 and δZ ¼ 1 as we vary a
single parameter. Noticeably, the Dirac velocity can vanish
exactly as α is varied only when δZ ¼ 1. In general, given
that we have d parameters and δZ equations, the dimension
of the zero-velocity solutions is d − δZ. Note that, since f in
Eq. (5) is a continuous function, a change of sign in the
Dirac velocity implies the existence of a point where it
vanishes. Also, this sign is in agreement with the sign of vD
obtained in perturbation theory, e.g., in Ref. [15].
A slightly more rigorous definition of δZ is given in

Appendix A. We show there that if the Dirac velocity is
made to vanish at some point α⃗0 in the parameters space,
there exists a manifold of dimension d − δZ around α⃗0 in
parameter space where the Dirac velocity remains zero. The
proof relies on the assumption that the gap between the
Dirac point and the rest of the bands does not close. Such
closing of the gap results in the Dirac-cone wave functions

not being continuous and can create a boundary to the zero-
velocity manifold. We treat an example of such gap closing
in Appendix F.

B. Calculation of δZ for different symmetry groups

We now follow the principles outlined above to calculate
δZ for different symmetry groups G which preserve the
Dirac point. The symmetry groups we choose to focus on
may contain two antiunitary symmetries Θ, Π that anti-
commute (Θ) and commute (Π), with the operators vi, as
well as their unitary product Σ:

fvi;Θg ¼ ½vi;Π� ¼ fvi;Σg ¼ 0: ð6Þ

In cases where the system has local time-reversal T and
particle-hole P symmetries that map the Dirac cone onto
itself, they may serve as Θ and Π, respectively. Such is the
case for a Dirac cone on the surface of a three-dimensional
TI. When T, P map between different Dirac cones, such as
in the case of TBG, we can combine them with other
unitary symmetries to form Θ, Π. We will identify these
combinations when we discuss examples of the latter case.
In general, we do not demand that the symmetries are local.
Furthermore, while we assume that the symmetries either
commute or anticommute with the Hamiltonian, we define
them only by the commutation relations Eq. (6) and not by
their commutation or anticommutation relations with the
Hamiltonian.
When the symmetry group G exists, the symmetries

constrain the possible representations of the two compo-
nents of the velocity operator ðvx; vyÞ. However, as long as
the relations Eq. (6) do not distinguish between vx and vy,
they are not enough to constrain δZ to 1, since for any
Ml ¼ ðMx;MyÞ that satisfies them, M̃l ¼ ðMy;−MxÞ will
do as well, leading to δZ ≥ 2. To find cases for which δZ¼1
we need an additional symmetry that acts differently on
vx and vy. We therefore consider also a (unitary) reflection
symmetry R which takes x → −x and thus satisfies

fR; vxg ¼ ½R; vy� ¼ 0: ð7Þ

Our main result in this section is a calculation of δZ
for all symmetry groups constructed from Θ, Π, Σ, R.
Since Θ, Π are antiunitary, different symmetry groups are
given by different choices of ξT;P ¼ �1 defined by

Θ2 ¼ ξΘ:

Π2 ¼ ξΠ: ð8Þ

Besides the sign choice of ξΠ;Σ, different symmetry
groups are distinguished by allowing R to either commute
or anticommute with Θ, Π, Σ. Namely, for R fixed by
R2 ¼ þ1 we can choose

FIG. 1. The trajectory of ρðvxÞ for a varied parameter α. Panels
(a) and (c) depict the trajectory of jvxj and ρðvxÞ [f1;2 are defined
in Eq. (4)]. Since the trajectory in f1;2 does not cross zero the
Dirac velocity does not vanish. Panels (b) and (d) are similar but
with δZ ¼ 1. The additional constraint on f1;2 allows jvxj to
vanish on certain values of α.
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RΘ ¼ ζΘΘR;

RΠ ¼ ζΠΠR;

RΣ ¼ ζΣΣR: ð9Þ

Again, ζΘ=Π=Σ ¼ �1 and, assuming that all are present,
ζΣ ¼ ζΘζΠ. In the case where we have bothΘ,Πwe use the
notation RζΘζΠ to denote the commutation or anticommu-
tation relations, while a single subscript is used in the
classes where we have only one of Π, Θ, Σ. The resulting
family of symmetry groups is similar to that considered
in the Altland-Zirnbauer classification with reflection
symmetry [18,20–23].
We calculate δZ for nD ¼ 1, 2. Table I presents the results

for nD ¼ 1. Table II presents the same case with more
details and Table III presents the results for nD ¼ 2
(Tables II and III are presented in the Appendixes). The
tables are constructed as follows. Assuming that the Dirac
cone is nD-times degenerate, for each symmetry group we
construct a representation ρ. We then look for the possible
representations of vx, vy which satisfy the commutation
relations with the symmetry operators obtained from
Eqs. (6) and (7). Finally, we assume the presence of a
crystalline symmetry relating vx, vy such that δZ is
determined only by the dimension of possible ρðvxÞ.
Examples of such symmetry are C3 and C4 symmetries,
where Cn is a rotation of the system by 2π=n.
A similar analysis can be straightforwardly extended to

nD-fold degenerate Dirac cones for higher nD, include
additional symmetries, or extend to three-dimensional
Weyl and Dirac nodes [24].

III. APPLICATIONS

A. Magic angles in TBG

As a first application of our analysis, let us consider the
band flattening in TBG. Since the two Dirac points are
fixed in different k points, we calculate δZ for a single Dirac
cone. Time reversal T maps between the two valleys of
the electronic band. However, when multiplied by C2, we
obtain an antiunitary symmetry that preserves the Dirac
point and commutes with the velocity operators, such that it
may serve as Π. Furthermore, the C3 symmetry preserves
the Dirac point as well (see a review of the TBG
Hamiltonian and symmetries in Appendix B). We fix the
representation of these symmetries on the two Dirac point
wave functions to be

ρðC3Þ ¼ eið2π=3Þσz ;

ρðC2TÞ ¼ σxK; ð10Þ

which is dictated by the requirements that ρðC2TÞ should
be antiunitary, should square to þ1, and should satisfy
ρðC3ÞρðC2TÞρðC3Þ−1 ¼ ρðC2TÞ. For the Dirac cone to
be C3 symmetric we must have fvx; vyg ¼ 0 such that
Eq. (4) becomes

ρðvxÞ ¼ f1ðαÞσx þ f2ðαÞσy;
ρðvyÞ ¼ f1ðαÞσy − f2ðαÞσx: ð11Þ

Evidently, these two symmetries are not sufficient to ensure
that the Dirac velocity may be made to vanish with a
variation of a single parameter α. Luckily, TBG at small
twist angle θ has an additional approximate unitary
particle-hole symmetry [broken by a term of order OðθÞ]
given by [25]

C∶ ηyσxK: ð12Þ

where ηi are the Pauli matrices acting on the layer indices.
This symmetry can be combined with the exact symmetry
C2;x to form an additional symmetry that preserves the
Dirac cone (see Appendix B for a review of the symmetries
of TBG). Thus, under the approximation of a small twist
angle the operator CC2;x maps x → −x and anticommutes
with the Hamiltonian at low energies. Consequently, it
commutes with vx and anticommutes with vy. Choosing its
representation to be σx, it fixes f2 ¼ 0. Consequently, the
magnitude of the Dirac velocity is given by jf1ðαÞj, which
may be made zero when f1 changes sign.
This calculation leaves us with an important lesson: in

TBG, both the exact and the approximate symmetries are
necessary for the Dirac velocity to vanish at the magic
angle. Indeed, by diagonalizing the Bistritzer-MacDonald
(BM) Hamiltonian [1], we find that when one does not
impose the approximate symmetry to be exact, the Dirac

TABLE I. δZ for the symmetry groups (with Θ, Π, Σ, and/or R
symmetries) which preserve a single Dirac cone. Zero indicates
the absence of a symmetry, while � denote the square of the
symmetry. The signs at the subscripts of R indicate whether R
commutes or anticommutes with the other symmetries. The
calculation of δZ here assumes the presence of a C3 or C4

symmetry. See Table II for an elaborated calculation of δZ. See
Ref. [9] for a discussion of the example in row 3, Sec. III A for a
discussion of rows 5 and 6, and Sec. III B for discussion of row 7.
SC refers to superconductors.

Θ Π Σ R δZ Example

0 0 0 R 2
0 3

0 0 1 R− 1 Nodal SC with crystalline symmetries
0 2 Nodal SC

0 þ 0 Rþ 1 TBG (approximate)
0 2 TBG (exact), near-commensuration TBG

− þ 1 R−þ 1 Z2 TI surface states with
crystalline symmetries

0 2
− 0 0 R− 2

0 3 Z2 TI surface states (general)
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velocity does not reach zero when θ is varied. It instead has
a minimum value of ≈4 × 10−4 × v0, where v0 is the Dirac
velocity at zero coupling between the layers. The value of
vD as the twist angle is varied, with and without the
approximate C symmetry, is depicted in Fig. 2.
In magic-angle TBG the C symmetry is weakly broken

by a symmetry-breaking term proportional to the small
twist angle θ. When the twist angle is not small, for
example, when the layers are slightly twisted away from an
angle of commensuration [26], the symmetry-breaking
term has a non-trivial dependence on the twist angle. In
particular, it does not vanish at commensuration angles. In a
recent work [26], the authors describe the case of twisted
graphene bilayers when the layers are twisted slightly away
from a commensurate twist angle. The Hamiltonian
obtained is similar to the BM Hamiltonian, but the C
symmetry is broken by a parameter that is independent of
the deviation from the commensurate angle. As observed
there, the Dirac velocity does not reach zero. Our analysis
shows this to be a result of the breaking of C symmetry.

B. δZ in 3D TI surface states

References [11,12] suggested that the velocity character-
izing the Dirac cone of the surface of a 3D TI may be
suppressed by the application of a periodic potential on the
surface. Here we use our analysis of δZ to show that there
exist “magic parameters” leading to an exact vanishing
of the Dirac velocity. We present two types of periodic
potentials that lead to a vanishing Dirac velocity. The first
possesses a C4 symmetry and requires tuning a single
parameter. The second has only a C2 symmetry, so that
each of vx, vy can be made to vanish by tuning a single
parameter. The velocity vector can then be made to vanish
entirely by tuning two parameters.
The Dirac cone on the surface of a 3D TI is protected by

time-reversal symmetry T ¼ σyK. A periodic potential is
consistent with this symmetry, leading to the Hamiltonian
of the form

H ¼ v0σ · pþ uðrÞ; ð13Þ

where v0 is the Dirac velocity at zero external potential and
uðrÞ is a periodic potential term. Note that T allows only for
a potential term proportional to the identity in Eq. (13) and
prohibits the opening of a gap.
In the case where, in addition to T, there exist additional

Cn (n ¼ 4, 6) and Mx ¼ σyðx → −xÞ crystalline sym-
metries [27], we find from Table I that δZ ¼ 1 (since the
Dirac point maps to itself under time reversal we have
Θ ¼ T,Σ ¼ C2; R ¼ Mx).
When a C2 symmetry is present in the system, ρðviÞ have

no diagonal terms in the basis defined by jψi; Tjψi,
provided that jψi is a Dirac-cone wave function that
is a C2 eigenfunction. The Dirac velocity can then be
calculated by

vx ¼ hTψ jv0σxjψi ¼ v0jhKψ jσzjψi; ð14Þ

vy ¼ hTψ jv0σyjψi ¼ v0hKψ jψi: ð15Þ

To make the discussion concrete, we start by taking uðrÞ of
the form

uðrÞ ¼ 2ux cos q0xþ 2uy cos q0y: ð16Þ

Generally, the Hamiltonian Eq. (13) with Eq. (16) is
symmetric under C2¼σzðr→−rÞ and Mx ¼ σyðx → −xÞ.
When ux ¼ uy it is also symmetric under C4 ¼ eiπ=4σzðr→
R4rÞ. Furthermore, the Hamiltonian anticommutes with the
operator:

P ¼ σzðx → xþ π=q0; y → yþ π=q0Þ: ð17Þ

We now analyze the system both in the case where there is
an additional C4 symmetry and where this symmetry is
broken.

