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The 3D Ising transition, the most celebrated and unsolved critical phenomenon in nature, has long been
conjectured to have emergent conformal symmetry, similar to the case of the 2D Ising transition. Yet, the
emergence of conformal invariance in the 3D Ising transition has rarely been explored directly, mainly due
to unavoidable mathematical or conceptual obstructions. Here, we design an innovative way to study the
quantum version of the 3D Ising phase transition on spherical geometry, using the “fuzzy (non-
commutative) sphere” regularization. We accurately calculate and analyze the energy spectra at the
transition, and explicitly demonstrate the state-operator correspondence (i.e., radial quantization), a
fingerprint of conformal field theory. In particular, we identify13 parity-even primary operators within a
high accuracy and two parity-odd operators that were not known before. Our result directly elucidates the
emergent conformal symmetry of the 3D Ising transition, a conjecture made by Polyakov half a century
ago. More importantly, our approach opens a new avenue for studying 3D conformal field theories by
making use of the state-operator correspondence and spherical geometry.
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I. INTRODUCTION

Symmetry is one of the most important organizing
principles in physics. As is well known, symmetries present
microscopically [e.g., condensedmatter systems, ultraviolet
(UV) Lagrangians] can be spontaneously broken at low
energies, giving rise to various distinct phases ofmatter such
as crystals and magnets. Conversely and rather unexpect-
edly, symmetries absent microscopically can emerge at low
energies, and such a phenomenon is called emergent
symmetry. One prominent example is the order-disorder
phase transition of the 2D Ising model, for which Polyakov
discovered emergent conformal symmetry in 1970 [1],
26 years after Onsager’s exact solution [2].
Polyakov’s remarkable discovery of emergent conformal

symmetry in the 2D Ising transition gave birth to conformal
field theory (CFT) [3], a class of quantum field theories
with profound applications in various fields of physics

including statistical mechanics, quantum condensed matter,
string theory, and quantum gravity. In statistical physics, it
is a common belief that many universality classes of
(classical and quantum) phase transitions are captured by
CFTs; however, this has not been proven for 3D transi-
tions [4]. The emergence of conformal symmetry at phase
transitions is not only aesthetically beautiful, but also useful
in understanding the properties of these transitions, such as
computing experimentally measurable critical exponents.
In 2D the (local) conformal symmetry has an infinite-
dimensional algebra, and it makes many 2D CFTs
exactly solvable [3,7]. In d > 2 dimensions, there is only
a finite-dimensional (global) conformal symmetry, i.e.,
SOðdþ 1; 1Þ, with which one is not able to analytically
solve CFTs as in 2D. Therefore, CFTs beyond 2D are rather
poorly understood, with their solutions remaining out-
standing for decades despite their broad appeal to physics
and mathematics.
Historically, the study of lattice models for 2D classical

phase transitions and their quantum cousins (1þ 1D quan-
tum phase transitions) played a key role in the discovery and
understanding of 2D CFTs [1,2,8]. Similar progress in the
study of conformal symmetry for d ≥ 3 dimensional theo-
ries, however, has stalled due to the natural limitation of the
lattice formulation. There are plenty of papers studying 3D
phase transitions on the lattice, e.g., computing critical
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exponents. However, the perspective of conformal symmetry
has rarely been explored [9–14]. The conformal symmetry of
a d-dimensional CFT is most transparent in geometries
such as Rd, Sd, as well as Sd−1 ×R. In particular, CFTs
on Sd−1 ×R obey a property called state-operator corre-
spondence (i.e., radial quantization), which is a direct
consequence of conformal symmetry [8]. Specifically, for
a quantum Hamiltonian defined on sphere Sd−1, its eigen-
states are in one-to-one correspondence with the scaling
operators (including primary and descendant operators) of
the infrared (IR) CFT. Moreover, the energy gaps of these
eigenstates are proportional to the scaling dimensions of their
corresponding scaling operators [15]. This nice feature can
be used to explore various properties of CFTs, including
scaling dimensions of operators, operator product expansion
coefficients, and even operator algebras [8]. For 2D CFTs,
S1 ×R is very natural as one just needs to study a 1þ 1D
quantum lattice model defined on a 1D periodic chain
(i.e., S1) [16–19]. However, simulating lattice models of
d ≥ 3 dimensional CFTs on Sd−1 × R will be problematic,
because a regular lattice cannot be put on a sphere Sd−1≥2 due
to its nontrivial curvature [20]. While efforts have never-
theless been made to discretize the sphere, no signature of
state-operator correspondence has been found so far [21,22].
To overcome this geometric obstacle, in this paper we are

pursuing a different direction; namely, we fuzzify a
sphere [23]. Specifically, we study a 2þ 1D quantum
Ising transition defined on a fuzzy (noncommutative) sphere
in light of Landau level regularization [24]. As a result of this
innovative discretization, we observe almost perfect state-
operator correspondence in surprisingly small system sizes.
We use exact diagonalization to calculate properties of the
2þ 1D Ising transition for up to 16 effective spins, and we
find its low-lying eigenstates (up to 70 lowest states) split
into representations of the 3D conformal symmetry (i.e.,
conformal multiplets), hence directly demonstrating the
emergence of conformal symmetry. Among these low-
energy states, we find 15 conformal primary states, most
of which have not been discovered in any previous model
studies of the 3D Ising transition. Specifically, we find 13
parity-even primaries, whose scaling dimensions agree well
with state-of-the-art conformal bootstrap results [25,26]
with discrepancies smaller than 1.6%. We also identify
two parity-odd primaries which were unknown before.
Our observations directly verify conformal symmetry for

the 3D Ising transition, which was conjectured by Polyakov
50 years ago [1]. Before our results, the most compelling
evidence for the 3D Ising transition being conformal was
from numerical conformal bootstrap [25–29], which
assumes conformal symmetry and found critical exponents
close to the values obtained by various methods such as
Monte Carlo simulation [30,31] and measured by experi-
ments [32]. In addition, there was an effort [14] to justify
the conformal invariance of the 3D Ising by showing that
the virial current [5,6] operator does not exist [33]. Our

obtained operator spectrum from the state-operator corre-
spondence indeed convincingly shows that the 3D Ising
transition does not have the virial current, which is a
structural explanation of the 3D Ising being conformal [35].
A major surprise of our results is that an incredibly small
system size (8–16 total spins) is already enough to yield
accurate conformal data of the 3D Ising CFT. So we expect
this approach to open a new avenue for studying higher
dimensional phase transitions and CFTs. Firstly, there is a
zoo of universalities that can be studied using our approach,
which is amenable to various numerical techniques such as
exact diagnolization (ED), density-matrix renormalization
group (DMRG), and determinantal Monte Carlo. This offers
an opportunity to tackle many open questions regarding
phase transitions, critical phases, and CFTs. Secondly, a
number of newuniversal quantities can be computed once the
3D CFT is simulated on a sphere, such as operator product
expansion coefficients, F (of F theorem) [36–39], and the
spherical binder ratio [40], just to name a few.
The paper is organized as follows. In Sec. II A, we

review background knowledge including the radial quan-
tization of CFTs and the state-operator correspondence.
The spherical Landau level quantization and related fuzzy
sphere are discussed in Sec. II B. Readers familiar with
these topics can skip some of these subsections. In Sec. III,
we formulate spherical Landau levels to regularize the 3D
Ising transition on a fuzzy sphere. A global quantum phase
diagram is presented. In Sec. IV, we present the low-lying
energy spectra at the phase transition point and analyze
their one-to-one correspondence with the scaling operators
as predicted by the Ising CFT. This is the main result of this
paper. And last, we present a discussion and outlook in
Sec. V. Appendixes A–D contains more details about the
formalism and numerical data including the complete
spectrum of N ¼ 4 electrons.

