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We consider critical one-dimensional quantum systems initially prepared in their ground state and
perturbed by a smooth noise coupled to the energy density. By using conformal field theory, we deduce a
universal description of the out-of-equilibrium dynamics. In particular, the full time-dependent distribution
of any two-point chiral correlation function can be obtained from solving two coupled ordinary stochastic
differential equations. In contrast to the general expectation of heating, we demonstrate that, over the noise
realizations, the system reaches a nontrivial and universal stationary distribution of states characterized by
broad tails of physical quantities. As an example, we analyze the entanglement entropy production
associated to a given interval of size l. The corresponding stationary distribution has a 3=2 right tail for all
l and converges to a one-sided Levy stable for large l. We obtain a similar result for the local energy
density: While its first moment diverges exponentially fast in time, the stationary distribution, which we
derive analytically, is symmetric around a negative median and exhibits a fat tail with 3=2 decay exponent.
We show that this stationary distribution for the energy density emerges even if the initial state is prepared
at finite temperature. Our results are benchmarked via analytical and numerical calculations for a chain of
noninteracting spinless fermions with excellent agreement.
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I. INTRODUCTION

The coherent dynamics of macroscopic quantum systems
has attracted a lot of interest in the past years, both for its
fundamental importance and for its relevance to experimental
setups [1–4]. From the theoretical point of view, recent
advances have led to a much deeper level of understanding
about the mechanism of equilibration and thermalization of
isolated many-body quantum systems brought out of equi-
librium. In most cases, the eigenstate thermalization hypoth-
esis ensures relaxation to the canonical Gibbs ensemble and
the emergence of standard thermodynamics. In recent years,
the quest for intriguing out-of-equilibrium phases which
escape thermalization has pinpointed a few phenomena, such
as many-body localization (MBL) [5], equilibration toward
generalized Gibbs ensembles due to integrability [6], quan-
tum scars [7–9], and Hilbert space fragmentation [10,11].
In particular, for integrable systems, anomalous transport has

been observed beyond the expected ballistic, with super-
diffusive behavior [12–15]. Nevertheless, weak integrability
breakings have been shown to eventually lead to thermal-
ization [16–18].
Recently, the possibility of exploring periodically

driven systems has led to a larger class of setups, which
culminated in the discovery of discrete time crystalline
order [19,20]. The stability of these phases is based either
on MBL, which prevents heating to infinite temperature, or
on high-frequency expansion, which leads to long-lived
prethermal behavior [21].
Stochastic unitary dynamics has recently also attracted a

lot of interest, also for the possibility of realizing it in concrete
experiments, including cold-atom platforms [22,23] and
trapped ions [24–26]. From the theory side, several exact
results have recently emerged with discrete time evolution
involving random unitary circuits [27–29]. Although finite
time dynamics exhibits interesting connections to growth
processes, at large time the system relaxes to a trivial infinite
temperature ensemble. Other results are obtained in the
context of stochastic dynamics in continuous time [30–32],
on the Fredrickson-Andersen model [33], and the quantum
simple symmetric exclusion process (QSSEP) [34,35]. In
these cases, by looking at the average dynamics over noise
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realizations, one obtains an effective Lindbladian descrip-
tion, which once again admits only the infinite temperature
state as a stationary point. Physically, this is the consequence
of ergodicity in theunitarygroup,while, fromamathematical
perspective, it follows from the difficulty of having, in
general, any nontrivial steady state for a Lindbladian
combining a unitary dynamics and jump operators [36]. It
is not obvious, however, that the average dynamics is always
representative of the typical one. Recent studies, thus,
explore the statistical behavior beyond the average dynam-
ics [31], including large deviations [37–40]. In particular, for
the finite QSSEP with periodic boundary conditions, it was
shown that the stationary state [41] is uniformly distributed
amongGaussian states with the same occupancy of the initial
state [38]. In the presence of appropriate open boundary
conditions, a nontrivial steady state can be attained in the
QSSEP [35,42]. Another remarkable mechanism involves
the repeated monitoring of local degrees of freedom which
compete with the inner unitary dynamics of the system to
produce the measurement-induced phase transition, with
nontrivial stationary states visible in the statistics of entan-
glement [43–45]. In general, an important question for
quantumstochastic dynamics iswhether nontrivial stationary
distribution can emerge when the thermodynamic limit is
taken before the large-time one. In this direction, the finite
time fluctuations are studied for QSSEP in Ref. [46]. From
the experimental perspective, the observation of the statistics
beyond the average has recently been explored. In general, it
is based on the physical realization of multiple copies of the
same system undergoing the same stochastic evolution. This
is certainly possible in those setups where the noise has a
quenched physical origin (e.g., laser speckles in cold
atoms [47]). It is more problematic for the stochasticity
induced by quantum measurements, where two identical
realizations can only be the consequence of postselec-
tion [48]. Nevertheless, experimental indications of the
measurement-induced phase transition have been recently
reported in small systems [26].
In this paper, we consider critical one-dimensional

quantum systems initially prepared in their ground state.
In practice, the starting Hamiltonian is homogeneous and
gapless so that scale invariance is present. In this case, its
low-energy spectrum is independent on the microscopic
details and is well described by a conformal field theory
(CFT). The behavior of quantum systems perturbed by
different sources of noises has attracted great interest in the
recent years [49–51], in particular, investigating their
stability properties under 1=f noise [52,53]. Here, we
introduce a spatially smooth, white noise in time, coupled
at t > 0 to the energy density, and bring the system out of
equilibrium by evolving it under the corresponding unitary
dynamics. By using conformal field theory, we deduce a
universal description of the out-of-equilibrium dynamics.
We show that the full distribution of correlation functions
reaches a nontrivial stationary limit, not visible at the level

of noise averages which instead exhibit apparent heating.
Before going into the details, we summarize the model and
the results in the next section.

II. MODEL AND RESULTS

We consider a 1D model at a second-order quantum
phase transition, initially prepared in the ground state jΨ0i
of its gapless Hamiltonian Ĥ0. To simplify the notation, we
indicate the ground state averages as h…i ¼ hΨ0j…jΨ0i.
Also, we assume continuous space, but the treatment can be
readily extended to lattice systems in the scaling limit. At
time t ¼ 0, a perturbation Ĥ1 is turned on, by coupling a
space-dependent noise term with the system energy density.
The total Hamiltonian then takes the form

Ĥ ¼ Ĥ0 þ Ĥ1 ¼
Z

dx½1þ ηðx; tÞ�ĥðxÞ; ð1Þ

where ĥðxÞ is the Hamiltonian density and ηðx; tÞ is the
noise perturbation. Examples of this kind of Hamiltonian
with an experimental counterpart can be obtained, for
instance, by considering tight-binding noninteracting fer-
mions with a noisy hopping (see Sec. VIII) or antiferro-
magnetic Heisenberg chains with a stochastic modulation
of the coupling, whose out-of-equilibrium properties can be
investigated by means of neutron scattering [54]. A related
perturbation has been recently considered in Ref. [55],
where, however, the noise ηðx; tÞ in Eq. (1) is restricted to a
single-wavelength modulation, so that the Hamiltonian is
spanned by the SL2 finite subgroup of the Virasoro algebra.
Here, instead, we choose to characterize it by the space-
time correlation ηðx; tÞηðx0; t0Þ ¼ δðt − t0Þfðx − x0Þ. The
function fðxÞ controls the noise correlation and has the
dimension of a (turnover) time; it is even and has positive
Fourier transform, and we choose it smooth, monotonically
decreasing for x > 0, with a fast decay at infinity when
x ≫ 1. In the following, we use a hat to denote quantum
operators Ô and indicate as Q̄ the average of any quantityQ
over the noise realizations. It is well known that the low-
energy behavior of Ĥ0 can be described in terms of a CFT.
In the absence of the noise, the Heisenberg evolution of
chiral primary fields under H0 reduces to a translation in
time at the light velocity v: ϕ̂�ðy; tÞ ¼ ϕ̂�ðy� vtÞ. As
shown in Ref. [56], the coupling in Eq. (1) is such that the
time evolution of chiral primary fields is still equivalent to a
flow but along a random stochastic trajectory [see Eq. (7)].
In Ref. [56], the focus is on quench protocols resulting in an
initial state with short spatial correlation length, while here
the initial state is gapless with quasi-long-range order. This
implies that, for primary fields Φ̂ðx;tÞ¼ ϕ̂þðx;tÞ×ϕ̂−ðx;tÞ
with a scaling dimension Δ ¼ Δþ þ Δ−, the time evolution
of the two-point correlation function can be parametrized in
terms of κ�, two random functions of the spatial separation
l and time t:
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Cðl; tÞ≡ a2Δ0 hΦ̂ð0; tÞΦ̂ðl; tÞi
¼ Cðl; t ¼ 0Þe−Δþκþ−Δ−κ

−
; ð2Þ

where a0 is an ultraviolet cutoff. As we discuss below in
Sec. IV, the statistics of the random variable κ� can be
related to the joint distribution of four stochastic trajecto-
ries in the same noisy environment. By studying in detail
the resulting stochastic process, we show that the time-
dependent distribution of each κ ¼ κ� can actually be
reduced to the solution of two coupled ordinary stochastic
differential equations in Eq. (16) below. Quite surprisingly,
this leads to a stationary state t → ∞ characterized by broad
distributions of the variable κ� for all values of the
separation l. Such a distribution takes a simple universal
form in the limit of small and large l, compared to the
correlation length of the noise, here chosen of the order
of unity.
At large l ≫ 1, we set κ ¼ θl2χ=fð0Þ þOðlÞ and we

find that the random variable χ is distributed according to
the stable one-sided Levy distribution of index 1=2:

LðχÞ≡ 1ffiffiffiffiffiffi
2π

p e−1=2χ

χ3=2
ΘðχÞ: ð3Þ

For small l ≪ 1, we set κ� ¼ l2κ̃0½ðω=ω0Þ − 1�, where
κ̃0 and ω0 are constants expressed in terms of derivatives of
fðxÞ around x ¼ 0 [see Eq. (24)]. Then, we obtain the
following stationary distribution for the random variable ω:

BðωÞ≡ Γð3=4Þ
Γð1=4Þ

1ffiffiffi
π

p ð1þ ω2Þ3=4 : ð4Þ

As explained in Sec. VII, in the small l limit, one has the
proportionality hT�i ∝ liml→0 κ

�=l2, where T� are the
chiral components of the stress-energy tensors. We can,
thus, infer the stationary distribution of the local energy
density, since hðx; tÞ ¼ hĥðx; tÞi ¼ vðhT̂þi þ hT̂−iÞ. This
leads to

lim
t→∞

hðx; tÞ ∼in law vcκ̃0
4π

ðΩ=ω0 − 2Þ; ð5Þ

where c is the central charge of the underlying CFT and
Ω ¼ ωþ þ ω−. At large times, one expects the two chiral
components to be only weakly correlated, as they depend
from more and more distant regions. Thus, ωþ and ω− can
be assumed to be two independent random variables both
distributed according to BðωÞ. Thus, the stationary distri-
bution of the local energy density reaches a universal form,
still displaying a fat tail with 3=2 decay exponent and no
finite integer moments. This is consistent with our finding in
Eq. (40), where we compute the first moment at all time
and show that, as a consequence of conformal invariance,
it diverges exponentially fast in time. This is a clear

manifestation that the average over noise is not indicative
of the typical behavior of the full distribution. Interestingly
enough, we are able to extend such a result for the steady
distribution of the local energy density even if the initial state
is prepared at a finite temperature. Remarkably, the initial
temperature affects only the transient dynamics, while the
stationary distribution remains unchanged. As a conse-
quence, the 3=2 tail is robust even at finite temperature.
Equations (3) and (4) characterize asymptotic behavior

of the stationary distribution for κ at small and large l,
respectively. For intermediate values of l, a stationary
distribution for κ� is still reached, but its explicit form
depends on the function fðxÞ. Nonetheless, we prove that
the 3=2 exponent for the right tail is always present for any
l and a sufficiently smooth fðxÞ (see Appendix E 4). In
Appendix E 7, we provide a general method to find the
stationary distribution, together with analytical formula for
some specific solvable choices for fðxÞ.
A direct manifestation of these results can be seen in

bipartite entanglement Rényi entropies. Indeed, one can
express entanglement entropies in terms of correlators of
twist fields [57], which leads to the relation (see Sec. VI)

SðnÞ
t ¼ 1

1 − n
ln Tr½ρnl;t� ¼ SðnÞ

t¼0 þ
ðnþ 1Þc
24n

ðκþ þ κ−Þ; ð6Þ

where ρl;t is the reduced density matrix at time t of an

interval of length l and SðnÞ
t¼0 is the initial entropy of the

ground state. Assuming that at large times κþ and κ− are
only weakly correlated, the corresponding stationary dis-
tribution can be extracted by convolution. In general, the
3=2 right tail emerges for all sizes of the interval l.
To test the validity of the field theory description, in

Sec. VIII, we study analytically and numerically a chain of
noninteracting spinless fermions at half filling with a noisy
hopping. At low energy, they are well described by Dirac
fermions corresponding to a c ¼ 1 CFT. We identify a
scaling limit where the noise correlation length on the
lattice ξ diverges and the CFT predictions are exactly
recovered, as confirmed numerically by computing the
local energy and entanglement entropy on the lattice. We
make use of this lattice model also to estimate the time-
scales at which the CFT framework breaks down. In
practice, in the fermionic formulation, the initial ground
state corresponds to a filled Fermi sea up to the Fermi
momentum jkj < kF. Because of the noise, the sharp edges
start to effectively broaden and smoothen. We can, thus,
estimate the regime of validity of the CFT prediction as the
timescale at which the scale of broadening of each Fermi
point δkF becomes comparable to their relative distance
δkF ∼ kF. As shown in Sec. VIII C, the precise calculation
leads to the timescale τ� ∼ ξ ln ξ, such that, at times much
larger than τ�, significant deviations from CFT are to be
expected. Such a prediction is qualitatively confirmed in
our numerics.
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III. SOLUTION OF THE DYNAMICS VIA CFT

In this section, we summarize some results of Ref. [56]
which allow computing dynamical correlation functions in
the presence of the noise term (1) within the framework of
CFT. Beyond its application to equilibrium systems,
conformal symmetry [58] has been successfully employed
even in quantum quenches and general out-of-equilibrium
dynamics [59,60]. It implies that all local operators can be
split into two chiral [þ (−) for right (left) moving]
components organized into families [61]. All operators
within each chiral family descend from a primary field
ϕ̂�ðxÞ with given conformal dimension Δ�. In particular,
the Hamiltonian density can be represented as
ĥðxÞ ∼ v½T̂þðxÞ þ T̂−ðxÞ�, where v is the light velocity
and T̂þ and T̂− are the two components of the stress-energy
tensor, with T̂þðxÞ − T̂−ðxÞ the momentum density. This
implies that, under Ĥ0, chiral primary fields simply trans-
late in time ϕ̂�ðx; tÞ ¼ ϕ̂ðx ∓ vtÞ. Although the
Hamiltonian (1) manifestly breaks Lorentz invariance, it
is still possible to use the machinery of CFT to investigate
the corresponding dynamics. In Ref. [56], it is shown that
the time evolution of primary fields under Ĥ can be
interpreted as a conformal transformation. In practice,
one introduces the stochastic trajectories q�ðsÞ as a
solution of the Langevin equation

dq�ðsÞ
ds

¼ �vf1þ η½q�ðsÞ; s�g; ð7Þ

where the Ito convention is assumed. Then, we define the
functions X�

t ðyÞ as the initial condition for Eq. (7) at t ¼ 0

[i.e., q�ð0Þ ¼ X�
t ðyÞ] such that q�ðtÞ ¼ y. It follows that

the evolution of a primary field is simply given by

ϕ̂�ðy; tÞ ¼ ½X�0
t ðyÞ�Δ�

ϕ̂ðX�
t ðyÞ; 0Þ; ð8Þ

and arbitrary correlation functions at time t can be reduced
to those in the initial state via�Yn

i¼1

ϕ̂þ
i ðyi; tÞ

�
¼ J ðy1;…; ynÞ

�Yn
i¼1

ϕ̂þ
i ðXþ

t ðyiÞÞ
�
; ð9Þ

where the factor J ðy1;…; ynÞ ¼
Q

i½Xþ0
t ðyiÞ�Δþ

i accounts
for the Jacobian of the conformal transformation. An
analogous equation can be written for the other chiral
component with Xþ

t → X−
t and Δþ

i → Δ−
i .

