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We propose a new type of spontaneous symmetry breaking phase caused by softening of the transverse
acoustic phonon modes through electron-phonon coupling. These new phases include the shear density
wave and self-twisting wave, which are caused by softening of linearly and circularly polarized acoustic
phonon modes, respectively. We propose that two of the topological semimetal systems in the quantum
limit, where the electrons only occupy the lowest Landau bands under external magnetic field, will be the
perfect systems to realize these new phases. Exotic physical effects will be induced in these new phases,
including the 3D quantum Hall effect, chiral standing acoustic wave, magnetoacoustic effects, and chiral
phonon correction to the Einstein–de Hass effect.
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I. INTRODUCTION

The Peierls transition, which leads to charge density
wave (CDW) [1,2] is one of the key phenomena caused by
electron-phonon coupling [3,4] in condensed matter. It is
induced by the so-called “nesting” feature of electron Fermi
surfaces (FS), where two sections of the FS are connected
by a single wave vector Q. The longitudinal acoustic (LA)
phonon mode with wave vector Q is strongly coupled to
electron-hole excitation between different sections of the
FS by electron-phonon coupling, which leads to singular
response at the low temperature and causes “condensation”
of that particular phonon mode. The Peierls transition to
CDW usually happens in 1D materials like polyacetylene,
where energy bands disperse along the chain direction and
a LA phonon with Q ¼ 2kF connecting two Fermi points
condenses at low temperature. Another very different
system that shares a similar Peierls picture is a 3D
semimetal material [5] under a strong magnetic field,
where the electronic states are fully quantized to be
Landau levels within the perpendicular plane and only
disperse along the field direction. In the quantum limit, the
Fermi level only crosses a single Landau band, which also

satisfies the perfect nesting condition and leads to CDW.
Comparing to 1D or quasi-1D materials, here the physics
leading to completely flat band behavior along the
perpendicular directions is not the lack of overlap between
the neighboring electron wave functions but the Landau
quantization. As a consequence, such a system has intrinsic
3D quantum Hall effect (QHE) [6,7] after CDW transition,
which is quite different from the simple stacking of 2D
quantum Hall layers [8], because the Landau level spacing
is overwhelmed by band dispersion in the former cases and
3D QHE only appears after an energy gap is open by
interactions. Such a theoretical proposal of potential 3D
QHE associated with CDW has been suggested for over
three decades before it was finally observed in Dirac
material ZrTe5 [9,10].
Comparing to QHE in 2D, much fruitful new physics

will emerge in its 3D version. The most obvious difference
is that 3D QHE is a spontaneous symmetry breaking phase
under a strong magnetic field, which leads to new collective
dynamics originated from dynamics of the order parame-
ters. For incommensurate CDW, which is the case in 3D
QHE with generic field strength, such collective modes are
the “phason” modes along the field direction. How the
sliding motion of CDW induced by the phason modes
couples with the quantum Hall physics will be an interest-
ing problem to explore.
The CDW and Peierls transition discussed so far in the

1D metal and 3D Landau band systems are both caused by
the condensation of LA phonon modes. What about the
transverse acoustic (TA) phonon mode? Can TA phonon
modes also couple to electrons and condense?What kind of
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new phases will be generated after condensation of TA
phonon modes? These are key questions to be answered in
the present paper. The results from our study reveal a
completely different type of density wave instability
associated with condensation of the TA phonon mode.
Similar to the electromagnetic wave, a TA wave is also a
type of vector wave, which can carry angular momentum.
Along some high-symmetry directions, conservation of
total angular momentum jzℏ will lead to “selection rules”
in the electron-TA phonon coupling, which is the analog of
optical selection rules. Interestingly, depending on the
detailed features of the low-energy electronic structure,
the density waves caused by condensation of the TA
phonons can be either linearly, elliptically, or circularly
polarized, which are also similar to the light. The corre-
sponding linearly polarized density wave is a unique type
of shear strain with periodical modulation, and the circu-
larly polarized density wave can be viewed as self-twisting
of the crystal along the external field direction.
As we introduce in detail below, in the present work we

have found two types of topological semimetals (TSMs) to
realize the linearly and circularly polarized TA phonon
condensation under magnetic field, respectively. One class
is a Dirac semimetal with Dirac points being located along
the high-symmetry axis. Because of the existence of
inversion symmetry, the stable density wave in this case
is the “shear strain wave” caused by linearly polarized TA
phonon condensation. The chiral TA phonon conden-
sation may happen in another noncentrosymmetric system,
Kramers-Weyl semimetal, which is found to be a perfect
type of material to form a “self-twisting wave” with the
appearance of 3D QHE as its by-product.