1. C4-symmetric case

Our numerical studies of the C4-symmetric case indicate
that the anticommutation ofH andP prevents the vanishing
of the Dirac velocity. Indeed, by diagonalizing the
Hamiltonian we do not find any magic values (see Fig. 3)
as u ¼ ux ¼ uy is varied. Besides the calculation presented
in the figure, we check that the Dirac velocity does not
vanish up to u ¼ 10. We also find numerically that the
velocity does not vanish even when one considers addi-
tional C4 and P preserving terms in uðrÞ with higher wave
vectors. We therefore conjecture, but cannot prove gen-
erally, that a Hamiltonian of the form Eq. (13) with C4,Mx,
and P symmetries cannot yield a vanishing Dirac velocity
for the Dirac cone at charge neutrality.
One can break P by introducing higher wave vectors in

the potential u. As an example, we take

FIG. 2. The Dirac velocity vD of the BMmodel [Eq. (B1)], with
and without the additional C symmetry, as the twist angle θ is
varied near the magic angle. The C symmetry is imposed by
setting θ ¼ 0 in the hðθÞ terms.
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uðrÞ ¼ 2u1ðcos q0xþ cos q0yÞ
þ 2u2½cosðq0xþ q0yÞ þ cosðq0x − q0yÞ�: ð18Þ

When P is broken, the Dirac cone, which for uðrÞ ¼ 0 is at
E ¼ 0, ceases to be fixed in energy. We can nevertheless
calculate the velocity in the Dirac cone connected adia-
batically to the one at E ¼ 0 as the amplitude of uðrÞ
increases. As an example, in Fig. 3 we plot the Dirac
velocity for u1 ¼ u; u2 ¼ u=4 and find points along the line
in which the velocity vanishes. Note that while the first-
order dispersion around the Dirac cone vanishes, we still
have quadratic terms in the dispersion, leading to a finite
(but increased) density of states at the Dirac cone.
In this example, breaking the P symmetry opens a way

for the Dirac velocity to vanish, despite the insensitivity of
δZ to this breaking. This may indicate that symmetries
might also have an impeding role in the tuning of systems
parameters to make the Dirac velocity vanish. Indeed, our
analysis of δZ gives necessary conditions, but not sufficient
conditions, for making the Dirac velocity vanish by tuning
a given number of parameters.

2. C4-broken case: Vanishing of the
velocity in a single direction

When the periodic potential breaks C4 symmetry, the
difficulties of making the Dirac velocity vanish are alle-
viated. In this case, each velocity component vx;y vanishes
on a codimension-one manifold, which results in δZ ¼ 2.
Indeed, we find lines of magic parameters ux, uy which give
one vanishing component of the velocity at charge neutral-
ity (see Fig. 4). By tuning both parameters, we find points
at which both components of the velocity vanish.

A simple, analytically solvable example of this scenario
can be found in the case where uy ¼ 0 and the potential is
one dimensional. In that case, we can find zero-energy
states of the form

ψ�ðxÞ ¼
ffiffiffiffiffiffi
q0
8π

r �
eiUðxÞ � e−iUðxÞ

eiUðxÞ ∓ e−iUðxÞ

�
; ð19Þ

UðxÞ ¼ 2ux
q0v0

sinðq0xÞ; ð20Þ

The Dirac velocities can be obtained from the representa-
tions of the velocity operators in this basis. We obtain

ρðvxÞ ¼ v0σx; ð21Þ

ρðvyÞ ¼ v0σyJ0

�
4ux
q0v0

�
; ð22Þ

where J0 is the Bessel function of the first kind. We notice
the somewhat surprising result that it is vx, and not vy,
which is independent of the potential [28], even though the
potential varies along the x direction. The matrix ρðvyÞ is
proportional to σy as a result of the inversion symmetry of
uðxÞ and vanishes on the zeros of J0. We then find the
magic parameters at ux=q0v0 ¼ 0.60; 1.38; 2.16;….
A velocity that vanishes only in the y direction gives rise

to a low-energy Hamiltonian of the form

H ¼ ṽxσxkx þ ðd̃xk2x þ d̃yk2yÞkyσy; ð23Þ

for some parameters ṽx; d̃x; d̃y. The DOS resulting from
Eq. (23) vanishes as gðEÞ ∝ E1=3 at low energies. An
interesting question, which is not elaborated on here, is the
behavior of the Hamiltonian Eq. (23) when interactions are

FIG. 3. The Dirac velocity of the Hamiltonian Eq. (13) with a
C4-symmetric potential in the P-symmetric and P-broken case.
The P-symmetric case is defined by the potential Eq. (16) with
u ¼ ux ¼ uy, while the P-broken plot is given for the potential
Eq. (17) with u1 ¼ u; u2 ¼ ðu=4Þ. In the latter case, the velocity
is defined as the velocity of the Dirac cone connected adiabati-
cally to the Dirac cone at zero energy as u is increased. One can
see that vx can reach 0 when the P antisymmetry is broken, but
not when it is present.

FIG. 4. The x component vx of the velocity for the Dirac cone
at charge neutrality for the Hamiltonian Eqs. (13) and (16)
(in logarithmic scale). One sees that vx vanishes on lines in the ux,
uy space, giving rise to a low-energy Hamiltonian of the form
Eq. (23).
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also considered. Renormalization-group analysis [29,30]
suggests that in the presence of strong enough interactions,
the dynamics of the system become quasi-one-dimensional,
forming a Luttinger liquid phase in the x direction [31],
possibly with spontaneous breaking of translation sym-
metry in the y direction.

3. C4-broken case: Vanishing Dirac velocity
in both directions, with δZ = 2

Since each velocity component vanishes on lines in
ðux; uyÞ space, we expect the entire velocity to vanish
on points in that space. Figure 5(a) shows that this is
indeed the case. In Figs. 5(b) and 5(c), we plot the band
structure and DOS at one of these points. One can
observe a peak in the DOS at charge neutrality, with
two additional peaks corresponding to van Hove singu-
larities (vHS) at nonzero energies. Note that the func-
tional dependency of the two peaks is different: while the
DOS at the vHS diverges as − logðjδEjÞ (with δE being
the deviation from the singularity), the DOS diverges as
jδEj−1=3 around charge neutrality. Thus, the points in
parameter space where the Dirac velocity vanishes might
provide good candidates for strongly interacting states at
charge neutrality. Note that the divergence is functionally
similar to the higher vHS discussed in Ref. [12], but the
low-energy Hamiltonian around the critical point is
different [32,33].
The authors of Ref. [11] propose two methods for

realizing a Hamiltonian of the form Eq. (16) on the sur-
face of a TI, either by creating a moiré pattern on
the surface or by posing a dielectric pattern on it [34].
Here we note that the degree of tunability required to
achieve the “magic coupling values” obtained in the
C2-symmetric model can be achieved either by a
C2-symmetric dielectric pattern or by a potential gener-
ated by acoustic waves on the surface [35,36]. Note
that the dimensionless parameter controlling the coupling
strength is u=q0v0. Ideally, one would keep both u; q0 high
to mitigate disorder effects and to have a large range of
momenta affected by the modulation.
Also, we note that in Ref. [13] the authors show that

for two 3D TI surface states a spin-flipping tunneling
term allows for the velocity to vanish. When only spin-
independent tunneling between two such surfaces is
allowed, the surface Hamiltonians can be written in four-
component spinors as

Htwisted TI ¼ v0k · σ þ ηxuðrÞ ð24Þ

when ηi are the “surface” indices. The Hamiltonian
Htwisted TI, therefore, splits into layer symmetric and anti-
symmetric sections, each described by the Hamiltonian
Eq. (16). Our findings then provide two additional mech-
anisms for obtaining a Dirac cone with vanishing velocity
in such systems.

IV. EXACTLY FLAT BANDS

An intriguing aspect of the BM Hamiltonian is the
presence of a limit [15] in which the Hamiltonian has an
additional chiral symmetry and in which the bands at
charge neutrality become perfectly flat at the magic angle.
These bands may then be chosen to have nonzero Chern
numbers and awell-defined sublattice polarization [37]. The
Hamiltonian at that limit, referred to as CTBG, allows for
exactly flat bands to be reached by tuning a single parameter.
In this section, we provide symmetry requirements under
which the vanishing of the Dirac velocity implies that the
bands are exactly flat. Our analysis provides conditions for
small-codimension exactly flat bands.
We begin by considering a generalized form of

the CTBG Hamiltonian, described by a Dirac electron in

(a)

(b) (c)

FIG. 5. (a) The “absolute” Dirac velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
of the

Dirac cone at charge neutrality for the Hamiltonian Eqs. (13)
and (16) as a function of ux, uy, in logarithmic scale. The dark
spots are codimension-two manifolds on which the Dirac velocity
vanishes entirely. (b),(c) Band structure and DOS of the
Hamiltonian Eqs. (13) and (16) at the “magic angle” obtained
with ux ¼ 0.95, uy ¼ 0.25 [the point is marked by a circle in (a)].
We find a divergent DOS at charge neutrality with additional van
Hove singularities at E ¼ �0.21.
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a background SU(2) gauge field [38]. That is, it is of the
form

H ¼
�

0 D†

D 0

�
;

D ¼ 2iv0ð∂̄þ ĀÞ; ð25Þ
where ∂̄ ¼ 1

2
ð∂x þ i∂yÞ, Ā ¼ Ax − iAy, with A⃗ being a non-

Abelian traceless gauge potential [here we focus mostly on
the SU(2) gauge group]. We assume that Ā is periodic on
some lattice. The Hamiltonian H comes naturally with a
chiral symmetry, which we choose to be Hermitian, S ¼ σz.
We follow our notation for TBG and use σi as the isospin
indices and ηi as the gauge indices. For any two solutions
ψa;b of Dψ ¼ 0 (that is, Dirac-cone wave functions in the
same S indices) we can define the Wronskian for the
functions ψa;b as

