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The studies of disordered heterogeneous media and galaxy cosmology share a common goal: analyzing
the disordered distribution of particles and/or building blocks at microscales to predict physical properties of
the medium at macroscales, whether it be a liquid, colloidal suspension, composite material, galaxy cluster,
or entire Universe. The theory of disordered heterogeneous media provides an array of theoretical and
computational techniques to characterize a wide class of complex material microstructures. In this work, we
apply them to describe the disordered distributions of galaxies obtained from recent suites of dark matter
simulations. We focus on the determination of lower-order correlation functions, void and particle nearest-
neighbor functions, certain cluster statistics, pair-connectedness functions, percolation properties, and a
scalar ordermetric to quantify the degree of order. Compared to analogous homogeneous Poisson and typical
disordered systems, the cosmological simulations exhibit enhanced large-scale clustering and longer tails in
the void and particle nearest-neighbor functions, due to the presence of quasi-long-range correlations
imprinted by early Universe physics, with a minimum particle separation far below the mean nearest-
neighbor distance. On large scales, the system appears hyperuniform, as a result of primordial density
fluctuations, while on the smallest scales, the system becomes almost antihyperuniform, as evidenced by its
number variance. Additionally, via a finite-scaling analysis, we compute the percolation threshold of the
galaxy catalogs, finding this to be significantly lower than for Poisson realizations (at reduced density
ηc ¼ 0.25 in our fiducial analysis compared to ηc ¼ 0.34), with strong dependence on the mean density; this
is consistent with the observation that the galaxy distribution contains voids of up to 50% larger radius.
However, the two sets of simulations appear to share the same fractal dimension on scales much larger than
the average intergalaxy separation, implying that they lie in the same universality class.We also show that the
distribution of galaxies is a highly correlated disordered system (relative to the uncorrelated Poisson
distribution), as measured by the τ order metric. Finally, we consider the ability of large-scale clustering
statistics to constrain cosmological parameters, such as the Universe’s expansion rate, using simulation-
based inference. Both the nearest-neighbor distribution and pair-connectedness function (which includes
contributions from correlation functions of all order) are found to considerably tighten bounds on the
amplitude of quantum-mechanical fluctuations from inflation at a level equivalent to observing 25 times
more galaxies. The pair-connectedness function in particular provides a useful alternative to the standard
three-particle correlation, since it contains similar large-scale information to the three-point function, can be
computed highly efficiently, and can be straightforwardly extended to small scales (though likely requires
simulation-based modeling). This work provides the first application of such techniques to cosmology,
providing both a novel system to test heterogeneous media descriptors and a tranche of new tools for
cosmological analyses. A range of extensions are possible, including implementation on observational data;
this will require further study on various observational effects, necessitating high-resolution simulations.
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I. INTRODUCTION

From condensed phases of matter to ecological
systems to the primordial distribution of matter in the
Universe, nature abounds with examples of disordered
arrangements of interacting entities that form structures
with diverse geometries and topologies. To understand the
collective behavior of such phenomena, it is vital to have a
mathematical formalism that enables a stochastic descrip-
tion of the constituent objects, particularly with regards to
their spatial distribution and clustering, whether they be
carbon atoms, concrete conglomerates, or individual
galaxies. The theory of disordered heterogeneous media
[1,2], which includes techniques from statistical mechan-
ics [3], provides a natural and powerful machinery with
which to equip ourselves in this venture. In particular, its
primary objective is to connect the properties of the
interacting constituents to their large-scale attributes, such
as a material’s bulk transport and mechanical and electro-
magnetic properties. This is rigorously done by generally
relating the bulk properties to an infinite set of diverse
types of statistical correlation functions that characterize
the microstructures [1], including those that contain
topological information, such as phase connectivity and
percolation characteristics. While this theoretical machi-
nery has been primarily applied to Earth-bound materials,
their applicability is far from terrestrial: these techniques
work similarly for any phenomenon that can be treated as
complex disordered heterogeneous media [1], including
the spatial distribution and clustering of galaxies.
While the bulk of cosmological research in the past

two decades has focused on analysis of the cosmic micro-
wave background (the radiation signature of physics in the
first ∼300 000 years, which provides a snapshot of the
early Universe), that concerning the distribution of galaxies
using statistical descriptors has become progressively
more important [4–6], particularly with the advent of large-
scale surveys, such as the forthcoming Dark Energy
Spectroscopic Instrument (DESI) [7] and the Euclid satel-
lite [8]. The distribution of galaxies traces the distribution
of matter in the early Universe (see, e.g., Ref. [4]); as such,
it encodes information on a wealth of cosmological
parameters, such as the density of matter. An open question
is how best to analyze the data: most works focus on
measuring the correlation functions of the galaxy distri-
bution and comparing them to physical models (either
explicitly derived or numerically simulated) (see, e.g.,
Ref. [9]), though this is known to be suboptimal in terms
of information content. While a number of alternative
statistics have been proposed (including void statistics
[10,11], marked density fields [12–15], Gaussianized fields
[16–19], reconstructed density fields [20] field-level infer-
ence [21–23], Minkowski functionals and other topological
descriptors [24–33], and beyond), there is little consensus
on which have practical utility (with most having been
applied only to the dark matter distribution), and few are

natural from a theoretical standpoint. An important insight
is that the galaxy distribution is simply a set of irregularly
arranged pointlike particles in three dimensions; this is
mathematically identical to the structure of many terrestrial
materials, including atomic systems, colloids, and sphere
packing. As such, both scenarios can be treated with the
same mathematical formalisms; i.e., heterogeneous media
and statistical mechanical techniques designed to quantify
the clustering of particles in materials can be used to
provide a practical and well-motivated manner in which to
understand the galaxy distribution.
This work considers the application of a number of

statistical descriptors from the theory of disordered hetero-
geneous media to characterize structurally the distribution
of galaxies, which we treat as discrete point configuration.
We ask two main questions. (1) What can we learn about
cosmology through the lens of disordered heterogenous
media and statistical mechanics? (2) What condensed
matter physics lessons, more broadly, can we learn from
cosmological structures? As a proof of concept, we will
consider a number of descriptors [1,4], including the two-
and three-particle correlation functions, “void” and “par-
ticle” nearest-neighbor functions, certain cluster statistics,
pair-connectedness functions, percolation properties, and
scalar ordermetrics to quantify the degree of order.We show
how their behaviors in the cosmic landscape, probed through
cosmological dark matter simulations, differs substantially
from that expected from a simple Poissonian distribution of
points as well as well-known homogeneous models of
correlated disordered point patterns, showing that cosmol-
ogy challenges general expectations of standard hetero-
geneous media and statistical mechanical models. In
particular, we will find stronger clustering on large scales,
giving an enhancement in the pair correlation and pair-
connectedness functions and an excess of large-scale voids;
these effects arise due to early Universe physics, which
source quasi-long-range correlations in the galaxy distribu-
tion and create a hyperuniform system. Particular interest
will be paid to the question of clustering and phase
“percolation”; this is a well-understood phenomenon for
many models in condensed matter but can be similarly
extended to galaxy distributions, and yields interesting
results. The cosmological case will be found to percolate
faster, but asymptote to the Poisson case if the density is low,
and both scenarios share the same set of critical exponents.
Furthermore, wewill consider the utility of descriptors from
the theory of disordered heterogeneous media in cosmo-
logical settings, quantifying how they can add additional
information regarding the early and late Universe, finding
that the pair-connectedness function adds significant
cosmological information at minimal additional computa-
tional cost. We caution that further work will be required
before the statistics can be applied to observational data: this
must include discussion of redshift-space effects (arising
from the conversion of galaxy redshifts to distance, creating
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anisotropy with respect to the sample line of sight) and the
dependence of descriptors on galaxy properties, such as
luminosities or masses.
Our conclusions to the above questions asked will be

the following: (1) the theory of heterogeneous media and
statistical mechanics provides an array of useful tools that
can enhance the utility of galaxy survey datasets, strength-
ening the constraints on cosmological parameters and
probing novel features of the distribution, (2) due to its
quasi-long-ranged correlations, galaxy samples exhibit
very different behavior to most terrestrial media, and thus
provide an important sandbox for applying and under-
standing condensed matter techniques. While we restrict
ourselves to galaxy surveys in this work, they are by no
means the only cosmological application of such statis-
tics: a number of other phenomena could be described by
such approaches. These include two-phase media such as
the distribution of cosmic voids (empty regions of
gargantuan extent) and the statistics of ionized hydrogen
bubbles during the “reionization” phase of the Universe.
Such areas provide a bountiful mine from which to derive
future work.
The remainder of this work is structured as follows. In

Sec. II, we provide an overview of the statistics used in this
work, before presenting the proposed testing ground
(simulated galaxy samples) in Sec. III. A comparison of
the statistics on galactic and Poisson data is shown in
Sec. II, with Sec. V providing a discussion of percolation
physics in the two systems. Finally, Sec. VI considers the
utility of a specific statistic, the pair-connectedness func-
tion, in cosmological contexts, before we conclude in
Sec. VII.

II. STATISTICAL DESCRIPTORS
OF POINT CONFIGURATIONS

In this section, we define the various statistical descrip-
tors of point configurations that will be used in the
remainder of this work. We principally adopt notation
from the statistical mechanics community (particularly
following Ref. [1]), though we connect this to the cosmo-
logical terminology, when relevant. Although we princi-
pally work in R3, most of the following discussion remains
relevant in other metric spaces. A schematic illustrating the
various statistical descriptors considered in this work is
shown in Fig. 1.

A. Correlation functions

The fundamental quantity describing a discrete set of N
points in some large region in Rd of volume V is the
N-particle probability density functions PN , which is
defined such that PNðr1;…; rNÞdr1…rN is the probability
of finding the first particle within dr1 of r1, the second
within dr2 of r2, etc. [1,4]. Of more practical use is the
n-particle probability density function, marginalized over

the positions of the other ðN − nÞ ≥ 0 particles: this is
defined as

ρnðr1;…;rnÞ

¼ N!