To study the correlation functions in Eq. (9) and their
sample to sample fluctuations, we thus need the joint
probability distribution function (JPDF) of the set of 2n
random variables X�

t ðyjÞ, j ¼ 1;…; n. Let us first focus on
the JPDF of X�

t ðyjÞ ¼ xj for a fixed chirality, choosing
either �, which we denote P�

t ðxjyÞ. Given n trajectories
q�j ðsÞ satisfying Eq. (7) with end points q�j ð0Þ ¼ xj and

q�j ðtÞ ¼ yj, P�
t ðxjyÞ is, thus, the JPDF of the initial

positions x ¼ ðx1;…; xnÞ of these n trajectories condi-
tioned to the positions of their final point y ¼ ðy1;…; ynÞ.
As shown in Appendix A, it satisfies the Fokker-Planck
(FP) equation also studied in the context of turbulence and
passive scalar [62–64]:

∂tP�
t ðxjyÞ¼

�
�v

Xn
i¼1

∂iþ
v2

2

Xn
i;j¼1

∂i∂jfðxi−xjÞ
�
P�
t ðxjyÞ;

ð10Þ

where ∂i ¼ ∂=∂xi. Since all trajectories are evolving
according to Eq. (7) within the same realization of the
noise, they are correlated, which appears as an interaction
in Eq. (10). The martingale property from the initial time
implies xi ¼ yi ∓ vt; additionally, the trajectories cannot
cross one another, so that the coordinates y and x are
always ordered in the same way.

IV. TWO-POINT CORRELATIONS

Consider a primary field Φ̂ðx; tÞ ¼ ϕ̂þðx; tÞ × ϕ̂−ðx; tÞ
with a scaling dimension Δ ¼ Δþ þ Δ−. We are
interested in the two-point correlator Cðy1; y2; tÞ ¼
a2Δ0 hΦ̂ðy1; tÞΦ̂ðy2; tÞi. At t ¼ 0, conformal invariance
implies

Cðx1; x2; t ¼ 0Þ ¼
�

a0
x1 − x2

�
2ðΔþþΔ−Þ

: ð11Þ

Making use of Eq. (9), we can relate the correlator at time t
with the one at initial time, which leads to

Cðy1; y2; tÞ ¼ Cðy1; y2; t ¼ 0Þe−Δþκþ−Δ−κ
−
; ð12Þ

where we assume y1 > y2 and we set

κ�ðy1; y2; tÞ ¼ ln

���� ½X�
t ðy1Þ − X�

t ðy2Þ�2
ðy1 − y2Þ2X�0

t ðy1ÞX�0
t ðy2Þ

����: ð13Þ

This expression gives access to the full statistics of the
correlation function. We first focus on either κþ or κ−.
Indeed, the trajectories corresponding to the two chiral
components are typically separated by a distance of
approximately 2vt. Therefore, at large time for 2vt ≫ 1,
the noises they feel become uncorrelated, and it is reason-
able to expect the two components to have little statistical
correlation. Let us define l≡ y1 − y2 > 0 and the dimen-
sionless ratio r≡ ½X�

t ðy1Þ − X�
t ðy2Þ�=l. Using spatial

homogeneity, the one-point PDF of κ ¼ κ�ðy1; y2; tÞ can
be only a function of l and t and must be independent on
the chirality. Although this PDF does not obey a closed
equation, we can derive a FP equation for the JPDF Ptðr; κÞ
of κ and r. Here, we sketch the procedure, leaving the
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technical details to Appendix B. We first perform a point
splitting in the derivatives in Eq. (13):

X�0
t ðyÞ ¼ lim

ϵ→0

X�
t ðyþ ϵÞ − X�

t ðyÞ
ϵ

: ð14Þ

Therefore, in the limit ϵ → 0, both κ�ðy1; y2; tÞ and r
depend only on the initial points x1, x2, x3, and x4 of four
trajectories ending, respectively, at y1, y2, y1 þ ϵ, and
y2 þ ϵ, whose JPDF is given by Eq. (10) for n ¼ 4 (see
Fig. 1 for a sketch). Because of homogeneity, the center of
mass x1 þ x2 decouples and one obtains, in the limit ϵ → 0,
a FP equation for the JPDF involving only the three
variables

r ¼ rðy1; y2; tÞ≡ Xtðy1Þ − Xtðy2Þ
y1 − y2

¼ x1 − x2
l

; ð15Þ

x01 ¼ ðx3 − x1Þ=ϵ, and x02 ¼ ðx4 − x2Þ=ϵ. Remarkably, per-
forming another change of variable, one finds that the
random variables r and κ ¼ log½r2=ðx01x02Þ� satisfy a stand-
alone FP equation. Instead of working directly with this
equation, it is more convenient to reformulate the problem
in terms of an equivalent stochastic differential equation
(SDE) in Ito’s form (see Appendix B)

dr ¼ vdW1ðtÞ; dκ ¼ v2gðrÞdtþ vdW2ðtÞ; ð16Þ

where v2gðrÞ is a drift term and dW1ðtÞ and dW2ðtÞ are two
centered Gaussian white noises in time of r-dependent

variances dW1ðtÞ2 ¼ 2AðrÞdt and dW2ðtÞ2 ¼ 2CðrÞdt and
cross-correlation dW1ðtÞdW2ðtÞ ¼ BðrÞdt [65]. To sim-
plify the notation, we introduce

AlðrÞ ¼
fð0Þ − fðlrÞ

l2
;

BlðrÞ ¼
2f0ðlrÞ

l
þ 4½fð0Þ − fðlrÞ�

l2r
;

ClðrÞ ¼
4½fð0Þ − fðlrÞ þ lrf0ðlrÞ�

l2r2
− f00ð0Þ − f00ðlrÞ;

glðrÞ ¼ −f00ð0Þ − 2½fð0Þ − fðlrÞ�
l2r2

: ð17Þ

Equations (16) must be solved with the initial condition
r ¼ 1 and κ ¼ 0 at t ¼ 0. A remark is in order: By
construction, Eqs. (16) [and Eq. (10)] are derived by
adding a time slice dt in the backward time direction
(Fig. 1). This poses no problems if one is interested in the
distribution of κ in Eq. (12) at a fixed time t, and this is the
focus in this work. However, the backward and forward
evolutions lead to different stochastic processes in t [66]. In
particular, correlations in time of the forward process (13),

e.g., κ�ðy1; y2; tÞκ�ðy01; y02; t0Þ, cannot be obtained from
Eqs. (16).
Since the equation for r does not involve κ, one may first

solve for rðtÞ and then insert the solution for rðtÞ in the
equation for κðtÞ. For finite l, Eq. (16) cannot be solved
explicitly for an arbitrary fðxÞ. Nevertheless, one can
understand its behavior at finite time in two regimes
l ¼ y1 − y2 ≫ 1 and l ¼ y1 − y2 ≪ 1, as well as in the
large-time limit.

A. Small separation l ≪ 1

For small l ≪ 1, we can Taylor expand the function f in
Eq. (17). One finds the leading behavior at small l of each
function as

AlðrÞ ≃ −
1

2
fð2Þð0Þr2; BlðrÞ ≃

l2

6
fð4Þð0Þr3; ð18Þ

ClðrÞ ≃ −
l4

72
fð6Þð0Þr4; glðrÞ ≃

l2

12
r2fð4Þð0Þ: ð19Þ

The positivity of the Fourier transform of fðxÞ
implies alternating signs of the even derivatives
sgn½fð2nÞð0Þ� ¼ ð−1Þn, and, thus, all variables above are
positive. We see that Eq. (16) can be rewritten, after
a redefinition of the noises dW1ðtÞ ¼ rdB1ðtÞ and
dW2ðtÞ ¼ −ðl2=6Þr2dB2ðtÞ, in the form

dr¼ rvdB1ðtÞ; dκ¼l2r2v
6

(
vfð4Þð0Þdt

2
−dB2ðtÞ); ð20Þ

where now dB1ðtÞ and dB2ðtÞ are r-independent Gaussian
white noises with fixed correlation matrix dB1ðtÞ2 ¼
−f00ð0Þdt, dB2ðtÞ2 ¼ −fð6Þð0Þdt, and dB1ðtÞdB2ðtÞ ¼
−fð4Þð0Þdt.

FIG. 1. Sketch of the four trajectories required to access the full
PDF of two-point correlation functions in the limit ϵ → 0.
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Let us first discuss the marginal distribution PtðrÞ of r in
this regime l ≪ 1. One can solve the stochastic equation
for r and obtain after an application of Ito’s lemma:

rðtÞ ¼ e−θtþvB1ðtÞ: ð21Þ

We define θ ¼ −v2f00ð0Þ=2 > 0, which is the inverse of a
characteristic time. Alternatively, one can change the
variable to ρ ¼ log r, which obeys the stochastic equation
dρ ¼ −θdtþ vdB1ðtÞ, implying that ρðtÞ is a Brownian
motion with a drift. Hence, PtðrÞ is a log-normal distri-
bution for the variable r, with average and variance

ln r ¼ −θt; Var½ln r� ¼ 2θt: ð22Þ

Since θ > 0, this shows, interestingly, that the trajectories
Xtðy1Þ and Xtðy2Þ tend to get closer as time grows, a
manifestation of the phenomenon of sticky particles
observed in turbulent fluids [68–71]. On the other hand,
r̄ ¼ 1 holds independently of time, which shows that,

although the typical value rtyp ¼ elog r decreases to zero,
the distribution of r is necessarily broadening with time.
Hence, higher moments grow with time, and, within the
small l approximation (21), one has rn ∼ enðn−1Þθt. Using
this result, it is easy to calculate the noise average of κ ¼ κ�

by simply averaging Eq. (20) using that dB2 ¼ 0.
Integrating over time, one finds

κ̄ ¼ v2fð4Þð0Þl2

24θ
ðe2θt − 1Þ þOðl4Þ: ð23Þ

This result allows one to obtain the noise average of
lnCðy1; y2; tÞ, irrespective of the possible correlations
between κþ and κ−, by averaging the logarithm of
Eq. (12). It is possible to calculate the higher integer
moments κn, and one finds (see Appendix F) that they all
grow exponentially with time within the validity of the
small l regime. However, upon averaging Eq. (16) over the
noise, we observe that κ ≤ 2θt is an exact bound, since
gðrÞ ≤ gð∞Þ ¼ −f00ð0Þ. Thus, while the moments are still
diverging at large time, the fast exponential growth is valid
only when l2e2θt ≲ 1.
Nevertheless, as we now show, the PDF of κ remarkably

converges to a stationary distribution at large time. This
distribution is very broad and consistently does not possess
any integer moments for n ≥ 1. To obtain the PDF of κ, we
proceed in two steps: First, we plug the solution (21) into the
equation (20) for κ; second, we reparametrize the Wiener
processesB1ðtÞ andB2ðtÞ by looking at them from their final
point, i.e., setting B̃1;2ðsÞ ¼ B1;2ðtÞ − B1;2ðt − sÞ (see
AppendixD for details). This allows us to recast the resulting
stochastic equation in the standard form studied by
Bougerol [72,73]. This equation is best expressed with a
change of variable κ ¼ l2κ̃0ðω=ω0 − 1Þ with

κ̃0 ¼ −
1

12

fð4Þð0Þ
f00ð0Þ ;

ω0 ¼
fð4Þð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fð6Þð0Þfð2Þð0Þ − fð4Þð0Þ2
q ; ð24Þ

which leads to the SDE for the variable ω in the form

dω¼ 2θωdtþ
ffiffiffiffiffi
8θ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þω2

p
dB̃; ωðt¼ 0Þ ¼ ω0; ð25Þ

where B̃ðtÞ is a single standardWiener process [dB̃ðtÞ2¼dt]
expressed as a linear combination of B̃1;2ðtÞ. Note that ω0 is
always real and positive because of Cauchy-Schwarz
inequality [see Eq. (D12)]. In the large-time limit, the
variable ω attains the stationary distribution Eq. (4). To
see this explicitly, we perform another change of variable
ω ¼ sinhðYÞ, so that the random variable Y satisfies

dY¼−2θ tanhYdtþ
ffiffiffiffiffi
8θ

p
dB̃; sinh½Yð0Þ� ¼ω0: ð26Þ

Equation (26) describes the Langevin motion of a particle in
a confining potential UðyÞ ¼ 2θ log cosh y ≃ 2θjyj at tem-
perature 4θ. Hence, it reaches an (equilibrium) stationary
measure at large time, PstatðYÞ ¼ C=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðYÞp

with
C ¼ ffiffiffiffiffiffi

2π
p

=Γð1=4Þ2, which corresponds to the stationary
distribution (4) for the variable ω. Consistently, the power-
law tail∝ jωj−3=2 implies thatω (and κ aswell) does not have
finite integer moments.
We remark that, because of the reparametrization

BjðtÞ → B̃jðsÞ, the stochastic process (25) for ω and the
original one for κ in Eq. (20) are not equivalent: The former
is ergodic in time, while the latter has a finite (random) limit
κðt → ∞Þ. Nevertheless, they are equivalent in law at fixed
t (see also the discussion in Appendix D).

