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The quantum Hall states at filling factors ν ¼ 5=2 and 7=2 are expected to have Abelian charge-e=2
quasiparticles and non-Abelian charge-e=4 quasiparticles. The non-Abelian statistics of the latter is
predicted to display a striking interferometric signature, the even-odd effect. By measuring resistance
oscillations as a function of the magnetic field in Fabry-Pérot interferometers using new high-purity
heterostructures, we for the first time report experimental evidence for the non-Abelian nature of
excitations at ν ¼ 7=2. At both ν ¼ 5=2 and 7=2, we also examine, for the first time, the fermion parity, a
topological quantum number of an even number of non-Abelian quasiparticles. The phase of observed e=4
oscillations is reproducible and stable over long times (hours) near both filling factors, indicating stability
of the fermion parity. At both fractions, when phase fluctuations are observed, they are predominantly π
phase flips, consistent with either fermion parity change or change in the number of the enclosed e=4
quasiparticles. We also examine lower-frequency oscillations attributable to Abelian interference processes
in both states. Taken together, these results constitute new evidence for the non-Abelian nature of e=4
quasiparticles; the observed lifetime of their combined fermion parity further strengthens the case for their
utility for topological quantum computation.
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I. INTRODUCTION

The idea of fault-tolerant topological quantum compu-
tation is premised on both the existence of non-Abelian
anyons and our ability to manipulate them [1]. Fractional
quantum Hall (FQH) states are the best established
examples of topological phases with FQH states at filling
fractions ν ¼ 5=2 and 7=2 being arguably the strongest
candidates for non-Abelian phases. They are predicted
to have non-Abelian charge-e=4 excitations if their
ground states are in either the Moore-Read Pfaffian [2],
anti-Pfaffian [3,4], or particle-hole-symmetric Pfaffian
(PH Pfaffian) [5–8] universality class. In addition to their

electrical charge, these excitations also carry the non-
Abelian topological charge of Ising anyons [1,9], which
can be understood as the presence of a Majorana zero
mode [10]. A combined quantum state of a pair of such
anyons (known as a fusion channel) can be viewed as an
Abelian charge-e=2 excitation (which is a “conventional”
Laughlin quasiparticle, i.e., a fractionally charged quasi-
particle corresponding to an insertion of one additional flux
quantum), either with or without a neutral fermion [11];
see Fig. 1. The presence or absence of the neutral mode
determines the fermion parity of the state. The nature of
these excitations—both their charge and statistics—can
be probed by interferometry experiments [12–17]. The
non-Abelian properties of the e=4 quasiparticles should
manifest themselves in the even-odd effect, whereby the
interference between two different paths for an e=4
quasiparticle is switched on or off whenever the difference
between the paths encircles, respectively, an even or odd
number of e=4 quasiparticles; see Fig. 1. In the meantime,
the Abelian e=2 quasiparticle should show interference
regardless of the number of encircled quasiparticles, with a
pattern similar to other Laughlin quasiparticles. In a
realistic Fabry-Pérot interferometer, the interference pattern
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should consist of oscillations due to all types of charged
quasiparticles present in the system. It is the goal of this
study to experimentally determine the full set of observed
oscillation frequencies at ν ¼ 5=2 and 7=2 and to compare
the observed frequencies with theoretical predictions
based on the braiding properties of the e=2 and e=4
quasiparticles.
Previous interferometry experiments at ν ¼ 5=2 [18–22]

have observed resistance oscillations consistent with
charge-e=4 and charge-e=2 excitations displaying, respec-
tively, non-Abelian braiding and Abelian braiding statistics.
Meanwhile, tunneling [23] and charge-sensing measure-
ments [24] at ν ¼ 5=2 have found signatures of e=4
quasiparticles but no indication of e=2 quasiparticles. At
the same time, shot-noise measurements [25] found evi-
dence for e=4 quasiparticles and indicated a crossover from
e=4- to e=2-dominated behavior in different temperature
and voltage ranges [26–28]. These measurements did not
probe the braiding statistics of the excitations, only their
electrical charge. By contrast, interferometry measurements
can provide information about both the charge and the
braiding statistics of the quasiparticles. A recent measure-
ment of the thermal Hall conductivity [29] is an indirect
probe of the topological order of the bulk and, therefore,

an indirect measure, at best, of the presence of quasipar-
ticles with non-Abelian braiding statistics in the bulk.
This study presents two important new findings: (i) inter-

ferometric signatures consistent with the non-Abelian even-
odd effect at filling factor ν ¼ 7=2, and (ii) stable (over
hours or even days) interference oscillations consistent with
the even-odd effect at both ν ¼ 5=2 and 7=2, where at both
filling factors sporadic interruptions of this stability take the
form of phase jumps by π indicative of either the fermion
parity change or change in the number of the enclosed e=4
quasiparticles.
The key experimental advance underpinning the study

presented here is the development of a new class of ultra-
high-mobility AlGaAs heterostructures in which the Al alloy
layers are purified to the extreme, promoting stronger
electron-electron correlations, and thus more robust quantum
Hall states than previously attained. This improvement in the
material purification also results in a substantially larger
amplitude of resistance oscillations observed in new inter-
ferometer devices. Specifically, in addition to providing
more solid evidence for the non-Abelian nature of the
ν ¼ 5=2 state, we report the first experimental evidence
in support of the similar nature of the ν ¼ 7=2 state.
Furthermore, oscillations consistent with the even-odd effect
associated with transport by non-Abelian charge-e=4 quai-
particles are stable in the timescales of hours or even days.
When an instability occurs, it takes the form of a π phase
shift consistent with the change of either the fusion channel
of the enclosed non-Abelian anyons or their number, thus
providing further evidence for the non-Abelian nature of
the states. Irrespective of the mechanism for these phase
shifts, they are observed to occur infrequently. This strength-
ens the case for using such FQH systems as a platform for
topological quantum computation.
Both heterostructure and interferometer designs used in

this study allow us to address another potential issue that
has been plaguing earlier interference studies. Specifically,
resistance oscillations of a mesoscopic quantum Hall island
can be due to some combination of the Aharonov-Bohm
(AB) and Coulomb blockade effects. The latter effects are
expected to dominate in smaller devices [30], and some
early results [31–33] are consistent with this. However,
several aspects of our heterostructure design work to
suppress Coulomb effects. Most importantly, we use
special heterostructures that contain additional conducting
layers able to screen the long-range Coulomb interactions
(see Sec. S2 of the Supplemental Material [34]). This
layering promotes AB oscillations even in relatively small
quantum Hall interferometers at ν ¼ 5=2 and 7=3 [18–22];
it is akin to employing surface top gates used for the
same purpose in previous Fabry-Pérot interferometry stud-
ies [35,36]. Despite these additional conducting layers,
our devices allow illumination of the samples to achieve
the necessary high quality needed to observe ν ¼ 5=2 and
ν ¼ 7=2 states. The case for AB oscillations aided by

(a) (b)

FIG. 1. Fermion parity and the non-Abelian even-odd effect.
(a) The fusion of two non-Abelian e=4 quasiparticles has two
possible outcomes, one with and one without a neutral fermionic
mode. The fermion parity is a quantum number associated with
an even number of such quasiparticles. It is changed when one
constituent e=4 quasiparticle is braided by an external e=4
quasiparticle. (b) When e=4 quasiparticles backscatter from the
lower to the upper edge of the Hall bar at the two constrictions,
the outcome depends dramatically on the parity of e=4 quasi-
particles inside the interferometer. If their number is even,
quasiparticles propagating along two possible paths interfere
akin to the familiar double slit interference. If this number is odd,
the interference disappears since with each tunneling quasipar-
ticle the fermion parity is either switched or not, depending on
which path is taken. The final quantum states are therefore
orthogonal to one another, which precludes interference.
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parallel conductors is supported by recent measurements
[37] at ν ¼ 1=3. A second important design feature of our
devices is their high electron densities 4 × 1011 cm−2, which
also suppress Coulomb effects. In addition, our measure-
ments employ large-aperture interferometers that contribute
to further suppression of Coulomb blockade effects.
The manuscript is organized as follows. In Sec. II, we

present an extensive review of quantum Hall interferom-
etry, emphasizing the expected periodicities of the AB
oscillations for both Abelian and non-Abelian quasipar-
ticles expected at ν ¼ 5=2 and 7=2. For non-Abelian
quasiparticles, we focus on the consequences of the
existence of two fusion channels corresponding to the
two possible fermion parities that may be contained within
the loop (displayed schematically in Fig. 1). In Sec. III,
we turn to the description of the devices and experimental
methods used to probe these predictions. We present
evidence in support of the Aharonov-Bohm mechanism
as the dominant mechanism behind the interference oscil-
lations. Section IV, is dedicated to our principal exper-
imental results—stable oscillations observed at ν ¼ 5=2
and 7=2, which demonstrate occasional π phase shifts. In
Sec. IVAwe present full power spectra of these oscillations
at ν ¼ 7=2 and identify spectral peak positions observed at
these filling fractions. In Sec. IV B, we present evidence of
the temporal stability of non-Abelian quasiparticle fusion.
We observe occasional π phase shifts that we attribute
to changes in the fusion channel (fermionic parity) or the
parity of the enclosed non-Abelian quasiparticles. In
Sec. IV C, we present similar findings for ν ¼ 5=2. In
addition, in Sec. IV D we focus on the signatures of
Abelian braiding processes and demonstrate the ability
to control a specific component of the interference
spectrum attributable to different braiding processes. We
conclude that, taken together, these data significantly
strengthen the case for both the non-Abelian nature of
the FQH states at ν ¼ 5=2 and 7=2 (while providing the
first such experimental evidence for the latter state) and for
their potential applications for quantum-information
processing.