ðN−nÞ!
Z

drnþ1…drNPNðr1;…;rn;rnþ1;…;rNÞ; ð1Þ

with ρnðr1;…; rnÞdr1…rn being proportional to the prob-
ability of finding one indistinguishable particles within
dr1 of r1, dr2 of r2, etc.
For a statistically homogeneous medium, the one-par-

ticle density function is a constant, i.e., ρ1ðrÞ≡ ρ̄, which is
the mean number density (number of points per unit
volume in the infinite-volume or thermodynamic limit),
commonly labeled n̄ in cosmological contexts (with ρ̄ often
used to refer to the mean energy density of the Universe).
More generally, for statistically homogeneous systems,
ρnðr1;…; rnÞ is translationally invariant, enabling us to
reexpress it as follows:

ρnðr1;…; rnÞ ¼ ρ̄ngnðr12;…; r1nÞ; ð2Þ

where gnðr12;…; r1nÞ is the n-particle correlation function
(closely related to the cosmologists’ n-point correlation
function), which depends on the relative positions r12;…,
where rij ≡ rj − ri. The two-particle or pair correlation

FIG. 1. Schematic depicting the various statistical descriptors
used in this work. The black points indicate the positions of
random particles (here visualized in R2), with the groups of
colored circles (each of diameter D) demonstrating the clusters.
The pair correlation function g2 counts pairs of particles belong-
ing both to the same cluster (pink lines) and to different clusters
(gray lines), whereas the pair-connectedness function P2 contains
only particles within the same cluster (pink lines). We show also
the nearest-neighbor functions: HV encodes the distance between
a randomly positioned point and the nearest galaxy (red arrows),
while HP gives the separation between a galaxy and its closest
neighbor (blue lines). Further details on these statistics are given
in Sec. II.
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function g2 is particularly important in applications,
and is schematically illustrated in Fig. 1. For translation-
ally invariant point configurations without long-range
order, gnðr12;…; r1nÞ → 1 when the points (or particles)
are mutually far from one another, i.e., as jrijj→∞
(1≤ i < j<n), ρnðr1; r2;…; rnÞ → ρn. Thus, the deviation
of gn from unity provides a measure of the degree of
spatial correlations (positive or negative) between the
particles. Note that for a translationally invariant Poisson
(spatially uncorrelated) point configurations, gn ¼ 1 is
unity for all values of its argument. If the point configu-
ration is in addition statistically isotropic, the functions gn
are invariant under joint rotations of rij, such that g2 is a
function only of jr12j≡ r12, and g3 depends only on r12,
r13 and r23 [34].
In cosmology it is commonplace to consider not the

probability density function of the full ensemble, but a set
of realizations of the microscopic density (often known as
the density field), each denoted by ρ̂ðrÞ. This gives the
probability that there is a particle within dr of r for a specific
field (for sufficiently small dr), and can be represented as a
sum of N Dirac deltas: ρ̂ðrÞ ¼ P

N
i¼1 δDðr − xiÞ. Averaging

over realizations (denoted by the expectation operatorE), we
can relate ρ̂ðrÞ to then-particle probability density functions:

E½ρ̂ðr1Þ…ρ̂ðrnÞ�≡ ρnðr1;…; rnÞ: ð3Þ

If the field is statistically homogeneous, and the volume
(i.e.,

R
dr) sufficiently large, this is equivalent to a spatial

average via the ergodic principle. In cosmological contexts,
Eq. (3) is usually adopted, with ρ̂ðrÞ often referred to as
ρ̄½1þ δðrÞ� for overdensity field δ. Additionally, it is
conventional to work with disconnected correlation func-
tions ξðnÞ, often known as n-point correlation functions: the
first few satisfy

ξð2Þðr12Þ≡ E½δðr1Þδðr2Þ�≡ g2ðr12Þ − 1;

ξð3Þðr12; r13; r23Þ≡ E½δðr1Þδðr2Þδðr3Þ�
≡ g3ðr12; r13; r23Þ − g2ðr12Þ − g2ðr13Þ

− g2ðr23Þ þ 2; ð4Þ

see Ref. [4], and are all zero under Poisson statistics. We
will principally work with the full gn functions in this work,
adopting statistical mechanics conventions.
A particularly important descriptor is the structure factor

SðkÞ, which is related to the Fourier transform of the total
correlation function hðrÞ≡ g2ðrÞ − 1:

SðkÞ≡ 1þ ρ̄ h̃ðkÞ≡ 1þ ρ̄

Z
dreik·r½hðrÞ�: ð5Þ

For a Poisson point distribution, SðkÞ ¼ 1 for all k. The
structure factor and the cosmologists’ power spectrum [4]
PðkÞ are trivially related to one another via SðkÞ ¼ ρ̄PðkÞ.

The structure factor provides a useful way to quantify
large-scale (low wave number k≡ jkj) correlation and
fluctuation properties of a point configuration and plays a
central role in the hyperuniformity concept. Hyperuniform
states of matter are correlated systems that are charac-
terized by an anomalous suppression of long-wavelength
(i.e., large length scale) density fluctuations compared to
those found in garden-variety disordered systems, such as
ordinary fluids and amorphous solids [35,36]. A hyper-
uniform (or superhomogeneous [37]) many-particle sys-
tem in d-dimensional Euclidean space Rd is one in which
(normalized) density fluctuations are completely sup-
pressed at very large length scales, implying that the
structure factor SðkÞ tends to zero in the infinite-
wavelength limit, i.e.,

lim
jkj→0

SðkÞ ¼ 0: ð6Þ

Equivalently, a hyperuniform system is one in which the
number variance σ2NðRÞ≡ hNðRÞ2i − hNðRÞi2 of particles
within a spherical observation window of radius R grows
more slowly than the window volume in the large-R limit,
i.e., slower than Rd. Typical disordered systems, such as
liquids and structural glasses, have the standard asymp-
totic volume scaling σ2NðRÞ ∼ Rd and hence are not
hyperuniform. For general translationally invariant point
configation in Rd, the local number variance σ2NðRÞ is
determined exactly by the pair statistics [35]:

σ2NðRÞ ¼ ρ̄v1ðRÞ
�
1þ ρ

Z
Rd

hðrÞαðr;RÞdr
�

¼ ρ̄v1ðRÞ
�

1

ð2πÞd
Z
Rd

SðkÞα̃ðk;RÞdk
�
; ð7Þ

where v1ðRÞ ¼ πd=2Rd=Γð1þ d=2Þ is the volume of a
d-dimensional sphere of radius R, and αðr;RÞ is the scaled
intersection volume, the ratio of the intersection volume of
two spherical windows of radius R whose centers are
separated by a distance r to the volume of a spherical
window, known analytically in any space dimension
[1,38]. Its Fourier transform is the non-negative function
given by

α̃ðk;RÞ ¼ 2dπd=2Γð1þ d=2Þ ½Jd=2ðkRÞ�
2

kd
; ð8Þ

where JνðxÞ is the Bessel function of order ν.
Consider translationally invariant point configurations

that are characterized by a structure factor with a radial
power-law form in the vicinity of the origin, i.e.,

SðkÞ ∼ jkjα for jkj → 0: ð9Þ

For hyperuniform systems, the exponent α is positive
(α > 0) and its value determines three hyperuniformity
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classes corresponding to different large-R scaling behaviors
of the number variance [35,36,39]:

σ2ðRÞ ∼

8>><>>:
Rd−1 α > 1 ðclass IÞ
Rd−1 lnR α ¼ 1 ðclass IIÞ
Rd−α α < 1 ðclass IIIÞ:

ð10Þ

Classes I and III describe the strongest and weakest forms
of hyperuniformity, respectively. States of matter that
belong to class I include all perfect crystals [35,39],
many perfect quasicrystals [39–41], “randomly” per-
turbed crystal structures [42–45], classical disordered
ground states of matter [35,46,47], as well as systems
out of equilibrium [48,49]. Class II hyperuniform systems
include some quasicrystals [41], the positions of the prime
numbers [50], and many disordered classical [48,51–54]
and quantum [55–57] states of matter. Examples of class
III hyperuniform systems include classical disordered
ground states [58], random organization models [59]
and perfect glasses [48]. Certain disordered hyperuniform
systems are poised at an “inverted” critical point in
which the volume integral of the total correlation function
hðrÞ is quasi-long-ranged but its volume integral is
bounded [35,36].
By contrast, for any nonhyperuniform system, the local

variance has the following large-R scaling behaviors [60]:

σ2ðRÞ ∼
(
Rd α ¼ 0 ðtypical nonhyperuniformÞ
Rd−α −d < α < 0 ðantihyperuniformÞ: ð11Þ

For a typical nonhyperuniform system, the structure factor
Sð0Þ is bounded [36]. In antihyperuniform systems, Sð0Þ is
unbounded, i.e.,

lim
jkj→0

SðkÞ ¼ þ∞; ð12Þ

and hence are diametrically opposite to hyperuniform
systems. Antihyperuniform systems include fractals, sys-
tems at thermal critical points (e.g., liquid-vapor and
magnetic critical points) [61–65], as well as certain sub-
stitution tilings [66].

B. Order metric

Given the richness of the spectrum of possible micro-
structures that can arise in condensed phase systems, an
outstanding challenging task has been the quantification of
their degree order or disorder. Scalar order or disorder
metrics have been profitably employed to quantify the
degree of order in many-particle systems, including sphere
packings; see Refs. [1,67] and references therein. Any

scalar order metric ΨðRÞ is a well-defined non-negative
scalar function of a many-particle configuration R and if,
for any two configurations RA and RB, ΨðRAÞ > ΨðRBÞ,
we say that configuration RA is to be considered more
ordered than configurationRB. It has been suggested that a
good scalar order metric should have the following addi-
tional properties [68]: (1) sensitivity to any type of ordering
without bias toward any reference system, (2) ability to
reflect the hierarchy of ordering between prototypical
systems given by common physical intuition (e.g., perfect
crystals with high symmetry should be highly ordered,
followed by quasicrystals, correlated disordered packings
without long-range order, and finally spatially uncorrelated
or Poisson distributed particles), (3) capacity to detect order
at any length scale, and (4) incorporation of both the variety
of local coordination patterns and the spatial distribution of
such patterns.
The recently introduced τ order metric [47] fulfills these

requirements and has been fruitfully employed to character-
ize the degree of order across length scales of a diverse set
of disordered media [47,69–71]. This metric, which we
compute here for the first time for the galaxies, is defined as

τ ¼ 1

Dd

Z
Rd

drh2ðrÞ

¼ 1

ð2πÞdDdρ̄2

Z
Rd

dk½SðkÞ − 1�2; ð13Þ

whereD is a characteristic “microscopic” length scale. This
scalar metric measures deviations of two-particle statistics
from that of the Poisson distribution. Since both positive
and negative correlations contribute to the integral, due to
the fact that hðrÞ is squared, τ measures the degree of
translational order across length scales. It clearly vanishes
for the uncorrelated Poisson distribution, diverges for an
infinite crystal, and is a positive bounded number for
correlated disordered systems without long-range order
(i.e., Bragg peaks). It is interesting to note that the τ order
metric is closely related to the negative of the excess two-
particle entropy of the system [72].