B. Large interval l ≫ 1 at short times

The leading behavior at large l of each function up to
Oð1=l2Þ reads

AlðrÞ ≃
fð0Þ
l2

; BlðrÞ ≃ 4
fð0Þ
l2r

;

ClðrÞ ≃ − f00ð0Þ þ 4
fð0Þ
l2r2

; glðrÞ ≃−f00ð0Þ− 2fð0Þ
l2r2

;

ð27Þ

where we assume that fðxÞ decays faster than a power law.
At leading order, one can set BlðrÞ ≃ 0, which implies that
the equation (16) for κ becomes independent of r. Using
glðrÞ ≃ −f00ð0Þ and ClðrÞ ≃ −f00ð0Þ to leading order, one
obtains

κ ¼ 2θtþ
ffiffiffiffiffi
4θ

p
WðtÞ; r ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2fð0Þp

v
l

W̃ðtÞ; ð28Þ
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where WðtÞ and W̃ðtÞ are two uncorrelated standard

Brownian motions with dWðtÞ2 ¼ dW̃ðtÞ2 ¼ dt. Note that
the growth of κ̄ saturates the exact bound κ̄ < 2θt. To obtain
this result, we assume not only that l ≫ 1, but also that
lr ≫ 1. Although this condition holds for finite time, since
r is undergoing diffusion, we see from Eq. (28) that, for
t ∼ l2=fð0Þ, rðtÞ may become close to zero and the
condition is violated. So, this large l expansion holds
only at short times. In order to access the large-time limit,
we need a different approach that we present in the next
section.

V. LARGE-TIME LIMIT FOR ARBITRARY l

To search for a stationary distribution for any l, we
derive in Appendix E an evolution equation for the

characteristic function of κ, Qkðr0; tÞ ¼ e−ikκr0 , where
the superscript r0 ¼ rðt ¼ 0Þ indicates the initial condition
for the variable r in Eq. (16), ultimately setting r0 ¼ 1.
Looking for a time-dependent solution in the large-time
limit Qkðr0; tÞ → Qkðr0Þ, it is useful to perform a shift by
extracting an exponential factor QkðrÞ ¼ eikκ0ðlrÞGkðrÞ,
with

κ0ðxÞ ¼ − log

�
2½fðxÞ − fð0Þ�

x2f00ð0Þ
�
: ð29Þ

In this way, the function GkðrÞ satisfies the Schrödinger-
like equation for r ≥ 0

−G00
kðrÞ − kðkþ iÞVðrÞGkðrÞ ¼ 0 ð30Þ

with boundary conditionsGkð0Þ¼1 and limr→þ∞GkðrÞ¼0.
The potential takes the form

VðrÞ ¼ −
d2

dr2
log½fð0Þ − fðlrÞ� þ l2f00ð0Þ

fð0Þ − fðlrÞ : ð31Þ

Studying this equation (see Appendix E), we find that
the stationary distribution PstatðκÞ [obtained by Fourier
inversion of Qkðr ¼ 1Þ] depends nontrivially on l and
fðxÞ. Additionally, the fact that GkðrÞ depends on k only
via the combination kðkþ iÞ implies the exact symmetry
relation

Pstat½−κ0ðlÞ þ u�
Pstat½−κ0ðlÞ − u� ¼ eu; ð32Þ

reminiscent of a fluctuation theorem [74]. In the limit of
small l, one has κ0ðlÞ → l2κ̃0, and as a consistency check,
inAppendixE 5,we reobtain the asymptotic solution at small
l (4) derived in Sec. IVA in a completely different way.
Note that in this limit Eq. (32) reduces to BðωÞ ¼ Bð−ωÞ
in Eq. (4).

In the opposite limit of large l, one observes that
the potential approaches a constant value VðrÞ →
l2f00ð0Þ=fð0Þ, which leads to the simple solution of

Eq. (30) in the form GkðrÞ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðkþiÞθ=fð0Þ

p
rl. As a

consequence, setting κ ¼ θl2χ=fð0Þ, one finds that, in
the limit l → ∞, the variable χ is distributed according to

LðχÞ≡ 1ffiffiffiffiffiffi
2π

p e−1=2χ

χ3=2
ΘðχÞ; ð33Þ

i.e., to the stable one-sided Levy distribution of index 1=2.
Note that in this limit the shift κ0ðlÞ ¼ O½logðlÞ� and is
negligible with respect to κ ¼ Oðl2Þ. Additionally, the
symmetry Eq. (32) is consistent with Lðχ < 0Þ ¼ 0.
Equations (4) and (33) characterize asymptotic behavior

of the stationary distribution for κ at small and large l,
respectively. For intermediate values of l, an explicit
expression is not available for generic fðxÞ. However,
we provide some cases which are analytically solvable for
any l, e.g., for fðxÞ ¼ ð1= cosh xÞn with n ¼ 1, 2.
In Appendix E 4, we prove that, for sufficiently smooth

fðxÞ, QkðrÞ ¼ 1þOð ffiffiffi
k

p Þ at small k, irrespectively of l.
This translates onto a −3=2 power-law tail on the positive κ
side. For the left tail κ → −∞, it follows from Eq. (32) that
PstatðκÞ decays exponentially for any finite l > 0. An
intuition on why the 3=2 exponent appears is as follows:
The random variable r is attracted to r ¼ 0 since, for r < 1,
log r is approximately Brownian with a negative drift [see
Eq. (22)]. In this regime, κ remains almost constant as
dκ ∝ r2dt. However, r starts from 1 and has a finite
probability to move right toward r > 1; in this case, κ
increases by ∼Δt [see Eq. (28)], where Δt is the time
interval spent before rðtÞ hits again 1. Since in this regime
rðtÞ is approximately an unbiased Brownian, Δt is the
corresponding first-passage time, distributed as 1=ðΔtÞ3=2.
Finally, let us recall that for time t ≫ 1=ð2vÞ the two

chiral components κþ and κ− are expected to decorrelate;
hence, their joint distribution reaches in the large-time
limit the factorized form PstatðκþÞPstatðκ−Þ. We expect that
κ�ðtÞ defined in Eq. (13) as a stochastic process in time
has Pstatðκ�Þ as the one-time ergodic measure. As we
already clarified, this is not in contradiction with the
fact that κ defined in the auxiliary stochastic system (16)
has a (random) finite limit κ�ðt → ∞Þ (see also the remark
in Appendix D).

VI. ENTANGLEMENT PRODUCTION

An interesting application of the above results is
the calculation of the entanglement entropies. Let
us define as ρA;t the reduced density matrix for the
interval A ¼ ½y1; y2� at time t. Then, the Rényi entropies

are defined as SðnÞ
t ¼ 1=ð1− nÞ ln TrρnA;t. Introducing

the twist fields Φ̂nðy;tÞ [57], one can identify
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TrρnA;t ∝ hΦ̂nðy1; tÞΦ̂nðy2; tÞi. As anticipated in Eq. (6), we
can, thus, express the entropy production SðnÞt ≡ SðnÞ

t −
SðnÞ
t¼0 using Eq. (12) as

SðnÞt ¼ ðnþ 1Þc
24n

ðκþ þ κ−Þ; ð34Þ

where we use that for twist fields Δ� ¼ cðn − 1=nÞ=24.
The von Neumann entropy corresponds to n ¼ 1, and we
denote it simply as St. Equation (34) shows that all the
Rényi entropies are controlled by the same random
variable and that the details of the model enter only in
the prefactor via the central charge. From Ref. [75], it
implies that the entanglement spectrum retains the same
form in each noise realization. In other words, denoting as
λi;t the eigenvalues of ρA;t and as λmax;t their maximum, the
density of log λ= log λmax;t is independent of the noise,
while log λmax;t ¼ −c=24ðκþ þ κ−Þ þOð1Þ. Using that the
noise average SðnÞt ¼ ½ðnþ 1Þc=12n�κ̄, we see that at early
times two different growth regimes exist: For large
intervals (l ≫ 1) the average entropy production grows
linearly with time as in Eq. (28), while for small intervals
it grows as in Eq. (23). Finally, at large time, we find that
the entropy production (34) reaches a stationary distribu-
tion given up to a scale by the convolution Pstat � Pstat
determined above, still with a −3=2 power-law tail and no
finite integer moments.

VII. DISTRIBUTION OF THE ENERGY DENSITY

An interesting quantity to look at is the dynamics of the
energy density, which, in the CFT mapping, is encoded in
the stress-energy tensor T̂þðxÞ and T̂−ðxÞ. Their time
evolution can be obtained by direct calculation of the
commutators ½Ĥ; T̂�ðxÞ� in the Heisenberg equation (see
Appendix F). Alternatively, one can use the fact that time
evolution can be seen as a conformal mapping, and the
corresponding transformation of the stress energy reads [61]
(for simplicity, we omit the � superscript)

T̂ðy; tÞ ¼ jX0
tðyÞj2T̂ðXtðyÞ; t ¼ 0Þ − c

24π
ðS · XtÞðyÞ; ð35Þ

where the second term is proportional to the central change
c and the Schwarzian derivative

ðS · XtÞðyÞ ¼
2X000ðyÞX0ðyÞ − 3X00ðyÞ2

2X0ðyÞ2 : ð36Þ

Since in the initial ground state hT̂ðy; 0Þi ¼ 0, one has

hT̂ðy; tÞi ¼ −
c

24π
ðS:XtÞðyÞ: ð37Þ

The time evolution of this quantity can be simply obtained
from the above analysis of κ� in the regime l → 0. Indeed,
expanding Eq. (13) in small y1 − y2, we see that

lim
l→0

1

l2
κðy2 þ l; y2; tÞ ¼ −

1

6
ðS:XtÞðy2Þ: ð38Þ

Equation (38) is well known in the CFT context: It reflects
the occurrence of the conformal anomaly in the transport of
the stress tensor in a Gaussian free field theory; see
Ref. [61]. Here, it implies that the distribution of
hT̂�ðy; tÞi can be obtained from the one of κ� in the limit
of small l. Following the derivation in Sec. IVA, one can
express the full distribution over the noise as

hT̂ðy; tÞi ¼in law cκ̃0
4π

�
ω

ω0

− 1

�
; ð39Þ

where the random variable ω is a solution of Eq. (25). We
observe a remarkable identification between the entangle-
ment of an infinitesimal interval and the local energy
density. Indeed, denoting the time-dependent local energy
density as the quantum expectation hðx; tÞ≡ hĥðx; tÞi ¼
vðhT̂þi þ hT̂−iÞ, one has hðx; tÞ ¼ liml→0 vSt=ðπl2Þ.
Additionally, defining the noise average (which is space
independent) as eðtÞ≡ hðx; tÞ, one has from Eq. (23)

eðtÞ ¼ cv3fð4Þð0Þ
48πθ

ðe2θt − 1Þ: ð40Þ

For t ≫ 1=ð2vÞ, we expect hT̂�i to decorrelate; thus, from
Eq. (24), we extract the stationary distribution of the one-
point energy density:

lim
t→∞

hðx; tÞ ∼in law vcκ̃0
4π

ðΩ=ω0 − 2Þ; ð41Þ

where Ω ¼ ωþ þ ω− and ω� are independent random
variables both distributed according to BðωÞ in Eq. (4).
Surprisingly enough, these considerations can be

extended to an initial state prepared at a finite inverse
temperature β. Let us define hÔiβ ¼ Tr½Ôe−βH0 �=Zβ with
the partition function Zβ ¼ Tr½e−βH0 �. In this case, the
quantum expectation of the stress-energy tensor in the initial
state takes the form hT̂ðy; 0Þiβ ¼ πc=ð12β2v2Þ [76,77].
Starting from Eq. (35), we can employ Eqs. (38), (14),
and (15) to express the random variable Tβ ≡ hT̂ðy; tÞi in
terms of r and κ in the limit of small l as

Tβ ¼ lim
l→0

�
πcr2

12β2v2
þ c
4π

κðy; yþ l; tÞ
l2

	
: ð42Þ

Following a procedure similar to Sec. IVA, in Appendix H,
we show that Eq. (39) retains its validity even for a finite
temperature initial state, where the random variable ω is still
a solution of Eq. (25) but the inverse temperature β modifies
the initial condition as
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ωβðt ¼ 0Þ ¼ ω0 þ
π2ω0

3β2κ̃0v2
: ð43Þ

It thus follows that, after an initial transient, the distribution
of the stress-energy tensor reaches the same stationary limit
irrespectively of the inverse temperature β.

VIII. COMPARISON WITH FREE FERMIONS

A. Tight-binding model

We consider a model of noninteracting spinless fer-
mions, where we denote τ the time in the lattice model with
Hamiltonian

ĤF ¼
X
i

½1þ ηiðτÞ�ĥi;

ĥi ¼ −Jðâ†i âiþ1 þ â†iþ1âiÞ: ð44Þ

Note that the local energy density is defined only up to a
total derivative. Such an ambiguity could, in principle, spoil
the identification with the continuum limit. A good way to
fix it is to impose local parity invariance, which is verified
in Eq. (44) [78–80]. On the contrary, in the presence of a
finite chemical potential, a slightly different definition is
required (see Appendix G). In the absence of noise, this
corresponds to a dispersion relation ϵðkÞ ¼ −2J cosðkÞ. For
the noise, we choose the correlation

ηiðτÞηjðτ0Þ ¼ τ0δðτ− τ0ÞFði− jÞ; FðjÞ¼ fðj=ξÞ; ð45Þ

where ξ is the characteristic correlation length of
the discrete model and in the numerics we choose
fðxÞ ¼ 1= coshðxÞ, as it corresponds to an analytically
solvable case in the CFT limit. The dynamics induced by
Eq. (44) is better studied in terms of the noise-averaged

Wigner function nτðkÞ ¼
P

j0 hâ†jþj0 âjiτeikj
0
, where h� � �iτ

denotes the quantum average at time τ under the evolution
ĤF in Eq. (44). We choose the initial state as the ground
state so that nτðkÞ does not depend on the lattice site j.
Also, nτ¼0ðkÞ ¼ Θðkþ kFÞ − Θðk − kFÞ, where ΘðzÞ is
the Heaviside function and kF is such that ϵðkFÞ ¼ 0 and
kF ¼ π=2, which corresponds to half filling. The system is
critical and can be described with a conformal field theory
with central charge c ¼ 1 [81].