II. INTRODUCTION TO FRACTIONAL
QUANTUM HALL INTERFEROMETRY

In this section, we describe various types of resistance
oscillations that can be observed in quantum Hall inter-
ferometers. We review the oscillations expected to be
observed in magnetic field sweeps in Abelian quantum
Hall states with contributions from both the Aharonov-
Bohm and statistical phases. We explain how this picture is
altered if the state in question is non-Abelian and focus on
the role the fermionic parity plays in this case. We also
mention an alternative mechanism for resistance oscilla-
tions originating from breathing of Coulomb-dominated
electron droplets. As we discuss, these different phenomena
can be distinguished by their resistance oscillation spectra.

Fabry-Pérot interferometry in the two-dimensional elec-
tron gas in the quantum Hall regime is due to interference
between two different paths by which electrical current can
flow from source to drain along edge states and across
constrictions (see Fig. 2). The interference pattern is thus
determined by the total phase difference accumulated along
the two paths, which in turn consists of both the Aharonov-
Bohm phase determined by the charge of the propagating
quasiparticles and the enclosed flux, and the statistical
contribution determined by the statistics of the quasipar-
ticles and the number and type of the quasiparticles
enclosed between the two paths. This overall phase differ-
ence can be changed experimentally by changing either the
enclosed flux or the number of quasiparticles within the
interferometer loop. As we discuss in more detail in Sec. S1
of the Supplemental Material [34], for Abelian quasipar-
ticles, this change is given by

Δγe� ¼ 2π

�
ΔΦ
Φ0

��
e�

e

�
þ 2θe�ΔNe� : ð1Þ

In this expression, ΔΦ is the change in the encircled flux,
Φ0 ¼ hc=e ≈ 41 G μm2 is the flux quantum, and ΔNe� is

FIG. 2. Schematic and electron-micrograph images of interfer-
ence devices. The interferometer is defined by surface gates
operated at voltages Vb and Vs that deplete the electron
population below them. Currents propagate along the edges
separating the incompressible QH liquid (shaded) and the
depleted regions; contacts diffused into the heterostructure away
from the device are used to measure resistance across the device
longitudinally RL and in Hall configuration across the device RD.
Edge current can backscatter at one of the two constrictions
resulting in interference of the two paths. The area between the
two paths—the active area A of the interferometer—is indicated
by stripes; the filling factor within the active area is the same as in
the shaded bulk regions on either side. Device images show one
device with no structure inside area A (top, device type (a) and
another one with a top gate central dot (device type b). In each
device, the lithographic separation dg of gates defining the
constrictions is approximately 1 μm. The actual tunneling dis-
tance between the edge currents d is controlled by the gate
voltage Vb.
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the change in number of the enclosed quasiparticles of
charge e�. Their braiding statistics is described by statistical
angle θe�—a phase acquired by the wave function upon
counterclockwise exchange of two identical quasiparticles.
A key difference between the Abelian interference

described by Eq. (1) and non-Abelian interference is that
in the former case both the encircled flux and the number of
enclosed quasiparticles play a similar role: They simply
contribute to the phase difference between the two interfer-
ing paths. However, if the interfering quasiparticles are non-
Abelian, the number of enclosed quasiparticles does not
just contribute to the phase difference, it can change the
amplitude of the interference term [38]. The most dramatic
manifestation of this property is the even-odd effect
predicted for the interference of e=4 quasiparticles in non-
Abelian ν ¼ 5=2 or 7=2 QH states. Specifically, the inter-
ference is only possible when the number of encircled e=4
quasiparticles is even, whereas no Aharonov-Bohm oscilla-
tions should be observed if the number is odd; see Fig. 1.
According to Eq. (1), two parameters can potentially be

varied in interferometric studies: the encircled flux and the
number of enclosed quasiparticles. While varying them
independently may seem experimentally hard, the variation
of different combinations of them is achieved by (i) varying
the side gate (Vs) at fixed magnetic field [19–21], and
(ii) varying the magnetic field at fixed gate voltage [22].
The active area A in an interferometer—the area encircled
by the current paths—is defined by surface gates. Varying
the applied voltages on these gates changes this area;
consequently, it changes both the enclosed flux and the
number of e=4 quasiparticles randomly localized within the
area. This method has shown signatures of both e=2 and
e=4 quasiparticles and also demonstrated a pattern of
oscillations consistent with the non-Abelian nature of the
latter, specifically the aforementioned even-odd effect
[13,14] whereby the Aharonov-Bohm oscillations associ-
ated with electrical transport by e=4 quasiparticles are
observed only when an even number of e=4 quasiparticles
is localized within the interferometer loop. In the mean-
time, Aharonov-Bohm oscillations associated with elec-
trical transport by e=2 quasiparticles are always present.
When the magnetic field is varied with fixed gate

voltage, the enclosed magnetic flux number and the
enclosed quasiparticle number change in tandem (see
Sec. S1 of the Supplemental Material [34]). Specifically,
in the simplest model we assume that the active area of the
interferometer is independent of the magnetic field (thus,
discounting the possibility of so-called Coulomb domina-
tion [17,39]; see Sec. S1 of the Supplemental Material [34]
for more details). In this case, the change in the number of
bulk quasiparticles in response to the change in flux ΔΦ is
given by ΔNe� ¼ −ðΔΦ=Φ0Þðνe=e�Þ, resulting in

Δγe� ¼
�
ΔΦ
Φ0

��
2π

�
e�

e

�
− 2θe�

�
νe
e�

��
: ð2Þ

The putative non-Abelian nature of e=4 quasiparticles
should result in specific small-period oscillations centered
near 5f0 for the ν ¼ 5=2 state (and 7f0 for the ν ¼ 7=2
state), with f0 ¼ 1=Φ0 being the oscillation frequency
corresponding to the period of one flux quantum. These
small period oscillations are a manifestation of the even-
odd effect (illustrated schematically in Fig. 1; see also
schematic for fermion parity) driven by the systematic
variation of the e=4 quasiparticle number as the magnetic
field is changed (B-field sweep): The interference of e=4
quasiparticles traversing the interferometer should be on or
off if there is an even or odd number of e=4 quasiparticles
within the loop. Repeated switching between these regimes
results in additional resistance oscillations. The corre-
sponding period is determined by the flux needed to
increase the number of e=4 quasiparticles within the active
area of the interferometer by two, namely, a period of
2Φ0e�=νe ¼ Φ0=5 at ν ¼ 5=2 and Φ0=7 at ν ¼ 7=2. Such
high-frequency peaks should be an unmistakable signature
of non-Abelian statistics, and they were first reported in the
earlier study [22] at 5=2 filling.
However, a more complicated picture emerges when all

quasiparticle types are considered. Specifically, if both e=4
and e=2 excitations are present, one should observe
oscillations due to all permutations of interfering and
enclosed quasiparticles. A straightforward generalization
of Eqs. (1) and (2) for the Abelian phase acquired by
interfering quasiparticles of type a encircling bulk quasi-
particles of type b is given by

