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Ultralight axionlike particles can contribute to the dark matter near the Sun, leading to a distinct,
stochastic signature in terrestrial experiments. We search for such particles through their neutron-spin
coupling by reanalyzing approximately 40 days of data from a K-3He comagnetometer with a new
frequency-domain likelihood-based formalism that properly accounts for stochastic effects over all axion
coherence times relative to the experimental time span. Assuming that axions make up all of the dark matter
in the Sun’s vicinity, we find a median 95% upper limit on the neutron-spin coupling of 2.4 × 10−10 GeV−1

for most axion masses from 0.4 to 4 feV, which is about 5 orders of magnitude more stringent than previous
laboratory bounds in that mass range. Although several peaks in the experiment’s magnetic power spectrum
suggest the rejection of a white-noise null hypothesis, further analysis of their line shapes yields no positive
evidence for a dark-matter axion.
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I. INTRODUCTION

Although the existence of dark matter is supported by
astrophysical and cosmological observations over many
length scales [1–4], its fundamental nature remains amystery.
Ultralight pseudo-scalar particles that are the pseudo-Nambu-
Goldstone bosons of a spontaneously broken global sym-
metry arise generically in many theories beyond the standard
model [5–8] and can potentially contribute to the local dark
matter. These “axions” can couple to the fermionic sector and
lead to a neutron-spin coupling. In this paper, we reanalyze
data from a Princeton-based K-3He comagnetometer experi-
ment [9] to obtain leading laboratory constraints on the
neutron-spin coupling of feV-scale axions.

One well-motivated example of an ultralight pseudo-
scalar particle is the QCD axion. It was originally proposed
to solve the strong CP problem within QCD [10–13], but is
also an attractive dark-matter candidate [14–19]. While the
particle mass and coupling of the QCD axion are funda-
mentally related, this is not the case for more generic axions
where the coupling strength and mass are independent of
each other. Indeed, axions generically couple to neutrons
with the Lagrangian

Lint ¼ gaNNN̄γμγ5N∂μa; ð1Þ
where gaNN parametrizes the coupling strength, and a, N
refer to the axion and neutron, respectively. The interaction
in Eq. (1) mediates a spin-dependent long-range force,
which has been searched for by Refs. [9,20–23]. However,
this signal is suppressed by two factors of the (small)
coupling constant gaNN.
An alternate detection strategy is to search for dark-

matter axions that couple to the nuclear spin in a detector
target [24–28]. In this case, the interaction Hamiltonian,
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which follows from the nonrelativistic limit of Eq. (1), is
suppressed only by one factor of gaNN:

Hint ¼ gaNN∇a · σN; ð2Þ

where σN is the neutron spin. Because light dark-matter
axions near the Sun are sufficiently numerous to be treated
as an oscillating classical field, interference effects between
different axion waves can lead to stochastic signals in
terrestrial experiments [29–31], which must be accounted
for to properly recover or constrain a signal. This effect
was first discussed by Refs. [29,30] for the axion-photon
coupling that many haloscope experiments are based
on [32–36], but was only recently addressed for the
axion-nuclear-spin coupling [31]. For the latter case, the
signal is proportional to the gradient of the axion field, and
it also depends on the direction of σN , which for a terrestrial
experiment will oscillate with a period of a sidereal day as
Earth rotates about its axis.
Experimentally, the interaction in Eq. (2) should lead to a

measurable spin-dependent energy shift in the valence
neutron of 3He that rotates the macroscopic magnetization
of spin-polarized 3He atoms. In a K-3He comagnetometer,
this spin polarization is created along a circularly polarized
pump beam, and the magnetization of the atoms is probed
by a separate orthogonal probe beam. In this paper, we
report novel laboratory constraints of the axion’s neutron-
spin coupling based on analyzing approximately 40 days of
raw magnetization orientation data in a K-3He comagne-
tometer that was originally used in an exotic long-range
force experiment [9].
Our analysis fully accounts for the stochastic nature

of dark-matter axions using a new frequency-domain
likelihood-based formalism, which is complementary to
the time-binned methodology introduced in the theoretical
counterpart to this work [31]. The likelihood formalism in
Ref. [31] properly accounts for all two-point correlations of
the axion field in the time-domain data. As explicitly
demonstrated in that work, ignoring these correlations
can result in failure to discover a signal and/or result in
unreliable upper limits. We explicitly show in Appendix A
that both the frequency and time-binned approaches yield
similar results when applied on the same subset of
simulated and experimental data. The analysis in this
paper, like that in Ref. [31], works for all axion coherence
times independent of the experimental time span (including
in the regime when the experimental measurement time is
shorter or comparable to the axion coherence time), which
is a feature not achievable in previous frameworks [37].
Crucially, given a measured experimental spectrum, our
formalism sets limits on (or recovers, in the case of a
discovery) gaNN in a way that fully takes into account the
stochasticity of the dark-matter axion signal. This is in
contrast with a recent work that studied the stochastic axion
line shape without providing a methodology for correctly

extracting gaNN from an experimental measurement [38].
We rigorously validate our analysis by applying it to a
Monte Carlo ensemble of stochastic axion signals to ensure
that it indeed recovers or sets the correct limits on gaNN (see
Appendix A). There is therefore no need to apply any of the
corrections in Ref. [37] to our limits.
This paper should be contrasted with a recent analysis

[28,39] that used the published power spectra of the
Princeton-based comagnetometer (not the raw underlying
data) without properly treating the signal’s stochasticity,
compromising its ability to reliably recover or set upper
limits. Our analysis of the raw data also allows us to
examine and subsequently reject peaks in the spectrum that
may be plausible axion candidates.
Assuming that the local dark-matter density is wholly

due to axions, our median 95% upper limit on the axion’s
neutron-spin coupling is gaNN < 2.4 × 10−10 GeV−1 for
axion masses from 0.4 to 4 feV. This is about 5 orders
of magnitude stronger than previous laboratory bounds
in the same mass range. For example, the original long-
range force experiment in Ref. [9] reported a 95% upper
limit of gaNN < 9.1 × 10−5 GeV−1, and a recent terrestrial
experiment searching for dark-matter axions in a similar
mass range reported a tightest 90% upper limit of 4.1 ×
10−5 GeV−1 [26]. Close to the largest axion mass we
analyze (41 feV), another experiment recently reported a
more comparable 95% upper limit of 3.2 × 10−9 GeV−1 at
53 feV [27], although we note that for the quoted limit the
analysis there has significant frequency gaps (compared to
the axion’s linewidth) and also does not account for the
axion’s stochasticity. At the largest mass we analyze, the
NASDUCK Collaboration recently reported a 95% upper
limit of 10−6 GeV−1 [28], which is about 2 orders of
magnitude weaker than our results. Our constraints are
comparable with limits derived from stellar cooling argu-
ments, although the latter limits are subject to significant
astrophysical uncertainties. Our results therefore serve as
useful complementary bounds.
The magnetic power spectrum of the original experiment

in Ref. [9] was optimized only for a narrow bandwidth
about 0.17 Hz, and peaks outside that narrow bandwidth
were not seriously investigated. Our likelihood analysis of
those peaks, which tests an axion signal hypothesis against
a null white background hypothesis, yields a few peaks
with significance above 5σ (after taking into account the
look-elsewhere effect) that persist over the entire data-
taking duration. Although these results suggest that the
white background model should be rejected for these peaks,
accepting an axion signal hypothesis should require addi-
tional tests. Comparison with the expected line shapes from
Monte Carlo simulations suggest a nonaxion origin for all
these peaks.
This paper is structured as follows. In Sec. II, we review

features of the frequency-domain likelihood analysis,
leaving detailed derivations to Appendix B. We then
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describe the original experiment of Ref. [9] and its pertinent
features to this work in Sec. III, before discussing the
results of the analysis in Secs. IV–V and concluding in
Sec. VI. We also include two additional appendixes. In
Appendix A, we present the validation of our frequency-
domain likelihood analysis with the method of Ref. [31],
and in Appendix C, we motivate the frequency resolution at
which we test for axion candidates.

II. FREQUENCY-DOMAIN ANALYSIS

A. Axion signal modeling

Weakly interacting astrophysical axions confined within
a volume V can be treated as a free scalar field

aðxÞ ¼
X
p

1ffiffiffiffiffiffiffiffiffiffiffiffi
2Vωp

p ðbpe−ip⋅x þ b†peip⋅xÞ; ð3Þ

where the sum is over all three-momenta p, and bp; b
†
p are

the annihilation and creation operators of the mode with
energy ωp and four-momentum p. If the local dark-matter
density is due wholly to axions, then their occupancy
numbers must be extremely large, and we may therefore
take the classical limit where b†pbp ¼ Np is the mean
occupation number of the mode with momentum p. Doing
so, we obtain the classical axion field

aðxÞ ¼
X
p

ffiffiffiffiffiffiffiffiffi
2Np

Vωp

s
cosðp0t − p · xþ ϕpÞ; ð4Þ

where ϕp is an unknown phase between 0 and 2π that can
be modeled as uniformly distributed over that interval. The
sum over all modes p with distinct energies ωp leads to
interference effects noticeable after a characteristic coher-
ence time τa, which is dependent on the momentum
distribution of the axions. For example, in the standard
halo model, axions are assumed to follow a Maxwell-
Boltzmann velocity distribution in the Galactic rest frame,

fðvÞd3v ¼ 1

ð2πσ2vÞ3=2
exp

�
−
ðv þ vEÞ2

2σ2v

�
d3v; ð5Þ

where v is the axion velocity in the laboratory frame, vE is
Earth’s velocity [40] so that v þ vE is the axion velocity in
the Galactic rest frame, and

ffiffiffi
2

p
σv ∼ 220 km=s is the dis-

tribution’s modal speed, which is typically taken to be the
Sun’s circular velocity in the Galactic rest frame [41–43].
In this case, the characteristic coherence time for an axion
with mass ma may be defined as τa ¼ 1=ðσ2vmaÞ [30].
The stochastic classical axion field in Eq. (4) naturally

translates into a stochastic axion gradient, which at the
location of the laboratory (which we define as x ¼ 0), can
be written as [44]

∇aðtÞ ¼
X
p

ffiffiffiffiffiffiffiffiffi
2Np

Vωp

s
cosðp0tþ ϕpÞp: ð6Þ

Experimentally, the energy shift due to the interaction in
Eq. (2) is measured as the energy shift in spin states of some
basis, or equivalently, in spin states along some quantiza-
tion axis. For the K-3He comagnetometer introduced in
Sec. I and illustrated in Fig. 1, we primarily measure the
rotation of the atoms’ magnetization in the plane of the
pump-and-probe beams, which implies that we are mainly
sensitive to energy shifts in states quantized along an
axis orthogonal to both pump-and-probe beams. Defining
this axis as m̂, the gradient of the axion field at discrete
times nΔt can be understood as a measurable stochastic
anomalous magnetic field with a magnitude along m̂ that is
given by

