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Recent pioneering works have set the stage for exploring anyon braiding statistics from negative current
cross-correlations along two intersecting quasiparticle beams. In such a dual-source-analyzer quantum
point contact setup, also referred to as “collider,” the anyon exchange phase of fractional quantum Hall
quasiparticles is predicted to be imprinted into the cross-correlations characterized by an effective Fano
factor P. In the case of symmetric incoming quasiparticle beams, conventional fermions result in a
vanishing P. In marked contrast, we observe signatures of anyon statistics in the negative P found both for
the e=3 Laughlin quasiparticles at filling factor ν ¼ 1=3 (P ≈ −2, corroborating previous findings) and for
the e=5 quasiparticles in the hierarchical state ν ¼ 2=5 (P ≈ −1). Nevertheless, we argue that the
quantitative connection between a numerical value of P ≠ 0 and a specific fractional exchange phase is
hampered by the influence of the analyzer conductance dependence on the voltages used to generate the
quasiparticles. Finally, we address the important challenge how to distinguish at ν ¼ 1=3 between negative
cross-correlations induced by a fractional braid phase and those resulting from a different Andreev-like
mechanism. Although with symmetric sources P does not exhibit signatures of a crossover when the
analyzer is progressively detuned to favor Andreev processes, we demonstrate that changing the balance
between sources provides a means to discriminate between the two mechanisms.
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I. INTRODUCTION

Avarietyof exotic quasiparticles are predicted to emerge in
low-dimensional systems, beyond classification into bosons
and fermions [1–7]. In the archetypal regime of the fractional
quantum Hall effect (FQHE), the presence of quasiparticles
carrying a fraction of the elementary electron charge e is by
now firmly established [8–21]. These quasiparticles are
furthermore predicted to exhibit unconventional behaviors
upon interexchange, different from bosons and fermions,
and were accordingly coined any(-)ons [22]. Such a pos-
sibility results from the topological modification intro-
duced by a double exchange (a braiding) under reduced

dimensionalities [23]. Exchanging two fractional quasipar-
ticles can either add a factor expðiθÞwith an exchange phase
θ smaller than the fermionic π (Abelian anyons) or result in a
drastic changeof thewave function not possible to reduce to a
simple phase factor (non-Abelian anyons). Notably, the
Laughlin FQHE series at electron filling factor per flux
quantum ν ¼ 1=ð2pþ 1Þ (p ∈ N) is predicted to host
fractional quasiparticles of charge νe and exchange phase
θ ¼ νπ as elementary excitations [24–26]. Even more
exotic non-Abelian anyons of charge e=4 are expected at
ν ¼ 5=2 [7,27,28] (see Refs. [29,30] for heat conductance
measurements supporting the non-Abelian character).
Providing experimental evidence of a fractional exchange
phase proves more challenging than the fractional charge. It
is only recently that the first convincing signatures were
detected at ν ¼ 1=3, from 2π=3 phase jumps in an electronic
interferometer [31] and through negative cross-correlations
in a source-analyzer setup [32].
The two methods are complementary, and, specifically,

the second [33] promises to be remarkably adaptable
to different platforms, including fractional charges propa-
gating along integer quantum Hall channels [3,34,35].
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The present work builds upon this source-analyzer
approach, by exploring the discerning character of cross-
correlation signatures and by expanding the investigation to
a different type of anyon.
We first reexamine the ν ¼ 1=3 Laughlin fractional

quantum Hall state. The observations of Ref. [32] are
corroborated over an extended range of analyzer tunings as
well as to lower temperatures. Remarkably, the qualitative
signatures of anyon statistics are found to be robust to the
setting of the analyzer. This insensitivity even blurs the
frontier with a distinct Andreev-like mechanism [36,37]
that does not involve an unconventional braid phase.
Nevertheless, we show that it is possible to distinguish
anyon braiding by changing the symmetry between
sources. In addition, the remarkable data-theory quantita-
tive agreement previously observed is reproduced here.
However, we show that it relies on a specific normalization
choice of the cross-correlation signal. In essence, extracting
direct quantitative information regarding the value of the
exchange phase θ, beyond its fractional character, is
impeded by the accompanying influence of the analyzer
conductance. Then, we investigate the hierarchical (Jain)
ν ¼ 2=5 state, where e=5 quasiparticles are predicted to
have a different fractional exchange phase of 3π=5. The
ν ¼ 2=5 observation of negative cross-correlations with
symmetric sources provides a qualitative signature for the
anyon character of these quasiparticles.

II. PROBING ANYON STATISTICS
WITH CROSS-CORRELATIONS

The setup probing unconventional anyon statistics is
schematically illustrated in Fig. 1(a). It is composed of two
random sources of quasiparticles impinging on both sides
of a central “analyzer” constriction. Signatures of uncon-
ventional exchange statistics are encoded into the cross-
correlations between current fluctuations along the two
outgoing paths hδILδIRi. In the limit of dilute sources of
anyon quasiparticles and of a nearly ballistic short central
constriction, theory predicts negative cross-correlations that
depend on the balance between the two sources and persist
at symmetry [3,33,34]. In this section, we first discuss
the theoretical origin of the connection between cross-
correlations and exotic anyon exchange phase θ. Then, the
discriminating character of this signal, to attest of a non-
trivial fractional phase, is assessed by comparing with
expectations in different configurations.
How do cross-correlations connect with anyon statistics?

Initially, an intuitive interpretation of the predicted cross-
correlations was proposed in terms of a partial bunching of
colliding quasiparticles [33]. However, a collision involves
two almost simultaneously incoming quasiparticles, and it
was recently pointed out that this contribution becomes
negligibly small for sources in the considered limit of
dilute, randomly emitted quasiparticles [3,34] (a rapidly
diminishing signal, as the square of the dilution ratio, is

also expected from a classical model [33]). The same
theoretical prediction was instead attributed to a different
interference mechanism, between two different processes
labeled (i) and (ii) in Fig. 1(b). These correspond to the
thermal excitation of a quasiparticle-quasihole pair across
the analyzer constriction before, or after, the transmission
of quasiparticles emitted from the sources [3,34,38]. This is
schematically illustrated in Fig. 1(b) in the presence of a

FIG. 1. (a) Source-analyzer setup. Quantum point contacts
(pairs of facing triangles) at the top left (QPCt) and bottom right
(QPCb) in the weak backscattering (WBS) regime constitute
sources of quasiparticles of fractional charge e�. The emitted
quasiparticles propagate toward the central analyzer QPCc along
quantum Hall edge channels depicted by lines with arrows
(inactive channels not shown). Cross-correlations hδILδIRi in-
form on the statistics. (b) Braid-induced mechanism. Analyzer
tunnelings [double arrow in (a)] result from interferences between
the generation of a quasiparticle-quasihole pair across QPCc
(blue double arrow) after (i) or before (ii) the passing of incident
quasiparticles (one represented with a red arrow). The process
cancels for a trivial braid phase 2π. (c) Sample e-beam micro-
graph. Metallic gates on the surface of a Ga(Al)As heterojunction
appear darker with bright edges. QPCt;b are tuned to matching
transmission ratios τt ≈ τb of the active channel. The source
imbalance I− ≡ It − Ib is controlled with Vt − Vb. We set V 0

t ¼ 0
except for the separate shot noise characterization of the central
analyzer QPCc, which is performed with a direct voltage bias
(V 0

t ¼ Vt and Vb ¼ 0).
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single incident quasiparticle. Importantly, such an interfer-
ence can be mapped onto a braiding between incident and
thermally excited anyons [39], and it cancels for a trivial
braid phase 2θ ¼ 0 (mod 2π). The pairs generated across
the analyzer constriction through this braiding mechanism
directly result in a current cross-correlation signal, whose
mere existence for symmetric incoming beams constitutes a
first marker of unconventional anyon statistics. Moreover,
incident quasiparticles from opposite sources are associated
with a braiding along inverse winding directions and,
therefore, contribute with opposite signs to the relevant
total braid phase [3,34]. For example, two quasiparticles
incident from opposite sides within a time window shorter
than h=kBT (with T the temperature) are associated with a
null total braid phase, leading to a breakdown of this
transport mechanism across the analyzer (see Ref. [38] for
the detailed dependence in the time delay). Consequently,
the cross-correlations resulting from a nontrivial braiding
depend on the balance between the beams of incoming,
randomly emitted quasiparticles, which constitutes a sec-
ond complementary marker. As recapitulated in Table I,
these two markers combined together provide a strong
qualitative signature of an underlying nontrivial anyon
statistics.

