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We theoretically and experimentally investigate the formation of dissipative coherent structures in Kerr
nonlinear optical microresonators, whose spectrum encompasses an integrated dispersion that exceeds the
cavity free-spectral range. We are able to access this regime in low-dispersion photonic chip-based
microresonators by employing synchronous pulse driving, which increases the peak power over the
continuous-wave-driving regime. Exploring this dispersion-folded regime, we demonstrate that the
presence of periodically varying dispersion can excite higher-order comb structures, which we explore
in both the normal and anomalous dispersion regimes. In the former, we observe the coexistence of
switching wave fronts with Faraday instability-induced period-doubling patterns. They manifest as strong
satellite microcombs highly separated either side of the core microcomb, at an offset close to half the
repetition rate but while sharing the same repetition rate. In the latter, for dissipative Kerr solitons in
anomalous dispersion, we observe the formation of higher-order phase-matched dispersive waves (“Kelly-
like” sidebands), where the folded dispersion crosses the frequency comb grid. We observe up to the fifth
higher-order dispersive wave in our experiments and show that these higher-order dispersive waves
coherently extend the soliton frequency comb bandwidth significantly. For both cases, we show that our
results can be understood by considering four-wave mixing in a two-dimensional Fourier transform
representation. The results demonstrate the rich novel nonlinear dynamics of driven dissipative nonlinear
cavities with periodically varying dispersion in the dispersion-folded pumping regime.
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I. INTRODUCTION

Nonlinear pattern formation is a fascinating phenomena
and ubiquitous in nature [1]. Over the past decade, a wide
variety of dissipative coherent structures in continuous-
wave-driven Kerr optical nonlinear microresonators has
been observed and studied [2,3]. It is now well understood
that two fundamental localized dissipative structures can be
generated via parametric interactions in microresonators:
dissipative Kerr solitons (DKSs) in anomalous dispersion
[4] and switching waves (SWs) [5,6] (otherwise termed as
platicons or “dark pulses” in certain configurations) in the
normal dispersion regime, which in the cw-driven case are
excited by mode-crossing-induced dispersion changes [7].
Both structures are governed by the Lugiato-Lefever
equation (LLE) and constitute coherent optical frequency
combs in the frequency domain. Such “microcombs,”

DKS-based microcombs, in particular, have expanded
the domain of optical frequency combs and have been
used in numerous system level applications, due to their
high repetition rates in the microwave domain and their
compact chip-integrated form factor, into various applica-
tion domains—including neuromorphic computing [8],
ultrafast ranging and parallel coherent LIDAR [9,10],
coherent telecommunications [11], astronomical spectrom-
eter calibration [12], frequency synthesizers [13], and
atomic clock architectures [14]. Given that a comprehen-
sive understanding of the nonlinear dynamical physics of
dissipative Kerr structures in conventional optical micro-
resonators and fiber cavities has emerged, recently signifi-
cant attention has been devoted to exploring physics and
microcomb generation in nontrivial regimes. These regimes
include alternative pumping schemes such as pulse driving
[15] or self-injection locked lasers [16,17], as well as the
study of complex dispersion profiles to extend the
comb bandwidth of solitons with dispersive waves (DWs)
[13,18]. Indeed, recent work highlights the novel dynamics
associated with complex resonator structures such as micro-
resonators with integrated Bragg gratings and photonic-
crystal elements [19], as well as the emergent nonlinear
dynamics observed in coupled microring photonic “dimers”
[20], i.e., photonic “molecules” [21].

*tobias.kippenberg@epfl.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 011040 (2023)

2160-3308=23=13(1)=011040(16) 011040-1 Published by the American Physical Society

https://orcid.org/0000-0003-0549-2385
https://orcid.org/0000-0001-9701-0392
https://orcid.org/0000-0002-8939-7336
https://orcid.org/0000-0002-5704-3971
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.011040&domain=pdf&date_stamp=2023-03-16
https://doi.org/10.1103/PhysRevX.13.011040
https://doi.org/10.1103/PhysRevX.13.011040
https://doi.org/10.1103/PhysRevX.13.011040
https://doi.org/10.1103/PhysRevX.13.011040
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Yet, in nearly all prior experimental studies of driven
nonlinear optical microresonators, the Kerr frequency shift
has been, heuristically, less than the free-spectral range
(FSR). In other words, the spectral extent of the generated
coherent dissipative structure exhibits an integrated
dispersion that is smaller than the free-spectral range.
This is predominantly the natural regime for typical micro-
resonators with a large FSR over approximately 50 GHz.
Here, we study the nonlinear dynamics beyond this realm.
Using pulsed optical pumping [15,22] of low-repetition-
rate optical microresonators, we access the regime where
the “dissipative structures” cover a bandwidth whose
integrated dispersion exceeds the FSR of the resonator.
Akin to electrons in periodic bands that give rise to the
Brillouin zone, we demonstrate how dispersion folding can
occur. Specifically, when the dispersion folds back to the
zone spanned by the FSR, we show that any periodic
perturbation of the soliton during its round-trip (in our case
produced by introducing spatially varying dispersion)
enables quasiphase matching for emergent higher-order
structures at the edge of the dispersion “zone.” In this way,
periodic forcing of the cavity field every round-trip via the
dispersion constitutes a form of parametric driving. For
solitons, this gives rise to higher-order dispersive waves
[23,24], also identified as “Kelly sidebands” historically
discovered in systems with periodic amplification and later
soliton fiber lasers [25–28]. Additionally, in cw-driven
systems, dispersion modulation, or, in fact, parametric
modulation of any system parameter, has long been known
to lead to Faraday instability (FI). FI patterns were most
originally studied in vertically shaken fluid basins [29] and
were observed to occur oscillating first at half the forcing
frequency. From a general point of view, such dynamics in
optical resonators are governed by partial differential
equations with periodic coefficients. The associated field
of study is called Floquet theory. Floquet dynamics and
consequent optical FI has been discussed earlier mostly in
the context of fiber-based devices [30–33] operating in the
quasi-cw regime where period-doubling dynamics [34] as
well as the competition between Turing and Faraday
instability [35,36] have been observed. The very same
dynamics have also been studied for Bose-Einstein con-
densates [37].
In this work, we provide experimental observation of

higher-order (fifth) dispersive waves bound to a dissipative
Kerr soliton microcomb, and the generation of strong
satellite combs in a switching wave microcomb, powered
by FI pattern formation not yet seen or studied in photonic
microresonators. In the latter, this results in a 5× extension
of the total comb bandwidth. Reconstructing the absolute
optical frequencies, we show that the satellite combs share
the same comb line spacing but a different offset frequency.
For both cases of normal and anomalous dispersion, we
theoretically analyze the dynamics behind the periodically
perturbed LLE using the paradigm of two-dimensional

(2D) four-wave mixing (FWM) in the unfolded dispersion
space. As such, we derive and analyze theoretically the
two-dimensional version of the LLE that describes this
physical reasoning. Finally, we apply the notion of the
nonlinear dispersion relation (NDR) to this system, which
reveals the complex photon transfer pathways underlying
the process of sideband formation. Our results endeavor to
expand the conventional understanding about dispersion by
studying the consequence of dispersion folding.

II. GENERAL MODEL OF DISPERSION-
MODULATED CAVITY

The fundamental model underpinning all the phenomena
presented and discussed in this work is depicted in Fig. 1.
The resonator can be represented as a waveguide ring
[Fig. 1(a)] whose cross section varies in such a way that the
group velocity dispersion parameter d2ðzÞ (β2 or D2 as it is
in the experimental sample) varies periodically over length
L and amplitude Δ or in the time domain as t ¼ z=D1R for
resonator with radius R and FSR D1. The system can be
evaluated piecewise as in Fig. 1(b), where the underlying
integrated dispersion operator dint ¼ d2μ2 varies for each
step in direction z [Fig. 1(c)]. The concept of FSR
dispersion folding [see Fig. 1(d)] serves as a convenient
visual representation of the process of phase-matched
FWM in the cavity. The dispersion curve passing FSR=2
is folded back to −FSR=2. In this picture, momentum
mismatch between the branches of dispersion is not
compensated in nonmodulated cavities. Thus, FWM inter-
actions with folded modes become resonant only when
there is a mechanism coupling two neighboring FSRs.
To establish a clear line of reasoning and understand the

dynamics of this system, we revisit and extend conclusions
presented in previous studies [32–35], looking at them from
a different point of view that employs the notion of two-
dimensional four-wave mixing (2D FWM).