βn ¼
gaNN
μ

∇aðnΔtÞ · m̂ðnΔtÞ; ð7Þ

FIG. 1. Schematic showing the sensitive axis m̂ of the experi-
ment as an outward normal from the surface of Earth that rotates
at the sidereal frequency ωe, leading to sidebands of the axion’s
power spectrum. The inset shows a schematic of the comagne-
tometer, which consists of spin-polarized atoms in a glass vapor
cell that is optically pumped by resonant circularly polarized light
and probed by off-resonant linearly polarized light in the
horizontal plane. As described in the main text, this implies that
the sensitive axis m̂ is oriented vertically, and by convention, we
take it to be the outward normal from the surface of Earth. It is
convenient, when deriving the covariance matrix of the axion’s
frequency spectrum, to use an orthonormal coordinate system
fŝ; û; v̂g such that v̂ is parallel to Earth’s velocity vE (see
Appendix B 1), which is dominated by the Sun’s circular velocity.
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where Δt is the sampling interval, n is an integer, and μ has
units of a magnetic dipole moment so that the experimen-
tally measured energy shift from the interaction in Eq. (2) at
time nΔt is ΔE ¼ βnμ.
As the authors in Ref. [31] pointed out, because the

summation over p in Eq. (6) can involve a great many
terms and each ϕp is, for each distinct value of p, an
independent and identically distributed random variable,
the set f∇aðnΔtÞjn ¼ 0;…; N − 1g is a Gaussian pro-
cess by the central limit theorem. In particular, given a
time series f0;Δt;…; ðN − 1ÞΔtg, the vector ½∇að0Þ;…;
∇a(ðN − 1ÞΔt)�, and by extension the vector ½β0;…; βN−1�
that is experimentally measured, follows a multivariate
normal distribution with zero mean (but with a covariance
matrix that is not necessarily diagonal) due to the uniformly
distributed random phase ϕp. It is therefore possible to use
the statistical properties therein to correctly recover or set
upper limits on the axion’s coupling strength based on a
time-series measurement ½β0;…; βN−1� of the magneticlike
anomalous field β, as demonstrated in Ref. [31]. However, it
is frequently useful to perform the analysis in the frequency
domainwhen there are other sources of frequency-dependent
noise present. Because the discrete Fourier transform of a
time series is a unitary transformation and the normal
distribution is closed under linear transformations, one
might expect that the Fourier transform of a time series
½β0;…; βN−1� is still normally distributed. As we show by
construction in Appendix B, this is indeed true. In the limit
where the experimental time span T is much larger than the
coherence time τa of the axion, an analytical form of the
frequency-domain covariance matrix exists which allows for
very efficient computation. Moreover, there is no need here,
as required in the time-binned analysis, to recompute the size
of the time bins for different axion masses. For brevity, we
leave the full derivation of the frequency-domain covariance
matrix to Appendix B and discuss only various physical
implications of the frequency-domain approach here.
In the nonrelativistic limit of Eq. (6), the oscillation

frequency of each axion mode with momentum p is
p0 ¼ ma þmav2=2, where v ¼ jpj=ma is the axion speed.
Furthermore, the amplitude of each mode is proportional to
the mean occupation number of the mode Np, which is in
turn proportional to the axion’s speed distribution fðvÞdv.
Consequently, the axion’s frequency line shape is essen-
tially its “speed spectrum,” with each frequency containing
contributions from all momentum p with the same speed.
This has been studied in the context of the axion’s photon
coupling [29], but one of the most striking differences of
the neutron-spin coupling is that it introduces an additional
frequency modulation due to the projection of ∇a on m̂, the
experiment’s fixed quantization axis, which rotates at
Earth’s angular sidereal frequency ωe as the experiment
moves about Earth’s axis.
The measured anomalous field β ∝ ∇a · m̂ therefore

has sidebands spaced �ωe apart from the frequency of ∇a.

If, in addition, m̂ðtÞ also has a dc component, i.e., the
experiment’s quantization axis has a nonzero projection
along Earth’s axis, then the frequency spectrum of β will
also have power proportional to ∇a at its original fre-
quency. This modulation of the axion’s frequency line
shape complicates its speed spectrum since each measured
frequency can now also contain contributions with different
axion speeds due to sampling from the two additional
modulated spectrums. More precisely, the axion speeds that
can contribute at any given measured frequency ωk are

νk;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ωk − ðma þ nωeÞ�

ma

s
ð8Þ

for n ∈ f−1; 0; 1g and ωk − ðma þ nωeÞ ≥ 0. Accordingly,
frequencies that are separated by 1 or 2ωe can contain
contributions from axions with the same speeds, which
means that there can be nonzero correlations between
these frequencies since the same phase ϕp can be sampled
twice in this case. An example of this is shown in Fig. 2.
We emphasize that in the limit of infinite-frequency
resolution (i.e., the regime where T ≫ τa) where there is
no spectral leakage between neighboring frequency points,
only frequencies that are spaced �ωe and �2ωe apart can
be correlated. When this limit is not valid, there will be
additional correlations between neighboring frequency

FIG. 2. Correlations between measurement frequencies ω and
ω� ωe. The original speed distribution (orange), which is zero
for all frequencies below the axion mass ma, is down (blue) and
up (green) modulated by �ωe. Each frequency measurement
(dashed lines) samples axions with varying speeds from both the
original and modulated distributions (all denoted with double-
headed horizontal arrows). For the measurement at ω − ωe, only
axions with speed v1 can contribute, but axions with speeds v1
and v2 can contribute to the measurement at ω, while the
measurement at ωþ ωe has contributions from axions with
speeds v1, v2, and v3. ω − ωe is correlated with ω due to the
contributions from axions with speed v1, while ω is correlated
with ωþ ωe due to contributions from axions with speeds v1 and
v2. Similarly, ω − ωe is correlated with ωþ ωe because of axions
with speed v1.
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points, but this correlation is typically small compared to
the correlation between frequencies spaced at intervals
of ωe.
The width of an axion’s spectral line generally depends

on its speed distribution. For example, in the standard halo
model, the axion’s coherence time τa is τa ¼ 1=ðσ2vmaÞ
[30], and its linewidth Δfa can be defined to be

Δfa ≡ 1

τa
¼ σ2vma: ð9Þ

Physically, the axion’s frequency linewidth is due to its
kinetic energy, and consequently, more massive axions
have larger linewidths because they have more kinetic

energy for the same speed. For less-massive axions where
Δfa ≪ fe ≡ ωe=2π, the modulation due to Earth’s sidereal
rotation splits the expected power spectrum from ∇a into
three peaks. We illustrate this in Fig. 3(a) by plotting
the expected magnetic power spectrum [Eq. (B52)] from
an axion with linewidth Δfa ¼ 0.15fe in blue. Orange
points show the average power from 100 independent
Monte Carlo simulations of axions with the same mass,
while their error bars give the standard deviation of the
mean power. Green dots (with dashed connecting lines to
guide the eye) give a possible spectrum one might measure
for an axion with the same mass. It should be emphasized
that in Fig. 3 we assume a negligible experimental
uncertainty, so the scatter of the green points is entirely
due to the stochastic nature of the axion signal that one
would observe in a particular experimental run. If the
coherence time τa of the axion is sufficiently short so that
many independent spectra may be measured during the
experiment’s data-taking run, the averaged power spectrum
should (for negligible experimental noise) closely resemble
the mean theoretical power spectrum (compare, for in-
stance, the orange points with the blue theoretical line in
Fig. 3). These conditions apply, for example, to many axion
haloscopes [33,34,36] that search for axions with masses in
the μeV range that have coherence times on the order of a
fraction of a millisecond. However, for extremely light
axions with very long coherence times, it may become
impractical to obtain many independent spectra (as an
example, the coherence time of a 0.1-feV axion is about
75 days long). In this case, because one particular measured
spectrum might differ significantly from the analytical
expected magnetic power (see Fig. 3 for an example),
the correct gaNN cannot be simply extracted by fitting
Eq. (B52) to a measured spectrum. Rather, a more
sophisticated analysis should be utilized to correctly extract
gaNN regardless of the stochastic variation of the measured
spectrum.
At higher axion masses, Δfa ∝ ma increases and, as

shown in Fig. 3(b), the three peaks recombine into a single
peak when Δfa > fe. Another physical consequence of
this broadening is that for the same coupling constant,
the peak axion power is lower for a heavier axion than a
lighter one since the total axion power must be conserved
(for the same dark-matter density). This can be observed in
Figs. 3(a) and 3(b), where both the heavier and lighter
axion’s spectrum are generated for a fixed coupling con-
stant of gaNN.

B. Likelihood procedure

The likelihood-based analysis used in this work applies
to both the regime of low (Δfa < fe) axion mass depicted
in Fig. 3(a), as well as in the high-mass regime of
Fig. 3(b). We now briefly review the likelihood formalism
[45] for recovering and/or setting upper limits on the
coupling constant gaNN. The measured experimental spec-
trum is fAk; Bkjk ¼ 0;…; N − 1g, where

FIG. 3. Magnetic power spectrum for axion linewidths Δfa
where (a) Δfa=fe < 1 and (b) Δfa=fe > 1. fe ¼ ωe=2π is
Earth’s sidereal rotation frequency. We assume in these plots
that the experimental frequency resolution is sufficient to fully
resolve the axion’s line shape and that the experimental un-
certainty at each point is negligible. The solid blue line is the
mean theoretical power spectrum taken from Eq. (B52), while the
orange points give the mean power from 100 Monte Carlo
simulations. Orange error bars give the standard deviation of the
mean power from the simulations. The green dots (with con-
necting lines to guide the eye) show an example of one particular
realization of a stochastic axion power spectrum. The data here
are generated for a coupling constant of gaNN ¼ 1 GeV−1. Notice
that for the same coupling constant, the peak axion power is lower
for (b) compared to (a) due to the broadening of the axion peak
for more massive axions. The shaded area denotes the frequency
span ½fa; fa þ Δfa�.
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Ak ¼
2

N
Re½β̃k�; Bk ¼ −

2

N
Im½β̃k�; ð10Þ

and β̃k is the discrete Fourier transform of βn from Eq. (7)
given by

β̃k ¼
XN−1

n¼0

βnexp−iωknΔt; ωk ≡ 2πk
NΔt

: ð11Þ

For a time series with gaps, Ak and Bk, as defined in
Eq. (10), are determined by performing a linear least-
squares fit of the time series to the form

Ak cosωktþ Bk sinωkt; ð12Þ

where Ak, Bk here are the fit parameters. To compute the
likelihood of obtaining a spectrum fAk;Bkjk¼0;…;N−1g,
we need to have both a signal and background model. The
spectrum for an axion with massma can be shown to follow
a multivariate normal distribution with zero mean and a
nondiagonal covariance matrix ΣaðgaNN; maÞ that depends
on gaNN and ma. We assume that the background is white
with variance σ2b. Consequently, the measured signal is
normally distributed with zero mean and variance
Σ ¼ Σa þ σ2b1, and the likelihood of measuring the spec-
trum d ¼ fAk; Bkjk ¼ 0;…; N − 1g is therefore,

LðdjgaNN;σbÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ2N detðΣÞ
p exp

�
−
1

2
dTΣ−1d

�
: ð13Þ

Although the experimental noise is frequency dependent, it
is to a good approximation white over the bandwidth used
for d (see Table I), except in certain localized cases that
result in peaks in the recovered upper limits (see Fig. 5 and
the discussion in Sec. IV).
To set a 95% upper limit, we define the test statistic

qðgÞ ¼
�
2½logLðdjμ̂; σ̂bÞ −max

σ
logLðdjg; σÞ�; μ̂ ≤ g;

0; μ̂ > g;

ð14Þ

where μ̂ and σ̂b are the unconditional maximum likelihood
estimators of gaNN and σb, respectively,

μ̂ ¼ arg max
μ

logLðdjμ; σÞ ∀ σ;

σ̂b ¼ arg max
σ

logLðdjμ; σÞ ∀ μ: ð15Þ

By definition, qðgÞ ≥ 0, with larger values of qðgÞ
indicating a greater probability that the hypothesized g
is too large and is increasingly incompatible with the
data. On the other hand, if the hypothesized g is smaller
than the best-fit μ̂, we set qðgÞ ¼ 0 because in finding an
upper limit, we wish only to set g greater than μ̂, and
hence, we set qðgÞ ¼ 0 when g < μ̂ to indicate that the
hypothesized g is not too large. We then find the upper
limit by requiring that if the hypothesized g is indeed the
true value, then the 95% upper limit gup is such that 95%
of the time, qðgÞ ≤ qðgupÞ. The cumulative distribution
function (CDF) of qðgÞ, assuming g is indeed the true
value, can be asymptotically shown to be [45–47]

P(qðgÞ ≤ y) ¼ Φð ffiffiffi
y

p Þ; ð16Þ

where

ΦðyÞ ¼ 1

2

�
1þ erf

�
yffiffiffi
2

p
��

ð17Þ

is the CDF of a standard normal distribution. Practically,
the 95% upper limit is thus found by numerically solving
for gup such that qðgupÞ ≈ 2.7055.
By definition, the test statistic qðgÞ in Eq. (14) will

always set an upper limit above the best-fit value μ̂. To
obtain a double-sided confidence interval for a finite best-
fit μ̂, we need to use a slightly different test statistic,

tðgÞ ¼ 2½logLðdjμ̂; σ̂bÞ −max
σ

logLðdjg; σÞ�; ð18Þ

which is not set to zero when μ̂ < g. Rather, by definition,
tðgÞ ≥ 0 with larger values of tðgÞ implying greater
incompatibility of the hypothesized value of g with the
best-fit μ̂ regardless of whether g < μ̂ or g > μ̂. Assuming
that g is indeed the true value, the CDF of tðgÞ is [45]