II. REVIEW OF BACKGROUND

A. Radial quantization of CFTs: State-operator
correspondence

In this section we review some basics of radial quan-
tization, and for an elaborated discussion we refer the
readers to CFT lecture notes such as those in Refs. [7,41].
The conformal group in d dimensions SOðdþ 1; 1Þ

is generated by d-dimensional translations Pμ ¼ i∂μ,
d-dimensional Lorentz rotations Mμν ¼ iðxμ∂ν − xν∂μÞ,
dilatations D ¼ ixμ∂μ, and special conformal transforma-
tions Kμ ¼ i½2xμðxν∂νÞ − x2∂μ�. From the operator point of
view, a CFT can be thought of as a theory whose operators
form an infinite-dimensional representation of the con-
formal group. Specifically, one can write CFT operators
fÔαg as eigenoperators (i.e., irreducible representations) of
the dilatation and Lorentz rotation SOðdÞ. In particular,
the eigenvalue Δ of dilatation is called the scaling
dimension of the operator, and it corresponds to the
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exponent in the power law correlation function of the
operator, e.g., hOðxÞOð0Þi ∼ 1=jxj2Δ. One can further
categorize operators into primary operators and descendant
operators: (1) primary operators are operators that are
annihilated by the special conformal transformation Kμ;
(2) descendant operators are not annihilated by Kμ, and all
of them can be obtained by applying translations Pμ

(multiple times) to the primary operators. Therefore, one
can organize CFT operators as primary operators and their
descendants, and each primary and its descendants form a
set of operators called a conformal multiplet [42]. A CFT
has an infinite number of primary operators, which makes it
hard to tackle theoretically. A major task of solving a CFT
is thus to obtain its low-lying (if not full) spectrum of
primary operators.
To facilitate later analysis of our numerical results, we

elaborate a bit more about the operator contents of a 3D
CFT. In 3D the Lorentz rotation group is the familiar SO(3)
group, all the irreducible representations of which are rank-
l symmetric traceless representations, i.e., spin-l repre-
sentations. So all (primary and descendant) operators have
two quantum numbers ðΔ;lÞ. A primary operator O with
quantum number l ¼ 0 is called a scalar operator, and any
of its descendants can be written as

∂ν1 � � � ∂νj□nO; n; j ≥ 0; ð1Þ
with quantum number ðΔþ 2nþ j; jÞ. We note □ ¼ ∂

2.
Here and hereafter all the free indices are symmetrized with
the trace subtracted. The descendants of a spin-l primary
operatorOμ1���μl are a bit more complicated as there are two
different types. The first type can be written as

∂ν1 � � � ∂νj∂μ1 � � � ∂μi□nOμ1���μl ; ð2Þ
with quantum number ðΔþ 2nþ jþ i;lþ j − iÞ for
l ≥ i ≥ 0, n; j ≥ 0. Here and hereafter the repeated indices
shall be contracted. The other type involves the ε tensor of
SO(3), and can be written as

εμlρτ∂ρ∂ν1 � � � ∂νj∂μ1 � � � ∂μi□nOμ1���μl ; ð3Þ
with quantum number ðΔþ 2nþ jþ iþ 1;lþ j − iÞ for
l − 1 ≥ i ≥ 0, n; j ≥ 0. We note that the ε tensor alters
spacetime parity symmetry of Oμ1���μl .
We also remark that conserved operators (i.e., global

symmetry current Jμ and energy momentum tensor Tμν)
should be treated a bit differently, because they satisfy
the conservation equations ∂μJμ ¼ 0 and ∂μTμν ¼ 0.
Therefore, their descendants in Eqs. (2) and (3) should
have i ¼ 0 [43].
Now we turn to the state perspective of CFTs. To define

states of a CFT, we first need to quantize it, or in other
words, find a Hilbert space construction of it. A quantum
phase transition, namely, a quantum Hamiltonian realiza-
tion of a d-dimensional CFT in d − 1 space dimensions,
can be viewed as a way to quantize the CFT. The states of

the CFT are nothing but the quantum Hamiltonian’s
eigenstates. Formally, the quantization of CFTs can be
more general than quantum phase transitions. Specifically,
one can foliate d-dimensional spacetime into (d − 1)-
dimensional surfaces, and each leaf of the foliation is
endowed with its own Hilbert space. One convenient
quantization is radial quantization, which has the d-dimen-
sional Euclidean spaceRd foliated to Sd−1 ×R, as shown in
the left-hand side of Fig. 1. In the radial quantization, the
SOðdÞ Lorentz rotation acts on the Sd−1 sphere, while
the dilatation acts as the scaling of sphere radius. Therefore,
the states defined on the foliation Sd−1 have well-defined
quantum numbers of SOðdÞ rotation and dilatation, and
they are indeed in one-to-one correspondence with oper-
ators of the CFT, dubbed as state-operator correspondence.
For a quantum Hamiltonian realization, the radial quan-

tization described above is not natural, and instead one may
want a quantization scheme that has an identical Hilbert
space on each leaf of foliation. A quantum Hamiltonian is
usually defined on the Md−1 × R manifold: R is the time
direction, while Md−1 is a (d − 1)-dimensional space
manifold (e.g., sphere, torus, etc.), the leaf of foliation,
on which the Hilbert space (and the quantum state) lives. In
order to discuss state-operator correspondence in such a
quantization scheme, one needs to map Rd to the cylinder
Sd−1 ×R using a Weyl transformation [8,15], as shown in
Fig. 1. Under the Weyl transformation the dilatation r →
eλr of Rd becomes the translation along the time direction
τ → τ þ λ of Sd−1 ×R. If the theory has conformal
symmetry, we can simply relate correlators and states on
Rd to those on Sd−1 × R. Moreover, we still have the state-
operator correspondence on the cylinder Sd−1 ×R. In
particular, the state-operator correspondence on the cylin-
der has a nice physical interpretation, namely, the eigen-
states jψni of the CFT quantum Hamiltonian on Sd−1 are in
one-to-one correspondence with the CFToperators, and the
energy gaps δEn of these states are proportional to the
scaling dimensions Δn of CFT operators [8,15]:

FIG. 1. Through a Weyl transformation, Euclidean flat space-
time Rd is mapped to the manifold of cylinder Sd−1 × R. As a
result, a CFT on Rd quantized on equal radius slices can be
described equivalently in terms of a CFT on Sd−1 × R quantized
on equal time slices. The states defined on the Sd−1 × R have
well-defined quantum numbers of SOðdÞ Lorentz rotation and
dilatation, and thus they are in one-to-one correspondence with
operators of the CFT, dubbed as state-operator correspondence.
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δEn ¼ En − E0 ¼
v
R
Δn; ð4Þ

where R is the radius of sphere Sd−1 and v is the velocity of
light that is model dependent. Also the SOðdÞ rotation
symmetry of Sd−1 is identified with the SOðdÞ Lorentz
rotation of the conformal group, so the SOðdÞ quantum
numbers of jψni are identical to those of CFT operators.
We emphasize that in contrast to radial quantization on

Rd, conformal symmetry is indispensable for the state-
operator correspondence of radial quantization on the
cylinder Sd−1 ×R. Therefore, observing the state-operator
correspondence on the cylinder Sd−1 ×R will be direct
evidence for the conformal symmetry of the theory or phase
transition. For d ¼ 2, the cylinder S1 ×R corresponds to
nothing but a quantum Hamiltonian defined on a periodic
chain, and there are very nice results studying the resulting
state-operator correspondence [16–19]. In higher dimen-
sions, one needs to study a quantum Hamiltonian defined
on Sd−1; however, it is highly nontrivial for a discrete lattice
model as Sd−1≥2 has a curvature.

