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A goal of unsupervised machine learning is to build representations of complex high-dimensional data,
with simple relations to their properties. Such disentangled representations make it easier to interpret the
significant latent factors of variation in the data, as well as to generate new data with desirable features. The
methods for disentangling representations often rely on an adversarial scheme, in which representations are
tuned to avoid discriminators from being able to reconstruct information about the data properties (labels).
Unfortunately, adversarial training is generally difficult to implement in practice. Here we propose a
simple, effective way of disentangling representations without any need to train adversarial discriminators
and apply our approach to Restricted Boltzmann Machines, one of the simplest representation-based
generative models. Our approach relies on the introduction of adequate constraints on the weights during
training, which allows us to concentrate information about labels on a small subset of latent variables. The
effectiveness of the approach is illustrated with four examples: the CelebA dataset of facial images, the two-
dimensional Ising model, the MNIST dataset of handwritten digits, and the taxonomy of protein families.
In addition, we show how our framework allows for analytically computing the cost, in terms of the log-
likelihood of the data, associated with the disentanglement of their representations.

DOI: 10.1103/PhysRevX.13.021003 Subject Areas: Computational Physics,
Statistical Physics

I. INTRODUCTION

Unsupervised learning involves mapping data points to
adequate representations, where the statistical features
relevant to the data distribution are encoded by latent
variables [1]. Examples of unsupervised architectures
include Restricted Boltzmann Machines [2], variational
autoencoders [3], and generative adversarial networks [4],
among others. However, the mapping between latent-
variable activities and the relevant properties of the data
is generally complex and not easily interpretable (Fig. 1), a
phenomenon referred to as entanglement of representations
in machine learning, or mixed sensitivity in computational
neuroscience [5]. Entangled representations are hard to
interpret and manipulate, e.g., for generating new data with
the desired properties [1,6].
A stream of literature has recently focused on how to

train unsupervised models to obtain disentangled repre-
sentations, where information about certain properties
is concentrated in some latent variables and excluded

from others [7–13], or absent altogether from represen-
tations [14,15]. Concentration of information, in turn, makes
it possible to change the values of a few variables and generate
data points with controlled properties [7]. In practice, learning
of disentangled representations is often done in an adversarial
framework through optimization of variational bounds to
quantitieshard to estimate, suchasmutual informationbetween
the data features and some part of the representations. While
conceptually appealing, this approach may be tricky to adopt
from a numerical point of view, due to well-known difficulties
in adversarial-based learning [16]. In addition, its complexity
has prevented theoretical analysis so far, leaving important
questions, such as the cost of disentangling representations,
unanswered.
As a concrete illustration, which we consider later on in

this work, imagine training an unsupervised model from a
set of face images. Once learning is complete, the model
can be used to generate many new faces, generalizing from
the features in the training data. Generated images will
show smiling faces, wearing eyeglasses, with bald heads;
i.e., they will be characterized by a collection of attributes.
From a practical point of view, disentangling the repre-
sentations of those data would make it possible, in the
generation process, to control and modify one of these
attributes, such as smiling vs not smiling, while leaving the
remaining ones (the overall shape of the face) unchanged.
From a conceptual point of view, the coordinates of the
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representation space are explicitly related to the different
attributes. Moving from one face with eyeglasses to the
“same” face without corresponds to a translation of the
representation vector of the face in the low-dimensional
space defined by the few coordinates associated with the
eyeglasses attribute, a property bearing some analogy with
WORD2VEC encodings [17].
The purpose of the present work is to propose a method

for disentanglement of representations, which is both
effective on real data and amenable to mathematical
analysis. We consider Restricted Boltzmann Machines
(RBMs), a simple unsupervised generative model imple-
menting a data–representation duality [18]. RBMs are used
as building bricks of deeper networks [2] and are com-
petitive with more complex models in various relevant
situations [19–21]. We derive conditions on the RBM

parameters, which deprive all or part of the representation
from information about data labels. This procedure allows
us to concentrate the information about labels into a subset
of latent units. Manipulation of these units then allows us to
generate high-quality data with prescribed label values.
Furthermore, the simplicity of our framework allows us to
estimate the loss in log-likelihood resulting from the
disentanglement requirement, with a deep connection with
Poincaré separation theorem [22]. Informally speaking, this
loss is the cost to be paid for enhanced interpretability of
the machine.
Our paper is organized as follows. We first show

that standard learning with RBM generically produces
entangled representations on four applications chosen for
their diversity and interest: (1) the CelebA dataset of face
images [23] annotated with several binary attributes, (2) the
two-dimensional Ising model, where configurations are
annotated by the sign of their magnetizations, (3) the
MNIST dataset of handwritten digits [24], where the digits
represented in each image are the labels, and (4) protein-
sequence families from the Pfam database [25] annotated
based on their taxonomic origins. We then present how our
approach learns disentangled representations and demon-
strate its effectiveness when applied to the three data
distributions listed above. Special emphasis is placed on
the physical meaning of the unsupervised models corre-
sponding to the Ising model case. We then calculate the
costs associated with representation disentanglement.

II. REPRESENTATIONS OF COMPLEX DATA
WITH RESTRICTED BOLTZMANN MACHINES

ARE GENERALLY ENTANGLED

A. Unsupervised learning with RBMs

RBMs are bipartite graphical models over N visible
variables v ¼ fv1; v2;…; vNg and M hidden (or latent)
variables h ¼ fh1; h2;…; hMg; see Fig. 2(a). Both visible
and hidden variables are assumed to be Bernoulli, i.e., to
take 0 or 1 values. The two layers are connected through the
interaction weights wiμ. A RBM defines a joint probability
distribution over v and h through

Pðv;hÞ ¼ 1

Z
e−Eðv;hÞ; ð1Þ

where Z is a normalizing factor, and the energy E is
given by

Eðv;hÞ ¼ −
XN
i¼1

givi −
XM
μ¼1

θμhμ −
XM
μ¼1

IμðvÞhμ: ð2Þ

The parameters gi and θμ are local fields biasing the
distributions of single units, and

FIG. 1. Entangled vs disentangled representations. A set of
high-dimensional data points (bottom) is mapped through un-
supervised learning onto a latent representation (top). Data are
colored in purple and orange according to a binary-valued
attribute, e.g., being an odd or even number for MNIST images
of handwritten digits. Left: When representations are entangled,
the separation of data classes is not aligned with a single latent
direction. Right: When representations are disentangled, one or
few directions in latent space (blue) separate the labeled classes,
while other directions are not correlated with the label (red).
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IμðvÞ ¼
XN
i¼1

wiμvi ð3Þ

is the input received by hidden unit μ given the visible
configuration.
Marginalizing over the states of the hidden units results

in the likelihood PðvÞ ¼ ð1=ZÞPh e
−Eðv;hÞ of visible

configurations that can be fit to the data. Given a set of
data points D, the weights and potential-defining para-
meters of the RBM are learned through gradient ascent of
the dataset log-likelihood,

L ¼ hlog PðvÞiD; ð4Þ

where the average h·iD is taken over the data points. In
practice, computing the gradient of L requires us to
estimate the moments of visible and/or hidden variables
with respect to the model distribution [18]. Regularization
of the weights can also be easily included in this approach.
Details about the computation of the gradient and the
training procedure implemented in this work can be found
in Supplemental Material [26] Appendix A.

B. Datasets

We train the RBM on four datasets illustrated by the four
columns in Fig. 2.

1. CelebA face images dataset

The CelebA dataset consists of a collection of 202 599
color images of celebrity faces, each annotated with 40
binary attributes, including whether the person is smiling,
wearing glasses, has a beard, and others [23]. The images in
this dataset cover large pose variations and background
clutter. Figure 2(a) shows a pair of black-and-white versions
of CelebA examples; see SupplementalMaterial [26] Fig. S1
for more examples and Supplemental Material Appendix B
for processing details.

2. Two-dimensional Ising model

We next consider the Ising model [27] on a two-
dimensional regular L × L square grid (L ¼ 32 or 64)
with uniform positive interactions between nearest-
neighbor spins. The values of the interaction, or, equiv-
alently, of the inverse temperature, are varied to explore
both paramagnetic (weak interactions) and ferromagnetic
(strong interactions) regimes. The data are configurations
of the Ising model generated by Monte Carlo sampling and
labeled according to the sign u of its magnetization m, i.e.,
the differences between the numbers of þ [black dots in
Fig. 2(a)] and − spins (white dots).

3. MNIST handwritten digits

The MNIST dataset [24] consists of a collection of
70 000 images of 28 × 28 pixels each, labeled by the
identity of the 0–9 handwritten digit they represent. We
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FIG. 2. Datasets considered in the paper and entanglement of representations. (a) CelebA dataset of face images [23]; two-dimensional
Ising model; MNIST0=1 database of handwritten digits [24]; multiple sequence alignments from the Pfam PF00013 family of the KH
domain. (b) Samples generated by different RBMs trained on each dataset. See Supplemental Material [26] Appendix A 6 for the
architectures of the RBMs used in each case. (c) Histogram of the absolute value of the Pearson correlations between hidden-unit inputs
and the chosen label; see Eq. (5). Smiling or not smiling for CelebA, sign of the magnetization for the Ising model, whether the digit is a
0 or 1 for MNIST0=1, and whether the KH sequence is from bacterial or eukaryotic origin.
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show 16 of them in Fig. 2(a). We hereafter consider in
particular (1) MNIST0=1, a simplified version of MNIST
consisting only of images of the digits 0 and 1, with binary
labels u ¼ 0, 1, and (2) MNIST0=1=2=3, the set of all
images of digits from 0 to 3, with four-state labels u. In
Supplemental Material [26] Fig. S6, we also consider an
additional example consisting of zero digits only in black or
white backgrounds (see Sec. VI B 3).

4. Pfam database of protein family sequences

Last of all, we consider protein families in the Pfam
sequence database [25]. A protein family consists of a
collection of homologous protein sequences from different
organisms, i.e., sharing common evolutionary origins and
common functional or structural features. As an illustration,
Fig. 2(a) sketches some sequences of the K-homology
(KH) domain found in nucleic-acid binding proteins. Many
families include sequences issued from prokaryotic and
eukaryotic organisms, and we use this classification as the
label u for sequences in the dataset.