A. Model

To model the nonlinear dynamics of the cavity with
periodically modulated dispersion, we use a well-known
form of the LLE with a time-dependent dispersion term
[32]. In dimensionless units, the equation takes the form

∂Ψ
∂t

¼ −ð1þ iζ0ÞΨþ i½dð0Þ2 þ d2ðtÞ�
∂
2Ψ
∂φ2

þ ijΨj2Ψþ fðφÞ;

ð1Þ

where Ψðφ; tÞ describes the slowly varying envelope of the
optical field in the microresonator, fðφÞ is the driving
function (which may be a pulse profile), φ is the azimuthal
coordinate inside the cavity in the frame moving with
velocity d1 ¼ 2D1=κ with D1 ¼ 2π · FSR, ζ0 ¼ 2δω0=κ is
the normalized laser-cavity detuning, and κ ¼ κ0 þ κex is
the total linewidth of the resonator with internal linewidth
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κ0 and coupling to the bus waveguide κex. Dispersion

coefficients dð0Þ2 and d2ðtÞ and time t are normalized on the
photon lifetime so that d2 ¼ D2=κ and t ¼ t0κ=2 for real lab
time t0. In this model, we denote dð0Þ2 as the averaged
resonator dispersion with periodic modulation d2ðtþ TÞ ¼
d2ðtÞ, where T ¼ T 0κ=2 ¼ πκ=D1 is the normalized round-
trip time. If the driving function fðφ; tÞ is also periodic in
time with period T, we can assume that the field Ψ has the
same symmetry Ψðtþ TÞ ¼ ΨðtÞ, and we can employ the
Fourier transform

d2ðtÞ ¼
X
n

d̃ðnÞ2 e−id1nt; ð2Þ

Ψðφ; tÞ ¼
X
nμ

ψ̃nμeiμφ−id1nt ð3Þ

and obtain an effective two-dimensional equation gov-
erning the Floquet dynamics (here, f is taken constant for
simplicity, but the equation can be readily generalized):

∂ψ̃nμ

∂t
¼ −ð1þ i½ζ0 − nd1� þ idð0Þ2 μ2Þψ̃nμ

− i
X
m

d̃ðn−mÞ
2 μ2ψ̃mμ þ i

X
n1 ;n2 ;n3
μ1 ;μ2 ;μ3

ψ̃n1μ1 ψ̃n2μ2 ψ̃
�
n3μ3δFWM

þ δn;0f; ð4Þ

where the conservation law δFWM ¼ δðμ1 þ μ2 − μ3 −
μÞδðn1 þ n2 − n3 − nÞ governs 2D FWM processes in
the fast- (μ) or slow- (n) frequency space. We can, thus,
conclude that the periodically varying dispersion, which in
the LLE leads to a time-dependent dispersion term, couples
different Floquet orders (n) of the intracavity field.

The dispersionless profile along n (modes are equidistant
in this direction having D1 frequency spacing) protects our
system from transverse instabilities [38,39], allowing us to
study and generalize well-known coherent structures such
as DKSs and SWs. However, the presence of periodic
dispersion modulation results in linear coupling between
different orders of Floquet index n that effectively corre-
spond to FSR-frequency breathing. As shown in Eq. (4),
the coupling amplitude is proportional to the Fourier

coefficients d̃ðnÞ2 and scales quadratically with comb index
μ, increasingly strengthening the coupling rate for larger
mode numbers jμj.

B. Upper- and lower-state perturbation

To demonstrate the effect of dispersion modulation on
the cavity dynamics for all comb modes, we provide split-
step simulations [40] of Eq. (1), shown in Fig. 2. We first
investigate the effect of phase matching on the noise
transduction properties of the cavity, in the absence of
any coherent structure formation to avoid the effect of
conventional modulation (Turing) instability [32]; we
simulate the case of a low average normal dispersion
(dð0Þ2 ¼ 0.0027). Given a cw driving strength of f2 ¼ 10,
typical for the generation of solitons or switching waves,
the Kerr nonlinear cavity possesses a bistable condition
across a range of detuning to approximately ζ0 < 10, with
an upper and lower cw-state solution ΨH and ΨL, respec-
tively (solutions of which are in Appendix A). In Figs. 2(a)
and 2(c), corresponding to the respective lower and upper
states, we show the long-term response to small noise
continuously placed on each comb mode, revealed by
taking the 2D Fourier transform of the output fast-time
domain field recorded over a large number of round-trips,
with a numerical integration step smaller than the cavity

FIG. 1. Model for dispersion zone folding in driven dissipative Kerr nonlinear microresonators. (a) The simplest case of a passive
nonlinear microresonator whose waveguide width, and thus dispersion parameter, undergoes a periodic cycle. (b) In our modeling, we
consider a simple sinusoidal dispersion modulation, evaluated piecewise. (c) The integrated dispersion of each resonator mode μ along
the microresonator’s circumference, for each value of d2 plotted in (b). (d) Round-trip integrated dispersion, this time plotted in the
folded zone over one free-spectral range. The comb spectrum spans multiple orders of dispersion, but each higher order is phase
mismatched. Dispersion modulation is required to quasiphase match.
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round-trip. Such a figure is henceforth referred to as the
NDR, used in optics and hydrodynamics to describe
complex nonlinear systems [20,41,42]. It can be expressed
as follows:

NDRðΩ; μÞ ¼ 1ffiffiffiffiffiffiffiffiffi
NtN

p
X
l;k

Ψl;keiðΩtk−2πμl=NÞ; ð5Þ

where Ω is a slow frequency, tk ¼ Δtk with Δt ¼ Tl=Nt
time step, and Tl is simulation time with Nt the number of
discretization points. Figure 2 presents the power spectral
density of the NDR over Floquet index n vs μ, which are,
respectively, proportional to the “slow: frequency Ω
counted in D1 and longitudinal mode (comb) index.
Each state carries conjugate pairs of resonant radiation

conditions related to the dispersion operator [43,44],
originating from the two states ΨH and ΨL: ζH� and
ζL�, respectively (see Appendix A). Our simulations reveal
that the noise within the cavity forms a prominent reso-
nance curve that follows one of those dispersion relations,
depending on which bistable state the field is in. We note
that the conjugated ζþ relation appears weakly only on the
upper state [depicted as ζHþ in Fig. 2(c)] as a result of
sufficient FWM with ζH−. In Figs. 2(b) and 2(d), we see
how rapid dispersion frequency modulation causes this
radiation condition to carry sidebands, hence referred to as
Floquet bands, spaced along the n axis spaced by d1
(n ¼ ζ=d1). For this simulated example, d1=2π ¼ 8, cor-
responding to 8 times the photon lifetime frequency. For

simplicity, we consider an example of d̃ð1Þ2 ¼ d̃ð−1Þ2 ¼ Δ=2
that corresponds to cosine modulation of the dispersion. In
this case, the linear term in Eq. (4) couples n and n� 1

frequency modes with a coupling strength Δμ2=2. This
effect is similar to sideband generation in electro-optic
modulation, in which efficiency increases with the mode
number μ. Strikingly, both upper-state Floquet bands ζH−
and ζHþ are affected by the modulation in a similar way, as
shown in Fig. 2(d).

FIG. 2. Dispersion curves or Floquet bands for homogeneous
and modulated cavity. (a),(c) Simulated 2D Fourier transform for
light propagating in the Kerr lower state at ζ0 ¼ 5 and upper state
at ζ0 ¼ 4, respectively, in a homogeneous cavity with normalized
driving strength f2 ¼ 10. The conjugated dispersion curve is
apparent only in the upper state. (b),(d) The same solution

existing in a dispersion-modulated cavity with Δ ¼ 0.5dð0Þ2 ,

d1=2π ¼ 8, and dð0Þ2 ¼ 0.0027.

FIG. 3. FI simulation in a cw-driven Kerr cavity with normal dispersion for a cavity with f2 ¼ 10, ζ0 ¼ 5, Δ ¼ 0.5dð0Þ2 , d1=2π ¼ 8,

and dð0Þ2 ¼ 0.0027. (a) Fluctuating field over round-trips vs angular coordinate. (b) Angular coordinate domain showing two consecutive
cavity round-trips. (c) Fast frequency domain snapshot. (d) 2D Fourier transform (NDR) of (a) for Floquet mode index n vs comb mode
index μ. (e) Gain coefficient for FI as a function of the detuning and power. Red star marks the operating point for (a)–(d).
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C. Faraday instability

To reveal the emergence of FI, we modify the simu-
lations presented in Fig. 2(d) entering the range of
parameters corresponding to the unstable regime. The
above-mentioned simplification allows us to further
develop an analytical derivation and analyze the linear
stability of the system. We use a conventional stability
analysis approach [45] but in the new 2D FWM setting
created by Eq. (4), assuming FSR=2 periodic dynamics of
the field. As a result, we obtain that comb indices
corresponding to the maximum FI gain can be approxi-
mated by the following expression (see Appendix A 2):

μ ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdð0Þ2 Þ2 − Δ2

q
vuut ≈�

ffiffiffiffiffiffiffiffiffi
D1

Dð0Þ
2

s
: ð6Þ

Equation (6) reveals that, in the normal dispersion
regime, it is possible to observe formation of sidebands
with a frequency offset of FSR=2 from the pump which is
also highlighted in Fig. 3. Figures 3(a)–3(e) show the result
of the numerical simulations. The considered range of
parameters corresponds to period-doubling dynamics in the
resonator with a 2T oscillation period, similar to results in
Ref. [34]. Figures 3(a) and 3(b) show a corresponding
spatiotemporal diagram and its cross sections at two states
separated by T. The NDR shown in Fig. 3(d) shows the 2D
nature of the FWM pathways, implying that pump photons
can be transferred in the 2D frequency space by changing
both μ and n indexes. The maximum FI gain [see Fig. 3(e)

for the full FI gain diagram] is placed at the modes
corresponding to a d1=2 spacing between the ζHþ and
ζH− Floquet bands.

