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Quantum coherences characterize the ability of particles to quantum mechanically interfere within some
given distances. In the context of noisy many-body quantum systems, these coherences can fluctuate. A
simple toy model to study such fluctuations in an out-of-equilibrium setting is the open quantum symmetric
simple exclusion process (Q-SSEP), which describes spinless fermions in one dimension hopping to
neighboring sites with random amplitudes coupled between two reservoirs. Here, we show that the
dynamics of fluctuations of coherences in Q-SSEP have a natural interpretation as free cumulants, a
concept from free probability theory. Based on this insight, we provide heuristic arguments as to why we
expect free probability theory to be an appropriate framework to describe coherent fluctuations in generic
mesoscopic systems where the noise emerges from a coarse-grained description. In the case of Q-SSEP, we
show how the link to free probability theory can be used to derive the time evolution of connected
fluctuations of coherences as well as a simple steady-state solution.
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I. INTRODUCTION

From the point of view of statistical physics, a system is
completely characterized if the probability of all possible
microscopic configurations is known. From this knowledge,
one can obtain the probability distribution ofmacroscopic (or
thermodynamic) variables such as the density or the current
profile, which are, in principle, experimentally observable. In
an equilibrium situation, where the probability distribution
on microscopic configurations has been well known since
Boltzmann, macroscopic variables satisfy a large deviation
principle: They are strongly peaked at their mean value,
around which their probability distribution decays exponen-
tially with the number of particles in the system, proportional
to the appropriate thermodynamic potential (e.g., the entropy
or the free energy); see, e.g., Ref. [1].
In contrast to this, out-of-equilibrium situations might

depend on a large variety of system-dependent details, and
there are no general formulas for the probability distribu-
tion on microscopic configurations. Nevertheless, over the
course of the last 30 years, a lot of progress has been made

to understand the statistics of macroscopic variables in out-
of-equilibrium systems, which show rich and new features.
For example, density correlations in nonequilibrium steady
states extend to macroscopic distances, as has been
experimentally observed by Dorfmann [2]. Furthermore,
fluctuation relations that go beyond the linear response
regime have been shown to be generically applicable
to out-of-equilibrium systems [3,4]. In addition, the large
deviation principle introduced above in the equilibrium
context has been realized to hold also in the nonequilibrium
setting—with the need to formulate appropriate out-of-
equilibrium thermodynamic potentials; see, e.g., Ref. [5].
For classical systems, these efforts have culminated in

the formulation of the so-called macroscopic fluctuation
theory (MFT) [6,7], which applies to systems with diffusive
transport. Usually the system is maintained out of equi-
librium by coupling the boundaries to reservoirs at different
chemical potentials. MFT allows one to specify the prob-
ability distribution of the density and current profile in such
systems, and remarkably, this relies on only two system-
dependent quantities—the diffusion constant and the
mobility. The development of MFT has been strongly
inspired by the study of microscopic toy models, more
precisely, stochastic lattice gases, which revealed universal
properties in the density and current fluctuations in the
sense that they did not depend on the precise underlying
microscopic dynamics. Avery important role in this context
has been played by the symmetric and asymmetric simple
exclusion processes (SSEP and ASEP) since these toy
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models are exactly solvable [8–11] (for a review, see
Refs. [5,12]).
The major question we are concerned with is whether

MFT can be extended to a quantum setting [13]. Such a
theory, which could be called the quantum mesoscopic
fluctuation theory, should not only describe the statistical
properties of the diffusive transport (i.e., density and
current profiles) in out-of-equilibrium quantum systems
but also those of quantum coherent effects such as
interference or entanglement. These effects are inscribed
into the coherences Gij ¼ Trðρc†i cjÞ, the off-diagonal
elements of the density matrix ρ when expressed in the
particle number basis on each site i; j ¼ 1;…; L. A big
difference from classical noisy systems (such as SSEP) is
that the density matrix in a noisy quantum system—usually
interpreted as the probability distribution of quantum states
—is itself a dynamical variable that fluctuates. A quantity
sensible to these fluctuations is the entanglement entropy
since it is composed of partial traces of powers of ρ.
Fluctuations of the entanglement entropy have already been
studied in the context of unitary random circuits [14,15]
(see Refs. [16,17] for a review), as well as certain toy
models of driven diffusive systems [18]. In seeking a
mesoscopic fluctuation theory, we hope to establish a
general framework to deal with coherent effects in diffusive
systems, based on coherences Gij.
The picture (see Fig. 1) we have in mind is that such a

quantum extension of MFT should apply to mesoscopic
systems, i.e., to systems in which the system size L is of the
order of the coherence length Lϕ of the dynamical degrees
of freedom (e.g., for electrons in a disordered metal of size
Lϕ ≈ 1 μm [19]). Another important length scale is the
mean free path l, below which transport is ballistic and the
microscopic degrees of freedom change very rapidly with
time. After an average over the microscopic degrees of
freedom inside ballistic cells of the size of the mean free
paths l, we expect that the system has a coarse-grained
description in terms of a stochastic and unitary process.
These ballistic cells should be assumed to be thermody-
namically large but small compared to the system size, 1 ≪
l ≪ L (we identify the physical length with the number of
lattice sites by setting the lattice constant to 1, auv ¼ 1). At
lengths above l, we expect diffusive transport, and at

lengths below Lϕ, we observe quantum mechanical inter-
ference. This is the mesoscopic regime we are interested in.
The decomposition of a many-body quantum system into

thermodynamically large cells finds many examples in the
literature. Notably, it appears as the main feature of
generalized hydrodynamics (GHD), which has allowed
one to study out-of-equilibrium dynamics in integrable
systems [20,21] (see Refs. [22,23] for a review). Since this
theory treats the system as a composition of many thermo-
dynamically large fluid cells that are locally in equilibrium
with respect to a generalized Gibbs ensemble, it loses the
statistical properties of quantum correlations between the
fluid cells. Note that an approach to restore these quantum
correlations in GHD has recently been proposed in
Ref. [24]. Furthermore, GHD is mostly concerned with
ballistic transport due to the integrable nature of the
systems to which it applies. Therefore, it does not seem
to be a good candidate for a quantum version of MFT.
A toy model that allows one to study fluctuations in the

mesoscopic regime is the quantum symmetric simple
exclusion process (Q-SSEP) [25–30]. It describes the noisy
and coherent hopping of spinless fermions on a one-
dimensional and discrete lattice chain, which is maintained
out of equilibrium by two particle reservoirs at different
chemical potentials. While a simple average over the noise
completely destroys coherent effects and reduces the model
to the classical SSEP, the fluctuations of coherent effects
survive in the nonequilibrium steady state [27], although
they are subleading in the system size. In this sense, the
Q-SSEP describes mesoscopic transport. Furthermore,
fluctuations of coherences satisfy a large deviation princi-
ple, in analogy to macroscopic variables in MFT. This can
be seen as the first evidence that the fluctuations in Q-SSEP
show universal properties that might apply to a larger class
of mesoscopic systems. From this point of view, a single
lattice site in Q-SSEP would correspond to a ballistic cell of
the coarse-grained mesoscopic system.
In this paper, we show that the mathematical structure of

Q-SSEP can be described within the framework of free
probability theory, an extension of classical probability
theory to noncommutative random variables pioneered by
Voiculescu in the 1990s [31]. More precisely, connected
fluctuations of coherences in Q-SSEP correspond to free
cumulants, which generalize the notion of cumulants from
classical probability. Free cumulants have a combinatorial
nature and can be obtained from the moments of a random
variable as a sum over noncrossing partitions. This is a
structure of which we make repeated use in this paper:
First, it allows us to derive the time evolution of connected
fluctuations in Q-SSEP in a diffusive scaling limit (for the
closed Q-SSEP, i.e., without boundaries, this scaling limit
has been discussed in Ref. [30]). Secondly, it also allows us
to find a simple derivation for the steady-state solution of
the fluctuations of coherences. The connection between
free probability and the steady-state solution of Q-SSEP

FIG. 1. Schematic representation of a mesoscopic system
coupled to two reservoirs of different chemical potentials μa
and μb. Here, l denotes the ballistic length, above which the
transport is diffusive, and Lϕ is the coherence length, below
which interference effects can be observed.
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has already been observed by the Biane [32]. Here, we
generalize his result to all times 0 < t < ∞ and give a more
physical explanation for why free probability arises in our
context. In particular, we are able to extend this argument to
generic mesoscopic systems, which implies that free
probability could be the natural mathematical framework
to characterize fluctuations in such systems.
This is the main point of the paper: Tools from free

probability might play a significant role in understanding
fluctuating many-body quantum systems in the mesoscopic
regime, both in and out of equilibrium.
Indeed, free probability theory finds an explicit reali-

zation of its concepts through large random matrices
[33–35]. For a generic mesoscopic system, the coarse-
grained view of Fig. 1 in terms of ballistic cells, which
undergo a very rapid (unitary) evolution—much faster
than the system’s evolution as a whole—can be modeled
by large random matrices whose size scales with l and
whose distribution is invariant under the rapid evolution
of the ballistic cell, i.e., by the same unitary group (for
the moment, we leave open the question of which
degrees of freedom inside the ballistic cells are modeled
precisely). Insofar, it is not surprising that fluctuations on
mesoscopic scales, i.e., between ballistic cells, show
signs of free probability. We believe that their origin
simply lies in a coarse-grained description of microscopic
spatial scales and unitary invariance at these scales.
Further evidence for this interpretation is provided by
the recent observation of free probability in the context of
ETH, where instead of spatial scales the coarse graining
is over small energy scales [36] (submitted simul-
taneously with our work).
The structure of the paper is as follows. Section II

provides heuristic arguments that show why the fluctua-
tions of spatial coherences in generic mesoscopic systems
could be appropriately described within free probability
theory. In Sec. III, we give a small introduction to the
subject of free probability and, in particular, explain
the relevance of crossing and noncrossing partitions.
Section IV deals with the toy model Q-SSEP. In
Sec. IV B, we recall the main properties of Q-SSEP.
Sections IV C and IV D are concerned with the formu-
lation of the dynamical equations of the correlation
functions of the open Q-SSEP in the diffusive scaling
limit. Finally, Sec. IV E explains how to identify free
cumulants within Q-SSEP, and Sec. IV F explains how
the relation to free cumulants can be used to find a
simple steady-state solution. Details and proofs are given
in a few appendixes. In particular, Appendixes E 1 and E 2
constitute the major derivations of the free probability
structure in Q-SSEP.

II. GENERAL PICTURE

We expect that there is a very general relationship
between coherent fluctuations in diffusive one-dimensional

fermionic systems in the mesoscopic regime and the
mathematical framework of free probability. The aim of
this section is to convey an intuition for this claim, not
to give complete proofs. We stress that the actual
chronological order of our work is the opposite. First,
it is observed that the mathematical structure of the toy
model Q-SSEP has a relation to free probability. Then,
we realize that one can reduce this relation to three
simple conditions that apply to generic mesoscopic
systems.
Before stating these conditions, some explanation is

necessary. In the spirit of Fig. 1, we need to assume that
the system exhibits a separation of timescales responsible
for fast ballistic transport on scales of the mean free path
l (inside ballistic cells) versus slow diffusive transport on
scales of the system size L. In a coarse-grained descrip-
tion of the slow degrees of freedom, the fast ones will act
as a source of noise. Therefore, mesoscopic observables
become random variables with a (yet to be defined)
expectation value Et. If such observables do not depend
on long-range coherences, such as the local particle
number n̂i ≔ c†i ci (c†i is a fermionic creation operator
on site i ¼ 1;…; L) or the associated particle current,
then we assume that they are well described by classical
MFT, with the replacement Et½Trðρ•Þ� ¼ h•iMFT

t . In con-
trast, we are interested in the statistical properties of
coherences,

GijðtÞ ¼ Trðρtc†i cjÞ;

purely quantum mechanical properties without a classical
analogue—and, therefore, outside the scope of classical
MFT. In Appendix A, we outline a procedure for how
one could, in principle, experimentally measure Gij,
following an idea in Ref. [18].
The three conditions sufficient for the link with free

probability concern the statistical properties of coherences
with respect to the noise expectation value Et in the limit
1 ≪ l ≪ L. Here, we adopt the view that Gij is a random
variable with a time-dependent probability distribution,
hence the subscript t.
(1) Local Uð1Þ invariance: The expectation value is

invariant under Gij → e−iθiGijeiθj, which is a
multiplication with local phases. In other words,
unless fi1;…; ing is a permutation of fjn;…; ing,
we have

Et½Gi1j1…Ginjn � ¼ 0: ð1Þ

(2) Expectation values of “loops” with distinct indices,
ik ≠ il; ∀ k ≠ l ∈ f1;…; ng, scale as

Et½Gi1i2Gi2i3…Gini1 � ∼ L−nþ1: ð2Þ
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(3) Expectation values of products of loops factorize as

Et½Gi1i2…Gimi1Gj1j2…Gjnj1 �
¼ Et½Gi1i2…Gimi1 �Et½Gj1j2…Gjnj1 � ð3Þ

at leading order. This holds, in particular, if i1 ¼ j1.
We speak about loops because we can associate diagrams

with the expectation values of the various products of Gij
by connecting nodes i and j by a directed edge. The
diagram associated with Eq. (2) is indeed a loop,

In fact, the local Uð1Þ invariance implies that a diagram
built in this way is nonzero only if at each node the number
of incoming edges is equal to the number of outgoing
edges.
For later use, we note that the factorization in Eq. (3) also

implies that connected expectation values scale as

Et½Gi1i2Gi2i3…Gini1 �c ¼ OðL−nþ1Þ ð4Þ

even if indices become equal. If, for example, i1 ¼ ik and
no other indices coincide, then Et½Gi1i2…Gini1 � factorizes
into Et½Gi1i2…Gik−1i1 �Et½Gi1ikþ1

…Gini1 � at leading order.
This product of loop expectation values scales as
L−ðk−1Þþ1L−ðn−kþ1Þ−1 ¼ L−nþ2. The connected expectation
value is constructed precisely by subtracting this product of
expectation values from Et½Gi1i2…Gini1 �. What remains
must then scale at least 1 order of magnitude lower in
L. This explains Eq. (4). The same argument also shows
why the connected expectation value of an arbitrary product
of loops can never become more dominant in L than the
connected expectation value of single loops of the same
length.
As an example, consider loops of two points for which

Eq. (2) implies E½GijGji� ∼ 1=L if i ≠ j while Eq. (3)
implies E½G2

ii� ∼ E½Gii�2 where E½Gii� ¼ Oð1Þ. Therefore,
E½GijGji�c ≔ E½GijGji� − δijE½Gii�2 scales at most with
1=L for any choice of i and j, which nicely illustrates
that a loop’s expectation values jump by an order of L if
indices become equal while its connected part does not.
The following subsection gives a definition of the noise

average Et and shows how to derive the three conditions
from this definition. Section II B shows how the three
conditions imply that fluctuations of coherences are in
relation with free cumulants from the theory of free
probability.