P(tðgÞ ≤ y) ¼ 2Φð ffiffiffi
y

p Þ − 1: ð19Þ

Practically, the higher and lower end points of the con-
fidence interval with confidence level CL may therefore be
respectively obtained by solving for ghigh > μ̂ such that
P(tðgÞ < tðghighÞ) ¼ ð1 − CLÞ=2 and glow < μ̂ such
that P(tðgÞ < tðglowÞ) ¼ ð1 − CLÞ=2.
Similarly, to test the significance of the best-fit μ̂, we

define the test statistic

TABLE I. Bandwidth δf ¼ δflow þ δfhigh spanning frequen-
cies ½fa − δflow; fa þ δfhigh� that is used to calculate the like-
lihood for an axion with mass fa. Note that the bandwidth is
asymmetrical about fa since the axion power spectrum is itself
asymmetrical due to the fact that the axion’s kinetic energy can
only be positive. fe ≈ 11.6 μHz is the frequency of Earth’s
rotation with respect to distant stars.

fa (Hz) δflow (fe) δfhigh (fe) δf (fe)

(7, 10] 4 10 14
(5, 7] 4 8 12
(2, 5] 4 6 10
[0.01, 2] 4 4 8

LEE, LISANTI, TERRANO, and ROMALIS PHYS. REV. X 13, 011050 (2023)

011050-6



q0 ¼
�
2½logLðdjμ̂; σ̂bÞ −max

σ
logLðdj0; σÞ�; μ̂ ≥ 0;

0; μ̂ < 0;

ð20Þ

where we set q0 ¼ 0 when μ̂ < 0 to restrict testing for
gaNN ≥ 0 [48]. As before, larger values of q0 indicate
that the data are increasingly incompatible with the null
hypothesis of there being no axion, which may be quanti-
fied by the asymptotic CDF of q0 (assuming that the true
value of gaNN is indeed 0) [45–47],

Pðq0 ≤ yÞ ¼ Φð ffiffiffi
y

p Þ; ð21Þ

and the asymptotic probability density function for q0,

fðq0Þ ¼
1

2
δðq0Þ þ

1

2
ffiffiffiffiffiffiffiffiffiffi
2πq0

p e−q0=2; ð22Þ

where δðq0Þ is the Dirac delta function. The p value and
significance Z of the best-fit μ̂ is thus simply

p ¼ 1 −Φð ffiffiffiffiffi
q0

p Þ and Z ¼ ffiffiffiffiffi
q0

p
: ð23Þ

We now discuss some practical considerations when
implementing the above formalism to actual experimental
data. In the validation plots of Appendix A, we show that
our analysis can correctly recover and set upper limits for
gaNN when testing for an axion at the correct mass (i.e.,
testing for an axion at its actual mass). However, since we
do not know the actual mass of the axion, it is necessary to
test for it over a large mass parameter space that can in
principle span many decades. Given the very different
axion line shapes for a light and heavy axion (see Fig. 3 for
example), we expect that testing for an axion at a wrong
mass (i.e., testing for an axion at a mass significantly
different from its actual mass) should yield a wrong best-
fit gaNN and upper limit. However, it is not immediately
obvious how small of a mass or frequency resolution one
should use in testing for axions to ensure the recovery of a
correct best-fit gaNN from a real axion with a priori
unknown mass. As we verify in Appendix C, testing with
a spacing of approximately Δfa=2 is sufficient to correctly
recover or set upper limits on gaNN from an axion signal
within our mass range of interest.
The need to run the analysis over a large mass parameter

space also complicates the interpretation of the significance
in recovering a particular best-fit μ̂ with a corresponding
discovery test statistic q0. This is because the significance
Z ¼ ffiffiffiffiffi

q0
p

in Eq. (23) is only valid when testing at one mass
and does not take into account the look-elsewhere effect
when testing over a large (e.g., much larger than one)
number of axion masses. To relate the global p value
pglobal, with a threshold in q0, we observe that by definition,
pglobal is the probability that a white-noise background will

yield q0 that is larger than some threshold qth in any of the
axion masses tested. For N independent tests, this is
equivalent to the complement of the probability that all
N tests yield q0 ≤ qth:

pglobal ¼ 1 − ð1 − pÞN: ð24Þ

For sufficiently small p so that ð1 − pÞN ≈ 1 − Np,
Eqs. (24) and (23) readily yield a relation between qth
and pglobal,

qth ¼
�
Φ−1

�
1 −

pglobal

N

��
2

: ð25Þ

However, as the authors in Ref. [29] noted, the number of
independent tests N is frequently smaller than the total
number of axion masses tested in the analysis since tests
of closely separated axion masses rely on similar exper-
imental spectra and are not independent. Physically, we
expect axions that are separated by roughly a linewidth to
be independent, with additional modifications due to the
experiment’s frequency resolution and the sidereal side-
bands of the neutron-spin coupling. Consequently, given
that the axion’s linewidth is due to its kinetic energy, we
expect that the axion masses

mðiÞ
a ¼ mð0Þ

a ð1þ αv20Þi ð26Þ

for i ¼ 0;…; N − 1, to be independent, where v0 ∼
220 km=s is the axion’s modal speed [see Eq. (5) and
the discussion there], and α is a parameter to be tuned via
Monte Carlo simulations.
To tune α, we generate a large number of null

Monte Carlo datasets and perform the likelihood analysis
for axion masses between fmin and fmax using the same
frequency spacing of Δfa=2 that is used in the experi-
mental analysis. We then extract qth ¼ maxðq0Þ from the
analysis of each Monte Carlo dataset and obtain the
empirical pglobal from the distribution of qth over all
Monte Carlo datasets. For N ≫ 1 and αv20 ≪ 1 (with v0
in c ¼ 1 units), we obtain from Eq. (26)

N ≈
1

αv20
log

�
fmax

fmin

�
: ð27Þ

The tuned value of α can then be obtained by substituting
Eq. (27) into Eq. (25) and fitting it to the qth and pglobal

obtained from Monte Carlo simulations. We show an
example of such a fit for axion masses centered at
0.562 Hz in the inset of Fig. 4 where the solid blue line
shows pglobal as a function of qth as obtained from 100 000
null Monte Carlo datasets, and the dashed orange line is the
fit of Eq. (25) to it.
For lack of computational resources, ½fmin; fmax� is

normally such that ½fmin; fmax� ⊂ F , where F is the set
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of all axion masses tested in the experimental analysis. The
point, however, is that once α has been tuned, the number of
independent axions NF in F can then be obtained using
Eq. (27) without resorting to Monte Carlo simulations.
As we discuss above and in Appendix C, we test axions

with a spacing of Δfa=2 to ensure that we can correctly
recover or set upper limits on gaNN from an axion signal in
our mass range of interest. However, since Δfa ∝ fa from
Eq. (9), the number of independent axions decreases at
lower frequencies since the frequency spacing Δfa=2
decreases at low frequencies but the experimental fre-
quency resolution remains constant, which results in a
significant overlap of the experimental spectra used in the
likelihood analysis at each axion mass.NF should therefore
be obtained via an integration of Eq. (27) in logarithmic
space

NF ¼
Z

log maxðF Þ

log minðF Þ

1

αðνÞv20
dν: ð28Þ

To obtain NF , we thus first perform the Monte Carlo
procedure above with fmax=fmin ≈ 1.0008 centered at 11
different frequencies between 0.01 and 10 Hz to obtain
αðνÞ at 11 discrete points, which is shown as blue circles in
Fig. 4. We then approximate αðνÞ from 0.01 to 10 Hz using
an interpolating function (orange line in Fig. 4) and
compute NF through Eq. (28). For the frequency grid
used in our experimental analysis, a q0 of 30.1, 35.6, and
52.1 is estimated by substituting NF into Eq. (25) to
correspond to a one-sided global significance of 2σ, 3σ, and
5σ, respectively.
We conclude this section by noting that while the

frequency bandwidth used in the calculation of the like-
lihood in Eq. (13) at each axion mass must be at least as
large as the axion linewidth (including its up and down
modulation of �fe), its exact value is arbitrary. In general,
one desires a bandwidth that is significantly wider than the

axion linewidth for proper estimation of the background
noise, but is still sufficiently narrow such that the fre-
quency-dependent experimental noise is nevertheless
approximately white within the chosen bandwidth.
Table I shows the bandwidth we use in our analysis.

III. EXPERIMENTAL SETUP

The data used in this paper come from an experiment that
was originally designed to search for exotic long-range
nuclear-spin-dependent forces [9], and the interested reader
may find more details of the setup in Ref. [49]. In the
following, we briefly review the experimental setup of that
work and highlight aspects of it that pertain to this study.
At the heart of the experimental setup in Ref. [9] is a

K-3He comagnetometer. Although atomic magnetometers
can also be used to measure anomalous magneticlike fields
from an axion’s gradient, they are susceptible to ordinary
magnetic noise, which limits their usefulness in searching
for weak anomalous fields. On the other hand, a K-3He
comagnetometer, which consists of spin-polarized K and
3He atoms colocated within the same glass cell, can be
operated in a way that makes it sensitive to anomalous
fields while having a reduced response to ordinary mag-
netic fields. For the experiment under consideration here, a
2.4-cm-diameter spherical aluminosilicate glass cell with
12 amagats of 3He, 46 torr of N2 (for quenching excited
K atoms during optical pumping), and a droplet of K metal
is used. To produce a dense alkali vapor, the cell is placed in
a fiberglass oven and electrically heated up to 160 °C using
approximately 200-kHz ac currents that are well above the
comagnetometer’s bandwidth. The K is spin polarized by a
circularly polarized pump beam from an amplified distrib-
uted feedback laser operating at K’s D1 line, and 3He is
eventually spin polarized through alkali–noble-gas spin-
exchange collisions with K. A 0.8-mW linearly polarized
probe beam blue detuned 237 GHz from K’s D1 line is
directed through the cell perpendicular to the pump beam,
and paramagnetic Faraday rotation of its polarization is
used to measure the comagnetometer’s signal, which
consists of the projection of K spins along the probe beam.
To reduce noise in the probe beam measurement, the probe
beam’s polarization is first modulated at 50 kHz using a
photoelastic modulator together with a quarter-wave plate
and is later demodulated by a lock-in amplifier after
detection.
In the absence of a magneticlike field perpendicular to

both the pump-and-probe beams, the K’s magnetization is
aligned with the pump beam with zero projection on the
probe beam. However, in the presence of such a field,
the K’s magnetization experiences a torque and rotates into
the probe beam, thereby creating an optically detectable
signal. Equivalently, a magneticlike field along the axis that
is perpendicular to both the pump-and-probe beams results
in an energy shift for basis spin states quantized along that

FIG. 4. Main figure: blue circles give α as computed for that
particular frequency. The orange line shows the interpolating
function for αðνÞ obtained using the blue circles. Inset: solid blue
line is obtained from 100 000 null Monte Carlo datasets for axion
masses centered at 0.562 Hz, while the dashed orange line shows
the fit of Eq. (27) to the blue line.
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sensitive axis [corresponding to m̂ in Eq. (7)], which results
in a rotation of the spin ensemble into the probe beam. The
magnitude of this rotation is proportional to the coherence
time of the K spins. In the presence of Earth’s magnetic
field, this coherence time is limited by decoherence from
K-K spin-exchange collisions. However, at sufficiently low
magnetic fields and sufficiently high alkali density, this
decoherence can be greatly suppressed [50,51] and sig-
nificantly improved sensitivity to magneticlike fields can be
achieved. To operate in this low-field regime, and to
provide for magnetic shielding from the environment,
the cell is placed in five layers of μ-metal shielding with
a shielding factor of approximately 106. This allows the K
to achieve high sensitivity to both anomalous and ordinary
magnetic fields.
To suppress the comagnetometer’s sensitivity to ordinary

magnetic fields while retaining full sensitivity toward
anomalous fields, a bias magnetic field opposite to the
sum of the effective magnetic fields from the spin-polarized
3He and K atoms is applied [52]. Because each spin species
in a spherical cell experiences only a magnetic field equal
to the sum of the applied bias field and the effective
magnetic field of the other spin species (which is anti-
parallel to the applied bias field), each spin species
experiences only a magnetic field that is equal in magnitude
to its own effective magnetic field. Consequently, although
the gyromagnetic ratio of 3He is much smaller than K due to
the much larger mass of the neutron, the resonance
frequencies of 3He and K are approximately equal in this
regime due to the very different magnetic field that each
species experiences. In this regime where the resonance
frequencies of both spin species are well matched, both spin
ensembles exhibit highly coupled and damped evolution
[52]. In particular, the 3He magnetization can be shown to
adiabatically cancel out small changes in the magnetic field
that K experiences so that the comagnetometer’s signal,
which is proportional to the projection of the K spins along
the probe beam, is to first order insensitive to ordinary
magnetic fields. On the other hand, a slight perturbation of
the 3He spins due to interactions with a neutron-coupling
anomalous field results in a rotation of the 3He magneti-
zation that the K experiences, which results in a corre-
sponding perturbation of the K spin along the probe beam
that is optically detected. Meanwhile, an electron-coupling
anomalous field couples only to the K spin. This rotates the
K’s magnetization which is then optically detected so that
the K-3He comagnetometer is, in the final analysis, sensi-
tive to the difference between neutron-coupling (βn) and
electron-coupling (βe) anomalous fields [52].
Assuming that there is no accidental cancellation (i.e.,