B. Spherical Landau levels, fuzzy two-sphere,
and lowest Landau level (LLL) projection

As originally shown by Landau, electrons moving in 2D
space under a magnetic field will form completely flat
bands called Landau levels, which is the key to the quantum
Hall effect. Landau level quantization can be considered on
any orientable manifold, and Haldane [44] first introduced
Landau levels on spherical geometry to study the fractional
quantum Hall physics.
For electrons moving on the surface of a radius-r sphere

with a 4πs monopole (2s ∈ Z) placed at the origin (Fig. 2),
the Hamiltonian is

H0 ¼
1

2Mer2
Λ2
μ; ð5Þ

where Me is the electron’s mass and Λμ ¼ ∂μ þ iAμ is the
covariant angular momentum, Aμ is the gauge field of the
monopole. As usual we take ℏ ¼ e ¼ c ¼ 1. The eigen-
states will be quantized into spherical Landau levels, whose
energies are En ¼ ½nðnþ 1Þ þ ð2nþ 1Þs�=ð2Mer2Þ, with
n ¼ 0; 1; 2;… the Landau level index. The ðnþ 1Þth
Landau level is ð2sþ 2nþ 1Þ-fold degenerate, and the
single particle states in each Landau level are called Landau
orbitals. Assuming all interactions are much smaller than
the energy gap between Landau levels, we can just consider
the lowest Landau level (LLL) n ¼ 0, which is (2sþ 1)-
fold degenerate. The wave functions for each Landau
orbital on LLL are called monopole harmonics [45]:

Φmðθ;φÞ ¼ Nmeimφ cossþm

�
θ

2

�
sins−m

�
θ

2

�
; ð6Þ

with m ¼ −s; −s þ 1;…; s and Nm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2sþ 1Þ!=4πðsþmÞ!ðs −mÞ!p
. Here ðθ;φÞ is the spheri-

cal coordinate.
These LLL Landau orbitals indeed form a SO(3) spin-s

irreducible representation. This can be understood by
constructing the SO(3) angular momentum operator [46],

Lμ ¼ Λμ þ s
xμ
r
; ð7Þ

which satisfies the SO(3) algebra ½Lμ; Lν� ¼ iεμνρLρ.
Projecting the system into the LLL, the kinetic energy
of the covariant angular momentum will be quenched, so
effectively we have Lμ ∼ sx̃μ=r. (x̃μ denotes the coordinates
in the projected LLL.) As a result, the coordinates x̃μ of
electrons will not actually commute; instead we have

½x̃μ; x̃ν� ¼ i
r
s
ϵμνρx̃ρ: ð8Þ

This defines a fuzzy two-sphere [23]. Moreover, Landau
orbitals Eq. (6) are in one-to-one correspondence with
states on the fuzzy two-sphere. Formally, a system defined
on the LLL can be equivalently viewed as a system defined
on a fuzzy two-sphere. We do not delve into details along
that direction, and refer the reader to Ref. [47] for more
discussions.

Ising Ferromagnet Paramagnet

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
0

1

2

3

4

5

6

LLL projection

(a)

(b)

FIG. 2. (a) Schematic plot of electrons moving on a sphere in
the presence of 4πs monopole. The LLL has 2sþ 1 degenerate
orbitals, which form an SO(3) spin-s irreducible representation.
A system projected into the LLL can be equivalently viewed as a
fuzzy sphere. (b) Phase diagram of the proposed model consisting
of a continuous phase transition from a quantum Hall Ising
ferromagnet to a disordered paramagnet.
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As is usually done in the literature, we consider the limit
where the interaction strength is much smaller than the
Landau level gap, so we can project the system into
the LLL. Technically, this can be done by rewriting the
annihilation operator ψðθ;φÞ on the LLL as

ψ̂ðθ;φÞ ¼
Xs

m¼−s
Φ�

mĉm: ð9Þ

ĉm stands for the annihilation operator of Landau orbitalm,
and is independent of coordinates ðθ;φÞ. The density
operator nðθ;φÞ ¼ ψ†ψ can be written as

nðθ;φÞ ¼
X
m1;m2

Φm1
Φ�

m2
c†m1

cm2
: ð10Þ

Any interaction can be straightforwardly (though perhaps
tediously)written in the secondquantized formusingLandau
orbital operators c†m; cm. For example, the density-density
interaction HI ¼

R
d2rad2rbUðra − rbÞnðraÞnðrbÞ can be

written as

HI ¼
Z

dΩadΩbUðθa;φa; θb;φbÞnðθa;φaÞnðθb;φbÞ

¼
X

m1;m2;m3;m4

Vm1;m2;m3;m4
c†m1

c†m2
cm3

cm4
; ð11Þ

where Vm1;m2;m3;m4
can be further expanded using the so-

called Haldane pseudopotential Vl [44], corresponding to
the two-fermion scattering in the spin-2s − l channel (see
Appendix A).
In summary, the model we are working with is a

fermonic Hamiltonian enclosing 2sþ 1 Landau orbitals
with long-range SO(3) invariant interactions. Interestingly,
all the orbitals form an SO(3) spin-s irrep. Furthermore, the
length scale of the system is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

p
instead of 2sþ 1

since the spatial dimension is d ¼ 2, and the thermody-
namic limit corresponds to taking s to infinity.

III. MODEL ON A FUZZY TWO-SPHERE

A. Hamiltonian

Here we explicitly define the model, which is spinful
electrons in the LLL [48]. In spatial space, the Hamiltonian
takes the form

H ¼
Z

dΩadΩbUðΩabÞ½n0ðθa;φaÞn0ðθb;φbÞ

− nzðθa;φaÞnzðθb;φbÞ� − h
Z

dΩnxðθ;φÞ; ð12Þ

where nαðθ;φÞ is a local density operator given by

nαðθ;φÞ ¼ ½ψ̂†
↑ðθ;φÞ; ψ̂†

↓ðθ;φÞ�σα
�

ψ̂↑ðθ;φÞ
ψ̂↓ðθ;φÞ;

�
; ð13Þ

with σx;y;z being Pauli matrices, σ0 ¼ I2×2, and UðΩabÞ the
local density-density interactions (defined below). The first
term behaves like an Ising ferromagnetic interaction, while
the second term is the transverse field. By projecting the
Hamiltonian into the LLL, we obtain

H¼H00þHzzþHt;

H00¼
1

2

Xs

m1;2;3;4¼−s
Vm1;m2;m3;m4

ðc†m1
cm4

Þðc†m2
cm3

Þδm1þm2;m3þm4
;

Hzz¼−
1

2

Xs
m1;2;3;4¼−s

Vm1;m2;m3;m4
ðc†m1

σzcm4
Þðc†m2

σzcm3
Þ

×δm1þm2;m3þm4
;

Ht¼−h
Xs
m¼−s

c†mσxcm; ð14Þ

where c†m ¼ ðc†m↑; c
†
m↓Þ is the fermion creation operator on

the mth Landau orbital. The parameter Vm1;m2;m3;m4
is

connected to the Haldane pseudopotential Vl by

Vm1;m2;m3;m4
¼

X
l

Vlð4s− 2lþ 1Þ
�

s s 2s− l

m1 m2 −m1 −m2

�

×

�
s s 2s− l

m4 m3 −m3 −m4

�
; ð15Þ

where ð j1m1

j2
m2

j3
m3
Þ is the Wigner 3j symbol. In this paper we

only consider ultralocal density-density interactions in real
space, i.e.,UðΩabÞ¼g0ð1=R2ÞδðΩabÞþg1ð1=R4Þ∇2δðΩabÞ,
and the associated Haldane pseudopotentials involve V0,
V1 (see Appendix A). Next we set V1 ¼ 1 as energy unit
and vary V0; h to study the phase diagram.
We consider the half-filling case with the LLL filled by

N ¼ 2sþ 1 electrons. When h ¼ 0 and V0; V1 > 0, the
ground state is an Ising ferromagnet that spontaneously
breaks Z2 symmetry. In quantum Hall literature this phase
is called quantum Hall ferromagnetism [49,50]. The two-
fold degenerate ground states are jΨ↑i ¼

Q
s
m¼−s c

†
m↑j0i

and jΨ↓i ¼
Q

s
m¼−s c

†
m↓j0i. When h ≫ V0; V1, the ground

state is a trivial paramagnet that preserves Ising symmetry,
jΨxi ¼

Q
s
m¼−sðc†m↑ þ c†m↓Þj0i. Therefore, we expect a

2þ 1D Ising transition as increasing h. The global phase
diagram of the model is as shown in Fig. 2(b).