C. Nearest-neighbor functions

Another well-known set of statistical descriptors that
arise in rigorous bounds on the macroscopic physical
properties of disordered heterogeneous media, such as
suspensions of spheres, and employed in the statistical
mechanics of many-particle systems are nearest-neighbor
functions [1,57,73]. There two types of such functions:
void and particle quantities. The void and particle nearest-
neighbor probability density functions HVðrÞ and HPðrÞ,
respectively, are defined as follows:
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HVðrÞdr ¼ probability that a point of the point configuration lies at a distance between r and r

þ dr from an arbitrary point in the space; ð14Þ

HPðrÞdr ¼ probability that a point of the point configuration lies at a distance between r and r

þ dr from an other point of the point configuration: ð15Þ

The associated dimensionless “exclusion” probabilities EVðrÞ and EPðrÞ are defined as follows:

EVðrÞ ¼ probability of finding a spherical cavity of radius r empty of any points in the point configuration: ð16Þ

EPðrÞ ¼ probability of finding a spherical cavity of radius r centered at an arbitrary point of the

point configuration empty of any other points: ð17Þ

It follows that the exclusion probabilities are complemen-
tary cumulative distribution functions associated with the
density functions and thus are related to the latter via

EVðrÞ¼ 1−
Z

r

0

HVðxÞdx; HVðrÞ¼−∂rEVðrÞ; ð18Þ

and

EPðrÞ ¼ 1 −
Z

r

0

HPðxÞdx; HPðrÞ ¼ −∂rEPðrÞ: ð19Þ

The moments of HVðrÞ and HPðrÞ, defined by

lðkÞ
V ¼

Z
∞

0

rkHVðrÞdr; ð20Þ

lðkÞ
P ¼

Z
∞

0

rkHPðrÞdr ð21Þ

are particularly useful integral nearest-neighbor measures,
with the k ¼ 1 version of the latter representing the mean
nearest-neighbor distance between particles. The void
nearest-neighbor function HV has received some attention
in cosmology, both historically [74–76] and in recent
works, in particular via the “kNN” statistics [77–80],
generalizing the above to the kth nearest neighbor. This
has been shown to yield strong constraints on cosmological
parameters (cf. Sec. VI) and can be modeled semianalyti-
cally. It is noteworthy that kNN statistics and related
quantities have been studied and fruitfully applied in the
field of statistical mechanics [81–84].
Both the void and particle nearest-neighbor functions

generally involve integrals over all the n-particle correla-
tion functions, fgng (n ¼ 2; 3; 4;…) [73,77]. While the
void and particle nearest-neighbor functions are identical to
one another for a Poisson point configuration [e.g.,
EVðrÞ ¼ EPðrÞ ¼ expð−4πr3ρ̄=3Þ in three dimensions],

they are generally different from one another for correlated
systems, as manifested by their different series represen-
tations [73]. Both the void and particle quantities arise in
rigorous bounds on the effective transport and mechanical
properties of heterogeneous media [1]. It is noteworthy
that the void nearest-neighbor functions play a deep role
in the covering problem of discrete geometry [85]. The
covering problem asks for the point configuration that
minimizes the radius of overlapping spheres circum-
scribed around each of the points required to cover
d-dimensional Euclidean space Rd [86]. The above void
statistic also bears some similarities to the “void size
function” used in cosmology [10,87]. The latter quantity
is usually constructed from smoothed density fields, with
voids identified as spherical regions with a mean density
below some critical threshold, usually 30% of the system’s
mean density. This differs from HV in two key ways:
(a) the voids defined by Eq. (14) contain no particles, thus
they are equivalent to requiring a critical density of zero,
(b) the cosmologists’ void contains no subvoids: i.e., any
empty area of space within a void cannot be classified as a
smaller void, unlike for HV.

D. Clustering and connectedness functions

To quantify the geometrical and topological properties of
the class of disordered heterogeneous media consisting of
particles distributed throughout a matrix phase, it is often
useful to statistically characterize particle clusters that are
defined according to some connectivity criterion [1,88–92]
For point (zero-dimensional) particles, this can be achieved
by circumscribing each point by spheres of diameter D,
which generally may overlap with one another. Such a
decoration of the points by possibly overlapping spheres
divides the space into two disjoint regions or “phases,”
encompassing points that do and do not lie within a
distanceD=2 of at least one point. Two spheres are deemed
to be connected if they overlap. Defining the reduced
density η≡ ρ̄πD3=6 (in R3), it is clear that as the diameter
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D at fixed mean density ρ̄ increases from zero, η and the
fraction of space occupied by the spheres will increase and
clusters of various sizes will form and grow [1].
Once clusters have been identified, one can determine

the pair-connectedness function P2ðr; ηÞ, where P2ðr; ηÞ ×
4πr2dr is the conditional probability of finding a particle in
a shell of radius dr at radial distance r from another particle
in the same cluster (assuming statistical homogeneity and
isotropy). Equivalently, this quantity gives the probability
that there exists a path from the first to the second point that
never leaves the particle phase, i.e., one that is always
within a distance D=2 of at least one particle (cf. Fig. 1)
[93]. This is the connected contribution to the full pair
correlation function g2ðrÞ:

g2ðrÞ≡ P2ðr; ηÞ þ B2ðr; ηÞ; ð22Þ

where the pair-blocking function B2ðr; ηÞ gives the corre-
lation between pairs of particles which do not lie in the
same cluster. For r < DðηÞ, any pair of points must be
within the same cluster; thus P2ðr < D; ηÞ ¼ g2ðrÞ.
A related quantity is the direct-connectedness function

C2ðr; ηÞ (also known as the non-nodal correlation function)
[88]. This is the probability that two points separated by a
distance r are connected by a path through the set of random
particles that does not involve nodes (i.e., one that cannot be
broken by a single cut, as in Fig. 1). A general path between
two points contains either zero or at least one node: this
permits the Ornstein-Zernike (OZ) decomposition [88,89],

P2ðr12; ηÞ ¼ C2ðr12; ηÞ þ ρ̄

Z
dr3C2ðr13; ηÞP2ðr32; ηÞ;

ð23Þ

labeling rij ¼ ri − rj. The first quantity on the rhs contains
paths with no nodes, thus it involves the first factor of C2,
while for the second, we integrate over the position of the
node closest to r1 (assuming a statistically homogeneous
field ρ̄), noting that the path from r1 to r3 contains no nodes
by definition, yielding another function of C2. Finally,
the path from r3 to r2 can contain nodes, leading to the final
factor of P2. In Fourier space this gives a simple relation
between the pair-connectedness and direct-connectedness
functions:

C̃2ðk;ηÞ¼
P̃2ðk;ηÞ

1þ ρ̄P̃2ðk;ηÞ
; P̃2ðk;ηÞ¼

C̃2ðk;ηÞ
1− ρ̄C̃2ðk;ηÞ

: ð24Þ

To gain intuition for the pair-connectedness function
(and related statistics), it is instructive to consider its form
for a Poissonian system (noting that there is no Gaussian
limit, given that we are dealing with discrete systems). At
low densities, it can be computed as a perturbation series in
ρ̄ (or, more strictly, in η=ηc), first considering pairs of
particles that are directly linked by the covered phase
[i.e., their centers lie within DðηÞ], then moving to pairs
linked via a third particle and so on. This leads to the
decomposition

PPoiss
2 ðr12; ηÞ ¼ ΘDðr12Þ þ ρ̄½1 − ΘDðr12Þ�

Z
dr3ΘDðr13ÞΘDðr32Þ

þ ρ̄2½1 − ΘDðr12Þ�
Z

dr3dr4ΘDðr13ÞΘDðr34ÞΘDðr24Þ½1 − ΘDðr14Þ�½1 − ΘDðr23Þ� þ � � � ; ð25Þ

where the Heaviside function ΘDðrÞ≡ ΘHðr −DÞ selects
pairs with separations below D. In this expansion, succes-
sive terms integrate over progressively more particle
positions with, for example, the second term averaging
over the position of r3, which must be within a distance of
D from both r1 and r2. As such, this expression is difficult
to compute beyond second order (which is convolutional)
and thus rarely used in practice, unless η ≪ ηc and we
restrict to small scales. In practice, approximate treatments

are usually adopted, such as via the OZ equation (23)
combined with heuristic “closure” relations such as the
Percus-Yevick form [94]. These give accurate predictions
for P2ðr; ηÞ in low-density regimes at relatively small r.
This stands in contrast to the case familiar from cosmology,
when the modeling of g2ðrÞ becomes progressively more
accurate as r increases.
For a general system, a similar decomposition to Eq. (25)

is possible, and takes the form

P2ðr12;ηÞ¼ g2ðr12ÞΘDðr12Þþ ρ̄½1−ΘDðr12Þ�
Z

dr3g3ðr13;r32ÞΘDðr13ÞΘDðr32Þ

þ ρ̄2½1−ΘDðr12Þ�
Z

dr3dr4g4ðr13;r34;r42ÞΘDðr13ÞΘDðr34ÞΘDðr24Þ½ΘDðr14Þ�½1−ΘDðr23Þ�þ � � � : ð26Þ
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In this case, the expansion depends on the correlation functions gn, since there exists background correlations in addition to
that induced by the circumscribed spheres around points. As expected, this implies that P2ðr < D; ηÞ ¼ g2ðrÞ, with the nth-
order term involving correlators of the form gnþ2. Formally, this expression may be extended to all orders, via the relation

ρ̄2P2ðr; ηÞ ¼
Y∞
k¼2

ρ̄k
Z �Yk

i¼1

dri

�
δDðjr1 − rkj − rÞgkðr1;…; rkÞ

Yk−1
i¼1

ΘDðriðiþ1ÞÞ
Yk−2
m¼1

� Yk
j¼mþ2

½1 − ΘDðrmjÞ�
�
: ð27Þ

While this form is not particularly useful for analytic
treatments, due to the difficulty inherent in performing
the high-dimensional integrals present for k > 3 it illus-
trates how the pair-connectedness function is composed of
all possible correlation functions, and thereby partly resums
information found at all orders. At very low densities,P2ðrÞ
tends to ΘDðrÞg2ðrÞ, thus we do not expect this statistic to
add information; however, as η increases, the fraction of
information contributed by the higher-order gn increases,
until the system becomes nonperturbative at η ≈ ηc
(whence the notion of connectedness breaks down). One
may ask whether an OZ-like equation with some closure
relation can be used to provide an approximate analytic
form for P2ðr; ηÞ in the general case. Unfortunately, this is
far from trivial, since any scheme only involving g2 will
miss any contributions to P2 from g3 and above, which are
of particular cosmological interest, especially when per-
forming parameter inference in conjunction with g2 (as is
the case below). We leave further treatment of this problem
to future work.