III. EXPERIMENTAL IMPLEMENTATION

The device shown in Fig. 1(c) is realized on a Ga(Al)As
two-dimensional electron gas of density 1.2 × 1011 cm−2

located 140 nm below the surface. It is cooled at a
temperature T ≃ 35 mK (if not stated otherwise) and
immersed in a strong perpendicular magnetic field B
corresponding to the middle of the quantum Hall effect
plateau at filling factors ν ¼ 1=3, 2=5, and 2 (see
Appendix C for ν ¼ 2). In the quantum Hall regime, the

current flows along chiral edge channels are depicted as
lines with arrows indicating the propagation direction. At
ν ¼ 2=5 and 2, there are two copropagating quantum Hall
channels with the same chirality, although, for clarity, only
the active one in which nonequilibrium quasiparticles are
injected is displayed in Fig. 1.
The sources and analyzer constrictions are realized by

voltage-biased quantum point contacts (QPCs) tuned by
field effect using metal split gates (darker with bright
edges). The source QPCs located in the top left and bottom
right in Fig. 1(c) are referred to as QPCt and QPCb,
respectively. The central analyzer QPC is referred to as
QPCc. The sources are connected to the downstream QPCc
by an edge path of approximately 1.5 μm.
In the following, we first discuss the characterization of

the current fraction going through the source and analyzer.
Then, we detail the determination of the fractional charges
of the tunneling quasiparticles and whether this charac-
terization can be performed simultaneously with the meas-
urement of the main cross-correlation signal or separately.

A. QPC transmission

QPCt;b;c are first characterized through the fractions τt;b;c
of (differential) current in the active channel transmitted
across the constriction:

τtðbÞ ≡ ν

νeff

�
∂VtðbÞ

M

∂VtðbÞ
− 1

�
þ 1; ð1Þ

τc ≡ ν

νeff

�
∂VR=∂Vb

2ð1 − τbÞ
þ ∂VL=∂Vt

2ð1 − τtÞ
�
; ð2Þ

with the partial derivatives given by lock-in measurements
and where νeff is the effective filling factor associated with
the conductance νeffe2=h of the active channel (νeff ¼ ν if
there is a single channel, νeff ¼ 1=15 for the inner channel
at ν ¼ 2=5, and νeff ¼ 1 for each channel at ν ¼ 2). Note
that we follow the standard convention for the definition of
the transmission direction across the QPCs’ split gates, as
indicated by dashed lines in Fig. 1(c). The so-called strong
backscattering (SBS) and weak backscattering (WBS)
regimes correspond to τ ≪ 1 and 1 − τ ≪ 1, respectively.
As discussed below and illustrated in Fig. 1(a), the sources
and analyzer are normally set in the WBS regime to emit
and probe the statistics of fractional quasiparticles. The top-
right inset in Fig. 2(c) displays such τt;b;c measurements.

B. Quasiparticle sources

Applying a voltage bias VtðbÞ excites the quantum Hall
edge channel at the level of QPCtðbÞ (except for
τtðbÞ ∈ f0; 1g), hence generating a quasiparticle carrying
current ItðbÞ propagating toward the analyzer. The nature of
these quasiparticles depends on the tuning of the QPCs. For
Laughlin fractions ν, their charge is predicted to be e at

TABLE I. Cross-correlations with dilute beams of incident
quasiparticles. Both the cross-correlation sign and evolution
between symmetric sources (Sym.) and a single source (Asym.)
are compulsory to distinguish between different transport mech-
anisms involving tunneling quasiparticles of charge et;b;c. Paren-
theses indicate a signal that emerge for nondilute incident beams,
and a −− signifies a larger amplitude. See Ref. [35] for the
predictions of positive cross-correlations with two interacting
channels of the integer quantum Hall effect (IQHE) and
Refs. [36,37] for the prediction and observation of an Andreev
mechanism giving rise to symmetry-independent negative cross-
correlations when the analyzer is set to favor the tunneling of
quasielectrons.

System Cross-correlation

Platform (mechanism) et;b ec Sym. Asym.

Laughlin FQHE (braiding) νe νe − −−
Laughlin FQHE (Andreev) νe e − −
Free fermions e e 0 (−)
Interacting IQHE channels e e þ (−)
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τ ≪ 1 and νe at 1 − τ ≪ 1 [10,11]. We characterize the
charge etðbÞ of the quasiparticles emitted at QPCtðbÞ by
confronting the fluctuations of ItðbÞ with the standard,
phenomenological expression for the excess shot noise
[40,41]:

hδI2iexc ¼ 2e�τdcð1− τdcÞνeffe
2

h
V

�
coth

e�V
2kBT

−
2kBT
e�V

�
; ð3Þ

where δI≡I−hIi, hδI2iexc≡hδI2iðVÞ−hδI2ið0Þ, I ¼ ItðbÞ,
e� ¼ etðbÞ, V ¼ VtðbÞ, and τdc is an alternative definition of
τtðbÞ with the derivative in Eq. (1) replaced by the ratio of
the dc voltages. Note that the charge e� is extracted
focusing on e�V ≫ kBT, while the coth transient is
only a rough approximation to the predicted low-voltage
behavior [42,43]. In practice, we measure the auto- and
cross-correlations of δIL;R and not directly the current
fluctuations emitted by the sources. The main approach
here used to determine the shot noise from the sources is to
consider the measured noise sum defined as

SΣ ≡ hδI2Liexc þ hδI2Riexc þ 2hδILδIRi: ð4Þ

Current conservation (It þ Ib ¼ IL þ IR) together with the
absence of current correlations between sources expected
from chirality (hδItδIbi ¼ 0) imply

hδI2t iexc þ hδI2biexc ¼ SΣ: ð5Þ

This approach is systematically used simultaneously with
the measurement of the anyon statistics cross-correlation
signal. With two active sources in this case (both Vt;b ≠ 0),
SΣ informs us on the weighted average of et and eb [see,
e.g., Fig. 2(a)]. Such an approach is also applied with a
single active source, sweeping VtðbÞ at fixed VbðtÞ ¼ 0. For
perfectly independent sources, the increase of SΣ then
corresponds to the excess shot noise across QPCtðbÞ,
providing us separately with the quasiparticles’ charge
etðbÞ. (As discussed later, some imperfections may, how-
ever, develop.) Note that, when possible, we check the
consistency of the extracted charges et;b with the values
obtained by setting the analyzer to a full transmission or a
full reflection (τc ∈ f0; 1g), where there is a straightfor-
ward one-to-one correspondence between It;b and IL;R.

FIG. 2. Cross-correlation signature of anyons at ν ¼ 1=3 with symmetric sources. All QPCs are in the WBS regime (τt;b ≈ 0.96,
τc ≃ 0.7; see schematic illustration and inset in (c)]. (a),(b) Shot noise characterization of (a) the charge of the quasiparticles emitted
from the sources QPCt;b [Iþ ≡ It þ Ib, SΣ given by Eq. (4)] and (b) the tunneling charge across the analyzer QPCc. A source bias
Vt ¼ Vb (V 0

t ¼ 0) is applied for the simultaneous measurements in (a) and (c), whereas Vt ¼ V 0
t (Vb ¼ 0) implements a direct voltage

bias of QPCc in (b). The noise data (symbols) match the predictions for e=3 (red lines). (c) Cross-correlations in the symmetric source-
analyzer configuration. The effective Fano factor P is obtained from a linear fit (dashed line) of the slope of the normalized cross-
correlation data (symbols) plotted as a function of SΣ. Here, P ≃ −1.9. Inset: QPC transmission.
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C. Analyzer tunneling charge

The individual shot noise characterization of QPCc
requires the application of a direct voltage bias, as opposed
to incident currents composed of nonequilibrium quasi-
particles. Hence, it must be performed in a dedicated,
separate measurement. In practice, we set V 0

t ¼ Vt at
Vb ¼ 0 [see Fig. 1(c); elsewhere, V 0

t ¼ 0] without changing
the gate voltage tuning of any of the QPCs, and we measure
the resulting cross-correlations hδILδIRi (see Fig. 14 in
Appendix E for the less robust autocorrelation signal).
Fitting the noise slopes with the negative of the prediction
of Eq. (3) provides us with the characteristic charge ec of
the quasiparticles transmitted across QPCc [see Figs. 2(b)
and 7(b)].

D. Experimental procedure

With these tools, the device is set to have two sources
of transmission probabilities that remain symmetric
τt ≈ τb and with the same fractional quasiparticle charges
et ≃ eb ≃ e�, over the explored range of bias voltages of
typically Vt;b ≲ 100 μV. At ν ¼ 1=3, 2=5, and 2, we focus
on e�=e ≃ 1=3, 1=5, and 1, respectively. The symmetry
between the two quasiparticle beams impinging on the
analyzer is then controlled through Vt and Vb and char-
acterized by the ratio jI−=Iþj with I� ≡ It � Ib. The
analyzer QPCc is normally set to the same tunneling charge
ec ≃ e� to investigate the fractional exchange phase of e�
quasiparticles, although a broader range of ec is also
explored at ν ¼ 1=3 by tuning the analyzer QPCc away
from the WBS regime.