Δγab ¼ 2π

�
ΔΦ
Φ0

��
ea
e

�
þ 2θabΔNb

¼
�
ΔΦ
Φ0

��
2π

�
ea
e

�
− 2θab

�
νe
eb

��
: ð3Þ

Direct application of this expression results in oscillation
periods ofΦ0 for e=4 quasiparticles interfering around e=2
quasiparticles and Φ0=2 for the e=2 quasiparticles inter-
fering around either e=4 or e=2 quasiparticles. Finally, the
interference of e=4 around e=4 quasiparticles would
naively result in the period of 4=9Φ0 for the Moore-
Read Pfaffian state and 4=11Φ0 for the anti-Pfaffian
state (see Sec. S1 of the Supplemental Material [34] for
more details). However, this is not the case since in both
states the e=4 excitations are actually non-Abelian.
Therefore, the interference turns on and off with each
shift ΔNe=4 ¼ �1, resulting in the aforementioned small
period of ΔΦ ¼ Φ0=5.
When the number of bulk e=4 excitations is even, the

interference is not simply governed by θe=4; it also depends
on the fusion channel of the enclosed quasiparticles. There
are three basic possibilities: (i) The fusion channel, which
determines the fermion parity, is fixed by the energetics and
remains largely stable during the magnetic field sweep
across the ν ¼ 5=2 plateau, (ii) the fusion channel is
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random but its autocorrelation time is longer or comparable
to the time it takes to change the flux by one flux quantum,
and (iii) the fusion channel fluctuates rapidly on the
timescale of changing the flux by ΔΦ ¼ Φ0. Focusing
on the first scenario, let us assume that the net fusion
channel of the bulk quasiparticles is always trivial.
Physically, this means that from the point of view of
interference, the bulk is equivalent to a collection of e=2
Laughlin quasiparticles, which would result in the afore-
mentioned Abelian factor in the interference pattern, with
period of Φ0 irrespective of the exact nature of the ν ¼ 5=2
state. The net result would be a convolution of non-Abelian
5f0 and Abelian f0 oscillations, resulting in spectral peaks
at 4f0 and 6f0. Were the fusion channel to contain a
fermion instead, the bulk quasiparticles would be in a
different fermion parity state, and the overall phase of
Abelian oscillations would shift by π with no change in the
oscillation period. In the second scenario, the fluctuations
in the fusion channel—fluctuations in the fermion parity—
would scramble the f0 component (due to random π phase
shifts throughout the magnetic field sweep), thus eliminat-
ing the beats, resulting in a single spectral peak at 5f0.
Finally, in the third scenario, the interference of charge-e=4
excitations around other e=4 excitations would be elimi-
nated entirely: Their interference is suppressed for odd
numbers of enclosed e=4 quasiparticles by their non-
Abelian nature and for even numbers by rapid phase
fluctuations.
Note that the first and second scenarios may actually

coexist within a sweep across the entire ν ¼ 5=2 plateau:
One could envision, e.g., a situation whereby the fermion
parity is stable near the middle of the plateau while
becoming progressively less stable closer to its margins,
where the concentration of the bulk quasiparticles becomes
larger and hence their typical distance to the edge smaller.
The latter scenario would in turn enhance tunneling of
neutral fermions between the edge and the localized
quasiparticles, scrambling the well-defined fermion parity
in the bulk [40]. In such a case, one would find oscillation
peaks at 4f0 and 6f0 near the middle of the plateau and 5f0
closer to its flanks.
We should note, however, that in the Coulomb-

dominated regime another mechanism for generating these
high-frequency spectral features may arise: Specifically,
one could imagine a scenario whereby the active area of an
interferometer “breathes” with the period corresponding to
the introduction of additional Abelian e=2 quasiparticles in
order to minimize the energy of the QH droplet that defines
the active area—the period exactly matching that of the
non-Abelian even-odd effect. Such a mechanism, which is
described in more detail in Sec. S1 of the Supplemental
Material [34], would rely solely on the energetics of the e=2
quasiparticles inside the interferometer and thus be oblivi-
ous to the nature of charge-e=4 quasiparticles. Therefore, a
convincing proof of the non-Abelian statistics of the

charge-e/4 quasiparticles must rule out this scenario; we
address this important issue in the following section as well
as in Sec. S4b of the Supplemental Material [34].
These considerations can also be applied to ν ¼ 7=2,

where the charge-e=4 quasiparticle is similarly expected to
obey non-Abelian statistics. Upon magnetic field sweep,
the non-Abelian even-odd effect will manifest itself
through the resistance oscillations with period correspond-
ing to the magnetic field increment needed to change
the number of e=4 quasiparticles by two, which in terms of
flux corresponds to the period of 2Φ0e�=ðνeÞ ¼ Φ0=7 or
frequency 7f0 in the Fourier spectrum of the resistance
oscillations. These oscillations may be then modulated by
the frequency of 1.5f0 corresponding to e=4 quasiparticles
interfering around e=2 quasiparticles, according to Eq. (3).
Thus, spectral peaks are expected at either 7f0 or
7f0 � 1.5f0, depending upon the fermion parity stability
and the Fourier transform window; see Table I for the
summary. Finally, the spectrum could also display a peak
corresponding to e=2 interfering around e=2, and from
Eq. (2) this frequency would be 3f0. The 7=2 spectrum
could then be comprised of peaks at either 1.5f0, 5.5f0, and
8.5f0 or at 1.5f0 and 7f0 (or, perhaps, at all of those), and
in addition, there might be a spectral peak at 3f0 as well.
Yet, just like in the case of ν ¼ 5=2, in order to ascertain

the non-Abelian nature of high-frequency oscillations at
ν ¼ 7=2, one must rule out the possibility of the afore-
mentioned “breathing” of the active area of the interfer-
ometer, which in the Coulomb-dominated regime could
also produce resistance oscillations with frequency 7f0.
Fortunately, this scenario would not be specific to ν ¼ 5=2
and 7=5; it would result in similar high-frequency oscil-
lations in nearby Abelian fractional quantum Hall states
and thus can be eliminated from consideration absent such
oscillations. In the next section, we provide experimental
details that support eliminating this mechanism.
In summary, in the Aharonov-Bohm regime the observed

resistance oscillations should be a combination of inter-
ference patterns resulting from charge-e=4 Ising anyon
encircling another e=4 Ising anyon; a charge-e=2 Abelian
anyon encircling another charge-e=2Abelian anyon as well

TABLE I. Possible mechanisms and spectral features of resis-
tance oscillations at ν ¼ 5=2 and 7=2.

Mechanism ν ¼ 5=2 ν ¼ 7=2

Non-Abelian
even-odd effect

Stable fermionic
parity

ð5� 1Þf0 ð7� 1.5Þf0
Slow parity
fluctuations

5f0 7f0

Fast parity
fluctuations

� � � � � �

e=4 ⊙ e=2 f0 1.5f0
e=2 ⊙ e=4; e=2 2f0 3f0
Coulomb-dominated breathing 5f0 7f0
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as both types of anyons encircling the other kind. In
addition, the phase of the charge-e=4 quasiparticle inter-
ference should depend on the parity of neutral fermions
inside the loop. At 5=2 filling, the first type of process leads
to a resistance that oscillates with magnetic flux with
frequency 5f0, whereas at 7=2 the corresponding frequency
is 7f0. The e=2-e=2 interference in these states should
result in oscillations with frequency 2f0 and 3f0, respec-
tively. We show later that the amplitude of these oscillations
can be tuned independently of e=4 interference oscillations,
effectively allowing for them to be turned on or off. Finally,
the interference of e=4 quasiparticles around Laughlin e=2
quasiparticles produces oscillations with frequency f0 at
ν ¼ 5=2 and 1.5f0 at ν ¼ 7=2; its convolution with the first
type of process results in oscillation frequencies 5f0 � f0
and 7f0 � 1.5f0, respectively. The stability of the fermion
parity should determine whether a measured high-
frequency spectral peak is split in this manner or remains
centered at 5f0 or 7f0 (with an additional possibility of
both scenarios occurring within the same plateau). Table I
presents an abbreviated summary of these predictions.
Irrespective of those details, once the Coulomb-

dominated regime is eliminated in favor of the
Aharonov-Bohm regime, an appearance of such high-
frequency spectral features in the magnetic-field-driven
AB oscillations in the vicinity of 5f0 at ν ¼ 5=2 and 7f0
at ν ¼ 7=2 should be an unmistakable signature of the
non-Abelian nature of those states. Observations of high-
frequency spectral peak(s) both in the previous [22] and
present studies can then be interpreted not only as a
confirmation of the non-Abelian nature of the ν ¼ 5=2
state but also as a validation of the results of the earlier side-
gate studies as the main conceptual criticism of those was
rooted in doubts about the fusion channel stability [40].