C. RBMs generically learn entangled representations

We train RBMs with 200–400 binary hidden units on
CelebA images, two-dimensional Ising model confi-
gurations, MNIST0=1 digits, and KH domain protein
sequences (see Supplemental Material [26] Appendix A 6
for details). Consistent with previous results on similar
datasets [19,20,28,29], the RBMs accurately fit the data
and generate high-quality samples in the four cases; see
Fig. 2(b). In addition, training simple classifiers to predict the
label from the hidden inputs of the models gives areas under
the curve ðAUCÞ > 0.9 for all cases; see Supplemental
Material [26] Appendix E for details and Fig. S4. These
results demonstrate that the RBM automatically captures
information relevant to the labels of interest. We emphasize
that in all cases the RBM does not have access to the labels
during training.
We plot in Fig. 2(c) the histogram of Pearson correlations

between the label and hidden-unit inputs,

ρμ ¼
huðvÞIμðvÞiD − huðvÞiDhIμðvÞiDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hIμðvÞ2iD − hIμðvÞi2D
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

huðvÞ2iD − huðvÞi2D
p : ð5Þ

For some datasets (e.g., KH sequences), hidden units have
low correlations to the label. Changing the label identity of
the generated data requires us to act on the states of all these
hidden units in a concerted manner. In other cases, such as
the Ising model and MNIST, a number of units exhibit
higher correlations with the labels; see right tails of
distributions in Fig. 2(c). However, as the label information
captured by the RBM is distributed among these units,
manipulating the few most correlated units is not sufficient
to define the label of generated data; see Supplemental
Material [26] Fig. S2.

Although a precise definition of disentangled represen-
tation learning may be debated [6,13], it is generally agreed
that interesting features should map to single, or few
dimensions, in latent space; see Fig. 1 [1]. As we show
above, standard training of a RBM fails to produce
disentangled representations.

III. LEARNING OF DISENTANGLED
REPRESENTATIONS

Our strategy for disentangling and manipulating repre-
sentations is to drastically alter the distribution of corre-
lations between hidden units and labels [Fig. 2(c)] by
imposing appropriate constraints on the interaction weights
throughout the learning process.
Ideally, constraints should impose that mutual informa-

tion, rather than correlations, vanishes. Because of the
difficulty in computing mutual information, we focus on
correlations at different orders in the hidden inputs, as they
offer a good compromise between computational efficiency
and performance. Focusing on inputs Iμ rather than on
latent variables hμ follows a twofold motivation. First, the
constraints on the weights wiμ resulting from the vanishing
requirements on the correlations are simpler to interpret and
fulfill from a computational point of view. Second, given a
data configuration v, hμ is a stochastic variable conditioned
to Iμ. By virtue of the data processing inequality [30], the
mutual information between labels u and inputs Iμ upper
bounds its counterpart between u and hμ, and enforcing low
mutual information between labels and inputs therefore
immediately implies that latent variables are not inform-
ative about labels.
Two objectives can be pursued.
(A) Approximating as best as possible the data distri-

bution, while removing as much information as
possible about their labels. This can be achieved
by an architecture in which all hidden units are under
strong constraints; see Fig. 3(a). Objective A leads
to a generic model distribution in which label-
associated features are blurred; i.e., it is hard to tell
whether they are present or absent. Conversely, the
other “orthogonal” features are well captured by this
RBM model.

(a) (b) 0
1

FIG. 3. Model schema. (a) Constraints imposed on all hidden
units promote overlapping hidden input distributions of the two
classes. (b) Constraints imposed on a subset of hidden units (red)
promote class separation on the remaining hidden units (blue).
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(B) Reproducing as best as possible the data distribution,
while concentrating as much information as possible
about their labels on one (or few) hidden units. This
can be achieved by an architecture in which a few
hidden units are left unconstrained and are referred
to as released, while all the other ones are under
strong constraints; see Fig. 3(b). Objective B defines
a model distribution, in which label-associated
features are either present or absent, as in the training
data. In addition, the representations can be easily
manipulated to bias data generation, e.g., to morph
one configuration into another one in which the label
value has changed but other features have not.

For the sake of simplicity, we present the approach in the
case of binary labels u ¼ 0, 1 (equivalently, u ¼ �1). An
extension to labels with more than two values is immediate
and is discussed in the applications.

A. Fully constrained RBMs

Following objective A, we demand that all hidden-unit
inputs Iμ are uncorrelated with the labels u across the data.
The corresponding architecture is sketched in Fig. 3(a). A
RBM trained under these constraints defines a distribution,
in which information about the label has been degraded, if
not fully erased, but the other data-defining features are
affected as little as possible.

1. Linear constraints

In its simplest formulation, the approach considers only
linear correlations in the inputs. The constraint ρμ ¼ 0 [see
Eq. (5)] can be rewritten as

XN
i¼1

qð1Þi wiμ ¼ 0; ð6Þ

with

qð1Þi ¼ huðvÞviiD − huðvÞiDhviiD: ð7Þ

The N-dimensional vector qð1Þ is parallel to the line joining
the centers of mass of the clouds of data points associated
with, respectively, u ¼ 0 and u ¼ 1; see Fig. 4(a).
Imposing ρμ ¼ 0 for all μ ¼ 1;…;M is thus equivalent
to looking for the RBMmaximizing the log-likelihood L in
Eq. (4) under the constraints that all M weight vectors wμ

are orthogonal to qð1Þ; this can be easily done by projecting
the gradient of L onto the space orthogonal to qð1Þ after
each update of the weights (see Supplemental Material [26]
Appendix A for details). In other words, the RBM is blind
to the direction qð1Þ separating the clouds and is modeling
only the statistical features of the data in the (N − 1)-
dimensional space orthogonal to qð1Þ.

The consequences of wμ⊥qð1Þ can be phrased in an
adversarial context. Imagine a linear discriminator is trying
topredict the labelsuðvÞof data configurations v basedon the
M-dimensional sets of inputs IμðvÞ. In practice, a linear
discriminator is parametrized byM weights aμ and assigns a
probability πðPμ aμIμðvÞÞ to, say, label u ¼ 1 (and prob-
ability 1 − π to u ¼ 0) given v, where π is some sigmoid
function comprised between 0 and 1. The parameters aμ are
fitted to maximize the probability that the discriminator
makes the correct prediction. In geometrical terms, this is
equivalent to finding the hyperplane (orthogonal to a in M
dimensions) separating the classes of data pointsI associated
with u ¼ 0 and u ¼ 1with the largest margin [31]. We show
in the SupplementalMaterial [26]AppendixC that, under the
conditions expressed in Eq. (6), the best linear discriminator
cannot do better than random guessing of the labels. In other
words, imposing constraints (6) is equivalent to demanding
that no adversarial linear discriminator looking at hidden-
unit inputs is able to predict the labels associated with
configurations.

2. Quadratic constraints

Even if no linear discriminator can recover the label from
the inputs Iμ, more complex machines, such as deep neural
networks, could still be able to predict the label [32] if the
mutual information between u and I ¼ ðI1; I2;…; IMÞ is
nonzero. Imposing ρμ ¼ 0 can be seen as a first-order
approximation to the stronger condition that the mutual
information (MI) between the label and the inputs vanishes,
MIðu; IÞ ¼ 0. The latter implies that not only the linear
correlations but also all higher-order connected moments
between u and I vanish. In particular, the second-order
correlations

Cμ;ν ¼ huðvÞIμðvÞIνðvÞiD − huðvÞiDhIμðvÞIνðvÞiD ð8Þ

should alsovanish. SettingCμ;ν ¼ 0 for all pairsμ, ν inEq. (8)
forces the two classes of data attached to u ¼ 0 and u ¼ 1
to have identical covariance matrices in the input space.
These constraints imply that no kernel-based adversarial

(a) (b)

FIG. 4. First- and second-order constraints. (a) The first-order
constraint (6) ensures that the classes have the same means in
input space by imposing orthogonality of the weights to the
vector separating their centers of mass in data space (red).
(b) Second-order constraints (9) ensure that the two classes have
the same covariance in input space.
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discriminator, where the kernel is a quadratic function of
the inputs, would be able to predict the label values (see
Supplemental Material [26] Appendix C for a proof). More
generally, higher-order constraints would rule out the possi-
bility for discriminator adversaries with polynomial kernels
of higher degrees to successfully classify the data [33] (see
Supplemental Material [26] Appendix C)).
In practice, setting Cμ;ν ¼ 0 amounts to imposing a

quadratic constraint over the weight vectors:

XN
i;j¼1

qð2Þi;j wiμwjν ¼ 0; ð9Þ

where the mean difference between the covariance matrices
of the two classes of data is defined through

qð2Þi;j ¼ huðvÞvivjiD − huðvÞiDhvivjiD; ð10Þ

see illustration in Fig. 4(b). To draw a physical analogy, the
qð2Þ matrix looks like the quadrupole tensor separating
positive and negative charge distributions in electrostatics,
while qð1Þ is analogous to a dipole moment.
To implement constraints (9) in practice, we square the

left-hand side of Eq. (9) and add it to the optimization
objective during learning times a large penalty term; see
Supplemental Material [26] Appendix A for details.
The matrix qð2Þ defined in Eq. (10) is estimated on

empirical data and is subject to sampling noise. In practice,
from finite datasets one can extract reliable estimates only of
the top components of qð2Þ, while the empirically observed
lower components will be dominated by noise. The
Marchenko-Pastur (MP) law [34] describing the spectrum
of correlation matrices in the null model case of independent
variables can be used to estimate the thresholds between
eigenvalues dominated by noise and eigenvalues reflecting
the presence of structure in the data. The MP spectrum
predicts that all eigenvalues λ located in the range ½λ−; λþ�
have to be discarded, with λ� ¼ ð1� ffiffiffi

r
p Þ2, where r is the

ratio of thenumbers of variables and samples.As an example,
for the MNIST0=1 dataset, we estimate λþ ≃ 1.6 for both 0
and 1 digits. Out of the 784 eigenvalues of qð2Þ, only 60 (61)
are larger than this bound for the 0s dataset (1s). The above
discussion suggests replacing the full matrix qð2Þ with a low-
rank approximation focusing on the top components only. A
lower-rank version of qð2Þ also implies that the weights have
more degrees of freedom, since Eq. (9) does not affect the
weights components belonging to the kernel of qð2Þ. In
practice, penalizing the squared norm of the left-hand side of
Eq. (9) during training automatically places more weight on
constraints associated with the top components of qð2Þ and
neglects lower components.