assuming that the axion does not couple to both electrons
and neutrons to produce anomalous fields of roughly the
same magnitude), we can therefore set limits on neutron-
and electron-coupling magneticlike anomalous fields inde-
pendently. More precisely, given limits on the anomalous

magneticlike field βlim, we set βn < βlim and βe < βlim,
where βn ∝ 0.87gaNN=μHe and βe ∝ gaee=μB [compare with
Eq. (7)]. μHe ≈ 2.148 × 10−26 J=T here is the magnetic
dipole moment of 3He [53], while μB is the Bohr magneton.
The factor of 0.87 arises from the fact that the neutron
contributes only about 87% of the nuclear spin of 3He
[54,55]. From the above, we note that one can obtain limits
on gaee given limits on gaNN since gaee < 0.87μBgaNN=μHe.
For continual suppression of the comagnetometer’s

sensitivity to ordinary magnetic fields, the bias magnetic
field needs to be periodically adjusted due to slow drifts in
the 3He magnetization. This is typically performed by an
automated routine that minimizes the comagnetometer’s
response to a modulated magnetic field along the sensitive
axis [52]. Besides zeroing out the comagnetometer’s
response to ordinary magnetic fields, this routine is also
used to calibrate the comagnetometer’s sensitivity to
anomalous fields [49,52] and is regularly run after every
200 s of continuous data taking. However, since no data can
be taken during the zeroing routine, this leads to time gaps
between each 200-s record of data that prevents us from
obtaining the experimental frequency spectrum by directly
performing a fast Fourier transform on the time-series data.
Rather, we perform a linear least-squares fit of the form in
Eq. (12) to obtain the experiment’s frequency spectrum.
Because ofmemory constraints, this is done by first perform-
ing the fits over bundles of data that are approximately
24 hours long and storing the best-fit coefficients as well as
their fit covariance matrices (assuming a white-noise back-
ground) at each fit frequency and for each bundle. The final
experimental spectrum is then obtained by computing a
coherent weighted average of the best-fit coefficients of each
frequency over all the bundles. Before performing our fits,
we also filter the data with an appropriate bandpass filter and
downsample the original data that are sampled at 200 Hz to a
frequency that is at least 4 times larger than the fit frequency.
In total, we fit for this analysis approximately 17 × 106

frequencies from0.01 to 10Hzwith a frequency resolution of
0.57 μHz ≈ 1=ð40 daysÞ.
The original experiment in Ref. [9] consisted of two

main data-taking campaigns: one in the spring of 2008 and
another in the summer of 2008, with a gap of approx-
imately 50 days in between. Absolute time was recorded in
the original experiment as fractional sidereal days since
J2000.0 (defined as January 1, 2000, 12 p.m. Terrestrial
Time), which allows for the orientation of the experiment’s
sensitive axis to be calculated in terms of Galactic coor-
dinates. Given that the experiment’s sensitive axis was
oriented vertically throughout both data-taking campaigns,
and the coordinates of the experiment at Princeton are
approximately 40.35 °N, 74.65 °W [56], the experiment’s
sensitive axis in Galactic coordinates can be calculated
from the definition of a (Greenwich mean) fractional
sidereal day and performing a coordinate transformation
between the equatorial and Galactic coordinate systems,
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taking into account precession of Earth’s axis since
J2000.0 [57].
Lastly, we note that throughout the course of the original

experiment, the direction of the bias field is periodically
flipped as a check on systematic effects. Physically, this
causes the K spins to rotate in the opposite direction under
the influence of the same anomalous (or magnetic) field
pointing along the sensitive axis. Experimentally, this is
measured as a sign flip in the lock-in signal, and we
therefore take these field reversals into account by multi-
plying the comagnetometer’s calibration to anomalous
fields with the appropriate signs.

IV. RESULTS

We analyze our experimental data for roughly 8 × 106

axion frequencies between 0.01 to 10 Hz with a spacing of
Δfa=2 using the likelihood procedure outlined in Sec. II.
At each axion frequency, a slice of the experimental
frequency spectrum with a bandwidth δf (tabulated in
Table I) is used to calculate the likelihood [Eq. (13)],
which assumes a white-noise background. To verify the
assumption of a white-noise background, we perform a
Shapiro-Wilks test on the noise portion of the bandwidth δf
where the axion’s power is expected to be negligible. As
can be observed in Fig. 3, this portion can be defined to be
frequencies in δf that are not within þ2Δfa of the axion

frequency fa and its sidebands fa � fe. Based on the p
values of the Shapiro-Wilks test, we exclude about 1% of
the approximately 8 × 106 axion frequencies we test at a
significance of 0.0013, corresponding to a one-sided
significance of 3σ. If the noise in our data is completely
Gaussian, we expect a rejection rate of only about 0.1%; the
actual higher rejection rate of 1% indicates the presence of
some non-Gaussian noise in the data.
Since the applicability of our white-noise model for

frequencies that do not survive the Shapiro-Wilks test is
questionable, we do not set limits on gaNN at these
frequencies, and they constitute small gaps in our con-
straints that are not visually discernible in Fig. 5 that shows,
in orange lines, the remaining 99% of frequency values at
which we set 95% upper limits on gaNN. None of the
frequencies excluded from Fig. 5 due to the Shapiro-Wilks
test have q0 greater than 52.1 (corresponding to a global
significance above 5σ if the noise model is actually valid),
except for a few frequencies that are nearly an integer
multiple of 1 Hz. These peaks feature prominently in
Fig. 5, but are unlikely to be true axion signals for
reasons that we further elaborate in Sec. V. To validate
our analysis procedure, we also independently calculate in
Appendix A 2 the 95% limits on a subset of experimental
data using the time-domain method of Ref. [31]. Our
comparison of both approaches in Fig. 13 indicates that the
methods agree well with each other.

FIG. 5. Orange lines show the 95% upper limit on gaNN obtained from our experimental data. The sensitivity of the experiment can be
characterized by recovering the 95% upper limit over an ensemble of Monte Carlo data with no injected signal and plotting the median of
those recovered limits (shown as green dots with connecting line to guide the eye). We achieve a median limit of 2.4 × 10−10 GeV−1 at
0.36 Hz, approximately 5 orders of magnitude stronger than previous laboratory bounds. Because of the large number of axion masses
tested, there is a considerable spread in the recovered limits. This is, however, consistent with the�4σ and 5σ bands (illustrated by pairs
of dashed blue and violet lines, respectively) obtained via Monte Carlo simulations. At higher axion frequencies, there is a greater
density of axion masses on the log-scale plot, but as the magnifying inset shows, the recovered experimental limits are within the �5σ
band as expected when viewed at the appropriate scale. The dotted SN1987 limit is a constraint from Ref. [58], which refines the usual
one-pion-exchange approximation of the nucleon-nucleon bremsstrahlung process. The dash-dot neutron star limit is a 95% upper limit
from Ref. [59] that analyzed cooling from five neutron stars. Limits from the NASDUCK Collaboration [28] are shown as a coral
solid line.
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Because of the large number of axion frequencies tested,
a substantial statistical spread in the computed upper limits
is to be expected. This expected statistical spread is
illustrated by pairs of dashed blue and violet lines, which,
respectively, give the �4σ and 5σ containment regions of
95% upper limits obtained by running our likelihood
analysis on 107 Monte Carlo datasets at multiple frequen-
cies. At each frequency point, the noise used in the
Monte Carlo datasets is chosen to accurately reflect
the experiment’s noise spectrum. The green dots show
the median 95% upper limit at those frequencies, and we
achieve a low median limit of 2.4 × 10−10 GeV−1 at
0.36 Hz. Compared to previous laboratory results within
the (0.4–40)-feV mass range, which come from the original
long-range force experiment of this paper [9] and a more
recent CASPEr-ZULF experiment that used low-field
NMR techniques to search for astrophysical axions [26],
our results represent an improvement of about 5 orders of
magnitude. More importantly, our Monte-Carlo-validated
experimental analysis correctly accounts for the stochastic
nature of the interaction in Eq. (2), which is crucial for
reliably recovering upper limits or best-fit values [31] but
has heretofore not been carefully accounted for in most
experimental analyses [25–27]. At higher frequencies
between 1 and 10 Hz, our constraints are about 2 to 3
orders of magnitude stronger than what was recently
reported by the NASDUCK Collaboration [28].
Our bounds surpass the upper limit from SN1987A [58],

which is shown in Fig. 5 as a dotted line. This limit from
SN1987A is, however, subject to significant uncertainties
due to difficulties in correctly calculating the rate of axion
production within the proto-neutron star, as well as com-
plications arising from scattering and absorption within a
dense plasma [58,60,61]. Moreover, if the neutrino emis-
sion of SN1987A came not from within the core of a proto-
neutron star but from an accretion disk, axion production
would not affect the neutrino emission, and in that case,
constraints on the axion would be invalid [62]. Our
constraints are also more stringent compared to the neutron
star bound from Ref. [59] (shown as a brown dash-dot line
in Fig. 5), which analyzed the cooling from five neutron
stars. Like SN1987A, neutron star cooling arguments also
have density-dependent coupling uncertainties [59,63]. In
addition, magnetic field decays or other unknown heating
mechanisms can plausibly lead to a relaxation of neutron
star constraints [59,63]. It is worth noting that there is no
universal consensus on the magnitude of the neutron star
bound, and it can vary by about an order of magnitude
depending on the details of the analysis [64]. Our results are
therefore a useful complementary constraint to both the
supernova and neutron star cooling limits.
One striking feature of Fig. 5 is the presence of multiple

peaks in the recovered upper limits that are clearly above
the background. This is due to the presence of various
peaks in the experiment’s power spectrum and can also be

seen in the distribution of the q0 discovery test statistic,
which we show as a blue line in Fig. 6, where we restrict
the domain to q0 ≥ 0.01 for clarity. The expected distri-
bution of q0 [Eq. (22)] for the total number of axion masses
we test is shown as a red line. At first glance, it might
appear that there is an excess of q0 for q0 > 10 and an
excessively long tail for q0 ≳ 50. However, since not all
of our tests are independent due to the finite experi-
mental frequency resolution at low axion masses (see
discussion at the end of Sec. II B), the number of inde-
pendent excesses is actually smaller than what is sug-
gested by Fig. 6. Moreover, the significance of obtaining a
particular value of q0 is no longer given by Eq. (23) due to
the look-elsewhere effect. For example, a significance of 5σ
corresponds to q0 ¼ 52.1 (see Sec. II B). It is also worth
noting that the vast majority of axion masses we test
have q0 < 0.01 and are not shown in Fig. 6. Masses with
q0 > 10 comprise less than 0.5% of the total number of
tests performed and there are in total only 63 masses
with q0 > 52.1.
Ordinarily, the presence of several masses with q0 >

52.1 corresponding to a significance of more than 5σ after
accounting for the look-elsewhere effect would warrant
further experimental investigation. For example, the bias
magnetic field of the comagnetometer could have been
flipped to verify that the effect is not a purely electronic or
optical effect, and orienting the experiment differently
should, in principle, also give a different power spectrum
from the axion that nevertheless returns the same best-fit
gaNN value from the likelihood analysis. However, since the

FIG. 6. Distribution of the discovery test statistic is plotted in
blue on a logarithmic scale from 10−2 onward. The red curve
shows the expected distribution given the theoretical probability
distribution function of q0 for the total number of axion masses
tested, assuming that each mass constitutes an independent test.
As discussed in the main text, this is only approximately true. A
vast majority of the axion masses tested have q0 < 0.01 and are
for clarity not shown. Masses with q0 > 10 comprise less than
0.5% of all masses tested. We do not explicitly account for the
look-elsewhere effect in this plot. As we note in the main text, a
5σ significance for rejecting the null hypothesis will correspond
to a q0 here of 52.1 after taking into account the look-elsewhere
effect.
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original experiment was not a dedicated search for astro-
physical axions, and since we no longer have active control
of the experiment, it is impossible for us to perform
experimental checks to rule out spurious signals. Con-
sequently, we are unable to make definitive claims about
the origins of these peaks, but we discuss additional
analyses below that suggest a nonaxion origin for them.