E. Continuum percolation

Percolation describes the appearance of a phase tran-
sition in the system, which, in the above case, corresponds
to the emergence of long-range connectivity in the point
cloud due to arbitrarily large clusters of points, again
defined by spheres of some diameter. This phenomenon
is of relevance in a wide variety of physical settings such as
the transport of fluid in porous systems, the appearance of
fractures in geological formations, spread of diseases, and
the collapse of gas into stars [1,2,90,92,95]. This crossover
from nonpercolating clusters to the appearance of the
incipient sample-spanning cluster (infinite in the thermo-
dynamic limit) is characterized by a critical reduced
density (also known as a percolation density), ηc ¼
ρ̄πDc=6 (in R3), where Dc is the critical sphere diameter
at fixed mean density ρ̄ with the system said to have
percolated for η > ηc. For a Poissonian system in R3,
numerical simulations find ηc ≈ 0.34 [1], implying that the
connected phase fills about 29% of the space. In addition to
the connectedness functions described above, percolation
theory utilizes a number of other statistical descriptors,
which we outline below.
The mean cluster size SðηÞ gives a simple manner in

which to characterize clustering and percolation at some

reduced density η [88]. This quantity is simply the mean
number of particles in a cluster containing a randomly
chosen particle. It is directly related to the pair-connected-
ness function by the following relation:

SðηÞ ¼ 1þ ρ̄

Z
drP2ðr; ηÞ ¼ ½1 − ρ̄C̃2ð0; ηÞ�−1; ð28Þ

where the second equality follows from Eq. (24). When
η > ηc, clusters of infinite extent appear, thus SðηÞ → ∞,
and the volume integral of the pair-connectedness function
diverges. Given a form for C2ðr; ηÞ, the second relation
provides a useful manner in which to estimate ηc, by
solving ρ̄C̃2ð0; ηcÞ ¼ 1. Furthermore, the behavior close to
the phase transition can be expressed in terms of critical
exponents of the field: in particular, SðηÞ ∼ ðη − ηcÞ−γ and
C2ðr; ηÞ ∼ r−α at large r, for η → η−c , where α and γ are
found to be universal for a broad class of physical
models [92,96].
The mean cluster size can also be written in terms of so-

called s-mer cluster statistics for densities below the
percolation threshold ηc [1,97]; namely,

SðηÞ ¼
P∞

s¼1 s
2nsP∞

s¼1 sns
; η < ηc: ð29Þ

Here ns is the average number of s-mers, clusters
containing s particles, per unit number of particles. This
representation will be employed to estimate SðηÞ from
simulations.
For a finite (aperiodic) system of size L, percolation may

be studied by considering the existence of sample-spanning
clusters, i.e., clusters of connected points which reach from
the top to the bottom of the system (in some dimension). In
the L → ∞ limit, these clusters will appear only for η > ηc:
for finite systems, the behavior can be characterized using
the percolation probability, Πðη; LÞ, which is the proba-
bility that a realization of size L will contain a sample-
spanning cluster. This will be used to compute the
percolation threshold ηc in Sec. V, via a finite-scaling
analysis. If such a cluster exists, its mass [i.e., the number
of constituent particles, denoted MðL; ηÞ] can be used to
ascertain the effective mass fractal dimension dF of the
field. In particular,

MðL; ηÞ ∼ LdF ; η → η−c ; ð30Þ
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where dF ≈ 2.42 for Poisson systems, and any other proc-
esses in the same universality class (cf. Refs. [1,98,99]).

III. GALAXY SURVEYS AS POINT CLOUDS

Although the statistics described in Sec. II have been
principally applied to study the properties of physical
materials, their applicability extends far beyond the terres-
trial regime. In this work, we consider their application to
spectroscopic galaxy surveys, such as those of the upcom-
ing Dark Energy Spectroscopic Instrument (DESI) and
Euclid projects [7,8]. Such projects will measure the
angular positions and redshifts of Oð107Þ bright galaxies
from ground- and space-based telescopes, providing a
three-dimensional map of the Universe with unprecedented
resolution. Fundamentally, galaxy surveys measure a set of
N galaxy positions with some associated weights, repre-
senting experimental effects. In many typical analyses
[100–102], these are assigned to some coarse grid in R3,
and the associated field taken to be an inhomogeneous
Poisson sample of an underlying continuous field. This is
itself modeled as a nonlinear transformation of the under-
lying dark matter distribution, whose correlation functions
(particularly g2 and g3) encode early Universe physics, with
the field obeying Gaussian statistics on sufficiently large
scales, before a perturbative (and well-understood [103])
regime takes hold. Explicitly, the microscopic density ρ̂ðxÞ
satisfies

ρ̂ðxÞ ∼ Poissonðρ̄½1þ δgðxÞ�Þ; δ̃gðkÞ ∼N (0; h̃2;gðkÞ);
ð31Þ

on sufficiently large scales, where δg is a normally
distributed continuous background field with variance
h̃2;gðkÞ. On small, nonlinear, scales, a variety of galaxy
formation processes become important and the above
approach is known to be insufficient. This has led to a
flurry of interest in additional statistics beyond the simple
correlation functions.
An alternative to the standard approach is to consider the

point cloud traced by the galaxies as the fundamental
object, facilitating direct application of the clustering
techniques described in Sec. II. Rather than working with
observational data directly, this work will make use of
simulated data drawn from the publicly available QUIJOTE

suite [104], which is a collection of 40 000 realizations of
the Universe, each contained within a cubic volume of size
L ¼ 1000h−1 Mpc. (Following cosmologists convention,
we work in h−1 Mpc units, where 1 Mpc≡ 106 parsec and
h−1 ≈ 1.4 is used to remove a leading scaling.) In particular,
we use dark matter simulations that have been evolved
down to redshift zero (today), and contain a set of ∼105
dark matter halos: spheroidal agglomerations of matter in
which galaxies are known to form. (In this work, we use
only halos containing at least 64 dark matter particles to

avoid discreteness effects; these have masses M ≳ 5 ×
1012h−1M⊙ in our baseline simulations.)
Rather than dealing with the complexities of assigning

galaxies to dark matter halos as a function of their mass (for
example, using a halo occupation distribution [105]), we
use the positions of the dark matter halos as a direct proxy
for the galaxy positions, which is sufficient for this initial
study. As such, we do not require the Poisson-Gaussian
assumptions of Eq. (31), and will utilize the galaxy catalog
only as a discrete point cloud. In most scenarios, we will
use the galaxy catalogs extracted from 1000 QUIJOTE high–
resolution simulations, each run with the same underlying
physical model, but with varying realizations of the
(stochastic) initial conditions. A section of a typical
simulation is shown in Fig. 2. We caution that these
simulations do not fully represent observational data, in
particular, due to their limited mass resolution and lack of
(magneto)hydrodynamic effects. However, their simplified
nature makes them ideal for the proof-of-concept study
considered herein, since it allows for a large number of
simulations (and thus determination of accurate covarian-
ces). Further work will necessarily require application of
the above tools to higher-resolution simulations, though
these are fewer in number.

IV. PHENOMENOLOGICAL
CLUSTERING STATISTICS

A. Pair correlation function

We begin by considering the pair correlation function
g2ðrÞ of the QUIJOTE simulation suite. This is estimated
from the array of galaxy positions using the CORRFUNC

code [106], which computes the statistic in a set of bins
with centers frag via

ĝ2ðraÞ ¼
1

Nρ̄va

XN
i;j¼1

�
1 if jri − rjjin bin ra
0 else;

ð32Þ

where va is the volume of bin a and ri is the 3D position of
galaxy i (accounting for periodic wrapping). In Fig. 3(a),
we display the obtained g2ðrÞ functions, alongside corre-
sponding results from a Poisson random sample with the
same number density (≈1 × 10−4h3 Mpc−4) and volume.
As expected, the latter is simply unity everywhere, while
the former shows considerable structure, and is quite
different to that expected from most simple heterogeneous
media [1]. On small scales (with r≲ 0.2h−1 Mpc, consid-
erably less than the average galaxy separation of
≈8h−1 Mpc), g2ðrÞ decays to zero; this is as expected,
since the galaxies are of finite size and cannot overlap,
enforcing some minimum separation. (Physically, galaxies
can overlap; however, they would be classed as a single
object in this paradigm.) The fact the mean galaxy (particle)
separation is about an order of magnitude greater than the
minimum pair separation is atypical behavior for most
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condensed phase systems in which these two length scales
are comparable to one another (see Refs. [1,3]). At large
scales, g2ðrÞ decays to zero slightly slower than r−4 (in fact,
r−3.96), implying that large-scale correlations are sup-
pressed; since the decay is between r−d and r−ðdþ1Þ for
dimension d ¼ 3, the system is said to have quasi-
long-range correlations. This has a physical origin: the
large-scale behavior of g2ðrÞ arises from correlations in the
Universe’s quantum initial conditions, imprinted before
cosmological inflation. Because of the dynamics of expan-
sion (and slight breaking of time invariance in “slow-roll”
inflation), these are suppressed on the largest scales. From
the inset of Fig. 3(a), we note that g2ðrÞ has considerable
structure on intermediate scales, with a prominent peak at
r ≈ 100h−1 Mpc sourced by acoustic oscillations 14 billion
years ago [107]. Clearly, the correlation properties of the
galactic point cloud are very different to those for most
media; this arises due to the combination of Poisson-like
placements of galaxies and an underlying background
stochastic field from the early Universe.

B. Structure factor

The structure factor SðkÞ tells a similar story as the pair
correlation function. This is computed by first assigning the
galaxies to a grid, then computing h̃ðkÞ via fast Fourier
transforms, here implemented using NBODYKIT [108]. From
Fig. 3(b), we observe a super-Poissonian signature on all
scales, with a characteristic decline following a peak at
k ≈ 0.05h Mpc−1. This peak (known as the equality peak)

FIG. 2. Example of the cosmological simulations used in this
work. This shows a ð250 × 250 × 50Þh−3 Mpc3 slice of the dark
matter distribution from a single QUIJOTE simulation, with the
color bar indicating the fractional density of simulation particles
in each pixel. The colored points show the positions of dark
matter halos; these are used as a proxy for galaxies. To facilitate
analysis of percolation and connectedness, galaxies are assigned
to clusters (indicated by the various colors), via a burning (or
“friends-of-friends”) algorithm with a separation corresponding
to reduced density η, here set to 0.2. Throughout this work, length
is given in cosmologists’ units of megaparsec divided by the
reduced expansion rate h ≈ 0.7), in which the mean pairwise
particle separation is ≈8h−1 Mpc.

(a) (b) 

FIG. 3. Measurements of the pair correlation function (a) and structure factor (b) from 1000 QUIJOTE cosmological simulations (blue)
alongside 1000 Poisson realizations (red). Both sets of simulations have the same number density (≈1 × 10−4h3 Mpc−3) and a volume
of 1h−3 Gpc3, with a mean pairwise particle separation of ≈8h−1 Mpc. The shaded regions show the statistical variance between
realizations (which grows large on large scales), and we note that the two statistics are related by a Fourier transform. In (a), the inset
shows the pair correlation function in the typical cosmologists’ normalization, plotting r2h2ðrÞ≡ r2½g2ðrÞ − 1�; this clearly brings out
the structure imprinted by early Universe physics. At large r, we find h2ðrÞ ∼ r−ð3þnsÞ, where ns ≈ 0.96: this indicates the presence of
quasi-long-range correlations. Similarly, the inset of (b) shows kh̃ðkÞ, equal to the cosmologists’ kPðkÞ (with a slope of kns on large
scales). The oscillatory features at k ∼ 0.1h Mpc−1 arise from acoustic waves in the early Universe.
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corresponds to a change in the Universe’s expansion rate at
early times, with matter starting to drive the expansion
rather than radiation pressure. At larger k, we again see the
characteristic acoustic features, here shown by oscillations
in h̃ðkÞ. On the largest scales, the power spectrum or
structure factor SðkÞ ∼ k0.96 in the infinite-wavelength limit
k → 0 (just visible in this plot), with a slope set by the
physics of inflation, and hence because the exponent α in (9)
is 0.96, the Universe belongs to class III hyperuniformity, as
defined in relation (10). If the Universe was scale invariant
according to the Peebles-Harrison-Zeldovich spectrumwith
SðkÞ ∼ k [4], then, becauseα ¼ 1, it would be hyperuniform
of class II. Of course, either scenario implies that the
structure factor vanishes in the limit k → 0, the system is
hyperuniform [109,110]. In contrast to many terrestrial
media, the large-scale behavior is well understood, and
can be predicted using a variety of cosmological codes; this
occurs since it is an imprint of underlying dark matter
physics, rather than a true pairwise interaction.