B. Partially constrained RBMs

We now consider objective B. Our objective is to
concentrate the information about the labels on one of a
few released hidden units. For this purpose, we consider the
architecture of Fig. 3(b). The weights attached to these
released hidden units are unconstrained during training,
while the other weights are subject to the linear or quadratic
constraints in Eqs. (6) and (9), as in objective A. Informally
speaking, this strategy will turn the large number of weak
input-label correlations found in standard RBM represen-
tations [Fig. 2(c)] into a small number of large correlations
(∝ M) present on the released hidden units only.

1. Manipulation of label-determining hidden units

As a consequence, the values of the released hidden units
strongly affect the conditional distribution of visible
configurations and act as knobs that can be manipulated
to generate data with desired labels. Manipulation is carried
out as follows: To lighten notations we assume that a single
hidden unit, say, μ ¼ 1, is released. The value of this unit h1
is fixed (to 0 or 1). We then sample the remaining hidden
units (attached to the constrained weights) and the visible
units using alternate Gibbs sampling (see Supplemental
Material [26] Appendix A). The visible configurations v are
then distributed according to a conditional probability
Pðvjh1Þ and span a class of the data corresponding to a
specific label value u. Flipping h1 to 1 − h1 allows us to
change class and quickly morph a data configuration into
the closest configuration with a flipped label.

2. Cost of disentanglement

Constraining all weight vectors (objective A) is damag-
ing the capability of RBMs to reproduce the data distri-
bution. The loss in performance is measured by the change
in log-likelihoods of test data due to the partial erasure of
information about the labels,

ΔLpart erasure ¼ Lunconstr − Lconstr: ð11Þ

In the equation above, Lconstr denotes the log-likelihood of
data estimated with the fully constrained RBM, and
Lunconstr corresponds to the standard (unconstrained)
RBM. As we see in subsequent applications, this difference
is generally large.
Once one or few hidden units are released (objective B),

the test log-likelihood increases to Lrel. We define the cost
for disentangling representations through

ΔLdisent ¼ Lunconstr − Lrel: ð12Þ

This cost is guaranteed to be non-negative if both RBMs are
trained with equal hyperparameters, e.g., if they have the
same number of hidden units and weight regularizations.
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IV. APPLICATION TO FACE IMAGES

A. Learning with standard RBMs

We first illustrate our approach on the CelebA dataset of
celebrity face images [23]. Since we choose to work with
binary RBMs for simplicity, we first convert the images to
binary black-and-white pixels of resolution 64 × 64, fol-
lowing a procedure similar to Ref. [35] and detailed in the
Supplemental Material [26] Appendix B. Using the anno-
tations available in the dataset, we choose the presence or
absence of eyeglasses and smiling or not smiling as our
labels. We compute the vector q defined by Eq. (7) for each

one of these two labels. Figure 5(a) shows sample images
arranged in increasing value of their projection along this
vector, as well as the histograms of these projections over
the dataset for each label.
Next, we train a standard RBM on this dataset. Fol-

lowing Ref. [35] we use 5000 hidden units (Supplemental
Material [26] Appendix B). After training, we generate
10 000 samples starting from random binary configurations
and running Gibbs sampling for 5000 iterations. Some
sampled configurations are shown in Fig. 5(b), as well as
the histogram of projections along direction q. Samples are
diverse and span the different classes present in the dataset,
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FIG. 5. Application to the CelebA dataset. Left: label corresponds to the presence or absence of eyeglasses. Right: label corresponds
to smiling or not smiling. (a) Selected images from the data arranged by the value of their projection along the vector q defined in
Eq. (7). Below, the histogram of these projections is computed for all images in the data. The inset shows a heat map of the vector q.
(b) Samples generated by an unconstrained RBM and histogram of their projections on vector q. (c) Samples generated by a RBM, all
the hidden units of which are subject to the constraint in Eq. (6) (dashed red). The histogram (red) of projections on q concentrates on
intermediate values. (d) Samples generated by a RBM trained under constraint (6) acting on all but one released hidden unit (dashed
blue) and histogram of projections along q (blue). Details about the RBMs’ architecture and training can be found in the Supplemental
Material [26] Appendix A 6.
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i.e., smiling or not smiling, wearing or not wearing eye-
glasses, indicating thatRBMis an adequate generativemodel
for this dataset.

B. Partial erasure of information
with a fully constrained RBM

We next consider a RBM with the same architecture and
with constraint (6) acting on all hidden units. Figure 5(c)
shows samples from such a RBM (dashed red). These
samples are recognizable faces similar to the data; there-
fore, the model is generative. In the projection on q, they
concentrate on intermediate values and seem to be ambigu-
ous with respect to the label-associated feature: Eyes seem
closed or darkened in the eyeglasses case, and the mouth
seems slightly open, but not entirely smiling in the second
case. These findings nicely illustrate the effects of objec-
tive A.

C. Manipulating representations and face attributes
with a partially constrained RBM

We now train a RBMwith constraint (6) acting on all but
one hidden unit, say, h�. The weights attached to this unit
are correlated with the vector qð1Þ shown in Fig. 5(a) (inset).
The model is generative; representative samples are shown

in Fig. 5(c), bottom panel. The projection of these samples
along the q direction is bimodal, with two peaks corre-
sponding to the two values of the released hidden unit h�.
Inspecting the samples shows that h� correlates with
the attribute, as shown below, in full agreement with
objective B.
The value of h� can be manipulated during sampling to

drive the Markov chain toward one class or another. We
illustrate this in Fig. 6, where an initial sample from the data
is sampled through this model, and the value of h� is flipped
at the midpoint of the sampling chain. As a result, the face
images transition toward the expected label value. The
transition is smooth: Right after the flip of h�, most facial
features are still preserved, while the one associated with
the label is modified (morphing effect).

V. APPLICATION TO THE TWO-DIMENSIONAL
ISING MODEL

The two-dimensional Ising model is defined by the
following energy function over N ¼ L2 spin configurations
v ¼ ðv1; v2;…; vNÞ,

EðvÞ ¼ −
X
ði;jÞ

vivj; ð13Þ

SmilingNot smiling

Data h* 

GlassesNo glasses

1 - h* 

(a)

(b)

FIG. 6. Transitions between labeled classes in the CelebA dataset. RBMs are trained subject to the linear constraint acting on all but
the first hidden unit denoted h⋆. Samples are generated conditioned on a frozen value of h⋆, which is flipped in the center of the Markov
chain (indicated by the dashed blue lines). (a) Label corresponds to the “eyeglasses” attribute of CelebA. Samples are collected every
three Gibbs iterations. (b) Label corresponds to the “smiling” attribute of CelebA. Samples are collected every five Gibbs iterations.
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where the sum runs over pairs ði; jÞ of nearest neighbors on
a two-dimensional squared grid with L × L sites. Each spin
vi can take �1 values. We choose periodic boundary
conditions; that is, site (1,1) is interacting with sites
(1,2), (2,1), ðL; 1Þ, and ð1; LÞ. The model assigns proba-
bilities given by the Boltzmann law PIsingðvÞ ∝ e−βEðvÞ to
configurations v, where β is the inverse temperature; we
hereafter denote the average over P by h·i. In the infinite-L
limit, the model undergoes a phase transition from a
paramagnetic phase (β < βc) in which the magnetization

m ¼
����� 1N

X
i

vi

����
�

ð14Þ

vanishes, to a ferromagnetic phase (β > βc) in whichm > 0
[27]. The transition occurs at a critical inverse temperature
βc ≈ 0.44 computed exactly by Onsager [36]; see Fig. 7.

A. Sampling the Ising model at equilibrium

We start by generating up to 106 samples from the Ising
model through Monte Carlo (MC) simulations at different
inverse temperatures in the range 0.35 ≤ β ≤ 0.5. To
quickly equilibrate at all temperatures, the MC chain
includes both local Metropolis updates and global Wolff
cluster moves known to be efficient to sample the model
near βc [37]; details about the implementation can be found

in Supplemental Material [26] Appendix A. The magneti-
zation M and the heat capacity

C ¼ β2

N
ðhE2i − hEi2Þ ð15Þ

are shown as functions of the inverse temperature in
Fig. 7(a) for two system sizes L ¼ 32 and L ¼ 64.
Additional observables such as the susceptibility

χ ¼ β

N

���X
i
vi

�
2
�
−
�����

X
i
vi

����
�

2
	

ð16Þ

and the correlation length are reported in Supplemental
Material [26] Fig. S3. A peak in the heat capacity (and in
the susceptibility) signals the crossover between the two
phases, when β gets close to βc, with a shift that vanishes
with increasing L as predicted by finite-size-effects theory.

B. Learning with a standard RBM

We then use the MC samples as training data for an
unconstrained RBM, with visible units taking �1 values.
To enforce the global sign symmetry of the energy, i.e.,
Eð−vÞ ¼ EðvÞ [see Eq. (13)], we choose hidden units hμ ¼
�1 (instead of 0,1 as in the MNIST case) and vanishing
biases on the both visible (gi ¼ 0) and hidden (θμ ¼ 0)
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FIG. 7. Learning RBMs on two-dimensional Ising model data. (a) Magnetization and heat capacity as functions of the temperature for
the samples generated by the Ising model (13). (b)Magnetization and heat capacity of samples generated by the RBM trained on the Ising
data. (c)Magnetization and heat capacity of samples generated by theRBMwith constraint (6) acting on all hidden units. (d)Magnetization
and heat capacity of samples generated by the RBM with quadratic constraint (9) acting on all hidden units. (c) Magnetization and heat
capacity of samples generated by the RBM with linear constraint (6) acting on all but one hidden unit. (f) Maximum AUC of classifiers
trained to predict the sign of the sample magnetization from the RBM inputs. (g),(h) Typical weights learned by the RBM at selected
temperatures (1=T ¼ 0.35, 0.4, 0.46, 0.5) for the unconstrained RBM and for the RBM with the first-order constraint. (i) Free weights
attached to the released hidden unit compared to 4β times the magnetization of the Ising model.
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units. The training phase thus consists in inferring the RBM
weights wiμ only.
We verify that the log-likelihood log PðvÞ of test MC

data estimated with the trained RBM correlate with the
Ising energy EðvÞ (Supplemental Material [26] Fig. S7).
The weights learned by the RBM exhibit localization
patterns [see Fig. 7(g)] at low temperatures, in agreement
with observations reported in previous works on the one-
dimensional Ising model [29].
We generate samples from these RBMs learned at

different β’s using alternate Gibbs sampling and evaluate
the magnetization, heat capacity, and susceptibility. The
results are in agreement with the same quantities computed
from samples of the Ising model distribution; see Fig. 7(b).
This observation is consistent with literature [28,38,39],
where RBMs were shown to be able to accurately fit
statistical physics models such as the Ising model.