V. FURTHER ANALYSIS OF POSSIBLE
AXION CANDIDATES

In this section, we further analyze possible axion
candidates, which we here define as those axion masses
with q0 > 52.1. As discussed in Sec. III, data for the
original experiment were taken over spring and summer of
2008, with a gap of approximately 50 days in between
both campaigns during which systematic improvements
particular to the original experiment were performed.
A true axion signal should nevertheless persist in both
datasets, and we expect that the recovered best-fit gaNN
from both analyses will not be significantly different from
each other. This is true even though we use only an
average Earth velocity hvEi in our analysis of both
datasets instead of Earth’s instantaneous velocity vE.
As we show in Fig. 7(a), the expected discrepancy
between the recovered best-fit gaNN due to this approxi-
mation is negligible over the duration of our experiment.
Consequently, any candidate that has significantly differ-
ent best-fit gaNN between the spring and summer datasets
is likely to not be a true axion.
In Fig. 7(a), the central value of each data point gives the

average best-fit gaNN over 100 Monte Carlo datasets with a
simulated data-taking interval of a week for a 6-Hz axion.
Vertical lines indicate the 1σ containment interval of those
best-fit values, which is a function of both the signal-to-
noise ratio and the frequency resolution of the experiment
relative to the axion linewidth. The latter contribution is due
to the stochastic nature of the astrophysical axion signal
where it is necessary to sample the axion signal over several
coherence times to have a more reliable measure of gaNN.
Because of the directional nature of the neutron-spin
coupling, our analysis is sensitive to both the magnitude
and direction of vE. Since both of these quantities do not
necessarily deviate symmetrically from their average val-
ues, this modulation of the best-fit gaNN stemming from our
use of hvEi rather than vE is therefore also not always
symmetric. This asymmetric modulation of the recovered
best-fit gaNN should be contrasted with the symmetric
modulation of the expected raw axion power which we
show in Fig. 7(b).
As an aside, it is interesting to note here that the annual

peak-to-peak power modulation of thermalized axions in
the standard halo model is only about 8% of its mean value,
making this a relatively small effect that will be especially
difficult to observe for low-frequency axions with coher-
ence times on the order of a year.

In Fig. 7(a), we choose to simulate a 6-Hz axion because
it is close in frequency to several of the axion candidates
that we discuss below. Moreover, we inject the axion signal
with a relatively large gaNN of 5 × 10−8 GeV−1 [shown as a
dashed orange line in Fig. 7(a)] and for a sufficiently long
measurement time so that the 1σ containment interval will
be comparable to the experimental confidence intervals for
our best-fit gaNN. Nevertheless, the expected modulation of

FIG. 7. (a) Expected annual modulation of the recovered best-
fit gaNN for a 6-Hz axion. This modulation of the best-fit gaNN
stems from deviation of both the magnitude and direction of vE
from hvEi, where vE is Earth’s instantaneous velocity relative to
the Galactic Center, and hvEi is its annual average that we use in
our analysis. Because these deviations do not necessarily occur
symmetrically, the annual modulation of the best-fit gaNN is not
always symmetric. This modulation of the recovered best-fit gaNN
should be contrasted with the expected annual modulation of the
axion’s power that we show in (b), where blue dots give the
expected axion power over 12 months, and the orange line is a
sinusoidal fit to the blue points. The dashed orange line in
(a) indicates the injected gaNN, which is larger than any of the
recovered best-fit gaNN in Fig. 8. The green shaded window
indicates the time span of the experiment, which started data
collection on 3022.63 sidereal days since J2000.0. As the results
in (a) show, no significant deviation of the recovered gaNN is
expected over the time span of our experiment due to our use of
hvei rather than the instantaneous vE in our analysis. Vertical lines
in (a) give the 1σ containment interval for the best-fit gaNN from
100 Monte Carlo datasets. The simulated data have a white-noise
background of 1.6 fT=

ffiffiffiffiffiffi
Hz

p
, which is comparable to the experi-

ment’s noise level.
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the recovered gaNN in Fig. 7(a) is still negligible over the
duration of our experiment, which is demarcated in the
figure by the green shaded window. Consequently, we
expect the 95% confidence intervals of the recovered best-
fit gaNN values from both the spring and summer datasets to
overlap with each other if they are indeed due to a true
axion signal.
In Fig. 8, we plot the best-fit gaNN recovered from both

the spring and summer datasets for all axion masses with
q0 > 52.1 in the full combined dataset. Vertical lines
indicate their 95% confidence intervals obtained by ana-
lyzing the data in each season using the formalism in
Sec. II B. Although there are numerous prominent peaks in
Fig. 5 with frequencies below 2 Hz, their significance does
not exceed 5σ because the width of their peaks is generally
much broader than the expected axion linewidth at those
frequencies. It therefore turns out that there are only 63
axion candidates above approximately 2 Hz that have

significance above 5σ after taking into account the look-
elsewhere effect. Out of these 63 possible axion candidates
with q0 > 52.1, only 14 have overlapping 95% confidence
intervals. We deem the other 49 axion candidates with
nonoverlapping gaNN confidence intervals as unlikely to be
true axions due to inconsistencies from both the spring
and summer datasets, and we do not perform any further
analysis on them. For the remaining 14 axion can-
didates with overlapping 95% confidence intervals, we
further perform a peak shape analysis on them that we
describe below.
A unique feature of the signal line shape in the axion

frequency range that we examine is the appearance of three
distinct peaks spaced by Earth’s sidereal rotation frequency.
This allows us to discriminate between sidereal modulation
of the axion signal and monochromatic signals that are
likely due to terrestrial sources. Figure 9 shows an example
of an experimental peak at 6.666 Hz where the likelihood

FIG. 8. Best-fit gaNN recovered from both the spring and summer datasets for all axion masses with q0 > 52.1 corresponding to a
significance of more than 5σ after taking into account the look-elsewhere effect. Error bars show the 95% confidence intervals for the
best-fit values. Of the 63 possible candidates shown here, only 14 have overlapping confidence intervals. These candidates are also
shown in the inset.

LABORATORY CONSTRAINTS ON THE NEUTRON-SPIN … PHYS. REV. X 13, 011050 (2023)

011050-13



analysis identifies several possible axion candidates with q0
of around 200. However, because the likelihood analysis is
effectively a hypothesis test for the axion model against the
null hypothesis of a white-noise background, any relatively
narrow deviation from a flat spectrum results in a high q0
value favoring the axion hypothesis even if the line-shape
match to a true axion signal is poor.
An obvious way to directly test an axion candidate

against the signal model is to fit its line shape to the
expected line shape of an axion. Nevertheless, fitting the
line shape of the expected axion signal is in general difficult
since it has large statistical fluctuations in each frequency
bin. To reduce this uncertainty, one has to combine the
power in many bins together, but the exact number of bins
to combine depends on the axion linewidth, which is itself
proportional to the axion frequency. In order to have a
general line-shape analysis, we calculate the total power
under each of the three expected axion peaks. When the
peaks overlap, we separate the signal into three frequency
bands as shown, for example, by the different colors in
Fig. 9. We then calculate the ratio of the central peak power

to the average of the two side peak powers. From
Monte Carlo simulations of axions in our mass range of
interest, this ratio is generally expected to be slightly larger
than 1 for a good axion candidate. Physically, this ratio
depends on the projection of the experiment’s sensitive axis
[defined as m̂ in Eq. (7)] on the axis of Earth’s rotation. An
analytical result of this ratio can be obtained for the
expected magnetic power spectrum [see Eq. (B52) and
Table II], but there is some variability for a single
measurement due to the stochasticity of dark-matter axions,
which requires additional verification via Monte Carlo
simulations. In Fig. 10, we plot a distribution of relative
peak power ratios based on 1000 Monte Carlo simulations
for a candidate signal at 6.666 75 Hz. We also show the
experimental power ratios for the four signal candidates
near 6.666 Hz that have overlapping gaNN confidence
intervals from both summer and spring datasets. One can
see that all signal candidates are excluded with >90%
probability. Similar analyses are performed for other
candidate peaks near 7 and 8 Hz, and they are similarly
inconsistent with the expected axion line shape.
Lastly, we note that the 6.666-Hz candidates are an

integer multiple of the 3.333-Hz candidates which have
nonoverlapping confidence intervals in Fig. 8, and that
the 7- and 8-Hz candidates are integer multiples of a
1-Hz peak that is likely due to a clock signal in one of
our electronics. Given the suspicious coincidences of
these candidates and the fact that their line shapes do
not agree well with a true axion’s line shape, we do not
in the final analysis deem any of them to be serious
axion contenders.

FIG. 9. Experimental magnetic power near 6.666 Hz (dots).
The average magnetic power of a signal candidate identified by
the likelihood analysis at 6.666 75 Hz is shown by the solid line.
For the purposes of testing an axion candidate directly against the
signal model (rather than against a white-noise null hypothesis as
in our likelihood analysis), we split the signal power into three
regions identified by colored lines to calculate the power under
each peak. These peaks are due to sideband modulations of the
axion’s power due to Earth’s rotation about its axis [see
discussion around Eq. (8)]. The selection of these three regions
is driven by a need to discriminate between true and false axion
signals (see discussion in Sec. V of the text and Fig. 10).

FIG. 10. A histogram of ratios of the power in the central axion
peak (colored orange in Fig. 9) relative to the average power of
the side peaks (colored green and red in Fig. 9) based on
Monte Carlo simulations for a signal candidate at 6.666
75 Hz. From the Monte Carlo simulations, this ratio should be
centered at approximately 1.2 for a true axion signal. The solid
blue line shows a smoothed distribution of the ratio. Red lines
indicate the experimental ratios for the four peaks near 6.666 Hz
shown in the inset of Fig. 8. Given their distance from the
Monte Carlo distribution, we can conclude with >90% con-
fidence that these peaks are not true axions.

TABLE II. Fit parameters obtained via fitting Eq. (B21) to the
exact components of the sensitive axis m̂.

Ci Value θi Value Di Value

Cs 0.670 θs −1.550 Ds −0.308
Cu 0.626 θu −2.739 Du 0.367
Cv 0.564 θv −0.492 Dv 0.434
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VI. CONCLUSION

Axions are well-motivated dark-matter candidates that
arise in many theories beyond the standard model. In this
paper, we reanalyze approximately 40 days of data from a
K-3He comagnetometer that was originally built for a long-
range force experiment to search instead for dark-matter
axions coupling to the neutron spin of 3He.
Compared to long-range force experiments, searches for

dark-matter axions produce energy shifts that are sup-
pressed only by one factor of the small coupling constant
gaNN but their study is complicated by interference effects
that result in stochastic experimental signatures. To correctly
account for this stochastic signal, we develop a likelihood
analysis to analyze the signal of the K-3He comagnetometer
in the frequency domain from 0.01 to 10 Hz (approximately
0.04 to 40 feV). Assuming that axions comprise all of the
dark matter in the solar neighborhood, we are able to
constrain gaNN < 2.4 × 10−10 GeV−1 (median 95% confi-
dence level) for axion masses between 0.4 to 4 feV. At
higher masses (frequencies), the comagnetometer’s sensi-
tivity to anomalous fields is limited by the resonance
frequency of 3He (about 20 Hz in the original experiment).
It is, in principle, possible to extend the analysis for lower
frequencies, but the comagnetometer’s sensitivity also
deteriorates at lower frequencies. This is typically due to
low-frequency noise from slow drifts in the pump-and-
probe beams.
Our limits represent a significant 5-orders-of-magnitude

improvement over previous laboratory bounds and serve as
a useful verification of astrophysical constraints that have
comparable limits but are subject to substantial uncertain-
ties. Moreover, as we discuss in Sec. III, the K-3He
comagnetometer is also, barring an unlikely accidental
cancellation, sensitive to anomalous fields coupling to the
electron spin so that analogous constraints on the axion-
electron coupling gaee can be easily obtained from Fig. 5
and multiplying the limits by a simple rescaling factor of
0.87 μB=μHe (see Sec. III for more details).
Peaks in the magnetic power spectrum of the original

experiment resulted in several persistent possible axion
candidates with significance greater than 5σ after taking
into account the look-elsewhere effect. Their high signifi-
cance suggests that the null hypothesis of a white-noise
background should be rejected, but additional verification
is required before acceptance of an axion hypothesis. Since
we no longer have active control of the experiment, we are
unable to perform detailed experimental checks on these
candidates. However, analysis of their line shapes shows
significant deviation from their expected values, which
suggests a nonaxion origin for all of them.
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APPENDIX A: VALIDATION OF FREQUENCY-
DOMAIN LIKELIHOOD ANALYSIS

We introduce our frequency-domain likelihood analysis
in Sec. II and provide a full derivation of the frequency-
domain covariance matrix in Appendix B. Here, we present
our validation of the frequency-domain analysis by com-
paring it with the time-domain analysis recently published
in Ref. [31]. We first compare both approaches on the same
set of Monte Carlo data before testing them on the same
subset of experimental data.