A. Fluctuations in mesoscopic systems

We consider a one-dimensional system of spinless
interacting fermions without noise on L discrete lattice
sites described by a density matrix ρ, see Fig. 2. In order to
talk about transport, the system is required to have a locally
conserved charge that can be transported. In the continuous
description of the system, this is the density of particles
nðx; tÞ; it satisfies a local conservation law, the continuity
equation ∂tnþ ∂xj ¼ 0. For the following discussion, it is
not important if the system is open or closed.
The separation of timescales between fast and slow

degrees of freedom ensures that ballistic cells do not
exchange particles with each other during times smaller
than the typical timescale tl of ballistic cells. In other
words, for t < tl, each ballistic cell evolves as a “closed”
system, and its dynamics is described by unitary and
particle-preserving transformations, ρ→UðiÞρUðiÞ†. Here,
UðiÞ acts only on the Hilbert space HðiÞ ≡ Cð2lÞ of the cell
around i. Particle preservation means that

½UðiÞ; NðiÞ� ¼ 0; ð5Þ

where NðiÞ ¼ P
i0∼i n̂i0 is the total number operator in the

cell around site i. The sum carries over all sites i0 within
distance l=2 from i. As a consequence, UðiÞ decomposes
into subspaces Λp (pth exterior product of Cl) of dimen-
sion ðlpÞ where the number of fermions is fixed to p. In

other words, UðiÞ consists of blocks UðiÞ
p on the diagonal.

To construct the average over ballistic cells, we make the
ergodic hypothesis that within a time interval tl, the
ballistic cell has undergone all possible unitary and
particle-preserving transformations. Then, time averages
over intervals tl can be replaced by a uniform Haar average
½…�U over such unitaries U that only mix degrees of
freedom within a cell but not between cells.
The idea that fluctuations of a chaotic quantum-many-

body system can be characterized through a definition of
ergodicity by unitary invariance has already been put
forward [37]. The consequences of restricting such a global
unitary invariance to local sectors of fixed energy has been
explored in Refs. [38,39] (the latter in the context of ETH,
though both discuss very similar topics). Here, we use
similar ideas, but instead of local in energy, we restrict the
unitary invariance to be local in space, i.e., to unitary
invariance within ballistic cells.
If the separation of two sites i and j is larger than l, then

the average over the corresponding ballistic cells is inde-
pendent, i.e.,U ¼ UðiÞUðjÞ, whereUðiÞ andUðjÞ act only on
the cells around i and j, respectively. Otherwise, if i and j
are in the same cell (but not necessarily equal), we assume
that they interact via the same Haar-distributed unitary
UðiÞ ¼ UðjÞ. With this convention, we define the expect-
ation value of coherences to be
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Et½Gij� ≔
1

tl

Z
tþtl

t
Gijðt0Þdt0 ¼ Trðρt½c†i cj�UÞ; ð6Þ

where

½c†i cj�U ≔
Z

dμðUÞU†c†i cjU ð7Þ

denotes the Haar average. Note that by the cyclic property
of the trace, we could also choose to average ρt instead of
c†i cj, which makes it clear that the average carries over all
possible evolutions of the cell.
The time average over tl promotes GijðtÞ to a random

variable that is only sensitive to the long (with respect to tl)
time behavior of the system. Therefore, we also expect that
the right-hand side will not depend on the time at which ρt0
is evaluated, as long as t0 ∈ ½t; tþ tl�. Here, we choose to
evaluate at time t.
For quadratic fluctuations, this process generalizes to

Et½GijGkl� ≔
1

tl

Z
tþtl

t
Gijðt0ÞGklðt0Þdt0

¼ Trðρt ⊗ ρt · ½c†i cj ⊗ c†kcl�U⊗UÞ ð8Þ

and similarly for higher-order fluctuations.

1. Uð1Þ invariance
The averages appearing in Eqs. (6) and (8) are invariant

under unitary transformations of ballistic cells by con-
struction. For example, we are interested in an average such
as ½c†i ⊗ ci�U⊗U, and unitary invariance means

½c†i ⊗ ci�U⊗U ¼VðiÞ ⊗VðiÞ½c†i ⊗ ci�U⊗UV
ðiÞ†⊗VðiÞ†; ð9Þ

where VðiÞ can be any particle-preserving unitary on the cell
around i. In particular, we can choose this VðiÞ to belong to
the subgroup of local Uð1Þ transformations on each site,
V ¼ expðPi θin̂iÞ, which are generated by the particle
number operator n̂i ¼ c†i ci. The creation and annihilation
operators c†i and ci carry the charges þ1 and −1 with
respect to this Uð1Þ transformation. In other words,
½n̂i; c†i � ¼ c†i and ½n̂i; ci� ¼ −ci. Then, it is easy to see that
any combination of operators inside an average ½� � ��U⊗���

must be composed of an equal number of c†i ’s and ci’s in
order for the total charge to add up to zero—and, as a
consequence, to be invariant under the subgroup of local
Uð1Þ transformations. But this is exactly the same as what
we claim in Eq. (1). For example, Eq. (8) is nonzero only if
i ¼ l and j ¼ k.
Evaluating averages such as Eq. (8) can be done using

Schur’s Lemma, but this does not add a new physical
insight to the picture. If we restrict ourselves to the one-
particle sector, however, one can learn that the local unitary
average is equal to a homogeneous sum of Gij ’s over all

sites in the cells. This case is shown explicitly in the
remainder of this subsection. The discussion can be skipped
without having an impact on the comprehension of the
following.
Unitaries in the one-particle sector are of the form

UðiÞ ¼ expðcðiÞ†MðiÞcðiÞÞ; ð10Þ
where cðiÞ ¼ ðci−l=2;…; ciþl=2Þ comprises all fermionic
annihilation operators inside the cell around i, and MðiÞ
is an anti-Hermitian l × l matrix. Using the identity
e−c

†Mcciec
†Mc¼P

jðeMÞijcj, where c ¼ ðc1;…; cLÞ, and
the definition U ¼ ec

†Mc, where the L × L matrix M is
composed of the blocks MðiÞ and MðjÞ on the diagonal at
positions i and j, and zeros otherwise, we obtain

TrðρtU†c†i cjUÞ ¼ (uGðtÞu†)ij: ð11Þ

Here, u ≔ eM
� ¼ diagð1; uðiÞ; 1; uðjÞ; 1Þ is a block-diagonal

matrix with two unitary blocks uðiÞ ¼eM
ðiÞ�

and uðjÞ ¼ eM
ðjÞ�

at positions i and j over which the Haar average can be
taken [40]. For example, evaluating Eq. (6) using Eq. (11),

Et½Gij� ¼
X
i0∼i
j0∼j

½uðiÞii0 Gi0j0u
ðjÞ
jj0

��

¼
� 1

l

P
i0 Gi0i0 if j ¼ i

0 otherwise;
ð12Þ

where the sums carry over all i0 and j0 in the cells around i
and j. Note that although expressed through Gi0i0 , the right-
hand side becomes nonrandom as a result of the law of
large numbers. Evaluating Eq. (8), using appropriate Haar
averages, for any choice of i and j, up to corrections in 1=l,
one finds

Et½GijGji� ¼
1

l2

X
i0∼i
j0∼j

Gi0j0Gj0i0 þ δij

�
1

l

X
i0∼i

Gi0i0

�
2

: ð13Þ

2. Scaling with system size

The scaling of loop expectation values in Eq. (2) with
system size L can be derived from the assumption that

FIG. 2. Cells around sites i and j in the mesoscopic system
corresponding to single sites in the coarse-grained description.
The toy model Q-SSEP seems to be a good candidate for such a
coarse-grained description. Noise emerges by averaging the
mesoscopic system over all unitary transformations that only
act on the individual cells, and it conserves the number of
particles inside each cell.
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the system satisfies the classical macroscopic fluctuation
theory (MFT). In particular, the particle density ni
at site i satisfies a large deviation principle,
Probðn1;…; nLÞ ∼ e−LF ðn1;…;nLÞ, where F is the so-called
quasipotential [7]. For a system in equilibrium with a heat
bath, F would be the difference in free energy between the
density profile fn1;…; nLg in question and the equilibrium
density profile. One of the great insights of MFT is that the
large deviation principle also extends out-of-equilibrium
systems if they are diffusive.
Denoting the noise average at time t within classical

MFT by h� � �it, the large deviation principle implies that
connected density correlations scale as

hni1 � � � ninict ∼ L−nþ1; ð14Þ

where all indices are different.
In the quantum description, we replace ni → n̂i ¼ c†i ci

and h� � �it → E½Trðρt � � �Þ� such that

hni1 � � � ninit ¼ E½Trðρtc†i1ci1 � � � c†incinÞ�; ð15Þ

where E is the average over the ballistic cells introduced
above. If we assume the Hamiltonian to be of the form
H ¼ H0 þ V, where H0 is quadratic, and furthermore
initialize the system in a Gaussian state of the form ρ0 ¼
ð1=Z0Þec†Mc with Z0 ¼ Trðc†McÞ, then we can apply
perturbation theory to decompose Eq. (15) into a sum of
Feynman diagrams.
More precisely, we employ the interaction picture where

one divides the full time evolution Ut ¼ WtU
ð0Þ
t into a

quadratic evolutionUð0Þ
t ¼ e−iH0t, followed by an evolution

with the time-ordered exponential

Wt ¼ T exp

�
−i

Z
t

0

dt0VIðt0Þ
�
;

where VIðtÞ ¼ Uð0Þ
t VUð0Þ

t
†. The density matrix at time t is

ρt ¼ Utρ0U
†
t ¼ Wtρ

ð0Þ
t W†

t ;

where ρð0Þt ¼ Uð0Þ
t ρ0U

ð0Þ
t

† preserves its Gaussian form.
Now, Eq. (15) becomes

Trðρð0Þt W†
t c

†
i1
ci1 � � � c†incinWtÞ; ð16Þ

which can be expanded using Wick’s theorem, and
the resulting contractions can be denoted by Feynman
diagrams.

For n ¼ 2, we obtain

ð17Þ

where the first diagram is the one-particle irreducible
scattering of two fermions created and annihilated at sites
i and j, the second diagram is the multiplication of two
propagators (Green’s functions) between sites i and j [i.e.,
GijGji ¼ Trðρtc†i cjÞTrðρtc†jciÞ], and the last diagram is the
amplitude on the sites i and j (i.e., the multiplication of the
densities GiiGjj).
When taking the expectation value E, these three dia-

grams should be equal to the corresponding value within
MFT,

hninjit ¼ hninjict þ hniithnjit: ð18Þ

Since the second term hniithnjit ¼ Et½Gii�Et½Gjj� (to lead-
ing order) is equal to the third diagram, the first term
hninjict ∼ L−1 must equal the first plus the second diagram
in Eq. (17). If we assume that the expectation value E of
these two diagrams has the same scaling with L, we can
conclude that the expectation value of the second diagram
satisfies the scaling we claimed in the beginning of the
section, that is, E½GijGji� ∼ L−1. This argument can be
repeated for any n in a similar fashion if one assumes that
the expectation value of one-particle irreducible diagrams
with more legs has the same scaling as the expectation
values of the multiplication of several crossing propagators.
We admit that this assumption is a weak point in our
argument, and one should start here if one is interested in
understanding for which class of Hamiltonians this general
picture applies. In particular, our argument would not apply
if perturbation theory breaks down, signaling a possible
phase transition, or in the presence of elementary excitation
of a nonperturbative nature.

3. Factorization of products of loops

The factorization in Eq. (3) for the case i1 ≠ j1 is trivial
because the average Et treats each ballistic cell independ-
ently by construction. We still need to treat the case i1 ¼ j1.
We illustrate this case by an example at two loops.
Assuming the scaling from the last section, Eq. (13)

reveals that for i ¼ j, the leading contribution comes from
the second term, which is Oð1Þ, while the first term is
Oð1=LÞ [41]. In other words, to leading order, and
restricted to the one-particle sector, we have
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Et½G2
ii� ¼

�
1

l

X
i0∼i

Gi0i0

�
2

¼ Et½Gii�2: ð19Þ

In the last equality, we used Eq. (12). This calculation
shows that for the given example, the expectation value of
products of loops (here, G2

ii) is indeed proportional to the
product of the expectation values of loops (here, single
loops Gii) at leading order. Using Schur’s Lemma, one
can show that this statement remains true at all particle
sectors and for higher-order fluctuations, thereby confirm-
ing Eq. (3).

B. Link with free probability

The link with free probability occurs when expressing
loop expectation values E½Gi1i2…Gini1 � in terms of their
connected parts. We find that this expansion involves a sum
over noncrossing partitions only—see Eq. (31). Such
noncrossing partitions are at the heart of a mathematical
theory of noncommuting random variables that is called
free probability theory; it is introduced in the next section.
By means of noncrossing partitions, one can define so-
called free cumulants, which will arise naturally in our
setting.
As an intermediate step and as usual in random matrix

theory, we consider the measure of G, the matrix of
coherences Gij, defined by the expectation value of its
traces,

ϕðGnÞ ≔ 1

L
E½TrðGnÞ� ¼ 1

L

X
i1;…;in

E½Gi1i2 � � �Gini1 �: ð20Þ

Here, we dropped the subscript t of the measure Et for
simplicity. Whenever two indices ik in the above sum are
equal, the expectation value factorizes according to Eq. (3).
We therefore split this sum into sums where all indices are
distinct—except for a given set of indices that are forced to
be equal,

X
i1;…;in

¼
X
i1 ;…;in
distinct

þ
X

i1¼i2 ;i3 ���;in
distinct

þ � � � þ
X

i1¼i2¼���¼in

ð21Þ

Such a splitting can be understood as a sum over partitions
π ∈ PðnÞ of the set f1;…; ng into blocks b ∈ π that group
together all the indices ik that are forced to be equal. For
example, the partitions corresponding to the three terms
above are π ¼ ff1g;…; fngg, π ¼ ff1; 2g; f3g;…; fngg,
and π ¼ ff1; 2;…; ngg. The sum becomes

X
i1;…;in

¼
X

π∈PðnÞ

X
i1 ;…;in distinct;

except ik¼il whenever k;l
are in the same block of π

: ð22Þ

For n ¼ 4, two possible partitions are

ð23Þ

and

ð24Þ

Representing partitions by diagrams where nodes in the
same block are connected by dashed lines very intuitively
shows that π2 is a crossing partition while π1 is non-
crossing. It turns out that in the sum in Eq. (20), terms
corresponding to crossing partitions are of the order of 1=L
and lower and therefore vanish for L → ∞, while all
noncrossing partitions are of order one. Here, we illustrate
this fact for n ¼ 4 and the two examples above. The term
corresponding to π1 factorizes and becomes

1

L

X
i1¼i3 ;i2 ;i4

distinct

E½Gi1i2Gi2i1 �E½Gi3i4Gi4i3 � ¼ Oð1Þ: ð25Þ

Each of the two-loop expectation values scales as 1=L, and
each term in the sum is of order 1=L3. Since the sum carries
over three indices running from 1 to L, this cancels, and the
resulting scaling is of order one.
In contrast, the term corresponding to π2 can factorize in

two different ways, and it becomes

1

L

X
i1 ;i2
distinct

2E½Gi1i2Gi2i1 �2 ¼ Oð1=LÞ: ð26Þ

The difference from π1 is that now there are only two
indices to sum over, and hence the scaling is of order 1=L.
For the surviving noncrossing partitions, one can ask

how the partition that determines which indices ik are equal
is related to the product of loop expectation values of Gij ’s
that appears after the factorization. If we modify Eq. (23)
by connecting as many edges by solid lines as possible
without crossing a dashed line, i.e.,