C. Partial erasure of information
with a fully constrained RBM

We hereafter choose that the label u ¼ �1 associated
with a configuration of spins v is the sign of its magneti-
zation,

uðvÞ ¼ sign

�X
i

vi

�
: ð17Þ

1. Linear constraints

By symmetry, the vector qð1Þ in Eq. (6) has uniform

components qð1Þi ¼ qð1Þ due to the translation invariance of
the lattice resulting from periodic boundary conditions.
Imposing the linear constraint in Eq. (6) thus amounts to
demanding that all weight vectors sum up to zero, i.e.,P

i wiμ ¼ 0 for μ ¼ 1;…;M.
We then train a RBM on the MC data under these

constraints. The log-likelihoods of test Ising configurations
are poorly correlated with the Ising model energies in
Eq. (13); see Supplemental Material [26] Fig. S8. In
addition, RBM-generated samples show no magnetization
at any inverse temperature, even for β > βc; see Fig. 7(c).
Surprisingly, however, other observables such as the heat
capacity [Fig. 7(c)] or the susceptibility (Supplemental
Material [26] Fig. S3) exhibit a peak at the crossover
inverse temperature. We conclude that the constrained
RBM-generated spin configurations with zero first
moment, but a substantial part of higher-order correlations,
is still correctly captured and reproduced. We come back to
the interpretation of the effective energy corresponding to
this fully constrained RBM in Sec. V E.

2. Quadratic constraints

We next apply second-order constraints (9) to all weight
vectors of the RBM. Because of the global invariance of the

Ising energy under spin reversal, qð2Þ ¼ 0 abiding to
definition (10). However, the reversal symmetry is lifted
in the presence of an arbitrary small uniform external field
Δ, i.e., EðvÞ → EðvÞ − Δ

P
i vi. We show in Supplemental

Material [26] Appendix G that, to first order in Δ, qð2Þ ≃
1
2
ΔQð2Þ with

Qð2Þ
i;j ¼

�����
X

k
vk

����vivj
�

D
−
�����

X
k
vk

����
�

D
hvivjiD: ð18Þ

The tensor Qð2Þ can be estimated numerically and used to
constrain the weight vectors through Eq. (9).
RBMs learned under these quadratic constraints generate

spin configurations with zero magnetization, as in the case
of linear constraints; see Fig. 7(e). Remarkably, the specific
heat and the susceptibility show no peak as β is varied,
suggesting that quadratic constraints on the weights have
much stronger impact on the distribution of spin configu-
rations. The heat capacity, in particular, has a mild
monotonic increasing tendency with β, attaining similar
values to the original model at low and high temperatures.
However, inference of the magnetization sign is still
possible from the hidden representation, although with
degraded performance. For each inverse temperature, we
train classifiers of varying complexity and measure their
performance in predicting the labels. The resulting AUCs
are shown in Fig. 7(f) and are above chance level (0.5) at
high β. This indicates that higher-order correlations pre-
sumably present in the inputs of full-constrained RBMs
(such as the Binder cumulant [40]) can be used for
predicting labels with some success; we encounter a similar
situation in the MNIST0=1 case.

D. Manipulating representations and spin
configurations with a partially constrained RBM

We now apply constraint (6) on all but one hidden unit
when training the RBM on the Ising data. The released
hidden unit, hereafter referred to as h�, learns a weight
vector which is approximately proportional to qð1Þ; that is,
the weights connecting to h� are uniform over the visible
layer, with a common value hereafter referred to as w�. The
resulting RBM then has one hidden unit that controls the
sign of the magnetization of the generated samples, while
the remaining hidden units capture local correlated patterns
of neighboring spins. Indeed, the constrained weights
display localized patterns similar to those of an uncon-
strained RBM [Fig. 7(e)]. In addition, the RBM reproduces
the behavior of all observables as the inverse temperature is
varied [Fig. 7(e) and Supplemental Material [26] Fig. S3].
These results strongly suggest that the constraints on (all
but one) weight vector applied during learning do not
impair the ability to fit the data but serve only to reorganize
the latent representations. In addition to Eq. (6), we can also
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impose constraints (9) on all but one hidden unit, with
similar results to those reported (not shown).

E. Effective energy resulting from constraints

A heuristic argument allows us to better understand the
nature of the distribution expressed by the fully constrained
RBM (linear case), in particular, why generated configu-
rations have zero magnetization while encoding nontrivial
spin-spin correlations [Fig. 7(c)].
Let us first notice that the general expression for the log-

probability of a visible configuration v in the RBM reads,
due to the absence of biases on the units,

log PRBMðvÞ ¼
XM
μ¼1

log cosh

�X
i

wiμvi

�
; ð19Þ

up to an irrelevant additive constant. This formula applies
in particular to the released RBM of Sec. V D, in which all
but one hidden unit, say, μ ¼ 1, are constrained to satisfy
Eq. (6). Based on our previous finding that wi;1 ≃ w�, we
obtain

log PrelðvÞ ≃
XM
μ¼2

log cosh

�X
i

wiμvi

�
þ w�

����
X
i

vi

����;
ð20Þ

where we approximate log cosh x ≃ jxj for large argu-
ments x and again neglect additive constants. Based on
Eq. (20), we may proceed in two steps. First, as we
empirically find that the released RBM is a good approxi-
mation of the ground-truth Ising distribution, we approxi-
mate log Prel with log PIsing. Second, the first term on the
right-hand side of Eq. (20) expresses the log-probability of
v computed by a RBM with weight vectors constrained to
be orthogonal to qð1Þ and can thus be identified with
log Pconstr. We conclude, using Eq. (13), that the effective
energy function on the spin configuration encoded by the
fully constrained RBM is approximately equal to

EconstrðvÞ ≃ −
X
ðijÞ

vivj þ
w�

β

����
X
i

vi

����: ð21Þ

The effect of the constraints on the weights is to introduce
an L1-like penalty against magnetized configurations
opposing the Ising energy, which tends to align spins.
This explains both the disappearance of magnetization and
the remanent correlations observed in Fig. 7(c).
We can also estimate the value of w� selected through

learning of the fully constrained RBM, with a heuristic
argument. Consider a typical configuration of the Ising
model at low temperature, i.e., in the ferromagnetic regime
corresponding to magnetization m� ≠ 0. The effective field
acting on spin, say, i, reads, according to Eq. (21),

geffi ¼
X
j∈N i

vj −
w�

β
sign ðm�Þ; ð22Þ

where N i refers to the neighborhood of spin i on the
squared grid. Taking the average over the spin i, we obtain
the mean value of the effective field

hgeffi ¼ zm� −
w�

β
sign ðm�Þ; ð23Þ

where z ¼ 4 is the coordination number on the grid. We
conclude that the effective field vanishes when

w� ¼ βzjm�j: ð24Þ

The above expression gives the minimal strength of the L1

penalty capable of counterbalancing the local interactions
tending to magnetize spins. It is expected to vanish in the
paramagnetic regime. Higher values are disfavored during
the RBM training phase, as they would assign higher
energies Econstr in Eq. (21) to typical magnetized Ising
configurations, and thus lower likelihoods.
We compare the heuristic estimate for w� provided by

Eq. (24) to the numerical results for w� obtained from
training partially constrained RBM on 2D Ising data in
Fig. 7(i). Despite the presence of finite-size effects, we
observe a good agreement between Eq. (24) and the
simulation results.

VI. APPLICATION TO MNIST
HANDWRITTEN DIGIT IMAGES

We next consider the MNIST handwritten digit
dataset [24]. Pixel intensities are binarized by thresholding
at 0.5. For simplicity, we start by considering the subset of
images containing only digits 0 and 1 (MNIST0=1), for
which the class label u is binary.

A. Learning with a standard RBM

We train a standard RBM on MNIST0=1, withM ¼ 400
binary hidden units and N ¼ 28 × 28 visible units, through
maximization of the log-likelihood (4) (see Supplemental
Material [26] Appendix A 6 for further details). Figure 8(a)
shows Markov chains of samples derived from Gibbs
sampling of the resulting models. The machine generates
strings of 0s or 1s, depending on the initial condition, with
very rare transitions between these classes. Note that the
absence of transitions from 0 to 1 (or vice versa) is likely
due to the strong dissimilarities between these two digits in
configuration space and the lack of low-energy configura-
tions connecting them; training the RBM on all digits tends
to connect these two modes and increase the frequency of
observed transitions.
To quantify the information content in the inputs about

the labels (digit value), we estimate the mutual information
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MI(u; IðvÞ). While computing MI is very hard, a tractable
lower bound can be obtained through the Gibbs variational
inequality [30],

MI(u; IðvÞ) ≥
X
u;v

PDðu; vÞ ln
�
Pclass(ujIðvÞ)

PDðuÞ
�

¼ Slabel þ Lclass; ð25Þ

where PDðu; vÞ is the empirical distribution of labeled data,
and Pclass(ujIðvÞ) is any conditional distribution imple-
mented here by a classifier attempting to predict the label.
By rearranging terms, this equals the entropy of labels in
the data (Slabel) plus the log-likelihood of the classifier
averaged over held-out data (Lclass).
This lower bound to MI is shown in Fig. 8(b) (black bars)

for classifiers of increasing complexity corresponding
to two-layer networks with a hidden layer of increasing

(a)

(b)

(c)

flip

FIG. 8. Manipulating representations of the RBM trained on MNIST0=1. (a) Samples generated by the RBM initialized with a data
image (0 or 1). Top two rows show a standard (unconstrained) RBM. Bottom two rows show samples from the RBM trained with linear
(red dashed) and quadratic (green dashed) constraints. In both cases, a Markov chain is generated by Gibbs sampling (starting from a 0
or 1 data digit), and images are saved every 64 steps, until reaching a total of 16 samples as shown. (b) Lower bound Slabel þ Lclass to the
mutual information between inputs and labels [see Eq. (25)] vs classifier width. The bounds to MI are measured in bits and shown in
discontinuous lines. Colors correspond to the different RBM models. Black: standard and unconstrained. Red: fully constrained with
linear constraints; see Eq. (6). Green: fully constrained with quadratic constraints; see Eq. (9). (c) Samples from the RBM trained with
first-order constraint acting on all but one hidden unit, which is flipped at the middle of the MC chain (blue arrow). Starting from a 0 data
digit, samples are saved every 64 Gibbs steps. Top panel shows an enlarged view of the transition, with images every three steps instead.
The lower panels show the logarithm of the unnormalized probability ln P̃ðvÞ ¼ ln ðPh e

−Eðv;hÞÞ of generated digits by constrained
RBMs, evaluated on RBMs trained only on 0s (RBM0) or 1s (RBM1). Purple and orange dashed lines correspond to the average ln P̃ðvÞ
of data digits 0 and 1.
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width (horizontal axis in the figure); see Supplemental
Material [26] Appendix E for details about the architecture
and training of these classifiers. The simplest network is a
linear classifier (perceptron, width ¼ 0), and already
achieves nearly perfect prediction accuracy. In addition,
the weights of this optimal linear classifier are distributed
over all hidden units, showing that information about the
label is distributed across the latent representation. As the
width of the classifier increases, the lower bound to MI
saturates at a value close to 1 bit, the maximum possible for
two label classes, indicating that the RBM inputs capture
maximum label information. We emphasize that the RBM
has no direct access to the label values during training.