B. Symmetries and order parameter

The Hamiltonian (14) has three symmetries.
(1) Ising Z2 symmetry: cm → σxcm.
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(2) SO(3) sphere rotation symmetry: cm¼−s;…;s form
the spin-s representation of SO(3).

(3) Particle-hole symmetry: cm → iσyc�m, i → −i.
Electric charges of fermions are gapped in the entire phase
diagram (see Appendix C 1), while the Ising spins of
fermions are the degrees of freedom that go through the
phase transitions. Therefore, all the gapless degrees of
freedom at the phase transition are charge neutral. In
particular, the order parameter of the transition is a
particle-hole excitation of fermions:

M ¼
Xs

m¼−s
c†m

σz

2
cm: ð16Þ

We emphasize an important point for the Landau level
regularization of the Ising transition: the electrons are
sitting on a fuzzy sphere due to the monopole, but the
Ising spins are sitting on a normal sphere (for any finite
N ¼ 2sþ 1) since they are charge neutral. This is the key
difference between our Landau level regularization and the
noncommutative field theory [51]; namely, the latter always
has quantum fields defined on a fuzzy manifold as long as
the physical volume is finite.
To further analyze the Ising transition in our system, we

relate the UV symmetries of our Landau level model to the
IR symmetries of the 3D Ising CFT. It is obvious we can
identify the Ising Z2 and SO(3) sphere rotation between
UV and IR. A slightly nontrivial symmetry is the particle-
hole symmetry, which turns out to be the spacetime parity
symmetry of 3D Ising CFT. To understand this relation, we
can write an SO(3) vector,

nxm¼0;�1 ¼
Xs

m1¼−s
ð−1Þm1

�
s s 1

m1 m−m1 −m

�
c†m1

σxcm1−m;

ð17Þ

and find it transforms as

0
B@

nxm¼1

nxm¼0

nxm¼−1

1
CA →

0
B@

0 0 −1
0 1 0

−1 0 0

1
CA
0
B@

nxm¼1

nxm¼0

nxm¼−1

1
CA; ð18Þ

under particle-hole transformation. The particle-hole acts as
an improper Z2 of O(3), so it can be identified as the
spacetime parity of the 3D Ising CFT.

C. Finite-size scaling

The phase diagram in Fig. 2(b) is obtained by the
conventional finite-size scaling of the Z2 order parameter
M in Eq. (16). We simulate N ¼ 2sþ 1 ¼ 8; 10;…; 24
using ED for smaller sizes (N ≤ 16) and DMRG for larger
sizes N > 16 (the length scale in this 2þ 1D system is
Lx ¼

ffiffiffiffi
N

p
). At the phase transition point, the Z2 order

parameter should scale as hM2i ∼ L4−2Δ
x ¼ N2−Δ [30],

where Δ ≈ 0.518 148 9 is the scaling dimension of Ising
order parameter [25,26]. Figure 3(a) depicts hM2i=N2−Δ

with respect to the transverse field strength h of different N
for V0 ¼ 4.75. All the curves nicely cross at hc ≈ 3.16,
which we identify as the transition point. Similarly for other
V0 we identify the critical hc and obtain the phase diagram
as shown in Fig. 2(b).
We also compute the binder cumulant:

U4 ¼
3

2

�
1 −

1

3

hM4i
hM2i2

�
: ð19Þ

U4 is a RG-invariant quantity, and U4 ¼ 1, 0 at the
thermodynamic limit corresponds to the ordered phase
and disordered phase, respectively. At the phase transition
U4 will be a universal quantity related to the four-point
correlator of the order parameter field σ of CFT [40].
Figure 3(b) shows U4 with respect to the transverse field
strength h for different N for V0 ¼ 4.75. Clearly, at small h
the model is in the Ising ferromagnetic phase, while at large
h the model is in the disordered phase. To estimate the value
of binder ratio at the critical pointUc

4, we perform a detailed
crossing-point analysis (Appendix B). With the data on
hand, the best estimate we can give is 0.28 ≤ Uc

4 ≤ 0.40. It
will be interesting to evaluate U4 from conformal bootstrap
and compare with our estimate [52].
In practice, for small N (as we simulate numerically),

finite-size effects are inevitable. One common source is
from the couplings of irrelevant operators, which are
typically present in microscopic models. Tuning along
the critical line in the two-dimensional parameter space
ðV0; hÞ shown in Fig. 2(b) generically modifies the cou-
pling strength of irrelevant operators and therefore the
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FIG. 3. (a) Finite-size scaling of order parameter hM2i=N2−Δ.
Δ ¼ 0.518 148 is the scaling dimension of the Ising order
parameter field. N ¼ 2sþ 1 is the number of electrons (i.e.,
Ising spins), hence it should be identified as space volume and the
length scale is ∼

ffiffiffiffi
N

p
. The rescaled order parameter perfectly

crosses at the same point hc ≈ 3.16. (b) Plot of the RG-invariant
binder cumulant U4. The binder cumulant does not stably cross at
the same point due to the large finite-size effect. We set
V0 ¼ 4.75 here. The inset is a zoomed in plot.
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magnitude of finite-size effects (while the relevant oper-
ators flow to the same fixed point). In the following section,
we present the data of the state-operator correspondence at
a particular point V0 ¼ 4.75; hc ¼ 3.16, where we find the
finite-size effects are smallest (Appendix D).

IV. STATE-OPERATOR CORRESPONDENCE

We now turn to the central results of our paper: the state-
operator correspondence of the 3D Ising transition. As
explained in Sec. II A, on S2 ×R the eigenstates of the
quantum Hamiltonian are in one-to-one correspondence
with the scaling operators of its corresponding CFT. In
particular, the energy gaps of each state will be proportional
to the scaling dimensions of the scaling operators [15].
Therefore, we explore energy spectra at the critical point by
utilizing exact diagonalization and compare it with CFT
predictions.
To match the Ising transition’s energy spectra with the

3D Ising CFT’s operator spectrum, we first need to rescale
the energy spectrum with a nonuniversal (i.e., model- and
size-dependent) numerical factor. The natural calibrator is
the energy momentum tensor Tμ1μ2, a conserved operator
that any local CFT possesses. For any 3D CFT, Tμ1μ2 will
be a global symmetry singlet, Lorentz spin l ¼ 2 operator
with scaling dimension ΔT ¼ 3. Our model has exact
SO(3) Lorentz rotation, Ising Z2, and spacetime parity
symmetries, so every eigenstate has well-defined quantum
numbers ðZ2; P;lÞ of these three symmetries. The energy
momentum tensor will be the lowest state in the
ðZ2 ¼ 1; P ¼ 1;l ¼ 2Þ sector. We rescale the full spec-
trum by setting the energy momentum tensor to exactly
ΔT ¼ 3, and then examine if the low-lying states form
representations of 3D conformal symmetry up to a finite-
size correction.
We analyze the low-lying spectra according to the

following steps.
(1) For each Z2 ¼ �1 sector, we find the lowest-lying

energy state (regardless of l and P), and identify it
as a primary state.