IðrÞ ¼ ψa;1ðrÞψb;2ðrÞ − ψb;1ðrÞψa;2ðrÞ; ð26Þ
where the second index is a spinor index. In Ref. [17]
the authors show that IðrÞ is position independent and
further show that the condition for exactly flat bands is the
existence of two orthogonal ψa;b for which IðrÞ ¼ 0 (see a
review in Appendix D). This condition may be expressed as

hWψajψbi ¼ 0; ð27Þ

where W is the “Wronskian operator” defined by

W ¼ iηyK: ð28Þ

The Wronskian is antiunitary, commutes with S, and
satisfies W2 ¼ −1 (the choice W ¼ iηyσzK satisfies the
same requirements and gives an equivalent condition).
Since the Wronskian inverts the direction of the spinor
that it operates on, Eq. (27) implies that

ψb ¼ ψaνðrÞ; ð29Þ

with νðrÞ being a scalar.
Let us consider the symmetry groups which allow

a Dirac Hamiltonian as in Eq. (25). We first assume that
the symmetries of the system keep ψa;b orthogonal (this
assumption is broken, e.g., in C3-broken CTBG, which we
treat in Appendix E). Since we want the momentum
operator to be diagonal in D, it must satisfy the condition

vxvy ¼ iv20S: ð30Þ

If the Hamiltonian has additional time-reversal symmetry
T, then T and P ¼ ST preserve the space of the two
degenerate Dirac cones and therefore satisfy the definition
Eq. (6). Using Eqs. (6) and (30) we then find that

T; S ¼ 0 ⇔ T2 ¼ −P2: ð31Þ

This requirement already restricts the possible AZ sym-
metry classes which can support a continuum Hamiltonian
with exactly flat bands to AIII (S only), DIII (where
P2 ¼ −T2 ¼ 1), and CI (where T2 ¼ −P2 ¼ 1). Note that
the Hamiltonian Eq. (25) can be thought of as a surface
Hamiltonian for class AIII, CI, or DIII topological super-
conductors, all of which can have protected Dirac cones
on the surface [39,40]. This proves that the Hamiltonian
Eq. (25) cannot open a gap at zero energy.
We now treat each one of the above symmetry classes.

We first consider the two time-reversal symmetric classes,
DIII and CI. We find that class DIII Hamiltonians are too
constrained to allow for the condition Eq. (26), while for
class CI the condition can be fulfilled and is, in fact,
equivalent to the vanishing of the Dirac velocity. We then
show that the analysis of class AIII Hamiltonians can be
mapped onto the analysis of class CI. Therefore, under-
standing the criteria for obtaining a flat band in the CI case
is sufficient for the more general case of Hamiltonians of
the form Eq. (25) with no time-reversal symmetry.

A. Class DIII

Here we prove that a 4 × 4 Hamiltonian of the form
Eq. (25) of class DIII cannot support exactly flat bands. We
begin by fixing vx ¼ σx, vy ¼ σy, S¼ σz, and T ¼ σyK (the
choices T ¼ ηxσyK and T¼ ηzσyK, where η are the gauge
field indices, are equivalent). This restricts Ā to be of the form

�
0 Ā†

Ā 0

�
¼ axðrÞσxηy þ ayðrÞσyηy ð32Þ

for some real axðrÞ; ayðrÞ. Equivalently, we can write

Ā ¼
�
0 −i
i 0

�
aðrÞ; ð33Þ

where aðrÞ ¼ axðrÞ þ iayðrÞ. Since Ā commutes with itself
at different positions, the equation Dψ ¼ 0 can be straight-
forwardly solved by integrating both sides. To do so we
decompose aðrÞ as

aðrÞ ¼
X
G

aGeð1=2ÞðzḠþz̄GÞ; ð34Þ

where the sum overG is a sum over reciprocal lattice vectors
and G ¼ Gx þ iGy. The zero modes of D can then be
calculated explicitly as

ψ�ðrÞ ¼
�

1

�i

�
fðzÞe�uðrÞ; ð35Þ

uðrÞ ¼
X
G≠0

2aG
G

eð1=2ÞðzḠþz̄GÞ

þ Reða0Þðz̄ − zÞ þ Imða0Þðz̄þ zÞ; ð36Þ
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where fðzÞ is holomorphic. Since e�uðrÞ is periodic (up to a
phase) and therefore bounded, ψ� is normalizable only for
fðzÞ ¼ const. We can conclude that for any aðrÞ there are
only two zero modes for D, which are given by Eq. (35).
Since these solutions do not satisfy Eq. (29), there are no
exactly flat bands for any choice of aðrÞ. One can explicitly
check that the Wronskian IðrÞ of ψþ and ψ− is constant and
nowhere vanishes, since the spinors are never parallel.

B. Class CI

While class DIII symmetries limit Ā to the form Eq. (33),
for class CI Ā does not necessarily commutes with itself at
different points. As a result, the zero modes cannot be
obtained by an integration procedure similar to Eq. (35).
This allows for a richer structure of the zero modes and,
most interestingly to us, allows for the vanishing of IðrÞ.
Further notice that, for class CI Hamiltonians, the

combination vxT satisfies

ðvxTÞ2 ¼ −v20; ð37Þ

½vxT; S� ¼ 0; ð38Þ

and thus must be proportional to either ηyK or σzηyK.
We therefore have

hWψajψbi ¼ const × hTψajvxjψbi: ð39Þ

Since the rhs is an element of ρðvxÞ, the vanishing of the
Dirac velocity implies Eq. (27). This argument shows that
in class CI Hamiltonians, as long as the solutions ψa and ψb
are kept orthogonal, the vanishing of the Dirac velocity
implies the existence of exactly flat bands. From Table III
we see that for class CI (that is, with Θ2 ¼ þ1;Π2 ¼ −1)
we have δZ ≤ 2.

C. Class AIII

For class AIII we can write Ā in the general form:

ĀðrÞ ¼
�
WðrÞ þ ZðrÞ XðrÞ þ iYðrÞ
XðrÞ − iYðrÞ WðrÞ − ZðrÞ

�
: ð40Þ

Here W represents the U(1) part of the gauge potential
(physically, ∇ ×W is a magnetic field), while X, Y, Z are
the three components of the SU(2) part. When W ¼ 0 this
is a system of class CI with T ¼ ηyσyK. Let us first assume
for simplicity that WðrÞ is periodic with mean zero (this
represents a staggered magnetic field). We note that, for a
zero mode ψ of D, WðrÞ can be absorbed to ψ by defining

ψ 0ðrÞ ¼ e∂̄
−1WðrÞψðrÞ;

Ā0ðrÞ ¼ ĀðrÞ − I ·WðrÞ;
D0 ¼ 2iv0ð∂̄þ Ā0Þ; ð41Þ

where the operator ∂̄−1 is formally defined by

∂̄
−1ðe−iq·rÞ ¼ 2i

q
e−iq·r; ð42Þ

with q ¼ qx þ iqy. Under this definition, we find that
Dψ ¼ 0 if and only if D0ψ 0 ¼ 0. That is, we can reduce
the problemof finding a zeromode forD to the case inwhich
Ā is traceless.We conclude that for finding exactly flat bands
of Eq. (25) it is sufficient to solve for the time-reversal
symmetric (CI) case, where, as we showed above, the
vanishing of the Dirac velocity implies an exactly flat band.
The flat bands created by this procedure have an exact

correspondencewith lowest-Landau-level (LLL) wave func-
tions [17,41,42], and therefore have a nonzeroChern number
for each S polarization (they can, in fact, bewritten in a form
that resembles the LLL wave functions on the plane; see
Appendix D). By considering the “squared Hamiltonian”
H̄ ¼ H2, forwhichS acts as a local unitary symmetry,we see
that the nonzero Chern number on each S index gives the
middle bands a Z × Z topological index when T is absent.
This index collapses to a (nonzero) Z index in the presence
of T [43]. Finally, note that CTBG is in class CI, as a result
of an emergent intravalley T symmetry [44].
It is important to distinguish between the exactly-

flat-bands models discussed here and the flat bands in
tight-binding models, e.g., in bipartite lattices [45–48] or
in line-graph lattices [49,50]. The models we discuss allow
for the creation of exactly flat bands by the tuning of a small
number of parameters, assuming that a given set of sym-
metries is preserved. The small value of the codimension δZ
implies that evenwhen symmetry-allowed terms give the flat
band a dispersion, this dispersion can always be compen-
sated by the lowest-momentum tunneling, and the flatness is
recovered. This property is not there in the tight-binding
examples. The bipartite lattice models have a flat band in
all possible parameters, provided that the lattice remains
bipartite. For the line-graph lattices, on the other hand, there
is an infinite set of parameters that may be varied to destroy
the band flatness while preserving the lattice symmetries,
and cannot be compensated by other parameters. A further
difference is that the models discussed here are continuum,
rather than tight-binding, models. This property allows for
the separation of the exactly flat bands to bands of opposite
Chern numbers by a symmetry-breaking perturbation, such
as a sublattice potential in the case of CTBG. In lattice
models, on the other hand, the existence of exactly flat bands
with nonzero Chern number is prohibited [51,52] (but such
bands may carry fragile topology [48]).

V. EXAMPLES OF CLASS CI
FLAT-BAND MODELS

A. Chiral C4-symmetric model

The insights gained in the previous section can be used to
construct a continuum Hamiltonian of class CI that can be
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tuned to have exactly flat bands at zero energy. Our model
is manifestly distinct from CTBG in that it has a C4, instead
of C3, symmetry. We therefore call it the C4-symmetric
flat-band model (C4FB). The presence of the C4 symmetry
has additional interesting implications, which will be
discussed shortly.
The C4FB model consists of two Dirac cones on two

topological insulator surfaces on the x-y plane, connected
by z-reflection symmetry, and coupled via a spin-dependent
tunneling term modulated by an in-plane magnetic field
(a system with slightly similar features was analyzed in
Ref. [53]). The two 3D TI surface states are described
by [54–57]

HTI ¼ ηzv0p · σ; ð43Þ

where σ ¼ ðσx; σyÞ. Each of these Dirac cones has
a chiral symmetry S ¼ σz and a spinful time-reversal
symmetry T ¼ Kσy, with T2 ¼ −1. Since we want the
system to be in class CI, we need to preserve S and replace
T by a symmetryT 0 satisfyingT 02 ¼ þ1 and fT 0; Sg ¼ 0. To
that end, we introduce spin-flipping tunneling between the
layers, whose phase is modulated by an in-plane magnetic
field:

Htunneling ¼ ½ηy cosAzðrÞ þ ηx sinAzðrÞ�½uðrÞ · σ�; ð44Þ

where AzðrÞ is the vector potential associated with the
magnetic field. The resulting symmetry T 0 ¼ Kηxσx is a
combination of T and the z reflection Rz ¼ σzηx. The
Hamiltonian is then

H ¼ HTI þHtunneling: ð45Þ

We additionally require the symmetriesC4¼eiðπ=4Þσzðr→
R4rÞ, Mx ¼ σyðx → −xÞ and a translation invariance by
the unit cell. While any form of Az and u satisfying these
requirements will give similar results, we choose for
concreteness

uðrÞ ¼ u

�
sin

2πx
a0

; sin
2πy
a0

�
;