B. Partial erasure of information
with a fully constrained RBM

We next train a RBM with a constraint applied on the
weight vectors attached to all hidden units.

1. Linear constraints

Figure 8(a) (bottom, red) shows typical configurations
generated by a RBM trained with constraints (6). As
expected, these configurations tend to be blurred mixtures
of 0s and 1s.
A simple linear discriminator looking at the inputs to the

hidden units is unable to predict the labels of these digits, in
agreement with the adversarial interpretation of Eq. (6).
However, information about the digit class is still present in
the RBM representations through higher-order correlations.
Sufficiently complex classifiers are able to recover the label
of data digits with maximum accuracy [Fig. 8(b)] and give
lower bounds to MI close to unity. This result shows that,
while condition (6) is not sufficient to erase the label
information from the representation extracted by the RBM,
it does make retrieval of this information more difficult.

2. Quadratic constraints

Imposing the stronger, quadratic constraints in Eq. (9)
results in a sample of worse quality; see green row in
Fig. 8(a), bottom. Figure 8(b) shows that simple classifiers
trained are unable to predict the labels from the inputs.
Interestingly, more complex classifiers achieve a moderate
nonzero prediction accuracy but provide substantially lower
estimates of the mutual information than when trained on
linearly constrained RBMs (compare green and red bars).
The lower bounds to MI seem to saturate to a value well
below 1 as the classifier widths increase. These results
indicate that quadratic constraints erase a sizable part of
the information about the labels.

3. On the generative power of the fully constrained RBM

Configurations sampled from the fully constrained
RBMs in Fig. 8(a) (bottom) tend to be blurred mixtures
of digits (0 and 1). In this case, the data are in fact a mixture

of two widely separated distributions associated with 0s and
1s. This is reminiscent of configurations of opposite mag-
netization in the Ising model at low temperature in Sec. V D,
and the sampled blurred digits are in analogy to the
“intermediate” configurations of zero magnetization that
the fully constrained RBM samples in that case [Fig. 7(c)
top]. We however see that in the Ising model, the configu-
rations sampled from the fully constrained RBM still carry
relevant information in higher-order statistics, e.g., as shown
by the behavior of the heat capacity; see Fig. 7(c) bottom.
To illustrate how fully constrained a RBM can gen-

erate samples with meaningful information present in
higher-order statistics in the setting of handwritten digit
images, we consider the following simple numerical experi-
ment. For each 0 digit from MNIST, we produce an
additional image where pixel colors are flipped (producing
black zeros in white background) and define a binary
label encoding the background color. We then train a
fully constrained RBM on these data. Generated samples
are shown in Supplemental Material [26] Fig. S6. The
fully constrained RBM generates recognizable 0 digits
embedded in noisy backgrounds, where local patches in the
digit strokes clearly tend to share the same color, indicating
that the overall structure of the digit is preserved through
correlations.

C. Manipulating representations and digits
with a partially constrained RBM

We now impose linear constraints (6) to all but one (blue)
hidden unit. As we state in objective B, our intention is to
promote concentration of label information on this released
unit; see Fig. 3(b). After learning, the released weight
vector is similar (up to a global scale factor) to vector qð1Þ
(Supplemental Material [26] Fig. S5), a direction forbidden
to the other hidden units. Hence. the average value of the
unit conditioned to a visible configuration (digit) is an
excellent predictor of the corresponding label.
Samples generated by the RBM are nice-looking 0s or

1s, in a manner consistent with the state of the released
hidden unit. Furthermore, manipulating the state of this
hidden unit, i.e., freezing it to 0 or 1, helps generate
samples with the desired labels. We show in Fig. 8(d)
numerical experiments illustrating the effects of such
manipulations. We initialize the RBM with a digit [0 in
Fig. 8(d)] extracted from the MNIST0=1 dataset, and
sample new configurations through alternate Gibbs sam-
plings. As with standard RBM, the samples vary over time,
but the digit class remains unchanged. We then flip the state
of the hidden unit [middle of Fig. 8(d)]. As a consequence,
the resulting visible configuration converges to the other
digit class after some short transient (see top part of panel).
To evaluate the quality of the generated digits, we train

two RBMs only on 0s or 1s, respectively, and evaluate the
log-likelihoods of the generated digits on two standard
RBMs, one trained with 0 digits only, and another trained
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on 1s only. These two machines provide expected reference
scores for 0s and 1s. Figure 8(e) shows that the generated
digits are of good quality, with log-likelihood values
comparable to the ones of the data.

D. Case of more than two digits

While we have focused on the case of binary labels so
far, our approach can be easily adapted to more than two
classes. We consider the case of D classes and use one-hot
encoding for the labels; i.e., we introduce D labels ud, one
for each class d ¼ 0; 1;…; D − 1. Because of the one-hot
encoding prescription, each data configuration v is such
that D − 1 labels udðvÞ vanish and one is equal to 1.
Analogous to Eq. (6), we define D vectors (in the

N-dimensional space of data)

qð1Þ
d ¼ hudðvÞviD − hudðvÞiDhviD: ð26Þ

We then generalize Eq. (6) to multiple classes by imposing

that weight vectors be orthogonal to all qð1Þ
d , with

d ¼ 1;…; D. It is easy to check that the D vectors in
Eq. (26) sum up to zero, a consequence of the one-
hot encoding scheme. We therefore consider only the last
D − 1 vectors, with indices d ¼ 1; 2;…; D − 1 to obtain
linearly independent constraints acting on the weights.
In practice, the constraints wμ⊥qð1Þ

d are enforced through
the architecture shown in Fig. 9(a) in which a set of D − 1
hidden units hd are released, each with respect to a single

qð1Þ
d and constrained to be orthogonal to all the other D − 1

vectors. In this way, when activating one of these hidden
units, say, μ, the corresponding digit d ¼ μ is expected to
be sampled on the visible layer. When all firstD − 1 hidden
units are silent, digit d ¼ 0 is expected to be sampled.
We illustrate this approach in the case of D ¼ 4 digits,

with RBMs trained from MNIST0=1=2=3. The vectors qð1Þ
d

in Eq. (26) are shown in Fig. 9(b). After training the RBM
under the orthogonality constraints, the released hidden
units μ ¼ 1, 2, 3 are strongly activated by, respectively,
digits d ¼ 1, 2, 3. In Fig. 9(c), we show the average inputs
to these hidden units when data digits are presented on the
visible layer of the RBM; the corresponding weight vectors
are depicted in Fig. 9(d). When digit 0 is present on the
visible layer, the three hidden units are silent. Other hidden
units are weakly activated by the different digits and
capture information (small stretches, local contrast) crucial
for generating high-quality digits but not directly related to
their identity; see panel “other” in Fig. 9(c).
We next manipulate these units to generate digits out of

one of the four classes. The outcome is shown in Fig. 9(e),
where the Markov chain is initialized with a 1 digit from the
MNIST data, and the first released hidden unit (μ ¼ 1) is
on, while the other two (μ ¼ 2, 3) are off. Sampling the
RBM in this condition generates a string of 1s as illustrated
in the figure. Turning this unit off and turning the second

μ ¼ 2 on now produces a transition in the visible layer and
generates digits 2. Iterating this procedure, we generate 3s,
and finally 0s by turning off all released hidden units [last
row in Fig. 9(e)].

VII. APPLICATION TO PROTEIN SEQUENCES
WITH TAXONOMY ANNOTATIONS

A protein family is a group of proteins that share a
common evolutionary origin reflected by their related
functions and similarities in sequence or structure [25].
Protein families are often arranged into hierarchies, with
proteins that share a common ancestor subdivided into
smaller, more closely related groups. In recent years, RBMs
have been successfully applied to extract structural, func-
tional, and evolutionary information from the sequences

(c)(a)

(b)

(e)

(d)

FIG. 9. Manipulating representations of a RBM trained on
MNIST0=1=2=3. (a) Sketch of the constraints applied to hidden-
unit weights in the case of multiple classes, here, D ¼ 4.

(b) Vectors qð1Þ
d for digit classes 0, 1, 2, and 3; see Eq. (26).

(c) Inputs received by the three released hidden units [in blue on
panel (a)], when the 6000 digit images in classes 0, 1, 2, and 3 are
presented (x axis). In the fourth, bottom panel, the inputs received
by a random hidden unit from the constrained group (black) are
shown. (d) Weights wIμ learned by the released hidden units
μ ¼ 1, 2, 3. (e) Samples generated from this machine by Gibbs
sampling (images shown are taken every 64 steps). The first (top
row) released unit 1 is active, while the other two are inactive.
Then, we activate unit 2 (second row) while inactivating unit 1
(blue arrow), and similarly for 3 (third row). In the last row, all
three units are inactive.
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attached to a protein family [19,20,41]. Our aim here is to
use a partially constrained RBM to disentangle the label
defining the taxonomic domain (eukaryota or bacteria) a
protein sequence belongs to and manipulate the domain-
determining hidden unit to drive a continuous transition, or
morphing, between one taxonomic domain to the other
during sampling of artificial sequences.