(2) Based on the representation theory of the 3D con-
formal group as summarized in Eqs. (1), (2), and (3),
we enumerate the descendant states of the identified

primary state and examine if all of descendant states
(up to Δ ¼ 7) exist in our energy spectrum.

(3) We remove the identified conformal multiplet (i.e.,
primary and its descendants) from the energy spec-
trum, and for the remaining states we repeat steps 1
and 2.

Remarkably, we find that the lowest-lying 70 eigen-
states [53] form representations of the 3D conformal
symmetry up to a small finite-size correction, with no
extra or missing state. This is a direct and unambiguous
demonstration of the emergent conformal symmetry of the
3D Ising transition.
After verifying the emergent conformal symmetry, we

further compare our scaling dimensions of the identified
primary operators with the numerical conformal bootstrap
data [25,26], and we find a good agreement for all of them.
Table I lists all the primary operators we identify with
N ¼ 16 ED data. We find 12 parity-even primary operators
besides the energy momentum tensor, and all of them
have less than a 1.6% discrepancy from the bootstrap
data [25,26]. In Appendix D we list concrete values of each
conformal multiplet, as one can see the numerical accuracy
is unexpectedly high, particularly given that it is from a
small system size (N ¼ 16 total spins): around 10 operators
have relative numerical error around 3%–5.5%, and the rest
of them have relative numerical error smaller than 3%.
Figure 4 plots conformal multiplets of a few representative
primary operators, which clearly illustrate the emergent
conformal symmetry and agree well with numerical con-
formal bootstrap results.
A few remarks are in order. (1) We verify the emergent

conformal symmetry of the 3D Ising transition by show-
ing that the low-lying spectra of our model form repre-
sentations of 3D conformal symmetry. This procedure
does not rely on any input of previous knowledge such as
numerical bootstrap data. (2) A spinning (l > 0) parity-
even (parity-odd) primary operator can have parity-odd
(parity-even) descendant opertors as written in Eq. (3).
This nontrivial structure from the CFT’s algebra matches
our ED spectrum [54]. (3) The energy momentum tensor
Tμ1μ2 is a conserved operator, so it does not have any
l < 2 descendant. This structure is clearly shown in our
data. (4) All the parity-even primary operators that we find

TABLE I. Low-lying primary operators identified via state-operator correspondence on a fuzzy sphere with N ¼ 16 electrons. The
operators in the first and second row are Z2 odd and even operators, respectively. We highlight that two new parity-odd primary
operators σP− and ϵP− are found. The conformal bootstrap data are from Ref. [26].

σ σ0 σμ1μ2 σ0μ1μ2 σμ1μ2μ3 σμ1μ2μ3μ4 σP−

Bootstrap 0.518 5.291 4.180 6.987 4.638 6.113 � � �
Fuzzy sphere 0.524 5.303 4.214 7.048 4.609 6.069 11.191

ϵ ϵ0 ϵ00 Tμν T 0
μν ϵμ1μ2μ3μ4 ϵ0μ1μ2μ3μ4 ϵP−

Bootstrap 1.413 3.830 6.896 3 5.509 5.023 6.421 � � �
Fuzzy sphere 1.414 3.838 6.908 3 5.583 5.103 6.347 10.014
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have been reported in the bootstrap study of mixed
correlators hσσσσi, hϵϵϵϵi, hσσϵϵi. The mixed-correlator
bootstrap study is only capable of detecting operators
in the σ × σ, ϵ × ϵ and σ × ϵ operator product expansion,
so it will miss ðZ2 ¼ 1; P ¼ 1; oddlÞ primary operators
(in addition to P ¼ −1 primaries). Our approach should be
able to detect operators in these quantum number sectors,
including the candidate of virial current [5,55], namely,
the lowest primary in the ðZ2 ¼ 1; P ¼ 1;l ¼ 1Þ sector.
We do not observe any primary operators in the ðZ2 ¼ 1;
P ¼ 1; oddlÞ sector below Δ ¼ 7, and so this gives a
lower bound for the virial current candidate, which is
higher than the previous estimate [14]. (5) We identify two
previously unknown (parity-odd) primary operators in the
ðZ2 ¼ 1; P ¼ −1;l ¼ 0Þ and ðZ2 ¼ −1; P ¼ −1;l ¼ 0Þ
sectors with Δ ≈ 10.01 and Δ ≈ 11.19, respectively.
To access P ¼ −1 primary operators in the bootstrap
calculation, one has to bootstrap correlation functions
of the spinning operator, for example, the energy
momentum tensor. Such study has only been initiated
in Ref. [56], but no P ¼ −1 primary has been identified by
conformal bootstrap or any other methods so far. (6) In all
previous lattice model studies, only several primary fields
(σ, ϵ, and ϵ0) were found, and their scaling dimensions are
related to the critical exponents η, ν and ω [30,31].

V. SUMMARY AND DISCUSSION

We design an innovative scheme to numerically study
the 3D Ising transition on the spacetime geometry S2 ×R,
and in our calculation we find almost perfect state-operator
correspondence of the 3D CFT, supporting the conjecture
that the 3D Ising transition has emergent conformal
symmetry. In detail, we consider the 3D Ising transition
realized in a fermionic model defined on a fuzzy sphere,
which we achieve by projecting spinful electrons into the
lowest spherical Landau level where the spin degrees of
freedom go through an order-disorder transition. We are
able to identify 13 parity-even primary operators and two
parity-odd primary operators, and around 60 descendant
operators, in agreement with the predictions of underlying
CFT within a high accuracy.
Our results have now offered a novel solution to the

long-standing quest of simulating 3D CFTs on the sphere
(more generally on the curved space), and even more
remarkably, the finite-size effect of our model is much
smaller than the conventional approach (i.e., 3D classical
Ising model) used to study 3D CFTs. Therefore, our results
open a new avenue for studying 3D CFTs in a microscopic
way. Thanks to the state-operator correspondence on
S2 × R, many universal quantities such as operator product
expansion coefficients, four-point correlators, and thermal
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FIG. 4. Conformal multiplet of several low-lying primary operators. Scaling dimension Δ versus Lorentz spin l. We plot conformal
bootstrap data with lines: lines in red are parity even, nondegenerate operators; lines in green are parity odd, nondegenerate operators;
lines in black are parity even, twofold degenerate operators. Symbols are our numerical data of parity-even (red circle) and -odd (green
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correlators of CFTs are ready to compute directly. These
will lead to many insights of CFTs that are important for
several purposes. For example, the thermal correlators will
not only be useful for predicting experiments of (2þ 1)-
dimensional quantum phase transitions at the finite tem-
perature, but also help to understand the properties of
quantum black holes using the AdS=CFT duality [57].
Another interesting quantity is the RG monotonic quantity
F of the F theorem [36–39], which can be extracted from
the quantum entanglement [58,59].
We also expect our approach can be used to tackle many

open problems of the 3D CFTs. Specifically, our approach
can be applied to many universalities such as OðNÞWilson-
Fisher transitions (i.e., XY universality) and critical gauge
theories (e.g., see Ref. [60]) [61]. With a straightforward
examination of the emergent conformal symmetry and a
precise determination of the scaling dimensions of various
primary operators, one may eventually solve the question of
the conformal window of 3D critical gauge theories, a
problem that has puzzled the high-energy physics and
condensed matter community for decades.
In our paper the fuzzy sphere regularization is formu-