IV. THEORETICAL PREDICTIONS

We recapitulate the cross-correlation predictions for free
electrons [40] and anyons of the Laughlin series [33,34,44].
Other related theoretical developments include the recent
extensions to copropagating integer quantum Hall channels
in interactions [35], to fractional charge injected in integer
quantum Hall channels [3], to non-Abelian anyons [34], to
high frequencies [45], and to Laughlin quasiparticles with a
controlled time delay [38].

A. Effective Fano factor

The statistics is specifically investigated through the
effective Fano factor P defined as

P≡ hδILδIRi
SΣτcð1 − τcÞ

; ð6Þ

with a denominator chosen to minimize the direct, voltage-
dependent contribution of the shot noise from the sources,
thus focusing on the signal of interest generated at the
analyzer. This expression generalizes the definition of P
introduced in Ref. [33] beyond the asymptotic limits
1 − τt;b;c ≪ 1 (where at large bias SΣ ≈ 2e�Iþ), in the

same spirit as in Ref. [32]. Note that τc in the denominator
remains the simultaneously measured differential trans-
mission probability given by Eq. (2) including in the
presence of asymmetric incident quasiparticle beams.
This is in contrast to Ref. [33] with quantitative conse-
quences for asymmetric sources as further discussed in
Sec. IV C.

B. Fermions

In the Landauer-Büttiker framework for noninteracting
electrons, the cross-correlations can be written as [40]

hδILδIRi¼−2τcð1− τcÞðe2=hÞ
Z

dϵ½ftðϵÞ−fbðϵÞ�2; ð7Þ

where ft;b are the energy distribution functions of electrons
incoming on QPCc from the top (t) and bottom (b) paths.
The cross-correlations and, consequently, P are, thus,
expected to robustly vanish in the symmetric limit, when-
ever ft ≃ fb (positive cross-correlations are expected
within the bosonic density wave picture emerging for
interacting, adjacent integer quantum Hall channels
[35]). Furthermore, in the dilute incident beam limit where
jft − fbj ≪ 1, P remains asymptotically null even in the
presence of an asymmetry. In this limit and for symmetric
configurations, the contrast is, thus, particularly striking
with the cross-correlations predicted for anyons.

C. Anyons

Theoretical solutions for the source-analyzer setup were
obtained for Laughlin fractions ν ¼ 1=ð2pþ 1Þ at low
temperatures (e�Vt;b ≫ kBT), in the WBS regime of the
source QPCt;b (1 − τt;b ≪ 1), and in both the WBS
(1 − τc ≪ 1) [33] and SBS (τc ≪ 1) [36] regimes for the
analyzer QPCc.

1. Braiding

We consider configurations with all QPCs in the WBS
regime (1 − τt;b;c ≪ 1), where the occurrence of a non-
trivial fractional exchange phase θ between anyons is
predicted to play a crucial role [33,34,44]. The prediction
for the effective Fano factor P defined in Eq. (6) with τc
given by Eq. (2) reads [33]

PWBS
thy ðI−=IþÞ ¼ −4Δ=ð1 − 4ΔÞ

þ jI−=Iþj
��

tan 2πΔþ ð1 − 4ΔÞ−1
tan 2πΔ

�

× tan
�
ð4Δ − 2Þ arctan jI−=Iþj

tan 2πΔ

��
; ð8Þ

with I� ≡ It � Ib and Δ the quasiparticles’ scaling dimen-
sion, which is related to the exchange phase through
θ ¼ 2πΔ and, for Laughlin fractions, given by Δ ¼ ν=2
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(see, e.g., Ref. [43]). Note that the above formulation
ignores possible nonuniversal complications, such as edge
reconstruction (see Ref. [33] for a discussion of such
artifacts and Ref. [34] for an alternative formulation of
PWBS
thy at I− ¼ 0 separating the different contributions of

braiding phase, topological spin, and tunneling exponent).
In the symmetric case (I− ¼ 0), Eq. (8) simplifies into
PWBS
thy ð0Þ ¼ −4Δ=ð1 − 4ΔÞ, which gives PWBS

thy ð0Þ ¼ −2 at
ν ¼ 1=3 and progressively less negative values for lower ν
in the Laughlin series.
As mentioned below Eq. (6), the dependence in I−=Iþ

of PWBS
thy is different from Ref. [33]. This stems from a

different definition for τc at I− ≠ 0. Indeed, multiple
definitions are possible for τc, corresponding to different
quantitative predictions for this transmission and, con-
sequently, a different P (see Table II). In particular, it
could be defined as the differential transmission of the
current originating from the electrode voltage biased at
Vt;b [τc given by Eq. (2)] or from the other, grounded
electrode feeding the source QPCs (τterc in Table II).
With sources in the WBS regime, the former τc corre-
sponds to the transmission across the analyzer of dilute
quasiparticles of energy ∼e�V, whereas the latter τterc is
essentially the transmission of a thermal current. As the
transmission is predicted to strongly depend on energy in
the FQHE regime, using these different definitions in
Eq. (6) for P clearly results in strongly different
theoretical values, as summarized in Table II (see also
Fig. 5). Note that, in Ref. [33], the alternative definition
τbisc relies on the same expression [Eq. (2)] but for I− ¼ 0,
even for cross-correlations measured at I− ≠ 0. As τc is
expected to depend on I−, this impacts the prediction
for PðI−=Iþ ≠ 0Þ.

2. Andreev reflection

We consider here the “Andreev” configuration where
QPCt;b remain in the WBS regime while QPCc is set in the
SBS regime (τc ≪ 1). In this case, quasielectrons of charge

e are tunneling across QPCc [10,11,37,46]. As the braid
phase between such a quasielectron and the impinging
fractional quasiparticles is a trivial 2π for the Laughlin
quantum Hall fractions [4,43], the previously discussed
transport mechanism driven by unconventional anyon
statistics here cancels out. Instead, a different Andreev-
like process takes place, involving independent tunnelings
of e accompanied by the simultaneous reflection of a hole
of charge −eð1 − νÞ [36], as recently observed at ν ¼ 1=3
[37]. As a result, the cross-correlations are simply −ð1 − νÞ
times the shot noise on the tunneling current given by
2eIþτc and, at high bias νeV ≫ kBT, PSBS

thy ≃ −ð1 − νÞ=ν
independently of the ratio I−=Iþ [36]. At ν ¼ 1=3, this
gives PSBS

thy ≃ −2, identical to the exchange-induced pre-
diction at symmetry PWBS

thy ð0Þ ¼ −2. Note that this match-
ing is specific to ν ¼ 1=3 and does not apply to other
Laughlin fractions. Importantly, a qualitatively distinctive
feature of the Andreev-like process is its independence in
I−=Iþ [36,37].

V. ANYON SIGNATURES AT ν= 1=3

A. Representative anyon signature
with symmetric sources

Figure 2 displays some of the QPC characterization data
as well as the cross-correlation anyon signature for a
representative WBS device tuning, with symmetric sources
(I−=Iþ ≪ 1) at T ≃ 35 mK. The data shown as symbols in
Figs. 2(a) and 2(c) are measured simultaneously, whereas
the shot noise characterization of QPCc shown in Fig. 2(b)
is performed separately, slightly before, as it involves a
direct voltage bias of the analyzer.
The sources QPCt;b are set in the WBS limit, at

1 − τt;b < 0.1 for all the data in this section [see illustrative
schematic and inset in Fig. 2(c)]. The charge et;b ≈ e=3 of
the emitted quasiparticles is attested by the comparison in
Fig. 2(a) with the standard shot noise expression Eq. (3).
The measured noise sum SΣ [Eq. (4)], corresponding to the
shot noise from both sources, is found in close agreement
with e� ¼ e=3 at T ¼ 35 mK (a similar matching is
obtained from individual source characterizations per-
formed separately). Note that we limit the applied bias
voltage to jVt;bj≲ 100 μV.
The analyzer QPCc transmission τc ≈ 0.7 simultane-

ously measured in the source-analyzer configuration, with
impinging dilute quasiparticle beams, is shown in the inset
in Fig. 2(c). The larger experimental noise, particularly
marked at low Iþ, simply reflects the lower amount of
current probing τc at the corresponding low values of
1 − τt;b. The shot noise characterization in Fig. 2(b) is
separately performed from the cross-correlations measured
in the presence of a direct voltage bias (see Appendix E for
autocorrelations and SΣ data). A good agreement is
observed with the negative of Eq. (3) for e� ¼ e=3
and T ¼ 35 mK. Note that, at relatively low voltages

TABLE II. Predicted PWBS
thy at ν ¼ 1=3 for alternative defini-

tions of τc and different source settings (symmetric when I− ¼ 0
or fully asymmetric when I− ¼ �Iþ, with I� ≡ It � Ib). τc is the
transmission ratio of incident quasiparticles, τbisc the same trans-
mission ratio but at I− ¼ 0, and τterc the transmission ratio of
thermal excitations. The corresponding values of PWBS

thy are
obtained, respectively, from Eq. (8) and Eqs. (F1) and (F2) in
Appendix F.