A. The K-homology domain

To illustrate the application of ourmodel, we select theKH
module, a common nucleic-acid binding motif in proteins
found in multiple species, both eukaryotic and prokaryotic.
Structurally, KH domains adopt a globular fold constituted
by three alpha helices and three beta sheets [42–44], as
shown in Fig. 10(a). A central feature of the KH domain is
the presence of a signature Iso-Gly-X-X-Gly motif [see
Figs. 10(a) and 10(b)] conserved across the entire family,
which in cooperation with flanking helices, forms a cleft

where recognition of four nucleotides in single-stranded
DNA or ribonucleic-acid chains occurs [44]. Mutations
in these highly conserved residues result in loss of
function [45]. In particular, substitution of the moderately
conserved isoleucine following the Gly–Gly loop (two sites
after) by Asn, in a KH domain locus of the fragile-X mental
retardation gene in humans causes fragile-X syndrome, a
leading heritable cause of mental retardation [46].
We select this family in our work as it has a sufficient

number of eukaryotic and bacterial sequences available in
the Pfam database [25]. The PF00013 family of homolo-
gous sequences includes approximately 11 000 bacterial
sequences and approximately 38 000 eukaryotic sequences
of the KH domain. After aligning, removing insertions, and
retaining only columns with less than 50% gap (deletions)
content, the sequences end up having a common length of
L ¼ 62 amino acids. As the taxonomic origin of every
sequence can be simply queried through the Uniprot
database [48], we define label u ¼ 0 and 1 for, respectively,

(a)

(c)

(d)

(e)

(f) (G)

(b)

FIG. 10. Taxonomy of protein families. (a) Sequence logos of eukaryotic (purple, above) and bacterial (orange, below) sequences from
the PF00013 protein family. We use the following color code: green for polar residues, blue for basic, red for acidic, and orange for
hydrophobic. Gaps are shown in black. (b) Ribbon structure of KH domain showing locations of the Gly–Gly loop and flanking helices.
Image prepared with Mol* Viewer [47]. (c) Sequence logos of 100 000 generated sequences when the released hidden unit is set to
1 (top) or 0 (below). To ensure that sampling is equilibrated, we track the average and standard deviation of the energy of the samples in
time and see that these statistics are essentially constant after approximately 200 steps, suggesting that samples can be collected every
5000 steps. (d) Weights of the released hidden unit. (e) Inputs received by the released hidden unit when presented with sequences from
the two classes. (f) Markov chain started from bacterial (orange) or eukaryotic (purple) sequences from the data. The panel shows the
probability of being a eukaryotic vs bacterial sequence in a perceptron classifier. Discontinuous lines are the average value for the data
sequences of each class. A total of 1024 Gibbs sampling steps are taken, and the flip of h� occurs at step 512 (blue arrow). (g) Enlarged
view near the transition, showing also the log of the unnormalized marginal [log P̃RBMðvÞ] of sampled sequences (right axis) evaluated
on a RBM trained on the full family.
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bacterial and eukaryotic proteins. To reduce common ances-
try bias, the sequences are weighted according to their
dissimilarity to other members of the same family [49,50]:
The weight assigned to a sequence is proportional to the
inverse of the number of sequences in the family with a
Hamming distance smaller than 20% of the sequence length.
We also balance the total weights of eukaryotic and bacterial
classes so that both classes have equal weights.
Figure 10(a) shows the sequence logos of the eukary-

otic (top) and bacterial (bottom) sequences in the family
after carrying out the above preprocessing steps. Some
features are shared across KH domain sequences in both
subfamilies, such as the well-conserved Gly–Gly loop
[Fig. 10(b)]. Bacterial sequences have an overall larger
content of gaps (deletions) with respect to the consensus
alignment, reflecting sequence length differences in the
two subfamilies.

B. Learning a generative model with a standard RBM

Multiple sequence alignments are represented using
categorical or Potts variables, each site of the alignment
having one of 21 possible values (20 amino acids and one
gap value). Gaps are necessary to model sequences of
varying lengths [49]. Using the one-hot encoding, a
configuration v of the visible layer encodes a sequence
over 21 × L units, where L is the sequence length.
We first train a RBM on the full alignment containing

both eukaryotic and bacterial sequences, following
Ref. [19]. The RBM captures statistics of the sequence
alignment, such as conservation profiles at each site. In
addition, simple linear classifiers trained on top of the
hidden layer of the RBM achieve AUCs of 0.9 in
distinguishing between these two classes.

C. Fully constrained RBMs are still able
to generate foldable sequences

We then train a RBM with constraint (6) acting on all
hidden units. The resulting model continues to match the
conservation profile of the MSA and generates diverse
sequences. We furthermore validate the foldability of
sampled sequences using ALPHAFOLD [51]. As explained
in Supplemental Material [26] Appendix F, we compute the
template-matching score of the predicted structures of
sampled sequences in comparison to the natural sequences,
obtaining values > 0.7 for both the standard RBM and the
fully constrained RBM, suggesting that these sequences are
able to adopt the expected three-dimensional fold of the
family. This result is in agreement with objective A: The
model distribution should preserve all the data features
unrelated to the label.

D. Changing taxonomic domain with protein design

We then apply the linear orthogonality constraint in
Eq. (6) to all but one weight vector. The weights of the

released hidden unit after training are shown in Fig. 10(d)
and capture features that differentiate the two classes. For
example, bacterial sequences tend to have deletions (gaps)
around positions 35–40 of the alignment, indicating that
this segment is often absent in bacterial sequences. The
learned w�

i reflect this difference by assigning negative
weights to the gap symbol in this region. As a consequence,
the distribution of inputs subtended by eukaryotic
and bacterial sequences is well separated on this unit
[Fig. 10(e)]. Conversely, features shared by eukaryotes
and bacteria, such as the Gly-Gly loop, or the conserved
I22, are ignored by w�.
We generate many samples from the RBM distribution,

each conditioned to a fixed state of h�, corresponding either
to bacterial (h� ¼ 0) or eukaryotic (h� ¼ 1) classes. The
sequence logos of the two sets of generated sequences are
shown in Fig. 10(c); they closely match the ones of the
training data. The list of differences between the logos
associated with the two sequence domains include the
following:
(1) The Gly-Gly loop is followed by a conserved Lys19

predominantly in bacteria, but not so in eukaryotic
sequences.

(2) Bacterial sequences conserve a Asp-Lys-Iso motif
(positions 8–10), which the RBM with h� ¼ 0
correctly emits, but not so in the h� ¼ 1 case.

(3) Besides the two Gly conserved in the entire family,
eukaryotic sequences also conserve Gly49, a site
which appears less conserved in bacteria which
admit also Ala or Ser at this position. The RBM
correctly observes these variations.

(4) Iso10 is highly conserved in bacteria, while in
eukaryotes this site is not conserved, admitting, in
particular, Val, Ala.

These examples suggest that the RBM can sample each
subfamily, conditioned on the value of h�.
Next, we sample the RBM starting from one bacterial or

one eukaryotic sequence in the dataset as the initial
condition, and with h� set to the value matching the initial
condition. After some steps, the value of h� is flipped, and
we monitor the dynamical evolution of the generated
samples. Figure 10(f) shows the probability that generated
sequences are eukaryotic or bacterial, according to a linear
classifier achieving AUC > 0.9 on held-out test data (see
Supplemental Material [26] Fig. S4).
Figure 10(g) shows a magnified view of the classifier

probabilities and the log-likelihood in the vicinity of the
hidden-unit switch. We evaluate the log-likelihood of the
samples with a RBM trained on the full family (denoted
log P̃RBM in the figure). The class switch, as measured by
the classifier score, occurs faster than the relaxation
dynamics following the h� flip, as measured by the like-
lihood. This suggests that the sampled sequences retain
other features unrelated to the labeled class that relax at a
slower rate.
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VIII. ROBUSTNESS AGAINST THE SCARCITY OF
LABELED DATA

One important advantage of our approach is that labeled
data are only necessary to estimate the vector qð1Þ (7) used
in the first-order constraint (6), or the matrix qð2Þ (10) in the
case of the second-order constraint (9). Having determined
qð1Þ or qð2Þ, the training of the RBM benefits from addi-
tional unlabeled data, and in this regard, our model is
semisupervised. This property is useful in many real
applications, where labels are assigned by humans, are
costly to obtain, and thus available for only a small fraction
of the data. An example is the KH domain protein-sequence
dataset considered in Sec. VII, where we are able to collect
reliable taxonomic labels for only 10% of the sequences.
To better understand the amount of labeled data needed

for our approach to be effective, we conduct further
numerical experiments in which the fraction of labeled
data is progressively decreased. We consider below the
linear constraint and the MNIST0=1 data for the sake of
simplicity. Similar results for the KH domain are reported
in Supplemental Material [26] Fig. S10.
Since qð1Þ becomes trivially zero when there are no data

in one of the label classes, we consider balanced sub-
sampled labeled datasets with equal numbers of labeled
examples in each class. Figure 11(a) shows the average
overlap between vector qð1Þ computed on such a sub-

sampled labeled dataset (referred to as qð1Þ
sub), and the vector

qð1Þ computed on the full labeled dataset (denoted by qð1Þ
full),

as a function of the number B of labeled examples
available, divided by the dimension of the data N. Here,
the overlap is defined by

ϕ ¼ qð1Þ
full · q

ð1Þ
sub

jqð1Þ
fulljjqð1Þ

subj
: ð27Þ

For each given number of labeled examples, we consider
100 random realizations of the subsampled labeled dataset
and estimate the average of ϕ over these realizations. It can
be seen from Fig. 11(a) that the overlap never drops below
approximately 0.6. This result can be understood by
considering the separation between the two classes of data
(see inset in the figure). Writing the covariance matrix
conditioned on the class label