AzðrÞ ¼ ϕ

�
cos

2πx
a0

þ cos
2πy
a0

�
: ð46Þ

Note that H can be made of the form Eq. (25) by a gauge
transformation.
By diagonalizing H we find that, as expected from our

calculation of δZ (we have Θ ¼ T 0, Σ ¼ S, R ¼ Mx; see
Table III), the Dirac velocity vanishes on a codimension-
one manifold in the u;ϕ space (see Fig. 6). Our discussion
above shows that when the Dirac velocity vanishes, the
two degenerate σz ¼ þ1 wave functions ψa;b at k ¼ 0

satisfy IðrÞ ¼ 0. We can therefore write

ψaðrÞ ¼ νðzÞψbðrÞ; ð47Þ
where ∂̄ν ¼ 0 since both ψa;b satisfyDψ ¼ 0. The function
νðzÞ is periodic on the lattice and C4 symmetric, inherited
from ψa;b. Therefore νðzÞ must have at least four poles per
unit cell, located at four C4-related points. At these four
points ψ1 must be zero [58]. Using the fact that ψ1 has four
zeros per unit cell, we can construct four σz ¼ þ1 linearly
independent zero-energy wave functions at each k, in the
form [59]

ψkðrÞ ¼ Λk;nðzÞψ1ðrÞ; ð48Þ

Λk;nðzÞ ¼ eikxz
Y

i¼1;…;4

ϑ1ðz−wi
a0

jiÞ
ϑ1ðz−zia0

jiÞ ; ð49Þ

where ϑ1ðzjτÞ is the Jacobi theta function [60] [we use the
convention defined in Eq. (D6)], zi ¼ xi þ iyi are the zeros
of ψ1, and wi satisfy

a0k ¼ 2π

a0

X
i

wi þ nþmi; m; n ∈ Z; ð50Þ

where k ¼ kx þ iky. That is, the positions of wi determine
the momentum of ψk, and the possible configurations of wi
satisfying Eq. (50) give the four degenerate wave functions.
This construction is similar to that of lowest-Landau-level
wave functions on the torus [61]. Note that our arguments
do not rule out the possibility of having more than four
wave functions per unit cell, but we expect four to be the
general case. We give an example of ψk¼0 in Fig. 7.

B. Magic parameters in Hamiltonians with
symmetry-protected quadratic band touching

Here we consider a system, previously analyzed
in [19], which displays symmetry-protected quadratic band

FIG. 6. Dirac velocity for the Dirac cone of the Hamiltonian
Eq. (45) as a function of the parameters u;ϕ, in logarithmic scale.
The Dirac velocity vanishes exactly on the dark line, leading to an
exact flattening of the bands.
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touching. We show how the symmetry analysis can provide
the condition in which a perfectly flat band can be created.
The Hamiltonian we consider is of the form

H ¼
�

0 D�ðrÞ
DðrÞ 0

�
; ð51Þ

DðrÞ ¼ 1

2m0

∂̄
2 þ uðrÞ; ð52Þ

where u ¼ ux þ iuy. In Ref. [19], the authors suggest
realizing this Hamiltonian by stacking two twisted layers
of a material hosting a QBT point at the K points. The
Hamiltonian shown there realizes two copies of H with

uðrÞ ¼ uxðrÞ ¼ αðcos qx − cos qyÞ: ð53Þ

Below we provide a proof that H with uðrÞ given by
Eq. (53) has flat bands with codimension one in α (this was
shown numerically in Ref. [19]).

1. From a QBT to a Dirac Hamiltonian

As a first step, we show the relation between H and the
Hamiltonians discussed in Sec. IV. We first note thatH has
a time-reversal symmetry T ¼ σxK and a chiral symmetry
S ¼ σz, and is therefore in class CI, just as the flat-bands
Hamiltonian discussed there. Furthermore, we can relate
the two-band Hamiltonian Eq. (51), which has second-
derivative operators, to a four-band class CI Hamiltonian of
the form Eq. (25) having only first-derivative operators, and
having the same number of zero-energy states.
To do so, we notice that for any scalar wave function ψ

satisfying Dψ ¼ 0, we have

D̃
�

ψ

v0∂̄ψ

�
¼ 0; ð54Þ

where

D̃ ¼
�
v0∂̄ −1
u v0∂̄

�
; ð55Þ

and v0 ¼ ð2m0Þ−1=2. As a result, the four-component
spinor ð0; 0;ψ ; v0∂̄ψÞ is a zero-energy state of the
Hamiltonian

H̃ ¼
�

0 D̃†

D̃ 0

�
: ð56Þ

Notably, H̃ inherits the class CI symmetries of H,
which are given by T̃ ¼ ηyσyK, S̃ ¼ σz (σi, ηi are the
Pauli matrices in the spinor and gauge components,
respectively). Similarly, it inherits any crystalline symmetry
that H has. This shows that finding conditions for a flat
band in Hamiltonians of the form Eq. (51) is equivalent to
finding the conditions for a flat band in class CI Dirac
Hamiltonians, which were analyzed in Sec. IV. There we
showed that a flat band will be created as a result of a
vanishing Dirac velocity, provided that D̃ has two orthogo-
nal zero modes. We notice that here, for u ¼ 0, H̃ has a
QBT, which amounts to having a vanishing Dirac velocity
[i.e., a vanishing expectation of the operator Eq. (1)] with
only a single zero mode of D̃. To conclude our argument,
we show that when the quadratic term in the dispersion is
made to vanish by the application of u, the QBT can be
separated into two Dirac cones with vanishing velocity,
resulting in perfectly flat bands.

2. From a Dirac Hamiltonian
to a perfectly flat band

We now apply our analysis to provide conditions for the
emergence of exactly flat bands in H. We first notice that
the QBT is stable when u is modified if and only if H̃ is C4

symmetric. When the QBT is unstable we get a similar
situation to the one discussed in Appendix E: the model
has two zero-energy Dirac points, whose momenta change
as u is modified. As a result, the vanishing of the Dirac
velocity will result in the Dirac points fusing to a QBTwith
nonzero quadratic dispersion, and exactly flat bands will
not generally form. To go on further we, therefore, need to
assume that H is C4 symmetric with C4¼σzðx→y;
y→−xÞ (which is also the case for the model discussed
in Ref. [19]).
With the assumption of a C4 symmetry, we investigate

which additional symmetries can help us make the bands
perfectly flat. The form of H̃ ensures that the dispersion
remains quadratic around the band-touching point, so the
projected Hamiltonian near the K point is restricted
to the form

FIG. 7. Example wave function ψk¼0 obtained numerically
from the Hamiltonian Eq. (45) with u ¼ 1.1, ϕ ¼ 2.5 (at the flat
band). Each layer has four mutual zeros, which are zeros of the
entire wave function (in orange), and four zeros of opposite
chirality which cancel the complex winding of the common zeros
(in red).
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H̃projðkÞ ¼
�

0 ½f1ðαÞ þ if2ðαÞ�k2
½f1ðαÞ − if2ðαÞ�k̄2 0

�

þOðk4Þ: ð57Þ

Consequently, the quadratic dispersion of H̃ vanishes with
codimension two. To reduce the codimension to one we
require an additional symmetry that guarantees the vanish-
ing of f2, which is a reflection symmetry. Acting onH, this
additional symmetry is equivalent to the requirement that u
is either purely real or purely imaginary.
Having shown that the quadratic term in the dispersion

can be made to vanish, we now show that this vanishing
leads to perfectly flat bands. To do so, we map the problem
to the problem studied previously, where we had two
separate zero modes ψa;b of D̃. This can be done by adding
a small C4-breaking perturbation to u, of the form

u → u − vrðαÞkε; ð58Þ

where vrðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðαÞ þ if2ðαÞ

p
is the square root of the

renormalized quadratic dispersion around the K point
and kε is small. The resulting Hamiltonian has, therefore,
two Dirac points at k ¼ ð�kε; 0Þ, which remain separate for
any α. In addition, the Dirac velocity of the Dirac cones
vanishes whenever α is tuned to make vr vanish. From the
analysis of Sec. IV, we conclude that H̃ with the additional
perturbation has exactly flat bands whenever vr vanishes
and, taking kε to zero, we conclude that H̃ and therefore H
have exactly flat bands whenever vr vanishes.
The analysis in this section shows, therefore, that

Hamiltonians of the form Eq. (51) with a C4 symmetry
have exactly flat bands with a small codimension (one if
there is a reflection symmetry present and two otherwise).
We note that, while an example of such a Hamiltonian was
first provided in Ref. [19] using two twisted layers of a 2D
material with QBT points, the u term in Eq. (51) can be
obtained by a long-wavelength modification of the hopping
in a single layer hosting a QBT point (for example, by
periodic strain from surface-acoustic waves).

C. Quasicrystalline generalization of CTBG

Here we discuss a quasicrystalline generalization of the
CTBG Hamiltonian, namely, the generalization of the
C3-symmetric model to a Cn-symmetric model for odd
n ≥ 3. We focus on the chiral case as it is the easiest to
analyze theoretically. The family of Hamiltonians is given
by the form Eq. (25) with

Ā ¼
�

0 α
2
UðrÞ

α
2
Uð−rÞ 0

�
;

UðrÞ ¼
Xn−1
j¼0

eið2π=nÞje−iqi·r; ð59Þ

with qj ¼ ½cosð2πj=n − π=2Þ�, sin½2πj=n − π=2Þ�. Clearly,
Eq. (59) reduces to the CTBG Hamiltonian [15] for
n ¼ 3. For n > 3 the model is not crystalline anymore,
but nevertheless the formal analysis of magic angles in
CTBG continues to hold. That is, we can calculate by
perturbation theory in α the correction to the zero-energy
wave functions. We get a zero-energy wave function of
the form

ψKðrÞ ¼
X∞
n¼0

ðα∂̄−1ĀÞn
�
1

0

�
; ð60Þ

where the operator ∂̄−1 is defined in Eq. (42). Note that ∂̄−1

is undefined for q ¼ 0, but the Cn symmetry prevents zero-
momentum terms from appearing in the perturbation series.
Another zero-energy wave function is given by acting on
ψK with the intravalley C2 symmetry C2 ¼ ηyðr → −rÞ.
While the Dirac velocity is no longer well defined (as

there are no Bloch wave functions), the Wronskian operator
W given by Eq. (28) still is. Since the “Dirac cone” wave
functions are still reflection symmetric, we have δZ ¼ 1 for
the vanishing of the formal Dirac velocity given by

vD ¼ hC2ψKjWjψKi ¼ hψKð−rÞjψKðrÞi: ð61Þ

When vD vanishes we find from Eq. (D4) that ψK
must have extensively many zeros (that is, the number
of zeros in a given area being proportional to the area).
By repeating the analysis in Appendix D we, therefore,
find a “band” with an extensive degeneracy of zero-energy
wave functions.
In Appendix G we describe the results of a perturbative

calculation of vD similar to the one detailed in Ref. [15].
For n ¼ 5 we find the first magic angle at α0 ¼ 0.32. We
plot the resulting wave function in Fig. 8. Each zero of the
wave function can be used to construct a zero-energy state.
If the system is confined to a finite size L, the number of
zero-energy states (up to corrections of order 1=L) will
equal the total number of zeros of the magic-angle wave
function, and will be extensive with the system size.