B. Scaling limit

Using the Wigner function, we can express the noise-
averaged energy density with respect to the ground state:

eFðτÞ≡ hĥiiτ − hĥii0 ¼
Z

dk
2π

ϵðkÞ½nτðkÞ − n0ðkÞ�: ð46Þ

One can derive (see Appendix G) an exact evolution
equation for nτðkÞ, which reads

∂τnτðkÞ ¼ τ0

Z
dk0

2π
F̃ðk0Þϵðkþ k0=2Þ2½nτðkþ k0Þ − nτðkÞ�:

ð47Þ

By studying this equation (see Appendix G), we show that,
around the Fermi points, nτðkÞ takes the scaling form

nτðkÞ ≃ nðξðkF − kÞ; τ=ξÞ þ nðξðkþ kFÞ; τ=ξÞ: ð48Þ

In turns, this leads to the result for fixed t as ξ → þ∞:

lim
ξ→∞

ξ2eFðtξÞ ¼ ẽþðtÞ þ ẽ−ðtÞ; ð49Þ

where we split the contribution of the energy from the two
Fermi points expanding k ¼ �ðkF − p=ξÞ. In particular,
introducing the Fermi velocity as ϵ0ð�kFÞ ¼ �v, we have
for both chiral components

ẽ�ðtÞ¼−v
Z

∞

−∞

dp
2π

p½nðp;tÞ−nðp;0Þ� ¼eðtÞ=2: ð50Þ

The last equality is proven in Appendix G, with eðtÞ given
in Eq. (40) at c ¼ 1. Hence, the CFT predicts, upon
rescaling, the mean energy for the fermion system, thus
confirming the exponential growth from a first-principles
lattice calculation. This result suggests that, in the scaling
limit of large ξ, the noisy dynamics in Eq. (44) is fully
captured by the universal description provided by the CFT,
upon rescaling space and time as j ¼ xξ, τ ¼ tξ and
setting τ0 ¼ ξ.
In order to validate this hypothesis, we compute numeri-

cally the two-point correlation matrix CijðτÞ≡ ha†i ajiτ.
Since the model in Eq. (44) is noninteracting and the initial
ground state is Gaussian, for each realization of the noise,
all quantities can be expressed via the Wick theorem in
terms of the coefficients Cij. Nonetheless, we stress that,
despite the Gaussianity of the quantum state, the distribu-
tion over different realizations of the noise of quantum
expectation remains hard to access analytically. In Fig. 2
(top), we show the convergence for ξ → ∞ of the noise-
averaged energy density eFðτÞ to its CFT prediction,
consistently with Eqs. (49) and (50). The correlation matrix
CðτÞ can also be used to compute explicitly the Rényi
entropies for any interval I of size lF. Indeed, setting CI as
the lF × lF submatrix obtained restricting the indexes of
CðτÞ to I, we have for the von Neumann entropy of the
interval I: SFðτÞ≡ −Tr½CI lnCI þ ð1 − CIÞ lnð1 − CIÞ�. In
Fig. 3 (left), we show the noise-averaged entanglement
entropy production SFðτÞ≡ SFðτÞ − SFð0Þ for the fermion
system for intervals of various sizes lF on the lattice. Our
prediction is that it should equal at large ξ the CFT value

Sð1Þt (without any prefactor) with l ¼ lF=ξ.
We also predict that the CFT describes the distribution

over the noise of these quantities. We show in Fig. 3
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(middle) the one-point PDF for the local energy density
ξ2hĥiiτ at the largest time τ available. As one sees, it
compares reasonably well, with no free parameters, with
the prediction from the CFT, i.e., the convolution Pstat �
Pstat where Pstat is obtained in Eq. (4). This confirms that
with the chosen fðxÞ, at this observation time, 2vFτ=ξ is
large enough so that the two chiral components are only
weakly correlated. As we see in Fig. 2 (top), the average
energy grows with time, consistent with Pstat having an
infinite first moment. The median of the energy distribu-
tion, shown in Fig. 2 (bottom), is thus a better probe of the
typical behavior. Remarkably, it is found to decrease with
time, approaching at large ξ a stationary value compatible
with the CFT prediction emedian

stat ¼ −ðc=2πÞκ̃0 < 0; see
Eq. (24). Finally, in Fig. 3 (right), as a representative of
the finite-l behavior, we compare the distribution of the
entanglement entropy at different times for intervals of size
lF ¼ lξ and l ¼ 1=2, with the analytic prediction
obtained from CFT.

C. Deviation from the CFT prediction

For any finite ξ, we expect lattice effects to eventually
break the CFT description. Both the average energy [Fig. 2
(top)] and the entanglement entropy [Fig. 3 (left)] indicate
the emergence of a characteristic timescale τ�ðξÞ, diverging
with ξ, after which the CFT description becomes inaccu-
rate. It is expected that the ultraviolet cutoff induces heating
and stationarity does not hold anymore, as hinted by the
rebounce in the median observed at larger times [Fig. 2
(bottom)]. The solvability of the free-fermion model gives
us the possibility to estimate this timescale. In principle, the
full scaling function nðp; tÞ in Eq. (48) should be universal,
i.e., independent of the microscopic details of the discrete

FIG. 3. Left: noise-averaged von Neumann entanglement entropy production Sð1ÞðτÞ vs t ¼ τ=ξ evolving in time under Eq. (44), for
increasing values of ξ and fixed ratio lF=ξ ¼ l ¼ 1=2. The dotted line is obtained from the numerical solution of Eqs. (16) and using
Eq. (34) for n → 1, i.e., SFðτÞ ¼ cκ̄=6 with c ¼ 1. Middle: distribution of the scaled energy density ξ2hĥiðτÞi at ξ ¼ 64. For the
analytical prediction, we use that in the scaling limit ξ2hĥji → hðx; tÞ and at large time hðx; tÞ is distributed as Eq. (5), which in

the present case reduces to h ¼in lawð3Ω − 5Þ=ð24πÞ. In the inset, the right tail of the distribution is shown in log-log scale, showing the
predicted ∝ h−3=2 tail. Right: distribution of the entanglement entropy SFðτÞ at ξ ¼ 64 for an interval of size lF ¼ 32. For the analytical

prediction, we use that in the stationary limit limτ→∞SFðτÞ ¼in law
cðκþ þ κ−Þ=12, with κ� independently distributed according to PstatðκÞ.

The stationary distribution PstatðκÞ is obtained by numerically inverting the Fourier transform Qkð1Þ as a function of k, for l ¼ 1=2,
defined in Eqs. (E9) and (E39) in Appendix E. All simulations are performed on systems of total length L ¼ 2048 and are repeated for
Nsample ¼ 800 samples.

FIG. 2. Top: the average energy eFðτÞ vs t ¼ τ=ξ, the scaled
time, for different values of the noise correlation length ξ.
Continuous lines are obtained from the numerical solution of
the Wigner function equation (47), while the markers correspond
to the exact dynamics of Eq. (44) for L ¼ 2048. The dot-dashed
line is the CFT result (40), which from Eq. (49) is predicted to
hold for large ξ. Bottom: the median of the distribution of
ξ2ðhĥiiτ − hĥii0Þ vs the scaled time τ=ξ. In the limit of ξ → ∞,
the median is expected to decrease toward the negative asymp-
totic value predicted by CFT (dot-dashed horizontal line). For
finite ξ, the median starts to grow at large times, suggesting that
heating may eventually dominate on the lattice.
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model, but depending on fðxÞ. Using that n0ðp; tÞ≡
∂pnðp; tÞ can be formally interpreted as a probability
distribution (although not strictly positive), its time evolu-
tion can be characterized in terms of the moments

MnðtÞ≡
Z

∞

−∞

dp
2π

pnn0ðp; tÞ: ð51Þ

Since nðp; tÞ ranges from 0 to 1 when p increases, one has
M0ðtÞ ¼ 1. Also, integrating by part and using Eq. (50),
M2ðtÞ ¼ 2ẽþðtÞ=v. For higher n, one can show that these
moments satisfy a hierarchy of differential equations which
connects each moment with the previous ones having the
same parity, i.e.,

∂tMnðtÞ ¼
Xbn=2c
k¼1

αkMn−2kðtÞ: ð52Þ

Because of the conservation of the density, one has
M1ðtÞ ¼ 0, and similarly all odd moments M2kþ1ðtÞ
vanish. One can, thus, interpret M2ðtÞ as the width of
the distribution n0ðp; tÞ. We use this result to estimate the
timescale for the breakdown of the CFT description at least
at the level of average quantities. Indeed, the Fermi
points of k ∼�kF independently broaden with time, up
to a time τ�ðξÞ, where their width ∼ξ ffiffiffiffiffiffiffiffiffiffiffiffi

M2ðtÞ
p

is comparable
with their initial separation ∼ 2kF. From Eq. (50),
M2ðtÞ ¼ eðtÞ=v, and Eq. (40) leads to

τ� ∼
ξ

v2jf00ð0Þj ln
�
48πjf00ð0Þjk2Fξ2

fð4Þð0Þ

�
∝ ξ ln ξ: ð53Þ

Although we do not attempt a systematic verification of
such a scaling, it is in qualitative agreement with our
numerics, where the time at which the deviation from CFT
occurs in the rescaled variable t ¼ τ=ξ grows linearly in
ln ξ. Even thought the growth is only logarithmic, this
shows that, consistently with the sizes of our numerics, a
time window to observe the CFT phenomenology exists for
systems involving a few thousands of lattice sites.

IX. CONCLUSION

We have identified an out-of-equilibrium protocol which
leads to a nontrivial stationary state [41] for a generic
gapless one-dimensional system.
Several questions and directions remain open. First, it

would be exciting to see the fingerprints of our predictions
in a concrete experimental setup. As already mentioned, the
study of the statistics of trajectories and unravelings has
recently received a lot of attention in particular in the
context of the measurement-induced phase transition. In
contrast with these studies, our protocol is not cursed by
postselection and is, thus, a promising platform for concrete
observability. In order to facilitate experimental

observation, the robustness of the observed phenomenol-
ogy has to be addressed, for instance, analyzing the role of
thermal fluctuations. Our preliminary investigations sug-
gest that a small initial temperature does not modify the
power-law behavior of the energy density distribution.
Second, it would be of great interest to obtain the full
space-time statistics of the local energy, or of any other
local operator, beyond the one-point distribution, especially
since the latter exhibit heavy tails. It also remains a
challenge to extend the present method to four-point
(and higher) quantum correlation functions, thus providing
a full characterization of the quantum state. For instance,
the mutual information between two intervals requires a
four-point correlator of the twist fields and reflects finer
details of the specific CFT than the mere central charge.
Although we focused on the infinite system, coupling
between the chiral components becomes relevant at finite
volume and can modify the behavior of the system at
large times.
From a more concrete perspective, it would be interest-

ing to test the theory at other quantum critical points
beyond noninteracting systems, in particular, to observe the
role played by interactions in controlling the deviations
from the CFT predictions. We expect a connection between
the recently derived large-scale description known as
generalized hydrodynamics [82,83] to be helpful, in par-
ticular, in its zero-temperature extension toward quantum
fluctuations [84].
Finally, the surprising existence of a stationary distribu-

tion in our setup raises the question about the fundamental
ingredients to observe similar phenomenology in other
quantum stochastic systems. It is possible that the sta-
tionary state that we identified within the continuous field
theory description corresponds to a long-lived prethermal
state that delays heating in the corresponding lattice
system, similarly to what has been observed in the context
of many-body quantum scars [85]. More generally, it
remains an open question whether lattice effects or the
presence of finite correlation length are compatible with the
emergence of nontrivial steady states in the thermody-
namic limit.
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APPENDIX A: FOKKER-PLANCK EQUATION

In this section, we derive the Fokker-Planck equa-
tion (10) of the text, for the joint PDF of the backward
stochastic trajectories x1 ¼ Xþ

t ðy1Þ;…; xn ¼ Xþ
t ðynÞ asso-

ciated to the Langevin equation (7). We thus consider
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only a given chirality—here, we choose þ, but the same
Fokker-Planck equation holds for the chirality −, with
v → −v. We do not consider here the joint PDF of both
chiralities. So here we denote simply Xþ

t → Xt.
One can show that Eq. (7) translates into a stochastic

equation for the variable XtðyiÞ as a function of t which
takes the form [see Eqs. (58)and (59) in Supplemental
Material of Ref. [56] ]

dXtðyiÞ¼
v2

2
X00
t ðyiÞfð0Þdt−X0

tðyiÞv½dtþdWtðyiÞ�; ðA1Þ

where dXtðyiÞ ¼ XtþdtðyiÞ − XtðyiÞ. TheWtðyiÞ are mutu-
ally correlated Wiener processes in time t, which relates to
the noise in Eqs. (1) and (7) via

WtðyÞ ¼
Z

t

0

dsηðy; sÞ; dWtðyÞdWtðy0Þ ¼ dtfðy− y0Þ:

ðA2Þ

Here, dWtðyÞ ¼ WtþdtðyÞ −WtðyÞ, and fðyÞ is the noise
correlation function defined in the text.
Consider an arbitrary smooth function of n variables

Gðx1;…; xnÞ. In the case of these variables being the

backward stochastic trajectories xi ¼ XtðyiÞ of Eq. (7),
we define

gtðy1…ynÞ ¼ G½Xtðy1Þ…XtðynÞ�: ðA3Þ

By Ito calculus, the time variation dgt ¼ gtþdt − gt of this
observable is obtained by expanding up to second order:

dgt ¼
Xn
j¼1

∂jG½Xtðy1Þ;…; XtðynÞ�dXtðyjÞ

þ 1

2

Xn
j;m¼1

∂j∂mG½Xtðy1Þ;…; XtðynÞ�dXtðyjÞdXtðymÞ:

ðA4Þ

Here,we shorten the notationby setting ∂xj…∂xmGðx1…xnÞ¼
∂j…∂mGðx1…xnÞ. Using Eqs. (A1) and (A2), we derive

dXtðyiÞdXtðyjÞ ¼ v2X0
tðyiÞX0

tðyjÞfðyi − yjÞdtþOðdt3=2Þ:
ðA5Þ

Averaging over the noise, we obtain

dgt
dt

¼ −v
Xn
j¼1

∂jG½Xtðy1Þ;…; XtðynÞ�X0
tðyjÞþ

v2fð0Þ
2

Xn
j¼1

∂jG½Xtðy1Þ;…; XtðynÞ�X00
t ðyjÞ

þ v2

2

Xn
j;m¼1

fðyj − ymÞ∂j∂mG½Xtðy1Þ;…; XtðynÞ�X0
tðyjÞX0

tðymÞ: ðA6Þ

From the chain rule for the derivation with respect to the
variables fyig, it is easy to check that

∂yj∂ymgt ¼ X0
tðyjÞX0

tðymÞ∂j∂mGþ δj;mX00
t ðyjÞ∂jG; ðA7Þ

which finally leads to

dgt
dt

¼
�
−v

Xn
j¼1

∂yj þ
v2

2

Xn
j;m¼1

fðyj − ymÞ∂yj∂ym
	
gt: ðA8Þ

It is useful to reexpress Eq. (A8) in terms of the Fokker-
Planck Hamiltonian (and its Hermitian adjoint). In order to
do so, we introduce the operators qj and pj, defined by
their action on any smooth function ωðyÞ as qj · ωðyÞ ¼
yjωðyÞ and pj · ωðyÞ ¼ −{∂jωðyÞ, respectively. For these
conjugate variables, the canonical quantization holds
½qi; pj� ¼ {δi;j. We can then define

HFP ≡ −iv
Xn
i¼1

pi þ
v2

2

X
ij

pipjfðqi − qjÞ; ðA9Þ

so that we can rewrite

dgt
dt

¼ −H†
FP · gt;

H†
FP ≡ iv

Xn
i¼1

pi þ
v2

2

X
ij

fðqi − qjÞpipj: ðA10Þ

To deduce the Fokker-Planck equation for PðxjyÞ,
defined in the text, we need one more step. From the
definition of PðxjyÞ, we have

gtðyÞ ¼
Z

dx0Gðx0ÞPtðx0jyÞ: ðA11Þ

We can choose Gðx0Þ ¼ δϵðx0 − xÞ, where δϵðxÞ is a
mollifier of the Dirac delta function. In the limit ϵ → 0,
we recover gtðyÞ → PtðxjyÞ the JPDF for the initial points
x ¼ ðx1;…; xnÞ of the stochastic trajectories and finally
deduce from Eq. (A10)
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∂tPtðxjyÞ ¼ −HT
FP½y� · PtðxjyÞ: ðA12Þ

This equation can be formally solved by starting from the
initial condition at t ¼ 0 Pt¼0ðxjyÞ ¼ δðx − yÞ. It is useful
to employ the bra hyj and ket jxi notation for the eigenstates
of the position operators q̂j. Then, we can represent the
probability distribution as

PtðxjyÞ≡ hyje−tH†
FP jxi ¼ hxje−tHFP jyi; ðA13Þ

where the last equality follows from the Hermitian con-
jugation. Therefore, the following equation must also hold:

∂tPtðxjyÞ ¼ −HFP½x� · PtðxjyÞ; ðA14Þ

where the action of the differential operator HFP½x� is now
over the variables x. More explicitly, using Eq. (A9), we
arrive at

∂tPtðxjyÞ ¼ v

�Xn
i¼1

∂i þ
v
2

Xn
i;j¼1

∂i∂jfðxi − xjÞ
�
PtðxjyÞ;

ðA15Þ

which coincides with Eq. (10) given in the main text.