ð27Þ

we see that, for the partition π1, this product of loop
expectation values, i.e., E½Gi1i2Gi2i1 �E½Gi3i4Gi4i3 �, is
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determined by the solid lines. In fact, for every noncrossing
partition π of nodes, the solid lines define a unique
noncrossing partition π� of edges, the dual partition (also
called Kreweras complement). If we label an edge by the
adjacent node with the lower number, we have, for
example, π�1 ¼ ff1; 2g; f3; 4gg. Each block therein corre-
sponds to a loop ofGij ’s. In this terminology, the expansion
of ϕðGnÞ in Eq. (20) becomes

1

L

X
π∈NCðnÞ

X
i1 ;…;in
distinct;

except ik¼il
if k;l∈b for b∈π

Y
b∈π�

E½Gibð1Þibð2Þ…GibðjbjÞibð1Þ �; ð28Þ

where NCðnÞ denotes all noncrossing partitions of the set
f1;…; ng.
Instead of using this slightly awkward sum over indices

ik, we introduce a modified Kronecker delta

δπ ≡ δπði1;…; inÞ ¼
Y
b∈π

δibð1Þ;…;ibðjbjÞ ; ð29Þ

which sets all indices equal that belong to the same block in
π. Next, we extend the sum to include the cases in which
indices ik can become equal by replacing E½� � �� with
E½� � ��c. This introduces only a subleading error of order
1=L because Eq. (4) ensures that connected expectation
values do not become more dominant when some indices
are equal.
Then, the expansion of ϕðGnÞ in Eq. (20) reads

1

L

X
π∈NCðnÞ

X
i1;…;in

δπ
Y
b∈π�

E½Gibð1Þibð2Þ…GibðjbjÞibð1Þ �c: ð30Þ

In free probability, ϕ corresponds to the “expectation”
value of the random matrix G, and we show that the
moments ofG have a natural expansion in terms of a sum of
noncrossing partitions. The terms in this sum are usually
called free cumulants. However, comparing to the defini-
tion of free cumulants in Eq. (38) in the next section, one
sees that the expansion above has a slightly different form
due to the additional δπ . This issue is further discussed in
Sec. IV F.
To conclude the argument, note that we could perform

the whole derivation multiplying E½Gi1i2 � � �Gini1 � in
Eq. (20) with a smooth test function hi1;…;in that would
again appear in Eq. (30). By comparing the two equations,
we would find that

E½Gi1i2…Gini1 �
¼

X
π∈NCðnÞ

δπ�ði1;…; inÞ
Y
b∈π

E½Gibð1Þibð2Þ…GibðjbjÞibð1Þ �c; ð31Þ

an equation we will reuse in Sec. IV. Here, we interchange
the role of π and π�, which is possible because, for

noncrossing partitions, they are in one-to-one correspon-
dence. A full proof of this formula for any n is given in
Appendix E 1.

C. Analogy with ETH

Recently, it has been observed in Ref. [36] that there is a
very similar link to free probability in the context of the
eigenstate thermalization hypothesis (ETH). Indeed, on the
mathematical level, fluctuations of spatial coherences Gij
in one-dimensional mesoscopic systems seem to behave in
complete analogy to matrix elements Aij ¼ hEijAjEji of a
local observable A expressed in the energy eigenbasis jEii
of a Hamiltonian H in a closed system that obeys the ETH.
In the context of the ETH, Aij is a random variable with
respect to a fictitious ETH-random-matrix ensemble that
captures its typical behavior.
Comparing to Ref. [39], which discusses higher-order

fluctuations of Aij within the ETH, one realizes that the
reasons for the emergence of the three properties (1)–(3) are
analogous. In the ETH, they are the result of an average
over small energy windows. In our context, they are the
result of an average over small space windows, which we
call ballistic cells. To complete the analogy, loop expect-
ation values of Aij in the ETH scale with the density of
states eSðEþÞ at energy Eþ ¼ 1

2
ðEi þ EjÞ. In our context,

this corresponds to the “density of states” at sites i and j,
which is just a constant equal to the number of sites L
(because the physical length of our system is set to 1, for
simplicity).

III. INTRODUCTION TO FREE PROBABILITY

In classical probability, two variables are independent if
(and only if) their moments factorize at all orders,
E½XnYm� ¼ E½Xn�E½Ym� for all n;m ∈ N. One can therefore
determine joint moments of any product of independent
variables knowing only the moments of the individual
independent variables. If instead X and Y are random
matrices with independent entries, then it is less clear how
we would achieve the factorization of, say, E½XYXY� into
the moments of the independent variables E½X2� and E½Y2�,
on the level of matrices, since they do not commute, in
general.
Free probability theory solves this issue by proposing an

extension of the notion of independence for noncommu-
tative random variables, called freeness. Free variables are
not only required to be independent in the probabilistic
sense but also to be algebraically independent in the sense
that there are no algebraic relations between the variables.
This is similar to generators in a free group, hence
the name.
Given two noncommuting random variables a and b in

some algebra M (e.g., algebra of large random matrices)
and a linear functional φ∶M → C (that plays the role of the
expectation value), then a and b are called free if for all
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polynomials P1;…; Pl and Q1;…; Ql with φ(PiðaÞ) ¼ 0
and φ(QiðbÞ) ¼ 0, we have

φ(P1ðaÞQ1ðbÞ � � �PlðaÞQlðbÞ) ¼ 0: ð32Þ

The reason to evoke all possible polynomials in the
definition is that any element in the subalgebras A and
B generated by a and b, respectively, can be written as
PiðaÞ andQiðbÞ. Hence, freeness can also be understood as
a statement about the subalgebras A and B.
This definition implies, for example, that if a and b are

free, then φðambnÞ ¼ φðamÞφðbnÞ. Additional structure
occurs if one interchanges the order such that free variables
are no longer grouped together. However, it always remains
true that joint moments can be determined through the
moments of the individual free variables therein. For exam-
ple, φðababÞ ¼ φða2ÞφðbÞ2 þ φðaÞ2φðb2Þ − φðaÞ2φðbÞ2.
The definition of freeness was proposed by Voiculescu in

1985, who founded the field of free probability theory
while working on problems in operator algebras. More
details can be found in his book [31], and a good
introduction to the subject is provided in the lecture notes
by Speicher [42] as well as in the book by Mingo and
Speicher [35].
In the 1990s, Speicher proposed a complementary

combinatorial approach to free probability by introducing
what he called free cumulants. This is also the route we
took in the last section to make a connection between
coherent fluctuations and free probability theory. Before
introducing free cumulants, let us review how cumulants in
classical probability theory are defined and how they are
related to partitions. This will then allow us to better
appreciate why free cumulants are defined via noncrossing
partitions.

A. Classical cumulants and partitions

Let fX1;…; XNg be a family of classical random
variables with the moment-generating function

Z½a; u� ≔ E½eu
P

i
aiXi �

¼
X
n≥0

un

n!

X
i1���in

ai1 � � � ainE½Xi1 � � �Xin �;

where u is an (optional) parameter that counts the order of
the joint moment (or correlation function) E½Xi1 � � �Xin �.
The joint cumulant (or connected correlation function)
E½Xi1 � � �Xin �c is defined as the term proportional to
ai1 � � � ain in the expansion of the cumulant-generating
function W½a; u� ≔ logZ½a; u�,

W½a; u� ¼
X
n≥0

un

n!

X
i1���in

ai1 � � � ainE½Xi1 ;…; Xin �c:

In fact, cumulants and moments are related by a combi-
natorial formula. Expanding Z½a; u� in terms of the cumu-
lants and grouping together terms with the same power of
u, one can derive that a moment E½Xi1 � � �Xin � can be
expressed as a sum of products of cumulants arranged
according to partitions π of the set fi1;…; ing,

E½Xi1 � � �Xin � ¼
X

π∈PðnÞ

Y
b∈π

E½Xibð1ÞXibð2Þ � � ��c; ð33Þ

where b ¼ fbð1Þ; bð2Þ; � � �g denotes the elements of a
block of the partition π. The number of partitions of a
set of n elements is called the Bell number Bn, with
recursion relations Bnþ1 ¼

P
n
k¼0ðnkÞBk and B1 ¼ 1,

B2 ¼ 2, B3 ¼ 5, B4 ¼ 15, B5 ¼ 52, etc.
Let us give an example for n ¼ 4 and the set f1; 2; 3; 4g.

The partition π ¼ ff1; 2g; f3; 4gg is represented by the
diagram

ð34Þ

This is in full analogy to Eqs. (23) and (24), except that here
we use solid lines for better visibility since we do not
discuss dual partitions in this section. The expansion of the
moment E½X1X2X3X4� in terms of products of cumulantsQ

b∈π E½Xibð1ÞXibð2Þ � � ��c, represented through the diagram of
the corresponding partition π, becomes

ð35Þ

where the subscript ↺k suggests that, by cyclic permuta-
tion, there are in total k such diagrams. Note that the last
diagram (in a dotted box) corresponds to a crossing
partition π ¼ ff1; 3g; f2; 4gg. In free probability theory,
these diagrams do not appear, as we will see below.

1. Classical cumulants of a single variable

The moment-cumulant relation (33) allows us to express
the cumulants recursively through the moments. In the case
of a single variable X ¼ X1 ¼ � � � ¼ XN , we illustrate how
this can be done up to order four. Let us denote by mn ¼
E½Xn� and cn ¼ E½Xn�c the moments and cumulants of this
variable; then,
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m1 ¼ c1;

m2 ¼ c2 þ c21;

m3 ¼ c3 þ 3c2c1 þ c31;

m4 ¼ c4 þ 4c1c3 þ 3c22 þ 6c21c2 þ c41: ð36Þ

Note that the coefficients correspond exactly to the cyclic
multiplicities of the diagrams. This can be solved recur-
sively for ck,

c1 ¼ m1;

c2 ¼ m2 −m2
1;

c3 ¼ m3 − 3m1m2 þ 2m3
1;

c4 ¼ m4 − 4m1m3 þ 12m2
1m2 − 3m2

2 − 6m4
1: ð37Þ

The generating function of cumulants is the logarithm of
that of moments, as explained above. Below, we will see
how this formula differs for the free cumulants.

B. Free cumulants and noncrossing partitions

In the setting of noncommuting random variables
a1;…; aN in some algebra M with expectation value
φ∶M → C, the free cumulants κn are multilinear forms
implicitly defined through moments by a sum over non-
crossing partitions π ∈ NCðnÞ of the set fi1;…; ing,

φðai1 � � � ainÞ≕
X

π∈NCðnÞ

Y
b∈π

κjbjðaibð1Þ ; aibð2Þ ; � � �Þ; ð38Þ

where jbj denotes the number of elements in the
block b ¼ fbð1Þ; bð2Þ; � � �g. For example, if we expand
φða1a2a3a4Þ in terms of free cumulants, we could obtain all
diagrams in Eq. (35), except the last one, which is the
crossing. Therefore, the order of the arguments in κn
becomes important, even if the ai commute, hence the
separation by the comma.
The free cumulants satisfy a number of properties that

are analogous to properties of classical cumulants:
(i) κnða1;…; anÞ ¼ 0 as soon as there appears a pair ai,

ak of free variables; see, e.g., Ref. [42].
(ii) As a result of multilinearity and the previous point,

free cumulants of free variables a and b are additive,
κnða þ b;…; a þ bÞ ¼ κnða;…; aÞ þ κnðb;…; bÞ;
see Ref. [43].

(iii) Any variable a whose free cumulants κnða;…; aÞ
vanish for n ≥ 3 is distributed according to Wigner’s
semicircle law of random matrix theory for the
Gaussian unitary ensemble (GUE), so large GUE
random matrices are analogous to Gaussian varia-
bles but from a free-probability point of view.

The number of noncrossing partitions of a set of n
elements is the Catalan number Cn ¼ ð1=nþ 1Þð2nn Þ, with
C1 ¼ 1, C2 ¼ 2, C3 ¼ 5, C4 ¼ 14, C5 ¼ 42, etc. The

formula (38) is triangular and can be inverted to express
the free cumulants in terms of the moments.

1. Free cumulants of a single variable

In the case of a single variable a ¼ a1 ¼ … ¼ aN , we
denote by κn ≔ κnða;…; aÞ and mn ≔ φðanÞ the free
cumulant and the moment at order n, respectively. Then,
we have

m1 ¼ κ1;

m2 ¼ κ2 þ κ21;

m3 ¼ κ3 þ 3κ2κ1 þ κ31;

m4 ¼ κ4 þ 4κ1κ3 þ 2κ22 þ 6κ21κ2 þ κ41: ð39Þ

The equations can be solved for κk recursively,

κ1 ¼ m1;

κ2 ¼ m2 −m2
1;

κ3 ¼ m3 − 3m1m2 þ 2m3
1;

κ4 ¼ m4 − 4m1m3 þ 10m2
1m2 − 2m2

2 − 5m4
1: ð40Þ

Note that the difference between standard and free cumu-
lants only shows up at order four since here a crossing
partition becomes possible for the first time. For a single
variable, the relation between the moments and the free
cumulants can be found by inverting the resolvent asso-
ciated to the distribution; see Refs. [42,44].

C. Free cumulants in random matrix theory

A relation between free probability theory and random
matrices was first observed by Voiculescu in 1991 [33]. For
example, he realized that matrices in the GUE with
independent entries become free variables in the limit
where the dimension of the matrix goes to infinity.
Since then, many more connections between other random
matrix ensembles and free probability have been found.
Here, we make one of these results more explicit, which

applies to matrices that are rotated by random unitaries.
Consider N × N random matrices of the form XA ¼
UNANU

†
N and YN ¼ UNBNU

†
N , where UN’s are chosen

independently from the Haar distribution over the unitary
group, and AN and BN are deterministic matrices with
spectral densities μA and μB. In other words, the moments
mk ≔ limN→∞ð1=NÞTrðAk

NÞ ¼
R
λkμAðλÞdλ are all finite,

and similarly for BN. Thus, in the limit N → ∞, the random
matrices XN and YN become free variables a and b (in some
noncommutative probability space) with distribution μA
and μB with respect to the measure φ ≔ ð1=LÞETr, where E
is the Haar measure.
Furthermore, it is known that the classical cumulants of

such matrices XN can be expressed as the free cumulants
κn ≡ κnða;…; aÞ of the spectral density μA. In other words,
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E½eNTrðPNXNÞ� ≍N→∞ eN
P

n¼1
1
nκnTrðPn

NÞ; ð41Þ

where PN is a sequence of matrices with fixed rank [such
that TrðPk

NÞ does not scale with N], for instance, a rank-one
projector.
This connection between Haar-distributed random matri-

ces and free cumulants is adapted to the closed Q-SSEP in
the steady state—which actually corresponds to an equi-
librium situation due to the absence of current in the steady
state. Indeed, since in the closed case the Q-SSEP dynamics
is unitary and ergodic over the unitary group, its steady-
state distribution is the one induced by the Haar measure on
the orbit of the initial matrix of coherencesG0 [26]. In other
words, the matrix of coherence G is distributed as UG0U†,
with U a Haar-distributed unitary L × L matrix. As a
consequence of Eq. (41), the large deviation function for
coherence fluctuations in the closed Q-SSEP is the gen-
erating function of the free cumulants of the spectral
measure of the initial matrix of coherences G0.