FIG. 8. The wave function ψK in the chiral C5-symmetric
model Eq. (59) at the magic angle. The orange points signify
zeros of the wave function.
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VI. DISCUSSION

In this work, we discuss the symmetry structure that is
required for the flattening of bands of Dirac fermions. We
start with the requirement for the Dirac velocity to vanish
and give examples in TBG and a Dirac cone on the surface
of a 3D topological insulator. Afterward, we discuss the
vanishing of any dispersion, namely, the symmetry require-
ments for the formation of exactly flat bands. We show that,
for a certain set of symmetries, the vanishing of the Dirac
velocity implies that the band is exactly flat.
The symmetry considerations which allow us to calcu-

late δZ do not provide us with a recipe for writing a
Hamiltonian with δZ parameters which can have a vanish-
ing velocity, but generically suggest natural candidates for
flat-band Hamiltonians. In one of the cases, which we
studied in Sec. III, the existence of an extra symmetry
seems to impede such vanishing by the most natural
candidate Hamiltonian. This observation may indicate that
there may be further symmetry considerations that may
guide the search for such Hamiltonians. These are left here
as a subject for future research.
While in thisworkwe focusmainly on2Dmoirématerials,

much of our discussion can be straightforwardly extended to
other systems and different tuning parameters. For example,
one can consider 3D nodal linematerials, where each kz slice
can be viewed as a 2D subsystem, and kz can serve as an
adiabatic parameter. Another interesting future question is
the generalization of our results in Sec. IV to the case of
SUðNÞ gauge fields. Studies of specific models, such as
alternating-twist n-layer graphene [5] and chiral twisted
graphene multilayers [62,63], show the richness of states
that might arise in such cases. In the former, one can
encounter exactly flat bands coexisting with dispersive
bands, while in the latter we see exactly flat bands with
Chren numbersC > 2. It would be interesting to seewhether
it is possible to give a classification of the possible states in
that case, in terms of the underlying symmetries.
Finally, another interesting direction is an experimental

realization of the models we present here. The flat-band
models discussed in Sec. V are theoretically intriguing, but
more work is needed if one wishes to find candidates for
experimental systems which host them. On the other hand,
we believe that the TI models discussed in Sec. III can be
realized using currently available experimental capabilities.
Such an increase in the density of states on the surface of a
TI could give rise to intrinsic superconductivity or corre-
lated insulators [64] on the surface of a TI, or, more
exotically, a gapped state that is symmetric to both time
reversal and charge conservation. Such a state must be
topologically ordered with quasiparticles satisfying non-
Abelian statistics [65–70].
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APPENDIX A: RIGOROUS DEFINITION OF δZ

Here we provide a more rigorous notion of δZ.
Specifically, we prove the following theorem.
Theorem.—Let Hα⃗ðkÞ be a Bloch Hamiltonian with nD

degenerate Dirac cones at k ¼ kD with energy ED (in
general, both kD and ED can depend on α⃗), such that
Hα⃗ðkDÞ is symmetric under a group G. We assume that Hα⃗

is controlled by a set of continuous parameters α⃗ ¼
α1;…; αd such that the Dirac point has the same degeneracy
for all values of α⃗. Further assume that for some parameter
choice α⃗0 the Dirac velocity matrices,

ρðviÞmn ¼ hψmjvijψni; ðA1Þ

vanish and that the gap between the degenerate Dirac cone
wave functions and the higher bands is not closed. Then
there exists (locally) a manifold of dimension ≥ d − δZ in α⃗
space in which Eq. (A1) vanishes. Here δZ > 0 is defined
by Eq. (4) as the dimension of the vector space V of tuple of
matrices ðMx;MyÞ satisfying Eq. (3).
Before proving the theorem, a few notes are in order.
(1) The symmetries in G can be either unitary or

antiunitary. We also allow for symmetries that
anticommute with HðkDÞ.

(2) Here δZ is an upper bound to the codimension of the
zero-velocity manifold. Cases where δZ is strictly
larger than the codimension should arise in the case
where there are additional low-energy emergent
symmetries at the Dirac cones. An example can be
given in theC3-brokenCTBGHamiltonian [Eq. (E1)]:
In this case, the exact Hamiltonian does not have a
rotational symmetry relating vx and vy. On the other
hand, the velocity operators satisfy Eq. (30), giving
rise to an additional constraint on the codimension.

(3) When the gap with the upper bands closes, the Dirac
velocity representations are no longer required to be
continuous since ψ i are no longer continuous.
A gap closing can therefore create a boundary
(of dimension < d − δZ) to the zero-velocity mani-
fold. We give an example of this scenario in
Appendix F.

Proof.—Since the gap between the degenerate point
and the other bands does not close, we can calculate the
correction to ρðôÞ for any operator ô via first-order
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perturbation theory; that is,

∂ρðôÞmn

∂α⃗
¼

�
∂ψm

∂α⃗
jôjψn

�
þ hψmj

∂ô
∂α⃗

jψni

þ
�
ψmjôj

∂ψn

∂α⃗

�
; ðA2Þ

where for the velocity operator,

∂ψn

∂a⃗
¼

X
i
0 hψ ij ∂H∂α⃗ jψni

Ei − En
jψ ii; ðA3Þ

∂ô
∂α⃗

¼ ∂
2H

∂α⃗∂ki
; ðA4Þ

with the sum running only on ψ i outside the degenerate
space. In the case of unitary operators g ∈ G, which
preserve the degenerate subspace, we have

�
ψmjgj

∂ψn

∂α⃗

�
¼ 0; ðA5Þ

∂g
∂α⃗

¼ 0; ðA6Þ

so we find ∂α⃗ρðgÞ ¼ 0. We then get for vi that

ρðgÞ−1 ∂ρðviÞ
∂α⃗

ρðgÞ ¼ ∂

∂α⃗
½ρðgÞ−1ρðviÞρðgÞ�

¼ ∂

∂α⃗
ρðg−1vigÞ: ðA7Þ

We also have

g−1vig ¼
X
j

γgi;jvj; ðA8Þ

where γgi;j are real constants that depend on whether g
commutes or anticommutes with H, as well as the trans-
formation that g induces on k. Combining Eqs. (A7)
and (A8) gives

ρðgÞ−1 ∂ρðviÞ
∂α⃗

ρðgÞ ¼
X
j

γgi;j
∂ρðvjÞ
∂α⃗

: ðA9Þ

For a given set of matrix representations ρðgÞ for g ∈ G,
Eq. (A9) gives a set of linear equations on the tuples
(ρðvxÞ; ρðvyÞ). The tuples satisfying Eq. (A9) then form
a vector space whose dimension is δZ [see the definition
of δZ in Eq. (4)]. There must therefore be at least d − δZ
directions in α⃗ space in which the velocity does not change,
giving a (local) zero-velocity manifold around α⃗0 whose
dimension is at least d − δZ. ▪

APPENDIX B: REVIEW OF THE BISTRITZER-
MACDONALD MODEL AND SYMMETRIES

Here we review the continuum model of twisted bilayer
graphene proposed by Bistritzer and MacDonald [1].

1. TBG Hamiltonian

TheBistritzer-MacDonaldHamiltonian describes twisted
bilayer graphene at small angles and low energies, at a single
valley of the graphene layers. It is given by [1,71,72]

H ¼
�
hð−θ=2Þ TðrÞ
T†ðrÞ hðθ=2Þ

�
; ðB1Þ

hðθÞ ¼ −ivσθ · ∇; ðB2Þ

TðrÞ ¼ w
X
j

e−iqj·rTj; ðB3Þ

where σθ ¼ e−iθσz=2ðσx; σyÞeiθσz=2. The single-layer h are
the Hamiltonians for a single Dirac cone in each graphene
layer, twisted by a small angle. The tunnelingmatricesTi are

T1 ¼
�
κ 1

1 κ

�
;

T2;3 ¼
�

κ e∓iϕ

e�iϕ κ

�
; ðB4Þ

withϕ¼2π=3 and q1¼kθð0;−1Þ, q2;3 ¼ kθð�
ffiffiffi
3

p
; 1Þ=2.We

have kθ ¼ 2 sin ðθ=2ÞkD ≈ θkD, where kD ¼ ð4π=3 ffiffiffi
3

p
a0Þ

and a0 ≈ 1.4 Å is the distance between atoms in graphene.
The scale w ≈ 110 meV is the energy scale associated with
the tunneling between the layers, and the factor 0 ≤ κ ≤ 1
determines the ratio between AA and AB tunneling between
the sublattices of the graphene layers. Real-world TBG has
κ ≈ 0.7 as a result of lattice relaxation [73].
Important to some of our discussion is the chiral

limit of TBG (CTBG) obtained by setting κ ¼ 0. Under
this assumption, we can remove the θ dependence in
hðθ=2Þ by a gauge transformation. To write the resulting
Hamiltonian in a form compatible with Eq. (25), we further
rescale the Hamiltonian by defining H ¼ H=E0, where
E0 ¼ kθw, define the dimensionless parameter α ¼ w=kθv,
and rearrange the rows so that the Hamiltonian acts on the
spinor ðψ1;ψ2; χ1; χ2Þ (here the indices are layer indices,
and ψ , χ live on the A, B sublattices, respectively). We
obtain the chiral Hamiltonian [15,38]

Hchiral ¼
�

0 D�ð−rÞ
DðrÞ 0

�
;

DðrÞ ¼
�−2ik−1θ ∂̄ αUðrÞ
αUð−rÞ −2ik−1θ ∂̄

�
; ðB5Þ

SHEFFER, QUEIROZ, and STERN PHYS. REV. X 13, 021012 (2023)

021012-14



where z ¼ xþ iy, ∂̄ ¼ 1
2
ð∂x þ i∂yÞ, and UðrÞ ¼ eiq1·rþ

eiϕe−iq2·r þ e−iϕe−iq2·r.

2. Symmetries

Let us discuss the symmetries of the BM Hamiltonian
Eq. (B1). We define the Pauli matrices σi, ηi in sublattice
and layer space, respectively. The point symmetries acting
within the valley are given by [74]

C2T∶ σxKðr → −rÞ;
C3∶ e−ið2π=3Þσzðr → R3rÞ;

C2;x∶ ηxσxðy → −yÞ; ðB6Þ

where K is the complex-conjugation operator and
R3 is the rotation matrix by 2π=3. Of the three symmetries
described above, only the first two preserve the Dirac
points.
As a result of the small angle between the layers, the BM

Hamiltonian has an additional approximate particle-hole
symmetry. If we take the approximation of setting θ ¼ 0 in
hðθÞ, the resulting Hamiltonian has a particle-hole sym-
metry given by [25]

C∶ ηyσxK: ðB7Þ

In the real-world model of TBG, the symmetry is broken in
order OðθÞ. The combination CC2;x gives an additional
antisymmetry that preserves the Dirac cone; that is,

CC2;x∶ ηzKðy → −yÞ: ðB8Þ

Finally, the chiral model has, besides C, the additional
chiral symmetry

S∶ σz: ðB9Þ

Since in the chiral model the θ dependence in h is removed
by a gauge transformation, the unitary particle-hole sym-
metry C is exact here. We can therefore combine S and C
to obtain an intravalley unitary rotation symmetry that
sends r → −r [44]. By combining the intravalley rotation
with C2T we obtain the intravalley time-reversal symmetry
T 0 ¼ σyηyK which satisfies ðT 0Þ2 ¼ þ1. This shows that
the CTBG model is indeed in class CI.