APPENDIX B: JOINT EVOLUTION OF r AND κ

In this section, we give two equivalent methods to derive
the joint evolution of the variables r and κ defined in the
text. The first one uses the Fokker-Planck equation, and the
second one is a direct derivation using stochastic equations.

1. Derivation of the evolution equation for Ptðr;x01;x02Þ
We first derive the evolution equation for the JPDF

Ptðx1; x2; x01; x02Þ of the random variables x1, x2, x01, and x02
defined in the text. The starting point is the application of
the Fokker-Planck equation (A15) in the case of four
trajectories ðx1; x2; x3; x4Þ. To fix the variables yi, we
remind that y1 and y2 are kept fixed while two additional
variables are taken infinitesimally away from y1 and y2.
More explicitly,

x1 ¼ X�
t ðy1Þ; x2 ¼ X�

t ðy2Þ;
x3 ¼ X�

t ðy1 þ ϵÞ; x4 ¼ X�
t ðy2 þ ϵÞ: ðB1Þ

We then perform the change of variables x1; x2; x01 ¼
ðx3 − x1Þ=ϵ; x02 ¼ ðx4 − x2Þ=ϵ together with the limit =
ϵ → 0. By applying this change of variables in the Fokker-
Planck equation above and taking the limit ϵ → 0, oneobtains
the following equation for Pt ¼ Ptðx1; x2; x01; x02Þ:

∂tPt ¼ v(ð∂x1 þ ∂x2Þ þ
v
2
fð0Þð∂2x1 þ ∂

2
x2Þ

þ v∂x1∂x2fðx1 − x2Þ −
v
2
F00ð0Þ½∂2x0

1
ðx01Þ2 þ ∂

2
x0
2
ðx02Þ2�

þ v∂x2∂x01x
0
1f

0ðx1 − x2Þ − v∂x1∂x02x
0
2f

0ðx1 − x2Þ

− v∂x0
1
∂x0

2
x01x

0
2f

00ðx1 − x2Þ)Pt: ðB2Þ

Then, we exploit the invariance under translation by
making the change of variables from ðx1; x2; x01; x02Þ to
½R ¼ ðx1 þ x2=2Þ; r ¼ ðx1 − x2Þ=l; x01; x02�. Finally, inte-
grating out the center of mass variable R, we obtain

∂tP¼ v2

 1

l2
∂
2
r ½fð0Þ−fðrlÞ�−f00ð0Þ

2
½∂2x0

1
ðx02Þ2þ∂

2
x0
1
ðx02Þ2�

−f00ðrlÞ∂x0
1
∂x0

2
x01x

0
2−

1

l
∂rf0ðrlÞð∂x0

1
x01þ∂x0

2
x02Þ

�
P:

ðB3Þ

From this result, we now obtain the Fokker-Planck
equation for the joint distribution Ptðκ; rÞ of the variable
κ and the variable r defined as

Ptðκ; rÞ≡
Z

dx01dx
0
2Pðr; x01; x02Þδ

�
κ − ln

�
r2

x01x
0
2

�	
: ðB4Þ

Interestingly, Ptðκ; rÞ satisfies a closed evolution equation.
To obtain it, we compute the time derivative of Eq. (B4)
using Eq. (B3), and then we integrate by part and obtain

l2

v2
∂tP¼

�
∂
2
r ½fð0Þ− fðlrÞ� þ 4

fð0Þ− fðlrÞþlrf0ðlrÞ
r2

∂
2
κ

þl2f00ð0Þð∂κ − ∂
2
κÞ−l2f00ðlrÞ∂2κ

þ 2l∂r∂κf0ðlrÞþ 4∂r½fð0Þ− fðlrÞ�1
r
∂κ

þ 2
fð0Þ− fðlrÞ

r2
∂κ

	
P: ðB5Þ

Then, it is easy to see that the FP equation in Eq. (B5) is
equivalent to the stochastic equations for r and κ (in Ito
convention) given in Eq. (16) of the main text.

2. Direct derivation of the stochastic
equations for r and κ

Instead of working with the Fokker-Planck equation (4),
we consider now an equivalent system of stochastic
equations. It is equivalent in the sense that the Fokker-
Planck equation associated with this system coincides with
Eq. (4). It provides an alternative way to derive Eq. (16) in
the main text. This stochastic system involves the set
of trajectories xiðtÞ, with dxiðtÞ ¼ xiðtþ dtÞ − xiðtÞ, and
reads
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dxiðtÞ ¼ ∓vdtþ dWiðtÞ;
dWiðtÞdWjðtÞjt ¼ f½xiðtÞ − xjðtÞ�dt; ðB6Þ

where theWiðtÞ’s are mutually correlated Wiener processes
in time and should not be confused with WtðyÞ introduced
in Eq. (A2). Formally, the expectation value Ōjt used here
is conditioned to the position of the trajectories xiðtÞ at time
t. The ∓ refers to � chiralities, but the drift term plays no
role in the following and so is omitted in the following.
Here, the initial condition xiðt ¼ 0Þ ¼ yi is assumed. Note
that this system of equation can be also seen as the time
reversal of Eq. (7).
Let us set l ¼ 1 and restore l later. One performs the

linear change of variable x3 ¼ x1 þ ϵx01, x4 ¼ x2 þ ϵx02,
and x1 − x2 ¼ r, which leads to (we keep the time
dependence implicit for convenience)

dr ¼ dW1 − dW2; dx01 ¼
1

ϵ
ðdW3 − dW1Þ;

dx02 ¼
1

ϵ
ðdW4 − dW2Þ: ðB7Þ

The correlations can be expressed in terms of r, x01, and x02
(the center of mass decouples), and performing the limit
ϵ → 0 one finds with j ¼ 1, 2

dr2 ¼ 2½fð0Þ − fðrÞ�dt; drdx0j ¼ −f0ðrÞx0jdt;
ðdx0jÞ2 ¼ −f00ð0Þðx0jÞ2dt; dx01dx

0
2 ¼ −f00ðrÞx01x02dt:

ðB8Þ

Now we have for κ ¼ logðr2=x01x02Þ using Ito’s rule

dκ ¼ 2
dr
r
−
dx01
x01

−
dx02
x02

þ gðrÞdt; ðB9Þ

where gðrÞdt is the Ito drift which can be computed using
Eq. (B8):

−
1

r2
dr2 þ 1

2

ðdx01Þ2
ðx01Þ2

þ 1

2

ðdx02Þ2
ðx02Þ2

¼ gðrÞdt;

gðrÞ ¼ 2

r2
½fð0Þ − fðrÞ� − f00ð0Þ; ðB10Þ

and depends only on r. We also need the correlations of the
noise part

dκdr ¼ 2
dr2

r
−
drdx01
x01

−
drdx02
x02

¼ BðrÞdt;

BðrÞ ¼ 4

r
½fð0Þ − fðrÞ� þ 2f0ðrÞ; ðB11Þ

dκ2 ¼ 4
dr2

r2
þ ðdx01Þ2

ðx01Þ2
þ ðdx02Þ2

ðx02Þ2
− 4

drdx01
rx01

− 4
drdx02
rx02

þ 2
dx01dx

0
2

x01x
0
2

¼ 2CðrÞdt;

CðrÞ ¼ 4
fð0Þ − fðrÞ þ rf0ðrÞ

r2
− f00ð0Þ − f00ðrÞ; ðB12Þ

to which we must add dr2¼2AðrÞ with AðrÞ¼fð0Þ−fðrÞ.
Restoring l, one finds the equations in the text.

APPENDIX C: NUMERICAL SOLUTION
OF EQ. (16)

In this section, we provide some details about how to
numerically solve the stochastic equations for κ and r. The
main difficulty arises because r can become typically very
small [see Eq. (22)]. It is, thus, useful to rewrite such a
system of SDE in terms of another variable:

ρ ¼ ln r; r ¼ eρ: ðC1Þ

Then, using Ito’s lemma, the stochastic equation for ρ takes
the form

dρ ¼ e−ρvdW1 − e−2ρv2A½rðρÞ�dt: ðC2Þ

To solve the equation, we then discretize time dt → Δt and
define

ΔW1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2AðrÞ

p
β1;

ΔW2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ2
2AðrÞ

s
β1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2CðrÞ − BðrÞ2

2AðrÞ
�s
β2; ðC3Þ

where β1 and β2 are independently Gaussian random
variables with zero average and Δt variance. To rewrite
the equation in a more numerically stable way, we extract
from the quantities AðrÞ and BðrÞ their leading behavior at
small r:

ÃðrÞ ¼ AðrÞ=r2; B̃ðrÞ ¼ BðrÞ=r3; ðC4Þ

so that ÃðrÞ and B̃ðrÞ are both finite in the limit r → 0. So
we finally have the discrete evolution equations

ρðtþ ΔtÞ ¼ ρðtÞ þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ÃðrÞΔt

q
β1 − v2ÃðrÞΔt; ðC5Þ
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κðtþ ΔtÞ ¼ κðtÞ þ v2gðrÞΔtþ vr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃ðrÞ2
2ÃðrÞΔt

s
β1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2CðrÞ − r4B̃ðrÞ2

2ÃðrÞ

�
Δt

s
β2: ðC6Þ

APPENDIX D: ANALYSIS OF THE SHORT-
DISTANCE REGIME FOR κ

In the limit l ≪ 1, one has Eq. (20) in the main text that
we report for convenience:

dr ¼ rvdB1;

dκ ¼ −
l2

6
r2v

�
−
v
2
fð4Þð0Þdtþ dB2

�
; ðD1Þ

dB1dB1 ¼ −f00ð0Þdt; dB2dB2 ¼ −fð6Þð0Þdt;
dB1dB2 ¼ −fð4Þð0Þdt: ðD2Þ

We now show from these equations that κ satisfies a closed
SDE which leads to the stationary measure given in the

main text. We first of all solve the equation for the variable
r, which takes the form

rðtÞ ¼ exp

�
vB1ðtÞ þ

1

2
v2f00ð0Þt

	
: ðD3Þ

Injecting this solution in the equation for κ and integrating
in time, we arrive at

κðtÞ¼−
l2

6

Z
t

0

e2vB1ðsÞþv2f00ð0Þsv
�
−
v
2
fð4Þð0ÞdsþdB2ðsÞ

�
:

ðD4Þ
This equation gives already a closed representation for κðtÞ.
We can further simplify Eq. (D4) by making use of the

following reparametrization: For each t, we define, for
i ¼ 1, 2, B̃iðs0Þ ¼ BiðtÞ − Biðt − s0Þ, s0 ∈ ½0; t�, which is,
thus, an equivalent Brownian process which measures the
deviation from the final point BiðtÞ (which is kept fixed)
of the original one. One clearly has B̃ið0Þ ¼ Bið0Þ ¼ 0,
B̃iðtÞ ¼ BiðtÞ, and dB̃iðs0Þ ¼ dBiðt − s0Þ. We want now to
rewrite Eq. (D4) in terms of the processes B̃i. A little bit of
care is needed for the stochastic integral. Indeed, writing
explicitly the Ito integral, we have

Z
t

0

e2vB1ðsÞþv2f00ð0ÞsdB2ðsÞ ¼ lim
n→∞

Xn−1
i¼0

e2vB1ðsiÞþv2f00ð0Þsi ½B2ðsiþ1Þ − B2ðsiÞ�

¼ e2vB̃1ðtÞþv2f00ð0Þt lim
n→∞

Xn
j¼1

e−2vB̃1ðs̃jÞ−v2f00ð0Þs̃j ½B̃2ðs̃jÞ − B̃2ðs̃j−1Þ�; ðD5Þ

where the si’s are a partition of n elements of ½0; t�, with s0 ¼ 0 and sn ¼ t. We define s̃j ¼ t − si with j ¼ n − i, which is
an equivalent partition. Clearly, the last expression does not converge to a stochastic integral in the Ito form. We, thus,
rewrite in the last term as

e−2vB̃1ðs̃jÞ ¼ e−2vB̃1ðs̃j−1Þe−2v½B̃1ðs̃jÞ−B̃1ðs̃j−1Þ� ðD6Þ

and then expand the second exponential, using ½B̃1ðs̃jÞ − B̃1ðs̃j−1Þ�½B̃2ðs̃jÞ − B̃2ðs̃j−1Þ� ¼ −fð4Þð0Þðs̃j − s̃j−1Þ. We then
arrive at

Z
t

0

e2vB1ðsÞþv2f00ð0ÞsdB2ðsÞ ¼ e2vB̃1ðtÞþv2f00ð0Þt
�Z

t

0

e−2vB̃1ðsÞ−v2f00ð0ÞsdB̃2ðsÞ þ 2vfð4Þð0Þ
Z

t

0

e−2vB̃1ðsÞ−v2f00ð0Þsds
	
: ðD7Þ

Applying these transformations to Eq. (D4), we obtain

κðtÞ ¼ −
l2

6
e2vB̃1ðtÞþv2f00ð0Þt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

κ1

Z
t

0

e−2vB̃1ðsÞ−v2f00ð0Þsv
�
3v
2
fð4Þð0Þdsþ dB̃2ðsÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

κ2

: ðD8Þ
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Using Ito’s lemma, dκ ¼ κ2dκ1 þ κ1dκ2 þ dκ1dκ2,
which, after collecting different contributions, leads to

dκ¼v2
�
l2

12
fð4Þð0Þ−f00ð0Þκ

�
dt−

l2v
6

dB̃2ðtÞþ2vdB̃1ðtÞκ:

ðD9Þ

The correlations of the dB̃jðtÞ are the same as the ones of
the dBjðtÞ in Eq. (D2). However, κðtÞ defined by Eq. (D8)
is a different process in t than κðtÞ defined by Eq. (D4). At
fixed t the two random variables have the same law, but as t
is varied the trajectories are different (since the relation
between B̃i and Bi involves t explicitly). As a consequence,
the two stochastic equations (D9) and (D4) are inequiva-
lent, although they lead to the same single-time distribution
for κðtÞ. One illustration of that is that, while the second
process converges, i.e., κðtÞ → κ∞, where the distribution
of κ∞ is given below, the first process is ergodic (with the
same law). A simpler example which allows one to
understand better this point (using more explicit notations)
is worked out in the remark below.
We can recast Eq. (D9) as an equation with a single

Brownian process dB [we are using that a1dB1þa2dB2¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a21f00ð0Þ−a22fð6Þð0Þ−2a1a2fð4Þð0Þ

q
dB̃, where dB̃ is

a new Wiener process with standard normalization,
dB̃2 ¼ dt]:

dκ ¼ v2
�
l2

12
fð4Þð0Þ − f00ð0Þκ

�
dt

þ vdB̃
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−½l4fð6Þð0Þ − 24l2fð4Þð0Þκ þ 144f00ð0Þκ2�

q
:

ðD10Þ

With the change of variable, κ ¼ κ0ðω=ω0 − 1Þ, where we
define as in the main text (24)

κ0 ¼ −
l2

12

fð4Þð0Þ
f00ð0Þ ; ω0 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð6Þð0Þf00ð0Þ
fð4Þð0Þ2 − 1

r : ðD11Þ

Note that ω0 is real and positive, as it is guaranteed by the
positivity of the Fourier transform f̂ðkÞ > 0 of fðxÞ.
Indeed,

fð6Þð0Þf00ð0Þ − fð4Þð0Þ2

¼
Z

k2f̂ðkÞ
Z

k6f̂ðkÞ −
�Z

k4f̂ðkÞ
�

2

> 0; ðD12Þ

which is a consequence of the Cauchy-Schwarz inequality.