D. Alternative derivation of free probability
in mesoscopic systems

As an alternative to Sec. II B, one can derive the link
between fluctuations in mesoscopic systems and free
probability starting from the moment-cumulant for-
mula (33) introduced earlier in this section. We also use
this method in Appendix E 1, which contains the full proof
of this link for any n.
We apply Eq. (33) to a loop of Gij ’s and obtain

E½Gi1i2…Gini1 �
¼

X
π∈PðnÞ

Y
b∈π

E½Gibð1Þibð1Þþ1
…GibðjbjÞibðjbjÞþ1

�c; ð42Þ

where the subscript t of Et is dropped, for simplicity.
For n ¼ 4, two possible partitions, each with two

blocks, are

ð43Þ

and

ð44Þ

We determine the contribution of the two partitions:

π1∶ E½Gi1i2Gi2i3 �cE½Gi3i4Gi4i1 �c
¼ δi1i3E½Gi1i2Gi2i1 �cE½Gi3i4Gi4i3 �c ¼ OðL−3Þ: ð45Þ

In the second line, we use the Uð1Þ invariance of E, which
implies that the expression is nonzero only for i1 ¼ i3.
Finally, we evaluate the scaling of the expression with L.
Here, we use E½GijGji�c ¼ OðL−1Þ from Eq. (4), and the
Kronecker delta becomes δij → δðx − yÞ=L for large L,
where x ¼ i=L and y ¼ j=L. Note that the resulting scaling
with OðL−3Þ is the same as that for four loops, which also
appears in the sum over partitions as the partition
ff1; 2; 3; 4gg that contains only a single block. It turns
out that all noncrossing partitions have the same scaling
with L.
In contrast, crossing partitions are subleading. Evaluating

π2, one has

π2∶E½Gi1i2Gi3i4 �cE½Gi2i3Gi4i1 �c
¼ δi2i3δi1i4E½Gi1i2Gi2i1 �cE½Gi2i2Gi1i1 �c ¼OðL−4Þ: ð46Þ

Here, we assume that no connected expectationvalue ismore
dominant than that of loops with the same number of points,
i.e.,E½Gi1i1Gi2i2 �c ¼ OðL−1Þ, because the loopwith the same
number of points scales as OðL−1Þ.
Note that the average over independent ballistic cells

introduced in Sec. II A actually implies that E½GiiGkk�c ¼ 0
if i ≠ k. However, we anticipate that the toy model Q-SSEP
predicts this term to scale with L−2 if i ≠ k. A possible
conclusion is that even though the average over ballistic
cells is a good approximation for leading-order terms, it is
probably too crude to capture the complete dependence of
correlation functions on the system size L.
In the case of noncrossing partitions, the delta functions

that we introduce each time to “close” the blocks into loops
can be elegantly described via the dual partition (Kreweras
complement) π�. This case is best understood diagram-
matically. We associate the diagram

ð47Þ

with π1. The solid lines represent blocks in π1 (here,
understood as a partition of the edges), while the dashed
lines define the blocks of a partition of the nodes, the dual
partition π�1 ¼ ff1; 3g; f2g; f4gg. If π is noncrossing, then
there is a unique way to connect a maximal number of
nodes by dashed lines without crossing a solid line. We
associate a Kronecker delta δπ� ði1;…; inÞ with a dual
partition π�, equating all indices belonging to the same
block of π�, exactly as in Eq. (29) but with π and π�
interchanged. For example, δπ�

1
ði1;…; i4Þ ¼ δi1i3 .

This notation allows us to rewrite the moment-cumulant
formula (42) as a sum over noncrossing partitions only.
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Denoting the set of noncrossing partitions of f1;…; ng by
NCðnÞ, we obtain

E½Gi1i2…Gini1 �
¼

X
π∈NCðnÞ

δπ�ði1;…; inÞ
Y
b∈π

E½Gibð1Þibð2Þ…GibðjbjÞibð1Þ �c; ð48Þ

which is exactly the same formula as Eq. (31).

IV. OPEN QUANTUM SSEP

A. Summary of results

The Q-SSEP describes a one-dimensional chain with L
sites on which spinless fermions can hop to neighboring
sites with random amplitudes. In the closed Q-SSEP, this
chain is closed periodically, while in the open Q-SSEP, the
chain is coupled to two reservoirs that can inject and extract
fermions on the boundary with different rates. Therefore, it
is possible to have a steady current of fermions through the
chain keeping the system out of equilibrium. The model
allows us to study the time evolution of spatial coherences
GijðtÞ ¼ Trðρtc†i cjÞ, which fluctuate due to the random
hopping. The measure Et of this randomness converges to a
unique steady measure E∞ after long times, which has been
characterized in Ref. [27].
The main results on the open Q-SSEP in this paper are

equations for the time evolution of the n-loop expectation
value Et½Gi1i2Gi2i3 � � �Gini1 � and its connected part, in a
nontrivial scaling limit where L becomes large. In deriving
these results, we make use of noncrossing partitions that
appear in the same way as in Sec. II B because Q-SSEP
satisfies the three conditions (1)–(3) (see Sec. IV B).
It has been shown in Ref. [30], that the closed Q-SSEP

has a meaningful scaling limit for L → ∞ if positions ik
and time t are scaled diffusively according to

ik → xk ¼ ik=L ∈ ½0; 1�; t → t=L2: ð49Þ

In this limit, one defines the expectation value of n loops,

gst ðx1;…; xnÞ ≔ lim
L→∞

Ln−1EL2t½Gi1i2Gi2i3 � � �Gini1 �; ð50Þ

which satisfies

ð∂t−ΔÞgst ðx1;…;xnÞ

¼
Xn
i<j

2∂i∂j(δðxi;xjÞgst ðxi;…;xj−1Þgst ðxj;…;xi−1Þ); ð51Þ

where Δ≡P
n
i¼1Δxi , ∂i ≡ ∂xi and δðxi; xjÞ ¼ δðxi − xjÞ.

Pictorially, this equation reduces the evolution of an n-loop
expectation value to diffusion sourced by the product of
two-loop expectation values with less nodes that emerge by
pinching the original loop along the nodes xi and xj,

ð52Þ

We therefore say that the evolution for gst has a triangular
structure.
In Sec. IV D, we show that this equation is also valid for

the open Q-SSEP, if we require gst ðx1;…; xnÞ on the
boundary xi ∈ ∂½0; 1� to be equal to its steady-state value
at all times. Because of the triangular structure of the
equation, this behavior can be traced back to the fermion
density, i.e., the one-loop gst ðxÞ, which approaches its
steady-state value on the boundary immediately, in contrast
to its evolution in the bulk, which happens on a much
slower timescale. This case is explained in Sec. IV C.
As discussed below Eq. (3), loop expectation values

jump by an order of L if two indices become equal. This is
reflected by the fact that solutions gst ðx1;…; xnÞ of Eq. (51)
become singular whenever two of its arguments xi ¼ xj are
equal, hence the choice of superscript “s.” We show this
case in Appendix B for the example of n ¼ 2.
In Appendix E 2, we derive the time evolution of

connected-loop expectation values in the scaling limit.
Connected n-loop expectation values are defined as

gtðx1;…; xnÞ ≔ lim
L→∞

Ln−1EL2t½Gi1i2Gi2i3 � � �Gini1 �c: ð53Þ

We find that they satisfy

ð∂t−ΔÞgtðx1;…;xnÞ

¼
Xn
i<j

2δðxi;xjÞ∂igtðxi;…;xj−1Þ∂jgtðxj;…;xi−1Þ; ð54Þ

with boundary conditions

gtðx1;…; xnÞ ¼
�
na; nb for n ¼ 1 and x ¼ 0; 1

0 for n ≥ 2 and some xi ∈ f0; 1g;
ð55Þ

where only the one-point function (fermion density)
depends on the particle density of the two reservoirs na
and nb. This equation indeed produces solutions that
are continuous if two arguments become equal; see
Appendix B. The equation differs from Eq. (51) by the
relative position of the derivatives and the delta function.
The derivation of Eq. (54) crucially depends on the fact

that loop expectation values (moments) and their connected
parts (cumulants) are related by a sum over noncrossing
partitions such as in Eq. (31). In the scaling limit, this
relation becomes
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gst ðx1;…; xnÞ ¼
X

π∈NCðnÞ
δπ

Y
b∈π�

gtðxbð1Þ;…; xbðjbjÞÞ; ð56Þ

where

δπ ≡
Y
b∈π�

δðxbð1Þ;…; xbðjbjÞÞ ð57Þ

is defined in analogy to Eq. (29) but for continuous
variables.
Finally, in Sec. IV F, we show how to construct a very

simple steady-state solution for connected-loop expectation
values. This solution exploits the insight below Eq. (30),
where we noted that the presence of the δπ prevents us from
viewing connected-loop expectation values as the free
cumulants of the measure Et. If we remove the δπ , then
connected-loop expectation values are, by definition, the
free cumulants of a new measure φt that is necessarily
different from Et. Surprisingly, φt has a very simple steady-
state solution from which the connected-loop expectation
values g∞ can be determined recursively.

B. Introduction to the model

The quantum symmetric simple exclusion process was
first introduced in Refs. [25] (closed case) and [27] (open
case) and was further elaborated in Refs. [26,28,30].

1. Definition

The model describes a one-dimensional chain with L
sites on which spinless fermions hop to neighboring sites
with random amplitudes. The boundary sites are coupled to
particle reservoirs [45]. The bulk evolution of the system is
stochastic and unitary. We describe it in terms of the
system’s density matrix ρt as

ρt → ρtþdt ¼ e−idHtρteidHt ; ð58Þ

where the Hamiltonian increment is defined as

dHt ¼
XL−1
j¼1

c†jþ1cjdW
j
t þ c†jcjþ1dW

j
t ;

with c†j (cj) fermion creation (annihilation) operators at site

j with the usual commutation relations fc†j ; ckg ¼ δjk and

fc†j ; c†kg ¼ fcj; ckg ¼ 0. The noisy Hamiltonian increment

depends on a complex Brownian motion dWj
t , which

determines the random hopping amplitude along the edge
ðj; jþ 1Þ at time t. There is one complex Brownian motion
per edge, which means that Wj

t at each instance t is a
centered Gaussian random variable that has independent
increments dWj

t ¼Wj
tþdt−Wj

t with variance E½dWj
tdWk

t0 � ¼
Jδj;kdt if t ¼ t0, and zero otherwise. Note that J is a rate

parameter with dimension one over time, and we set J ¼ 1
in the following.
To the stochastic and unitary bulk evolution in Eq. (58),

we add a deterministic but dissipative Lindbladian
evolution

Lbdry ¼ α1L
þ
1 þ β1L−

1 þ αLL
þ
L þ βLL−

L;

which represents the interaction with the reservoirs. The
operator Lþ

j ð•Þ ¼ c†j • cj − 1
2
fcjc†j ; •g models particle

injection and is multiplied by the injection rate αj, while
L−
j ð•Þ ¼ cj • c

†
j − 1

2
fc†jcj; •g models particle extraction

with rate βj. For example, the density matrix of an isolated
empty site τt ¼ j0ih0j that evolves according to ∂tτt ¼
αLþðτtÞ will be occupied after a time interval dt with
probability αdt. In other words,

j0ih0j → αdtj1ih1j þ ð1 − αdtÞj0ih0j:

The full evolution of the system’s density matrix ρt can
be expressed as a stochastic differential equation (SDE) in
the Itô convention (with Itô rules dWj

tdWk
t ¼ δj;kdt) by

expanding Eq. (58) up to order dt,

dρt ¼ −i½dHt; ρt� −
1

2
½dHt; ½dHt; ρt�� þ LbdryðρtÞdt: ð59Þ

Occasionally, we refer to the “closed case,” by which we
mean that there are no boundary reservoirs and the one-
dimensional chain is closed periodically such that sites
1≡ L are identified.

2. Relation to the classical SSEP

The name of this model is inherited from the classical
SSEP. The latter can be obtained from Q-SSEP in the
special case where one is just interested in the mean density
matrix ρ̄t ≔ E½ρt�, where the expectation E½� � �� is taken
with respect to the different realizations of the Brownian
motions. This matrix evolves according to a Lindblad
equation,

∂tρ̄t ¼ Lðρ̄tÞ ¼
XL−1
j¼1

Ledge
j ðρ̄tÞ þ Lbdryðρ̄tÞ;

with Ledge
j ðρ̄Þ¼ l−j ρ̄l

þ
j þ lþj ρ̄l

−
j − 1

2
flþj l−j þ l−j l

þ
j ; ρ̄g, where

lþj ¼ c†jþ1cj and l−j ¼ c†jcjþ1. Writing ρ̄t in the occupation
number basis, this Lindbladian evolution preserves its
diagonal structure, while off-diagonal elements vanish
exponentially in time. The diagonal elements of ρ̄t provide
the probability that the system is in one of the 2L states with
well-defined occupation number n̂i ¼ c†i ci on each site.
This corresponds to a configuration of the classical SSEP,
where one specifies the number of particles ni ¼ 0, 1 on
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each site. One can easily see that the Lindbladian evolution
of the diagonal elements of ρ̄t precisely corresponds to the
Markov process of SSEP: During a time interval dt, a
particle in the bulk can jump to the left or right neighboring
site with probability dt if the site is empty and particles are
injected (extracted) at the boundaries with probability αidt
(βidt). This correspondence can also be formulated via the
moment-generating function,

he
P

i
ainiissep ¼ Trðρ̄e

P
i
ain̂iÞ; ð60Þ

illustrating the well-known correspondence between the
Markov process and Lindbladian evolution. The relation
between Q-SSEP and free cumulants we describe below
implies a new relation between the classical SSEP and free
probability [46].

3. Fluctuating coherences

If we go beyond the mean dynamics, then Q-SSEP has
an additional structure, which describes purely quantum
mechanical effects such as entanglement. This structure is
inscribed into the coherences GijðtÞ ¼ Trðρtc†i cjÞ. While

the coherences vanish in mean exponentially with time (we
see that the mean corresponds to the classical SSEP, and
there are no quantum correlations left), their fluctuations
survive the long time limit, although they are subleading in
the system size [27]. For example, at large system size
L → ∞ with x ¼ i=L ≤ y ¼ j=L fixed, the connected
quadratic fluctuation (or second cumulant) in the steady
state is

E∞½GijGji�c ∼
1

L
ðΔnÞ2xð1 − yÞ;

whereΔn ¼ na − nb is the difference in the particle density
between the boundary reservoirs; see Eq. (64). Here, we
again adopt the point of view where the time dependence of
GijðtÞ is transferred to the measure Et and the steady
measure is denoted by E∞.
Let us also note that since the Hamiltonian is quadratic in

fermionic creation and annihilation operators, the coher-
ences Gij completely characterize the state of the system
according to Wick’s theorem. From Eq. (59), one finds that
their time evolution is given by the SDE

dGij ¼ −iðGi;j−1dW
j−1
t þGi;jþ1dW̄

j
t −Gi−1;jdW̄i−1

t − Giþ1;jdWiÞ þ δijðGiþ1;iþ1 þGi−1;i−1Þdt

− 2Gijdt −
X

p∈f1;Lg

�
1

2
ðδip þ δjpÞðαp þ βp − 1ÞGij − δpiδpjαp

�
dt: ð61Þ

4. Three properties of Et

First, the measure Et of Q-SSEP possesses a local Uð1Þ
invariance, which can be seen as follows: The multiplica-
tion with local phases Gij → G̃ij ¼ e−iθiGijeiθj leaves
Eq. (61) invariant if the Brownian motions are multiplied
by a phase dWj

t → dW̃j
t ¼ eiðθjþ1−θjÞdWj

t . Since dW̃j
t and

dWj
t have the same distributions, G and G̃ also have the

same distribution if they agree at t ¼ 0, which means that
initially G is a diagonal matrix. In the scaling limit, this is
always the case since off-diagonal terms vanish exponen-
tially fast in system size (about e−L

2t, where t is the
rescaled time).
Second, n-loop expectation values in Q-SSEP scale as

L−nþ1 if indices are distinct because this scaling gives rise
to the nontrivial equation (51).
Third, expectation values of products of loops factorize.