APPENDIX C: ADDITIONAL PARAMETERS
FOR TUNING A C2-SYMMETRIC

VANISHING-VELOCITY DIRAC CONE

Here we elaborate on our discussion of the Dirac cone on
the surface of a 3D TI. In particular, we study additional
parameters (besides the potential amplitude) which can be
tuned to obtain a vanishing velocity for a C2-symmetric
Dirac cone in a potential. The Hamiltonian of the form

Eqs. (13) and (16) is defined to be consistent with the T,
Mx, and C2 symmetries, but is not the most general form
consistent with these symmetries. More generally, we can
write an anisotropic form for the Dirac cone:

H¼ vxσxpxþvyσypyþ2ux cosqxxþ2uy cosqyy: ðC1Þ

Here vx=vy can be controlled by applying strain on the
TI while qx=qy can be controlled (for example) by an
asymmetry in the dielectric pattern. By rescaling the y axis
we can make vy ¼ vx ¼ v0. We, therefore, write the
Hamiltonian

H ¼ v0p · σ þ 2uðcos q0xþ βu cos q0βqyÞ; ðC2Þ

which is controlled by the dimensionless parameters
βu; βq; u=q0v0 (the first two define the C4-symmetry
breaking). In Fig. 9 we plot the velocity of the Dirac cone
of Eq. (C2) at charge neutrality as a function of u; βq. The
results show similar magic parameters to the case discussed
in the main text [see Fig. 5(a)].

APPENDIX D: WRONSKIAN OPERATOR AND
REQUIREMENTS FOR EXACTLY FLAT BANDS

In this appendix, we restate some results from Ref. [17]
that are useful to our discussion of the condition of exactly
flat bands in chiral-symmetric continuum models. We
begin with a Hamiltonian of the form

H ¼
�

0 D†

D 0

�
;

D ¼ −2iv0ð∂̄þ ĀÞ; ðD1Þ

where ∂̄ ¼ 1
2
ð∂x þ i∂yÞ, Ā ¼ Ax − iAy, with A⃗ being an

SU(2) gauge potential. We assume that H is symmetric
under translations by the lattice vectors a1, a2. Given two

FIG. 9. The “absolute Dirac velocity” of the Dirac cone
at charge neutrality of the Hamiltonian Eq. (C2) [similar to
Fig 5(a)]. The dark valleys are points of vanishing velocity.
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solutions ψa, ψb of the zero mode equation,

DψðrÞ ¼ 0; ðD2Þ

one can write the Wronskian:

IðrÞ ¼ ψa;1ðrÞψb;2ðrÞ − ψb;1ðrÞψa;2ðrÞ: ðD3Þ

Importantly, we find that IðrÞ ¼ const. This is because

∂̄IðrÞ ¼ i∂̄ðψT
aηyψbÞ ¼ −iψT

aðĀTηy þ ηyĀÞψb

¼ −iψT
aðηy tr ĀÞψb ¼ −tr Ā · IðrÞ:

When there is no external magnetic field, we have trĀ ¼ 0,
so IðrÞ ¼ IðzÞ. However, since IðzÞ has no singularity it
must be constant.
Next, we find that when I ¼ 0, there must be an exactly

flat band at zero energy. This is because, in that case,
we must have

ψbðrÞ ¼ νðrÞψaðrÞ: ðD4Þ

We have, however, ∂̄νðrÞ ¼ 0, as can be seen by applying
D on both sides of Eq. (D4). We can therefore write
νðrÞ ¼ νðzÞ. Assuming that ψa;b are orthogonal (which
must be the case if they are positioned on different points in
the BZ), νðzÞ is a nonconstant meromorphic function. It
therefore must have a pole at some point z0 in the unit cell.
At this point, ψa must have a zero. We can then construct
additional wave functions in the flat band by writing

ψkðrÞ ¼
ϑ1ðz−z0a1

þ k·ðωa1−a2Þ
2π j a2a1Þ

ϑ1ðz−z0a1
j a2a1Þ

eiðk·a1Þðz=a1ÞψaðrÞ; ðD5Þ

where ai ¼ ai;x þ ai;y, with ai being lattice vectors. Here
ϑ1ðzjτÞ is the Jacobi theta function, defined by

ϑ1ðzjτÞ¼
X∞
n¼−∞

ð−1Þn−1=2eiπðnþ1=2Þ2τe2πiðnþ1=2Þz

¼ 2
X∞
n¼0

ð−1Þneiπðnþ1=2Þ2τ sin ½2πðnþ1=2Þz�: ðD6Þ

Importantly, the pole of the ϑ1 cancels the zero at ψa
making ψk as defined above normalizable.
One can follow an alternative approach for the con-

struction of the flat-band wave functions, which makes the
similarity between the flat-band wave functions and the
lowest Landau levels manifest. We can choose a basis of
such functions in the form [42]

ψðrÞ ¼ fðzÞe−ðπ=2AÞjzj2GðrÞ; ðD7Þ

where fðzÞ is any holomorphic function, A is the
unit cell area, and GðrÞ is a structure function that

captures the lattice dependency of the wave function. It
is given by

GðrÞ ¼ e½π=2Imða2=a1Þ�fjz=a1j2þ½z=a1−2iImðz0=a1Þ2�g

ϑ1ðz−z0a1
j a2a1Þ

ψaðrÞ: ðD8Þ

Interestingly, it can be checked that jGðrÞj is periodic with
the lattice.

APPENDIX E: C3 SYMMETRY
BREAKING IN CTBG

Here we discuss the effects of C3 symmetry breaking in
CTBG. For concreteness, we consider the Hamiltonian
Eq. (D1) with

D ¼
�−2ik−1θ ∂̄ αUðrÞ
αUð−rÞ −2ik−1θ ∂̄

�
;

UðrÞ ¼ ð1þ βÞe−iq1·r þ eiϕe−iq2·r þ e−iϕe−iq3·r; ðE1Þ
where q1 ¼ kθð0;−1Þ, q2;3 ¼ kθð�

ffiffiffi
3

p
=2; 1=2Þ, and

ϕ ¼ 2π=3. Here α is the layer coupling scale and β ≪ 1
is the C3 symmetry-breaking scale.
Since the Hamiltonian still has a chiral and a reflection

symmetry, each of vx, vy vanish with codimension one (as
can be read from Table II). We also see that δZ ¼ 1, since
besides the symmetry requirements, we have the additional
relation between the chiral symmetry and the velocity
operators, given by

vy ¼ −iSvx
⇒ ρðvyÞ ¼ −iρðSÞρðvxÞ; ðE2Þ

so ρðvyÞ ¼ 0 if and only if ρðvxÞ ¼ 0. This analysis shows
us that the Dirac velocity can be tuned to vanish by tuning α
even when C3 is broken. On the other hand, for β ≠ 0 the
vanishing of the Dirac velocity is not accompanied by the
exact vanishing of the band dispersion. Rather, the minimal
bandwidth scales linearly with β at small β. The key insight
for explaining the nonvanishing of the bandwidth is to note
that the analysis presented in Appendix D requires the
existence of two orthogonal zero-velocity wave functions
ψa;b in Eq. (D4) for which IðrÞ ¼ 0. Here, I tends to zero,
but ψa;b become identical to one another.
When the C3 symmetry is broken, the Dirac points are no

longer fixed to the K, K0 points. In fact, to the first order in
β the displacement δkD of the Dirac cones away from K, K0
scales as δkD ¼ O½β=vDðαÞ� and, therefore, diverges near
the magic angle [75,76]. As a result of this divergence,
when α is varied around the magic angle the Dirac cones
travel around the BZ, meeting to form quadratic band-
touching points (see Fig. 10). While the velocity (and hence
I) indeed vanishes at the QBT point, as required from our
analysis of δZ, it only happens since ψa and ψb become
identical to one another. When the Dirac cones form a QBT
there is only a single zero-velocity σz ¼ 1 wave function at
this point. In that case, νðrÞ as defined in Eq. (D4) is
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constant, does not have any poles, and therefore does not
guarantee any zeros of ψa.

APPENDIX F: C4 SYMMETRY BREAKING
IN THE C4FB MODEL

The C4FB model Eq. (45) gives a subtle example to our
analysis of δZ and in particular the theorem we prove in
Appendix A. To simplify our analysis, we begin by con-
structing a continuum model with the same symmetries as
the C4FBmodel, but which is easier to analyze.We consider

H ¼ k · σ þ αTðrÞ; ðF1Þ

TðrÞ¼ ηy
X
n

½1þð−1Þnβ1�eiqn·r½cosðθnÞσxþ sinðθnÞσy�

þηx
X
n

½1þð−1Þnβ2�eiq0n·r½cosðθ0nÞσxþ sinðθ0nÞσy�;

ðF2Þ

where θn ¼ f0; ðπ=2Þ; π; ð3π=2Þg, θ0n ¼ fðπ=4Þ; ð3π=4Þ;
ð5π=4Þ; ð7π=4Þg, and the inverse lattice vectors are given
by qn ¼ ðcos θn; sin θnÞ, q0n ¼ ðcos θ0n; sin θ0nÞ (see Fig. 11).
The Hamiltonian has four degenerate zero-energy wave
functions at k ¼ 0, corresponding to two copies of the
Dirac cone.
The terms β1;2 break the C4 symmetry of the model to

C2. Note that when either of β1;2 is zero there remains a
reflection symmetry. From Table III we see that in the
presence of any reflection symmetry we have δZ ¼ 1. In the
discussion of the C4-symmetric model, we show that when
the model has flat bands there must be at least 8 flat bands
at E ¼ 0 (4 per S eigenvalue). A similar argument shows

that in the presence of a weaker C2 symmetry we must have
at least 4 flat bands (2 per S eigenvalue).
Interestingly, we find [Fig. 12(a)] that the magic angle

obtained by tuning α at β1;2 ¼ 0 is unstable when the C4

symmetry is broken by a nonzero β1;2. That is, taking
β2 ¼ 0, β1 ≠ 0, for example, the codimension of the zero
Dirac velocity manifold in the ðα; β1Þ space is not δZ ¼ 1 as
can naively be expected from Table III. Rather, the velocity
vanishes on a point in ðα; β1Þ space (where β1 ¼ 0).
This apparent contradiction is resolved by noting that

once either β1 or β2 is nonzero, the conditions of the
theorem we prove in Appendix A are not satisfied, and
Table III cannot be used to infer the codimension. Namely,
the theorem requires that there is a gap between the Dirac
cone and the higher bands. In the case discussed here, for
β1;2 ¼ 0 the C4 symmetry requires that there are 8 degen-
erate zero-energy bands at the magic angle. Since the Dirac
cone is only fourfold degenerate, there must be 4 additional
states closing the band gap (see Fig. 13). In the presence of
the C4 symmetry the additional bands do not hybridize with
the Dirac point wave functions as they have different C4

(a)

FIG. 10. (a) The trajectory of the Dirac points in a C3-broken CTBG near the magic angle when α is varied. For a small symmetry-
breaking parameter β the Dirac cones remain close to the K, K0 points away from the magic angle. Near the magic angle, the
displacement δkD diverges and the Dirac cones travel around the BZ, meeting twice to form QBT points at the Γ andM points. (b) The
normalized Dirac velocity at the Dirac cones for C3-symmetric (β ¼ 0) and weakly C3-broken (β ¼ 0.05) CTBG Hamiltonian Eq. (E1).
In the C3-broken case, the Dirac velocity vanishes twice, at the two QBT points.