C. τ order metric

To quantify the degree of order or disorder of the
galaxies, we compute the metric τ, which is defined by
Eq. (13), as discussed in Sec. II B. We take d ¼ 3 and the
unclustered interparticle separationD¼ ρ̄−1=3≈20h−1 Mpc
to be the characteristic length scale. Here τ ¼ 4.85 for the
cosmological sample, which is to be compared to τ ¼
8.37 × 10−6 for the (finite-volume) Poisson realizations,
close to the infinite-volume expectation of τ ¼ 0. This
result supports the well-known results that the galaxy
distribution is not purely random (uncorrelated), but instead
is a correlated disordered system. To place the magnitude of
τ for the galaxies in the context of other models of
correlated disordered media, we compute τ for the random
sequential addition (RSA) process, which is a time-depen-
dent (nonequilibrium) procedure that generates disordered
sphere packings in Rd [111,112]. Starting with an empty
but large volume in Rd, the RSA process is produced by
randomly, irreversibly, and sequentially placing nonover-
lapping spheres into the volume. If a new sphere does not
overlap with any existing spheres, it will be added to the
configuration; otherwise, the attempt is discarded. This
procedure is repeated for ever-increasing volumes; then, an
appropriate infinite-volume limit is obtained. One can stop
the addition process at any time t, obtaining RSA con-
figurations with a range of packing fractions ϕðtÞ up to the
maximal “saturation” value ϕð∞Þ in the infinite-time limit,
which for three dimensions is about 0.3812 [112]. Using
the data for pair statistics given in Ref. [112], we find τ ¼
6.17 for saturated RSA packings in R3, which is close in
value to that of the galaxies.

D. Local number variance

As discussed in Sec. II, the local number variance σ2NðRÞ
can also be computed from the measured correlation

function, and provides a useful tool with which to assess
the system’s order.Here, this is computed from themeasured
g2ðrÞ values via Eq. (7), and plotted in Fig. 4, alongside its
extrapolation to large R, using the well-known large-scale
limit SðkÞ ∼ k0.96. Notably, we find the number variance to
increase faster than the Poisson case at smallR, roughly up to
the scale corresponding to the second peak in r2hðrÞ (arising
from the imprint of acoustic oscillations from the early
Universe), then fall to sub-Poisson values by scales corre-
sponding to the peak inSðkÞ. Avariance that increasesmuch
faster than that for Poisson systems at small R is unusual for
typical correlated disordered systems that have been inves-
tigated in condensed matter physics. Of course, that the
large-scale variance approaches zero indicates that the
system is hyperuniform; however, these scales are difficult
to measure with most cosmological surveys.

E. Void and particle nearest-neighbor functions

In Fig. 5, we depict the nearest-neighbor functions of the
two sets of simulations, which provide an alternative
description of the system’s geometrical and topological
properties, as discussed in Sec. II C (see also Ref. [77] for a
previous discussion of the void function of galaxies,
yielding similar results). These are obtained from the
simulations by histogramming the minimum distance
between each pair of particles (forHP) or a pair of particles
and a Poisson random particle (for HV, determining if this
particle lies within a void). For the Poisson system, we
find identical results for the void and particle nearest-
neighbor density functions, as expected, but significant
differences for the QUIJOTE simulations. While the
cosmological case has a similar distribution of small

FIG. 4. Local number variance for the cosmological (blue) and
Poisson (red) simulations as a function of scale R. This is defined
as the variance of the number of particles found in spheres of
radius R and computed directly from the correlation function
shown in Fig. 3. The dashed lines show an extrapolation to large
R, using the theoretical asymptotic structure factor form [with
SðkÞ ∼ k0.96]. The vertical lines show two characteristic scales:
the sound horizon at recombination (dashed), which sources
acoustic wave in the early Universe, giving the bump in hðrÞ, and
the size of the Universe as it transitioned from radiation to matter
dominated (dotted).
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(r≲ 5h−1 Mpc) voids to that found in the Poisson real-
izations, it boasts significantly broader tail toward large r,
and thus a somewhat larger mean void size. Specifically, the

first moment of HVðRÞ, lð1Þ
V , defined by Eq. (20), is equal

to 14h−1 Mpc (11h−1 Mpc) for the cosmological (Poisson)
simulations. Interestingly, the maximal void size (averaged
over realizations) for the QUIJOTE simulations is
42h−1 Mpc, which is almost 50% larger than that for the
Poisson system with a maximal void size of 30h−1 Mpc.

Furthermore, the variance of HV , defined as lð2Þ
V − ðlð1Þ

V Þ2,
is much larger for the cosmological case: 2.7h−2 Mpc2

instead of 1.5h−2 Mpc2. In particular, the above results
suggest that the galaxies will also boast a lower percolation
threshold, foreshadowing what we describe below.
For the particle distribution, we note that (a) the cos-

mological simulations have enhanced large-scale cluster-
ing, and thus a broad tail to the nearest-neighbor distance at
large r, and (b) there is a sharp cut at low r, with no galaxies
found within a separation of ∼1h−1 Mpc. This is a
consequence of “halo exclusion”; a pair of galaxies cannot
be arbitrarily close, else they would be identified as a single
object in the simulation code. Between these two effects,
we find a reduced mean particle nearest-neighbor distri-
bution in QUIJOTE, indicating that galaxies are more likely
to be found in large-scale clusters. This matches theoretical

expectations. Specifically, the mean nearest-neighbor dis-

tance between particles lð1Þ
P , defined by Eq. (21), is equal to

8h−1 Mpc (11h−1 Mpc) for the cosmological (Poisson)
simulations, with a minimum distance of 1.1h−1 Mpc
(0.29h−1 Mpc). In addition, the variance of the cosmologi-
cal HP is again larger than the Poisson case, finding
2.5h−2 Mpc2 instead of 1.5h−2 Mpc2.

F. Pair-connectedness and direct-connectedness
functions

The astrophysical pair-connectedness function P2ðrÞ has
not been previously studied in the literature, and is of
particular interest to both cosmology and condensed matter
physics. To construct this, we first take the set of N ∼ 105

galaxy positions in each QUIJOTE (or Poisson) simulation,
and assign clusters via a “burning” algorithm (often known
as “friends-of-friends” in cosmology) [113,114], here using
the NBODYKIT implementation [108]. This finds sets of
points for which each member is connected to each other
member via a path through the clustered phase formed of
spheres of radius DðηÞ ¼ ½6η=πρ̄�1=3 around each point,
where η is the reduced density. Given the set of particles and
cluster memberships (visualized in Fig. 2), we compute the
pair-connectedness function in bins with centers frag via

P̂2ðra; ηÞ ¼
1

Nρ̄va

XN
i;j¼1

�
1 if jri − rjj in bin ra and i ; j in same cluster

0 else;
ð33Þ

(a) (b)

FIG. 5. Comparison of the void and particle nearest-neighbor probability density functions for the cosmological and Poissonian
dataset, as defined in Eqs. (14) and (15). Panel (a) shows the probability distribution of finding a void of radius r in the cosmological
(blue) and Poisson (red) datasets, averaged over 100 realizations, while panel (b) gives the distribution function of the distance of a given
particle from its nearest neighbor. For the Poisson case, the dashed lines show theory curves (defined in Sec. II C), which are in excellent
agreement with the simulations. The void distribution in the QUIJOTE simulations follows the (mean-density-matched) Poisson
distribution at small r, but has an excess of large voids (shown by much broader tails), due to the quasi-long-range correlations. In
contrast, the particle distribution HPðrÞ differs between the cosmological and Poissonian simulations on all scales, notably with an
absence of small separations (due to halo exclusion effects) and an enhancement on large scales.
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analogous to Eq. (32). This is achieved using a custom
modification of the CORRFUNC code [106], which accepts
pairs only if they have the same cluster index.
Figure 6 displays the pair correlation functions from the

QUIJOTE simulations alongside the more familiar Poisson
case. The latter match our expectations: P2ðrÞ ¼ 1 for
r < D (since all particles with this separation must be in the
same cluster), and P2ðrÞ falls sharply with r for r > D (due
to an absence of large-scale clusters), with an enhanced
decline at low η. For large η, the volume integral of
P2ðrÞ appears to diverges (at least in the infinite-
volume limit), indicating percolation. [Note that the sim-
ulations are computed in periodic boxes, which are known
to be suboptimal for computing P2ðrÞ on the largest scales
[96]. This will be addressed in Sec. V in the context of
finite-scaling analyses.] For the cosmological simulations,
we first note that P2ðrÞ ¼ g2ðrÞ for r < D, as expected. At
larger r, we find that Psim

2 ðrÞ > PPoiss
2 ðrÞ for all choices of

η, indicating that our galaxy catalogs contain more long-
range correlations than a Poisson random field of the same
density, and suggesting that the system will also percolate
quicker. In the large η limit (i.e., above percolation),
P2ðrÞ → g2ðrÞ, since all points belong to the same cluster.
The cosmological utility of P2ðr; ηÞ will be discussed
in Sec. VI.
The direct-connectedness function also plays an impor-

tant role in the analysis of connected systems, in part due to
its appearance in the Ornstein-Zernike equation (23). Given
P2ðrÞ, this can be computed using Eq. (24), performing the
Fourier transforms numerically via the FFTLog prescrip-
tion [115]. Figure 7 shows C2ðr; ηÞ for both the cosmo-
logical and Poisson simulations, alongside the analytic

Percus-Yevick (PY) model, which solves the OZ equation
by asserting that C2ðr > D; ηÞ ¼ 0 and P2ðr < D; ηÞ ¼ 1
[94]. [This is computed for point objects by using the
correspondence with the known (cubic) form for hard
spheres via CPY;Poiss

2 ðr; ηÞ ¼ −CPY;hard sphere
2 ðr;−ηÞ [116].]

For the Poisson case, we find good agreement between
theory and simulations for small η (far from the percolation
threshold of ηc ≈ 0.34), particularly away from the boun-
dary at r ¼ DðηÞ. We observe very little power from the
region with r > DðηÞ, since most intracluster pathways
with r > DðηÞ contain at least one node, and thus do not
contribute to C2ðrÞ. The cosmological simulations show a
very different behavior, with two peaks observed, with one
in similar location to the Poisson system and one at smaller
r. This statistic represents the complexities of the clustering
on smaller scales than that typically seen in P2 [with
DðηÞ ∼ 10h−1 Mpc], and the differences arise primarily
due to small-scale physics, such as the restriction that
galaxies cannot be arbitrarily close together. We also note
that Cðr; ηÞ was found to be ill-behaved for η≳ 0.3 [due to
P2ðr; ηÞ not being square integrable], indicating that the
cosmological simulations have percolated by around this
value of η (cf. Sec. V). In practice, we expect the
percolation threshold to depend on the peculiarities of
the galaxy sample in question: this will be discussed
further below.