1. Validation on Monte Carlo data

In Fig. 11, we show the signal recovery plot of 100
Monte Carlo time-series datasets that are each 40 days long.
The simulated datasets are injected with a constant white-
noise background and a simulated axion signal of varying
strengths spanning a few decades. The time-binned analysis

FIG. 11. Signal injection and recovery for an axion mass of
10 Hz. To create these plots, we generate 100 Monte Carlo time-
series datasets sampled at 50 Hz and each lasting 40 days long
with a white-noise background of 900 aT=

ffiffiffiffiffiffi
Hz

p
. The time-binned

analysis in Ref. [31] and the frequency-domain analysis in Sec. II
are then both used to recover the best fit and 95% upper limit of
the coupling constant. Error bars are the standard deviation of the
recovered best fit and upper limits values over the 100 simulated
datasets, while the markers denote the mean best fit and upper
limits over the datasets. The null limit found by running the
analysis on 100 null Monte Carlo data sets is shown as
a pink band.
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in Ref. [31] and the frequency-domain analysis are then
independently applied to the same simulated data to recover
the best-fit gaNN (i.e., the unconditional maximum like-
lihood estimator of gaNN) and 95% upper limits shown in
Fig. 11. We emphasize that the Monte Carlo data here are
generated in the time domain and are completely indepen-
dent of the frequency-domain likelihood formalism. It is
thus a nontrivial validation of the methodology presented in
Appendix B.
The unconditional maximum likelihood estimator of

gaNN in Fig. 11 correctly recovers the injected value for
a sufficiently strong injected signal. However, when the
injected signal falls below the noise floor, the method is, as
expected, unable to reliably recover the injected gaNN as
seen in the diverging error bars, which shows the standard
deviation of the best-fit gaNN recovered over all 100
datasets. This can also be seen in Fig. 12(a), which shows
the test statistic q0 obtained via the frequency-domain
method as a function of the injected gaNN for the 10-Hz

axion. At low values of injected gaNN, the significance of
the recovered best-fit value is approximately 1σ, indicating
that the null hypothesis of no axion should be preferred.
However, at larger injected gaNN values, the test statistic and
significance of the recovered best-fit value increases
accordingly before eventually saturating in the limit of
high signal-to-noise ratio.
Although we cannot reliably recover the best-fit value

when the injected signal disappears below the noise floor,
we can nevertheless still reliably set upper limits. This can
be seen for both the time- and frequency-domain analysis in
Fig. 11 where both methods set the 95% upper limits in the
low injected gaNN regime with error bars that agree well
with the null limit that is shown as a pink band. At higher
injected gaNN above the null limit, the logarithmic scale of
Fig. 11 makes it difficult to discern if the upper limits are
recovered correctly. To validate the upper limits in this
regime, we plot, for the 10-Hz axion, the cumulative
distribution functions of the recovered 95% upper limits
gup for all injected gin above the null limit and compare it
against the actual injected gin. As Fig. 12(b) shows, the
recovered upper limits are indeed only below gin about 5%
of the time, which indicates that the analysis is working as
intended.

2. Validation on experimental data

Besides checking that both approaches work on the same
Monte Carlo datasets, we also check that both methods give
similar results on a subset of the actual experimental data.
In Fig. 13, we use both the frequency-domain approach of
this paper and the time-domain approach of Ref. [31] to
independently calculate the 95% upper limit on gaNN from
the experimental data over a small frequency range in
the neighborhood of 0.525 Hz where the experimental
noise spectrum is relatively white. As the scatter plot and

FIG. 12. (a) q0 as a function of the injected gaNN for the case of
a 10-Hz axion. The marker denotes the average of the q0 test
statistic recovered from 100 independent Monte Carlo simula-
tions, while the error bars denote the corresponding standard
deviation. Horizontal lines with labels of 1σ, 3σ, and 5σ on the
right indicate the significance of obtaining a particular value of q0
(see Sec. II B for more details). (b) Empirical cumulative
distribution of the recovered 95% upper limit gup for the case
of a 10-Hz axion where the injected gin is above the null limit (see
Fig. 11). As expected, the recovered limits are below the injected
gin for approximately 5% of the time.

FIG. 13. Left: comparison of the 95% upper limit obtained via
the frequency-domain approach of this paper (orange) and the
time-domain approach of Ref. [31] (blue) over a small frequency
range of the experimental data in the vicinity of 0.525 Hz. Note
that the calculations are completely independent and that there is
some misalignment of the frequency grids. Right: histogram of
the obtained limits in the frequency range of the left panel.
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histogram of Fig. 13 show, both methods agree with each
other quite well.

APPENDIX B: STOCHASTIC PROPERTIES
OF THE AXION GRADIENT’S
FREQUENCY SPECTRUM

Throughout this paper, we claim that the experimental
frequency spectrum d ¼ fAk; Bkjk ¼ 0;…; N − 1g (see
Sec. II), where Ak and Bk are as defined in Eq. (10), is
normally distributed with zero mean and has a nondiagonal
covariance matrix Σa. These stochastic properties are then
used to calculate the likelihood of measuring a particular
frequency spectrum. We now prove that d is indeed
normally distributed with zero mean and provide the full
derivation of Σa in this appendix.
Before obtaining the stochastic properties of Ak and Bk

however, we note that the stochastic axion gradient, as
written in Eq. (6), is a sum over all three-momentum p of
the axion, which have different directions and magnitudes.
However, since the axion’s frequency spectrum can depend
only on the magnitude of its momentum, it is clear that we
need to first integrate out the angular degrees of freedom of
p in Eq. (6) before we can obtain the stochastic properties
of Ak and Bk.

1. Integrating out the angular dependence in p

We do this by first rewriting the sum over all p in Eq. (6)
to a sum over infinitesimal domains Ωp. Within each
infinitesimal Ωp domain, we may safely assume that p,
Np, and ωp are approximately the same. However, because
ϕp ∼Uð0; 2πÞ is a random number, it cannot be assumed to
be constant within any infinitesimal domain and therefore
requires an additional sum

∇aðtÞ ¼
X
Ωp

ffiffiffiffiffiffiffiffiffi
2Np

Vωp

s X
k∈Ωp

cosðp0tþ ϕkÞp

¼
X
Ωp

ffiffiffiffiffiffiffiffiffi
2Np

Vωp

s �
cosp0t

X
k∈Ωp

cosϕk

− sinp0t
X
k∈Ωp

sinϕk

�
p

¼
X
Ωp

ffiffiffiffiffiffiffiffiffi
2Np

Vωp

s
ðxp cosp0t − yp sinp0tÞp

¼
X
Ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NpMp

Vωp

s
αp cosðp0tþΦpÞp: ðB1Þ

In going from the second to third line, we note that each
cosϕk and sinϕk is identically and independently distrib-
uted. Consequently, by the central limit theorem, in the
limit ofMp → ∞, whereMp is the number of modes inΩp,

P
k∈Ωp

cosϕk → xp ∼ NðMpE½cosϕk�;MpVar½cosϕk�Þ ¼
Nð0;Mp=2Þ. Similarly,

P
k∈Ωp

sinϕk converges to yp ∼
Nð0;Mp=2Þ. Moreover, since E½cosϕk sinϕk� ¼

R
2π
0 dϕ×

cosϕ sinϕ=2π ¼ 0, the two sums are independent, and xp
and yp are therefore independent, normally distributed
variables with variance Mp=2. Thus, the last line follows,
where we rescale and perform a change of variables to
Rayleigh distributed αp ∼ Rð1Þ and uniformly distributed
Φp ∼Uð0; 2πÞ. Furthermore, we observe that since Np is
the mean occupation number of each mode inΩp andMp is
the number of modes in Ωp, their product is the mean
number of axions in Ωp. If we assume that axions make
up the entirety of the local dark-matter density ρDM ≈
0.3 GeV=cm3 [65], and that they have a momentum
distribution fðpÞdp such that

R
dpfðpÞ ¼ 1, then we

may write NpMp ¼ ρDMVfðpÞðΔpÞ3=ωp, which gives

∇aðtÞ ¼
X
Ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMfðpÞðΔpÞ3

p
ωp

αp cosðp0tþΦpÞp

≈
X
Ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMfðvÞðΔvÞ3

q
αv

× cos

�
ma

�
1þ 1

2
v2
�
tþΦv

�
v; ðB2Þ

where in the last line we take the nonrelativistic limit since
halo axions are bound within the Galaxy and are non-
relativistic. In taking the nonrelativistic limit, we keep more
terms in p0 compared to ωp because here we are interested
in the dispersion of the axion field which will give rise to
qualitatively different effects. Also, we perform a change of
variables from the momentum distribution function fðpÞ to
the velocity distribution function fðvÞ, which in the non-
relativistic limit is just a rescaling by the axion rest
mass ma.
The velocity distribution fðvÞ can, in principle, be

any probability distribution, but a prominent model is
the standard halo model whereby fðvÞ is given by the
Maxwell-Boltzmann distribution in Eq. (5). For the sake of
concreteness, we now assume that fðvÞ is given by Eq. (5)
and proceed to perform the angular integration in momen-
tum space. To do so, we choose a Cartesian coordinate
system fŝ; û; v̂g such that v̂ is parallel to vE and ŝ; û are two
other orthonormal basis vectors (see Fig. 1). The ith
component of ∇a is then

ð∇aÞiðtÞ ¼
X
jkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMfjkv2j sin θkΔϕΔθΔv

q
αjkl

× cos ðωjtþΦjklÞvi; ðB3Þ

where we write the infinitesimal velocity volume Δv3 in
spherical coordinates and discretize the velocity space
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into Nj × Nk × Nl infinitesimal volumes at coordinates
ðvj; θk;ϕlÞ. The frequency ωj is defined as ωj ≡mað1þ
v2j=2Þ, while fjk ≡ fðvj; θk;ϕlÞ ¼ fðvj; θkÞ, and vi is
related to ðvj; θk;ϕlÞ by the standard transformations

vi ¼

8>><
>>:

vj sin θk cosϕl; i ¼ s;

vj sin θk sinϕl; i ¼ u;

vj cos θk; i ¼ v:

ðB4Þ

Each infinitesimal volume labeled by jkl contributes for
each jkl, an independent standard Rayleigh distributed
random variable αjkl ∼ Rð1Þ, and an independent uniformly
distributed random variable Φjkl ∼ Uð0; 2πÞ to the overall
sum. We now rewrite Eq. (B3) as

ð∇aÞiðtÞ ¼
X
jk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMfjkv2j sin θkΔθΔv

q
vjWi

k

× ðcosωjtCi
jk − sinωjtSijkÞ; ðB5Þ

where

Ci
jk ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffi
Δϕ

p P
l
αjkl cosΦjkl cosϕl; i ¼ s;

ffiffiffiffiffiffiffi
Δϕ

p P
l
αjkl cosΦjkl sinϕl; i ¼ u;

ffiffiffiffiffiffiffi
Δϕ

p P
l
αjkl cosΦjkl; i ¼ v;

ðB6Þ

Sijk ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffi
Δϕ

p P
l
αjkl sinΦjkl cosϕl; i ¼ s;

ffiffiffiffiffiffiffi
Δϕ

p P
l
αjkl sinΦjkl sinϕl; i ¼ u;

ffiffiffiffiffiffiffi
Δϕ

p P
l
αjkl sinΦjkl; i ¼ v;