lated using the language of lowest Landau level projection.
It will be interesting to translate our formulation into the
formal language of noncommutative geometry. Such per-
spective of the fuzzy sphere regularization may help to
develop a systematic framework that is applicable to any
CFT and quantum field theory (QFT) on various manifolds
in arbitrary spacetime dimensions. For example, an ambi-
tious question is, can one directly regularize the continuum
QFTs on the fuzzy sphere without encountering the
infamous UV infiniteness of QFTs? Indeed a similar idea
was pursued decades ago in the context of noncommutative
field theory [51], but was unsuccessful due to the phe-
nomenon called UV-IR mixing. Our regularization scheme
offers a new angle to this question; namely, one can
introduce auxiliary fields (i.e., electrons in our model) that
are living on the fuzzy sphere, and the true low-energy
quantum fields of the theory (i.e., Ising spins in our model)
are living on the normal sphere. We believe this way of
thinking may lead to many fruitful results of CFTs and
QFTs, and may reveal a new connection between physics
and mathematics.
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APPENDIX A: HALDANE PSEUDOPOTENTIAL
ON SPHERICAL GEOMETRY

This appendix describes the expression for a general
matrix element of a two-body scalar potential VðrÞ on
spherical geometry by projecting onto the lowest Landau
level (n ¼ 0) [44,46]. The general second-quantization
form of the Hamiltonian is

H ¼
X
σ;σ0

Xs
m1;m2;m3;m4¼−s

c†m1;σc
†
m2;σ0

cm3;σ0cm4;σδm1þm2;m3þm4

× hm1; σ;m2; σ0jVjm3; σ0;m4; σi; ðA1Þ

where m is orbital momentum and σ ¼ ↑;↓ is pseudospin
index. Here we just take the interaction with the same
pseudospin σ ¼ σ0 as an example. The matrix element is
given by

hm1;m2jVjm3;m4i

¼
Z

dr1

Z
dr2Φ�

m1
ðr1ÞΦ�

m2
ðr2ÞVðr1;r2ÞΦm3

ðr2ÞΦm4
ðr1Þ;

ðA2Þ
where Φm is the monopole harmonics functions defined in
Eq. (6). If we expand both the initial and final state vectors
in the coupled angular momentum basis, we can rewrite the
two-body matrix element in the following form:

hm1;m2jVjm3;m4i
¼

X
l;l0

hm1;m2jl; m1 þm2ihl0; m3 þm4jm4;m3i

× hl; m1 þm2jVjl0; m3 þm4i; ðA3Þ

where the coefficient hl; m1 þm2jm1;m2i is the Clebsch-
Gordan coefficient. hl; mjVjl0; m0i ¼ Vlδl;l0 and the pair
pseudopotential Vl describes the interaction energy
of a pair of electrons as a function of their pair angular
momentum l [44].
To perform calculations in this paper, we use the

second-quantization form of Hamiltonian Eq. (A1) with
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the interaction elements shown in Eq. (A3). Since we only
focus on the short-ranged interactions in real space [e.g.,
δðΩabÞ;∇2δðΩabÞ], the choice of pseudopotential is limited
to V0, V1. The explicit relation between the pseudopoten-
tials and the two-body interaction potential in real space is
also presented below.

1. Connection of the pseudopotential
with real-space interactions

If the potential V only depends on jr1 − r2j on the
spherical geometry, it can be expanded in Legendre
polynomials,

Vðjr1 − r2jÞ ¼
X∞
k¼0

UkPkðcos θ12Þ; ðA4Þ

and the real-space interaction can be rewritten in terms of a
new set of parameters Uk:

Uk ¼
1

2

Z
π

0

dθVðjr1 − r2jÞPkðcos θÞ sin θ: ðA5Þ

If we insert the potential form Eq. (A4) into the matrix
element, we have

hm1;m2jVjm3;m4i ¼
Z

dΩ1

Z
dΩ2Φ�

m1
ðΩ1ÞΦ�

m2
ðΩ2Þ

�X
k

Uk
1

2kþ 1

Xk
m¼−k

Y�
kmðΩ1ÞYkmðΩ2Þ

�
Φm3

ðΩ2ÞΦm4
ðΩ1Þ

¼
X
k

Uk
1

2kþ 1

Xk
m¼−k

Z
dΩ1Φ�

m1
ðΩ1ÞȲkmðΩ1ÞΦm4

ðΩ1Þ
Z

dΩ2Φ�
m2
ðΩ2ÞYkmðΩ2ÞΦm3

ðΩ2Þ

¼
X
k

Ukð−Þ6sþm2þm3ð2sþ 1Þ2
�

s k s

−m1 m1−m3 m3

��
s k s

−m2 m2−m4 m4

��
s k s

−s 0 s

�
2

: ðA6Þ

Here, for a general Wigner 3j coefficient, ð s1m1

s2
m2

s3
m3
Þ, it is

nonzero only when m1 þm2 þm3 ¼ 0 and when s1, s2, s3
together satisfy the triangle inequality, js1−s2j≤s3≤s1þs2.
Through this matrix element form, one can obtain that

the pseudopotential of particles in the lowest Landau level
is connected with parameter Uk via

V2s−l ¼
X2s
k¼0

Ukð−Þ2s0þlð2sþ 1Þ2
�
l s s

k s s

��
s k s

−s 0 s

�
2

;

ðA7Þ

where flk ss ssg is Wigner 6j coefficient.
In this paper, we only consider the short-ranged poten-

tials as follows.
(i) For short-ranged potential UðΩabÞ ¼ δðΩabÞ, by

using the expansion

δðΩa −ΩbÞ ¼
X∞
l¼0

Xl

m¼−l
Y�
l;mðΩaÞYl;mðΩbÞ

¼
X∞
l¼0

ð2lþ 1ÞPlðcos θabÞ; ðA8Þ

we have Ul ¼ 2lþ 1. With the help of Eq. (A7), we
get the pseudopotentials related to the short-ranged

potential UðΩabÞ ¼ δðΩabÞ as

V2s−l ¼
� ð2sþ1Þ2

ð4sþ1Þ ; l ¼ 2s

0; l ≠ 2s:
ðA9Þ

(ii) For short-ranged potential UðΩabÞ ¼ ∇2δðΩabÞ, by
using the expansion

∇2
aδðΩa−ΩbÞ¼

X∞
l¼0

Xl

m¼−l
∇2

aY�
l;mðΩaÞYl;mðΩbÞ

¼
X∞
l¼0

½−lðlþ1Þ�ð2lþ1ÞPlðcos θabÞ;

ðA10Þ
we have Ul ¼ −lðlþ 1Þð2lþ 1Þ. With the help of
Eq. (A7), we get the pseudopotentials related to the
short-ranged potential UðΩabÞ ¼ ∇2

aδðΩabÞ:

V2s−l ¼

8>><
>>:

− sð2sþ1Þ2
4sþ1

; l ¼ 2s

sð2sþ1Þ2
4s−1 ; l ¼ 2s − 1

0; l < 2s − 1:

ðA11Þ

In a word, for a general two-body interaction
potential on the spherical geometry UðΩabÞ ¼
g0δðΩabÞ þ g1∇2δðΩabÞ, one can use Eqs. (A9)
and (A11) to connect with the pseudopotentials
Vl as defined in Eq. (A3).
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APPENDIX B: PHYSICAL OBSERVABLES
ACROSS THE PHASE TRANSITION

In this appendix, we provide more detailed analysis on
the finite-size scaling of physical observableM2 and binder
ratio U4. In Fig. 5, order parameter hM2i is almost
unchanged near the critical point h ≈ hc, which signals
the phase transition point. In comparison, we notice
that, as N increases the crossing point of Uc