V. PERCOLATION AND FRACTAL DIMENSIONS

We now turn to the issue of percolation, following the
discussion in Sec. II E. As noted earlier, determining the
mean cluster size SðηÞ in a system as a function of η is a

FIG. 6. Pair-connectedness function P2ðr; ηÞ for the Poisson (left) and cosmological (right) simulations. Results are shown for a
variety of reduced densities η, corresponding to clustering distancesDðηÞ in the range ½10; 20�h−1 Mpc, and shaded regions show the 1σ
deviations expected from statistical fluctuations. The QUIJOTE simulations show significantly enhanced correlations on large scales, due
to the underlying correlations of matter imprinted in the early Universe. This additionally suggests that the galaxy sample will percolate
at lower η: this will be explored in Sec. V.
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useful way in which to test whether a system has reached
percolation. We utilize the representation of SðηÞ in terms
of s-mer cluster statistic ns, as defined by Eq. (29). In
principle, we expect SðηÞ → ∞ as η → ηc; in practice,
SðηÞ ≤ N, where N is the total number of particles in the
box. To account for this, it is useful to analyze a number of
different configurations with different box sizes L (and
therebyN ≡ ρ̄L3). Here, we construct (aperiodic) subboxes
from the QUIJOTE simulations, with L in the range
½400; 800�h−1 Mpc (noting that the majority of our analy-
ses are restricted to r < 200h−1 Mpc), and construct

analogous Poisson realizations for each. To examine
percolation at each choice of box size, we generate
clusters for various values of η by varying the sphere
radius DðηÞ and utilizing burning (friends-of-friends)
algorithms, as described above.
Figure 8 shows the mean cluster size for the two datasets

as a function of L and η. In both cases, we observe that
Sðη; LÞ begins to approach its asymptotic limit as η
increases, and, moreover, the limit is approached faster
as the box size increases. Extrapolating the Poissonian
results to large L, the percolation threshold [whence

FIG. 7. Direct-connectedness function C2ðr; ηÞ for the Poisson (left) and cosmological (right) simulations. This follows Fig. 6, but
focuses on smaller scales, and additionally includes analytic predictions from the Percus-Yevick model. We additionally normalize all
quantities by g2ðrÞ, and exclude values of η for which C2ðr; ηÞ is not well-behaved (beyond the percolation threshold).

FIG. 8. Mean number of particles per cluster Sðη; LÞ, as a function of the reduced density η and (cubic) simulation box size L. We show
results for both cosmological data and Poisson realizations, plotting the reciprocal 1=Sðη; LÞ averaged over 1000 realizations. Note that
SðηÞ is bounded by the number of particles in the dataset (N), shown by dotted lines. We additionally show the Percus-Yevick prediction
in black, which is inaccurate for all but the smallest η.
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Sðη; LÞ ≈ N] appears to be around ηc ¼ 0.35, matching
previous studies [97]. For the cosmological simulations, we
find a generally slower approach to ηc (corresponding to a
different critical exponent), and additionally a lower per-
colation threshold, around ηc ¼ 0.28 for L → ∞. As above,
this arises since the galaxy sample contains a stochastic
background inhomogeneity, leading to various areas being
super- or sub-Poisson populated in a correlated manner.
Even at low η: for η ¼ 0.1, clusters in the full-volume
cosmological simulation contain an average of ≈15 par-
ticles, while those in the Poisson realizations contain
≈2 only.
It is further instructive to consider the size distribution of

clusters, via the average number of s-mers ns, as defined in
Eq. (29). This is shown in Fig. 9 for a suite of cosmological
and Poissonian boxes at L ¼ 800with a variety of values of
the reduced density η. At low η, we find that the ratio of
cosmological and Poissonian simulations is a strongly
increasing function of s, with the largest slopes seen for
small reduced densities. In this limit, the system is far from
percolation; thus large clusters are rare in both systems. The
enhanced correlations in the galaxy distribution seen in the
cosmological case increase the probability of an s-mer
forming (at fixed s), giving this stark difference in behavior.
As η approaches the percolation threshold, the ns ratio
becomes roughly constant with s; this indicates that the
additional galaxy correlations impact only the largest
s-mers, as we are dominated by the clustering signal
imprinted by the circumscribed spheres, rather than any
intrinsic effects.
To measure the percolation threshold of the cosmologi-

cal simulations in a robust fashion, we perform a finite-
scaling analysis, following the approach of Ref. [117],

originally formulated in Ref. [118]. In essence, this
computes the percolation probability [Πðη; LÞ, defined as
the fraction of realizations containing a cluster for which
the circumscribed spheres overlap with both the top and
bottom of the box] for the simulations at various values of L
and η and extrapolates using asymptotic scaling relations to
find the L → ∞ limit. Figure 10 shows the obtained
percolation probability distribution for both sets of simu-
lations as a function of the volume filling fraction ϕ. This is
computed numerically for each simulation from the prob-
ability that a randomly chosen point within the box is
within a distance D=2 from the nearest particle, i.e.,
whether it is within the sphere phase; for the Poisson case,
this is asymptotically equal to 1 − e−η. The behavior seen in
Fig. 10 is qualitatively similar for the Poisson and cosmo-
logical system: the percolation probability is small for low
ϕ (whence the typical extent of the cluster is far below L),
and asymptotes to unity at large ϕ. As the box size
increases, the transition becomes sharper, and asymptotes
to a Heaviside function in the L → ∞ limit. It is also clear
that the cosmological simulations percolate at smaller
values of η than the Poisson realizations; this is as expected,
and indicates their enhanced clustering due to background
inhomogeneities.
To extract the percolation thresholds from Πðϕ; LÞ, we

fit the data to the phenomenological sigmoid model of
Ref. [117], as shown in Fig. 10:

Πðϕ; LÞ ≈ 1

2

�
1þ tanh

�
ϕ − ϕcðLÞ

ΔðLÞ
��

; ð34Þ

where ϕcðLÞ and ΔðLÞ are the percolation volume fraction
and width at box size L and ϕ is the volume filling fraction
obtained as described above. Asymptotically,ΔðLÞ ∼ L−1=ν

and ϕcðLÞ − ϕc ∼ L−1=ν for critical exponent [1]; by fitting
for ν from the obtained values of ΔðLÞ, we can thus obtain
ϕc ≡ limL→∞ ϕcðLÞ. Here, we find a critical exponent of
ν ¼ 0.85� 0.03 (0.88� 0.03) for the QUIJOTE (Poisson)
simulations, with a corresponding percolation threshold of
ϕc ¼ 0.223 (0.290) or ηc ¼ 0.252 (0.343), each with a
statistical error around 0.001. The Poissonian case matches
standard results [1], and, as foreshadowed in Figs. 6 and 8,
the cosmological system percolates at lower densities, due
to the additional clustering signature imprinted by early
Universe and galaxy formation physics. In addition, the fact
that the two sets of simulations appear to share the same
critical exponent ν suggests that they belong to the same
universality class, as do other correlated disordered
systems [119].
It is important to note that the percolation thresholds

found herein are not a universal property of galaxy
distributions; rather, they depend on the galaxy sample
in question. To explore this, we have repeated the analysis
using a galaxy sample with half the density of the fiducial
sample, and another including dark matter halos (i.e.,

FIG. 9. Comparison of the cluster size distribution in the
cosmological and Poisson simulations. We plot the mean
number of s-mers per unit particle (defined as clusters containing
s member) as a function of s, normalizing to the Poisson
prediction. Results are shown for various values of the reduced
density η and we assume an aperiodic simulation volume of size
L ¼ 800h−1 Mpc, averaging over 100 realizations. At large η, the
two sets of simulations have a similar ns distribution (at least for
small s), while at low η, the enhanced clustering in the cosmo-
logical simulations leads to significantly more s-mers, with the
mean number of particles per cluster increasing with η (cf. Fig. 8).
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galaxies) down to half of the aforementioned minimum
size. For the former case (with ρ̄ ∼ 0.5 × 10−4h3 Mpc−3,
we find that the percolation threshold for the cosmological
sample increases to ηc ¼ 0.285, while it remains the same
for the density-matched Poissonian sample (as expected).
This can be rationalized by noting that the galaxies roughly
follow Poisson statistics above a stochastic background,
caused by the matter density; if ρ̄ is reduced, the Poisson
part of the stochasticity becomes more dominant, thus ηc
tends toward its Poisson limit. In the second scenario, we
find ηc ¼ 0.207, significantly lower than the fiducial
analysis. In this case, we have both a sample of almost
twice greater density and one that is more biased with
respect to the continuous dark matter density (such that
ρ̂galaxy=ρ̂dark matter is larger, smoothed on sufficiently large
scales). In both cases, however, we find a similar critical
exponent (0.82� 0.03) to the above.
Finally, we consider the effective fractal dimension of

the system dF. As discussed in Sec. II, this may be
computed from the dependence of the sample-spanning
cluster mass Mðη; LÞ (i.e., its number of constituent
particles) on the simulation box size L at the percolation
threshold ηc [Eq. (30)]. To explore this, we repeat the
above analysis for the fiducial sample, computing the
mass of the sample-spanning cluster (when it exists) for
five box sizes in the range ½700; 800�h−1 Mpc and five
reduced densities in the range ηc � 0.1. For the Poisson
system, fitting for the relationship Mðη; LÞ ∼ Ld and

interpolating to ηc gives dF ≡ dðηcÞ ≈ 2.40� 0.07, match-
ing that predicted from theory [1]. For the galaxy sample,
we find dF ¼ 2.36� 0.08, which is consistent with the
Poisson realizations, even though the percolation thresh-
old differs. This is an important result: the cosmological
sample lies in the same universality class as simple
Poisson realizations, for the range of scales considered:
r ∼ 500–1000h−1 Mpc. This is broadly consistent with
previous results on smaller scales; Refs. [98,99,120]
describe a variety of methods to ascertain the effective
fractal index, with galaxy counts yielding dF ¼ 2.2� 0.2
on ≲10h−1 Mpc scales, and correlation functions finding
the same on ≲100h−1 Mpc scales.