III. METHODS

Two wafer types are employed in our study: shielded-well
and doping-well wafers; see Sec. S2 of the Supplemental
Material [34]. The shielded-well densities are all near
4 × 1011 cm−2; the single-doping-well wafer density is
2.7 × 1011 cm−2. Note that the electron densities of these
wafers, and in particular, of the shielded-well wafers, are
substantially larger, by factors of 1.5 to 7, than those used in
other edge interferometry measurements [31,35–37,41,42].
Wafer mobilities all exceed 25 × 106 cm2=Vs. Table S2-T1
of the Supplemental Material [34] contains details of the
density and respective wafer mobilities. All measurements
are performed in dilution refrigerators with base temper-
atures 20 to 25 mK. Unless otherwise stated, the measure-
ment temperature is at or near these base temperatures.
Several essential unique experimental methods contrib-

ute to the results in this study and are outlined here,
followed by a description of the interference device
operation needed to understand the results. Specific heter-
ostructure designs and growth features are crucially

important: breakthrough improvement in the purity of Al in
the GaAs/AlGaAs heterostructure quantum wells, conse-
quently increasing the electron correlation effects, and
placement and electron population of conducting layers
parallel to the principal quantum well to suppress
Coulomb blockade. Aluminum purity in our heterostructures
is improved by first assessing the oxygen impurity levels in
the heterostructure AlGaAs layers [43], then developing
methods of off-line Al-effusion furnace bakes to reduce
these charged impurities. These bakes ultimately result in
AlGaAs barrier material used in the heterostructures of this
study with about 8 times fewer impurities than previous
material [44]. In these extreme high-purity materials,
and in previously grown heterostructures [18–22], a unique
multiple conduction layering structure is employed for
materials used in our interference measurements. Parallel
to the principal quantum well both above and below,
poorly conducting layers are grown, which suppresses
Coulomb blockade or domination of the interferometer’s
laterally confined electron layer in the principal well.
(A similar charge-shielding approach was employed in
recent studies [41] to suppress Coulomb domination in
the low-density samples.) These parallel layers are populated
differentially by the doping layers, and illumination of the
samples at low temperatures contributes further to that
population: Such illumination of the samples is distinctly
unique to our method, as is the aluminum purification,
versus all others [23–25,29–33,37,41]. Different illumina-
tion, cooldown, and gating histories for a given sample can
produce different electron populations in the layers. Each
such history is numbered and in the results sections is
referred to as the preparation number for each sample. See
Sec. S2 of the Supplemental Material [34] for details on
heterostructure construction and illumination and on the Al
purification method for this study. Also see Sec. S2 of the
Supplemental Material [34] for details of the preparation
histories applied to the samples used in our measurements.
An interference device is shown schematically in Fig. 2.

The top gates are charged to a negative voltage sufficient to
deplete the underlying electron layer. At high magnetic
fields, as prescribed for filling factor ν ¼ 5=2 or 7=2 (filling
factor ν being the ratio of the electron areal density to the
magnetic flux density), the currents carrying the excitations
of the fractional quantum Hall state will travel along
the edge of these depleted areas, surrounding an area of
the bulk filling factor ν. The important principal physical
property of the interferometer device is two separated
locations where these edge currents are brought in proximity
of one another. At these points, backscattering from one edge
to the other can occur, and with this backscattering, two
different current paths are established that can interfere, as
shown by the dashed lines in the schematic. The one path
encircles the area marked A in the schematic, and changes in
the magnetic flux number within area A or changes in the
particle number within area Awill cause phase accumulation
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for that path (the Aharonov-Bohm and statistical phase
contributions). Interference of that path and the one not
entering the area A produce oscillations in the resistance
measured across the interference device. The voltages on
the top gates can be adjusted to promote backscattering
(gates marked Vb) and to change the enclosed area A (gates
marked Vs). The separation of the backscattering top gates,
distance marked dg in Fig. 2, is sufficiently large that for
nominal voltages on Vb the backscattering is weak, an
important feature to maintain the 5=2 fractional Hall state
contiguously from outside to inside the active area A of the
interferometer. Note also that area A is ultimately the area
which is enclosed by the edge states in the quantized Hall
systems, and not the lithographic area. The location of the
edge states is determined electrostatically and can be
modified by the applied gate voltages.
Tunneling between the innermost edge currents that

surround the region of bulk electron density (depicted as
shaded in Fig. 2) at the two constrictions results in the
interference between two possible paths for the backscat-
tered current. Although the lithographic area is several
square microns, the active area A is typically less than one
square micron. The experimental evidence that the desired
ν ¼ 5=2 and 7=2 QH states persist inside the active area of
the interferometer is shown in Sec. S4 of the Supplemental
Material [34]. In one interferometer device type, a small dot
is placed centrally in the area A and is accessed by an air
bridge that extends over one of the side gates marked Vs in
Fig. 2. Although such type-b devices (i.e., those with a top
central gate) are present in several of the samples used
in this study, the central gate is kept grounded for all the
measurements and preparations for the purposes of
obtaining the data presented in this paper. Also shown
are electron micrographs of the interferometers.
Resistance and resistance oscillations are measured

using low-noise lock-in amplifier techniques. A constant
current (typically 2 nA) is driven through the 2D electron
system underlying the interferometer top gate structure,
and the voltage, and so resistance, is determined with a
four-terminal measurement. The voltage drop along the
same edge of the 2D electron system and across the device
gives the longitudinal resistance RL; across the device and
across the two edges of the 2D system gives diagonal
resistance RD. Similar measurements performed away from
the interferometer device yield Rxx and Rxy, respectively.
An example of longitudinal resistance RL across an

interferometer in an ultrahigh-mobility heterostructure char-
acterized by improved Al purity is shown in Fig. 3(a). (Also
see Sec. S4 of the Supplemental Material [34].) In com-
parison to heterostructures without improved Al purity (see
Fig. 11 and Supplemental Material Fig. S5-1 [34]), this
resistance trace shows sharper resistance features throughout
this filling factor range. An enlargement of the RL trace near
ν ¼ 7=2 reveals a set of reproducible oscillations shown in
Fig. 3(b). Their Fourier transform reveals a prominent

peak at a frequency roughly 7 times that of the main spectral
peak observed at an integer filling fraction, as shown in
Fig. 3(c) [45]. A similar set of data for ν ¼ 5=2 is shown in
Fig. 10. The analysis of these oscillations, their spectra, and
their attribution to the non-Abelian even-odd effect is the
main focus of this paper.
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ultrahigh-mobility heterostructure. Integer and fractional quantum
Hall states as well as phase-separated (nematic) states are labeled.
Temperature approximately 20 mK, sample 6, preparation 16,
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8.75 hours, 87.5 minutes for each directional sweep. The data
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time and magnetic field ranges over which the data are taken. See
also Figs. S5-2–S5-4 in the Supplemental Material [34]. (c) A
Fourier transform of these oscillations (red) overlayed with the
Fourier transform of oscillations observed at ν ¼ 3 (blue). Vertical
green linesmark the frequencyf0 of the integer spectral peakand its
multiple 7f0, the expected frequency of the non-Abelian even-odd
effect at ν ¼ 7=2.
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The interference oscillations in the measured resistance
are analyzed by applying fast Fourier transforms (FFT) to
the data. Because the oscillations are observed near the
minima of resistance of quantum Hall states, the correspond-
ing background—the shape of the minimum—is subtracted
before the FFT is applied. The subtracted background is
determined equivalently by either a polynomial fit or a
running large element smoothing of the minimum. By
following this procedure at both integer (ν ¼ 4) and frac-
tional (ν ¼ 16=5) filling, we can test the validity of our
approach and, specifically, confirm the expectation that
our interferometers operate in the Aharonov-Bohm and
not Coulomb-dominated regime, thus justifying the key
assumption used in deriving Eq. (2). Specifically, at the
ν ¼ 16=5 FQH state, one expects a Laughlin state with
e� ¼ e=5 and 2θe� ¼ 2π=5. Consequently, Eq. (2) predicts
the phase accumulation of −6π per additional flux quantum

resulting in the expected AB periodicity of ΔΦ ¼ Φ0=3,
which is what we observe experimentally; see Fig. 4.
Further evidence of the Aharonov-Bohm nature of the

observed interference is provided by the “pajama plots”
allowing one to trace the lines of constant phase in the B-Vs
plane. For the Aharonov-Bohm oscillations, one expects
these lines to have a negative slope, whereas Coulomb
domination should result in a positive slope [17]; the data
shown in Fig. 5 for both ν ¼ 3 and ν ¼ 16=5 clearly
indicate the negative slope. (Figure 5 shows data for the
same sample but different preparations; different prepara-
tions can have different active areas A which can be
determined from the periodicity of interference oscillations
in any of their integer QH states.) Note that while it is
not entirely unreasonable to expect different energetics in
integer and fractional QH states due to, e.g., different width
of their edge states, it is much harder to fathom a scenario
whereby two nearby fractional QH states would produce
drastically different energetics. The ν ¼ 16=5 state is
chosen as a prominent FQH state close to ν ¼ 7=2 whose
expected Abelian nature makes the interpretation of the
pajama plot sufficiently straightforward. More details on
the Aharonov-Bohm nature of the interference observed at
integer filling factors in our samples are presented in
Sec. S4 of the Supplemental Material [34].
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Finally, we also present results of a direct test that rules
out a mechanism that could produce high-frequency
spectral features at ν ¼ 5=2 and 7=2 due to the oscillations
of the active area of the interferometer upon changes of the
magnetic field. As mentioned in the previous section
and further explained in Sec. S1 of the Supplemental
Material [34], such a mechanism relies on the periodic
oscillations of the active area of the interferometer upon
introduction therein of additional Laughlin quasiparticles.
Assuming the energetics behind such a scenario do not
change dramatically with the filling fraction, this mecha-
nism would also produce high-frequency oscillations at
ν ¼ 7=3—either at f ¼ 7f0 or f ¼ ð7� 2Þf0 depending
on whether the oscillations originate from merely changing
the tunneling geometry or from geometric oscillations
modulating quantum interference. As can be seen in
Fig. 6, the FFT spectrum of the oscillations observed at
ν ¼ 7=3 shows an expected peak near 2f0 (as determined
from the integer spectrum) due to the interference of
charge-e=3 quasiparticles but no marked features in the
vicinity of 7f0. Crucially, the same sample shows signifi-
cant features near 5f0 at ν ¼ 5=2 in the Fourier transform
of the same magnetic field trace (shown in Fig. S5-6 of the
Supplemental Material [34]), which rules out the Coulomb
domination as the mechanism behind those oscillations.
To conclude, we like to reiterate the importance of two