CðuÞ
ij ¼ hvivjjui − hvijuihvjjui; ð28Þ

as well as the mean data vector associated with each class

vðuÞi ¼ hvijui; ð29Þ

we can derive a simple estimate connected to the
average separation between the classes, vð0Þ − vð1Þ and the
variances inside each class TrCð0Þ, TrCð1Þ (see Supplemental
Material [26] Appendix H for a derivation) that writes

hϕi ≈
�
1þ 1

B
TrðCð0Þ þ Cð1ÞÞ
kvð0Þ − vð1Þk2

�−1=2
; ð30Þ

where B is the total number of labeled examples, and the
average is taken over all labeled datasets with B=2 examples
in each class. Thus, the overlap increases with the separation
between the classes (vð0Þ − vð1Þ) and decreases if the classes
have large variances (TrCð0Þ, TrCð1Þ), as depicted in the inset
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FIG. 11. Semisupervised training with a subsampled labeled dataset. (a) Overlap (27) between qð1Þ
sub (computed on a subsampled-

labeled dataset) and qð1Þ
full (computed on the full dataset) plotted as a function of the number of labeled examples in the subsampled dataset

divided by the dimension (28 × 28 ¼ 784 for MNIST). An average of over 100 random realizations of the subsampled dataset is taken.
The black solid curve shows the empirical result, while the dashed green curve is the theoretical estimate (30). Inset shows a diagram of
how class separation relates to the overlap in connection to (30). (b) For the pink and cyan dots of (a), we plot an example of the obtained

vectors qð1Þ
sub in comparison to qð1Þ

full. (c) Label manipulation using the subsampled qð1Þ
sub in the two cases. (d) Histogram of log-likelihoods

of (subsampled) training and withheld dataset for a RBM trained on a subset of 0 (top) or 1 (bottom) digits, corresponding to the labeled
datasets used in the cyan dot in the previous panels. The black and green vertical lines indicate the average values. (e) Histogram of log-
likelihoods of training and withheld dataset of the partially constrained RBM in the cyan setting of the previous panels.
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of Fig. 11(a). The estimate (30) is plotted in Fig. 11(a)
and is in excellent agreement with the empirical average
overlap.
Figure 11(b) shows the scatter plots of the components of

two example vectors qð1Þ
sub computed from subsampled

labeled data at the pink and cyan points highlighted in

Fig. 11(a) vs the components of the vector qð1Þ
full computed

from all labeled data. Using these vectors qð1Þ
sub, we then

train two RBMs subject to Eq. (6) acting on all but one
hidden unit. Then we attempt to manipulate the sampled
data by controlling this released hidden unit. The results are
shown in Fig. 11(c). In both cases, the RBMs generate
acceptable data and the state of the released hidden unit h�
correlates with the sampled digit, even though for the
extremely subsampled case (pink) the digits tend to be
more noisy.
To further underline the advantage of our method with

respect to supervised learning in a situation with few
labeled data, we train normal RBMs on the subsampled
labeled data, specializing on 0 or 1 digits only. As expected
for the small amount of training data, these models tend to
overfit. This is shown in the histograms of log-likelihood
assigned to training and a withheld validation dataset in
Fig. 11(d) (top for 0 digits and bottom for 1s). The gap in
the average log-likelihood of training and validation data
(black and green vertical lines, respectively) is quite large,
in both cases, indicating overfitting. In contrast, the
partially constrained RBM (the same from the cyan dot
in the previous panels of the figure) uses both the few
labeled data and the large quantity of unlabeled data to

avoid overfitting, and we show the log-likelihood histo-
grams for training and validation data in Fig. 11(e). The
agreement between both subsets is excellent, indicating that
this model is not overfitting.
In summary, these results provide evidence for the fact

that our method is also applicable with limited labeled data.

IX. ESTIMATING THE COSTS OF PARTIAL
ERASURE AND DISENTANGLEMENT

In this section, we estimate the cost associated with
disentanglement (see Sec. III B 2), focusing on the impact
of linear constraints on the weights. We resort to both
numerical and analytical methods to estimates these costs.

A. Numerical estimates

Computing the likelihood requires estimating the nor-
malization constant Z in Eq. (2). Since the exact calculation
of Z is intractable, we use the annealed importance
sampling (AIS) algorithm [52]. AIS estimates Z through
a number of intermediate “annealed” distributions inter-
polating between the original RBM distribution and a
simpler independent model that can be exactly sampled.
This procedure provides a stochastic upper bound on
the likelihood, which converges to the true value as the
number of interpolating distribution increases. A stochastic
lower bound can be obtained by a reverse interpolation
procedure [53], which gradually “melts” the RBM
back into the independent model; see Supplemental
Material [26] Appendix A for details. Combining the

FIG. 12. Likelihood calculations. First row shows numerical estimates of the log-likelihood using RBMs with binary hidden units,
along with the costs of applying Eq. (6) partially or on the full hidden layer. Bottom row shows analytical results obtained in a RBMwith
one hidden spin unit and the remaining Gaussian hidden units (Fig. 13). First column shows the legend: black for the unconstrained
model, red for models with all hidden units constrained, and blue for models with the constraint acting on all but one hidden unit.
Subsequent columns show the results for the three datasets considered: MNIST0=1, two-dimensional Ising model (L ¼ 64), and the KH
protein domain. The discontinuous arrows in the first panel highlight the likelihood costs of partial label erasure (red) and
disentanglement (blue).
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two bounds sandwiches the true likelihood value and
ensures that sampling has converged.
The results are shown for the Ising model, MNIST0=1,

and PF00013 datasets considered in this work in the top
row of Fig. 12. We do not consider CelebA for computa-
tional convenience. We first measure the likelihood costs
ΔLpart erasure [see Eq. (11)] for making labels inaccessible to
linear discriminators with the fully constrained architecture
(red bars or dots). In all datasets, the labels considered are
relevant to the nature of the data, and the costs (per data
configuration) induced by the constraints on the weights are
significant; see Table I.
The relation between label relevance and the likelihood

cost is nicely portrayed in the two-dimensional Ising model
dataset. At low β, the data are essentially random, and the
magnetization is mostly irrelevant to determining the
probability of a configuration. In this regime, erasing label
information has little likelihood cost. As the inverse
temperature increases, the magnetization becomes more
relevant, and it becomes necessary for the model to account
for it to achieve good likelihood. In consequence, partially
erasing the magnetization in this regime results in a large
likelihood loss.
The top row of Fig. 12 furthermore shows the values of

the log-likelihoods after releasing one hidden unit (blue
bars and dots). The log-likelihood loss with respect to the
unconstrained RBM ΔLdisent in Eq. (12) is guaranteed to be
non-negative. In practice, for the MNIST0=1 and Ising
model datasets, and to a lesser extent for the KH domain,
we estimate this cost to be small; see Table I. These results
are consistent with the ability of the released RBM to fit
and generate high-quality data in the three cases, as shown
in previous sections.

B. Analytical estimates

We can gain some analytical insights into the origin of
the costs of partial erasure and disentanglement as follows.
To make our RBM models mathematically tractable, we
now assume that the visible and hidden units of the RBM
are all real valued and Gaussianly distributed, with the
exception of a single spinlike hidden unit, h� ¼ h1 ¼ �1
(intended to be eventually released to help concentrate the

label-related information). This RBM model defines a
bimodal Gaussian mixture distribution, with two modes
associated with the label classes u ¼ �1; see Figs. 13(a)
and 13(b).
The energy function under this Gaussian-spin (GS) RBM

model writes

EGSðv;hÞ ¼
X
i

v2i
2σ2i

−
X
i

givi þ
X
μ≥2

h2μ
2

−
X
i

X
μ≥2

wiμvihμ −
X
i

w�
i vih1; ð31Þ

where the σi’s parametrize the standard deviations of the
visible units, and the visible units are connected to the
Gaussian hidden units through theweightswiμ and to the spin
hidden unit through w�

i .
We first train the RBM in the absence of any constraint

on the weights. The data are characterized by their
empirical correlation matrix C and the vector qð1Þ sepa-
rating the centers of mass of the classes; see Fig. 2(c).
Maximizing the likelihood of the data gives several con-
ditions over the weight vectors that we list below.
(1) The scaledweightswiμσi for μ ≥ 2 are eigenvectors of

the matrix C̃ ¼ D(C − qð1Þðqð1ÞÞ⊤)D, with corre-
sponding eigenvalues λμ ¼ 1=ð1 −P

i w
2
iμσ

2
i Þ; here,

D is the diagonalmatrixwith entries 1=σ2i . In practice,
the top M − 1 eigenvalues of C̃ (larger than unity)
have to be selected to maximize the likelihood.

TABLE I. Decrease of log-likelihoods corresponding to partial erasure of the label with a fully constrained RBM
ΔLpart erasure, and to disentanglement with a partially constrained RBM ΔLdisent. The changes on log-likelihoods are
expressed per data configuration and per pixel for MNIST0=1, per spin for 2D Ising, and per protein site for the KH
domain.

Model Label ΔLpart erasure

% of unconstrained
log-likelihood ΔLdisent

% of unconstrained
log-likelihood

MNIST0=1 0 or 1 0.016 30% 0.005 10%
2D Ising Sign of 0.18 40% ≃0 ≃0%
(L ¼ 64, β ¼ 0.44) magnetization
KH domain Bacteria or eukaryotic 0.09 6% 0.04 3%

(b)(a) (c)(c)

FIG. 13. Gaussian-spin RBM. (a) The Gaussian-spin RBM has
one spinlike hidden unit h� ¼ h1 ¼ �1, whereas all other hidden
units are Gaussian. (b) The spin hidden unit (blue) separates the
two labeled classes. Gaussian hidden units (red) model intraclass
variability. (c) Illustration of Poincaré theorem.
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(2) The weights w� onto hidden unit μ ¼ 1 are given by
Σ−1qð1Þ, where Σ ¼ ðD −WW⊤Þ−1 denotes the
conditional covariance matrix predicted by the
model within each class, and W is the matrix of
weight vectors wiμ with μ ≥ 2.

(3) The biases on the visible units are such that
the model fits the independent site frequencies:
g ¼ Σ−1ðhviD − qð1ÞÞ.