PWBS
thy

τc variants ðI− ≪ IþÞ ðI− ¼ IþÞ
τcðI−; IþÞ from Eq. (2) −2 −4.9
τbisc ≡ τcðI− ¼ 0; IþÞ [33] −2 −3.1
τterc ≡ τ−1t ∂VL=∂V 0

t [34] −0.8 −1.3
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(e�V ∼ kBT), the data exhibit a noticeably larger slope than
the phenomenological Eq. (3), which is expected from
exact predictions for the thermal rounding [42,43]. In
practice, following standard procedures, we extract the
tunneling charge ec by fitting the cross-correlations at
voltages above the thermal rounding [ecV ≳ 3kBT, with
here ec ≃ 0.30e; see also Fig. 3(a)].
The main cross-correlation signal in the presence of

symmetric beams of incident quasiparticles is normalized
by τcð1 − τcÞ and plotted in the main panel in Fig. 2(c) as a
function of the noise sum SΣ. In this representation, the
experimental value of P is straightforwardly obtained from
a linear fit of the data. The dashed line corresponds
to P ≃ −1.9.
Although the quantitative agreement with the prediction

PWBS
thy ð0Þ ¼ −2 is striking and corroborates the pioneer

observation [32], it is nevertheless counterbalanced by the
strong dependence of PWBS

thy on the specific definition

of τc (see Table II). This is in contrast with the weakly
dependent experimental P. Indeed, we observe in practice
τc ∼ τbisc ∼ τterc (with discrepancies smaller than 10%, of the
order of our in situ experimental resolution on τc), thus
leaving P mostly unchanged, as opposed to the different
predictions. This situation can be traced back to the bias
voltage dependence of τc that sharply differs from the
expected power law 1 − τc ∝ V2ν−2 [47] [see the inset in
Fig. 2(c) for a representative weak dependence of τc and
also Appendix E for a measurement as a function of a direct
voltage bias]. Nevertheless, the qualitative observation of a
nonzero, negative P in the WBS regime with symmetric
quasiparticle beams remains a significant, robust feature.
This constitutes in itself a key marker of unconventional
exchange statistics.

B. Intriguing robustness of PðI − ≈ 0Þ
versus analyzer tuning

Figure 3 synthesizes our measurements of P at ν ¼ 1=3
while broadly changing the tuning of QPCc from WBS to
SBS (with the sources remaining in the WBS regime and
symmetric, I− ≪ Iþ). As detailed below, whereas the
predicted underlying mechanism changes from anyon
braiding to Andreev, no signature of this crossover is
discernible in PðI− ≈ 0; τcÞ. Although there is no contra-
diction with theory, this calls for additional ways to directly
distinguish the two mechanisms.
The crossover from ec ≈ e=3 to e as τc is reduced is

established in Fig. 3(a) [10,11,46]. Accordingly, a different
Andreev transport mechanism is expected to dominate at
τc ≲ 0.5, as predicted [36] and recently observed on the
same sample [37]. Although an identical value P ¼ −2 is
asymptotically predicted for both WBS and SBS tunings
of the analyzer, signatures of the crossover between differ-
ent underlying mechanism could have emerged at inter-
mediate τc. This is not the case. Instead, a remarkable
robustness of P versus τc is observed, as shown in the
main panel in Fig. 3(b) for T ≃ 35 mK. This observation is
confirmed at T ≃ 15 and 60 mK as can be inferred from the
mean and standard deviation of P displayed for different T
in the inset. With no signature of a change of an under-
lying mechanism materializing along the crossover
from WBS to SBS, it is highly desirable to have a direct
signature that differentiates between braiding and Andreev
processes.

C. Distinguishing anyon braiding
and Andreev mechanisms

A distinctive feature of the unconventional anyon braid-
ing mechanism, contrasting with the Andreev process, is
that different incident quasiparticles do not contribute
independently to the cross-correlations. A straightforward
test confirming this discriminating property is displayed
in Fig. 4.

FIG. 3. PðI− ≈ 0Þ versus analyzer tuning at ν ¼ 1=3. Identical
symbols represent measurements for the same device tuning [τc
differs in (a) and (b) because of the different biasing]. Error bars
are shown if larger than symbols. The horizontal error bars
encompass the variation of τc in the range of biases where ec
(a) or P (b) are extracted. The vertical error bars encompass the
difference between measurements at negative and positive volt-
ages. (a) Analyzer crossover from ec ≈ e=3 to e. (b) Indiscernible
crossover in PðI− ≈ 0; τcÞ. The horizontal dashed line displays
the mean value hPi ≃ −2.2. Inset: mean value hPi versus temper-
ature. The vertical error bars show the standard deviation between
values of P for individual analyzer settings.
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As graphically illustrated in Fig. 4(a), we compare, on
the one hand, the sum of the cross-correlation signals
measured alternatively with a single active source (Vt ≠ 0
with Vb ¼ 0, and Vb ≠ 0 with Vt ¼ 0; green) with, on the

other hand, the cross-correlations measured when both
sources are symmetrically biased (Vt ¼ Vb ≠ 0; black). For
Andreev processes, the two match, as previously observed
[37]. This is not the case when the underlying mechanism is
the unconventional anyon exchange phase. A representa-
tive comparison is displayed in Fig. 4(a) for the analyzer set
in the WBS regime (τc ≃ 0.83 with ec ≃ 0.34e) where the
anyon exchange mechanism is expected. The marked
difference between symmetric (black) and fully asymmetric
(green) incident quasiparticle beams confirms that the
underlying mechanism is not the Andreev process.
Figure 4(b) presents a systematic comparison for differ-

ent analyzer tunings along the crossover between uncon-
ventional anyon exchange and Andreev mechanisms. It is
quantified by the displayed asymmetric to symmetric ratio
AS/S between fitted linear slopes [e.g., dashed lines in
Fig. 4(a)], plotted as a function of the parameter ec=e
driving the crossover. When ec ≈ e=3 (vertical dashed line),
we systematically observe substantially larger cross-
correlations in the asymmetric configuration, whereas for
larger values of ec the asymmetric to symmetric configu-
ration ratio approaches 1. This signals a change of under-
lying transport mechanism when increasing ec, providing
experimental support to the theoretical expectations of a
crossover from unconventional exchange to Andreev
processes.
The important dependence in the symmetry between

incident beams of dilute quasiparticles, specifically
observed when ec ≈ e=3, constitutes a second qualitative
marker of the unconventional exchange phase of the
quasiparticle.

D. P versus I − =I +
We now confront quantitatively PðI−=IþÞ data and the

Eq. (6) prediction.
The experimental values of P obtained for the analyzer

QPCc set to τc ≃ 0.7 with ec ≃ 0.3e are displayed versus
I−=Iþ in Fig. 5. For each data point, the ratio Vt=Vb is kept
fixed while sweeping Vt;b. Note that the variation of
jI−=Iþj during each sweep, represented by the horizontal
error bars, results from the unequal evolutions of τtðVtÞ and
τbðVbÞ. The theoretical prediction of Eq. (6) is shown as a
red continuous line. For a more complete assessment, the
predictions for PWBS

thy with the alternative definitions τbisc

and τterc (see Table II) are also displayed as, respectively,
black and blue dashed lines.
Theory predicts weak changes of P at low jI−=Iþj,

progressively becoming stronger for higher asymmetries,
consistent with experimental observations. The expected
ratio PWBS

thy ð1Þ=PWBS
thy ð0Þ ≃ 2.5 is in order-of-magnitude

agreement with the experimental value Pð1Þ=Pð0Þ ∼ 1.5.
Overall, the observed reasonable agreement between

data and theory further corroborates the underlying pres-
ence of anyons of fractional exchange phase.