III. ANOMALOUS DISPERSION CASE

A. Numerical analysis

First, we revisit the effect of the perturbation on the
bright DKS formed in the anomalous dispersion cavity. The
exact distribution of the modulation along the cavity can
affect the position or the amplitude of the instability gain.
However, this does not change overall dynamical features
[32], which allows us to use the simplest cosine-modulated
cavity. Although the Faraday instability gain can be
positive, in this case [35], the cw solution on the upper
branch is Turing unstable [46] and, in the considered range
of parameters, leads to DKS generation. Therefore,
dispersion modulation here acts as a round-trip-periodic
perturbation to a stable DKS state. This provides a photon-
transferring mechanism—quasiphase matching—resulting
in power enhancement in certain modes placed at the same
frequency grid as the soliton line. They modify the solitonic
spectrumwith Fano-shaped sidebands (also known as Kelly
sidebands) [24], which we refer to as here as higher-order
dispersive waves (HDWs). “Higher-order” in this sense is
explicitly related to the Floquet dimension (modulation in
the longitudinal axis) and should not be confused with
higher polynomial orders of the dispersion d4, d5, etc.
To illustrate this, we repeat numerical solutions to

Eq. (1). In Figs. 4(a), 4(b), and 4(d), we recall the
conventional (unperturbed) DKS features. Figure 4(a)

FIG. 4. DKS simulation in cw-driven modulated cavity for f2 ¼ 10, ζ0 ¼ 10,Δ ¼ 0.7dð0Þ2 , d1=2π ¼ 16, and dð0Þ2 ¼ −0.0027. (a) DKS
field in cavity angular coordinate with (blue) and without (yellow) modulation. (b) Corresponding fast frequency power spectrum.
(c) Spatiotemporal diagram of the modulated DKS propagating over resonator round-trips (slow time). (d),(e) DKS nonlinear dispersion
relations, obtained by taken F ½ � over both dimensions of the spatiotemporal diagram for nonmodulated and modulated cases,
respectively. Red circles show higher-order dispersive wave positions.
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(yellow) shows a cross section which contains a secant
hyperbolic profile on a cw background. The frequency
domain of this is shown in Fig. 4(b). Taking the 2D Fourier
transform of the spatiotemporal data, we obtain NDR
(described above), in Fig. 4(d). The NDR of a single
unperturbed soliton has two components: a soliton line and
the dispersive resonance curve ζL−, which is seeded mainly
by the cavity noise and here is approximately equal to the
cold-cavity dispersion operator. The detuning of the DKS
from the cold-cavity resonance ζ0 is given by the gap
between the soliton line and the ζL− curve. Crucially, even
though the cavity dispersion wraps over the FSR line n ¼ 1
more than once, no dispersive wave is created in this case,
since the nonlinear photon transfer is forbidden by the
momentum conservation law [47].
When periodic dispersion modulation is introduced, we

observe a different picture [Figs. 4(a)–4(c) and 4(e)]. The
spatiotemporal diagram (c) reveals that DKS starts to
radiate dispersive waves to the cavity, depicted by wavy
lines emanating from the DKS and overlapping every
round-trip. They appear as a cw background modulation
shown in Fig. 4(a) and in Fig. 4(b) are seen to be several
HDW on the spectral wings (i.e., Kelly sidebands). The
NDR presented in Fig. 4(e) reveals that the HDWoriginate
from the intersection between the soliton line and the FSR-
folded Floquet bands. This interaction is enabled by the

periodic modulation which couples neighboring modes,
appearing in the NDR as copies of the soliton line and
dispersive Floquet bands repeated at every FSR. In this
way, the momentum conservation law can be satisfied
which leads to efficient nonlinear photon transfer at the
intersection points, forming the HDW in the spectrum. An
extended 3D perspective and a view of the dispersion-
folded space can be found in Supplemental Material [48].

B. Experimental setup

The experimental setup used for all the experimental
results of this work is presented in Fig. 5. The resonators of
choice [one pictured in Fig. 5(a)] are based on the photonic
Si3N4 waveguide platform, fabricated using the
Damascene process [49], and have an FSR of 15 GHz.
While the ring resonator in the theoretical model is
assumed to have a sinusoidally varying second-order
dispersion D2, the real resonators are more complex.
The original motivation for inserting a single mode section
into the resonators was to suppress mixing between higher-
order transverse modes, that can lead to single-mode
dispersive waves. However, as detailed below, we find
that this leads to new dynamics. This is achieved with the
use of a higher-order mode suppression section (MSS), a
short segment of the resonator where the waveguide tapers
from its main waveguide width down to 0.4 μm [50,51], a

FIG. 5. Si3N4 photonic chip and experimental setup. (a) Microscope image of the Si3N4 racetrack microresonator having 15 GHz free-
spectral range. The inset shows the mode suppression section (MSS). The variation of the waveguide width is highlighted by the color
gradient. (b) The variation of the dispersion over the MSS for changing waveguide width (height ¼ 820 nm), the aggregate dispersion of
the whole MSS, and the aggregate dispersion for the whole resonator. (c) Experimental chip pumping scheme, featuring the EO comb as
a pulsed source. The input pulse train is coupled into and out of the microresonator chip via lensed fibers. Bottom inset: spectrum of the
15 GHz EO comb before amplification. MZM, Mach-Zehnder modulator; EOM, electro-optic modulator; EDFA, erbium-doped fiber
amplifier; OSA, optical spectrum analyzer; OSC, oscilloscope. See Supplemental Material [48] for description of “comb reconstruction”
section.
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width where only the fundamental mode may propagate
without strong loss, shown in Fig. 5(a). In Fig. 5(b), we plot
numerically calculated waveguide dispersion values β2 for
several discrete waveguide cross sections along the MSS,
showing how the dispersion transitions from weakly anoma-
lous up to strongly normal. We can retrieve the average

round-trip dispersion βð0Þ2 through a weighted sum of β2 for
each waveguide width according to their relative length. In
this example resonator design, the final aggregate dispersion
calculation comes out close to zero, since the MSS accounts
for 13% of the total cavity length. This also means the
dispersion modulation duty cycle is not pure sinusoidal but
rathermore pulselikewithmanymore coupling harmonics in
the longitudinal n-space. For numerical modeling presented
below, we assume a pure sinusoidal approximation, but a full
pulselike treatment for the dispersion can be found in
Supplemental Material [48]. The final average resonator
dispersion value is found through

Dð0Þ
2 ¼ −βð0Þ2 LD3

1=2π: ð7Þ

Resonators fabricated with this architecture for the experi-
ment include a range of average dispersion values from
anomalous to normal, providing the results for both regimes
in this work.
The pumping andmeasurement setup itself is presented in

Fig. 5(c). In order to reach the required driving powers for the
regime where the Floquet dynamics due to the presence of
dispersion bands can be accessed and to ensure the gen-
erationof a single dissipative structure, pulse driving using an
electro-optic (EO) comb is employed [52] as has been done
previously for experiments in resonators with a similar
gigahertz-domain FSR [15,22,53]. A full breakdown of
the components used is given in Ref. [22]. It yields a pulse
train of pulses approximately 1.4 ps in duration with an rf
controllable repetition rate feo set near 15 GHz (see
Appendix C for further details).