VI. PAIR-CONNECTEDNESS FUNCTION
AS A COSMOLOGICAL DESCRIPTOR

A. Background

A crucial problem in modern-day cosmology is the
extraction of physical parameters from observed statistics,
such as the distribution of galaxies. In the standard
paradigm (dubbed νΛCDM), six parameters are of rel-
evance: (1) the Universe’s current expansion rate H0,
(2) the density of baryonic matter ωb, (3) the combined
density of dark matter and baryonic matter Ωm, (4) the
amplitude of clustering in the Universe σ8, (5) the slope of
the primordial power spectrum (i.e., structure factor) ns,
and (6) the sum of the neutrino masses

P
mν. While ns and

FIG. 10. Percolation probability Πðϕ; LÞ obtained from 1000 QUIJOTE and Poisson simulations, for various nonperiodic box sizes L
and volume filling fractions ϕ. This is defined as the fraction of realizations containing a sample spanning cluster, and asymptotes to a
Heaviside function centered at the percolation threshold for L → ∞ (shown as a dotted line). Points represent the values computed from
simulations, while the solid lines show a fit using the sigmoid function of Eq. (34). Using a finite-scaling analysis, we find the
percolation thresholds of ηc ¼ 0.252 (0.343) for the QUIJOTE (Poisson) simulations, though we caution that the cosmological result
depends on the sample density.
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Ωb are well constrained by observations of the cosmic
microwave background [121], the remaining parameters
are a key target for upcoming galaxy surveys. Traditionally,
they are constrained through summary statistics such as the
two-particle and three-particle correlation functions. Such
an analysis proceeds by the fitting measured statistics to
analytic models depending on the above physical param-
eters [102].
In this section, we consider the utility of alternative

statistics (described above) in this effort. Three metrics by
which we judge a statistic to be useful are (a) ease of
computation, (b) dimensionality, and (c) information con-
tent. Here, we will principally concentrate on the pair-
connectedness function P2ðrÞ, since this has not previously
been used in cosmology, unlike void probability or nearest-
neighbor functions [80]. As shown above, the statistic is
simple and fast to measure from the data and has a low-
dimensional form, satisfying two of the above criteria. We
now proceed to quantify its ability to constrain cosmo-
logical parameters.
An alternative approach to the above prescription is to

model the entire galaxy distribution directly (without
compressing to statistics such as the correlation functions),
with either perturbative methods [122–125] or machine
learning approaches [126–131]. In principle, this approach
enables one to obtain optimal constraints on all parameters
of interest, though it is nontrivial to implement in practice,
due to the huge dimensionality of the galaxy distribution
and the necessity to run a large number of expensive
simulations.

B. Quantifying information content

Standard cosmological analyses proceed by measuring a
set of statistics from a dataset, then comparing them to
accurate physical models depending on cosmological
parameters, including those discussed above. If the noise
properties of the statistics are known (for example, if we
assert that the distribution of g2 is a multivariate Gaussian),
this comparison can be used to place constraints on the
underlying parameters via Bayes theorem. A useful esti-
mate of the constraining power of some statistic X (e.g., g2)
can be obtained using a Fisher matrix [132], defined as

FX
αβ ¼

�
dX
dθα

�
T
C−1

X

�
dX
dθβ

�
; ð35Þ

where fθαg are the set of cosmological parameters
of interest, and C is the covariance matrix of X (treated
as a vector), i.e., CX ¼ E½XXT �, averaging over realizations
of the underlying microscopic density at fixed θ. According
to the Cramér-Rao theorem, ðF−1;XÞαα gives the best
possible constraint on θα from a measurement X, i.e.,
varðθαÞ ≥ ðF−1;XÞαα. [This limit is saturated if X obeys
Gaussian statistics, i.e., X̂ ∼N (XðθÞ;C).] To assess the
utility of statistics such as P2 and g2, we need simply

compute the covariance matrix and the parameter deriva-
tives appearing in Eq. (35), both of which can be done
using a set of simulations. Explicitly, given a set of n
realizations X̂ðiÞ with varying initial conditions, the two can
be computed via

ĈX ¼ 1

n − 1

Xn
i¼1

ðX̂ðiÞ − X̄ÞðX̂ðiÞ − X̄ÞT;

ddX
dθα

¼ 1

n

Xn
i¼1

X̂ðiÞðθα þ δθαÞ − X̂ðiÞðθα − δθαÞ
2δθα

; ð36Þ

using finite difference for the parameter derivatives, and
denoting X̄ ¼ ð1=nÞPn

i¼1 X̂
ðiÞ [104].

While the Fisher forecast is appealing in its simplicity,
it is not without limitations. Firstly, it gives accurate
bounds on cosmological properties only if the statistics
are Gaussian distributed, which can break down in the
case of large correlations between bins, and the parameter
posterior is Gaussian, which fails for non-negative param-
eters, for example. Secondly, a large number of simu-
lations may be required to compute the quantities in
Eq. (36), and, if too few are used, the constraining power
of a given statistic will be overestimated. (This occurs
since noise in the parameter derivatives add a positive
definite contribution to the Fisher matrix, and thus reduce
the size of the inverted matrix, i.e., the output parameter
variances.) An alternative approach is to use simulation-
based inference (also known as likelihood-free analysis)
[133–135]. In essence, this draws a set of cosmological
parameters θ from some input prior, computes a realiza-
tion X̂ðθÞ for each, and compares a “true” dataset to the
empirical distribution from the simulations. This does not
make assumptions on the statistics’ noise properties, and,
in the case of too few simulations, will only underestimate
the cosmological utility.
Here, we examine the constraining power of various

summary statistics using both the Fisher matrix formalism
(which has become commonplace in cosmology) and
simulation-based inference (which is far less common,
though more accurate). In particular, we consider the
cosmological parameters H0, Ωm, σ8, and

P
mν and the

following descriptors: g2, g3, P2, and HV , all of which can
be defined for discrete point clouds, such as the galaxy
density used in this work. For the pair-connectedness
function, we fix the reduced density to η≡ ρ̄πD3=6 ¼ 0.2,
which is a useful balance between the uninformative case
(η ¼ 0) and the percolated limit discussed in Sec. V,
though we note that other choices may yield somewhat
different results. Additional statistics could be straight-
forwardly added, though we caution that descriptors such
as the number variance are fully described by g2, and will
thus not add additional information. Using the FASTPM

code [136], we run n ¼ 512 QUIJOTE-like dark matter
simulations with the following fiducial parameters:
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fH0¼68kms−1Mpc−1;Ωm¼0.31;ωb¼0.0227;ns¼0.96;
σ8¼0.8178;

P
mν¼0 eVg, and compute the four statistics

for each realization.
In all cases, we consider only scales above 20h−1 Mpc

(where the simulations are accurate, given the mean
pairwise separation of ≈8h−1 Mpc), and choose the radial
bin sizes to keep the dimensionality fixed to Oð100Þ
elements. g2, P2, and HV are computed as before, with
g3 computed using the approach of Ref. [137], involving a
decomposition into a Legendre multipole basis, with
components g3;lðr1; r2Þ for l ∈ f0; 1; 2; 3g. In accordance
with Sec. III, we compute this statistic in configuration
space (rather than as a Fourier-space bispectrum), which
obviates the need to grid the particles. These simulations
are used to compute the covariance matrixC of the statistics
using Eq. (36) (initial testing demonstrated that this is a
sufficient number of simulations to estimate C and its
inverse robustly, after including the correction factor of
Ref. [138]), the structure of which is visualized in Fig. 11.
We find significant correlations both within and between a
number of statistics. In particular, the individual bins of g3
and P2 are highly correlated, indicating that their noise
properties may not be Gaussian. In contrast, the void

nearest-neighbor function has an almost diagonal correla-
tion matrix, and is seen to be largely independent from
other statistics. This suggests that it can add significant
information compared to analyses using g2 alone.
The other ingredient required for Fisher forecasting is the

set of parameter derivatives. These are computed using
Eq. (36), with n ¼ 512 simulations (again computed using
FASTPM, with a total cost of ∼104 CPU hours), utilizing
finite difference in each of the eight sets of parameters. For
the neutrino mass, we have the bound

P
mν > 0, thus we

instead utilize one-sided derivatives, following Ref. [104],
and use the method of Ref. [139] to emulate the effects of
massive neutrinos by modifying the initial conditions.
Following this, we compute the Fisher matrix via
Eq. (35) for various combinations of statistics. We caution
that this result appears to retain some dependence on n due
to residual noise in the parameter derivatives. This will lead
to the constraints being artificially tightened somewhat;
however, it is computationally impractical to increase n by
a significant amount.
For the simulation-based inference (SBI), we utilize

a set of 8192 galaxy simulations computed using
FASTPM with the method of Ref. [139] at random locations
in parameter space, according to the flat priors: H0 ∈
½0;100� kms−1Mpc−1,Ωm∈½0;0.3�, σ8 ∈ ½0.4;1.2�,Pmν ∈
½0; 4� eV. (The neutrino mass limit is significantly weaker
than the bound from the latest probes [121], but is
appropriate given the small volume of the simulations.)
Summary statistics for each are computed as before, and
fed into the SBI code, which uses neural networks (via the
sequential neural posterior estimation method) to compute
the parameter posterior, given a true observation, taken
from the mean of the fiducial simulations discussed above.

C. Results

Figure 12 shows the constraints on cosmological param-
eters from analyses using the pair correlation function and
pair-connectedness function, both via the Fisher and SBI
forecasts. From the Fisher forecast, we observe that P2 is a
poor predictor of the expansion rate and matter density, but
gives much tighter constraints on the clustering amplitude
and neutrino mass than g2. This is unsurprising: the slope of
P2ðrÞ is strongly sensitive to the galaxy clustering proper-
ties (set by σ8, and, on small scales,

P
mν), but (being a

monotonic function) contains little information on other
properties such as early Universe physics. The SBI fore-
casts give qualitatively similar results, with the P2 con-
straints onH0 andΩm being largely dominated by the prior,
with the combined g2 þ P2 constraints reproducing those
of g2 alone, For σ8, P2 is again shown to be of considerable
use, with a significant (factor of a ≈2.6×, equivalently to
observing a 7 times greater volume of space) tightening in
the one-dimensional posterior found by adding P2, driven
by the differing degeneracy directions in the σ8 −H0 and
σ8 −Ωm planes. In contrary to the Fisher result, the SBI

FIG. 11. Correlation matrix of the pair correlation function (g2),
the pair-connectedness function (P2, with reduced density
η ¼ 0.2), the three-particle correlation function (g3), and the
void nearest-neighbor function (HV ) obtained from 512 cosmo-
logical simulations run with a fiducial set of cosmological
parameters. The correlation matrix is defined as the covariance
matrix normalized by its leading diagonal, i.e., Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
,

with all values lying in the range ½−1; 1�. The labels show the
statistic of interest, which are demarcated by the dotted lines. In
each statistic, the bins are ordered from small scale (bottom left)
to large scale (top right). For g3, we use four Legendre multipoles
g3;l with l ∈ f0; 1; 2; 3g. Notably, the individual bins of g3;0 and
P2 are highly correlated, and there are a number of nontrivial
correlations between observables, though few with HV .
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forecast suggests that the pair-connectedness function does
not give significant additional information on the neutrino
mass; however, it is shown to change the σ8 −

P
mν

degeneracy direction considerably.
The disagreement between Fisher and SBI forecasts

both quantitatively (in terms of the reduction in width of
the σ8 posterior) and qualitatively (whether the

P
mν

posterior is affected) may appear a little unsettling. We
attribute this to a number of reasons: (1) as mentioned
above, the Fisher forecast will give artificially narrow
constraints if insufficient simulations have been run,
(2) the Fisher forecast is inaccurate for parameters whose
posterior is non-Gaussian (such as the neutrino mass,
due to the

P
mν > 0 constraint), and (3) the SBI forecasts

can be artificially broadened by insufficient simulations
being run. However, the results of Fig. 12 are enough to
convince us that P2 contains significant information
regarding the clustering amplitude σ8, and its inclusion
greatly aids cosmological analyses, including via degen-
eracy breaking with