FIG. 11. Tunneling vectors for the simplified C4FB model
Eq. (F2). The blue and black vectors correspond to the terms in
the first and second row of Eq. (F2), respectively.
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eigenvalues, and we can still use the results of Appendix A.
On the other hand, C4 breaking couples the Dirac cones
and higher-band wave functions, breaking the assumptions
made in the theorem.

A different way of understanding this phenomenon is
that the definition of f as in Eq. (5) is by adiabatic
continuation: we always require that the wave functions
are changed continuously as we vary the control param-
eters. Since the Dirac points wave functions are changed
discontinuously at the magic angle, f cannot be defined to
be both continuous and single valued. As an example,
in Fig. 12(b) we draw fðα; β1Þ going in two trajectories,
one with β1 ¼ 0 and the other with nonzero β1. The sign
obtained for fðα; β1Þ is opposite as a result of the
discontinuity.

APPENDIX G: PERTURBATION THEORY
FOR THE Cn-SYMMETRIC

QUASICRYSTALLINE MODELS

Here we calculate in perturbation theory the formal Dirac
velocity for the quasicrystalline models Eq. (59).

1. Perturbation theory: Analytical results

Let us calculate the first orders for the perturbation series
giving vD. The wave functions are given in the form

ψKðrÞ ¼
1

N

�
ψ0ðrÞ þ α2ψ2ðrÞ þ � � �

αψ1ðrÞ þ � � �

�
; ðG1Þ

where N is a normalization constant. ψ i are obtained from
Eq. (60). The first terms are given by

(a)

(b)

FIG. 12. (a) The value of the Dirac velocity at the Dirac cone
for the Hamiltonian Eq. (F2) with a broken C4 symmetry. The
codimension of the zero Dirac velocity manifold is two (the dark
point). (b) The values of the “signed” Dirac velocity f [as defined
in Eq. (5)] going through two different trajectories. Since the
wave functions are discontinuous at the magic angle, the
velocities acquire an opposite sign.

FIG. 13. The band structure of the C4FB model near the
parameter values at which the velocity vanishes. Each band in the
picture is doubly degenerate as a result of an antiunitary
symmetry C2T 0 that squares to −1. We therefore find that there
are eight bands connected to E ¼ 0, all of which become exactly
flat when the velocity vanishes.

TABLE II. δZ for a single Dirac cone. The codimension δZ of
the zero Dirac velocity manifold for a single nondegenerate Dirac
cone, according to the symmetry group, with the symmetries Θ,
Π, Σ, R defined in Eq. (6). In the column of each symmetry a zero
denotes the absence of the symmetry, while the sign denotes
the square of the symmetry. The signs of the reflection operator
RζΘ;ζΠ reflect the commutation relations of R with Θ, Π. We omit
the rows that could not give rise to a single Dirac cone with the
listed symmetries. Center dots signify symmetry groups which
cannot support the algebra of a Dirac cone. For each symmetry
group we specify a representation for theΘ,Π, Σ, R operators and
write matrices spanning the linear space of possible vx repre-
sentations that satisfy Eqs. (6) and (7). δZ is then the dimension of
this linear space.

Θ Π Σ R ρðΘÞ ρðΠÞ ρðΣÞ ρðRÞ ρðvxÞ δZ

0 0 0 R � � � � � � � � � σy σx;z 2
0 � � � � � � � � � � � � σx;y;z 3

0 0 1 R− � � � � � � σz σy σx 1
0 � � � � � � σz � � � σx;y 2

0 þ 0 Rþ � � � σxK � � � σy σx 1
0 � � � σxK � � � � � � σx;y 2

− þ 0 R−þ σyK σxK σz σy σx 1
0 σyK σxK σz � � � σx;y 2

− 0 0 R− σyK � � � � � � σy σx;z 2
0 σyK � � � � � � � � � σx;y;z 3
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ψ0ðrÞ¼1;

ψ1ðrÞ¼−i
Xn
j¼1

eiqj·r;

ψ2ðrÞ¼−
Xn−1
k¼1

Xn−1
j¼0

e−iðqjþk−qjÞ·r

1−eið2πp=nÞk
;

ψ3ðrÞ¼ i
Xn−1
l¼0

Xn−1
k¼1

Xn−1
j¼1

×
e−iðqjþk−qj−qjþkþlÞ·r

ð1−eið2π=nÞkÞð1þe−ð2πi=nÞðkþlÞ−eð2πi=nÞlÞ : ðG2Þ

The velocities are then obtained using Eq. (61) and are
given in the form

vD ¼ 1þ v2α2 þ v4α4 þ � � �
1þ N2α

2 þ N4α
4 þ � � � · v0; ðG3Þ

with the first coefficients given by

v2 ¼ −n; ðG4Þ

v4 ¼ n
Xn−1
k¼1

�
1 − 2 cos 2πkn þ cos 4πkn

16sin4 πk
n

−
cos 2πkn − cos 4πkn

2sin2 πk
n

�
;

ðG5Þ

TABLE III. δZ for two degenerate Dirac cones: Same as Table II but for doubly degenerate Dirac cones. Center dots in the δZ column
signify symmetry groups which cannot support the algebra of a Dirac cone.

Θ Π Σ R ρðΘÞ ρðΠÞ ρðΣÞ ρðRÞ ρðvxÞ δZ

0 0 0 R � � � � � � � � � σy σx;z; σx;zηx;y;z 8
0 � � � � � � � � � � � � σx;y;z; ηx;y;z; σx;y;zηx;y;z 15

0 0 1 R− � � � � � � σz σy σx; ηx;y;zσx 4
Rþ � � � � � � ηz σy σx;zηx;y 4
0 � � � � � � σz � � � σx;y; σx;yηx;y;z 8

þ 0 0 Rþ ηyσyK � � � � � � ηyσy σx;z; ηx;z 4
R− ηyσyK � � � � � � σy σx;z 2
0 ηyσyK � � � � � � � � � σx;y;z; ηx;y;z 6

þ þ 1 Rþþ ηyσyK σxK ηyσz ηxσy σx, ηy 2
R−− � � � � � � � � � � � � � � � � � �
Rþ− ηyσyK σxK ηyσz ηyσy σx; ηx;z 3
R−þ ηyσyK σxK ηyσz σy σx 1
0 ηyσyK σxK � � � � � � σx;y; ηx;z 4

0 þ 0 Rþ � � � σxK � � � σy σx; σzηy; σxηx;z 4
R− � � � σxK � � � ηy σy σx; σyηx;z; ηx;z; ηyσz 7
0 � � � σxK � � � � � � σx;y; σzηy; ηz;x; σx;yηz;x 9

− þ 1 Rþþ ηzσyK σxK σzηz ηxσy σx; σyηz 2
R−− ηzσyK σxK σzηz ηyσy σx; ηx; ηzσy; ηyσz 4
Rþ− σyK σxK σz ηyσy σx; σyηx;z 3
R−þ σyK σxK σz σy σx; σxηx;z 3
0 σyK σxK σz � � � σx;y; σx;yηx;z 6

− 0 0 Rþ σyK � � � � � � ηyσy σx;z,σyηx;z, ηy 5
R− σyK � � � � � � σy σx;z; σx;zηx;z 6
0 σyK � � � � � � � � � σx;y;z; σx;y;zηx;z; ηy 10

− − 1 Rþþ � � � � � � � � � � � � � � � � � �
R−− ηxσyK ηyσxK σzηz ηyσy σx; σzηy 2
Rþ− σyK ηyσxK σzηy ηyσy σx 1
R−þ σyK ηyσxK σzηy σy σx; σzηx;z 3
0 ηxσyK ηyσxK σzηz � � � σx;y; σzηx;y 4

0 − 0 Rþ � � � ηyσxK � � � σy σx; σzηx;y;z 4
R− � � � ηyσxK � � � ηyσy σx; σzηy 2
0 � � � ηyσxK � � � � � � σx;y; σzηx;y;z 5

þ − 1 Rþþ � � � � � � � � � � � � � � � � � �
R−− � � � � � � � � � � � � � � � � � �
Rþ− ηyσyK ηyσxK σz ηyσy σx 1
R−þ ηyσyK ηyσxK σz σy σx 1
0 ηyσyK ηyσxK σz � � � σx;y 2
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N2 ¼ n; ðG6Þ

N4 ¼ n
Xn−1
k¼1

1þ 2 cos 2πkn − 2 cos 4πkn
4sin2 πk

n

: ðG7Þ

By solving for vD ¼ 0 we can calculate the first magic
angle for any n. Importantly, since δZ ¼ 1, the coefficients
of the perturbation expansion are real, which allows us to
find a magic angle at finite α.

2. Perturbation theory: Numerical results

We can numerically calculate higher orders in the
perturbation series for n ¼ 5. We find

vDðn¼5Þ¼v0

×
1−5α2−10α4−177.6α6−1105.5α8−9309.2α10þ���
1þ5α2þ20α4þ115.2α6þ1705.0α8þ18841.0α10þ���;

ðG8Þ

which gives a magic angle at α0 ¼ 0.32.
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Double-Layer Graphene, Proc. Natl. Acad. Sci. U.S.A. 108,
12233 (2011).

[2] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and
Z. Barticevic, Flat Bands in Slightly Twisted Bilayer
Graphene: Tight-Binding Calculations, Phys. Rev. B 82,
121407(R) (2010).

[3] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional Supercon-
ductivity in Magic-Angle Graphene Superlattices, Nature
(London) 556, 43 (2018).

[4] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
Insulator Behaviour at Half-Filling in Magic-Angle
Graphene Superlattices, Nature (London) 556, 80 (2018).

[5] E. Khalaf, A. J. Kruchkov, G. Tarnopolsky, and A.
Vishwanath, Magic Angle Hierarchy in Twisted Graphene
Multilayers, Phys. Rev. B 100, 085109 (2019).

[6] S. Carr, C. Li, Z. Zhu, E. Kaxiras, S. Sachdev, and A.
Kruchkov, Ultraheavy and Ultrarelativistic Dirac Quasi-
particles in Sandwiched Graphenes, Nano Lett. 20, 3030
(2020).