FIG. 6. Dissipative soliton with higher-order dispersive wave experiment. (a) Measured integrated dispersion profile overlaid against
polynomial fit, including all branches separated by the FSR D1. The dashed line represents the comb line array. Where the fit lines are
not fully accurate due to lack of measured points, they are gray. (b) Measured single soliton spectrum in resonator device with the above
dispersion profile. Observed higher-order DW on high-frequency side matched with points on the corresponding dispersion curves.
(c) Experimental comb reconstruction measurement of the soliton comb in the frequency range 184–220 THz.
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C. Experimental verification

First, we verify the excitation of higher-order dispersive
waves in strongly pulse-driven resonators, that feature
periodic dispersion as shown in Fig. 6. The resonator device
used here, R1, has a relatively cubic dispersion profile with
coefficients D1;2;3;4=2π ¼ 15.06 GHz, 14.3 kHz, 6.59 Hz,
and−3.84 mHz respectively,with intrinsic loss and coupling
κ0;ex=2π ¼ 30 and 230 kHz, respectively. The high value of
κex is used in order to maximize the output power of the
soliton spectrum, with a given average power of 720 mW
entering the chip waveguide. After the soliton spectrum is
generated stably, by tuning the EO-comb center frequency
across resonance into the bistability region [4], there appear
several Kelly-like sidebands, or HDWs, on the short-
wavelength side of the spectrum. Remarkably, these
higher-order dispersive waves are observed up to fifth order
and appear spectrally highly distinct from the DKS.
Extrapolating the DKS envelope, we observe that the
HDW exhibits more than 25 dB power compared to the
smooth single DKS case. Figure 6(a) shows the integrated
dispersionprofile of thismicroresonatormeasured separately
[54], overlaid with its fourth-order polynomial fitting
Dint ¼

P
4
k¼2Dkμ

k=k!, and five additional orders of Dint

separated negatively by nD1. In Fig. 6(b), the final soliton
spectrum is plotted featuring HDWs up to the fifth order.
Next, we compare the location of the observed HDWs

with the theoretical predictions. By taking the frequencies
of each HDW in Fig. 6(b) and projecting them onto each
Floquet order of folded integrated dispersion operators in
Fig. 6(a) (black circles), we retrieve a linear frequency
comb grid (black dashed line). This tilted line gives us the
soliton comb relative frequency grid whose repetition rate
(comb line spacing) is controlled by the injected EO-comb
pulse train, desynchronized from the cavity FSR slightly by
feo ¼ D1=2π þ δfeo [15]. We directly confirm the comb
integrity using the Kerr comb reconstruction technique
[55], which allows us to experimentally obtain a direct
measurement of the NDR (see Appendix C for measure-
ment details). The resulting image is shown in Fig. 4(c),
measured across the bandwidth available to us of 184–
240 THz, although only the first-order dispersive wave has
a sufficient signal-to-noise ratio to be captured. The image
shows that every comb line of this spectrum lies on a
straight grid spaced by 15.059 07 GHz, as sampled in this
plot, which does exactly equal the experimentally set EO-
comb frequency feo. In particular, the first HDW seen at
211 THz lies on the very same grid.
It should be pointed out that the soliton spectrum does

not match prediction on the long-wavelength side.
According to the above dispersion plot, we should see
likely two more first-order HDWs, as the comb grid crosses
the DL− −D1 operator (approximately Dint −D1; see
Appendix B) twice at 169 THz and later below
140 THz. Instead, we see these two features at 148 and

154 THz, indicating the polynomial fitting is inaccurate in
this region due to the lack of measured dispersion values
beneath 180 THz.

IV. NORMAL DISPERSION CASE

A. Numerical analysis

Next, we discuss the Floquet dynamics of coherent
structures in normal dispersion resonators. In this case,
the pulsed pumping, used in our experiments to achieve
high peak powers, plays another major role in stabilizing
SW structures that appear in the resonator. SWs usually
have a nonzero relative group velocity that depends on the
driving amplitude f2. However, there is a particular value
of f2 that corresponds to a stationary SW pattern called a
Maxwell point [6,56]. Pulse pumping leads to an intra-
cavity power gradient that depends on the intraresonator
coordinate φ; therefore, the edges of an SW lock to the part
of the pump corresponding to the Maxwell point. The
dispersion modulation, in this case, leads to the Faraday
instability dynamics including the effect of period doubling
[34], resulting in the generation of widely spaced sidebands
that originate from the two-dimensional FWM process.
We provide numerical simulations of the LLE Eq. (1)

and compare homogeneous and modulated cavity cases.
Figures 7(a), 7(b), and 7(d) display the ideal SW generated
in a synchronously pumped resonator. Figure 7(a) (yellow)
shows a typical platicon profile of a rectangular pulse with
oscillating tails. Figure 7(b) is the corresponding spectrum
showing the flattop spectral profile. The NDR plotted in
Fig. 7(d), particularly the inset, clearly reveals the origin of
such a spectrum. Since both branches of the bistable
resonance ΨL and ΨH are involved in the SW formation,
we observe all dispersive resonances ζL−, ζH−, and ζHþ on
the NDR (ζLþ is again too weak to appear). The ζH− curve
originating from the upper state ΨH (top of the SW)
acquires an additional phase shift due to the Kerr non-
linearity and, therefore, is shifted down to lower frequen-
cies relative to ζL−. A coherent structure corresponding to
the rising and falling edges of the SW acquires a smaller
Kerr shift and, therefore, caresses the curve ζL−. Such a
crossing implies phase matching between the states and
leads to enhanced power at the crossing modes. This creates
the flattened spectral profile of the SW [6,53].
When the SW is generated in the modulated cavity, a

strong influence of the FI is observed. Performing numeri-
cal simulation with the same parameters as in the soliton
section, butwith the sign ofdð0Þ2 reversed, we observe period-
doubling dynamics in Figs. 7(a) and 7(c). The top part of the
SW is patterned with periodic structures, similar to that
observed in the cwcase (Fig. 3), that are direct evidence of FI.
Each round-trip, the patterned profile exhibits a π phase flip
as reported in Refs. [30,34]. The power profiles jΨðφ; tÞj2 at
two stages of the period-doubling dynamics are displayed in
Fig. 7(a). The corresponding spectral plot in Fig. 7(b) shows
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the appearance of characteristic double-peaked sideband
spectra substantially extending the unperturbed SW spec-
trum. In a microresonator environment, these sidebands
manifest as satellite combs drawing energy from the central
comb.
Besides the conclusion from the analysis that predicts the

position of the modes having maximum FI gain, there is an
empirical understanding of the process that can be formu-
lated by analyzing the NDR plot shown in Fig. 7(e). In the
normal dispersion case, conventional modulation instability
does not affect the upper state of the bistable resonance.
Because of the high power, the conjugated upper-state
dispersive curve ζHþ becomes visible on the NDR. Both
curves are experiencing modulation, resulting in the FSR-
spaced Floquet bands. At the location in the n vs μ space

where ζH− and ζHþ cross, we observe the formation of
satellites. Because of the apparent mirror symmetry
between ζH− and ζHþ, the intersection occurs at
�FSR=2 in the slow frequency dimension. As explained
above, this process can be seen as a two-dimensional FWM
process, providing photon transfer from the pump to the
sidebands having an �FSR=2 offset. The double-peak
structure of subcombs can be readily explained with the
NDR. This double feature was, in fact, seen in numerical
simulations shown in Staliunas, Hang, and Konotop [31]
but was not discussed there in further detail. The coherent
subcomb line formed around the unstable mode, sourced
from FI, crosses both ζH− and ζL− simultaneously, resulting
in two peaks, the spacing of which corresponds to the
separation between these dispersive curves. A larger 3D

FIG. 7. SW solution in pulse-driven modulated cavity for f2 ¼ 10, ζ0 ¼ 6, Δ ¼ 0.7dð0Þ2 , d1=2π ¼ 16, and dð0Þ2 ¼ 0.0027. (a) SW field
in cavity angular coordinate with (blue) and without (yellow) modulation. (b) Corresponding power spectrum. (c) Spatiotemporal
diagram of an SW in the modulated cavity. (d),(e) SW nonlinear dispersion relation, obtained by taking F ½ � over both dimensions of the
spatiotemporal diagram for nonmodulated and modulated cases, respectively. Black circles show the intersections of a SW line and
dispersive parabola resulting in the canonical SW spectral profile. Red circles indicate FI-originated satellites. (f) Measured optical
spectra of switching wave affected by FI at different detunings (red-orange scale). Simulated spectral envelope overlaid (blue). Left
inset: measured cavity power out during scan of laser detuning over resonance. Red and orange points mark locations of measured
spectra. Right inset: enlargement of comb lines at outer dispersive wave. Black and red arrows correspond to circles from (d) and (e).
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perspective of Fig. 7(e), looking closely at this feature, can
be found in Supplemental Material [48].