Details about the derivation can be found in Supplemental
Material [26] Appendix D. The log-likelihood reads

LGS ¼
1

2

X
μ

ðλμ − 1 − log λμÞ − log cosh ðg · qð1ÞÞ; ð32Þ

where the λμ’s are the selected eigenvalues of C̃, and we
ignore irrelevant additive terms.
We next consider maximum likelihood training of a

RBM in the presence of orthogonality constraints acting on
the Gaussian weights, while w�

i is unconstrained; see
Eq. (6). Let us define the projection operator onto the
subspace orthogonal to qð1Þ,

P ¼ I −
qð1Þðqð1ÞÞ⊤
jqð1Þj2 : ð33Þ

It is easy to realize that conditions (6) are equivalent to
PW ¼ W. Consequently, the discussion of the uncon-
strained learning case above applies to the constrained
case provided the correlation matrix C̃ is replaced with the
projected matrix C̃⊥ ¼ PC̃P.
The eigenvalues of the projected matrix C̃⊥ have a

precise ordering relationship to the eigenvalues of the
original matrix C̃ known as Poincaré separation theorem
(see Theorem 11.11 of Ref. [22]). Denoting by λ1;…; λN
the eigenvalues of the original matrix, and λ⊥1 ;…; λ⊥N the
eigenvalues of the projected matrix, both ranked in
decreasing order, we have

λ1 ≥ λ⊥1 ≥ λ2 ≥ λ⊥2 ≥ … ≥ λN ≥ λ⊥N ¼ 0; ð34Þ

where λ⊥N ¼ 0 is due to the forbidden direction qð1Þ, which
results in a drop of the rank of the matrix. Moreover, the
gaps λi − λ⊥i are connected to the angle between the
forbidden direction qð1Þ and the eigenvectors of the original
correlation matrix. Figure 13(c) shows a low-dimensional
example, in which a three-dimensional ellipsoid symbol-
izing C̃ is projected to the space orthogonal to one of the
vectors shown. We consider two vectors with different
angles to the ellipsoid principal axis, which define the
projected ellipse C̃⊥.
The likelihood of the released Gaussian-spin RBM is

given by the same formula as for the unconstrained model
[see Eq. (32)] upon replacement λμ → λ⊥μ . As the function

is monotonic in the eigenvalues (when they are larger than
unity), Poincaré separation theorem in Eq. (34) guarantees
that the likelihood decreases when imposing the constraints
on the weights.
Lastly, when the orthogonality constraint (6) acts on all

weights, the model is blind to the separation of the classes.
We obtain the likelihood of the constrained RBM by simply
replacing qð1Þ in the above calculation with the zero vector,
and consequently, w�

i ¼ 0 also.
The bottom row of Fig. 12 shows the log-likelihood

estimates produced by this approximate calculation in the
unconstrained, constrained, and released cases. While the
absolute values of the log-likelihoods cannot be directly
compared to the binary RBM settings, we see that the
relative changes from unconstrained to constrained asso-
ciated with the partial erasure cost, and from constrained to
released defining the disentanglement cost fairly match
their counterparts computed by annealed importance sam-
pling on binary RBMs.

X. DISCUSSION

In this work, we propose computationally efficient
methods to train RBMs with disentangled representations.
In turn, these representations can be used to generate
samples with desired properties, e.g., with one attribute
changed while the other features remain unaffected. This
goal has been pursued in the literature [7–9,11] with deep
neural networks, predominantly with variational autoen-
coders (VAEs) [3,54] and adversarial networks [4,7,11].
Despite the broad success of adversarial learning and its
importance in practical applications [7], the aforemen-
tioned methods suffer from several drawbacks. Deep neural
networks are difficult to interpret and require large amounts
of data to train. Variational autoencoders [3] enforce a
continuous mapping of the data to a Gaussian distribution,
which is not always suitable, for instance, if the data consist
of separated peaks [55]. Last of all, adversarial training
suffers from instabilities that are not fully understood yet,
making training difficult to implement in practice.
Our approach exploits the simplicity of the RBM

architecture. Despite the limited number of layers, the
flexibility in the potentials on hidden units allows RBMs to
express complex representation distributions, contrary to
VAEs that require deeper architectures to map the data
distribution onto Gaussian latent variables. We derive
explicit constraints to be applied to the RBM weights
during learning to favor disentangled representations.
These constraints enforce that the data representations
corresponding to different label classes are approximately
indistinguishable. More precisely, we impose linear and
quadratic constraints on the RBM weights that (partially)
decorrelate the class label from the hidden-unit activities.
As in an adversarial framework, imposing these constraints
on a subset of hidden units allows us to manipulate the
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samples generated from the model by controlling the state
of the remaining hidden units.
The resulting training algorithm is easily implementable

and fast, being based on two steps. First, we estimate the
required constraints from labeled data. Crucially, this is the
only step that requires labels. Second, we train the RBM
with standard learning procedures [56], making sure that,
after each gradient update, the weights are projected into
the subspace satisfying the constraints. The resulting
procedure has a similar computational cost to standard
RBM training. It is therefore robust, not suffering from
instability due to the maximization-minimization of the
cost function appearing in adversarial learning schemes.
We again stress that our approach combines the unsuper-
vised nature of the RBM with constraints that are derived
from labeled data. Therefore, our model can be said to be
semisupervised. We show how this synergy results in a
model able to work in a regime with a limited amount of
labeled data. This result is important as, in many cases,
labeled data are much more expensive to obtain than
unlabeled data: Data have to be annotated by humans
(for instance, in the PF00013 dataset of the KH domain
sequences, taxonomy labels are available for less than 10%
of the sequences), or costly experiments have to be
done to get the label (this is the case for most biological
data, which often require complex biophysical or bio-
chemical characterizations).
We demonstrate the effectiveness of this approach on

four datasets from diverse domains: the CelebA dataset of
face images [23], the Ising model from statistical physics,
the MNIST collection of handwritten digit images [24], and
protein sequences of the KH domain family [25].
CelebA [23] and MNIST [24] are popular benchmark

datasets in machine learning. In MNIST, the labels are
straightforwardly associated with the digit identities. On
this dataset, we show that RBM can be trained to associate
one or few controlling hidden units with each digit class,
which can be manipulated to sample and transition between
classes. In CelebA, the labels correspond to subtle attrib-
utes of face images, like facial expressions (smiling or not
smiling), or adornments (presence of eyeglasses). Even for
this complex dataset, RBMs can sample good-looking
images and are able to concentrate these attributes over
few hidden units.
The two-dimensional Ising model is a very well-studied

system in statistical physics, with a precisely characterized
phase transition controlled by the temperature. A standard
RBM is able to reproduce the behaviors of observables,
such as the magnetization, heat capacity, susceptibility, and
correlation length. We then impose a linear constraint on
the weights [see Eq. (6)], decorrelating the latent repre-
sentation from the magnetization sign and forcing the RBM
to hallucinate a new system with interesting physical
properties. Remarkably, the constrained RBM gene-
rates configurations with zero net magnetization, while

preserving the structure of correlations between spins, as
evident from second-order observables, such as the heat
capacity and correlation length. Through a heuristic argu-
ment, we propose a Hamiltonian to describe the physical
properties of this system, containing a nonanalytic penalty
term for the global magnetization reminiscent of nonana-
lytic Landau potentials recently proposed to describe
nonequilibrium steady states of the Ising magnet [57–
59]. Releasing a single hidden unit then restores the ability
of the model to generate magnetized configurations,
reproducing all statistics of the original Ising model.
Our last application is in protein design based on model

learning from sequence data, a field which has grown in
importance in bioengineering since the recent impressive
developments of sequencing technologies [60]. RBMs
trained on the K-homology domain family under linear
constraints decorrelating a subset of hidden inputs from the
taxonomy of sequences, efficiently concentrate taxonomic
information in a control hidden unit. Conditional sampling
reproduces the fine statistical differences of the eukaryotic
and bacterial subfamilies. The transition between the two
classes takes place in a shorter time than the overall
decorrelation time, suggesting that sequences might be
able to change class while maintaining a memory of other,
class-independent attributes.
Concentrating information about important features of

the data into one or few hidden units of the RBM could
a priori be detrimental to the ability of the model to fit the
data for two reasons. First, introducing constraints on the
weights is expected to impact (decrease) the log-likelihood
of the data generated by the RBM.We estimate the losses in
log-likelihood due to partial erasure and disentanglement
for several datasets. The cost of partial erasure is related to
the relevance of the label, as clearly illustrated in the
dependence on temperature in the Ising model data.
Remarkably, we find that disentanglement is achieved with
a small relative likelihood loss, evidencing the robustness
of the approach. Furthermore, when the data can be
approximated as a mixture of two Gaussian distributions,
we show how the log-likelihood losses could be analyti-
cally calculated and establish a connection between the
likelihood costs for erasure or disentanglement and the
Poincaré separation theorem.
Second, the few (often, single) released hidden units

encode label-associated features in a prototypelike way. In
the case of linear constraints, released weights are aligned
with the qð1Þ vector, equal to the relative difference between
the centers of mass of the two label classes; see Fig. 5(a) for
an illustration on CelebA. It is however widely believed
that prototypelike representations are poorer than composi-
tional ones, in which multiple features associated with
many hidden units can be combinatorially combined to
create high-quality and diverse data [61]. From this point of
view, forcing some hidden units to generate prototypes
could appear counterproductive. It is nevertheless a very
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effective way to drive class switching; see, for instance,
Fig. 6. In addition, all the important features defining the
data distribution are learned by the vast number of other
(constrained) hidden units, which, in turn, can be combined
together to collectively participate in the data generation
process. We also emphasize that, while a few hidden units
capture enough label-associated features to manipulate and
drive the label values, this does not mean that they
concentrate all the information about the label. As clearly
shown in Fig. 7(f) for Ising and Fig. 8(b) for MNIST0=1,
there remains substantial information about the label in the
constrained hidden units accessible to deep decoders.
Hence, label-associated features are residually encoded
in a combinatorial way by the RBM.
While disentangling and manipulating representations

through our “partially constrained” RBM approach offers
clear advantages in terms of usability and interpretability,
the other architecture we consider in this work, the so-
called “fully constrained” RBM may also be of interest in
practical applications. Informally speaking, fully con-
strained RBMs are appropriate to model the features in
the data orthogonal to the ones associated with the label
under consideration. We show that fully constrained RBMs
remain generative in two examples (CelebA and PF00013),
where samples resemble data configurations with ambigu-
ous class identity. In the MNIST0=1 and Ising model
examples, however, the fully constrained RBM generates
samples markedly different from the data (zero magneti-
zation in the Ising case, and blurry mixtures of 0s and 1s for
MNIST). We attribute this to the fact that in these latter
cases, the datasets corresponding to the two values of the
label are widely separated. However, as we show in the
Ising case, information is preserved in higher-order
moments of the samples (e.g., heat capacity). Another
example is shown in Supplemental Material [26] Fig. S6,
where a fully constrained RBM trained on zero MNIST
digits in black or white backgrounds generates zeros
encoded in the correlations between neighboring pixels.
As a potential future direction for fully constrained RBM,
our results on the KH domain open the way to the
reconstruction of ancestral (backward in evolutionary time)
proteins, which were possibly more functionally promis-
cuous than their current counterparts. It would be very
interesting to apply our approach to reconstruct putative
ancient proteins, e.g., where details about binding speci-
ficity are erased while the other functionalities (stability,
activity, etc.) are maintained.
In summary, our work proposes a flexible semisuper-

vised framework for learning disentangled representations,
easily implementable and amenable to approximate ana-
lytical calculations. We hope our approach will make
controlled generation of data and feature discovery easier
in future applications. Last of all, besides the applications
to RBMs we present here, it would be interesting to transfer
our constraint-based framework to other architectures, as

the principle of imposing constraints on the weights in the
course of learning is quite general.

The codes needed to reproduce the results reported in
this work are available on [62].
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