This result is shown in Appendix G of Ref. [30], where the
time-evolution equation of loop expectation values in
Eq. (51) is derived (for the closed case). The time-evolution
equation for the leading order of a product of loop
expectation values allows for factorized solutions. Since
the initial condition is always factorized (the noise has not
yet correlated with the variables), the claim follows.

For Q-SSEP, properties (1)–(3) are satisfied, and as a
result, in Q-SSEP, loop expectation values expand into
noncrossing partitions [Eq. (31)] as claimed.

C. Bulk vs boundary thermalization

When we casually talk about bulk and boundary thermal-
ization, one should keep in mind that the open Q-SSEP
does not actually “thermalize.” At large times, the system
approaches a steady state [47], in which observables do not
depend on time anymore. However, they are not described
by a thermal density matrix since there is a steady current,
so the system is out of equilibrium.
Here, we show that the density of fermions in the open

Q-SSEP approaches its steady-state value much faster on
the boundaries than in the bulk. In particular, the decay
times scale with OðL2Þ in the bulk and Oð1Þ on the
boundary. Because of the correspondence (60), this prop-
erty also holds true for the classical SSEP [48].
Under the evolution outlined above, the mean fermion

density niðtÞ ≔ Et½Trðρc†i ciÞ� evolves according to

∂tniðtÞ ¼ ΔniðtÞ þ
X
p¼1;L

δip(αp − ðαp þ βpÞnpðtÞ); ð62Þ

LUDWIG HRUZA and DENIS BERNARD PHYS. REV. X 13, 011045 (2023)

011045-14



where it is understood that the discrete Laplacian on
the boundaries is truncated, i.e., Δn1 ≔ n2 − n1 and
ΔnL ¼ nL−1 − nL. Here, we only discuss the special case,
where the injection or extraction parameters are such that
α1 þ β1 ¼ 1 ¼ αL þ βL. The general case is discussed in
Appendix C, and it works analogously, with some help
from numerical calculations. In the special case, Eq. (62)
can be solved analytically,

njðtÞ ¼
XL
k¼1

sin

�
jkπ
Lþ 1

�
(e(−2þ2 cosð kπ

Lþ1
Þ)tðck − bkÞ þ bk);

ð63Þ

where the coefficients ck are determined by the initial
condition and bk ≔ ð2=Lþ 1Þ½α1 sinðkπ=Lþ 1Þ þ
αL sinðLkπ=Lþ 1Þ=2(1 − cosðkπ=Lþ 1Þ)�. This solution
consists of two contributions: a time-dependent term that
decays exponentially in time and a constant term that
provides the steady-state value and can be simplified to
njð∞Þ ¼ ½α1ðL − jþ 1Þ þ αLj=Lþ 1�. We study the time-
scale with which the time-dependent term decays on the
boundary compared to its decay in the bulk.
A bulk site is characterized by j ∼ aL with a ∼Oð1Þ.

Because of the factor e(−2þ2 cosðkπ=Lþ1Þ)t ≈ e−π
2k2t=L2

(for
large L), the biggest contribution to the sum comes from the
term with k ¼ 1. Since we are in the bulk, its amplitude is
finite, sin (jπ=ðLþ 1Þ) ∼ sinðaπÞ. Therefore, we find a
timescale of tdecay ∼OðL2Þ,

nbulkðtÞ ∼ const e−π
2t=L2 þ nbulkð∞Þ:

A site on the boundary is characterized by j ¼ 1 or
j ¼ L; therefore, the amplitude of the k ¼ 1 term,
sin (jπ=ðLþ 1Þ), will be zero for large L. Thus, a
significant contribution only comes from terms where
k ∼ bL, with b ∼Oð1Þ, because then the amplitudes
sin (jkπ=ðLþ 1Þ) ∼ sinðbπÞ or ∼ sinðbLπÞ stay finite.
The timescale with which these terms decay is of order
one, tdecay ∼Oð1Þ,

nbdryðtÞ ∼ const e−b
2π2t þ nbdryð∞Þ:

Note that the value of the density on the boundaries after
a time of Oð1Þ is that of the steady state. For general
injection or extraction parameters, these values are as in the
classical SSEP,

n1ð∞Þ¼ na≔
α1

α1þβ1
; nLð∞Þ¼ nb ≔

αL
αLþβL

: ð64Þ

We conclude that timescales with which the boundary and
bulk approach their steady-state values are separated by an
order of L2. In the scaling limit (49) where t → t=L2

denotes the rescaled time, this means that boundaries are

equal to the steady-state values at all times, while in the
bulk it takes tdecay ∼Oð1Þ.

D. Open boundary scaling limit

The basic question is whether the scaling limit (49)
introduced for the closed Q-SSEP is also meaningful in the
open case. In other words, does gst satisfy a nontrivial
equation in this limit?

1. Density

We first answer this question on the level of the density
niðtÞ ¼ Et½Gii�. It satisfies L coupled differential equations
in time given by Eq. (62). The aim is to represent these
equations by a single partial differential equation in space
and time for a continuous density ρðx; tÞ ≈ nLxðL2tÞ. Since
it is easily seen that the bulk satisfies a pure diffusion
equation, the remaining question is what the correct
boundary conditions are. The answer is provided by the
observation made in the last section. In the scaling limit, the
boundaries immediately take their steady-state values.
Therefore,

∂tρðx; tÞ ¼ ∂
2
xρðx; tÞ; ð65Þ

ρð0; tÞ ¼ na; ρð1; tÞ ¼ nb: ð66Þ

This result is confirmed numerically in Fig. (3), where a
solution for the discrete density niðtÞ is compared to the
solution for the continuous density ρðx; tÞ. In particular, the
boundary values agree.

2. Higher-order fluctuations

The claim we make here is that the exact same equation
[Eq. (51)] that holds in the closed case also holds in the

FIG. 3. Discrete fermion density nLxðL2tÞ for system sizes
L ¼ 24 and L ¼ 48, together with the scaling limit ρðx; tÞ at
t ¼ 0.01 as a function of space x ¼ i=L. The extraction and
injection rates are α1 ¼ β1 ¼ αL ¼ βL ¼ 1, and they do not fit
the initial conditions. The agreement is very good.
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open case if we subject gs to boundary conditions that are
equal to its steady-state value. These boundary conditions
are known from Ref. [27] for the connected part:
g∞ðx1;…; xnÞ ¼ 0 for all n ≥ 2 and ðx1;…; xnÞ ∈ ∂½0; 1�n.
We test this claim on the level of the two-loop expect-

ation values, for which Eq. (51) simplifies to

ð∂t − ΔÞgst ðx; yÞ ¼ 2∂x∂y(δðx − yÞgtðxÞgtðyÞ); ð67Þ

and we identify one-loop values with the density, gtðxÞ ¼
ρðx; tÞ. Thus, it follows that the time evolution of the
connected correlation functions with appropriate boundary
conditions is

ð∂t − ΔÞgtðx; yÞ ¼ 2δðx − yÞ∂xgtðxÞ∂ygtðyÞ;
gtðx; yÞ ¼ 0 if ðx; yÞ ∈ ∂½0; 1�2; ð68Þ

which is again a diffusion equation but with a new source
term. To see this, note that the connected correlation
function is defined by

gtðx; yÞ ¼ lim
L→∞

LðEL2t½GijGji� − δijEL2t½Gii�EL2t½Gjj�Þ
¼ gst ðx; yÞ − δðx − yÞgtðxÞgtðyÞ:

The analytic solution of Eq. (68) (which is constructed
in Appendix D) is compared to a numerical solution
of the discrete evolution equations of LðEL2t½GijGji� −
δijEL2t½Gii�2Þ for given L, which can be derived from
Eq. (61). Figures 4 and 5 show the result of this comparison
for different system sizes L. The agreement is excellent.
Notice that the injection and extraction rates enter

Eq. (68) only through the source term since the density
gtðxÞ depends on these rates through its own boundary
conditions. Apart from that, the equation for the connected
two-loop expectation values gtðx; yÞ (and for all higher-
order loops) never explicitly depend on the injection and

extraction rates. As a consequence, without loss of general-
ity, we use the convention

na ¼ 0; nb ¼ 1

throughout the paper. In particular, the density in the steady
state g∞ðxÞ ¼ na þ xðnb − naÞ reduces to g∞ðxÞ ¼ x in
this convention.
As a result, one can now derive the time-evolution

equation of connected-loop expectation values in the
scaling limit with open boundaries (see Appendix E 2).
One finds

ð∂t−ΔÞgtðx1;…;xnÞ

¼
Xn
i<j

2δðxi;xjÞ∂igtðxi;…;xj−1Þ∂jgtðxj;…;xi−1Þ; ð69Þ

with boundary conditions

gtðx1;…; xnÞ ¼
�
na; nb for n ¼ 1 and x ¼ 0;1

0 for n ≥ 2 and some xi ∈ f0; 1g:
ð70Þ

E. Free cumulants in Q-SSEP

Comparing the moment-cumulant relation (31) [valid
for any system satisfying Eqs. (1)–(3), in particular, for
Q-SSEP] to the definition of free cumulants (38), one
would be tempted to identify

Et½Gi1i2 � � �Gini1 �c ∼ κnðGi1i2 ;…; Gini1Þ; ð71Þ

with κn the free cumulants of Et. However, this is not
correct because of the presence of δπ . If we nonetheless
insist on the identification (71), then the connected-loop
expectation values E½Gi1i2 � � �Gini1 �c are, by definition, the

FIG. 4. Boundary conditions that fit the initial domain wall
state (na ¼ 1, nb ¼ 0).

Scaling limit

FIG. 5. Boundary conditions that do not fit the initial domain
wall state (na ¼ 1=2, nb ¼ 1=2).
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free cumulants of a new measure φt that is different from
Et. In other words,

φtðGi1i2 � � �Gini1Þ
≔

X
π∈NCðnÞ

Y
b∈π

Et½Gibð1Þibð2Þ � � �GibðjbjÞibð1Þ �c: ð72Þ

In terms of gtðx1;…; xnÞ ∼ Ln−1EL2t½Gi1i2 � � �Gini1 �c, the
new measure φt defines a function (which we denote by the
same name) of continuous positions and rescaled time

φtðx1;…; xnÞ ¼
X

π∈NCðnÞ

Y
b∈π

gtðxbð1Þ;…; xbðjbjÞÞ: ð73Þ

The time evolution of φt is found to satisfy exactly the same
equation as gt (see Appendix E 3),

ð∂t−ΔÞφtðx1;…;xnÞ

¼
Xn
i<j

2δðxi;xjÞ∂iφtðxi;…;xj−1Þ∂jφtðxj;…;xi−1Þ: ð74Þ

However, the boundary conditions are different. If some
xi ∈ f0; 1g lies on the boundary, then

φtðx1;…; xi;…; xnÞ ¼ xiφtðx1;…; x̂i;…; xnÞ; ð75Þ

where the hat on x̂i indicates that xi is missing from the
set fx1;…; xng.

F. Steady-state solution—Inspired
by free probability

The striking observation by Biane [32] was that φt,
defined as a sum over noncrossing partitions of products of
connected-loop expectation values, has a very simple
solution in the steady state. In Appendix E 3, we show
that for t → ∞, our equation for φt is indeed solved by

φ∞ðx1;…; xnÞ ¼ minðx1;…; xnÞ: ð76Þ

As a consequence, we can use Eq. (73) to recursively
reconstruct the connected correlation functions g∞ in the
steady state. This works similarly to Eqs. (39) and (40).
Denoting minðx1;…; xnÞ≕ x1 ∧ � � � ∧ xn, we have

g∞ðx1Þ ¼ x1;

g∞ðx1; x2Þ ¼ x1 ∧ x2 − x1x2;

g∞ðx1; x2; x3Þ ¼ x1 ∧ x2 ∧ x3 − x1ðx2 ∧ x3Þ↺3 þ 2x1x2x3;

while the four-point function g∞ðx1; x2; x3; x4Þ reads

x1 ∧ x2 ∧ x3 ∧ x4 − x1ðx2 ∧ x3 ∧ x4Þ↺4

− ðx1 ∧ x2Þðx3 ∧ x4Þ↺2 þ 2x1x2ðx3 ∧ x4Þ↺4

þ x1x3ðx2 ∧ x4Þ↺2 − 5x1x2x3x4;

where � � �↺q denotes the sum of all terms obtained by q
successive cyclic permutations of the arguments of the term
in question. Note that because of the absence of crossing
partitions, g∞ðx1;…; xnÞ is no longer invariant under the
permutation of its arguments for n ≥ 4. In the example
above, it is the term ðx1 ∧ x2Þðx3 ∧ x4Þ↺2 that prevents
g∞ðx1;…; x4Þ from being invariant under the exchange of
x2 and x3.
Indeed, ordering the variables as 0≤x1≤x2≤x3≤x4≤1,

we get g∞ðx1; x2Þ ¼ x1ð1 − x2Þ and g∞ðx1; x2; x3Þ ¼
x1ð1 − 2x2Þð1 − x3Þ and

g∞ðx1; x2; x3; x4Þ ¼ x1ð1 − 3x2 − 2x3 þ 5x2x3Þð1 − x4Þ;
g∞ðx1; x3; x2; x4Þ ¼ x1ð1 − 4x2 − x3 þ 5x2x3Þð1 − x4Þ;

whereas g∞ðx1; x3; x4; x2Þ ¼ g∞ðx1; x2; x3; x4Þ, in agree-
ment with Ref. [27].
The derivation of the steady-state solution presented here

provides an alternative proof of Biane’s formula (6.1) in
Ref. [32] that relates the steady-state connected correlations
of the open Q-SSEP to free cumulants of the measure φ∞.
Our derivation extends this relation to finite times, though
an explicit solution for φt at finite times seems out of reach.
Note that the measure φ∞ can be realized as the

Lebesgue measure on the interval [0, 1] of the indicator
function Ix ≔ 1½0;x�, e.g.,

φ∞ðx; yÞ ≔
Z

1

0

IxðzÞIyðzÞdz ¼ minðx; yÞ: ð77Þ

It is surprising that φ∞ has a realization in terms of
commuting variables since free cumulants usually appear
in a setting of noncommuting variables. At finite times,
Eq. (74) suggests that φt is not invariant under a permu-
tation of its arguments.