4 is less
converged, which is not as perfect as the crossing of order
parameter. In the finite-size scaling, the crossing value of
the cumulant itself approaches its thermodynamic limit
Uc

4 ≈ 0.2849� 0.0063. And we also estimate the upper
bound by the lowest value that we get in the DMRG
calculation. In a word, with the data up to N ¼ 36 the best
estimate we can give is Uc

4 ∼ ð0.28; 0.40Þ.
The larger uncertainty of binder ratio is likely due to the

fact that theU4 suffers a much larger finite-size effect, since
at the phase transition U4 is related to the four-point
correlator of the order parameter field σ in CFT. Similar
finite-size effect has also been observed in Monte Carlo
simulations of 3D classical or 2þ 1D quantum Ising
transitions with much larger system size.
Additionally, we note that for the same universality

defined or realized on distinct manifolds, U4 will be
generically different even in the thermodynamic limit. In
principle, U4 on the conformal manifold (e.g., R3, S2 ×R)
can be computed using the R3 four-point correlator [62].
For 3D Ising transition on the nonconformal manifold
such as T2 × R or T3, which Monte Carlo usually simu-
lates, U4 cannot be computed using the R3 four-point
correlator.

APPENDIX C: EXCITATION GAP

1. Charge gap

In the discussion of quantum magnetism in electron
systems, one preliminary question is whether or not the
charge excitation gap vanishes. Here we define the charge
gap as ΔcðNÞ¼E0ðNeþ1;NÞþE0ðNe−1;NÞ−2E0ðNe;NÞ,
where E0ðNe; NÞ is the ground state energy on N LLL
orbitals by filling Ne electrons. After obtaining the charge
gap on each system size, we perform a finite-size scaling to
estimate the charge gap in the thermodynamic limit. As
shown in Fig. 6, the charge gap at the critical point h ¼ hc
is nonzero on all system sizes, and the value in the
thermodynamic limit is also finite. Thus, we conclude that
the low-energy excitation is dominated by the spin exci-
tation other than the charge excitation.

2. Spin excitation gap

In this section, we discuss the spin excitation gap. In the
Ising ferromagnet (h < hc), flipping a spin orientation
should cost finite exchange energy, so the spin excitation
gap should be nonzero. Similarly, the paramagnetic ground
state h > hc is a trivial insulator, which should be separated
from all other excited states by a finite energy gap. In
contrast, at the critical point, the system becomes gapless,
which should be distinct from the other two gapped phases.
As shown in Fig. 7, we show three typical plots of
excitation gap in Ising ferromagnet phase, paramagnet
phase, and at the phase transition point. It is clear that
the excitation gaps are finite for ferromagnet and para-
magnet phase, but the system becomes gapless at the
transition point h ≈ hc. The most interesting thing is these

FIG. 6. Finite-size scaling of charge excitation gap at the phase
transition. The charge gap is defined as Δc ¼ E0ðNe þ 1; NÞ þ
E0ðNe − 1; NÞ − 2E0ðNe; NÞ, and E0ðNe;NÞ is the ground state
energy by filling Ne electrons.

FIG. 5. A finite-size scaling analysis of the Binder cumulant Uc
4

at the phase transition. Each data point is determined by the
crossing point on system size pair ðN; 2NÞ. The analysis is
according to the scaling form Uc

4ðNÞ ¼ aN−ω=2 þ b. Inset:
example of finite-size crossing point Uc

4ðNÞ with N ¼ 12 and
2N ¼ 24.
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critical excitations at finite system sizes form a characteristic
conformal tower structure as discussed in the main text,
which calls for a CFT description of 3D Ising criticality.

APPENDIX D: DETAILS OF NUMERICAL DATA

In this appendix, we present the data of energy spectra
which are organized by the good quantum numbers
and conformal multiplet of various primary fields, e.g., ϵ
(Table II), ϵ0 (Table III), Tμ1μ2 (Table IV), T

0
μ1μ2 (Table V),

ϵμ1;μ2;μ3;μ4 (Table VI), σ (Table VII), σ0 (Table VIII), σμ1μ2

(Table IX), and σμ1μ2μ3 (Table X). For comparison, we also
list the results from the conformal boostrap (CB)
method [25,26]. We use these data to plot Fig. 4. For
the primary fields, the discrepancies are really small
(<1.6%). Generally, fields with higher energies (conformal
weights) have larger discrepancies, which is attributed to
the finite-size effect. We add that these detailed data also
give a good quantification for the numerical error without
inputting other results such as numerical bootstrap. The
idea is that, since the conformal symmetry predicts the
integer spacings between primaries and their descendants,

FIG. 7. Finite-size scaling of the lowest six excitation gap of (a) quantum Hall ferromagnet at h ¼ 1.0 < hc, (b) transition point at
h ¼ hc and (c) disordered paramagnet at h ¼ 4.0 > hc.

TABLE II. Conformal multiplet of ϵ.

Operator Quantum number CB data N ¼ 16 Errors

ϵ l ¼ 0 1.412 625(10) 1.413 557 66 0.066%
∂μϵ l ¼ 1 2.412 625(10) 2.407 764 49 0.201%
∂μ1∂μ2ϵ l ¼ 2 3.412 625(10) 3.414 557 49 0.057%
□ϵ l ¼ 0 3.412 625(10) 3.473 032 35 1.770%
∂μ1∂μ2∂μ3ϵ l ¼ 3 4.412 625(10) 4.381 130 22 0.714%
□∂μϵ l ¼ 1 4.412 625(10) 4.554 378 69 3.212%
∂μ1∂μ2∂μ3∂μ4ϵ l ¼ 4 5.412 625(10) 5.237 963 1 3.227%
∂μ1∂μ2□ϵ l ¼ 2 5.412 625(10) 5.551 490 4 2.566%
□2ϵ l ¼ 0 5.412 625(10) 5.705 706 41 5.415%
∂μ1∂μ2∂μ3□ϵ l ¼ 3 6.412 625(10) 6.437 123 03 0.382%
∂μ1□

2ϵ l ¼ 1 6.412 625(10) 6.664 236 77 3.924%

TABLE III. Conformal mulitplet of ϵ0.

Operator Quantum number CB data N ¼ 16 Errors

ϵ0 l ¼ 0 3.829 68(23) 3.837 728 59 0.210%
∂μ1ϵ

0 l ¼ 1 4.829 68(23) 4.839 736 17 0.208%
∂μ1∂μ2ϵ

0 l ¼ 2 5.829 68(23) 5.829 182 19 0.009%
□ϵ0 l ¼ 0 5.829 68(23) 5.960 532 5 2.245%
∂μ1∂μ2∂μ3ϵ

0 l ¼ 3 6.829 68(23) 6.766 176 38 0.930%
∂μ1□ϵ0 l ¼ 1 6.829 68(23) 7.054 584 33 3.293%
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TABLE IV. Conformal mulitplet of Tμ1μ2 .

Operator Quantum number Exact value N ¼ 16 Errors

Tμ1μ2 l ¼ 2 3 3 0.000%
∂ν1Tμ1μ2 l ¼ 3 4 4.032 198 19 0.805%
εμ2ρτ∂ρTμ1μ2 l ¼ 2, P ¼ −1 4 4.073 920 75 1.848%
∂ν1∂ν2Tμ1μ2 l ¼ 4 5 4.967 341 07 0.653%
εμ2ρτ∂ρ∂ν1Tμ1μ2 l ¼ 3, P ¼ −1 5 5.146 029 26 2.921%
□Tμ1μ2 l ¼ 2 5 5.172 929 63 3.459%
∂ν1□Tμ1μ2 l ¼ 3 6 6.045 868 08 0.764%
εμ2ρτ∂ρ∂ν1∂ν2Tμ1μ2 l ¼ 4, P ¼ −1 6 6.062 210 26 1.037%
εμ2ρτ∂ρ□Tμ1μ2 l ¼ 2, P ¼ −1 6 6.290 745 58 4.846%

TABLE V. Conformal multiplet of T 0
μ1μ2 .