B. Experimental verification

We present experimental results of a switching wave with
satellite combgeneration in dispersion-modulated resonators
here, with the goal of verifying the coherence and comblike
nature of the spectrum aswell as thevalidity of ourmodeling.
For this, two example resonator devices are investigated: R2
and R3. R2 has relatively strong normal and symmetrical
dispersion, with D1;2;3;4=2π ¼ 15.32 GHz, −12.9 kHz,
5.36 Hz, and −2.39 mHz, respectively, and κ0;ex=2π ¼ 30

and 180 kHz, respectively.R3, on the other hand, has a flatter
and more imbalanced dispersion profile, with D1;2;3;4=2π ¼
15.31 GHz, −3.14 kHz, 3.35 Hz, and −2.49 mHz, respec-
tively, and κ0;ex=2π ¼ 30 and 200 kHz, respectively. All
other experimental details including the driving and detec-
tion setup are the same as discussed above in Fig. 5. Further
measurements of the resonator parameters can be found in
Supplemental Material [48].
In Fig. 7(f), we present satellite comb generation results

in R2, with an average pump power of 230 mW. The left

inset in this figure shows the detected power trace from the
output of the cavity, while the laser center frequency is
scanned across the cavity resonance from blue detuned to
red detuned, showing different stages in the way the trace
dips in power. The first dip and plateau correspond to the
initial buildup of power in the resonator and the subsequent
formation of the switching wave comb by wave breaking
[6,53]. The second dip, past halfway, marks the sudden
growth of satellite combs. The reason the output power
trace decreases in energy during this phase is due to the fact
that the photodiode in use does not detect light above
1700 nm (below 176 THz). This indicates energy transfer
from the central comb to the satellite comb. As marked with
red-to-orange dots, we stop the laser tuning at the several
points here and plot the spectra measured. Two large
satellite combs are observed to rise quickly, above even
the plateau comb power of the core switching wave. Each
satellite comb consists of two features. On the inner side
closer to the core spectrum are the sincðÞ profilelike spectra,
marked with red arrows, that represent the origin of the FI
pattern sourced from the “inside” of the switching wave, on
its upper state, as shown previously in Fig. 7. These are
equispaced about the core spectrum at �15.5 THz, due to

FIG. 8. Phase matching for broadband satellite combs. (a) Experimentally measured integrated dispersion for resonator R3, with fourth-
order polynomial fit, used in the following simulation. (b) Experimentally measured spectrum of a switching wave with satellite combs,
overlaid with simulation result, offset by −15 dB. (c) Nonlinear dispersion relation of the simulation above, showing upper and lower
dispersion curves and their higher orders. (d) Experimentally measured comb reconstruction, the equivalent of the image in (c), showing the
central comb and short-wavelength satellite located near the predicted phase-matched frequency offset. Overlaid are the analytical dispersion
curves used from the simulation. The strong band across 192 THz is excess amplified spontaneous emission from the pump spectrum.

MILES H. ANDERSON et al. PHYS. REV. X 13, 011040 (2023)

011040-10



the FI requirement, and appear to agree approximately with
the prediction of Eq. (6). The second feature is the sharp
hooklike dispersive wave on the outer side of the satellite
combs, marked with black arrows. These mark the relative
location of the lower-state dispersive resonance DL−
(where DL− ¼ κζL−=2 in dimensionless) with which the
FI spectra interact, as also described above in Fig. 7. Using
the independently measured loss and dispersion values of
R2 given above, we simulate the very same experiment
using the LLE with real resonator units. The final simulated
spectrum when tuning into resonance is plotted in the same
Fig. 7(f) in blue, showing good agreement, particularly
with respect to the satellite combs’ “double feature.”
Further results from this simulation can be found in
Supplemental Material [48].
Moving on to further explore the phase matching of these

satellite combs more deeply, we present measurements and
corresponding simulations of generated satellite combs in
resonator device R3, shown in Fig. 8. The experimental

dispersion measurement is shown in Fig. 8(a), and its fitting
is used to obtain the dispersion parameters listed above and
carry out verification simulations. When tuning the laser to
the point of strongest comb generation, we measure the
spectrum shown in Fig. 8(b), with average power coupled to
the resonator of 60 mW, this time showing satellite comb
generation further apart in comparison to Fig. 7(f).
Recreating the same experiment in simulation creates
the black spectral envelope, showing good agreement. In
Fig. 8(c), the NDR image for the simulation state is shown,
revealing the coherence of the satellite combs and their
precise relative position in offset frequency relative to the
central switching wave comb, including the three nonlinear
dispersion curves DL−, DH−, and DHþ that determine this
phasematching.According to this figure, the requirement for
the FI gain to be equidistant with the pump, and located on
the upper-state dispersion curve, causes the satellite combs to
originate at 163 and 222 or�29.5 THz relative to the pump,
with an offset frequency of �3.8 GHz, respectively. In a

FIG. 9. Satellite comb repetition rate tuning and phase matching. Two switching waveþ satellite comb generation events where (a),
(c),(e) δfeo ¼ þ600 kHz and (b),(d),(f) δfeo ¼ −600 kHz. (a),(b) Spectrum, measured, and simulated using measured resonator
parameters. Simulated is offset by −15 dB. (c),(d) Nonlinear dispersion relation image for the simulated case showing offset satellite
comb spectra. (e),(f) Measured comb reconstruction image. The strong band across 192 THz is excess amplified spontaneous emission
from the pump spectrum. The lower nonlinear dispersion curve shown as a dashed white line. Faraday instability gain frequency is
marked in red. Dispersive waves are marked in white.
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perfectly symmetrical dispersion profile such as in Fig. 7 or
close to the experiment for R2 in Fig. 7(f), this offset value
would be at or near the FSR=2, 7.66 GHz. In R3, due to the
positiveD3, the dispersion landscape is pulled upward in the
positive optical frequency direction, resulting in this fre-
quency offset value of 3.8 GHz.
To confirm our understanding, we perform comb

reconstruction (described in Appendix C) and plot the
image in Fig. 8(d). The data shown here correspond to the
same spectral measurement plotted in Fig. 8(b). Plotted on
top are the nonlinear dispersion curves calculated for the
simulated parameters: the upper- and lower-state curves
DH− and DL−, respectively (dashed), as well as the
conjugated upper-state curve DHþ (dashed) and its FSR-
shifted Floquet band (solid). In real units, D� ¼ κζ�=2. In
this image, we can see the central SW comb spanning 185–
203 THz, and we verify that its spectral wings are bound by
the lower-state dispersion curve DL−. Crucially, we verify
that the short-wavelength satellite comb appears at an offset
frequency of −3.5 GHz, almost where it is predicted to
appear according to the simulated model at the intersection
of DH− ¼ DHþ −D1. The outer dispersive wave wing of
the satellite also appears as this comb’s intersection with the
lower-state dispersion curve DL−. Both combs appear to be
coherent, with optical linewidths limited by the detection
resolution of the probing laser (approximately 4 MHz). We
must acknowledge that the detected offset frequency of
each comb line seems to drift up and down by several
megahertz across the whole measurement, particularly at
the end of the satellite comb. This drift is likely due to slow
thermal shifts in the pumped resonator mode spectrum
(which is not locked) occurring during the 40-s swept-laser
scan. This varies from take to take. It is not indicative of the
physical frequency comb.
To complete our demonstration of the nature of the

satellite comb offset frequency and its relationship to the
dispersion curves, the same series of graphs is presented in
Fig. 9. This time, however, the frequency of the EO comb
feo, i.e., the imposed repetition rate of SW generation
inside the cavity, is changed between two limits. In the
above Fig. 8 results, δfeo is set to 0 in simulation, and in
experiment it is set to the point of maximum spectrum
symmetry in the wings of the SW comb, with
feo ¼ 15.308 77 GHz. In Figs. 9(a), 9(c), and 9(e), we
downturn feo by δfeo ¼ −600 kHz and in Figs. 9(b), 9(d),
and 9(f) upturn by δfeo ¼ þ600 kHz. In each case,
experimentally and in simulation, it is important to observe
that the center of FI gain stays fixed at �29.5 THz in the
optical axis and at �3.8 or �3.5 GHz offset frequency in
simulation and experiment, respectively. These points are
highlighted by red lines and circles. While these points
remain fixed, the repetition rate (comb line spacing) of all
combs exactly follows the imposed repetition rate
frep ¼ feo þ δfeo, causing the visual “tilt” in the combs
shown in Figs. 9(c)–9(f). Where the tilted comb spectra

cross DL− is where the dispersive waves form, highlighted
in white circles. By cross comparing the NDR graphs with
the optical spectra shown above in Figs. 9(a) and 9(b), one
can see the direct origin of each comb feature.