fundamental improvements between the new high-Al-
purity shielded-wells heterostructures and the previously
used shielded-well samples: The high-Al-purity samples
can display a tenfold increase in the amplitude of the
interference oscillations at ν ¼ 7=2 and 5=2 compared to
those previously observed in shielded-well samples, and,
furthermore, the high-Al-purity materials also demonstrate
sharper definition of the fractional states and the reentrant

phases. This latter point is shown comparing the RL data in
Figs. 3(a) and 10 versus that of Fig. 11(a) (comparison is
also made in Supplemental Material Fig. S5-1 [34]).
Figure 11(a) shows only continuous evolution in RL from
the reentrant phases to, for instance, the 5=2 minimum, in
stark contrast to the abrupt changes in RL in sweeping the
magnetic field from the reentrant phases to ν ¼ 5=2 shown
in Fig. 10. In Fig. 3(a) the transitions from reentrant phases
to ν ¼ 7=2 are also distinct. It is posited but not proven
that this relative sharpening of the reentrant features, less
mixing with the target ν ¼ 5=2 and ν ¼ 7=2 states, may
contribute to the larger amplitude of the oscillations at those
FQH states.

IV. RESULTS

A. High-frequency spectral features of interference
oscillations at ν= 7=2

We now turn to our main findings, beginning with the
analysis of the interference oscillations for the first time
observed at ν ¼ 7=2. Figure 3(a) depicts a representative
quantum Hall trace between integer fillings ν ¼ 3 and 4
observed in a higher-purity sample. It shows a well-defined
feature at filling fraction = 7=2. Focusing on the corre-
sponding resistance minima reveals the oscillating behavior
of the resistance RL as a function of the magnetic field. As
can be seen in Fig. 3(b), the observed oscillations are both
prominent, with the typical amplitude of order 20 Ω, and
remarkably reproducible—the figure presents the results
of six different magnetic field sweeps separated from one
another by hours. We should also note the generic nature of
these oscillations: They are seen in different preparations
and within a significant range of gate-voltage settings;
see Figs. S5-3 and S5-4 of the Supplemental Material [34].
The most significant feature of these oscillations is their
frequency. Indeed, as we demonstrate, it is inconsistent
with any Abelian AB interference, but it is consistent with
the non-Abelian even-odd effect.
In order to analyze the origin of these oscillations, we

must first establish the reference frequency for our inter-
ferometer. Because we do not know the precise active area
A of the interferometer, we rely on the oscillation spectra
measured at integer filling factors to extract the reference
frequency f0; see, e.g., Figs. 3(c) and 4 or Fig. S5-1 of
the Supplemental Material [34]. Since only electrons can
interfere in the integer QH regime, the oscillation period
observed as the magnetic field is swept across the integer
plateau corresponds to the change of one flux quantum
through the active area of the interferometer. This pro-
cedure is repeated for each sample, each cooldown, and
each gate-voltage setting (see also Fig. 11, which exem-
plifies this procedure). Equipped with the knowledge of
the electron AB oscillation frequency f0, we proceed to
examine the oscillation spectra at filling fractions 7=2
and 5=2.
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Having established the reference frequency f0, we focus
our attention on the interference signal at ν ¼ 7=2 shown in
Fig. 3. A crucial parameter in the analysis of the resistance
oscillations is the width of the Fourier-transform window.
Figure 7 shows a series of successive enlargements of the
resistance minimum at this filling and the corresponding
Fourier transforms. The measurements presented here are
done using a different preparation of the same sample that

was used for the measurements in Fig. 3. Similar to what is
shown in Fig. 3, using the narrower FFT window [marked
in the last of these enlargements, Fig. 7(c)] results in a
prominent spectral peak seen in Fig. 7(d) at approximately
84 kG−1 (or approximately 87 kG−1 if measured as a
midpoint at half height), the frequency of easily identifiable
reproducible oscillations shown in Fig. 7(c), as well as
Fig. 3(b). The reference frequency f0 is determined to
be approximately 13.0� 0.5 kG−1 in this sample, so the
observed spectral peak corresponds to 7f0 within reason-
able precision—the very frequency expected for the
even-odd effect in this quantum Hall state. A larger
Fourier-transform window bounded by vertical red bars
in Fig. 7(b) reveals lower-frequency features in the Fourier
spectrum as can be seen in Fig. 7(e). It also points toward a
more complex structure of the spectral peak centered
at 7f0, which we discuss later.

B. Temporal stability of oscillations

One of the remarkable features of the observed oscil-
lations attributable to the non-Abelian e=4 quasiparticles is
their temporal stability. Generally, there are two ways of
inferring the fermion parity stability: (1) direct observation
of the phase stability of the 5f0 and 7f0 frequency
oscillations, respectively, at ν ¼ 5=2 and 7=2, and (2) indi-
rect inference via the presence or absence of spectral
properties, split peaks at ð5� 1Þf0 at ν ¼ 5=2 and
ð7� 1.5Þf0 at ν ¼ 7=2; see Sec. II and also Sec. S1 of
the Supplemental Material [34]). While there is some
indication of such a splitting in Fig. 7(e), it is far from
conclusive. In general, such an indirect inference is
complicated. In order to achieve the required resolution,
it requires a sufficiently large magnetic field range that
should be employed in the FFT, which at the same time
makes the data more susceptible to low-frequency noise;
see Fig. 7(d) versus 7(e).
Nevertheless, this limitation does not preclude us from

studying the fermion parity stability in the temporal domain
by repeated sweeps within a limited magnetic field interval,
with the results shown in Fig. 8. Their reproducibility
includes their phase which remains stable over several
hours. What is even more remarkable is that when the phase
of the oscillations fluctuates, it happens predominantly
through phase jumping by π, as can be seen in Figs. 8
and 9(a). A π shift in the oscillations attributable to the e=4
particles can come from two distinct sources. The two
scenarios correspond to the fluctuating parity of either
neutral fermions or non-Abelian e=4 particles inside the
interferometer. To better clarify the difference between
these mechanisms, we remind the reader that we attribute
the high-frequency oscillations not to the AB interference
per se but rather to the switching of the interference signal
on again, off again when the number of e=4 particles inside
the interferometer loop changes from even to odd and back
to even in response to the changing magnetic field. A stray
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cies, as expected for non-Abelian e=4 at ν ¼ 7=2.
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e=4 quasiparticle tunneling into or out of the active area
shifts this pattern by half a period due to the change in the
parity of these quasiparticles. Meanwhile, the fermionic
parity is the combined property of an even number of e=4
quasiparticles; it determines the sign of the interference
contribution whenever it is present; its fluctuations would
flip this sign. Hence, while both mechanisms would result
in the oscillations shifted by π, there is, in principle, a
difference in their signatures: Fluctuations in the number of
e=4 particles would result in a purely “horizonatal” shift
of the oscillations, whereas in the case of fluctuating
fermionic parity one would expect a “vertical” reflection
of these oscillations about either their peak or their
minimum values. Such π jumps can be seen in Fig. 9,
with the observed jumps shown in Figs. 9(a) and 9(b)
seemingly resemble those resulting from the fluctuations in
the number of e=4 particles. Figure 9(a) represents three
different magnetic field sweeps taken over eight hours,
each individual trace takes about 100 min. Two of them are
perfectly in phase, while the third one displays a π phase
jump whose location is indicated by an arrow. Two more
sweeps performed in the same sample clearly show a
similar π phase jump in Fig. 9(b). In the meantime, the π
shift seen in Fig. 9(c) appears more consistent with the
fluctuating fermionic parity. Definitive discrimination
between these mechanisms, however, requires a more
systematic study: The out-of-phase regions of oscillations
seen in Fig. 9(c) also appear to be related to one another by
a horizontal shift (rather than vertical reflection); such a

study is currently under way. Similar behavior is also
observed at ν ¼ 5=2: Runs of reproducible oscillations are
punctuated by occasional π shifts, the predominant insta-
bility; see Fig. 10 and Sec. S5d of the Supplemental
Material Figs. S5-14 and S5-15 [34].
This direct observation of the oscillation stability gives