Operator Quantum number CB data N ¼ 16 Errors

T 0
μ1μ2 l ¼ 2 5.509 15(44) 5.582 714 4 1.335%

∂ν1T
0
μ1μ2 l ¼ 3 6.509 15(44) 6.571 379 75 0.956%

εμ2ρτ∂ρT
0
μ1μ2 l ¼ 2, P ¼ −1, 6.509 15(44) 6.575 578 92 1.020%

∂μ1T
0
μ1μ2 l ¼ 1 6.509 15(44) 6.746 395 99 3.645%

TABLE VI. Conformal mulitplet of ϵμ1μ2μ3μ4 .

Operator Quantum number CB data N ¼ 16 Errors

ϵμ1μ2μ3μ4 l ¼ 4 5.022 665(28) 5.102 994 2 1.599%
εμ4ρτ∂ρϵμ1μ2μ3μ4 l ¼ 4, P ¼ −1 6.022 665(28) 6.176 846 93 2.560%
∂μ1ϵμ1μ2μ3μ4 l ¼ 3 6.022 665(28) 6.194 393 41 2.851%

TABLE VII. Conformal multiplet of σ.

Operator Quantum number CB data N ¼ 16 Errors

σ l ¼ 0 0.518 148 9(10) 0.524 288 57 1.185%
∂μσ l ¼ 1 1.518 148 9(10) 1.509 417 93 0.575%
□σ l ¼ 0 2.518 148 9(10) 2.517 221 81 0.037%
∂μ1∂μ2σ l ¼ 2 2.518 148 9(10) 2.559 375 03 1.637%
□∂μσ l ¼ 1 3.518 148 9(10) 3.506 353 46 0.335%
∂μ1∂μ2∂μ3σ l ¼ 3 3.518 148 9(10) 3.605 922 6 2.495%
□∂μ1∂μ2σ l ¼ 2 4.518 148 9(10) 4.470 022 81 1.065%
□2σ l ¼ 0 4.518 148 9(10) 4.572 313 67 1.199%
∂μ1∂μ2∂μ3∂μ4σ l ¼ 4 4.518 148 9(10) 4.527 274 99 0.202%
∂μ1∂μ2∂μ3□σ l ¼ 3 5.518 148 9(10) 5.367 619 13 2.728%
∂μ□

2σ l ¼ 1 5.518 148 9(10) 5.605 634 29 1.585%
∂μ1∂μ2∂μ3∂μ4□σ l ¼ 4 6.518 148 9(10) 6.242 684 67 4.226%
∂μ1∂μ2□

2σ l ¼ 2 6.518 148 9(10) 6.589 052 67 1.088%
□

3σ l ¼ 0 6.518 148 9(10) 6.743 345 14 3.455%
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we can examine how well this is preserved in our spectrum.
Based on this we can give a conservative estimate for
numerical errors of primaries and low-lying descendants,
which are 3% relative errors. A rigorous error analysis
based on the finite-size scaling and off-critical behavior
will be interesting for the future work.
Another interesting point is that we identify almost

perfect state-operator correspondence in surprisingly small
system sizes. In the main text, we only present the
numerical data at a given system size, i.e., N ¼ 16, which
is the largest system size that we can reach using ED. Here,
to further elucidate that the numerical findings indeed
reflect the physics in the thermodynamic limit, we show the
energy spectra on different system sizes. In Fig. 8, we show
the energy spectra obtained on different system sizes from
N ¼ 8 to N ¼ 16. As one can see, the energies on all
system sizes match the prediction of 3D CFT quite well.
Finally, as we discuss in the main text, one of the most

surprising aspects of the fuzzy sphere scheme is that the IR

CFT emerges in incredibly small system sizes. The best
illustration is the observation that our model with only
N ¼ 4 spins (electrons) (Table XI) already produces six

TABLE IX. Conformal multiplet of σμ1μ2 .

Operator Quantum number CB data N ¼ 16 Errors

σμ1μ2 l ¼ 2 4.180 305(18) 4.213 829 89 0.802%
∂ν1σμ1μ2 l ¼ 3 5.180 305(18) 5.236 490 44 1.085%
∂μ1σμ1μ2 l ¼ 1 5.180 305(18) 5.315 758 94 2.615%
εμ2ρτ∂ρσμ1μ2 l ¼ 2, P ¼ −1 5.180 305(18) 5.254 153 17 1.426%
∂ν1∂ν2σμ1μ2 l ¼ 4 6.180 305(18) 6.187 249 38 0.112%
εμ2ρτ∂ρ∂ν1σμ1μ2 l ¼ 3, P ¼ −1 6.180 305(18) 6.261 600 85 1.315%
∂ν1∂μ1σμ1μ2 l ¼ 2 6.180 305(18) 6.291 149 75 1.794%
□σμ1μ2 l ¼ 2 6.180 305(18) 6.395 951 49 3.489%
εμ2ρτ∂ρ∂μ1σμ1μ2 l ¼ 1, P ¼ −1 6.180 305(18) 6.429 991 32 4.040%
∂μ1∂μ2σμ1μ2 l ¼ 0 6.180 305(18) 6.523 218 41 5.548%

TABLE X. Conformal multiplet of σμ1μ2μ3 .

Operator Quantum number CB data N ¼ 16 Errors

σμ1μ2μ3 l ¼ 3 4.638 04(88) 4.608 920 45 0.628%
∂ν1σμ1μ2μ3 l ¼ 4 5.638 04(88) 5.563 455 84 1.323%
εμ3ρτ∂ρσμ1μ2μ3 l ¼ 3, P ¼ −1 5.638 04(88) 5.670 445 9 0.575%
∂μ1σμ1μ2μ3 l ¼ 2 5.638 04(88) 5.797 465 71 2.828%
□σμ1μ2μ3 l ¼ 3 6.638 04(88) 6.740 658 48 1.546%
∂ν1∂μ1σμ1μ2μ3 l ¼ 3 6.638 04(88) 6.881 822 26 3.672%
εμ3ρτ∂ρ∂ν1σμ1μ2μ3 l ¼ 4, P ¼ −1 6.638 04(88) 6.574 176 25 0.962%
εμ3ρτ∂ρ∂μ1σμ1μ2μ3 l ¼ 2, P ¼ −1 6.638 04(88) 6.931 332 76 4.418%
∂μ1∂μ2σμ1μ2μ3 l ¼ 1 6.638 04(88) 6.949 009 9 4.685%

FIG. 8. The energy spectra corresponding to primary fields for
various system sizes N ¼ 8–16. The dashed colored lines denote
the numerical values from conformal bootstrap method.

TABLE VIII. Conformal multiplet of σ0.

Operator Quantum number CB data N ¼ 16 Errors

σ0 l ¼ 0 5.290 6(11) 5.303 466 41 0.243%
∂μ1σ

0 l ¼ 1 6.290 6(11) 6.277 137 85 0.214%

ZHU, HAN, HUFFMAN, HOFMANN, and HE PHYS. REV. X 13, 021009 (2023)

021009-14



primaries and the approximate conformal invariance. All
calculations can be done on a laptop, where the N ¼ 16
spins require around 16G memory, and the computation
takes around 30 minutes on a M1 Macbook.
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