FIG. 4. Discriminating anyons braiding from Andreev mecha-
nisms. (a) Cross-correlations with QPCc set to ec ≈ et;b ≈ e=3.
The data (symbols, corresponding to those in Fig. 3) are displayed
as a function of the sum ItT þ IbT of tunneling currents from the top
and bottom sources (see the inset; arrows indicate the sign þ
convention). Black crosses are obtained with two symmetric
incident beams It ≈ Ib. Green crosses show the sum of indepen-
dent measurements hδILδIRiðItÞ þ hδILδIRiðIbÞ, using either
QPCt or QPCb as a single source, versus ItTðItÞ þ IbTðIbÞ. Dashed
lines are linear fits. The significantly larger slope in the asymmetric
case (green) rules out Andreev processes and is consistent with the
predicted anyon exchange mechanism. (b) Symbols represent the
ratio (AS/S) of the slopes hδILδIRi=ðItT þ IbTÞ between asymmet-
ric [one source at a time (AS)] and symmetric [two sources (S)]
incident quasiparticle beams versus separately characterized ec=e.
Error bars encompass the difference between values extracted at
negative and positive applied voltages for the same device setting.
A ratio close to unity is found for ec ≳ 0.5 > et;b ≈ e=3, where the
charge mismatch favors Andreev processes.
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VI. ANYON SIGNATURES AT ν = 2=5

A. Edge structure

At ν ¼ 2=5, two adjacent channels are predicted to
propagate in the same direction along each edge.
Quasiparticles of charge e� ¼ e=5 have been observed
along the inner channel of conductance νeffe2=hwith νeff ¼
1=15 [14]. These quasiparticles are predicted to have a
fractional exchange phase θ ¼ 3π=5 [θ ¼ 2πΔ with
Δ ¼ ðe�=eÞ2=2νeff ; see, e.g., Ref. [43]].
This edge structure is first attested by the dependence

GcðVgÞ of the differential conductance Gc across the
analyzer QPCc with the voltage Vg applied to the metallic
split gates controlling this constriction. Figure 6 shows
GcðVgÞ measured both at zero dc bias voltage (black line)
and at 90 μV (green line). The robust intermediate plateau
at Gc ¼ e2=3h corresponds to the full transmission of the
outer edge channel, of conductance e2=3h, and the total
reflection of the inner edge channel. For less negative Vg,
the higher Gc > e2=3h reflects the subsequent opening of
the inner edge channel of present interest. The sequential,
separated opening of the two channels is confirmed by the
absence of excess noise when applying a dc voltage bias to
QPCc set on the e2=3h plateau. The current transmission
ratio of the inner edge channel at Gc ≥ e2=3h hence reads
ðGc − e2=3hÞ=ðe2=15hÞ [corresponding to τc given by
Eq. (2) in that direct voltage bias case]. Note that Gc does
not reach the maximum value of ð2=5Þe2=h (horizontal
blue dashed line), as it is not possible to fully open the inner

channel across any of the QPCs. The maximum inner
channel transmission achieved is τc ≈ 0.9 [see the inset in
Fig. 11(d)]. We refer to Appendix E for checks of the
chirality of the electrical current in the central part of the
device.
In the presence of two channels copropagating along

each edge, a transfer (tunneling) of charges between
adjacent channels along the source-analyzer paths could
occur. As this results in an additional negative contribution
to the measured cross-correlations hδILδIRi, its amplitude
is carefully calibrated (see Appendix D). The tunneling
current, made of e=3 quasiparticles as predicted [48],
approaches at most 20% of the injected inner channel
current. A systematic procedure is set to estimate and
subtract the tunneling current contribution to the cross-
correlation signal (see Appendix D). Importantly, the
qualitative markers of braiding are not affected by this
contribution; only the quantitative value of P is modified,
by at most 20%.

B. Representative anyon signature
with symmetric e=5 sources

Apart from interchannel tunneling, the QPC characteri-
zation and P extraction procedures are similar to those at
ν ¼ 1=3, as illustrated in Fig. 7. A charge et;b ≃ e=5 for the
quasiparticles emitted by the sources is obtained simulta-
neously with the measurement of P, by comparing the

FIG. 6. Differential conductance Gc through the analyzer QPCc
at ν ¼ 2=5 as a function of the applied gate voltage Vg (detailed
features may vary with overall device configuration). The black
and green continuous lines display measurements, respectively, in
the absence of a dc bias (Vt ¼ V 0

t ¼ Vb ¼ 0) and in the presence
of a direct dc voltage bias (Vt ¼ V 0

t ¼ −90 μV, Vb ¼ 0). The
robust e2=3h plateau, where the absence of excess noise is
separately checked, ascertains the sequential channel opening
illustrated schematically. Note the relatively weak voltage bias
dependence at Gc > e2=3h, when the inner (outer) edge channel
is partially (fully) transmitted.

FIG. 5. P versus source imbalance at ν ¼ 1=3. Symbols display
the effective Fano factorP as a function of the relative difference in
incident currents I−=Iþ, for the same device tuning. Horizontal
error bars encompass variations in I−=Iþ over the range of applied
voltages.Vertical error bars represent the difference betweenvalues
of P separately extracted at negative and positive voltages. The
prediction of Eq. (8) is shown as a red continuous line. The
alternative predictions shown as dashed lines involve the different
definitions τbisc (black) and τterc (blue) (see Table II andAppendix F).
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noise sum SΣ with the standard shot noise expression
Eq. (3) [see Fig. 7(a) for the simultaneous characterization
of the sources]. Note that SΣ is not directly impacted by
interchannel tunnelings, as these processes preserve the
overall current downstream from the sources. The char-
acterization of ec ≃ e=5 is performed separately, analo-
gous to ν ¼ 1=3, from the cross-correlations measured in
the presence of a direct voltage bias applied to QPCc [see
Fig. 7(b)]. Note that, unexpectedly, the noise sum SΣ [not
shown in Fig. 7(b); see Fig. 14(c)] is far from negligible,
although no voltage bias is applied to the sources in this
configuration. This might be related to a nonlocal heating,
with most likely little impact on our conclusions (see
Appendix E for further discussion). The extraction of P
from the slope of the cross-correlation signal normalized
by τcð1 − τcÞ versus SΣ is shown in the main panel in
Fig. 7(c). We obtain in this representative example P ≃
−1.0 (dashed line; we extract P ≃ −1.07 from the raw
data including interchannel tunneling). Qualitatively,
the observed negative P at symmetry indicates an uncon-
ventional anyon exchange phase. Quantitatively, this is a
markedly weaker value than the observed P ≈ −2 at
ν ¼ 1=3.

C. P for symmetric e=5 quasiparticle sources

Here, we recapitulate the experimental effective Fano
factor P obtained for e=5 quasiparticles on five different
device configurations (see Fig. 8).
The analyzer displays a rather stable characteristic

charge of ec ≈ e=5, adapted to investigate the statistics
of the corresponding quasiparticles, over a relatively broad
explored range τc ∈ ½0.2; 0.8� [see Fig. 8(a)]. Note that, for
each tuning of QPCc, the sources QPCt;b require gate
voltage adjustments in order to preserve their symmetry. In
practice, the sources exhibit similar shot noise signatures of
e=5 emitted quasiparticles, in comparably good agreement
with Eq. (3) than in the representative Fig. 7(a). Note that
the transmissions across QPCt;b remain here within the
range τt;b ∈ ½0.25; 0.5�, away from the dilute quasiparticle
source limit that is experimentally not accessible. The
extracted values of P are recapitulated in Fig. 8(b), with
symbols matching those in Fig. 8(a) for identical device
configurations (the different τc result from the different
biasing of QPCc). The blue symbols represent P obtained
from the corrected cross-correlation signal, from which the
contribution of interchannel tunneling is subtracted. The
green symbols are the values of P extracted from the raw

FIG. 7. Cross-correlation signature of anyons in the inner edge channel at ν ¼ 2=5. The sources are symmetrically voltage biased
(Vt ¼ Vb, V 0

t ¼ 0) except for the separate analyzer characterization in (b), where Vt ¼ V 0
t (Vb ¼ 0) implements a direct voltage bias.