ðB7Þ

Wi
k ¼

�
sin θk; i ¼ s; u;

cos θk; i ¼ v;
ðB8Þ

and in the spirit of Monte Carlo integration, we compute the
azimuthal integral using the central limit theorem; i.e., we
let ϕl → ϕl ∼Uð0; 2πÞ, Nl → ∞, and Δϕ ¼ 2π=Nl → 0.
Since each αjkl, Φjkl, and ϕl are identically and independ-
ently distributed, the summation over l may, in the limit
as Nl → ∞, be evaluated using the central limit theorem
to give

Ci
jk ¼

( ffiffiffi
π

p
xijk; i ¼ s; u;ffiffiffiffiffiffi

2π
p

xijk; i ¼ v;
ðB9Þ

Sijk ¼
( ffiffiffi

π
p

yijk; i ¼ s; u;ffiffiffiffiffiffi
2π

p
yijk; i ¼ v;

ðB10Þ

where each xijk and y
i
jk is an independent, standard normal-

distributed variable

xijk ∼ Nð0; 1Þ; yijk ∼ Nð0; 1Þ: ðB11Þ

It now remains to do the polar integral, which we
perform by rewriting Eq. (B5) to become

ð∇aÞiðtÞ ¼
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMfjΔv

q
v2jðDi

j cosωjt − Ti
j sinωjtÞ;

ðB12Þ

where we separate out the polar dependence in fjk by
defining

fj ≡ 1

ð2πσ2vÞ3=2
exp

�
−
v2j þ v2E
2σ2v

�
; ðB13Þ

and Di
j, T

i
j are given by

Di
j ¼

ffiffiffiffiffiffi
Δθ

p X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θke−βj cos θk

q
Wi

kC
i
jk; ðB14Þ

Ti
j ¼

ffiffiffiffiffiffi
Δθ

p X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θke−βj cos θk

q
Wi

kS
i
jk; ðB15Þ

with βj is defined as βj ≡ vjvE=σ2v. The polar integral
may be evaluated using the central limit theorem as above,
with Δθ ¼ π=Nθ, θk → θk ∼ Uð0; πÞ, and Nθ → ∞. By the
central limit theorem, Di

j and Ti
j are then (independent)

normally distributed random variables,

Di
j; Ti

j ∼
�
Nð0; 2πψ jÞ; i ¼ s; u;

Nð0; 4πξjÞ; i ¼ v;
ðB16Þ

where

ψ j ¼
8<
:

2ðβj cosh βj−sinh βjÞ
β3j

; βj ≠ 0;

2
3
; βj ¼ 0;

ðB17Þ

ξj ¼
8<
:

ð2þβ2j Þ sinh βj−2βj cosh βj
β3j

; βj ≠ 0;

1
3
; βj ¼ 0:

ðB18Þ

Recognizing that Di
j and Ti

j in Eq. (B12) are independent
normally distributed variables with equal variances, we
now rewrite Eq. (B12) in terms of a standard Rayleigh
random variable αi;j ∼ Rð1Þ, and a uniformly distributed
variable ϕi;j ∼Uð0; 2πÞ to finally obtain an expression for
the axion gradient without any angular dependence on the
axion’s velocity
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ð∇aÞiðtÞ ¼
X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρDMfjΔv

q
v2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDi

jÞ
q

αi;j

× cosðωjtþ ϕi;jÞ
¼

X
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πρDMfjΔv

q
v2jϵi;jαi;j cosðωjtþ ϕi;jÞ;

ðB19Þ
where we define

ϵi;j ≡
( ffiffiffiffiffiffiffiffi

2ψ j
p

; i ¼ u; s;ffiffiffiffiffiffiffi
4ξj

p
; i ¼ v:

ðB20Þ

2. Distribution of Ak and Bk

Armed with Eq. (B19) for the axion’s gradient that
depends only on the magnitude of the axion’s velocity, we
are now ready to derive the stochastic properties of the
experimental frequency spectrum, which as defined in
Eqs. (10) and (11), is the discrete FFT of the anomalous
field βn in Eq. (7).
We begin by noting that to a good approximation, the

time dependence of our experiment’s sensitive axis m̂ over
the approximately 100-day span can be approximated by

m̂iðnΔtÞ ≈ Ci cosðωenΔtþ θiÞ þDi; ðB21Þ
where ωe is 2π/(sidereal day) and Ci, θi, and Di are
obtained from fitting Eq. (B21) to the actual m̂iðnΔtÞ
during the span of the experiment, which can be calculated
based on the orientation of the sensitive axis in the
experiment (taken to be the outward normal to the surface
of Earth), the experiment’s location on Earth (40.35 °N,
74.65 °W), and the absolute time that is measured as
fractional sidereal days since J2000.0. Figure 14 shows
the fs; u; vg components of the sensitive axis, as well as fits
of Eq. (B21) to them, while Table II provides the values of
Ci, Di, and θi for i ¼ fs; u; vg obtained via the fits.

If the data are collected with a sampling interval Δt over
a total interval T ≫ Δt, such that the time series of the
anomalous field βn ranges from n ¼ 0;…; N − 1, with
N ≈ Δt=T, then we may write

2

N
βk ≈

2
ffiffiffiffiffiffiffiffiffiffiffi
πρDM

p
gaNN

TμHe

X3
i¼1

XM
j¼1

Δt
ffiffiffiffiffiffiffiffiffiffiffi
Δvfj

q
αi;jϵi;jv2j

×
XN−1

n¼0

e−iΔtnωk

�
cos ðΔtnωj þ ϕi;jÞDi

þ cos ðΔtnωe − Δtnωj − ϕi;j þ θiÞCi

2

þ cos ðΔtnωe þ Δtnωj þ ϕi;j þ θiÞCi

2

�
: ðB22Þ

We note here that βk is the discrete Fourier transform of βn
defined in Eq. (11),

P
i is over the three components of the

fs; u; vg basis, whilePj is over the speed of the axion andP
n is over the time series.M, which is the number of slices

we discretize the speed domain of the axion into, is
arbitrary, and we are therefore at liberty to take it as large
as we like. The summation over nmay be evaluated using a
geometric sum to give

XN−1

n¼0

Δt cosðωnΔtþ ϕÞe−iωknΔt

¼ Δt
2

�
1 − eiðω−ωkÞΔtN

1 − eiðω−ωkÞΔt e
iϕ þ 1 − e−iðωþωkÞΔtN

1 − e−iðωþωkÞΔt e
−iϕ

�
:

ðB23Þ

The terms in the bracket peakwhen ðω − ωkÞΔt ≈ 0 or when
ðωþ ωkÞΔt ≈ 0. For positive ωk of interest, the first term
dominates when ðω − ωkÞΔt ≈ 0, and we may then write

XN−1

n¼0

Δt cosðωnΔtþ ϕÞe−iωknΔt

≈ ei½ðω−ωkÞT=2þϕ� sin½ðω − ωkÞT=2�
ω − ωk

: ðB24Þ

Practically, we therefore require that our experimental sam-
pling frequency fs ≡ 1=Δt is sufficiently high such that
2πΔfa=fs ≪ 1, where Δfa is the approximate full width at
half maximum of the axion peak. ForΔfa ∼ 10−6 Hz, this is
easily achieved and the approximation is thus well satisfied.
Applying this approximation, we have from Eqs. (B22) and
(10), after expanding the trigonometric functions in Eq. (B22)
and collecting the coefficients of cosðϕi;jÞ and sinðϕi;jÞ,

Ak ¼ −
2gaNN

ffiffiffiffiffiffiffiffiffiffiffi
πρDM

p
TμHe

X3
i¼1

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
Δvfj

q
αi;jϵi;jv2j

× ½Ei;j;k cosðϕi;jÞ þ Fi;j;k sinðϕi;jÞ�; ðB25Þ

FIG. 14. Components s (orange), u (green), and v (blue) of the
sensitive axis m̂ over the entire time span of the experiment. Solid
lines give the exact results, while dashed lines show fits of
Eq. (B21) to the exact components.
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Bk ¼ −
2gaNN

ffiffiffiffiffiffiffiffiffiffiffi
πρDM

p
TμHe

X3
i¼1

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
Δvfj

q
αi;jϵi;jv2j

× ½Fi;j;k cosðϕi;jÞ − Ei;j;k sinðϕi;jÞ�; ðB26Þ

where Ei;j;k is given by

Ei;j;k

¼ sin ðTωe
2
þ Tωj

2
− Tωk

2
Þ cos ðTωe

2
þ Tωj

2
− Tωk

2
þ θiÞCi

2ðωe þ ωj − ωkÞ

þ sin ðTωj

2
− Tωk

2
Þ cos ðTωj

2
− Tωk

2
ÞDi

ωj − ωk

−
sin ðTωe

2
− Tωj

2
þ Tωk

2
Þ cos ðTωe

2
− Tωj

2
þ Tωk

2
þ θiÞCi

2ð−ωe þ ωj − ωkÞ
;

ðB27Þ

and −Fi;j;k is

− Fi;j;k

¼ sin ðTωe
2
þ Tωj

2
− Tωk

2
Þ sin ðTωe

2
þ Tωj

2
− Tωk

2
þ θiÞCi

2ðωe þ ωj − ωkÞ

þ sin2ðTωj

2
− Tωk

2
ÞDi

ωj − ωk

þ sin ðTωe
2

− Tωj

2
þ Tωk

2
Þ sin ðTωe

2
− Tωj

2
þ Tωk

2
þ θiÞCi

2ð−ωe þ ωj − ωkÞ
:

ðB28Þ

To see that Ak and Bk are normally distributed, we note that
sinceαi;j ∼ Rð1Þ andϕi;j ∼Uð0; 2πÞ are independent of each
other for all i, j, we may rewrite αi;j cosðϕi;jÞ≡ xi;j ∼
Nð0; 1Þ and αi;j sinðϕi;jÞ≡ yi;j ∼ Nð0; 1Þ. Using this sub-
stitution, we obtain

Ak ¼ −
2gaNN

ffiffiffiffiffiffiffiffiffiffiffi
πρDM

p
TμHe

X3
i¼1

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
Δvfj

q
ϵi;jv2j

× ½Ei;j;kxi;j þ Fi;j;kyi;j�; ðB29Þ

Bk ¼ −
2gaNN

ffiffiffiffiffiffiffiffiffiffiffi
πρDM

p
TμHe

X3
i¼1

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffi
Δvfj

q
ϵi;jv2j

× ½Fi;j;kxi;j − Ei;j;kyi;j�: ðB30Þ

We thus show thatAk andBk are normally distributed random
variables with zero mean. However, Ak, Bk, Ar, Br will in
general have nonzero correlation with each other (note that k
and r here index the fit frequency).

3. Covariance of Ak and Bk

We therefore desire to compute the covariance matrix
that will in general consists of

CovðAk; ArÞ ¼ EðAkArÞ; CovðAk; BrÞ ¼ EðAkBrÞ;
CovðBk; ArÞ ¼ EðBkArÞ; CovðBk; BrÞ ¼ EðBkBrÞ:

ðB31Þ

It is important to note here that xi;j and yi;j in Eqs. (B29)
and (B30) are independent of each other for all i, j, while
xi;j and xp;q are independent for all i, j, p, q except when
i ¼ p and j ¼ q. Similarly, yi;j and yp;q are independent for
all i, j, p, q except when i ¼ p and j ¼ q. This may be
expressed succinctly as

Eðxi;jxp;qÞ ¼ δipδjq;Eðyi;jyp;qÞ ¼ δipδjq;

Eðxi;jyp;qÞ ¼ 0: ðB32Þ

Using these identities, it is easy to show that the cova-
riances are given by the following integrals:

CovðAk; ArÞ ¼ 4πρDM

�
gaNN
TμHe

�
2X

i

Z
∞

0

dvfðvÞϵ2i ðvÞ

× v4½EikðvÞEirðvÞ þ FikðvÞFirðvÞ�; ðB33Þ

CovðAk; BrÞ ¼ 4πρDM

�
gaNN
TμHe

�
2X

i

Z
∞

0

dvfðvÞϵ2i ðvÞ

× v4½EikðvÞFirðvÞ − FikðvÞEirðvÞ�; ðB34Þ

CovðBk; ArÞ ¼ −CovðAk; BrÞ ¼ CovðAr; BkÞ;
CovðBk; BrÞ ¼ CovðAk; ArÞ; ðB35Þ

where we take the continuum limit by letting M → ∞ and
thus

P
Δv →

R
dv and vj → v, which implies that ωj≡

maþmav2j=2→ωðvÞ≡maþmav2=2 and Eijk → EikðvÞ,
Fijk → FikðvÞ, fj → fðvÞ, ϵi;j → ϵiðvÞ. Although closed-
form expressions for Eqs. (B33)–(B35) may not exist, they
can always be evaluated numerically.