V. CONCLUSION

In this paper, we presented two main points: (1) a general
argument as to why the fluctuations of spatial coherences in
one-dimensional mesoscopic quantum systems could be
well described by the framework of free probability
theory and (2) a precise calculation that shows that the
model Q-SSEP has a mathematical structure that fits into
the framework of free probability (we used this structure to
derive the time evolution of connected correlation func-
tions). Specific to the open Q-SSEP is the observation that
the density approaches its steady-state value much faster on
the boundary than in the bulk, which we used to formulate
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the correct boundary conditions for the time evolution of
coherences in the scaling limit.
In both cases, the link to free probability can be reduced

to three properties of the noise expectation value: (i) local
Uð1Þ invariance, (ii) a large deviation scaling of correlation
functions E½Gi1i2 � � �Gini1 � ∼ L−nþ1, and (iii) the fact that
expectation values of products of loops factorize. It is not
surprising that the same three properties are responsible for
the fact that a relation with free probability has been
observed in the context of the ETH.
We should also stress that the link with free probability in

the context of coherent fluctuations in mesoscopic systems
is, in fact, not particular to the systems being out of
equilibrium. Rather, this link emerges from a coarse-
grained description under the assumption that, locally in
space (i.e., within ballistic cells) and on timescales much
shorter than the diffusion time, the system is ergodic. Such
an assumption allows us to introduce the noise average as
an average over all possible unitary transformations that the
system could have undergone locally (i.e., within ballistic
cells), and this noise average satisfies the three proper-
ties above.
However, we admit that the general picture developed in

Sec. II is certainly oversimplified and calls for more details.
First, the argument assumes a separation of timescales that
gives rise to a crossover from ballistic to diffusive transport
at some length scale l. One should provide criteria on the
Hamiltonian for when this separation of timescales is
satisfied. Second, one should explore the physical meaning
of the length l of ballistic cells. In the Introduction, we
crudely argued that l could be related to the mean free path
of electrons in a disordered metal. Third, a better under-
standing of the perturbative expansion of an interacting
Hamiltonian—the argument needed to derive the scaling of
loop expectation values from classical MFT—will allow us
to characterize the domain of validity of this theory, that is,
for which class of systems it should be applicable.
To test the validity of this general picture, we plan to

conduct numerical tests on more physical models. A first
candidate would be a Floquet Heisenberg XXZ model
with a staggered magnetic field, which breaks integrability
but conserves the local Uð1Þ invariance. The time depend-
ence of the Hamiltonian ensures that energy is not con-
served, which would otherwise represent another conserved
quantity.
Such numerical studies would also answer the question

of whether or not Q-SSEP describes coherent fluctuations
in a larger class of systems through the identification of
sites in Q-SSEP with ballistic cells—an idea we developed
in the Introduction. This interpretation is supported by a
recent work [49], where the authors used a decomposition
into equilibrated and statistically independent cells to
characterize transport properties of quantum stochastic
Hamiltonians. In particular, for the so-called dephasing
model, i.e., free fermions with an independent Brownian

noise on each site, they found that the size of the cell scales
as 1=γ, where γ is the strength of the noise. This result is
interesting since the Q-SSEP can be obtained as a limit of
the dephasing model for strong noise γ → ∞ [25]. In this
limit, the size of the cell becomes zero, which corresponds
to the idea that for Q-SSEP, the mean free path l has
effectively shrunk to the lattice spacing auv, i.e., the
ballistic cell contracts to a single site.
In spite of the progress reported here, we believe that it

remains a challenge to construct a quantum mesoscopic
fluctuation theory describing fluctuations of quantum
coherences in generic, diffusive, many-body systems at
coarse-grained mesoscopic scales.
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APPENDIX A: MEASURING COHERENCES

To gain a better understanding of the coherences
Gij ¼ Trðρc†jciÞ, we outline an experiment to measure
them, which was proposed in Ref. [18]. The setup is shown
in Fig. 6. The idea is to probe the system at spatially
separated places and let the two signals interfere before
each output is measured separately. Let us outline the steps
of the measurement protocols in detail.

(i) The total state of the system, left and right wires,
is described by a state in the Hilbert space
HS ⊗ HL ⊗ HR. Let us assume that the system is
in a pure state and that, initially, the wires are empty
and not yet coupled to the system,

jψ ð0Þi ¼ jψSij0; 0i:

(ii) Now, we couple the two wires to the system. A very
simple description of this coupling could be given by
the unitary evolution with Uint ¼ e−iλðc

†
Lciþc†RcjþH:c:Þ,

where λ is the product of coupling strength and the
time during which we allow the wires to couple to
the system, and cL (cR) are fermionic operators on
the left (right) wire. If we tune the coupling strength
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and duration such that λ ≪ 1 is small, we can neglect
Oðλ2Þ terms and find the complete state to be

jψ ð1Þi ≔ Uintjψ ð0Þi
¼ jψSij0; 0i − iλðcijψSij1; 0i þ cjjψSij0; 1iÞ
þOðλ2Þ:

(iii) Next, the fermions on the left and right wires
interfere in a beam splitter. Written in the basis
fj00i; j01i; j10i; j11ig, the beam splitter can, in
general, be described by the scattering matrix

S ¼

0
BBBBBB@

1

r0 t

t0 r

rr0 −tt0

1
CCCCCCA
;

where r and t (r0 and t0) are the reflection and
transmission amplitudes for a fermion incident from
the left (right) side. Though not important in our
case—since the state j1; 1i, where there is a fermion
in each wire, is suppressed by λ2—we give a short
explanation for how to obtain the last entry
j1; 1i → ðrr0 − tt0Þj1; 1i. One has to take into ac-
count that the wave function is antisymmetric,
j1; 1i ¼ jϕLi ⊗ jϕRi − jϕRi ⊗ jϕLi. Here, the po-
sition in the tensor product labels the fermion (say
they are called 1 and 2), whereas jϕLi and jϕRi are
single fermion states on the left and right wires.
Then,

j1; 1i → ðrjϕLi þ tjϕRiÞ ⊗ ðr0jϕRi þ t0jϕLiÞ
− ðr0jϕRi þ t0jϕLiÞ ⊗ ðrjϕLi þ tjϕRiÞ

leads to the entry ðrr0 − tt0Þ. Unitarity demands
jrj2 þ jtj2 ¼ 1, jr0j2 þ jt0j2 ¼ 1 and r̄t0 þ t̄r0 ¼ 0

(the condition jrr0 − tt0j2 ¼ 1 is then automatically
fulfilled).
(a) Choosing a symmetric beam splitter, r ¼ r0 and

t ¼ t0, allows one to measure the imaginary part
of Gij. Note that the unitary constraints can now
be expressed as r ¼ sin θeiφ and t ¼ i cos θeiφ,
and we set the overall phase φ ¼ 0 since this will
not change the result. The state evolves to

jψ ð2;aÞi ¼ SðaÞjψ ð1Þi
¼ jψSij0; 0i
− iλcijψSiðsin θj1; 0i þ i cos θj0; 1iÞ
− iλcjjψSiðsin θj0; 1i þ i cos θj1; 0iÞ:

(b) If the beam splitter is symmetric—except for the
fact that transmitted fermions incident from
the right will accumulate an additional phase
π, i.e., r ¼ r0 and t ¼ −t0—this allows one to
measure the real part ofGij. Note that the unitary
constraints result in r¼sinθeiφ and t¼cosθeiφ,
and again we set φ ¼ 0. The state evolves to

jψ ð2;bÞi ¼ SðbÞjψ ð1Þi
¼ jψSij0; 0i
− iλcijψSiðsin θj1; 0i þ cos θj0; 1iÞ
− iλcjjψSiðsin θj0; 1i − cos θj1; 0iÞ:

(iv) Finally, we measure the particle number nL ¼ c†LcL
and nR ¼ c†RcR on the left and right wires. Denoting
averages with respect to the system jψSi by h…iS as
in Gij ¼ hc†jciiS, we find, for case (a),

hnLiðaÞ ¼ λ2ðsin2θhniiS þ cos2θhnjiS
− 2 sin θ cos θImðGijÞÞ;

hnRiðaÞ ¼ λ2ðcos2θhniiS þ sin θhnjiS
þ 2 sin θ cos θImðGijÞÞ:

(a) (b)

FIG. 6. Two wires attached to the system at sites i and j such that only one fermion can enter at a time. First, the fermions in the wire
are allowed to interact via the beam splitter S. Then, their occupation numbers nL and nR are measured on each side. In the first
measurement (a), one uses a symmetric beam splitter, which allows one to measure the imaginary part ofGij. In the second measurement
(b), one needs to use a beam splitter where the fermion that is transmitted from R to L accumulates a phase π, while it does not
accumulate this phase when being transmitted in the other direction. In this way, one can measure the real part of Gij.
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Choosing an angle θ ¼ π=4 gives the imaginary part
of Gij,

2λ2ImðGijÞ ¼ hnRiðaÞ − hnLiðaÞ:

For case (b), one obtains

hnLiðbÞ ¼ λ2(sin2θhniiS þ cos2θhnjiS
− 2 sin θ cos θReðGijÞ);

hnRiðbÞ ¼ λ2(cos2θhniiS þ sin θhnjiS
þ 2 sin θ cos θReðGijÞ):

Choosing the same angle θ ¼ π=4 gives the real part
of Gij,

2λ2ReðGijÞ ¼ hnRiðbÞ − hnLiðbÞ:

Hence, both the real and imaginary parts of the coherence,
as well as their statistical distribution, are experimentally
measurable (at least in principle).

APPENDIX B: SINGULAR
BEHAVIOR OF NONCONNECTED

CORRELATION FUNCTIONS

For the example of n ¼ 2, we show here why Eq. (51)
produces solutions gst that are singular at coinciding points,
whereas solutions gt of Eq. (54) are continuous (but not
differentiable). The corresponding equations for n ¼ 2 are
Eqs. (67) and (68). Namely,

ð∂t − ΔÞgst ðx; yÞ ¼ 2∂x∂y(δðx − yÞgtðxÞgtðyÞ)

and

ð∂t − ΔÞgtðx; yÞ ¼ 2δðx − yÞ∂xgtðxÞ∂ygtðyÞ:

Integrating these equations across the diagonal line
fx ¼ yg reveals that the van Neumann boundary conditions
will be singular for gst and regular for gt.
Let us perform this integration explicitly for Eq. (67). We

rotate the variables ðx; yÞ by π=4 clockwise, ðv; uÞ ¼
½ðx − y=

ffiffiffi
2

p Þ; ðxþ y=
ffiffiffi
2

p Þ�. Then, the derivative ∂v ¼
ð∂x − ∂y=

ffiffiffi
2

p Þ is orthonormal to the line fx ¼ yg, and

∂u ¼ ð∂x þ ∂y=
ffiffiffi
2

p Þ is parallel to the line. In these variables,
the equation reads

(∂t − ð∂2u þ ∂
2
vÞ)gst

�
uþ vffiffiffi

2
p ;

u − vffiffiffi
2

p
�

¼ ð∂2u − ∂
2
vÞ
�
δð

ffiffiffi
2

p
vÞρt

�
uþ vffiffiffi

2
p

�
ρt

�
u − vffiffiffi

2
p

��
:

Integrating
R
ϵ
−ϵ dv in this equation and keeping only terms

of Oð1Þ, we obtain

∂vgst

�
uþ vffiffiffi

2
p ;

u − vffiffiffi
2

p
�����ϵ

−ϵ

¼ ∂v

�
δð

ffiffiffi
2

p
vÞρt

�
uþ vffiffiffi

2
p

�
ρt

�
u − vffiffiffi

2
p

������ϵ
−ϵ
:

The expression simplifies due to cyclic invariance,
gst ðx; yÞ ¼ gst ðy; xÞ,

2∂vgst

�
uþ vffiffiffi

2
p ;

u − vffiffiffi
2

p
�����

v¼ϵ

¼ 2
ffiffiffi
2

p
δ0ð

ffiffiffi
2

p
vÞρt

�
uþ vffiffiffi

2
p

�
ρt

�
u − vffiffiffi

2
p

�����
v¼ϵ

:

Finally, we take ϵ → 0þ and find the van Neumann
boundary condition in both sectors fx > yg and fx < yg,

∂vgst jx¼yþ ¼ −∂vgst jx¼y− ¼
ffiffiffi
2

p
δ0ð0þÞρðxÞ2:

The delta function causes this derivative to blow up;
therefore, gst ðx; yÞ is indeed singular at x ¼ y. The same
procedure for Eq. (68) yields

∂vgtjx¼yþ ¼ −∂vgtjx¼y− ¼ −
1ffiffiffi
2

p ρ0tðxÞ2; ðB1Þ

which is finite.

APPENDIX C: SOLUTION FOR THE
DISCRETE DENSITY

The time-evolution equation for the discrete density (62)
can be rewritten as ∂tn ¼ Anþ n, with n ¼ ðn1;…; nLÞT ,
b ¼ ðα1;…; αLÞT , and

A¼

0
BBBBBB@

−1− ðα1 þ β1Þ 1

1 −2 …

… … …

… −2 1

1 −1− ðαL þ βLÞ

1
CCCCCCA
:

If A is diagonalizable, A ¼ SDS−1, a general solution for an
initial condition nð0Þ ¼ u is given by

nðtÞ ¼ expðAtÞuþ ðexpðAtÞ − 1ÞA−1b

¼ S expðDtÞðS−1uþD−1S−1bÞ þ A−1b: ðC1Þ

If α1þβ1¼1¼αLþβL, A is a so-called Tölpitz matrix
and has eigenvalues λk and normalized eigenvectors vk,
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λk ¼ −2þ 2 cosðkÞ;
ðvkÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðLþ 1Þ

p
sinðjkÞ;

with k ¼ ðπ=Lþ 1Þ; ð2π=Lþ 1Þ;…; ðLπ=Lþ 1Þ, from
which Eq. (63) can be derived. For general injection or
extraction rates, we obtain an ansatz

λk ¼ −2þ 2 cosðkÞ;
ðvkÞj ¼ eijk þ ske−ijk;

where sk and k are determined by the eigenvalue equations.
Denoting z ≔ eik, this leads to

0 ¼ ðzLþ1 − z−ðLþ1ÞÞ − ðAþ BÞðzL − z−LÞ
þ ABðzL−1 − z−ðL−1ÞÞ;

sk ¼ −e2ik
A − eik

A − e−ik
; ðC2Þ

where A ¼ 1 − ðα1 þ β1Þ and B ¼ 1 − ðαL þ βLÞ. Note
that even though this equation has 2Lþ 2 solutions for z,
only L of them give rise to eigenvalues with linearly
independent eigenvectors: If k is a solution, then −k is also
a solution, but the corresponding eigenvectors are linearly
dependent, v−k ¼ skvk. Furthermore, k ¼ 0 is a solution
with a zero eigenvector. Numerical solutions of Eq. (C2)
show that, for A; B ∈ ½1;−1�, all solutions of z lie on the
unit circle; therefore (taking into account that k ∼ −k and
k ≠ 0), we have k ∈ ð0; πÞ.
A site in the bulk, j ∼ aL, approaches the steady-state

value ðA−1bÞj according to the time-dependent part of
Eq. (C1). Again, since λk < 0, there is an exponential
decay. Only the smallest solution for k, denoted by k�, will
contribute. In the limit of large system size L, one can
check that k� ≈ π=L is the smallest positive solution for k.
Note that the amplitude ðvk� Þj ≈ eiaπ − e−iaπ of this term
stays finite (sk� ≈ −1). Then, the timescale with which the
bulk approaches the steady-state value is, as before,
tdecay ∼OðL2Þ.
At the boundary, the amplitude of the term correspond-

ing to k� will be zero. In general, for j ¼ 1, ðvk� Þ1 ¼
eik

� þ sk�e−ik
� ¼ 0. To have a nonzero amplitude, one has

to consider terms where k ∼ bLwith b ∼Oð1Þ, which leads
to tdecay ∼Oð1Þ.