(a),(b) Shot noise characterization of the charges et;b emitted from the sources (a) and of the tunneling charge ec across the analyzer (b).
The shot noise data (symbols) are compared with the predictions for e� ¼ e=5 (blue lines) and e=3 (red lines). (c) Experimental
determination of P. The normalized cross-correlation data, from which the estimated interchannel tunneling contribution (see
Appendix D) is removed, are plotted as symbols as a function of the same SΣ also shown in (a). P ≃ −1.0 is obtained from a linear fit of
the slope (blue dashed line). Inset: simultaneous measurements of τt;b;c.
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cross-correlations. The effect of interchannel tunneling
remains relatively small (approximately 20%) with respect
to the overall value of P, and it does not introduce any
noticeable trend. Similarly to ν ¼ 1=3, P does not exhibit a
significant dependence on τc. However, in contrast, no
crossover to a different Andreev-like mechanism could
develop, as there is here no mismatch between et;b and ec.
The simple observation of negative cross-correlations
(much higher than from interchannel tunnelings), thus,
points to a unconventional anyon exchange phase for the
investigated e=5 quasiparticles. Note that an exploration of
the influence of an asymmetry between sources, used at
ν ¼ 1=3 to distinguish with Andreev physics, is here
impeded by the high minimum values of experimentally
accessible 1 − τt;b ≳ 0.5, for which an applied asymmetry
corresponds to a complex combination of incident quasi-
particles and direct voltage bias.

Quantitatively, we find an average value of hPi ≃ −0.97
represented by a blue horizontal dashed line in Fig. 8(b)
(hPi ≃ −1.15 from the raw data including interchannel
tunneling). The theory developed for Laughlin fractions
[33], and recently extended to a non-Abelian channel [34],
does not yet fully encompass hierarchical states such as
ν ¼ 2=5. Nevertheless, assuming that the outer channel of
conductance e2=3h can be ignored, the same prediction
P ¼ −4Δ=ð1 − 4ΔÞ applies with the corresponding scaling
dimension of the e=5 quasiparticles Δ ¼ ðe�=eÞ2=2νeff ¼
0.3 [49]. The resulting P ¼ 6 is, however, much larger than
observed and, intriguingly, positive. The culprit for the sign
change in this generalized prediction is not the cross-
correlations, which remain negative as measured, but a
differential transmission τc becoming negative for dilute
beams of such quasiparticles [33]. Here, we observe
conventional, positive transmissions [see the inset in
Fig. 7(c)]. The important role of τc in the theoretical value
of P, with even more drastic consequences than at ν ¼ 1=3,
impedes the extraction of quantitative information on the
specific anyon exchange phase. It remains that the obser-
vation of strong negative cross-correlations constitutes a
qualitative marker of unconventional exchange statistics.

VII. CONCLUSION

Noise evidence of exotic anyon braiding statistics for
fractional quasiparticles of charge e=3 and e=5 are observed
in a source-analyzer setup. This signature holds provided the
analyzer QPC favors the transmission of the same type of
quasiparticles as those emitted at the sources and for
relatively weak interchannel tunnelings along the source-
analyzer paths. Different values for the cross-correlation
effective Fano factor P ≈ −2 and P ≈ −1 are obtained,
respectively, for e=3 quasiparticles at ν ¼ 1=3 and e=5
quasiparticles along the inner channel at ν ¼ 2=5 (in contrast
with P ≈ 0 observed at ν ¼ 2; see Appendix C). It is
tempting to attribute this difference to the distinct predicted
exchange phases π=3 and 3π=5. However, the quantitative
connection to P is not direct but involves the dependence of
the analyzer transmission τc on the voltages Vt;b used to
generate the quasiparticles. In practice, as generally observed
experimentally in the fractional quantum Hall regime
[50,51], the transmission across QPCs does not follow the
predicted voltage bias dependence, which impedes any
quantitative information on the exchange phase beyond its
unconventional character. A promising alternative to over-
come this limitation is to combine such a source-analyzer
setup with a quantum circuit implementation of Luttinger
liquids [3,52] where QPCs are found to accurately follow the
theoretical predictions [53,54].
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APPENDIX A: DEVICE

The measurements are performed on the same device
previously used to evidence Andreev-like processes [37].
Note that the Ga(Al)As heterojunction hosting the 2D
electron gas is similar to that used in the pioneer “collider”
experiment [32] and is grown in the same MBE chamber at
a different time.
The nanofabrication followed standard e-beam lithog-

raphy steps (see Methods in Ref. [37] for further details and
large-scale pictures of the sample): (i) Ti-Au mark depo-
sition through a PMMA mask. (ii) Wet mesa etching in a
solution of H3PO4=H2O2=H2O through a positive ma-N
2403 mask. (iii) Contact Ohmic deposition of Ni-Au-Ge
through a PMMAmask, followed by a 440 °C annealing for
50 s. (iv) Al gate deposition through a PMMA mask.
(v) Deposition of Ti-Au bonding ports and large-scale
interconnects through a PMMA mask.
Figure 9 shows the two-wire measurement at T ∼

100 mK of the resistance between an Ohmic contact and
cold grounds as a function of the magnetic field (a fixed
wiring and filtering resistance of 10.35 KΩ is subtracted).
The experiments are performed in the center of the plateaus
at ν ¼ 1=3, 2=5, and 2, at the values indicated by vertical
arrows. Note that the effective magnetic field range for the
plateaus is, on the one hand, slightly reduced by density

gradients over the sample and, on the other hand, increased
by the temperature reduction when probing the anyon
statistics.
The Ohmic contacts have a large perimeter of approx-

imately 200 μm with the 2D electron gas to ascertain an
essentially perfect electrical connection (usually already
achieved for perimeters of about 10 μm with our recipe).
The Ohmic contact quality together with the robustness of
edge transport chirality in the 2DEG is attested by (i) the
accurate resistance of the quantum Hall plateaus, (ii) the
absence of current reflected from Ohmic contacts con-
nected to a cold ground, and (iii) the absence of excess shot
noise when closing all the QPCs and applying a volt-
age bias.

APPENDIX B: EXPERIMENTAL SETUP

1. Measurement setup

Measurements are performed in a cryofree dilution
refrigerator, where the sample is connected through elec-
trical lines including several thermalization and filtering
stages (see Ref. [56] for comprehensive technical details).
Auto- and cross-correlations of current fluctuations are

measured near 1 MHz using two homemade cryogenic
HEMT amplifiers (see supplemental material in Ref. [57]
for further information), respectively, connected to the L
and R ports of the sample as schematically depicted in
Fig. 1(c).
All other measurements are performed with standard

lock-in techniques, using ac modulation of rms amplitude
below kBT=e and at frequencies lower than 25 Hz. The
transmitted dc currents are obtained by integrating the

FIG. 9. Quantum Hall resistance plateaus. Two-wire resistance
between an Ohmic contact and cold grounds measured as a
function of the applied perpendicular magnetic field B at low
temperature (T ∼ 100 mK). Dashed lines show the fractional
quantum Hall resistances h=νe2 for the investigated fractions
ν ¼ 1=3, 2=5, and 2. Vertical arrows indicate the magnetic field at
which the measurements are performed.
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corresponding lock-in differential signal with respect to the
applied bias voltage (explicit expressions are provided in
Methods in Ref. [37]).

2. Thermometry

At T > 40 mK, the electronic temperature is determined
using a calibrated RuO2 thermometer, thermally anchored
to the mixing chamber of the dilution refrigerator. In this
range, the thermal noise of the sample changes linearly with
T, confirming both the RuO2 thermometer calibration and
the good thermalization of the charge carriers in the device.
To obtain an in situ electronic temperature below 40 mK,

we measure the thermal noise and extrapolate the noise-
temperature slope determined at higher T.

3. Noise amplification chain calibration

The gain factorsGeff
L;R;LR relating the raw auto- and cross-

correlations with the power spectral density of current
fluctuations of interest is calibrated in two steps.
First, the nearly identical tank circuits connected to the

Ohmic contacts labeled L and R are characterized. This is

achieved by measuring the variation of the noise bandwidth
of each of the tank circuits in parallel with the quantum
Hall resistance of the sample at several filling factors,
which informs on the parallel tank resistance Rtk ≈ 150 kΩ
and capacitance Ctk ≈ 135 pF. The resonant frequency
(0.86 MHz) then provides the parallel tank induct-
ance Ltk ≈ 250 μF.
Second, with our choice of noise integration bandwidth

([0.84, 0.88] MHz at ν ¼ 2=5 and 1=3), we measure the
slopes stk of raw integrated noise versus temperature
at T > 40 mK (see Appendix B2). The robust fluctuation-
dissipation relation then gives the gain factors Geff

L;R ¼
stk=½4kBð1=Rtk þ νe2=hÞ�, whereas the nearly identical
tanks imply for the cross-correlation Geff

LR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Geff

L Geff
R

p
.

See Ref. [37] for a more thorough presentation including
checks with alternative methods.