V. CONCLUSION

In this work, we presented a comprehensive investigation
of dissipative structure existence in dispersion-folded Kerr
cavities with a fundamental spatial modulation of the
dispersion. The source of additional spectral features is
shown directly through 2D analysis of four-wave mixing
pathways, in simulation via the slow vs fast frequency NDR
diagrams and in experiment by the comb reconstruction
measurement. For the dissipative soliton, we see directly
the appearance of resonant radiation that we term as higher-
order dispersive waves, i.e., dispersive waves appearing
quasiphase matched to dispersive resonance curves (or
Floquet bands) in FSR-folded space. This is termed as such
in relation to conventional “zeroth-order” dispersive waves
that phase match directly to the base level unmodulated
dispersive resonance curve, such as dual-dispersive waves
in resonators with quartic dispersion [57].
For the switching wave structure, we showed direct

generation of powerful satellite combs born of the Faraday
instability from the switching wave upper state, a micro-
comb structure that to our knowledge has never before been
observed. These satellite combs are shown to be mutually
locked in repetition rate with the core SW structure.
However, the center frequency of each satellite comb is
not determined by this repetition rate and is, instead, set
fixed by the cavity dispersion, forming at a point up to an
FSR=2 offset from the core comb. We showed how the
repetition rate is controllable by varying the injected pulse
repetition rate. Some of the cited works here instead
predicted or observed Faraday instability arising as a result
of the modulation of other parameters of the LLE, such as
the nonlinear constant [31], and the loss or coupling value
[30,58] (via the Ikeda map model as opposed to the LLE).
All such processes can be analyzed using a similar method.
In this work, we have found dispersion modulation to be
the sufficient and dominant contributor to the observed
phenomena, with a brief analysis of this to be found in
Supplemental Material [48].
In terms of applicable value, if assuming that engineering

highly flat dispersion is difficult in a given waveguide
platform, deliberate modulation of the dispersion instead
will automatically generate many higher-order dispersive
waves that extend a soliton microcomb spectrum signifi-
cantly wider beyond the point where the body of the comb
disappears into the optical noise floor. Doing so deliber-
ately may extend an already broad soliton microcomb
further to the point where it can become octave spanning
and able to be f-2f self-referenced [13]. Similarly, and
more dramatically, assuming a fixed dispersion profile,
dispersion modulation is shown here to effortlessly enable a
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switching wave microcomb to be extended by multiple
times its base-level bandwidth. Such combs could in the
future find use in spectroscopy [59], telecommunications
[60], astrospectrometer calibration [12], and LIDAR [10].
For these reasons, longitudinal parametric modulation of
the resonator waveguide may become a resource for
spectrally extending Kerr microcombs.

The data and code that support the plots and numerical
simulations within this paper are available at [61]. Any
other data and findings of this study are available from the
corresponding author upon reasonable request
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APPENDIX A: ANALYTICAL APPROACH
TO THE MODULATED CAVITY DYNAMICS

1. Nonlinear dispersion operators

The Kerr bistable solutions are found from the roots of
the cubic equation of the LLE, at equilibrium where
∂tΨ ¼ 0, in the absence of any dispersion term:

ðjΨj2Þ3 − 2ζ0ðjΨj2Þ2 þ ðζ20 þ 1ÞjΨj2 − f2 ¼ 0 ðA1Þ

and, subsequently,

Ψcw ¼ if
jΨcwj2 − ζ0 þ i

: ðA2Þ

The resulting nonlinear dispersion operators are found
from Ref. [43] as follows:

ζL�ðμÞ ¼ −δd1μþ d3μ3

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ0 − d2μ2 − d4μ4 − 2jΨLj2Þ2 − jΨLj4

q
;

ðA3Þ

ζH�ðμÞ ¼ −δd1μþ d3μ3

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζ0 − d2μ2 − d4μ4 − 2jΨHj2Þ2 − jΨHj4

q
;

ðA4Þ

including orders of dispersion and group velocity shift from
d1 to d4.

2. Modulation instability analysis

In case of harmonic modulation of the dispersion, Eq. (4)
indicates linear coupling between the amplitudes ψ̃nμ and
ψ̃n�1μ, resulting in breathing of generated structures with
period equal to the round-trip time. However, the presence
of Kerr nonlinearity gives rise to period multiplication
effects that occur due to Faraday instability. In this section,
we perform a modulation instability analysis for the period-
doubled continuous-wave solution.
We assume ψ0ðφ; tÞ to be a solution of Eq. (1) with an

unmodulated dispersion term. We are interested in dynam-
ics of a small perturbation ξðφ; tÞ that obeys the linearized
equation

∂ξ

∂t
¼ −ð1þ iζ0Þξþ i

�
dð0Þ2 þ Δ

eid1t þ e−id1t

2

�
∂
2

∂φ2
ξ

þ ið2jψ0j2ξþ ψ2
0ξ

�Þ þ Δ
∂
2ψ0

∂φ2
cos d1t: ðA5Þ

First, we use the following ansatz: ξ ¼ AðtÞ exp iμφþ
B�ðtÞ exp−iμφ, so the coupled equations for the ampli-
tudes A and B read

∂A
∂t

¼ −ð1þ iζ0ÞA − i

�
dð0Þ2 þ Δ

eid1t þ e−id1t

2

�
μ2A

þ ið2jψ0j2Aþ ψ2
0BÞ þ Δ

∂
2ψ0

∂φ2
cos d1t;

∂B
∂t

¼ −ð1 − iζ0ÞBþ i

�
dð0Þ2 þ Δ

eid1t þ e−id1t

2

�
μ2B

− ið2jψ0j2Bþ ψ2
0AÞ þ Δ

∂
2ψ0

∂φ2
cos d1t:

We continue, assuming A ¼ αþ exp id1t=2þ α− exp−
id1t=2 and B ¼ βþ exp id1t=2þ β− exp−id1t=2, where
the amplitudes obey

d
dt

Y ¼ MY ; ðA6Þ

where Y ¼ ½αþ; α−; βþ; β−�T and the matrix

M ¼

0
BBBBB@

y00 −iμ2Δ=2 iψ2
0 0

−iμ2Δ=2 y11 0 iψ2
0

−iψ�2
0 0 y�00 iμ2Δ=2

0 −iψ�2
0 iμ2Δ=2 y�11

1
CCCCCA; ðA7Þ

where y00 ¼ −ð1þ iζ0Þ − id1=2 − iμ2dð0Þ2 þ 2ijψ0j2 and
y11 ¼ y00 þ id1. The real part of the eigenvalues of this
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matrix give the parametric gain of modulationally unstable
solutions. Comb indices of these solutions can be approxi-
mated by the following formula:

μ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdð0Þ2 Þ2 − ðΔ=2Þ2

q
vuut : ðA8Þ

APPENDIX B: NUMERICAL MODELING

To model the dynamics of the field envelope in peri-
odically varying dispersion resonators, we numerically
solve Eq. (1) in normalized units using the well-known
split-step method [40]. This is for the studies presented in
Figs. 2–4 and 7. For Figs. 7(f), 8, and 9, the real
experimental results are replicated in simulations using
the system model with practical units:

∂A
∂t0

¼ F τ½iðδωþ 2πμδfeo þDintðt0; μÞÞÃμ�

−
κ

2
Aþ iΓjAj2Aþ fpðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1κex
2π

P0

r
ðB1Þ

acting on field (in
ffiffiffiffiffi
W

p
) Aðt0; τÞ over slow or laboratory

time t0 and fast time τ in the comoving frame of the
intracavity field circulating at D1, with frequency domain
counterpart Ãμ at discrete comb line indices μ. The linear
phase operators include the detuning δω, the desynchro-
nization of the pulse drive with the cavity field δfeo, and the
dispersion operator that varies with time as

Dintðt0; μÞ ¼ ð1þ Δ cosðD1t0ÞÞ
�
D2

2
μ2 þD3

6
μ3 þD4

24
μ4
�
:

ðB2Þ

The loss and coupling rates satisfy κ ¼ κ0 þ κex, and the
nonlinear coupling parameter Γ ¼ D1n2ω0L=ð2πcAeffÞ for
resonator length L, effective waveguide area Aeff , and
nonlinear refractive index n2. The injected pulse profile
has a peak power P0. All parameters here are found
experimentally and can be related to the dimensionless
values by the following transformations: t ¼ t0κ, φ ¼ τD1,
Ψ ¼ A

ffiffiffiffiffiffiffiffiffiffi
2Γ=κ

p
, dl ¼ 2Dl=ðκl!Þ for l ¼ 1–4, ζ0 ¼ 2δω=κ,

and f2 ¼ 4P0κexΓD1=ðπκ3Þ. The experimental nonlinear
dispersion curves are related to the dimensionless curves by
ζ�ðμÞ ¼ 2D�ðμÞ=κ. All parameter values used to recon-
struct the field dynamics are presented in Supplemental
Material [48].