APPENDIX D: ANALYTIC SOLUTION OF THE
CONNECTED TWO-POINT FUNCTION

Here, we outline how to solve the connected two-point
function analytically, which is needed for the comparison
with the solution of the discrete equations in the scaling
limit in Figs. 4 and 5.

1. Solution for the density

First, we construct an analytic solution of the density in
Eq. (65) with the domain-wall initial condition ρðx; 0Þ ¼
Θð1=2 − xÞ and boundary conditions ρð0; tÞ ¼ na;
ρð1; tÞ ¼ nb. We simplify the boundary conditions by sub-
tracting the stationary solution, ρ∞ðxÞ ¼ na þ xðnb − naÞ.
Then, we solve for ρ̃ðx; tÞ ¼ ρðx; tÞ − ρ∞ðxÞ, which has
simpler boundary conditions:

ð∂t − ∂
2
xÞρ̃ ¼ 0;

ρ̃ðx; 0Þ ¼ Θð1=2 − xÞ − na − xðnb − naÞ;
ρ̃ð0; tÞ ¼ ρ̃ð1; tÞ ¼ 0:

We find the solution by an expansion in fsinðnπxÞg∞n¼1.
These functions satisfy the correct boundary conditions and
are orthogonal in the sense that

R
1
0 sinðnπxÞ sinðmπxÞdx ¼

1
2
δnm. Importantly, they form a complete basis of L2ð½0; 1�Þ,

which justifies the expansion.
Taking into account the initial condition, we obtain

ρ̃ðx; tÞ ¼
X∞
n¼1

cn sinðnπxÞe−n2π2t;

cn ¼
2

nπ
(1 − ð−1Þnðna − nbÞ − 2naδn;odd

− ð−1Þn=2δn;even):

In the special case where the boundary conditions match
the initial conditions (na ¼ 1, nb ¼ 0), one finds

ρðx; tÞ ¼ 1 − x −
X∞
k¼1

ð−1Þk
kπ

sinð2πkxÞe−4π2k2t:

2. Solution for the connected two-point function

In Appendix B, we showed that the connected two-point
function gtðx; yÞ satisfies the van Neumann boundary
conditions (B1) on the diagonal fx ¼ yg. Here, we con-
struct a solution of Eq. (68) on the lower triangle
Tþ ¼ fðx; yÞ ∈ ½0; 1�2∶x ≥ yg: First, we identify a function
that satisfies the boundary conditions,

wðx; y; tÞ ¼ yð1 − xÞ∂xρðx; tÞ∂yρðy; tÞ:

Note that for t → ∞, w becomes the correct stationary
solution on Tþ. Then, we solve for fðx; y; tÞ ≔
gtðx; yÞ − wðx; y; tÞ, which satisfies an inhomogeneous
heat equation with homogeneous boundary conditions,
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ð∂t − ΔÞfðx; y; tÞ ¼ Sðx; y; tÞ
≔ 2ð1 − xÞ∂xρðx; tÞ∂2yρðy; tÞ
− 2y∂2xρðx; tÞ∂yρðy; tÞ;

fðx; y; 0Þ ¼ −yð1 − xÞδð1=2 − xÞδð1=2 − yÞ;
fðx; 0; tÞ ¼ 0 ¼ gð1; 0; tÞ ðDirichlet conditionÞ;
∂vfjx¼y ¼ 0 ðNeumann conditionÞ;

with ∂v ≔ ð∂x − ∂yÞ=
ffiffiffi
2

p
as in Appendix B. This is solved,

as before, by the method of eigenfunction expansion.
Note that

ψnmðx; yÞ ≔ sinðnπxÞ sinðmπyÞ þ sinðmπxÞ sinðnπyÞ

is a complete basis of L2ðTþÞ that satisfies the correct
Dirichlet and Neumann boundary conditions. It satisfies

Z
Tþ

ψnmðx; yÞψklðx; yÞdxdy ¼ δnkδml þ δnlδmk

4
:

We write Sðx;y;tÞ¼P
n≥m≥1 ŜnmðtÞψnmðx;yÞ and

fðx; y; tÞ ¼ P
n≥m≥1 f̂nmðtÞψnmðx; yÞ, where the coeffi-

cients are given by

ŜnmðtÞ ¼
�
4
R
Tþ Sψnm if n > m

2
R
Tþ Sψnn if n ¼ m:

This leads to ∂tf̂nm þ π2ðn2 þm2Þf̂nm ¼ Ŝnm, which is
solved by

f̂nmðtÞ ¼ f̂nmð0Þe−π2ðn2þm2Þt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ f̂homnm ðtÞ

þ
Z

t

0

eπ
2ðn2þm2Þðτ−tÞŜnmðτÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ f̂partnm ðtÞ

:

We get a solution fhom ¼ P
n≥m≥1 f̂

hom
nm ðtÞψnm of the

homogeneous equation that satisfies the initial condition
and a solution fpart ¼

P
n≥m≥1 f̂

part
nm ðtÞψnm. One finds

fhomðx; y; tÞ ¼
X
k;l≥0

ð−1Þkþlþ1e−π
2ðð2kþ1Þ2þð2lþ1Þ2Þt

× sin (ð2kþ 1Þπx) sin (ð2lþ 1Þπy)

¼ −
1

4
ϑ1ðπx; e−4π2tÞϑ1ðπy; e−4π2tÞ:

The precise expression for Ŝnm is rather complicated, and it
is easier to solve for fpart using the MATHEMATICA NDSolve
function. The complete solution is then gtðx; yÞ ¼
wðx; y; tÞ þ fhomðx; y; tÞ þ fpartðx; y; tÞ. By symmetry in
x and y, i.e., gtðx; yÞ ¼ gtðy; xÞ, this also determines a
solution on T− ≔ fðx; yÞ ∈ ½0; 1�2∶x ≥ yg.

APPENDIX E: PROOFS

1. Expansion of loop expectation values into
noncrossing partitions

The proof of Eq. (31) and its continuous version Eq. (56),
which relate the correlation function E½Gi1;i2 � � �Gin;i1 �≕ ½n�
to its connected part E½Gi1;i2 � � �Gin;i1 �c ≕ ½n�c through a
sum over noncrossing partitions (the notation [n] and ½n�c
are only used in this subsection), is based on the three
conditions (1)–(3) which can be stated more compactly as

(i) The measure E is Uð1Þ invariant (we will often
denote E½� � �� ¼ ½� � ��, where we dropped the sub-
script t from Et).

(ii) The connected-loop expectation value of n points
scales as ½n�c ∼ ð1=Ln−1Þ, and all other connected
correlations with equal numbers are either of the
same order or subleading.

Using themoment-cumulant formula (33), the essential point
is to show that cumulants

Eπ½Gi1i2 � � �Gini1 �c ≔
Y
b∈π

E½Gibð1Þibð2Þ…GibðjbjÞibð1Þ �c ðE1Þ

corresponding to crossing partitions π will be subleading
compared to noncrossing partitions π in the scaling limit.

a. Scaling of noncrossing partitions

We start the proof by showing that if π ¼ fbð1Þ;…; bðmÞg
is a noncrossing partition of f12; 23 � � � ; n1g, i.e., of the
edges of a loop with n nodes, then ½π�c ≔ Eπ½Gi1i2 � � �Gini1 �c
scales as L−nþ1 independently of the number of blocks m;
therefore, it behaves in the same way as the single-loop
expectation value E½Gi1i2 � � �Gini1 �c with n points.
First notice that if the blocks of π are not nested into each

other (e.g., π ¼ ff12; 23g; f34g; f45; 56; 61gg), then, by
Uð1Þ invariance, we have to connect starting and end points
of each block by a Kronecker δ. Once we arrive at the last
block, this condition is already satisfied because of the
other delta functions. We therefore need m − 1 delta
functions,

½π�c ¼ δ � � � δ|fflffl{zfflffl}
m−1

½bð1Þ�c � � � ½bðmÞ�c ∼ L−mþ1L−
P

m
i¼1

jbðiÞjþm

∼ L−nþ1;

where δ ∼ L−1 in the scaling limit and the sum over the
size jbðiÞj of each block is equal to the total number of
elements, n.
Next, assume that π has some nested blocks (e.g.,

π ¼ ff12; 23g; f45g; f34; 56; 61gg); then, treat each col-
lection of nested blocks as a big block B (e.g.,
B ¼ ff45g; f34; 56; 61gg), such that the argument above
applies to the non-nested blocks and the big blocks. Now,
we can iterate the argument for each big block B and for
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possible collections of nested sub-blocks therein. In the
end,m − 1 delta functions are needed to close each block in
π to form a loop, which shows that ½π�c ∼ L−nþ1 if π is
noncrossing.

b. Scaling of crossing partitions

Now, assume that π consists of a collection B of
noncrossing blocks with jBj elements in total and a
collection C of crossing blocks that cannot be disentangled
from one another with jCj elements in total (e.g.,
π ¼ ff12; 34g; f23; 45g; f56g; f67gg, B ¼ ff56g; f67gg,
and C ¼ ff12; 34g; f23; 45gg). Then, we have
jBj þ jCj ¼ n. If we treat B as an independent partition
of the cyclic set formed by all of its elements, then by the
argument above, ½B�c ∼ L−jBjþ1. Alternatively, we can view
B as the partition of the full loop from which we removed
all edges that belong to the collection C of crossing blocks,
leaving us with a smaller loop of jBj edges. If we assume
that ½C�c ∼ L−jCj (as will be shown below), then

½π�c ¼ δ½B�c½C�c ∼ L−1L−jBjþ1L−jCj ∼ L−n;

where only a single delta function is needed to connect the
collections B and C (because all the other delta functions
are already included in ½B�c and ½C�c). If π has more than
one collection C of crossing blocks that cannot be disen-
tangled, then it will scale with an even higher negative
power of L. This shows that crossing partitions are
subleading in the scaling limit compared to noncrossing
partitions.
It remains to show that ½C�c ∼ L−jCj (and probably even

½C�c ∼ L−jCj−1). The idea is to produce a collection of
crossing blocks starting with noncrossing blocks and
permuting its elements. Assume that fbð1Þ; bð2Þg is a
collection of two noncrossing blocks

bð1Þ ¼ fi1i2;…; ikikþ1g; bð2Þ ¼ fikþ1ikþ2;…; ini1g;

which would mean that there is only one delta function
δði1; ikþ1Þ necessary for the product of these blocks to be
nonzero. Then, construct a first crossing by inserting an
element ililþ1 from the “middle” of bð1Þ (and not from the
boundary) into bð2Þ,

bð1Þ → bð1Þ ¼ fi1i2;…; il−1il; ilþ1ilþ2;…; ikikþ1g;
bð2Þ → bð2Þ ¼ fililþ1; ikþ1ikþ2;…; ini1g;

which makes it necessary to insert a second delta
function, δðil; ilþ1Þ. In this way, one can continue to
permute elements between the two blocks, create more
crossings, and obtain C ¼ fbð1Þ; bð2Þg of sizes jbð1Þj ¼ k0

and jbð2Þj ¼ n − k0. Each new crossing necessitates a new
delta function. Note, however, that a new crossing is only
created if one permutes an element (a) that is still in its

original block, (b) whose neighbors have not yet been
permuted (we sort the elements ililþ1 in ascending order
with respect to the index l), and (c) that is not taken from
the boundary of the block. Since no connected correlation
function is more dominant than that of single loops, the two
blocks, after an arbitrary permutation between them, will
scale at most as ½bð1Þ� ∼ L−k0þ1 and ½bð2Þ� ∼ L−ðn−k0Þþ1. We
therefore have

½C�c ¼ δ � � � δ|fflffl{zfflffl}
#crossingsþ1

½bð1Þ�c½bð2Þ�c

∼ L−nþ1−#crossings:

As a consequence, in the case where C consists of two
crossing blocks, this shows that it scales at most with
½C�c ∼ L−jCj, where jCj ¼ n in our example.
If C is a collection of m crossing blocks, it is probably

still true that the number of delta functions is equal to
#crossingsþ 1. However, here it is only necessary that m
crossing blocks cause at least m delta functions. Then, the
scaling is

½C�c ¼ δ � � � δ|fflffl{zfflffl}
m

½bð1Þ�c · ½bðmÞ�c ∼ L−jCj;

which is sufficient. Note that two crossing blocks cause
at least two delta functions. However, each originally
noncrossing block that we add to the collection of crossing
blocks already comes with one delta function, even
before we permute its elements with the other blocks.
For example, if we have the crossing blocks
ff12; 34g; f23; 41gg, which need two delta functions
δð2; 3Þδð1; 4Þ and we add a block, then we have
ff12; 34g; f23; 45g; f56; 61g, which needs three delta
functions, δð2; 3Þδð1; 4Þδð4; 5Þ. If we now cross the new
block with the others, this cannot reduce the number of
delta functions. Therefore, this argument shows that m
crossing blocks indeed cause m delta functions and con-
cludes the proof.

2. Time evolution of connected-loop
expectation values

We show howEq. (54) follows from Eq. (51) by induction
overn.We start bywriting the sum2

P
i<j ¼

P
ij;j≠i in these

equations as a sum over all ordered, noncrossing, and
nonempty sets r ¼ fr1; r2;…g and s ¼ fs1; s2;…g with
i ¼ r1 and j ¼ s1 such that r ⊔ s ¼ ½n�≡ fx1;…; xng.
Throughout this paper, we use the symbol ⊔ to denote the
union of ordered, noncrossing, and nonempty subsets.
Furthermore, instead of gtðxi; xiþ1;…; xj−1Þ, we simply
write gðrÞ if r ¼ fxi; xiþ1;…; xj−1g. Then, the two equa-
tions become
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ð∂t − ΔÞgst ð½n�Þ ¼
X

r⊔s¼½n�
∂r1∂s1ðδðr1; s1Þgst ðrÞgst ðsÞÞ ðE2Þ

and

ð∂t − ΔÞgtð½n�Þ ¼
X

r⊔s¼½n�
δðr1; s1Þ∂r1gtðrÞ∂s1gtðsÞ: ðE3Þ

For n ¼ 1, the two equations are identical. Let us assume
that Eq. (E3) holds for all k ≤ n − 1 for some n ∈ N. We
use Eq. (E2) to show that it holds also for k ¼ n.
FromEq. (56), we know that gst can be expanded into gt as

a sum over noncrossing partitions π of ½n� ¼ fx1;…; xng.
Also recall that the dual partition π� is a partition on the
edges, which we name according to the convention

ðE4Þ

In this example,π ¼ ffx1; x2g;fx3; x4gg andπ� ¼ffx1;x3g;
fx2g;fx3gg. Then, denoting δðdÞ ¼ δðd1;…; djdjÞ, where d
is a block in π�, the expansion in noncrossing partitions is

gst ð½n�Þ ¼
X

π∈NCð½n�Þ

Y
d∈π�

δðdÞ
Y
b∈π

gtðbÞ: ðE5Þ

With Dπ ≔
Q

d∈π� δðdÞ
Q

b∈π gtðbÞ, we can evaluate the
right-hand side of Eq. (E2),

rhs ¼
X

r⊔s¼½n�
∂r1∂s1

�
δðr1; s1Þ

X
ρ∈NCðrÞ

Dρ

X
σ∈NCðsÞ

Dσ

�

¼
X

π∈NCð½n�Þn½n�

X
d∈π�
ðx;yÞ∈d

∂x∂yDπ; ðE6Þ

where ðx; yÞ ∈ d denotes all tuples with x ≠ y. To see the
second equal sign, one has to establish the bijection

fδðr1; s1ÞDρDσjρ ∈ NCðrÞ; σ ∈ NCðsÞ; s ⊔ r ¼ ½n�g
⟷

fðDπ; x; yÞjπ ∈ NCð½n�Þn½n�; ðx; yÞ ∈ d st d ∈ π�g:

For “→,” one draws the two diagramsDρ andDσ inside a
single big loop with nodes fr1; r2;…; s1; s2;…g ¼ ½n� and
connects r1 and s1 by a dotted line to represent the delta
function δðr1; s1Þ. This is equal to Dπ with two marked
nodes x ¼ r1 and y ¼ s1, where π ¼ ρ ∪ σ is a partition on
the big circle with at least two elements—therefore exclud-
ing the partition π ¼ f½n�g.