APPENDIX C: CROSS-CORRELATION
INVESTIGATION OF THE STATISTICS AT ν = 2

As a counterpoint to anyons, we present here measure-
ments of P with the device set in the integer quantum Hall

FIG. 10. Cross-correlations at ν ¼ 2 with symmetric sources. All QPCs are set in the WBS regime [τt ≃ τb ≃ 0.96 and τc ≃ 0.88; see
the inset in (c)] with Vt ¼ Vb and V 0

t ¼ 0, except for the analyzer characterization in (b), where Vt ¼ V 0
t and Vb ¼ 0 corresponding to a

direct voltage bias applied to QPCc. (a),(b) Shot noise characterization of the tunneling charges et;b (a) and ec (b). Symbols display the
noise data, in close match with the prediction for a tunneling charge e (black lines) at SΣ ≲ 15 × 10−30 A2=Hz (full symbols). (c) Cross-
correlations measured in the symmetric source-analyzer configuration (symbols) are plotted versus source shot noise SΣ. A linear fit at
SΣ < 15 × 10−30 A2=Hz (black dashed line) gives P ≃þ0.2. The red and blue dashed lines represent the Fano factor obtained at
ν ¼ 1=3 and ν ¼ 2=5, respectively. Inset: transmission probabilities of top (blue symbols), bottom (orange symbols), and central (red
symbols) QPCs as a function of Iþ.
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regime at filling factor ν ¼ 2 (B ¼ 2.4 T). In this regime,
electrons with a Fermi statistics are emitted at the source
QPCs and transmitted across the analyzer QPC. Note that
interactions between the two copropagating channels are
predicted to drive a transition of the propagating excitations
from Fermi quasiparticles to bosonic density waves,
resulting in the emergence of positive cross-correlations
in the source-analyzer setup [35]. However, for the present
short propagation distance of 1.5 μm and in the accessible
small voltage bias range before artifacts develop
jVj≲ 30 μV, the interactions between the two copropagat-
ing channels are essentially negligible [58,59]. Note also
that interchannel tunneling is here completely negligible.
Figure 10 displays representative data obtained at ν ¼ 2,

with symmetric sources emitting in the outer edge channel
toward the analyzer. The procedure is identical to in the
FQHE regime. Figures 10(a) and 10(b) show the tunneling
charge characterization of the sources and analyzer, respec-
tively, found to match the shot noise predictions for e in
both cases. Note that a huge noise develops at high bias
[emerging for the highest Iþ in Fig. 10(a)], thus limiting the
investigated range. Figure 10(c) represents the cross-
correlation signal in the source-analyzer configuration with
symmetric incident dilute beams, normalized by τcð1 − τcÞ
and plotted versus SΣ. A linear fit of the data displayed as

full symbols for which SΣ < 15 × 10−30 A2=Hz (black
dashed line) gives P ≃ 0.2.
Although not exactly null, P is here very small with

respect to the observed P ≃ −2 (red dashed line) and P ≃
−1 (blue dashed line) at ν ¼ 1=3 and 2=5, respectively. The
slight positive value may result from the essentially but not
fully negligible interchannel interactions, which progres-
sively change the nature of electronic excitations along the
source-analyzer paths. The present small and positive
ν ¼ 2 data, hence, corroborate the predicted link between
negative cross-correlations and unconventional anyon
statistics.

APPENDIX D: INTERCHANNEL TUNNELING
AT ν = 2=5

As illustrated in Fig. 11(a), interchannel tunnelings, if
any, result in an additional negative contribution to the
measured cross-correlations hδILδIRi, thereby impacting
P. Indeed, a tunnel-induced current fluctuation δI in the
outer channel is correlated to an opposite fluctuation −δI in
the inner channel. With a downstream QPCc of inner
channel transmission ratio τc and perfectly transmitted
outer channel, the resulting total current fluctuation
(summed over both channels) in the transmitted and

FIG. 11. Interchannel tunneling at ν ¼ 2=5. (a) Schematics of interchannel tunneling along the top source-analyzer path. For a separate
characterization, QPCc is set to τc ¼ 0 (and a full transmission of the outer channel). (b) Interchannel tunneling fraction. Symbols
display the ratio between tunneling and emitted current along the top (τttun, blue) and bottom (τbtun, orange) paths, obtained at τc ¼ 0 from
Eq. (D1). The displayed values approaching 20% are the highest observed in all investigated configurations. (c) Interchannel tunneling
cross-correlations at τc ¼ 0. Symbols represent the separately obtained signals for tunnelings along the top (blue) and bottom (orange)
paths, as a function of the dc bias voltage of the corresponding source Vt (with Vb ¼ 0) and Vb (with Vt ¼ 0), respectively. Inset: The
same cross-correlations are plotted as a function of the corresponding interchannel tunneling current It;btun and compared with the shot
noise predictions of Eq. (3) (lines). (d) Cross-correlations measured with QPCc tuned back to the inner channel analyzer (τc > 0), with
both sources symmetrically biased (Vt ¼ Vb), are shown as green symbols. Black symbols display the interchannel tunneling
contribution estimated from (c) [sum of data in (c) times ð1 − τcÞ2; see the text]. The resulting “corrected” cross-correlations (raw data
reduced by tunneling estimate) are shown as blue symbols. Inset: simultaneously measured τc.
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reflected L, R paths is δI − δIτc and −δIð1 − τcÞ, respec-
tively, corresponding to a cross-correlation signal of
−δI2ð1 − τcÞ2. Note that the fluctuation δI depends on
the charge of the tunneling quasiparticles, here between
two markedly different channels. With the procedure
described below, we find (i) that interchannel tunnelings
can occur when some power is locally injected into the
inner channel at the corresponding upstream source QPC
(set at 0 < τt;b < 1, but note that no tunneling is here
observed at τt;b ¼ 0); and (ii) that the noise in the
interchannel tunneling current is consistent with the pre-
dicted tunneling charge of e=3 (determined by the local
filling factor of 1=3 of the incompressible stripe separating
the two channels; see Ref. [48]); but (iii) that this
contribution here remains relatively small with respect to
the cross-correlation signal of present interest, generated at
the analyzer QPCc.
Figure 11 illustrates the experimental procedure to

address interchannel tunneling, in the device configuration
where it is found to be the strongest, at T ≃ 25 mK. The
central QPCc is first detuned from the inner channel
analyzer operating point (τc > 0) and set to the e2=3h
plateau (τc ¼ 0). In order to minimize any cross-talk
artifacts, we change only the voltage applied to the
QPCc gate located the furthest away from the separately
considered path [the gate along ILðRÞ for the path origi-
nating from QPCbðtÞ; see Fig. 1(c)]. The differential

tunneling transmission ratio τtðbÞtun of the inner channel
current into the outer channel along the top (bottom)
source-analyzer path simply reads, at τc ¼ 0 and for a
sequential channel opening of the QPCs,

τtðbÞtun ¼ ∂ILðRÞ=∂VtðbÞ
∂ðIL þ IRÞ=∂VtðbÞ

: ðD1Þ

As shown in Fig. 11(b), the tunneling ratio along the top
path can here approach 20% of the injected inner channel
current (the maximum value observed in all the device
configurations investigated), markedly higher than along
the bottom path. The simultaneously measured cross-
correlations hδILδIRi are displayed in Fig. 11(c) as a
function of the applied voltage Vt (blue symbols) or Vb
(orange symbols) in the main panel and as a function of the
dc interchannel tunneling current Ittun (blue) or I

b
tun (orange)

in the inset. As seen in the inset, the cross-correlations
resulting from interchannel tunneling match the shot noise
prediction of Eq. (3) for the expected e� ¼ e=3.
QPCc is then set back to the inner channel analyzer

operating point τc > 0 [approximately 0.9 at zero bias here;
see the inset in Fig. 11(d)], and the cross-correlation signal
is measured in the presence of symmetric beams of
quasiparticles generated at the source QPCs now simulta-
neously biased at the same Vt ¼ Vb. The green symbols in
the main panel represent the raw signal, which includes the

additional negative contribution from interchannel tunnel-
ings. The estimate of this unwanted contribution (black
symbols) is obtained by simply applying the reduction
factor ð1 − τcÞ2 to the interchannel cross-correlations
previously measured at τc ¼ 0. Note that interchannel
tunneling also changes the relation providing τc. The
impact is generally found to be relatively small (of at
most 0.04 at high bias for the present example); however,
Eq. (2) should be modified by substituting ð1 − τtðbÞÞ with
ð1 − τtðbÞÞð1 − τtðbÞtun Þ to account for the reduction of the
incident inner channel current. In this work, we extract the
effective Fano factor P from both the measured cross-
correlation signal ignoring interchannel tunnelings (green
symbols) and by removing the estimated interchannel
tunneling contribution from the measurements (blue sym-
bols). Confronting the two obtained values of P allows one
to straightforwardly appreciate the relatively small influ-
ence of interchannel tunnelings [see Fig. 8(b)].