APPENDIX C: EXPERIMENTAL DETAIL

1. Chip pumping

The experimental setup for characterization of nonlinear
frequency mixing and dissipative Kerr soliton generation

combines the experimental setups used in Ref. [55] for Kerr
comb reconstruction and Ref. [22] for dissipative soliton
generation and EO-comb control. Awidely tunable external
cavity diode laser is passed through three fiber-coupled
phase modulators and one amplitude modulator, all syn-
chronously driven by an rf synthesizer (Rhode & Schwarz
SMB100A) set to near the FSR. The 1.4-ps pulses are
formed after traveling through approximately 275 m of
SMF-28, then amplified in an erbium-doped fiber amplifier,
and coupled to the photonic chip through lens fibers with
2.4-dB insertion loss.

2. Comb reconstruction

This technique is realized on the linear dispersion
measurement tool [54] reconfigured to a heterodyne optical
spectrum analyzer by superimposing the output of the
resonator with the scanning laser on a balanced photo-
detector. Kerr comb reconstruction provides a high spectral
resolution (of the order of 4 MHz) and an extended
dynamic range (enhanced by a multistage logarithmic
amplifier—Analog Devices 8307), which allow us to
obtain full spectral information about the generated comb
state. The diagram of this measurement method is shown in
Supplemental Material [48].

[1] G. Nicolis and I. Prigogine, Self-Organization in Non-
equilibrium Systems, From Dissipative Structures to Order
through Fluctuations (Wiley, New York, 1977), p. 339.

[2] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L.
Gorodetsky, Dissipative Kerr Solitons in Optical Micro-
resonators, Science 361, eaan8083 (2018).

[3] L. Chang, S. Liu, and J. E. Bowers, Integrated Optical
Frequency Comb Technologies, Nat. Photonics 16, 95
(2022).

[4] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev,
M. L. Gorodetsky, and T. J. Kippenberg, Temporal Solitons
in Optical Microresonators, Nat. Photonics 8, 145 (2014).

[5] X. Xue, Y. Xuan, Y. Liu, P. H. Wang, S. Chen, J. Wang,
D. E. Leaird, M. Qi, and A. M. Weiner, Mode-Locked Dark
Pulse Kerr Combs in Normal-Dispersion Microresonators,
Nat. Photonics 9, 594 (2015).

[6] M. H. Anderson, W. Weng, G. Lihachev, A. Tikan, J. Liu,
and T. J. Kippenberg, Zero Dispersion Kerr Solitons in
Optical Microresonators, Nat. Commun. 13, 4764 (2022).

[7] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi,
and A. M. Weiner, Normal-Dispersion Microcombs En-
abled by Controllable Mode Interactions, Laser Photonics
Rev. 9, L23 (2015).

[8] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li,
M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S.
Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg,
W. H. Pernice, and H. Bhaskaran, Parallel Convolutional
Processing Using an Integrated Photonic Tensor Core,
Nature (London) 589, 52 (2021).

[9] P. Trocha, M. Karpov, D. Ganin, M. H. Pfeiffer, A. Kordts,
S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann,

MILES H. ANDERSON et al. PHYS. REV. X 13, 011040 (2023)

011040-14

https://doi.org/10.1126/science.aan8083
https://doi.org/10.1038/s41566-021-00945-1
https://doi.org/10.1038/s41566-021-00945-1
https://doi.org/10.1038/nphoton.2013.343
https://doi.org/10.1038/nphoton.2015.137
https://doi.org/10.1038/s41467-022-31916-x
https://doi.org/10.1002/lpor.201500107
https://doi.org/10.1002/lpor.201500107
https://doi.org/10.1038/s41586-020-03070-1


S. Randel, W. Freude, T. J. Kippenberg, and C. Koos,
Ultrafast Optical Ranging Using Microresonator Soliton
Frequency Combs, Science 359, 887 (2018).

[10] J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E.
Lucas, J. Liu, and T. J. Kippenberg, Massively Parallel
Coherent Laser Ranging Using a Soliton Microcomb,
Nature (London) 581, 164 (2020).

[11] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J.
Pfeifle, M. H. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H.
Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J.
Kippenberg, and C. Koos, Microresonator-Based Solitons
for Massively Parallel Coherent Optical Communications,
Nature (London) 546, 274 (2017).

[12] E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J.
Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S.
Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe,
F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, A
Microphotonic Astrocomb, Nat. Photonics 13, 31 (2019).

[13] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair,
C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N.
Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G.
Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E.
Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K.
Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, An
Optical-Frequency Synthesizer Using Integrated Photonics,
Nature (London) 557, 81 (2018).

[14] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C.
Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R.
Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S.
Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A.
Diddams, J. Kitching, S. B. Papp, and M. T. Hummon,
Architecture for the Photonic Integration of an Optical
Atomic Clock, Optica 6, 680 (2019).

[15] E. Obrzud, S. Lecomte, and T. Herr, Temporal Solitons in
Microresonators Driven by Optical Pulses, Nat. Photonics
11, 600 (2017).

[16] A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafonova, J. Liu,
A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas,
R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky,
and T. J. Kippenberg, Electrically Pumped Photonic Inte-
grated Soliton Microcomb, Nat. Commun. 10, 1 (2019).

[17] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson,
Battery-Operated Integrated Frequency Comb Generator,
Nature (London) 562, 401 (2018).

[18] G. Moille, E. F. Perez, J. R. Stone, A. Rao, X. Lu,
T. S. Rahman, Y. K. Chembo, and K. Srinivasan, Ultra-
Broadband Kerr Microcomb through Soliton Spectral
Translation, Nat. Commun. 12, 7275 (2021).

[19] S.-P. Yu, D. C. Cole, H. Jung, G. T. Moille, K. Srinivasan,
and S. B. Papp, Spontaneous Pulse Formation in Edgeless
Photonic Crystal Resonators, Nat. Photonics 15, 461
(2021).

[20] A. Tikan, J. Riemensberger, K. Komagata, S. Hönl, M.
Churaev, C. Skehan, H. Guo, R. N. Wang, J. Liu, P. Seidler,
and T. J. Kippenberg, Emergent Nonlinear Phenomena in a
Driven Dissipative Photonic Dimer, Nat. Phys. 17, 604
(2021).

[21] O. B. Helgason, F. R. Arteaga-Sierra, Z. Ye, K. Twayana,
P. A. Andrekson, M. Karlsson, J. Schröder, and Victor

Torres-Company, Dissipative Solitons in Photonic Mole-
cules, Nat. Photonics 15, 305 (2021).

[22] M. H. Anderson, R. Bouchand, J. Liu, W. Weng, E. Obrzud,
T. Herr, and T. J. Kippenberg, Photonic Chip-Based Reso-
nant Supercontinuum via Pulse-Driven Kerr Microresona-
tor Solitons, Optica 8, 771 (2021).

[23] K. Luo, Y. Xu, M. Erkintalo, and S. G. Murdoch, Resonant
Radiation in Synchronously Pumped Passive Kerr Cavities,
Opt. Lett. 40, 427 (2015).

[24] A. U. Nielsen, B. Garbin, S. Coen, S. G. Murdoch, and M.
Erkintalo, Invited Article: Emission of Intense Resonant
Radiation by Dispersion-Managed Kerr Cavity Solitons,
APL Photonics 3, 120804 (2018).

[25] S. Kelly, Characteristic Sideband Instability of Periodically
Amplified Average Soliton, Electron. Lett., 28, 806 (1992).

[26] J. Peng and H. Zeng, Build-Up of Dissipative Optical
Soliton Molecules via Diverse Soliton Interactions, Laser
Photonics Rev. 12, 1800009 (2018).

[27] W. Zhao, C. Yang, and M. Shen, Enhanced Kelly Sidebands
of Mode-Locking Fiber Lasers for Efficient Terahertz Signal
Generation, Opt. Laser Technol. 137, 106802 (2021).

[28] C. Wang, B. Chang, T. Tan, C. Qin, Z. Wu, G. Yan, B. Fu, Y.
Wu, Y. Rao, H. Xia, and B. Yao, High Energy and Low
Noise Soliton Fiber Laser Comb Based on Nonlinear
Merging of Kelly Sidebands, Opt. Express 30, 23556
(2022).

[29] T. B. Benjamin and F. Ursell, The Stability of the Plane Free
Surface of a Liquid in Vertical Periodic Motion, Proc. R.
Soc. A 225, 505 (1954).

[30] S. Coen and M. Haelterman, Modulational Instability
Induced by Cavity Boundary Conditions in a Normally
Dispersive Optical Fiber, Phys. Rev. Lett. 79, 4139
(1997).

[31] K. Staliunas, C. Hang, and V. V. Konotop, Parametric
Patterns in Optical Fiber Ring Nonlinear Resonators, Phys.
Rev. A 88, 023846 (2013).

[32] M. Conforti, A. Mussot, A. Kudlinski, and S. Trillo,
Modulational Instability in Dispersion Oscillating Fiber
Ring Cavities, Opt. Lett. 39, 4200 (2014).