For “←,” one starts with ðDπ; x; yÞ. Since the two marked
nodes ðx; yÞ ∈ d ∈ π� belong to a block of the dual
partition, one can cut the diagram at these two nodes
without breaking any block b ∈ π. The cut therefore
defines independent noncrossing partitions ρ and σ on
the two noncrossing subsets r ⊔ s ¼ ½n�, where r1 ¼ x and
s1 ¼ y:

ðE7Þ

With the help of Eqs. (E5) and (E6), we can rewrite
Eq. (E2) and isolate the connected correlation function
gð½n�Þ, which is the term we are aiming for,

ð∂t−ΔÞgtð½n�Þ ¼
X

π∈NCð½n�Þn½n�

�
−ð∂t−ΔÞDπþ

X
d∈π�
ðx;yÞ∈d

∂x∂yDπ

�
:

ðE8Þ

The only information that is missing is the action of
ð∂t − ΔÞ on Dπ. We claim that

ð∂t − ΔÞDπ ¼
X
ðx;yÞ∈d
d∈π�

ð∂x∂y − ∂
g
x∂

g
yÞDπ

þ
X
ðx;yÞ∈b
b∈π

∂
g
x∂

g
yDπnb∪b1ðx;yÞ∪b2ðx;yÞ; ðE9Þ

the derivation of which comes at the end of this section. Let
us explain the arising terms:

(i) The first term is a sum over all blocks d of the dual
partition π�, from which we choose all possible
tuples ðx; yÞ with x ≠ y. The symbol ∂gx means that
the derivative only acts on the g’s and not the delta
functions that appear in Dπ , while ∂x acts on both.

(ii) The second term is a sum over all blocks b ∈ π, from
which we choose all possible tuples of edges ðx; yÞ
with x ≠ y. By the convention (E4), we denote the
neighboring nodes by the same name. This allows us
to cut the block b of edges along the nodes ðx; yÞ.
The two resulting blocks are denoted by b1ðx; yÞ and
b2ðx; yÞ. In partition πnb ∪ b1ðx; yÞ ∪ b2ðx; yÞ, b is
removed and replaced by the two blocks b1ðx; yÞ
and b2ðx; yÞ.

Note that the term with ∂x∂y is canceled once we plug
Eq. (E9) into Eq. (E8). This equation simplifies further if
we perform the sum over all π ∈ NCð½n�Þn½n�,
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X
π∈NCð½n�Þn½n�

�
−
X
ðx;yÞ∈d
d∈π�

∂
g
x∂

g
yDπ þ

X
ðx;yÞ∈b
b∈π

∂
g
x∂

g
yDπnb∪b1ðx;yÞ∪b2ðx;yÞ

�

¼ −
X

r⊔s¼½n�
∂
g
r1∂

g
s1Dfr;sg: ðE10Þ

Since π ≠ f½n�g, one can always find a block d ∈ π� that
consists of at least two nodes ðx; yÞ. We can join the two
blocks bðxÞ ∈ π and bðyÞ ∈ π to which the corresponding
edges x and y belong. This forms a block b of a new
partition π0 that differs from π only by this block,
π0nb ∪ bðxÞ ∪ bðyÞ ¼ π. Note that if π consists of only
two blocks, then π0 will consist of a single block, so
π0 ¼ f½n�g. Hence, we obtain a bijection

fðDπ; x; yÞjπ ∈ NCð½n�Þn½n�; ðx; yÞ ∈ dst:d ∈ π�g
⟷

fπ0nb ∪ b1ðx; yÞ ∪ b2ðx; yÞjπ0 ∈ NC½n�; ðx; yÞ ∈ b ∈ π0g:
However, π0 ¼ ½n� is not available in the above sum;
therefore, the terms

−
X
ðx;yÞ∈d
d∈π�

∂
g
x∂

g
yDπ

are uncanceled, where π consists of only two blocks. Then,
we can write π ¼ fs; rg, where r ⊔ s ¼ ½n�, which estab-
lishes the above equality.
Equation (E8) then simplifies to

ð∂t − ΔÞgtð½n�Þ ¼
X

r⊔s¼½n�
∂
g
r1∂

g
s1Dfr;sg

¼
X

r⊔s¼½n�
δðr1; s1Þ∂r1gtðrÞ∂s1gtðsÞ; ðE11Þ

which is what we wanted to show.
Proof of Eq. (E9). Recall that our notation ðx; yÞ ∈ b,

with b any block of a partition, assumes that x ≠ y. Two
identities for the δ functions of several variables that we
will need are X

x∈½n�
∂xδð½n�Þ ¼ 0; ðE12Þ

Δ½n�δð½n�Þ ¼ −
X
ðx;yÞ∈½n�

x≠y

∂x∂yδð½n�Þ: ðE13Þ

The subscript of the Laplacian denotes the set on which it
acts. For example, Δb ¼

P
x∈b ∂

2
x for some set b ⊂ ½n�. For

π ∈ NCð½n�Þn½n�, one finds

ð∂t − ΔÞDπ ¼ −
�
Δ
Y
d∈π�

δðdÞ
�Y

b∈π
gtðbÞ − 2

X
x∈½n�

�
∂x

Y
d∈π�

δðdÞ
��

∂x

Y
b∈π

gtðbÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðIÞ

þ
Y
d∈π�

δðdÞð∂t − ΔÞ
Y
b∈π

gtðbÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

:

Using
P

x∈½n� ¼
P

e∈π�
P

x∈e,

ðIÞ ¼ −
X
e∈π�

Y
d∈π�ne

δðdÞ
�
(ΔeδðeÞ)

Y
b∈π

gtðbÞ þ 2
X
x∈e

∂xδðeÞ∂x
Y
b∈π

gtðbÞ
�
:

With the help of the δ-function identities (E12) and (E13), we obtain

ðIÞ ¼
X
e∈π�

Y
d∈π�ne

δðdÞ
� X

ðx;yÞ∈e
(∂x∂yδðeÞ)

Y
b∈π

gtðbÞ þ 2
X

ðx;yÞ∈e
∂yδðeÞ∂x

Y
b∈π

gtðbÞ
�
:

This expression can be written as a total derivative of ∂x∂y up to the missing term ∂
g
x∂

g
y,

ðIÞ ¼
X
e∈π�

Y
d∈π�ne

δðdÞ
X

ðx;yÞ∈e

�
∂x∂y

�
δðeÞ

Y
b∈π

gtðbÞ
�
− δðeÞ∂x∂y

Y
b∈π

gtðbÞ
�
;

which, rewritten in terms of Dπ , is the first term that appears in Eq. (E9),

ðIÞ ¼
X
e∈π�

X
ðx;yÞ∈e

ð∂x∂y − ∂
g
x∂

g
yÞDπ:

For the second term, we need to use Eq. (E3), which by assumption holds for all k ≤ n − 1. Since π ∈ NCð½n�Þn½n�, the
assumption applies,
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ðIIÞ ¼
Y
d∈π�

δðdÞ
X
c∈π

ð∂t −ΔcÞgtðcÞ
Y
b∈πnc

gtðbÞ

¼
Y
d∈π�

δðdÞ
X
c∈π

X
r⊔s¼c

δðr1; s1Þ∂r1gtðrÞ∂s1gtðsÞ
Y
b∈πnc

gtðbÞ:

Instead of summing over r ⊔ s ¼ c, we can also sum over
ðx; yÞ ∈ c (where, as usual, x ≠ y). In this case, r and s are
the blocks b1ðx; yÞ and b2ðx; yÞ that result from cutting c
along the nodes ðx; yÞ,

ðIIÞ¼
Y
d∈π�

δðdÞ
X
c∈π

X
ðx;yÞ∈c

δðx;yÞ∂xgt(b1ðx;yÞ)∂ygt(b2ðx;yÞ)

×
Y
b∈πnc

gtðbÞ:

The expression can therefore be rewritten in terms of the
partition πnc ∪ b1ðx; yÞ ∪ b2ðx; yÞ, and it provides the
second term in Eq. (E9),

ðIIÞ ¼
X
c∈π

X
ðx;yÞ∈c

∂
g
x∂

g
yDπnc∪b1ðx;yÞ∪b2ðx;yÞ:

This concludes the derivation of the time-evolution equa-
tion of connected correlation functions.

a. Time evolution of the new measure

Here, we present the proof of the evolution equation (74)
of the new measure φt. We follow the explanation before
Eq. (E3) to rewrite the evolution of the connected corre-
lations gt as

ð∂t − ΔÞgtð½n�Þ ¼
X

r⊔s¼½n�
δðr1; s1Þ∂r1gtðrÞ∂s1gtðsÞ; ðE14Þ

where r ⊔ s ¼ ½n� denotes the union of noncrossing
subsets r ¼ fr1; r2; � � �g and s ¼ fs1; s2; � � �g of the set
½n� ¼ fx1;…; xng. The proof of Eq. (74) is, by induction,
over n. For n ¼ 1, φt and gt are identical and therefore
satisfy the same equation. Assume the formula holds for all
n ≤ k − 1 for some k ∈ N.
We start by evaluating its left-hand side making use of

Eq. (E14) (for better readability, we suppress the time
argument),

ð∂t − ΔÞφð½n�Þ ¼
X

π∈NCð½n�Þ

X
c∈π

ð∂t − ΔcÞgðcÞgπnc

¼
X

π∈NCð½n�Þ

X
c∈π

X
a∪a0¼c

δða1; a01Þ∂a1gðaÞ

× ∂a0
1
gða0Þgπnc: ðE15Þ

Here, Δc ¼
P

x∈c Δx, and πnc is the partition π without the
block c.

We continue with the right-hand side of Eq. (E14),

X
r⊔s¼½n�

δðr1; s1Þ∂r1φðrÞ∂s1φðsÞ

¼
X

r⊔s¼½n�
δðr1; s1Þ

�
∂r1

X
ρ∈NCðrÞ

gρ

��
∂s1

X
σ∈NCðsÞ

gσ

�

¼
X
r⊔s¼½n�
ρ∈NCðrÞ
σ∈NCðsÞ

δðr1; s1Þ∂r1g(bðr1Þ)∂s1g(bðs1Þ)gρnbðr1Þgσnbðs1Þ;

ðE16Þ

where the blocks bðr1Þ ∈ ρ and bðs1Þ ∈ σ are uniquely
defined by the fact that r1 ∈ bðr1Þ and s1 ∈ bðs1Þ.
Note that terms appearing in the sum in Eqs. (E15)

and (E16) agree iff a ¼ bðr1Þ, a0 ¼ bðs1Þ and πnc ¼
ρnbðr1Þ ∪ σnbðs1Þ. To show the equivalence between the
two sums, we note that there is a bijection between the sets,

fða; a0; πÞjπ ∈ NCð½n�Þ; a ∪ a0≕ c ∈ πg
⟷

fðr1; s1; ρ; σÞjρ ∈ NCðrÞ; σ ∈ NCðsÞ; r ⊔ s ¼ ½n�g:
For “→,” given π ∈ NCð½n�Þ; a ∪ a0 ≕ c ∈ π, this com-

pletely specifies terms in the sum in Eq. (E14). Define
r1 ¼ a1 and s1 ¼ a01. By the condition that r ⊔ s ¼ ½n� is
noncrossing, this uniquely defines the sets r and s. Since π
is noncrossing, once we take away the “connecting block”
c, πnc factorizes in a unique way into two noncrossing
partitions ρ̃ of rna and σ̃ of sna0. In other words,
πnc ¼ ρ̃ ∪ σ̃. Therefore, we can define ρ ¼ ρ̃ ∪ fag and
σ ¼ σ̃ ∪ fa0g such that, indeed, πnc ¼ ρna ∪ σna0. This
process produces a corresponding term in the sum of
Eq. (E16), which is completely specified by the
data ðr1; s1; ρ; σÞ.
For “←,” given ρ ∈ NCðrÞ; σ ∈ NCðsÞ; r ⊔ s ¼ ½n�, we

define a ¼ bðr1Þ, a0 ¼ bðs1Þ, and c ¼ a ∪ a0. It remains to
construct π ∈ NCð½n�Þ such that πnc ¼ ρna ∪ σna0. This is
achieved by defining π ≔ ρ ∪ σ ∪ fcg.

3. Steady-state solution

Here, we prove that φ∞ðx1;…; xnÞ ¼ minðx1;…; xnÞ is
a steady-state solution of Eq. (74).
We represent the minimum by a sum of Heaviside

functions ΘðconditionÞ, which equal 1 if the condition is
true and zero otherwise,

minðx1;…; xnÞ ¼
Xn
i¼1

xiΘðxi < fx1;…; x̂i;…; xngÞ:

The hat on x̂i suggests that xi is missing from the
set fx1;…; xng. We have ∂iminðx1;…; xnÞ ¼ Θðxi <
fx1;…; x̂i;…; xngÞ. Furthermore, derivatives of the
Heaviside function evaluate to
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∂iΘðxi < fx1;…; x̂i;…; xngÞ
¼ −

X
j≠i

δðxi; xjÞΘðxi < fx1;…; x̂i; x̂j;…; xngÞ;

∂jΘðxi < fx1;…; x̂i;…; xngÞ
¼ δðxi; xjÞΘðxj < fx1;…; x̂i; x̂j;…; xngÞ:

With these formulas, it is easy to check that

− Δminðx1;…; xnÞ
¼

X
i;j
i≠j

δðxi; xjÞΘðxj < fx1;…; x̂i; x̂j;…; xngÞÞ:

Furthermore, we have

δðxi;xjÞΘðxj < fx1;…; x̂i; x̂j;…;xngÞ
¼ δðxi;xjÞΘðxi < fxiþ1;…; x̂jgÞΘðxj < fxjþ1;…; x̂i−1gÞ:

As a consequence,

− Δminðx1;…; xnÞ
¼

X
i;j
i≠j

δðxi; xjÞ∂iminðxi;…; xj−1Þ∂j minðxj;…; xi−1Þ:

This is all we needed to prove our claim.
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