P
mν. Although we present results

only for reduced density η ¼ 0.2 here, a similar story
holds also for η ¼ 0.1; in this case, the improvements in
cosmological parameters are somewhat weaker, due to
the higher-order correlator contributions to P2ðr; ηÞ
being suppressed [Eq. (27)]. We expect that combining

measurements of the pair-connectedness function with
multiple values of η could further increase the constraining
power, again at little computational cost.
It is interesting to compare the cosmological utility of the

pair-connectedness function to that of other higher-order
statistics. Before doing so, let us briefly outline our
predictions. In this test, we are limited to relatively large
scales (r≳ 20h−1 Mpc, due to simulation resolution
effects), where the galaxy distribution (if treated as a
continuous field) is close to Gaussian. As such, we expect
the majority of the information content on cosmological
parameters to be encapsulated by the two- and three-point
functions, g2 and g3, with only a small amount leaking into
higher-order statistics. In this case, the combination of g2
with alternative statistics will likely perform worse than
that of g2 and g3; our question is whether there are statistics
that are able to recoup most of the information present in g3
in a simpler form (for example, in the unidimensional HV
and P2 statistics). If such a statistic exists, it is likely that it
also contains significant information on small scales (as
probed by future surveys such as that of the Subaru
Prime Focus Spectrograph and the DESI Bright Galaxy
Survey [140,141]), where the perturbative hierarchy
described above breaks down. Indeed, statistical physics
provides examples of small-scale systems where g2 þ P2

FIG. 12. Forecasted constraints on key cosmological parameters using the pair correlation function g2 and the pair-connectedness
function P2, using a Fisher forecast (left) and simulation-based inference (right). The dark (light) ellipses represent our 68% (95%)
confidence intervals on the various parameters possible from a single galaxy simulation (as in Fig. 2), with the gray regions showing the
prior used in the simulation-based approach (from 8192 simulations). We show results for four parameters: H0, giving the Universe’s
expansion rate, the matter density Ωm, the clustering amplitude σ8, and the total neutrino mass

P
mν. The diagonal figures give the

marginalized constraints on single parameters, while the off diagonals show the correlations; e.g., the bottom left-hand panel shows the
correlation between h and σ8. We find that P2 is a poor predictor of H0 and Ωm (shown by the broad contours), but can tightly constrain
σ8. The combination g2 þ P2 significantly increases the precision by which this parameter can be measured, and we find similar results
from the Fisher forecasts (which are, in general, overoptimistic), and the simulation-based inference (which is usually conservative).
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outperforms g2 þ g3 [91]; it will be interesting to study
such effects further in the future.
In Fig. 13 we show the Fisher and SBI constraints on the

same parameter set as above for g2 in combination with g3,
P2, and HV [142]. From both the Fisher and SBI forecasts,
we find that no additional statistics lead to significant
improvements in the expansion rate constraints, except for
a slight tightening from g3. This is not surprising: H0 is
primarily measured from an oscillatory feature in g2 arising
from acoustic waves in the early Universe, which is
generally absent in other statistics. In the SBI forecast,
the same is true for the matter density, Ωm, and the neutrino
mass, though the Fisher forecasts disagree on this aspect, as
above, and should therefore caution is warranted (espe-
cially given the larger dimensionality of g3). For the
clustering amplitude σ8, we find similar improvement
when combining g2 with any other statistic, with a slight
preference for g3 in the SBI analysis (or a significant one
for the Fisher forecast). This matches the above predictions.
Our conclusion from this exercise is the following: if one

wishes to constrain the Universe’s clustering amplitude (a
key target of modern-day cosmology), the addition of P2 or
HV into cosmological analyses provides an excellent route
(cf. Ref. [77]), and contains similar information to g3.
Importantly, the alternative statistics are of much lower
dimension than g3 and P2 is much less computationally
expensive to measure (requiring ∼5 CPU minutes per
simulation, instead of ∼1 CPU hour for g3 or Hv). If
one performs the analysis using a combination of pair-
connectedness functions with different values of η, the

results may be stronger still. While this analysis is
necessarily simplistic and limited to comparatively large
scales (due to the nature of the simulation suite), it
nevertheless suggests that the pair-connectedness function
is a new statistic of significant potential, and could carry
important information also on small scales. In contrast to
correlators such as g2 and g3 [145], this is difficult to model
analytically even at large r, due to its inherent dependence
on short-scale physics including the connection between
galaxies and dark matter. For this reason it will likely prove
useful to adopt a simulation-based methodology to analyze
P2, such as the SBI techniques discussed above, and
marginalize over parameters controlling galaxy formation.
On small scales, a similar approach is required for any
statistic, due to the breakdown of perturbative modeling.

VII. SUMMARY

In this work, we have considered the application of the
theory of disordered heterogeneous media and statistical
mechanics to cosmology, and of cosmology to the former.
By treating the distribution of galaxies in the present-day
Universe as a point process, we can analyze the data using
techniques developed to characterize heterogeneous media,
such as the correlation functions and nearest-neighbor
distributions. Furthermore, by augmenting the dataset with
some concept of “connectedness” (here defined by circum-
scribing the galaxies with spheres), we may utilize various
clustering diagnostics and pair-connectedness functions,
which encode a different subset of the information present

FIG. 13. As Fig. 12 but comparing the constraining power from the combination of the pair correlation function with the pair-
connectedness function (green), the three-particle correlation function (red), and the void nearest-neighbor function (yellow). The pair-
connectedness function and void nearest-neighbor functions are found to perform almost as well as the three-particle function in this
scenario (in terms of constraining σ8) and are much faster to compute and analyze.
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within the distribution and additionally allows the perco-
lation properties to be determined. Such a framework
(a) provides a novel method for understanding the galaxy
distribution, whose importance will only grow in the next
decade with the plurality of upcoming telescopes, and
(b) demonstrates the applicability of heterogeneous media
and statistical mechanical techniques in a very different
regime to that usually explored.
Our main conclusions are the following.
(i) The galaxy distribution exhibits very different

physical properties to those of conventional mate-
rials, leading to distinct signatures in a wide variety
of clustering and correlation descriptors. On the
largest scales, the system approaches hyperuni-
formity, while on the smallest, it becomes almost
antihyperuniform and strongly inhomogeneous;
this dichotomy arises from the fact that the mini-
mum separation between galaxies is much smaller
than the mean interparticle distance, with localized
groups of galaxies separated by vast cosmic
distance.

(ii) Physically, the cosmological system has two pecu-
liarities: (a) although we treat the galaxies as point
objects, they have some physical scale in practice,
and cannot overlap, and (b) the distribution carries
the signatures of a large-scale stochastic back-
ground that modulates the quasi-Poissonian distri-
bution; this is sourced by early Universe physics
and gravitational evolution,

(iii) The galaxy pair correlation function shows
this behavior clearly, with the expected hyperuni-
form tail appearing only at gargantuan scales
(r≳ 200h−1 Mpc), and with a sharp peak at the
mean pairwise particle separation of r ≈ 8h−1 Mpc.
This scale separation induces a large number
variance, which is unusually super-Poissonian on
small scales, yet sub-Poissonian on the largest.
These results are consistent with the order metric τ,
which we determine for the galaxy sample for the
first time: its value (τ ¼ 4.85) implies that the
system is strongly correlated and disordered. The
nearest-neighbor functions are again consistent with
this picture, with considerably extended tails, a lack
of particle pairs below some critical galaxy size, and
much enhanced variance relative to the Poissonian
case (and most other common scenarios).

(iv) Analyses of pair-connectedness functions, mean
particle numbers, and sample-spanning clusters in-
dicate that the galaxy sample percolates at signifi-
cantly lower reduced densities than corresponding
Poisson realizations. For the fiducial galaxy simu-
lations, finite-scaling analysis gives ηc ¼ 0.25 in the
former case compared to ηc ¼ 0.34 in the latter, a
difference which is amplified by increasing the
sample density. This is again supported by the above

evidence: the scale separation is a consequence of
the extra small-scale clustering in the galaxy dis-
tribution which leads to faster percolation. Both
scenarios appear to have the same critical exponents
and fractal dimensions, implying that they live in the
same universality class, despite very different phys-
ics operating.

(v) The pair-connectedness function is a conceptually
straightforward and easy-to-measure statistic that
carries useful and accessible large-scale information
about the underlying physical parameters of the
Universe, and can be trivially extended to small
scales. This could enhance the cosmological utility
of future galaxy surveys, in combination with con-
ventional techniques. Using simulation-based analy-
sis techniques, we forecast that constraints on
amplitude of clustering improve by a factor of ≈5
(or ≈25 in terms of survey volume) when perform-
ing inference using the large-scale pair-connected-
ness and pair correlation functions as opposed to the
pair correlation function alone (which is standard in
cosmology). This provides a useful alternative to the
three-particle correlation function g3, which is of
significantly lower dimension and much faster to
model, and is shown to be a resummation of
correlation functions of all order. Unlike the large-
scale three-particle function, it seems unlikely that
P2ðrÞ can be modeled analytically; simulation-based
treatments will likely be required in this case.

The galaxy samples used in this work are purposefully
simplified, in order to provide a proof-of-concept study
capturing the essential physical attributes of the cosmo-
logical setup. More work is needed before the statistics can
be applied to real data, and will require the following:
(a) higher resolution simulations containing more particles,
allowing smaller scales to be probed, (b) inclusion of real
galaxies in the simulations, rather than dark matter halos,
and the associated physical uncertainties with their for-
mation [146,147], (c) anisotropic distortions in the
Universe created by transforming from redshifts to physi-
cal coordinates [148], and (d) inhomogeneities in the field
induced by observational effects, such as the limited field
of view of the telescope. However, all of these complex-
ities have been overcome a number of times before for
other statistics (such as the correlation functions [102])
and we expect can be similarly surmounted in this case.
Furthermore, it is important to characterize how the
statistics depend on the galaxy sample: for the correlation
functions, this is well understood (and encapsulated by
“bias parameters,” which depend on galaxy mass and
luminosity), but should be explored further for nearest-
neighbor and pair-connectedness functions, as well as the
percolation threshold.
Finally, we consider the broader extensions of this

work. Although we have restricted our gaze to galaxy
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distributions, this is far from being the only stochastic
distribution in the Universe. One additional application
could include a more principled treatment of cosmic voids
[10,11]: these are low-density regions in the galaxy dis-
tribution that form a partition of the space, and could be
described by the same mathematics as that invoked for
percolation. Even more relevant is the distribution of
“bubbles” of ionized gas around the first galaxies
[149,150]. The growth of such bubbles likely led to the
Universe’s reionization approximately one billion years
after the big bang, the time of which is set by percolation
itself. Finally, we note that there are a wealth of techniques
from the theory of disordered heterogeneous media that
have not been considered in this work. It would be
interesting to consider the utility of the various descriptors
in the context of “simulated annealing” [91,151], to under-
stand the extent to which any statistic can capture the full
complexities of the field, though we caution that conven-
tional approaches will likely need to be modified to account
for the peculiarities of the galaxy distribution, in particular
its significant scale separation. Further still, we may
consider how annealing techniques allow us to recover
“effective pair interactions” between individual galaxies
[152], and thus learn more about the Universe’s average
dynamics.
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