us the means of establishing the temporal stability, the
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phase difference is apparent from the lowest shown B-field up to
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magnetic field dependence of that stability by examining
different magnetic field intervals, and influence of a host
of other parameters, such as different gating configurations.
The fact that we can actually see the rare phase jumps and
assign their characteristic timescale is significant: This
timescale provides the lower bound for the fermion parity
stability which, in turn, not only further validates our
theoretical model but may also have profound conse-
quences for the future of such systems in quantum
computation. After all, the fermion parity is supposed to
encode the state of a topological qubit; its remarkable
stability is a key to its potential utility.
Given the potential importance of the π phase jumps, it is

essential to ask what experimental parameters can control
their incidence and prevalence. One parameter conceivably
influencing these π phase jumps—the density of encircled
e=4 quasiparticles—can be estimated from the collected
data. By simply counting of the 7f0 oscillation periods
from the center of the 7=2 FQH plateau, and using f0 to
determine area A (see Fig. 11), we estimate their density to
be approximately 170 μm−2 toward the edge of the plateau.
This puts their separation at approximately 0.07 μm ¼
70 nm for the maximum density, which corresponds to

about five magnetic lengths at these magnetic fields. (For
more details on the calculations, see Supplemental Material
Sec. S5d [34].) This suggests that the oscillations occur
over a range of reasonable separations between e=4

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

Frequency (kG-1)
�

R L F
FT

 a
m

pl
itu

de
 (x

10
-3
)

55 60 65 70 75
0

1

2

B-field (kG)

R L
 (k
�

)

� = 5/2

3 2

8/3 7/3

� = 3

��= 5/2  FFT

��= 3  FFT
f0

e/2

e/4

e/2

2f0 4f0 6f0f0 5f0

(b) 

Reentrant
phases

Reentrant
phases

e/4

e/4

e/2

e/2

e/4

0 10 200

1

2

Frequency (kG-1)

�
R L F

FT
 a

m
pl

itu
de

 (x
10

-3
)(a) 

FIG. 11. Extracting power spectra in B-field sweeps and
interference spectra at ν ¼ 5=2: (a) transport (RL) through an
interference device shown in Fig. 2, bottom micrograph (device
type b), between filling factors ν ¼ 2 and 3 in a high-mobility
heterostructure without additional Al purification. The power
spectrum is extracted from a B-field sweep as follows: The
background resistance near ν ¼ 3 is subtracted, after which a FFT
is applied to the residual oscillations, producing the power
spectrum that shows a principal peak at roughly 6 kG−1, the
frequency identified as f0 whose value is closely matched at other
integral filling factors. See also Fig. S5-1 in the Supplemental
Material [34]. Temperature approximately 20 mK, sample 2,
preparation 2, device type b. (b) Power spectrum of RLðBÞ near
ν ¼ 5=2. The FFT window is bracketed in panel (a). After
background subtraction and application of the FFT, four dom-
inant peaks located near f0, 2f0, 4f0, and 6f0 can be discerned.
Here, f0 is the frequency of the Aharonov-Bohm oscillations in
the integer quantum Hall state [panel (a)], and marked in panels
(a) and (b) by the solid red vertical line. Solid green lines in panel
(b) indicate multiples of that frequency with the shaded area
around them indicating the potential error margins stemming
from the error of�1=8 kG−1 in determining f0. In the meantime,
the dashed lines indicate multiples of the actual frequency of the
first peak in panel (b).
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quasiparticles. Yet, it does not provide any indication of a
critical density that should trigger phase jumps.
We should comment in passing on the crucial difference

between these π shifts and the phase jumps reported in
Ref. [41]. The latter jumps are purportedly the consequence
of charged Laughlin quasiparticles appearing within the
active area of an interferometer as a consequence of
changing magnetic field. In our case, due to the different
energetics, the number of charge-e=4 quasiparticles is
changing continuously with magnetic field and is causing
the observed oscillations. Meanwhile, the π jumps occur
either due to the fluctuating number of neutral fermions or
stray charge-e=4 quasiparticles, which are expected in both
ν ¼ 5=2 and ν ¼ 7=2 states. In the former scenario, the
number of fermions cannot be systematically changed by
varying the magnetic field due to their neutrality. In the
latter scenario, this mechanism may be driven by e=4
particles trapped at some deep-lying impurity levels. In
both scenarios, such fluctuations may occur even at a
constant field, in which case they will manifest themselves
as an extremely low-frequency telegraph noise revealed by
a vertical cut through the color plot of Fig. 8.

C. Interference oscillations at ν = 5=2

We now turn our attention to the interference oscillations
observed at ν ¼ 5=2. The interference oscillations observed
at this filling fraction in the devices with high Al purifi-
cation strongly resemble those at ν ¼ 7=2. As shown in
Fig. 10, these oscillations are remarkably stable and occur
at 5 times the reference frequency f0, which is once again
indicative of the non-Abelian even-odd effect. Notice that
another prominent spectral feature is located near f0 itself.
Before we examine the spectra in more detail, it worth

reiterating that the highest predicted oscillation frequency
for Abelian AB interference at ν ¼ 5=2 is 2f0; any
significant spectral weight at higher frequencies (specifi-
cally, within the range between 4f0 and 6f0 for ν ¼ 5=2)
that is not a result of noise is an indicator of a non-Abelian
nature of the state. Specifically, it should be interpreted as
the evidence of the even-odd effect, which is a consequence
of the quasiparticles’ statistics and not charge; a naive
application of Eq. (2) to the e=4 quasiparticles at ν ¼ 5=2
while neglecting their non-Abelian nature would instead
result in the oscillations frequency of 2.25f0 in the Moore-
Read state and 2.75f0 in the anti-Pfaffian state. For the
genuinely Abelian candidate states, these frequencies
would be f0 in the K ¼ 8 state and 3.5f0 in the (3,3,1)
state [16]. [At ν ¼ 7=2, the respective frequencies would be
3.25f0 in the Moore-Read state, 3.75f0 in the anti-Pfaffian
state, 1.5f0 in the K ¼ 8 state, and 5f0 in the (3,3,1) state,
all significantly below 7f0.] We can discard the possibility
of multiple windings which would, in theory, result in
higher frequency of interference oscillations. The ampli-
tude of those contributions would be negligible as

they require multiple tunneling across relatively wide
constrictions.
While we empirically attribute the substantially more

prominent high-frequency oscillations associated with the
even-odd effect to the improved Al purity of the newer
heterostructures, we emphasize that samples without this
high Al purity can still demonstrate high-frequency oscil-
lations at ν ¼ 5=2 as reported in the earlier work [22].
The focus of those studies was only on the oscillations
associated with the even-odd effect; in the meantime, recent
improvements in those materials and devices (without the
Al-purity change) have provided higher-quality samples
with better-defined FQH states of interest. This in turn
allows for larger Fourier-transform windows, letting us
focus on the finer details of the oscillation spectra, includ-
ing their low-frequency features, than was possible in the
previous studies. The results of such a study of the full
spectral frequencies follow here.
A representative Fourier spectrum of the oscillations at

ν ¼ 5=2 is shown in Fig. 11(b) along with the possible
interpretation of its most prominent features. The oscil-
lations in RL around filling fraction ν ¼ 3 are used to
determine the integer Aharonov-Bohm interference fre-
quency f0; details of the FFT analysis and magnetic field
window size used for each FFT in results are described in
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FIG. 12. Frequencies corresponding to the most prominent
spectral peaks at ν ¼ 5=2 in six different datasets from different
samples and preparations. Frequencies are normalized by f̃0,
which is the parameter obtained by applying linear fit to each
observed set of peak frequencies (shown in circles) with the
assumption that they correspond to integer multiples of this
fundamental frequency. Open squares correspond to the frequen-
cies obtained by taking the average value of the two frequencies
that mark the width at half maximum for each peak, normalized
by the same coefficients. The dataset identification is as follows:
1, sample 2, preparation 2; 2, same sample and preparation four
days later; 3, sample 2, preparation 1; 4, sample 5, preparation
2; 5, sample 3, preparation 1; 6, sample 4, preparation 1. Note that
two of the samples do not exhibit peaks at or near 2f0; cf. traces
in Figs. 14(a) and 14(b) corresponding to datasets 3 and 2 shown
here. T ∼ 20 mK.
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Sec. S3 of the Supplemental Material [34]. The observed
spectral peaks are located near f0, 2f0, 4f0, and 6f0, with
f0 being the aforementioned reference frequency. (See
Sec. S5f of the Supplemental Material [34] for more details
on peak identification.) In order to verify this identification
of the observed peaks, in Fig. 12 we plot their actual
locations vs integer factor m that we assign to these peaks
in five different samples, with two different preparations for
one of the samples—six datasets altogether. Each set of
observed peak frequencies at ν ¼ 5=2 is rescaled by the
coefficient f̃0 obtained from linear fit for each sample’s
frequency data. We can then compare f̃0 obtained from
linear fit to frequency f0 corresponding to spectral peaks
measured at ν ¼ 3 for each sample and preparation; the
results of this comparison are shown in Table II.
The peak locations shown in Fig. 12 correspond to the