APPENDIX E: SUPPLEMENTAL DATA

1. Bias dependence of QPC transmission at ν= 1=3

In the FQHE regime, the current transmission ratio τ
across a QPC is predicted to depend on bias voltage [11,47].
This energy dependence on the analyzer transmission τc
influences the quantitative prediction for P, as discussed in
the main text. However, experimentally, the QPC trans-
missions are generally found in disagreement with the
expected voltage-biased dependence (see, e.g., Ref. [50]).
The transmission versus direct voltage bias characterization
of the analyzer QPCc at ν ¼ 1=3 is shown for a broad range
of tuning in Fig. 12. In the WBS regime of present main
interest, we find that the transmission τc is reduced, getting
further away from the ballistic limit as the direct voltage bias

FIG. 12. Analyzer QPCc transmission τc versus direct voltage
bias Vt ¼ Vt0 at ν ¼ 1=3. Different symbols correspond to
different tunings of QPCc. An identical device tuning to Fig. 3
is represented here by the same symbol.
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is increased. Similar observations are made by other teams
(see, e.g., Ref. [51]), as well as for both source QPCs and for
the outer e2=3h channel of QPCc at ν ¼ 2=5. This contrasts
with the prediction of a transmission approaching unity as
the bias is increased [11,47].

2. Transport chirality

The quantum Hall chirality of the electrical current is
systematically obeyed at the level of the large Ohmic

contacts. Nevertheless, we find that small but discernible
deviations can develop at the heart of the device for the less
robust ν ¼ 2=5 fractional quantum Hall state.
The local chirality is controlled by checking that the

signals ∂Vt
M=∂Vb and ∂Vb

M=∂Vt are null, as V
tðbÞ
M should be

disconnected from VbðtÞ by chirality whatever the device
tuning. This is always the case at experimental accuracy at
ν ¼ 2 and ν ¼ 1=3, but a small unexpected signal is found
at ν ¼ 2=5 as illustrated in Fig. 13. If we consider that the
nonchiral signal originates solely from the inner channel
current, the relevant nonchiral fraction is enhanced by a
factor of 6 [i.e., ð2=5Þ=ð1=15Þ], up to 2.5% in the present
representative example and at most 3% in the worst case
investigated.

3. Auto- versus cross-correlations
in QPCc characterization

It was pointed out that the cross-correlations could
provide a more robust probe than the autocorrelations for
the shot noise characterization of the tunneling charge across
QPCs in the FQHE regime [60]. Here, we compare auto- and
cross-correlation signals measuredwith a direct voltage bias
applied to QPCc, during the separate ec characterization.
Figure 14 shows measurements of the autocorrelations

and cross-correlations, as well as the corresponding noise
sum SΣ, obtained at ν ¼ 2 (a), 1=3 (b), and 2=5 (c).
The cross-correlations (green circles) correspond to the

FIG. 13. Nonchiral signal at ν ¼ 2=5. The displayed differ-

ential emitted or detected current (voltage) ratios ∂VtðbÞ
M =∂VbðtÞ

should be null for a perfectly chiral system.

FIG. 14. Auto- and cross-correlation comparison, performed in QPCc characterization at filling factor 2 (a), 1=3 (b), and 2=5 (c) as a
function of the direct applied voltage Vt ¼ V 0

t (Vb ¼ 0). Full and open blue disks display the autocorrelation signal from port L and R,
respectively. Green disks represents the simultaneously measured cross-correlations. SΣ is plotted as black triangles. Continuous lines
display (�1×) the predictions of Eq. (3) for a charge e� ¼ e (black), e=3 (red), and e=5 (blue).
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previously displayed representative data in Figs. 2(b), 7(b),
and 10(b), now completed with coincidental measurements
of hδI2Li (full blue circles) and hδI2Ri (open blue circles),
and with SΣ defined in Eq. (4). Continuous lines represent
the shot noise predictions of Eq. (3) (with a −1 factor when
negative) at the measured T ≃ 35 mK for e� ¼ e (black),
e=3 (red), and e=5 (blue). At ν ¼ 2, a canonical behavior is
observed, with opposite auto- and cross-correlations both
corresponding to e� ¼ e and resulting vanishing noise sum
SΣ ≃ 0. At ν ¼ 1=3, small but discernible deviations from
SΣ ¼ 0 develop at high voltage bias, which signal the
emergence of small differences between auto- and cross-
correlations. These are attributed to a nonlocal heating of
the source QPCs resulting in a noise increase such as the
delta-T noise [61–63] (see Methods in Ref. [37] for a
specific investigation on the same sample). At ν ¼ 2=5, the
sum noise SΣ is far from negligible, which might be related
to the nonlocal heating observed at ν ¼ 1=3 although
stronger.
One may wonder if the unexpected SΣ signal observed at

ν ¼ 2=5 with a direct voltage biased applied to QPCc could
impact our conclusions. As argued below, we believe it is
unlikely. First, the doubts that this discrepancy casts on ec
would not directly impact the extracted value of P [see
Eq. (6)]. Second, we point out that the cross-correlations
chosen to characterize ec were previously established to be
more reliable than the autocorrelations [60]. This is even
more true in the present source-analyzer setup where the
incident current noise can be enhanced by a nonlocal
heating of the sources. Finally, if such unexpected increase
of SΣ were to occur also in the main source-analyzer
configuration, the absolute value of P involving SΣ in the
denominator would be reduced but would not vanish
[Eq. (6)]. Moreover, in the source-analyzer configuration,
a voltage bias is applied to the sources (as opposed to ec
characterization), which is expected to suppress the effect
of a local heating on SΣ [see Eq. (3)]. Accordingly, the
reliability of SΣ with voltage-biased sources is supported by
the similar et;b extracted when detuning the analyzer QPCc

to τc ¼ 0 and biasing the source QPCs one at a time (data
not shown). These considerations suggest that the unex-
pectedly high SΣ observed when applying a direct voltage
bias to QPCc is likely to have a moderate impact on et;b and
P, without qualitative consequences on the present anyon
statistics investigation.

APPENDIX F: PWBS
thy WITH ALTERNATIVE τc

In this section, we provide the analytical expressions for
the theoretical predictions of PWBS

thy as defined by Eq. (6),
but using τbisc and τterc instead of τc. These predictions, valid
for all QPCs in the WBS limit and for large source voltages
with respect to kBT=e�, are shown in Table II for I− ¼ 0
and I− ¼ Iþ.
First, we consider τbisc ðI−; IþÞ≡ τcðI− ¼ 0; IþÞ. This

corresponds to the choice of normalization made in

Ref. [33]. The effective Fano factor in the WBS regime
1 − τbisc ≪ 1 and at large bias voltage then reads

PWBS
thy;bis ¼

hδILδIRi
2e�Iþð1− τbisc Þ

¼−
4Δ

1−4Δ
Re½X4Δ−2�

þ jI−j
jIþj

�
tanð2πΔÞþ tan−1ð2πΔÞ

ð1−4ΔÞ
�
Im½X4Δ−2�; ðF1Þ

with X≡1þiðI−=IþÞtan−1ð2πΔÞ. This expression reduces
Eq. (8) at I− ¼ 0, since in that limit τbisc ¼ τc.
For Δ ¼ 1=6 at ν ¼ 1=3, it gives PWBS

thy;bisð0Þ ¼ −2
and PWBS

thy;bisðI−=Iþ ¼ 1Þ ≃ −3.1 as shown in Table II.
Equation (F1) for Δ ¼ 1=6 corresponds to the black dashed
line in Fig. 5 of the present article and to the continuous line
shown in the bottom right panel in Fig. 3 in Ref. [33].
Second, we consider τterc ≡ τ−1t ∂VL=∂V 0

t, which is the
transmission ratio for thermal excitations with the sources
in the WBS limit. This normalization choice is made in
Ref. [34] (see the alternative Fano factor called Pref ). The
corresponding effective Fano factor in the WBS regime
1 − τterc ≪ 1 and at large bias voltage reads [34]

PWBS
thy;ter ¼ PWBS

thy;bisðI−=IþÞ
sinð4πΔÞ
4πΔ

: ðF2Þ

At Δ ¼ 1=6 (ν ¼ 1=3), the reduction factor is
PWBS
thy;ter=P

WBS
thy;bis ≃ 0.41, and Eq. (F2) gives PWBS

thy;terð0Þ ≃
−0.83 and PWBS

thy;terðI−=Iþ ¼ 1Þ ≃ −1.28 as shown in
Table II. Equation (F2) at Δ ¼ 1=6 corresponds to the
blue dashed line in Fig. 5 of the present article and to the
black continuous line in Fig. 4 in Ref. [34].
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