[33] A. Mussot, M. Conforti, S. Trillo, F. Copie, and A.
Kudlinski, Modulation Instability in Dispersion Oscillating
Fibers, Adv. Opt. Photonics 10, 1 (2018).

[34] F.Bessin, F.Copie,M.Conforti,A.Kudlinski,A.Mussot, and
S. Trillo, Real-Time Characterization of Period-Doubling
Dynamics in Uniform and Dispersion Oscillating Fiber Ring
Cavities, Phys. Rev. X 9, 041030 (2019).

[35] F. Copie, M. Conforti, A. Kudlinski, A. Mussot, and S.
Trillo, Competing Turing and Faraday Instabilities in
Longitudinally Modulated Passive Resonators, Phys. Rev.
Lett. 116, 143901 (2016).

[36] J. Yang, S.-W. Huang, Z. Xie, M. Yu, D.-L. Kwong, and
C.W. Wong, Coherent Satellites in Multispectral Regener-
ative Frequency Microcombs, Commun. Phys. 3, 1 (2020).

[37] C.-X. Zhu, W. Yi, G.-C. Guo, and Z.-W. Zhou, Parametric
Resonance of a Bose-Einstein Condensate in a Ring Trap
with Periodically Driven Interactions, Phys. Rev. A 99,
023619 (2019).

[38] M. J. Ablowitz and J. T. Cole, Transverse Instability of
Rogue Waves, Phys. Rev. Lett. 127, 104101 (2021).

DISSIPATIVE SOLITONS AND SWITCHING WAVES IN … PHYS. REV. X 13, 011040 (2023)

011040-15

https://doi.org/10.1126/science.aao3924
https://doi.org/10.1038/s41586-020-2239-3
https://doi.org/10.1038/nature22387
https://doi.org/10.1038/s41566-018-0309-y
https://doi.org/10.1038/s41586-018-0065-7
https://doi.org/10.1364/OPTICA.6.000680
https://doi.org/10.1038/nphoton.2017.140
https://doi.org/10.1038/nphoton.2017.140
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1038/s41586-018-0598-9
https://doi.org/10.1038/s41467-021-27469-0
https://doi.org/10.1038/s41566-021-00800-3
https://doi.org/10.1038/s41566-021-00800-3
https://doi.org/10.1038/s41567-020-01159-y
https://doi.org/10.1038/s41567-020-01159-y
https://doi.org/10.1038/s41566-020-00757-9
https://doi.org/10.1364/OPTICA.403302
https://doi.org/10.1364/OL.40.000427
https://doi.org/10.1063/1.5060123
https://doi.org/10.1049/el:19920508
https://doi.org/10.1002/lpor.201800009
https://doi.org/10.1002/lpor.201800009
https://doi.org/10.1016/j.optlastec.2020.106802
https://doi.org/10.1364/OE.460609
https://doi.org/10.1364/OE.460609
https://doi.org/10.1098/rspa.1954.0218
https://doi.org/10.1098/rspa.1954.0218
https://doi.org/10.1103/PhysRevLett.79.4139
https://doi.org/10.1103/PhysRevLett.79.4139
https://doi.org/10.1103/PhysRevA.88.023846
https://doi.org/10.1103/PhysRevA.88.023846
https://doi.org/10.1364/OL.39.004200
https://doi.org/10.1364/AOP.10.000001
https://doi.org/10.1103/PhysRevX.9.041030
https://doi.org/10.1103/PhysRevLett.116.143901
https://doi.org/10.1103/PhysRevLett.116.143901
https://doi.org/10.1038/s42005-019-0260-3
https://doi.org/10.1103/PhysRevA.99.023619
https://doi.org/10.1103/PhysRevA.99.023619
https://doi.org/10.1103/PhysRevLett.127.104101


[39] V. Zakharov and A. Rubenchik, Instability of Waveguides
and Solitons in Nonlinear Media, Zh. Eksp. Teor. Fiz. 65,
997 (1973), https://www.math.arizona.edu/~zakharov/
papers/pdf/ZakharovRubenchikJETP1973.pdf.

[40] G. P. Agrawal, in Nonlinear Fiber Optics, sixth ed., edited
by G. P. Agrawal (Academic, New York, 2019), Chap. 2,
pp. 27–55.

[41] K. P. Leisman, D. Zhou, J. W. Banks, G. Kovačič,
and D. Cai, Effective Dispersion in the Focusing Nonlinear
Schrödinger Equation, Phys. Rev. E 100, 022215 (2019).

[42] A. Tikan, F. Bonnefoy, G. Ducrozet, G. Prabhudesai, G.
Michel, A. Cazaubiel, É. Falcon, F. Copie, S. Randoux, and
P. Suret, Nonlinear Dispersion Relation in Integrable
Turbulence, Sci. Rep. 12, 10386 (2022).

[43] C. Milián and D. V. Skryabin, Soliton Families and Reso-
nant Radiation in a Micro-Ring Resonator near Zero
Group-Velocity Dispersion, Opt. Express 22, 3732 (2014).

[44] Y. He, S. Wang, and X. Zeng, Dynamics of Dispersive Wave
Emission from Dark Solitons in Kerr Frequency Combs,
IEEE Photonics J. 8, 1 (2016).

[45] Y. K. Chembo and C. R. Menyuk, Spatiotemporal
Lugiato-Lefever Formalism for Kerr-Comb Generation in
Whispering-Gallery-Mode Resonators, Phys. Rev. A 87,
053852 (2013).

[46] M. Haelterman, S. Trillo, and S. Wabnitz, Dissipative
Modulation Instability in a Nonlinear Dispersive Ring
Cavity, Opt. Commun. 91, 401 (1992).

[47] S.-W. Huang, A. K. Vinod, J. Yang, M. Yu, D.-L. Kwong,
and C.W. Wong, Quasi-Phase-Matched Multispectral Kerr
Frequency Comb, Opt. Lett. 42, 2110 (2017).

[48] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.13.011040 for additional
descriptions of the measurement method and extended
numerical simulations on dissipative structure formation.

[49] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J.
Engelsen, and T. J. Kippenberg, High-Yield, Wafer-Scale
Fabrication of Ultralow-Loss, Dispersion-Engineered Sil-
icon Nitride Photonic Circuits, Nat. Commun. 12, 1 (2021).

[50] A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, and T. J.
Kippenberg, Higher Order Mode Suppression in High-Q
Anomalous Dispersion SiN Microresonators for Temporal
Dissipative Kerr Soliton Formation, Opt. Lett. 41, 452
(2016).

[51] S.-W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, and
C.W. Wong, Smooth and Flat Phase-Locked Kerr Fre-

quency Comb Generation by Higher Order Mode Suppres-
sion, Sci. Rep. 6, 26255 (2016).

[52] M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio,
and K. Iwatsuki, Optical Carrier Supply Module Using
Flattened Optical Multicarrier Generation Based on Sinus-
oidal Amplitude and Phase Hybrid Modulation, J. Light-
wave Technol. 21, 2705 (2003).

[53] Y. Xu, Y. Xu, A. Sharples, A. Sharples, J. Fatome, J.
Fatome, J. Fatome, S. Coen, S. Coen, M. Erkintalo, M.
Erkintalo, S. G. Murdoch, and S. G. Murdoch, Frequency
Comb Generation in a Pulse-Pumped Normal Dispersion
Kerr Mini-resonator, Opt. Lett. 46, 512 (2021).

[54] J. Liu, V. Brasch, M. H. P. Pfeiffer, A. Kordts, A. N. Kamel,
H. Guo, M. Geiselmann, and T. J. Kippenberg, Frequency-
Comb-Assisted Broadband Precision Spectroscopy with
Cascaded Diode Lasers, Opt. Lett. 41, 3134 (2016).

[55] T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E.
Gavartin, R. Holzwarth, M. Gorodetsky, and T.
Kippenberg, Universal Formation Dynamics and Noise of
Kerr-Frequency Combs in Microresonators, Nat. Photonics
6, 480 (2012).

[56] P. Parra-Rivas, D. Gomila, E. Knobloch, S. Coen, and L.
Gelens, Origin and Stability of Dark Pulse Kerr Combs
in Normal Dispersion Resonators, Opt. Lett. 41, 2402
(2016).

[57] M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov,
E. Lucas, M. Zervas, and T. J. Kippenberg, Octave-
Spanning Dissipative Kerr Soliton Frequency Combs in
Si3N4 Microresonators, Optica 4, 684 (2017).

[58] M. Conforti, F. Copie, A. Mussot, A. Kudlinski, and S.
Trillo, Parametric Instabilities in Modulated Fiber Ring
Cavities, Opt. Lett. 41, 5027 (2016).
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