highest measured values of spectral peaks. In Figs. S5-20
and S5-21 in the Supplemental Material [34], we present a
comparison between two peak identification processes, one
identifying peak locations by their highest value and the
other using the average of the two points corresponding
to their half values. The observed features are consistent
with the expectations for both Abelian and non-Abelian
interference processes due to charge-e=4 and charge-e=2
quasiparticles. (We remark that the peak identification
procedure used here is the same as was illustrated earlier
in Fig. 4 showing the comparison of actual traces and their
Fourier transforms for ν ¼ 4 and ν ¼ 16=5, further
strengthening our confidence in identification of observed
spectral features.)
In the power spectrum presented in Fig. 11(b), the

amplitudes of these four peaks drop progressively with
the frequency, a common property of these spectra in our
study, but with exceptions (see Supplemental Material
Fig. S5-16 [34]). The base frequency f0 depends on the
size of the interferometer, as seen by comparing the power
spectra from different devices, but the ratios of the power
spectrum positions remain close to 1∶2∶4∶6. (Note that the
base frequency f0 can be measured at the different integer
filling factors, a property of AB oscillations, and this is
demonstrated in the Supplemental Material Figs. S4-1 and
S4-2 [34].) The spectral features shown in Fig. 11(b) are

sharp, in part due to the low temperature of 20 mK, but also
due to the details of construction of this particular inter-
ferometer. Larger devices have larger separation in the
spectral features (since f0 ∝ A) and, consequently, better
resolution, but the amplitudes of the higher-frequency
features at 4f0 and 6f0 are reduced in the largest devices
tested. A repetition of this measurement on the same device
but days later is shown in Fig. 14(b) (presented there as a
part of another study to be discussed later), with the
dominant peaks persisting at the same frequencies.
Further 5=2 power spectra are displayed in the
Supplemental Material Figs. S5-16 and S5-17 [34].
Before attempting a similar analysis of the finer spectral

features of interference oscillations at ν ¼ 7=2 accessible
through a wider Fourier-transform window, let us reiterate
that the common observed feature in multiple sample
preparations, interference measurements, and their respec-
tive spectra such as those shown in Figs. 3(c) and 7 [with
another example shown in Fig. 13(b) and more spectra
presented in Sec. S5c of the Supplemental Material [34] ] is
the large spectral weight concentrated around 7f0, the
frequency of the predicted even-odd effect. Yet upon closer
inspection of the spectrum in Fig. 7(e), another common
feature appears to be a sharp minimum right at that
frequency 7f0. (A similar feature is also observed in
samples at ν ¼ 5=2; see, e.g., Fig. S6-2 in the
Supplemental Material [34].) The most likely origin for
this dip is some low-frequency modulation of the even-odd
oscillations. Irrespective of its origin, such a modulation
would split the high-frequency Fourier peak into two
resulting in a spectral minimum at the location of the
original peak. The visibility of this minimum then becomes
a function of the frequency window used in the Fourier
transform; this effect can be clearly seen in Fig. 7 where a
prominent spectral peak at 7f0 seen in Fig. 7(d) evolves
into a pronounced minimum seen in Fig. 7(e) as the size of
the FFTwindow is increased in an attempt to tease out finer
spectral features from the dominant peak. As we mention
in the Introduction, the e=4-e=2 interference with fixed
fermion parity would result in a split peak ð7� 1.5Þf0.
However, there are also other potential, if less systematic,
sources of low-frequency modulation of the dominant 7f0
frequency such as potential dependence of the oscillation
amplitude on the distance from the overall resistance
minimum marking the QH state. Such a modulation is
discussed in Sec. S5g of the Supplemental Material [34];
the corresponding spectral feature at about 0.4f0 is
encircled in Fig. 7(e). The modulation by 0.4f0, is then
combined with the modulation by 1.5f0 due to e=4-e=2
interference oscillations. The comparison between the
actual observed spectrum and the spectrum modeled by
including both of these modulations is shown in Figs. 13(b)
and 13(d). Note that the model uses a finite Fourier-
transform window similar to that used in processing the
experimental data. For comparison, Figs. 13(a) and 13(c)

TABLE II. Comparison of frequencies f̃0 obtained from linear
fit of the ν ¼ 5=2 spectral data to f0 observed at ν ¼ 3 for each
sample and preparation.

f̃0 ðkG−1Þ f0 ðkG−1Þ Sample and preparation

6.2 6 Sample 2, prep 2
5.8 6 1

2
Sample 2, prep 2, later

6.3 7 Sample 2, prep 1
10.0 9 1

4
Sample 5, prep 2

4.5 4 3
4

Sample 3, prep 1
4.7 4 1

2
Sample 4, prep 1
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show the observed and modeled spectra at ν ¼ 5=2 where
only the modulation due to e=4-e=2 interference is taken
into account.

D. Abelian interference oscillations at ν= 5=2 and 7=2

While the high-frequency oscillations are of foremost
importance for demonstrating the non-Abelian nature of the

ν ¼ 5=2 and 7=2 states, the low-frequency features that we
investigate in this study also reveal some important
information. We should mention that the ability to discern
lower-frequency spectral features is another key new
element of the present study; in the past, they were hard
to extract due to the narrow magnetic field range where these
oscillations had been seen. Utilizing higher-purity hetero-
structures and somewhat different interferometer design, we
are able to better isolate the quantum Hall state at ν ¼ 5=2
from the surrounding compressible states, which results in
more pronounced, broader minima in RL supporting longer
runs of higher-amplitude interference oscillations than
before. This allows us to observe and analyze those
lower-frequency spectral features, thus addressing one of
the shortcomings of our earlier study [22].
It is instructive to compare the low-frequency features

between the ν ¼ 5=2 and 7=2 states. The two states are
theoretically expected to correspond to the same topologi-
cal order, with the same charge and statistics of its
excitations. However, due to its different filling factor,
the periodicity of AB interference at ν ¼ 7=2 is expected to
be different from 5=2, as can be seen from Eqs. (2) and (3).
Specifically, the interference of e=4 edge excitations
around e=2 bulk quasiparticles should now occur with
the periodicity of 2Φ0=3 (instead of Φ0), and thus the
expected spectral peak at 1.5f0, nicely distinguishing it
from potential electron contribution still occurring at f0.
Lastly, e=2-e=2 interference should manifest itself through
a peak at 3f0. The oscillation spectrum shown in Fig. 7(e) is
consistent with these expectations. See also Sec. S5c of the
Supplemental Material [34].
The f0 spectral peak at ν ¼ 5=2 decays rapidly with

increasing temperature up to T ≈ 80 mK, which is roughly
the onset temperature of the deep minimum in RL.
(See Supplemental Material Sec. S5i, Figs. S5-26 and
S5-27 [34] for more details.) This strongly implies that
oscillations at this frequency are, indeed, due to the physics
of this fractional quantum Hall state. In particular, this hints
at the e=4-e=2 interference contribution to these oscilla-
tions, in addition to the omnipresent electron contribution.
The last process whereby e=2 quasiparticles braid