The SDE for ω becomes Eq. (25), which is solved by

ωðtÞ ¼ e
ffiffiffiffi
8θ

p
BðtÞ−2θt

�
ω0 þ

ffiffiffiffiffi
8θ

p Z
t

0

e−
ffiffiffiffi
8θ

p
BðsÞþ2θsdγs

�
:

ðD13Þ

One recognizes a Bougerol variable with drifted Brownian
motion in the exponent [73]. It is useful to do the change of
variable (25):

ω ¼ sinhY; Y ¼ YðωÞ ¼ argsinhω: ðD14Þ

One has

Y 0ðωÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p ¼ 1

coshY
; Y 00ðωÞ ¼ −

ω

ð1þ ω2Þ3=2
ðD15Þ

and from Ito’s rule follows Eq. (26) in the main text.
Remark.—We present a method to transform the random

variable Eq. (D4) expressed as an integral into the solution
of the stochastic process (D10). As mentioned above, the
two describe random variables having the same single-time
distribution, but they differ as stochastic processes, i.e., in
the way the realization at time t and tþ dt are connected.
In particular, Eq. (D4) almost surely has a fixed limit
κðt → ∞Þ for each realization, while the latter is
ergodic [being equivalent to a Langevin equation (25)].
Nevertheless, the distribution of κðt → ∞Þ over the noise
realizations is the same in the two cases. To further clarify
the aspect, we include a self-contained minimal example of
this mechanism where we make the notation more explicit.
Consider the process

Zt ¼
Z

t

0

dseBðsÞ−s=2; ðD16Þ

where BðsÞ is a standard Wiener process with Bð0Þ ¼ 0.
Since BðsÞ is almost surely subleading with respect to s=2,
for each realization of BðsÞ the limit Z∞ ¼ limt→þ∞ Zt
exists almost surely. The value of Z∞ changes from
realization to realization and is, thus, a random variable.
On the other end, as in the previous discussion, we define at
fixed t B̃tðsÞ ¼ BðtÞ − Bðt − sÞ, which is also a standard
Wiener process. Here, t denotes the time around which the
Brownian has been reflected and is indicated for clarity as a
subscript. One can now write

ZðtÞ ¼
Z

t

0

ds0eBðt−s0Þ−t=2þs0=2

¼ e−t=2þB̃tðtÞ
Z

t

0

ds0e−B̃tðs0Þþs0=2 ¼ Z̃tðsÞ
���
s¼t

; ðD17Þ

where we define
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Z̃tðsÞ ¼ e−s=2þB̃tðsÞ
Z

s

0

ds0e−B̃tðs0Þþs0=2: ðD18Þ

This is a new process for s ∈ ½0; t�, which obeys the
following stochastic equation:

dZ̃tðsÞ ≔ Z̃tðsþ dsÞ − Z̃tðsÞ ¼ dsþ Z̃tðsÞdB̃tðsÞ; ðD19Þ

where Z̃tð0Þ ¼ 0. By running this equation until s ¼ t, we
can recover ZðtÞ via Eq. (D17). We can solve this stochastic
equation by setting QtðsÞ ¼ lnZtðsÞ. One has

dQtðsÞ ¼ dB̃tðsÞ þ
�
e−QtðsÞ −

1

2

�
dt

¼ −V 0½QtðsÞ�dsþ dB̃tðsÞ ðD20Þ

with VðQÞ ¼ e−Q þQ=2. This last equation is of Langevin
type, and it implies a stationary distribution at large
s ¼ t → ∞ for Q∞ and Z∞:

PðQ∞Þ ¼ Ce−2VðQ∞Þ ⇒ PðZ∞Þ ¼
C
Z2

e−2=Z; ðD21Þ

which leads to the known inverse gamma distribution for
Z∞. Note that we choose t sufficiently large so that the
stationary measure is reached when s ¼ t.

APPENDIX E: STATIONARY MEASURE
FOR κ FOR ANY FINITE l

1. Backward method

We now apply the backward method to the full stochastic
equation for rðtÞ and κðtÞ in Eq. (16). As explained in the
main text, we define

Qkðr0; tÞ≡ e−ikκðtÞ
r0
; ðE1Þ

where the superscript r0 ¼ rðt ¼ 0Þ indicates the initial
condition for the variable r. In the end, we set r0 ¼ 1 as it is
required in our case, but it is useful to keep it free. One has

Qkðr0; tþ dtÞ ¼ e−ik½v2gðr0ÞdtþvdW2ð0Þ�Q½r0 þ vdW1ð0Þ; t�r0 ;
ðE2Þ

expanding with Ito’s lemma and averaging, we arrive at

∂tQk ¼ v2½AlðrÞ∂2r − ikBlðrÞ∂r − k2ClðrÞ − ikglðrÞ�
×Qkðr; tÞ ðE3Þ

with the boundary conditions

Qkðr0; 0Þ ¼ 1; Qkðr0 ¼ 0; tÞ ¼ 1;

lim
r0→þ∞

Qkðr0; tÞ ¼ e−2θðk2þikÞt; ðE4Þ

and we recall that

AlðrÞ¼
fð0Þ−fðlrÞ

l2
; BlðrÞ¼ 2

f0ðlrÞ
l

þ4
fð0Þ−fðlrÞ

l2r
;

ClðrÞ¼ 4
fð0Þ−fðlrÞþlrf0ðlrÞ

l2r2
−f00ð0Þ−f00ðlrÞ;

glðrÞ¼−f00ð0Þ−2
fð0Þ−fðlrÞ

l2r2
: ðE5Þ

The second condition in Eq. (E4) comes from the fact that
dκ ¼ 0 and dr ¼ 0 for r ¼ 0, since gð0Þ ¼ 0 and
Cð0Þ ¼ 0. The third condition is obtained using the fact
that the dynamics of κ is pure diffusion at large r0.
Let us denote QkðrÞ the stationary solution of Eq. (E3).

It, thus, satisfies

AlðrÞQ00
kðrÞ − ikBlðrÞQ0

kðrÞ
− ½k2ClðrÞ þ ikglðrÞ�QkðrÞ ¼ 0 ðE6Þ

with the boundary conditions

Qkðr0 ¼ 0Þ ¼ 1; Qkðr0 → þ∞Þ ¼ 0: ðE7Þ

From this stationary solution, one obtains the stationary
measure PstatðκÞ for κ by Fourier inversion:

PstatðκÞ ¼
Z þ∞

−∞

dk
2π

eikκQkðr ¼ 1Þ: ðE8Þ

2. Schrödinger equation for the stationary measure

We can further simplify Eqs. (E4) and (E6) by removing
the first derivative term. This can be achieved by setting

QkðrÞ ¼ ϕkðrÞGkðrÞ: ðE9Þ

We choose ϕkðrÞ so that

ϕ0
kðrÞ

ϕkðrÞ
¼ ik

BðrÞ
2AðrÞ ;

ϕkðrÞ ¼ eik
R

r

0
dr0½Bðr0Þ=2Aðr0Þ�

¼
�

l2r2f00ð0Þ
2½fðlrÞ − fð0Þ�

�
ik

¼ eikκ0ðlrÞ; ðE10Þ

where κ0ðxÞ is defined in Eq. (29) of the main text. Then,
one finds that GkðrÞ satisfies the Schrödinger equation

−G00
kðrÞ − kðkþ iÞVðrÞGkðrÞ ¼ 0 ðE11Þ

with the potential
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VðrÞ ¼ l2ff0ðlrÞ2 þ ½fð0Þ − fðlrÞ�½f00ðlrÞ þ f00ð0Þ�g
½fð0Þ − fðlrÞ�2

¼ −
d2

dr2
log½fð0Þ − fðlrÞ� þ l2f00ð0Þ

fð0Þ − fðlrÞ ðE12Þ

on the positive half-space r ≥ 0 with the boundary con-
dition inherited from Eq. (E7):

Gkð0Þ ¼ 1; lim
r→∞

GkðrÞ ¼ 0: ðE13Þ

3. Symmetry of the stationary distribution function

Before solving various cases, let us indicate a nice
symmetry property. One notes that the dependence in k
in Eq. (E11) is only via the prefactor γ ≡ kðkþ iÞ of the
potential: GkðrÞ≡ Gðγ; rÞ. This implies thatZ

dκPstatðκÞe−ikκ ¼ ϕkð1ÞGkð1Þ ¼ eikκ0Gðγ; 1Þ; ðE14Þ

where κ0 is explicitly

κ0 ¼
1

ik
logϕkð1Þ ¼ − log

�
2½fðlÞ − fð0Þ�

l2f00ð0Þ
�
: ðE15Þ

Hence, from Eq. (E8),

PstatðκÞ ¼
Z

dk
2π

eikðκþκ0ÞG½kðkþ iÞ; 1�

¼ eðκþκ0Þ=2
Z

du
2π

eiuðκþκ0ÞG
�
u2 þ 1

4
; 1

�
; ðE16Þ

where in the last equality we change variable k ¼ u − i=2.
It implies, in particular, that

PstatðκÞ ¼ eðκþκ0Þ=2P̃ðjκ þ κ0jÞ;

P̃ðyÞ ¼
Z

du
2π

eiuyG
�
u2 þ 1

4
; 1

�
ðE17Þ

or, equivalently, the symmetry (reminiscent of a Nishimori
condition or a Galavotti-Cohen theorem)

Pstatð−κ0 þ uÞ
Pstatð−κ0 − uÞ ¼ eu: ðE18Þ

4. Proof of the right 3=2 tail

Here, we show that, for a smooth noise correlation fðxÞ,
the right tail of the stationary distribution is always a
power-law PstatðκÞ ∝ κ−3=2 for κ → þ∞, independently of
l. Thanks to Eq. (E1), it is enough to prove the following
expansion at small k for its Fourier transform:

Qkðr ¼ 1Þ ¼ 1þ C
ffiffiffi
k

p
þOðkÞ; ðE19Þ

where C is a constant (see below). To prove Eq. (E19), we
proceed as follows. First of all, since ϕkðrÞ is analytic in k,
using Eq. (E9), we can focus on the small k expansion of
GkðrÞ. The small k behavior of the solution of Eq. (E11)
can be obtained by setting x ¼ r

ffiffiffi
γ

p
, with γ ¼ kðkþ iÞ.

Then, setting GkðrÞ ¼ gðr ffiffiffi
γ

p Þ, we can rewrite Eq. (E11) in
the limit k → 0 as

−g0ðxÞ − V∞gðxÞ ¼ 0 ⇒ gðxÞ ¼ e−
ffiffiffiffiffiffiffiffi
−V∞

p
x; ðE20Þ

where we set V∞ ¼ limr→∞ VðrÞ and enforce the boundary
conditions (E13). This implies

GkðrÞ ∼ gðr ffiffiffi
γ

p Þ ¼ e−
ffiffiffiffiffiffiffiffiffi
−V∞γ

p
r; ∀ r ¼ Oðγ−1=2Þ: ðE21Þ

This is still not enough, because we require the expansion
(E19) for r ¼ 1. However, fixing δ > 0 and r, we can write

jG0
kðrÞ −G0

kðδ=
ffiffiffi
γ

p Þj ¼
���� Z r

δ=
ffiffi
γ

p dr0G00
kðr0Þ

����
≤ γ

Z
r

δ=
ffiffi
γ

p dr0jVðr0ÞGkðr0Þj

≤ Kγðr − δ=
ffiffiffi
γ

p Þ; ðE22Þ

where we set K ¼ suprjVðrÞGkðrÞj, which is finite for a
sufficiently smooth fðxÞ ∈ C6 fast decaying at infinity. As
a consequence, at small γ,

G0
kðrÞ ¼ G0

kðδ=
ffiffiffi
γ

p Þ þOðδ ffiffiffi
γ

p Þ
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−V∞γ

p
½gðδÞ þOðδÞ�

⟶
δ→0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−V∞γ

p
þOðγÞ: ðE23Þ

Finally, integrating over r,

Gkð1Þ¼ 1þ
Z

1

0

drG0
kðrÞ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−V∞γ

p
þOðγÞ; ðE24Þ

which proves Eq. (E19) with C ¼ ffiffiffiffiffiffiffiffiffiffi
−V∞

p
.