[7] Z. Zhu, S. Carr, D. Massatt, M. Luskin, and E. Kaxiras,
Twisted Trilayer Graphene: A Precisely Tunable Platform
for Correlated Electrons, Phys. Rev. Lett. 125, 116404
(2020).

[8] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Tunable Strongly Coupled Superconductiv-
ity in Magic-Angle Twisted Trilayer Graphene, Nature
(London) 590, 249 (2021).

[9] P. A. Volkov, J. H. Wilson, and J. Pixley, Magic Angles and
Correlations in Twisted Nodal Superconductors, arXiv:
2012.07860.

[10] O. Can, T. Tummuru, R. P. Day, I. Elfimov, A. Damascelli,
and M. Franz, High-Temperature Topological Supercon-
ductivity in Twisted Double-Layer Copper Oxides, Nat.
Phys. 17, 519 (2021).

[11] J. Cano, S. Fang, J. H. Pixley, and J. H. Wilson, Moiré
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Moiré Lattice, Nature (London) 605, 57 (2022).

[32] N. F. Yuan, H. Isobe, and L. Fu, Magic of High-Order van
Hove Singularity, Nat. Commun. 10, 1 (2019).

[33] N. F. Q. Yuan and L. Fu, Classification of Critical Points in
Energy Bands Based on Topology, Scaling, and Symmetry,
Phys. Rev. B 101, 125120 (2020).

[34] C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A.
Pasupathy, P. Moon, M. Koshino, P. Kim, and C. R.
Dean, Band Structure Engineering of 2D Materials Using
Patterned Dielectric Superlattices, Nat. Nanotechnol. 13,
566 (2018).

[35] R. L. Willett, M. A. Paalanen, R. R. Ruel, K.W. West, L. N.
Pfeiffer, and D. J. Bishop, Anomalous Sound Propagation at
ν ¼ 1=2 in a 2D Electron Gas: Observation of a Sponta-
neously Broken Translational Symmetry?, Phys. Rev. Lett.
65, 112 (1990).

[36] S. H. Simon, Coupling of Surface Acoustic Waves to a Two-
Dimensional Electron Gas, Phys. Rev. B 54, 13878 (1996).

[37] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A. Vishwanath,
and M. P. Zaletel, Ground State and Hidden Symmetry of
Magic-Angle Graphene at Even Integer Filling, Phys. Rev.
X 10, 031034 (2020).

[38] P. San-Jose, J. González, and F. Guinea, Non-Abelian
Gauge Potentials in Graphene Bilayers, Phys. Rev. Lett.
108, 216802 (2012).

[39] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,
Classification of Topological Insulators and Superconduc-
tors in Three Spatial Dimensions, Phys. Rev. B 78, 195125
(2008).

[40] A. P. Schnyder, S. Ryu, and A.W.W. Ludwig, Lattice
Model of a Three-Dimensional Topological Singlet Super-
conductor with Time-Reversal Symmetry, Phys. Rev. Lett.
102, 196804 (2009).

[41] J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang, Exact
Landau Level Description of Geometry and Interaction in a
Flatband, Phys. Rev. Lett. 127, 246403 (2021).

[42] Y. Sheffer and A. Stern, Chiral Magic-Angle Twisted
Bilayer Graphene in a Magnetic Field: Landau Level
Correspondence, Exact Wave Functions, and Fractional
Chern Insulators, Phys. Rev. B 104, 124105 (2021).

[43] The transition at one flux quantum in magic-angle CTBG in
a magnetic field [17,42] can be seen as a transition from a
ð1;−1Þ index to (2, 0).

[44] J. Wang, Y. Zheng, A. J. Millis, and J. Cano, Chiral
Approximation to Twisted Bilayer Graphene: Exact Intra-
valley Inversion Symmetry, Nodal Structure, and Implica-
tions for Higher Magic Angles, Phys. Rev. Res. 3, 023155
(2021).

[45] B. Sutherland, Localization of Electronic Wave Functions
due to Local Topology, Phys. Rev. B 34, 5208 (1986).

[46] D. L. Bergman, C. Wu, and L. Balents, Band Touching
from Real-Space Topology in Frustrated Hopping Models,
Phys. Rev. B 78, 125104 (2008).

[47] Y. Hwang, J.-W. Rhim, and B.-J. Yang, General Construc-
tion of Flat Bands with and without Band Crossings Based
on Wave Function Singularity, Phys. Rev. B 104, 085144
(2021).

[48] D. Călugăru, A. Chew, L. Elcoro, Y. Xu, N. Regnault, Z.-D.
Song, and B. A. Bernevig, General Construction and
Topological Classification of Crystalline Flat Bands,
Nat. Phys. 18, 185 (2022).

[49] A. J. Kollár, M. Fitzpatrick, P. Sarnak, and A. A. Houck,
Line-Graph Lattices: Euclidean and Non-Euclidean Flat
Bands, and Implementations in Circuit Quantum Electro-
dynamics, Commun. Math. Phys. 376, 1909 (2020).

[50] C. S. Chiu, D.-S. Ma, Z.-D. Song, B. A. Bernevig, and A. A.
Houck, Fragile Topology in Line-Graph Lattices with Two,
Three, or Four Gapped Flat Bands, Phys. Rev. Res. 2,
043414 (2020).

[51] C.-M. Jian, Z.-C. Gu, and X.-L. Qi, Momentum-Space
Instantons and Maximally Localized Flat-Band Topological
Hamiltonians, Phys. Status Solidi RRL 7, 154 (2013).

[52] L. Chen, T. Mazaheri, A. Seidel, and X. Tang, The
Impossibility of Exactly Flat Non-Trivial Chern Bands in
Strictly Local Periodic Tight Binding Models, J. Phys. A 47,
152001 (2014).

[53] G. Chaudhary, A. A. Burkov, and O. G. Heinonen, Twisted
Bilayers of Thin Film Magnetic Topological Insulators,
Phys. Rev. Res. 4, 043034 (2022).

[54] L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in
Three Dimensions, Phys. Rev. Lett. 98, 106803 (2007).

[55] J. E. Moore and L. Balents, Topological Invariants of Time-
Reversal-Invariant Band Structures, Phys. Rev. B 75,
121306(R) (2007).

[56] R. Roy, Topological Phases and the Quantum Spin Hall
Effect in Three Dimensions, Phys. Rev. B 79, 195322
(2009).

[57] M. Z. Hasan and C. L. Kane, Colloquium: Topological
Insulators, Rev. Mod. Phys. 82, 3045 (2010).

[58] A similar argument can be used in the CTBG Hamiltonian
Eq. (B5) to find that there must be at least three zeros per
unit cell for the translation symmetry of the model. Notice,
however, that the Hamiltonian presented in the gauge choice
of Eq. (B5) has a unit cell which is 3 times larger than the
physical unit cell.

[59] P. J. Ledwith, G. Tarnopolsky, E. Khalaf, and A.
Vishwanath, Fractional Chern Insulator States in Twisted
Bilayer Graphene: An Analytical Approach, Phys. Rev. Res.
2, 023237 (2020).

[60] E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge, England,
1996).

[61] F. D. M. Haldane and E. H. Rezayi, Periodic Laughlin-
Jastrow Wave Functions for the Fractional Quantized Hall
Effect, Phys. Rev. B 31, 2529 (1985).

[62] J. Wang and Z. Liu, Hierarchy of Ideal Flatbands in Chiral
Twisted Multilayer Graphene Models, Phys. Rev. Lett. 128,
176403 (2022).

[63] P. J. Ledwith, A. Vishwanath, and E. Khalaf, Family of Ideal
Chern Flatbands with Arbitrary Chern Number in Chiral

SYMMETRIES AS THE GUIDING PRINCIPLE FOR … PHYS. REV. X 13, 021012 (2023)

021012-21

https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1103/PhysRevB.42.6623
https://doi.org/10.1038/s41586-022-04514-6
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevB.101.125120
https://doi.org/10.1038/s41565-018-0138-7
https://doi.org/10.1038/s41565-018-0138-7
https://doi.org/10.1103/PhysRevLett.65.112
https://doi.org/10.1103/PhysRevLett.65.112
https://doi.org/10.1103/PhysRevB.54.13878
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1103/PhysRevLett.108.216802
https://doi.org/10.1103/PhysRevLett.108.216802
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.102.196804
https://doi.org/10.1103/PhysRevLett.102.196804
https://doi.org/10.1103/PhysRevLett.127.246403
https://doi.org/10.1103/PhysRevB.104.L121405
https://doi.org/10.1103/PhysRevResearch.3.023155
https://doi.org/10.1103/PhysRevResearch.3.023155
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevB.78.125104
https://doi.org/10.1103/PhysRevB.104.085144
https://doi.org/10.1103/PhysRevB.104.085144
https://doi.org/10.1038/s41567-021-01445-3
https://doi.org/10.1007/s00220-019-03645-8
https://doi.org/10.1103/PhysRevResearch.2.043414
https://doi.org/10.1103/PhysRevResearch.2.043414
https://doi.org/10.1002/pssr.201206394
https://doi.org/10.1088/1751-8113/47/15/152001
https://doi.org/10.1088/1751-8113/47/15/152001
https://doi.org/10.1103/PhysRevResearch.4.043034
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevResearch.2.023237
https://doi.org/10.1103/PhysRevResearch.2.023237
https://doi.org/10.1103/PhysRevB.31.2529
https://doi.org/10.1103/PhysRevLett.128.176403
https://doi.org/10.1103/PhysRevLett.128.176403


Twisted Graphene Multilayers, Phys. Rev. Lett. 128,
176404 (2022).

[64] D. Guerci, J. Wang, J. Pixley, and J. Cano, Designer Meron
Lattice on the Surface of a Topological Insulator, Phys. Rev.
B 106, 245417 (2022).

[65] M. Levin, F. J. Burnell, M. Koch-Janusz, and A.
Stern, Exactly Soluble Models for Fractional Topological
Insulators in Two and Three Dimensions, Phys. Rev. B 84,
235145 (2011).

[66] P. Bonderson, C. Nayak, and X.-L. Qi, A Time-Reversal
Invariant Topological Phase at the Surface of a 3D
Topological Insulator, J. Stat. Mech. (2013) P09016.

[67] C. Wang, A. C. Potter, and T. Senthil, Gapped Symmetry
Preserving Surface State for the Electron Topological
Insulator, Phys. Rev. B 88, 115137 (2013).

[68] X. Chen, L. Fidkowski, and A. Vishwanath, Symmetry
Enforced Non-Abelian Topological Order at the Surface
of a Topological Insulator, Phys. Rev. B 89, 165132
(2014).

[69] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Symmetry-
Respecting Topologically Ordered Surface Phase of Three-
Dimensional Electron Topological Insulators, Phys. Rev. B
92, 125111 (2015).

[70] A. Stern, Fractionalized Two-Dimensional States on Sur-
faces of Three Dimensional Topological Insulators, Journal
Club for Condensed Matter Physics, 10.36471/JCCM_
October_2013_03 (2013).

[71] R. Bistritzer and A. H. MacDonald, Moiré Butterflies
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