around bulk e=2 quasiparticles should result in spectral
features at 2f0 for ν ¼ 5=2 and at 3f0 for 7=2. While the
observed oscillation spectra at ν ¼ 7=2 contain hints of the
3f0 feature (see, e.g., Fig. S5-10 of the Supplemental
Material [34] for the best example), Fig. 7 illustrates the
problematic nature of reliably discerning this feature from
the noisy background. In the meantime, its 2f0 counterpart
in the ν ¼ 5=2 spectra obtained in the samples without
additional Al purification appears far more prominent, as
can been seen in Fig. 11. We should note that this feature is
systematically seen at frequencies somewhat below 2f0;
see, e.g., Fig. 12 showing its observed position for four
different samples and preparations. While we are not
certain about the reasons for this discrepancy (it is a
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FIG. 13. Modeling FFT spectra at ν ¼ 5=2 and 7=2. In a
magnetic field sweep at ν ¼ 5=2 and ν ¼ 7=2, rapid oscillations
due to the even-odd effect will be modulated by slower
oscillations due to e=4-e=2 interference. At ν ¼ 5=2 this implies
modulating oscillations at 5f0 by oscillations at f0, resulting in
peaks at 4f0 and 6f0. At ν ¼ 7=2, 1.5f0 modulation of 7f0 even-
odd oscillations should produce peaks at 5.5f0
and 8.5f0. Panels (a) and (b) show measured power spectra
at these filling fractions: (a) ν ¼ 5=2, sample 2, preparation 2
[same as in Fig. 11(b)]; (b) ν ¼ 7=2, sample 6, preparation 15,
device type b; T ∼ 20 mK in both cases. The measured power
spectra are compared with simple models. The black trace in
panel (c) is the FFT of the expression ΔRL ¼ cosð2πBf0Þ×
cos½2πBð5f0Þ� taken using the magnetic field window similar
to the one used to obtain power spectra in the experiment.
The red trace is the FFT of ΔRL ¼ cosð2πBf0Þ demonstrating
the f0 oscillation peak. The spectra are scaled to match the
locations and amplitudes of their peaks at frequency f0. Panel
(d) shows a similar modulation of the 7f0 even-odd oscillations
by 1.5f0 oscillations expected for the e=4-e=2 interference at
ν ¼ 7=2. In addition, the minima of RL are reproducibly formed
away from the reentrant quantum Hall phases in the high-quality
material used in this study, resulting in an additional low-
frequency modulation at about 0.4f0. To capture these effects,
we model the resistance as ΔRL ¼ f0.25 cos½2πBð0.4f0Þ�þ
0.75 cos½2πBð1.5f0Þ�g × cos½2πBð7f0Þ�. The FFT of this expres-
sion results in the spectrum shown in panel (d), compared directly
to measured data at ν ¼ 7=2 in panel (b). Again, a FFT of
ΔRL ¼ cosð2πBf0Þ is the red trace panel (d). (See also Supple-
mental Material Sec. S5g and Fig. S5-23 [34].).
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subject of an ongoing study), the prominence of this
spectral feature enables us to implement additional tests.
An important property of the observed ν ¼ 5=2 oscillation
spectra presented here is changing of the magnitude of the
2f0 peak as a function of the separation between the inner
edge currents in the backscattering constrictions (distance d
in schematic of Fig. 2). Figures 14(a) and 14(b) show
two complete power spectra in the same interferometer at
ν ¼ 5=2 but with different applied voltages Vb and Vs: The
more negative the Vb value is, the narrower the constrictions
acting as “beam splitters” are, which should change the
backscattering (tunneling) amplitudes. Vs can be adjusted so
that for two different Vb values, the interferometer areas A
are kept essentially the same. Standard longitudinal resis-
tance (RL) measurements (see Supplemental Material
Sec. S5h, Fig. S5-25 [34]) show little difference for the
two different gate configurations. Note that in the device
with voltage Vb ¼ −3.5 V, the 2f0 peak is essentially
absent, whereas in the device with Vb ¼ −9.0 V a large
2f0 peak is present. We therefore conclude that the width d
of the constriction (the separation between the QH edges;
see Fig. 2) is an important factor controlling the presence
of the peak at 2f0. The Vb voltages are adjusted to a range
of values between the two shown in the full spectra of
Figs. 14(a) and 14(b); the resulting plot of the measured ratio
between the peak amplitudes at 2f0 and f0 as a function of
Vb is shown in Fig. 14(c). According to our findings, as Vb
becomes more negative (the backscattering distance d
becomes smaller), the amplitude ratio increases. This finding
is consistently observed in multiple different heterostructure
wafers and multiple different devices. (We expect a similar
behavior of the 3f0 peak at ν ¼ 7=2 but have not performed
this study; it is a subject of ongoing research.)
This result can be understood as a consequence of the

difference in tunneling probability of e=4 and e=2 edge
excitations as a function of the tunneling distance d
between the edges in the constrictions that form the
interferometer. Theoretical analysis of the tunneling proc-
ess of the excitations at 5=2 predicts that the amplitude of
the e=2 tunneling process is suppressed by comparison to
the e=4 tunneling due to the larger momentum transfer
required for backscattering at a gated narrowing, with the
effect becoming more pronounced as the tunneling distance
increases [16]. This effect is illustrated in Ref. [46] where
the dependence of the ratio between the e=4 and e=2
tunneling amplitudes as a function of the tunneling distance
has been investigated numerically for the Moore-Read
state. Our experimental findings are consistent with this
picture, showing the amplitude of the 2f0 peak attributed to
the e=2 interference decreasing much faster with the
distance than that of the peak at f0. Note that the physics
behind this effect should be insensitive to the precise nature
of the ν ¼ 5=2 state; it is a consequence of the difference
between different quasiparticles’ charges. This should be
contrasted with the temperature and bias voltage dependence

of these tunneling processes, which is expected to be
governed by the quasiparticles’ scaling exponents. Those
considerations would lead to different predictions for the
anti-Pfaffian vs both the Moore-Read and the PH-Pfaffian
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FIG. 14. (a),(b) ν ¼ 5=2 oscillation spectra at two different
gate-voltage settings (sample 2, preparations 1 and 2, device
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at f0, 2f0, 4f0, and 6f0, consistent with e=4 and e=2 interference.
The 2f0 peak is absent when the backscattering gate voltage Vb is
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to preserve the area A. (Supplemental Material Sec. S5h,
Fig. S5-25 [34] demonstrate the overall similar transport between
ν ¼ 2 and 3 for these gate settings.) (c) Ratio of the peak value at
2f0 to that at f0 for a series of backscattering gate voltages Vb in
the same device (sample 2, preparations 1 to 5, T ∼ 20 mK). The
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tunneling amplitudes for e=2 and e=4 quasiparticles.
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states, potentially allowing for discriminating between these
states [16]. Our study is not sensitive to this distinction.
We should also comment here that contrary to the

analysis of Ref. [39], we do not expect to be able to
distinguish between the Moore-Read, anti-Pfaffian, and PH-
Pfaffian states based on the location of the high-frequency
spectral peaks. For the reasons mentioned earlier (and further
elaborated in the Supplemental Material [34]), the Abelian
phase associated with the e=4-e=4 braiding (which is
different in these states) does not directly contribute to
the AB phase observed in the experiment; the interference
itself is destroyed if an e=4 quasiparticle braids another
unpaired one, whereas only the overall fusion channel
matters for paired ones. Therefore, the observed high-
frequency peaks are merely indicative of the non-Abelian
nature of the state, but their positions cannot be used to
discriminate between the candidate states. That said, they
contain the information about temporal stability of the
non-Abelian fusion channels. For the case of stable overall
fermion parity at ν ¼ 5=2, we expect to see peaks at 4f0 and
6f0. This scenario appears to be in agreement with the
observed enhanced spectral features at these frequencies
reported here. However, in both past [22] and present studies
(see Sec. S6 of the Supplemental Material [34]), some
sweeps result in only a 5f0 peak, consistent with random
(but not rapidly fluctuating) fusion channel of additional
pairs of e=4 quasiparticles introduced into the interferometer.
The conditions that affect the temporal stability of the
fermion parity are the subject of future investigation.

V. SUMMARY AND CONCLUSIONS

Using magnetic field sweeps in quantum Hall Fabry-
Pérot interferometers at ν ¼ 5=2 and 7=2 filling, we
observe large amplitude, reproducible interference oscil-
lations at frequencies inconsistent with Abelian Aharonov-
Bohm interference but specific for the non-Abelian
even-odd effect for the respective quantum Hall states.
With new ultrahigh-purity heterostructures, we observe
such oscillations for the first time in the ν ¼ 7=2 QH state,
providing the first evidence for the non-Abelian statistics
of its charge-e=4 excitations. Furthermore, the oscillations
attributed to the non-Abelian e=4 quasiparticles are shown
to be remarkably stable, indicating stability of their fusion
channel—the fermion parity—which in turn may have
profound consequences for their applications for topologi-
cal quantum computation. This interpretation is further
strengthened by the observation of occasional π phase
jumps, the predominant type of instability observed in our
traces. These are consistent with the change of either the
fermion parity or the parity of non-Abelian charge-e=4
quasiparticles inside the interferometer, both of which
should manifest themselves in a π phase shift of the
oscillations. Moreover, the fact that we observe them
infrequently and can actually associate a timescale (hours)
to the parity flips is perhaps the most promising outcome of

our study, demonstrating the potential of such quantum
Hall systems for quantum computing.
The Fourier transforms of the magnetic field dependence

of the resistance around those filling factors show not only
peaks corresponding to the non-Abelian even-odd effect
associated with e=4 quasiparticles but also a set of spectral
peaks consistent with those anticipated for all possible
combinations of interfering quasiparticle types expected to
be present in these systems, thus also accounting for the
Abelian interference effects.
In our study, we also demonstrate means of controlling

the interference processes. The Abelian e=2-e=2 interfer-
ence is shown to be suppressed by reducing the edge
quasiparticle backscattering, thus allowing us to distill
different contributions to the interference oscillations.
This gate control is presently the subject of intense
investigation, and these are essential steps in an effort to
develop devices for topological quantum computation.
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