5. Small l limit

At small l, one finds that the potential is a harmonic
oscillator:

VðrÞ ¼ l4r2½fð4Þð0Þ2 − fð6Þð0Þf00ð0Þ�
36f00ð0Þ2 þOðl6r4Þ ðE25Þ

and
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κ0 ¼ κ̃0l2 þOðl4Þ; κ̃0 ¼ −
fð4Þð0Þ
12f00ð0Þ : ðE26Þ

We see that κ0 isOðl2Þ as l → 0, so the random variable
κ ¼ Oðl2Þ in this limit. Therefore, we can obtain an
l-independent limit by scaling k ¼ k̃=l2. In terms of this
variable, the potential term in the Schrödinger equation has
a finite limit:

−kðkþ iÞVðrÞ ≃ 4k̃2r2κ̃20
ω2
0

; ðE27Þ

where we define as in the text

ω0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f00ð0Þfð6Þð0Þ
fð4Þð0Þ2 − 1

r : ðE28Þ

A solution of Eq. (30) with the potential (E25) and the
boundary conditions (E13) can be expressed in terms of the
Bessel function as

GkðrÞ ¼
23=4

Γð1=4Þ
�
κ̃0jk̃j
ω0

�
1=4 ffiffiffi

r
p

K1=4

�jk̃jr2κ̃0
ω0

�
; ðE29Þ

and the prefactor is fixed, imposing that Gkðr ¼ 0Þ ¼ 1.
This leads to

Qkðr ¼ 1Þ ¼ 23=4

Γð1=4Þ
�
κ̃0jk̃j
ω0

�
1=4

eik̃κ̃0K1=4

�jk̃jκ̃0
ω0

�
; ðE30Þ

which allows one to determine PstatðκÞ by Fourier inversion
from Eq. (E8).
One can check that this coincides with the result in the

text, identifying κ̃ ¼ κ̃0½ðω=ω0Þ − 1�. Equivalently, we
obtain the scaling form

PstatðκÞ ≃l≪1 1

l2
P̃

�
κ

l2

�
;

P̃ðκ̃Þ≡ Cω0

κ̃0

�
1þ ω2

0

�
κ̃ þ κ̃0
κ̃0

�
2
	
−3=4

; ðE31Þ

and one can check that the Fourier transform of P̃

Z
dk̃
2π

eik̃ κ̃P̃ðκ̃Þ ¼ Qkðr ¼ 1Þ ðE32Þ

as given in Eq. (E30). This can be seen by using the identity

Z
dxeikx

1

ð1þ x2Þ3=4 ¼
ffiffiffiffiffiffi
2π

p ð2jkjÞ1=4K1=4ðjkjÞ
Γð3

4
Þ : ðE33Þ

6. Large l limit

At large l, under the hypothesis that fðxÞ and its
derivatives decay at infinity, the potential term reaches a
constant value

−kðkþ iÞVðrÞ ≃ −kðkþ iÞl2
f00ð0Þ
fð0Þ ∼

2ik̃θ
fð0Þ ; ðE34Þ

where we use once again the scaling k ¼ k̃=l2, which
implies again κ ¼ Oðl2Þ, but with l → ∞ in this case.
From this potential, we immediately derive the solution
respecting the boundary conditions (E13) in the form

GkðrÞ ¼ e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ik̃θ=fð0Þ

p
r: ðE35Þ

Note that at large l

κ0ðlÞ ¼l→∞
logfl2½−f00ð0Þ�=2fð0Þg ðE36Þ

so that kκ0 ⟶
l→∞

0 and, therefore, QkðrÞ ¼ GkðrÞ. Inverting
the Fourier transform (E8), we obtain once again the
stationary distribution

PstatðκÞ ≃l≫1 1

l2
p̃

�
κ

l2

�
;

p̃ðκ̃Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ

2πfð0Þ

s
e−θ=2fð0Þκ̃

κ̃3=2
Θðκ̃Þ: ðE37Þ

Equivalently, denoting κ ¼ θl2χ=fð0Þ, one finds that χ is
distributed according to LðχÞ in Eq. (33) in the text, i.e., the
stable one-sided Levy distribution of index 1=2.

7. Solvable cases for f ðxÞ
For some particular choice of the noise correlation

function fðxÞ, the potential VkðrÞ takes a form which is
explicitly integrable. In Table I, we list a few interesting
cases. Here, we focus on the case

fðxÞ ¼ 1= coshðxÞ; ðE38Þ
which is analytic and fast decaying. Setting γ ¼ kðkþ iÞ,
the solution GkðrÞ respecting the boundary conditions
(E13) can be expressed in terms of hypergeometric function

TABLE I. A few examples of noise correlation functions fðxÞ
leading to Schrödinger equations with a solvable potential VðrÞ.

fðxÞ VðrÞ=l2 f̂ðkÞ Smoothness

e−jxj 1
ð1−e−rlÞ2

2
1þk2

C0

2e−jxj − e−2jxj − 2
1−e−lr

12
k4þ5k2þ4

C2

1
cosh x − tanhðlrÞ2 π

coshðkπ=2Þ C∞

1
ðcosh xÞ2 −2 tanhðlrÞ2 πk

sinhðkπ=2Þ C∞

UNIVERSAL OUT-OF-EQUILIBRIUM DYNAMICS OF 1D … PHYS. REV. X 13, 011043 (2023)

011043-19



GkðrÞ ¼ e−
ffiffi
γ

p
lr½1þ tanhðlrÞ� ffiffiffi

γ
p 2F1


 ffiffi
γ

p
2
− 1

2

ffiffiffiffiffiffiffiffiffiffi
γ þ 1

4

q
þ 1

4
;

ffiffi
γ

p
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffi
γ þ 1

4

q
þ 1

4
;

ffiffiffi
γ

p þ 1; 1
coshðlrÞ2

�
2F1


 ffiffi
γ

p
2
− 1

2

ffiffiffiffiffiffiffiffiffiffi
γ þ 1

4

q
þ 1

4
;

ffiffi
γ

p
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffi
γ þ 1

4

q
þ 1

4
;

ffiffiffi
γ

p þ 1; 1
� : ðE39Þ

Equivalently, this expression can be represented in terms of
generalized Legendre functions

GkðrÞ ¼
P
− ffiffi

γ
p

ð1=2Þð ffiffiffiffiffiffiffiffi
1þ4γ

p
−1Þ½tanhðlrÞ�

P
− ffiffi

γ
p

ð1=2Þð ffiffiffiffiffiffiffiffi
1þ4γ

p
−1Þð0Þ

: ðE40Þ

As a first check, we verify that the solution Eq. (E39)
reproduces the known solutions in the small and large l
limits.

a. Asymptotic limits l → ∞
At large l, we simply have

lim
l→∞

Qk0=l2ðrÞ ¼ lim
l→∞

Gk0=l2ðrÞ ¼ e−r
ffiffiffiffi
ik0

p
ðE41Þ

in agreement with Eq. (E35) [θ ¼ 1=2 for Eq. (E38)]. The
limit in Eq. (E41) can be easily obtained using Eq. (E39)
using that

lim
γ→0

2F1

� ffiffiffi
γ

p
2

−
1

2

ffiffiffiffiffiffiffiffiffiffi
γþ1

4

r
þ1

4
;

ffiffiffi
γ

p
2

þ1

2

ffiffiffiffiffiffiffiffiffiffi
γþ1

4

r
þ1

4
;

ffiffiffi
γ

p þ1;x

�
¼ 2F1

�
0;
1

2
;1;x

�
¼ 1; ðE42Þ

irrespectively of x.

b. Small l check

In this case, the limit is less trivial as k ¼ k0=l2 becomes
large in the limit of small l, so that simultaneously the
parameters of the hypergeometric are diverging, while its
argument is going to 1. Thus, we first apply the trans-
formation between hypergeometric functions

2F1ða; b; c; zÞ ¼
ð1 − zÞ−a−bþcΓðcÞΓðaþ b − cÞ2F1ðc − a; c − b;−a − bþ cþ 1; 1 − zÞ

ΓðaÞΓðbÞ

þ ΓðcÞΓð−a − bþ cÞ2F1ða; b; aþ b − cþ 1; 1 − zÞ
Γðc − aÞΓðc − bÞ : ðE43Þ

Then, we use that

lim
l→0

2F1

�
1

4
ð2 ffiffiffi

γ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ

p
þ 1Þ; 1

4
ð2 ffiffiffi

γ
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ

p
þ 1Þ; 1

2
; tanhðlÞ2

	
¼ ek

0=2ðk0Þ1=4Γð3
4
ÞI−1=4ðk0=2Þffiffiffi
2

p ðE44Þ

to recover, after some manipulations, Eq. (E30).

APPENDIX F: DISTRIBUTION OF THE
STRESS-ENERGY TENSOR

As we see in the main text, the distribution of the stress-
energy tensor can be deduced from the one of κ in the limit of
small l, simply by using Eq. (38). An alternative approach is
to compute explicitly the time evolution of the stress-energy
tensor directly from the expression of the Hamiltonian.

1. Direct derivation

Consider the explicit expression of the Hamiltonian (1)
in terms of the stress-energy tensor

Ĥ ¼ v
Z

dx½1þ ηðx; tÞ�½T̂þðxÞ þ T̂−ðxÞ�: ðF1Þ

To derive the time evolution of an operator, we introduce
the infinitesimal generator of time evolution

dĤ ¼ v
Z

dx½dtþ dWtðxÞ�½T̂þðxÞ þ T̂−ðxÞ� ðF2Þ

and define the time evolution U t operator up to time t with
the equation

U tþdt ¼ e−idĤU t: ðF3Þ

The evolution of an operator ÔðtÞ≡ U†
t ÔU t takes the form

dÔðtÞ ¼ U†
t e{dĤÔe−{dĤUt − ÔðtÞ

¼ U†
t

�
{½dĤ; Ô� − 1

2
½ ˆdH; ½ ˆdH; Ô�� þ � � �

�
U t: ðF4Þ
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Note that because of the Ito’s convention we need to keep terms up to the double commutators.
Consider the particular case of Ô ¼ T̂�ðyÞ, the stress-energy tensor at the point y. We have for the equal-time

commutator

½T̂þðxÞ; T̂þðyÞ� ¼ −{
�
2δ0ðx − yÞT̂þðyÞ − δðx − yÞT̂þ0ðyÞ − c

24π
δ000ðx − yÞ

�
; ðF5Þ

½T̂−ðxÞ; T̂−ðyÞ� ¼ {

�
2δ0ðx − yÞT̂−ðyÞ − δðx − yÞT̂−0ðyÞ − c

24π
δ000ðx − yÞ

�
: ðF6Þ

From this, we deduce

½dĤ; T̂�ðyÞ� ¼ �2{T̂�ðyÞvdW0
tðyÞ � {½dtþ dWtðyÞ�vT̂�0ðyÞ ∓ {

c
24π

vdWt
000ðyÞ; ðF7Þ

where dW0
tðxÞ ¼ ∂xdWtðxÞ (the noise is smooth in space) and similarly for the higher derivatives. This implies the evolution

equation for the operators T̂�ðy; tÞ, which reads

dT̂�ðy; tÞ ¼∓
�
2T̂�ðy; tÞvdW0

tðyÞ þ ½dtþ dWtðyÞ�vT̂�0ðy; tÞ − c
24π

vdWt
000ðyÞ

�
þ cv2fð4Þð0Þ

48π
dt − f00ð0Þv2T̂�ðy; tÞdtþ 1

2
fð0Þv2∂2yT̂�ðy; tÞdt: ðF8Þ

Although the two chiral components do not couple at the
CFT level, their evolutions are not statistically independent,
since they feel the same noise. There are several quantities
that one can study from there. One is the noise average

T̂�ðy; tÞ, which is still a quantum operator. Its evolution is
obtained by taking the noise average of Eq. (F8) and reads

∂tT̂
�ðy; tÞ ¼ cv2fð4Þð0Þ

48π
− f00ð0Þv2T̂�ðy; tÞ

þ 1

2
fð0Þv2∂2yT̂�ðy; tÞ ∓ v∂yT̂ðy; tÞ: ðF9Þ

Another observable is the quantum expectation
hT̂�ðy; tÞi≡ hΨ0jT̂�ðy; tÞjΨi on any translational invariant
state jΨi in a given noise realization. It satisfies a stochastic
differential equations obtained by taking the quantum
expectation of Eq. (F8) [which leads to a similar equation
as Eq. (F8) but now for a scalar hT̂�ðy; tÞi]. Note that it
describes the coupled stochastic evolution of the two fields
hT̂�ðy; tÞi, a complicated problem. Here, we focus only on
(i) noise moments, which have a solvable dynamics (ii) the
one-point PDF of hT̂�ðy; tÞi. This one-point distribution
being independent of y at t ¼ 0, it remains independent
of y for all times. In addition, it does not depend on the
chirality; thus, we omit the � superscript and denote
TðtÞ≡ hT̂�ðy; tÞi the corresponding random variable.
Then, one can show that its PDF can be obtained from
the stochastic equation (F10):

dT ¼ 2TvdB1ðtÞ −
c

24π
vdB2ðtÞ þ

cv2fð4Þð0Þ
48π

dt

− f00ð0Þv2Tdt ðF10Þ

with dB1ðtÞ ¼ ∓dW0ðy; tÞ and dB2ðtÞ ¼ ∓dW000ðy; tÞ.
This can be seen intuitively: Indeed, we expect that the
spatial derivative terms in Eq. (F8) are irrelevant, since the
one-point PDF of T ≡ hT̂�ðy; tÞi does not depend on y.
More formally, one can prove that Eqs. (F10) and (F8) lead
to the same evolution equation for the noise average ¯ZðTÞ
for any smooth function Z. Although Eq. (F10) is obtained
here by a completely different method, one can check that
Eq. (F10) is equivalent to Eq. (D9) with the correspondence

T ¼ lim
l→0

c
4πl2

κ; ðF11Þ

noting also that the noise satisfies Eq. (D2).
For the translationally invariant initial state chosen here,

it is easy to obtain from Eq. (F10) the recursive equation for
the moments (over the noise) of the quantum expectation of
T as

∂tTn ¼ −
v2c2fð6Þð0Þnðn − 1Þ

1152π2
Tn−2

þ cv2fð4Þð0Þð4n − 3Þn
48π

Tn−1

− nð2n − 1Þv2f00ð0ÞTn: ðF12Þ
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These can be solved with Tðt ¼ 0Þ ¼ 0, which corresponds
to jΨi ¼ jΨ0i being the ground state. This leads to the first
two moments:

T ¼ cf4ð0Þ
48πf00ð0Þ ð1 − e−v

2f00ð0ÞtÞ; ðF13Þ

T2 ¼ c2

3456π2

�
1

2

�
fð4Þð0Þ
f00ð0Þ

�
2

ðe−6v2f00ð0Þt − 6e−v
2f00ð0Þt þ 5Þ

þ fð6Þð0Þ
f00ð0Þ ðe−6v2f00ð0Þt − 1Þ

	
: ðF14Þ

APPENDIX G: FREE FERMION DYNAMICS

1. Evolution equation for the Wigner function

Here, we derive the evolution equation Eq. (47) for the
Wigner function. We consider a model of spinless non-
interacting fermions in one dimension. Let us first consider
the Hamiltonian in the absence of noise:

Ĥ0¼
X
i

ĥi; ĥi¼−Jðâ†iþ1âiþ â†i âiþ1−μâ†i âiÞ; ðG1Þ

where we introduce a chemical potential μ (chosen to be
zero in the text).
In general, it is useful to represent densities which are

conserved under the H0 evolution with support around the
site j in the following form:

ẑj ¼
X
j0
; ζj0 â

†
jþj0 âj ¼

Z
π

−π

dk
2π

X
j0
e−{kj

0
ζðkÞâ†jþj0 âj;�X

j

ẑj; Ĥ0

	
¼ 0; ðG2Þ

where ζðkÞ ¼ P
j ζje

ikj is the Fourier transform of ζj, and
consider the coupling

Ĥ ¼ Ĥ0 þ
X
j

ηjðτÞðẑj þ ẑ†jÞ; ðG3Þ

where the correlation of the noise ηjðτÞ is defined in the
main text. We keep ζðkÞ arbitrary and specify its value only
at the end.
One can introduce the Wigner function which com-

pletely characterizes all correlation functions in any
Gaussian state. Here, we focus on the noise average
Wigner function, which is defined as

nτðkÞ≡
X
j0
e{kj

0 hâ†jþj0 âjiτ ¼
1

L

X
jj0

e{kj
0
Tr½â†jþj0 âjϱτ�; ðG4Þ

where h� � �iτ ¼ hΨ0ðτÞj…jΨ0ðτÞi denotes the quantum
average at time τ and we introduce the density matrix

ϱτ ≡ jΨ0ðτÞihΨ0ðτÞj. Although we are interested in the
ground state of Ĥ0, these considerations apply to any
translational invariant Gaussian initial state jΨ0i. In this
case, because of the noise average, Eq. (G4) is independent
of the position j.
We now consider the quantum evolution of ϱτ. It is easy

to verify that, after the noise average, one obtains the
Lindblad form

dϱτ
dτ

¼ −{½H0; ϱτ� −
τ0
2

X
j;j0

Fðj − j0Þ½ẑj þ ẑ†j ; ½ẑj0 þ ẑ†j0 ; ϱτ��:

ðG5Þ

We can use Eqs. (G4) and (G5) to obtain an evolution
equation for nτðkÞ. Note that the first term in Eq. (G5) does
not contribute because of translational invariance and
Eq. (G2). Using Eq. (G2), we obtain explicitly

∂τnτðkÞ ¼ −
τ0
2

X
n;n0;m;j;j0

Fðn − n0Þ

× eikm


ζjζj0 h½a†nþjân; ½a†n0þj0 ân0 ; a

†
mâ0��iτ

þ ζ�jζ
�
j0 h½a†nânþj; ½a†n0 ân0þj0 ; a

†
mâ0��iτ

þ ζ�jζj0 h½a†nânþj; ½a†n0þj0 ân0 ; a
†
mâ0��iτ

þ ζjζ
�
j0 h½a†nþjân; ½a†n0 ân0þj0 ; a

†
mâ0��iτ

�
: ðG6Þ

We can expand all the commutators applying twice

½â†j1 âj2 ; a†j3 âj4 � ¼ δj2j3 â
†
j1
âj4 − δj1j4 â

†
j3
âj2 ðG7Þ

from the anticommutation rules fâ†i ; â†jg ¼ 0 and

fâ†i ; âjg ¼ δij, and one gets

½â†j1 âj2 ; ½a†j3 âj4 ; a†j5 âj6 � ¼ δj2j3δj4j5a
†
j1
âj6 − δj1j6δj4j5a

†
j3
âj2

− δj3j6δj2j5a
†
j1
âj4 þ δj3j6δj1j4a

†
j5
âj2 :

ðG8Þ

As a result, a single correlator survives. This is expected,
since the full Hamiltonian (G3) is quadratic, so the
correlation matrix hâ†j âj0 i must satisfy a closed and linear
evolution equation. Next, one obtains, using the parity of
the noise correlation FðxÞ ¼ Fð−xÞ and translational
invariance,

∂τnτðkÞ¼−
τ0
2

X
m;j;j0

eikmf2ðζjζj0 þζ�−jζ
�
−j0 Þ½FðjÞ−FðmþjÞ�Þ

þðζjζ�−j0 þζ�−jζj0 Þ½Fð0ÞþFðjþj0Þ
−FðmÞ−Fðmþjþj0Þ�ghâ†mþjþj0 â0iτ: ðG9Þ
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Using that ζðkÞ� ¼ P
j e

ikjζ�−j, we finally obtain

∂τnτðkÞ¼τ0

Z
q
F̃ðqÞjζð−kÞþζð−q−kÞ�j2½nðkþqÞ−nðkÞ�;

ðG10Þ

where

F̃ðqÞ ¼
X
j

eiqjFðjÞ: ðG11Þ

Consider first half filling, i.e., μ ¼ 0, as in the main text.
To recover the coupling with the noise defined there, we
must choose ζðkÞ ¼ −Jeik. With this choice,

jζð−kÞ þ ζð−q − kÞ�j2 ¼ ϵðkþ q=2Þ2; ðG12Þ

and one recovers Eq. (47) given in the main text.
For finite −2 < μ < 2, the Hamiltonian in Eq. (G1)

remains critical and described by a c ¼ 1 CFT. In order
to preserve parity and time-reversal symmetry, a simple
choice is ζðkÞ ¼ ϵðkÞ=2 with ϵðkÞ ¼ −Jð2 cos k − μÞ,
which corresponds to the coupling to the noise of the form

Ĥ ¼ Ĥ0 þ
1

2

X
j

ηjðτÞðĥj þ ĥj−1Þ: ðG13Þ

In this case, we obtain after replacing ζðkÞ → ϵðkÞ=2 in
Eq. (G10)

∂τnτðkÞ ¼
τ0
4

Z
q
F̃ðqÞ½ϵðkÞ þ ϵðqþ kÞ�2½nðkþ qÞ − nðkÞ�Þ:

ðG14Þ

2. Scaling limit

Here, we study the evolution equation for the Wigner
function (G14). In the scaling limit of large ξ described
in the main text, we look for a solution which has the
following scaling form around the two Fermi points:

nτðkÞ ≃ n½ξðkF − kÞ; τ=ξ� þ n½ξðkþ kFÞ; τ=ξ�: ðG15Þ

The initial condition which corresponds to the ground state
reads

nτ¼0ðkÞ ¼ Θðkþ kFÞ − Θðk − kFÞ
¼ −1þ Θðkþ kFÞ þ ΘðkF − kÞ; ðG16Þ

which gives for the initial scaling function nðp; t ¼ 0Þ ¼
−1=2þ ΘðpÞ. We can now derive directly an evolution
equation for the scaling function nðp; tÞ. In order to do this,
we replace in Eq. (G14) ζ̂ðkÞ with the energy dispersion
relation ϵðkÞ, which gives Eq. (47) in the
text. Next, we inject the scaling form Eq. (G15)
around each Fermi point (choosing þkF) and replace
k ¼ kF − p=ξ; k0 ¼ −p0=ξ. From Eqs. (45) and (G11),
we obtain that at large ξ, F̃ðkÞ ≃ ξf̂ðξkÞ, which leads to
(using τ0 ¼ ξ)

∂tnðp; tÞ ≃
ξ2

4

Z
πξ

−πξ

dp0

2π
f̃ðp0Þ

�
ϵ

�
kF −

p
ξ

�
þ ϵ

�
kF −

pþ p0

ξ

�	
2

½nðpþ p0; tÞ − nðp; tÞ�

!ξ→∞
v2

Z
∞

−∞

dp0

2π
f̃ðp0Þ

�
pþ p0

2

�
2

½nðpþ p0; tÞ − nðp; tÞ�

¼ v2
Z

∞

−∞

dq
2π

f̃ðp − qÞ
�
qþ p
2

�
2

½nðq; tÞ − nðp; tÞ�: ðG17Þ

We can now compute the mean energy density with
respect to the ground state eFðτÞ, which is expanded as

eFðτ ¼ tξÞ ¼
Z

π

−π

dk
2π

ϵðkÞ½nτðkÞ − n0ðkÞ�

≃
1

ξ2
½ẽþðtÞ þ ẽ−ðtÞ�; ðG18Þ

ẽþðtÞ≡ lim
ξ→∞

ξ

Z
∞

−∞

dp
2π

ϵ

�
kF −

p
ξ

�
½nðp; tÞ − nðp; 0Þ�

¼ −v
Z

∞

−∞

dp
2π

p½nðp; tÞ − nðp; 0Þ� ðG19Þ

and similarly for e−FðtÞ with k ∼ −kF.

We now prove the validity of Eq. (49) in the main text.
We show that ẽþðtÞ satisfies a first-order differential
equation. Indeed, differentiating Eq. (G18) with respect
to the variable t and using Eq. (G17), we obtain

∂tẽþðtÞ ¼ −v3
Z

∞

−∞

dp
2π

dq
2π

pf̃ðp − qÞ
�
qþ p
2

�
2

× ½nðq; tÞ − nðp; tÞ�

¼ −
v3

2

Z
∞

−∞

dq
2π

dp
2π

f̃ðp − qÞðp − qÞ
�
qþ p
2

�
2

× ½nðq; tÞ − nðp; tÞ�; ðG20Þ
where in the last equality we symmetrize the integrand with
respect to the exchange p ↔ q. The integral in Eq. (G20) is
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finite, but, to proceed further, we need to split the integral in
two terms involving nðq; tÞ and nðp; tÞ, which are both
divergent. To avoid this issue, we change variables p ¼
qþ u and integrate by parts with respect to q using that
nðq; tÞ − nðqþ u; tÞj∞q¼−∞ ¼ 0 to arrive at

∂tẽþðtÞ ¼ v3
Z

dq
2π

du
2π

f̃ðuÞu ðqþ u=2Þ3
6

× ½n0ðq; tÞ − n0ðqþ u; tÞ�; ðG21Þ

where n0ðq; tÞ ¼ ∂qnðq; tÞ. We can now split the integral
into two finite terms and replace q → q − u in the second
integral. This leads to

∂tẽþðtÞ

¼ v3
Z

dq
2π

du
2π

f̃ðuÞu 1
6
½ðqþ u=2Þ3 − ðq− u=2Þ3�n0ðq; tÞ

¼ v3
Z

du
2π

f̃ðuÞ u4

48π

Z
dqn0ðq; tÞ

þ v3

2

Z
dq
2π

q2n0ðq; tÞ
Z

du
2π

f̃ðuÞu2

¼ v3fð4Þð0Þ
48π

− v2f00ð0ÞẽþðτÞ; ðG22Þ

where we use thatZ
dqn0ðq; tÞ ¼ 1;Z

dq
2π

q2n0ðq; tÞ ¼
Z

dq
2π

q2½n0ðq; tÞ − n0ðq; 0Þ�

¼ 2

v
ẽþðtÞ; ðG23ÞZ

du
2π

f̃ðuÞu2 ¼ −f00ð0Þ;Z
du
2π

f̃ðuÞu4 ¼ fð4Þð0Þ: ðG24Þ

Note that in Eq. (G23) we use the initial condition (G16)
which shows that n0ðq; 0Þ ¼ δðqÞ. We can thus solve

Eq. (G22) with the initial condition ẽþðt ¼ 0Þ ¼ 0 and
obtain

ẽþðtÞ ¼ fð4Þð0Þvð1 − e−v
2f00ð0ÞtÞ

48πf00ð0Þ : ðG25Þ

Summing also the equivalent contribution from ẽ−ðtÞ and
using the definition of θ ¼ −v2f00ð0Þ=2, we recover
Eq. (40) by setting the central charge c ¼ 1, which is
expected from universality. Note that the present calcu-
lation is from first principles.

APPENDIX H: ENERGY DISTRIBUTION
AT FINITE TEMPERATURE

Let us assume now that the initial state is not at zero
temperature. In this case, the operator identity Eq. (35) still
holds. As explained in the main text, the random variable
Tβ ≡ hT̂ðy; tÞiβ can be expressed in terms of the variables r
and κ in the small l limit via Eq. (42). Sincewe are interested
in the limit l → 0, the stochastic equation describing r and κ
is simply given by Eq. (20). Thus, we have

dTβ ¼
πc

12β2v2
½2r2vdB1 − f00ð0Þr2v2dt�

−
cvr2

24π

�
−
v
2
fð4Þð0Þdtþ dB2

�
: ðH1Þ

Using the solution for the variable rðtÞ ¼ e−θtþvB1ðtÞ, we can
integrate and obtain

T̃βðtÞ ≔ TβðtÞ − Tβð0Þ

¼
Z

t

0

e2vB1ðsÞþv2f00ð0Þs
�
πcdB1

6β2v
−
cdB2v
24π

þ
�
cfð4Þð0Þv2

48π
−
πcf00ð0Þ
12β2

�
ds

	
; ðH2Þ

where we subtract the initial value Tβð0Þ ¼ πc=ð12β2v2Þ.
We once again reparametrize time as in Appendix D, with
Biðt − s0Þ ¼ B̃iðtÞ − B̃iðs0Þ. In addition to Eq. (D7), we
also need

Z
t

0

e2vB1ðsÞþv2f00ð0ÞsdB1ðsÞ ¼ e2vB̃1ðtÞþv2f00ð0Þt
�Z

t

0

e−2vB̃1ðsÞ−v2f00ð0ÞsdB̃1ðsÞ þ 2vfð2Þð0Þ
Z

t

0

e−2vB̃1ðsÞ−v2f00ð0Þsds
	
; ðH3Þ

which leads to the alternative expression

T̃βðtÞ ¼ e2vB̃1ðtÞþv2f00ð0Þt
Z

t

0

e−2vB̃1ðsÞ−v2f00ð0Þs
�
πcdB̃1

6β2v
−
cdB̃2v
24π

þ πcfð2Þð0Þds
4β2

−
cfð4Þð0Þv2ds

16π

	
: ðH4Þ

We can now derive a closed stochastic equation satisfied by T̃βðtÞ. After some manipulations, we arrive at
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dT̃β ¼ dB1

�
πc
6β2v

þ 2T̃βv

�
−
cdB2v
24π

þ 1

48
dt

�
−
4πcfð2Þð0Þ

β2
þ cfð4Þð0Þv2

π
− 48fð2Þð0ÞT̃βv2

�
: ðH5Þ

We can further simplify this expression and bring it back to the Bougerol form [73]. First, we put together the two noise
terms, introducing a new standard Brownian noise dB:

dT̃β ¼ −
πcdtfð2Þð0Þ

12β2
þ cdtfð4Þð0Þv2

48π
− dtfð2Þð0ÞT̃βv2 þAðT̃βÞdB; ðH6Þ

AðT̃βÞ ¼

−
c2½16π4fð2Þð0Þ − 8π2β2fð4Þð0Þv2 þ β4fð6Þð0Þv4�

576π2β4v2
þ cT̃β

�
fð4Þð0Þv2

6π
−
2πfð2Þð0Þ

3β2

�
− 4fð2Þð0ÞT̃2

βv
2

s
: ðH7Þ

Then, we observe that setting

T̃βðtÞ ¼
cκ̃0
4π

�
ωβðtÞ
ω0

− 1

�
−

πc
12β2v2

⇒ TβðtÞ ¼
ceκ0
4π

�
ωβðtÞ
ω0

− 1

�
; ðH8Þ

where κ̃0 and ω0 are defined in Eq. (24), the variable ωβðtÞ satisfies exactly the same Langevin equation (25). The only
difference lies in the initial condition as T̃βð0Þ ¼ 0 or, equivalently, Eq. (43).
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