4. Infinite-frequency resolution limit

In the limit that T → ∞, the integrands in Eqs. (B33) and
(B34) become increasingly oscillatory and difficult to
evaluate numerically, but thankfully, closed-form solutions
exist in that limit. To obtain those solutions, we note that in
the continuum limit and as T → ∞,

EikðvÞ ≈
π

ma

�
Ci cos θi
2νk;−1

δðv − νk;−1Þ

þ Ci cos θi
2νk;1

δðv − νk;1Þ þ
Di

νk;0
δðv − νk;0Þ

�
; ðB36Þ
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FikðvÞ ≈
πCi sin θi

2ma

�
δðv − νk;1Þ

νk;1
−
δðv − νk;−1Þ

νk;−1

�
; ðB37Þ

since limϵ→0 sinðz=ϵÞ=z ¼ πδðzÞ. Physically, νk;n is the
speed of an axion with mass ma oscillating at a frequency
ωk, as measured from the nth sideband with n ∈ f−1; 0; 1g,
and is given by Eq. (8). As explained in Sec. II, these
sidebands originate from sidereal modulation of the experi-
ment’s sensitive axis as Earth rotates about its axis.
Now we like to make use of the Dirac delta functions in

Eqs. (B36) and (B37) to obtain an analytical form of the
covariance matrix. However, the integrals in Eqs. (B33) and
(B34) contain factors like EikEir and EikFir, which means
that we end up with ill-defined terms containing two Dirac
delta functions. To avoid this, we first take the continuum
limit and integrate over v in Eqs. (B29) and (B30) before
computing the covariance matrix elements from Ak and Bk.
Although this approach avoids having to integrate over
a product of Dirac delta functions, one must take the
continuum limit carefully such that there is an integration
measure of Δv and not

ffiffiffiffiffiffi
Δv

p
. One way to do this is to note

that a velocity grid fvjg has a corresponding (angular)
frequency grid fωjjωj ¼ ma þmav2j=2g. The spacing of
this frequency grid is Δω ≈mavjΔv. If we choose this
spacing to be Δω ¼ 2π=T, then we have

1ffiffiffiffi
T

p ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mavj
2π

Δv
r

: ðB38Þ

Consequently, we may write the continuum limit of
Eqs. (B29) and (B30) as

Ak ¼ −
gaNN
μHe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maρDM

T

r X3
i¼1

Z
∞

0

dv
ffiffiffiffiffiffiffiffiffi
fðvÞ

p
ϵiðvÞv5=2

× ½EikðvÞxiðvÞ þ FikðvÞyiðvÞ�; ðB39Þ

Bk ¼ −
gaNN
μHe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maρDM

T

r X3
i¼1

Z
∞

0

dv
ffiffiffiffiffiffiffiffiffi
fðvÞ

p
ϵiðvÞv5=2

× ½FikðvÞxiðvÞ − EikðvÞyiðvÞ�: ðB40Þ

Substituting in the approximations Eqs. (B36) and (B37),
we obtain after integrating over v,

Ak ≈ −
πgaNN
maμHe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maρDM

T

r X3
i¼1

�
Ci cos θi

2
giðνk;−1Þxðνk;−1Þ

þ Ci cos θi
2

giðνk;1Þxðνk;1Þ þDigiðνk;0Þxðνk;0Þ

þ Ci sin θi
2

giðνk;1Þyðνk;1Þ

−
Ci sin θi

2
giðνk;−1Þyðνk;−1Þ

�
; ðB41Þ

Bk ≈ −
πgaNN
maμHe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maρDM

T

r X3
i¼1

�
−
Ci cos θi

2
giðνk;−1Þyðνk;−1Þ

−
Ci cos θi

2
giðνk;1Þyðνk;1Þ −Digiðνk;0Þyðνk;0Þ

þ Ci sin θi
2

giðνk;1Þxðνk;1Þ

−
Ci sin θi

2
giðνk;−1Þxðνk;−1Þ

�
; ðB42Þ

where for brevity we define

giðvÞ≡
ffiffiffiffiffiffiffiffiffi
fðvÞ

p
ϵiðvÞv3=2: ðB43Þ

The covariance matrix may now be computed by remem-
bering that xðνÞ and yðνÞ are independent standard normal
variables for all ν, while xðν1Þ is independent from xðν2Þ
for all ν1 ≠ ν2, and yðν1Þ is independent from yðν2Þ for all
ν1 ≠ ν2. More precisely, we have

Cov½xðν1Þxðν2Þ� ¼ δν1;ν2 ; Cov½yðν1Þyðν2Þ� ¼ δν1;ν2 ;

Cov½xðν1Þyðν2Þ� ¼ 0: ðB44Þ

Using these properties, the variance of Ak and Bk can be
computed to give

VarðAkÞ ¼ VarðBkÞ ¼
�
gaNN
μHe

�
2 πρDMΔf

fa

X3
i¼1

�
C2
i

4
g2i ðνk;−1Þ

þD2
i g

2
i ðνk;0Þ þ

C2
i

4
g2i ðνk;1Þ

�
; ðB45Þ

where we have Δf ≡ 1=T, and fa ¼ ma=ð2πÞ is the axion
mass frequency. Similarly, the covariance CovðAkArÞ and
CovðBkBrÞ for k ≠ r is

CovðAkArÞ ¼
�
gaNN
μHe

�
2 πρDMΔf

fa

X3
i¼1

�
χi;k;−1½νk;−1 ¼ νr;1�

þ
X0
m¼−1

ηi;k;m½νk;m ¼ νr;mþ1�

þ χi;k;1½νk;1 ¼ νr;−1�

þ
X1
m¼0

ηi;k;m½νk;m ¼ νr;m−1�
�

¼ CovðBkBrÞ; ðB46Þ

and CovðAkBrÞ for all k, r is

LABORATORY CONSTRAINTS ON THE NEUTRON-SPIN … PHYS. REV. X 13, 011050 (2023)

011050-21



CovðAkBrÞ ¼
�
gaNN
μHe

�
2 πρDMΔf

fa

X3
i¼1

�
ζi;k;−1½νk;−1 ¼ νr;1�

þ
X0
m¼−1

κi;k;m½νk;m ¼ νr;mþ1�

− ζi;k;1½νk;1 ¼ νr;−1�

−
X1
m¼0

κi;k;m½νk;m ¼ νr;m−1�
�
; ðB47Þ

where the square brackets ½…� above denote the Iverson
bracket, and we define

χi;k;m ≡ C2
i cos 2θi

4
g2i ðνk;mÞ; ðB48Þ

ηi;k;m ≡ CiDi cos θi
2

g2i ðνk;mÞ; ðB49Þ

ζi;k;m ≡ C2
i sin 2θi
4

g2i ðνk;mÞ; ðB50Þ

κi;k;m ≡ CiDi sin θi
2

g2i ðνk;mÞ: ðB51Þ

It is frequently useful to know the expected power
spectrum of the axion, which in the continuum limit is
defined as E½R2� ¼ E½A2ðωÞ þ B2ðωÞ�. In the limit of
infinite-frequency resolution, this can be, using techniques
similar to above, evaluated to give

E½R2ðωÞ� ¼ 2πρDMΔfg2aNN
faμ2He

×
X3
i¼1

�
C2
i ϵ

2
i (ν−1ðωÞ)f̃(ν−1ðωÞ)ν3−1ðωÞ

4

þD2
i ϵ

2
i (ν0ðωÞ)f̃(ν0ðωÞ)ν30ðωÞ

þ C2
i ϵ

2
i (ν1ðωÞ)f̃(ν1ðωÞ)ν31ðωÞ

4

�
; ðB52Þ

where

νnðωÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ω− ðmaþnωeÞ�

ma

s
; ω− ðmaþnωeÞ≥ 0;

0; ω− ðmaþnωeÞ< 0

ðB53Þ

for n ¼ −1, 0, 1 is the continuum version of Eq. (8), and

f̃ðvÞ≡ 1

ð2πσ2vÞ3=2
exp

�
−
v2 þ v2E
2σ2v

�
ðB54Þ

is the continuum version of Eq. (B13).

APPENDIX C: FREQUENCY GRID SPACING

We claim in Sec. II B that it is necessary in our formalism
to test for axions with a frequency grid of spacing appro-
ximately equal to Δfa=2 to correctly recover or set upper
limits on gaNN from an axion signal within our mass range
of interest. We now justify this claim below.
In Fig. 15(a), we show the recovered gaNN from

Monte Carlo datasets with injected axion signals of fre-
quency fa and varying gaNN. At each value of injected gaNN,
we test for an axion with mass f ≠ fa and attempt
to recover gaNN from 100 Monte Carlo datasets. Markers
denote the average gaNN recovered from all 100Monte Carlo
datasets,whilevertical lines give the standard deviationof the
recovered gaNN. We show the results when the test frequency
f is displaced from the actual axion frequency fa by Δfa=4
(blue) and Δf=4 (orange).
As the large standard deviation of the recovered best-fit

values of gaNN (orange triangle markers) in Fig. 15(a) show,

FIG. 15. (a) Signal injection and recovery plots for the case
when the test frequency f does not equal the true axion frequency
fa. The blue marker shows the case when f is a quarter of the
axion linewidth Δfa away from the true axion frequency, while
the orange marker shows the case when f is misaligned by a
quarter of the frequency grid spacing Δf. We present here for
Δfa ≪ Δf. (b) Frobenius norm of the difference between the test
covariance matrix Σf and the true axion covariance matrix Σfa .
The blue dashed vertical line corresponds to the legend of the
blue marker in (a) while the orange dash-dot vertical line
corresponds to the legend of the orange marker in (a).
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testing at the scale of the experimental resolutionΔf can lead
to wrong results even when the test frequency f is separated
from the true axion frequency fa by only a quarter of Δf if
the axion linewidth Δfa is sufficiently narrow compared to
the frequency grid spacing (Δf=Δfa ≈ 34 in Fig. 15). This is
because given a fixed frequency gridwith spacing defined by
the experimental frequency resolution, the expected power
(and correlation) spectrum on that grid from a true axion
signal changes smoothly as a function of the axion mass.
Consequently, if there is sufficient discrepancy between the
measured power (and correlation) spectrum coming from a
real axion at frequency fa compared to the expected power
(and correlation) spectrum coming from an axion at test
frequency f ≠ fa, the likelihood analysis will correctly
conclude that there is no axion at test frequency f. One
way to visualize this is to plot, as in Fig. 15(b), the Frobenius
norm of the difference between the correlation matrix Σf of
an axion at test frequency f and the correlation matrix Σfa
from the actual axion at frequency fa (with both matrices
defined on the same frequency grid and using the same value
of gaNN). As the orange dash-dot line in Fig. 15(b) shows, the
test frequency f differs from fa by onlyΔf=4 (upper x axis),
but it differs from fa by approximately 8Δfa (bottom x axis),
and the Frobenius norm of the difference in the correlation
matrices is about 40 nT2, which is sufficient for the like-
lihood analysis to conclude that there is no axion at test
frequency f as seen by the diverging orange standard
deviations of the recovered best-fit gaNN in Fig. 15(a).
On the other hand, for a sufficiently small separation

between f and fa such that the difference between their
respective correlation matrices is nearly zero, we expect that
the likelihood analysiswill be unable to differentiate between
the two and will therefore recover gaNN from an axion at
frequency fa as though it were at test frequency f. This is
demonstrated by the blue circular markers in Fig. 15(a),
which shows the likelihood analysis recovering the injected
gaNN from an actual axion at frequency fa, while testing at
frequencyfwhenf − fa ¼ Δfa=4 is sufficiently small such
that the Frobenius norm of the difference in their correlation
matrices is almost zero [see blue dashed line inFig. 15(b)]. To
put it another way, axionmasses need to be tested at intervals
of around Δfa=2 so that if there were an axion signal, the
farthest test frequency would be about Δfa=4 away, and the
analysis would correctly recover gaNN from a real signal.
Monte Carlo simulations across the frequency range of our
analysis from0.01 to 10Hz indicates that a spacing ofΔfa=2
is adequate in that it recovers, within 1 standard deviation
(taken over the ensemble of Monte Carlo simulations), the
correct injected gaNN value.
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