II. MODEL

Let us start with a generic model describing a semimetal
system with electron-phonon coupling,

Ĥ ¼ 1

N

X
αβk

Hαβkĉ
†
αkĉβk þ

1

N

X
λq

ℏωλqb̂
†
λqb̂λq

þ 1

N3=2

X
αβk
λq

Gαβλkqĉ
†
αkþqĉβkðb̂λq þ b̂†λ;−qÞ þ H:c:; ð1Þ

where Hαβk is electron k · p Hamiltonian with αðβÞ being
band index, ωλq ¼ vphλ jqj is the acoustic phonon frequency

with polarization λ ¼ x, y, z and speeds vphλ , and Gαβλkq is
the electron-phonon coupling matrix. ĉαk and b̂λq are
annihilation operators of electron and phonon, respectively.
N denotes the total number of unit cells. The system here
has a discrete rotational symmetry Ĉnz, and a strong
external magnetic field Bzẑ is applied. With respect to
Ĉnz, we adopt symmetric gauge A ¼ ð−y; x; 0ÞBz=2 in
cylindrical geometry and apply the Peierls substitutions

k� → ð−i∂x þ eAx=ℏcÞ � ið−i∂y þ eAy=ℏcÞ then. Under
the magnetic field, in-plane motions of 3D electrons are
fully quantized to form Landau levels and these “Landau
bands” only disperse along z direction. In the long wave-
length limit, discrete rotation symmetry in crystals can be
approximated to be continuous and the total angular
momentum jzℏ is conserved, which contains orbital part
lezℏ ¼ ðm − nÞℏ [11] carried by the Landau level wave
functions jn;mi (n is Landau level index and m the
subindex) and internal part szℏ (which is called “spin”
here) inherited from the k · p model. Thus, all electronic
states are uniquely labeled as ĉ†nmkz

hereafter. Note that the
effect of the direct coupling between charged ions and
magnetic field is weak enough to be ignored (see
Appendix A).
Assuming that both the rotation and translation sym-

metries are along the z axis, on a linearly polarized basis,
the canonical coordinates of the TA phonon modes can be
expressed as X̂�qz ¼ ðX̂xqz � iX̂yqzÞ=

ffiffiffi
2

p
, which carry the

orbital angular momenta �ℏ. In the cases of TSMs with
both electron-phonon coupling and strong spin-orbit cou-
pling (SOC), spin sz, electron orbital lez , and phonon orbital
lphz angular momenta are all coupled. However, n index is
fixed in the quantum limit, andm is conserved. Thus, in our
system, only sz and l

ph
z are coupled (see Appendix B). As a

result, three selection rules are enforced to electron-phonon
coupling due to translation T̂z and rotation Ĉz symmetries:

sz ¼ s0z þ lphz;λ; m ¼ m0; kz ¼ k0z þ qz: ð2Þ

It is worth noting that, different from the real transition
process, here we focus on the virtual process caused by
electron-phonon coupling where the conservation of energy
is unnecessary.
When q; k ≪ l−1B , the forms of electron-phonon coupling

for bothLAandTAphononmodes can bederived in a unified
way using the Bir-Pikus formalism [12], which describes the
strain potential with both hydrostatic and shear deformation
effects included [13,14]. To be specific, a minimum non-
trivial model with only two Landau bands is considered.
Since these two bands (labeled by α, β) of our interest will
hold the same n index, we drop it hereafter to lighten the
notation. For a certain nesting wave vector Q, on a basis
Ψ̂†

mkzQ
¼ ðĉ†sαzmkzþQ=2; ĉ

†
sβzmkzþQ=2

; ĉ†sαzmkz−Q=2; ĉ
†
sβzmkz−Q=2

ÞT ,
with only Ĉz imposed, the specific form of electron-phonon
couplingGmkzλQ, up to the zeroth order of k and the first order
of q (see Appendix C 2) is

Gmkz�;Q ¼ iQξ�;Qg�σ∓δðsαz − sβz − lphz;�Þ;
Gmkzz;Q ¼ iQξzQðg0σ0 þ gzσzÞδðsαz − sβzÞ; ð3Þ

where Pauli matrices σλ span the pseudo-spin space and
σ� ¼ ðσx � iσyÞ=2, ξλqz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Mωλqz

p
is the zero-point
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displacement amplitude with M being the mass of ions in
each unit cell, and gλ are the coupling strength between
electrons and phonons. For simplicity, here we set g0 ¼ 0.
Because of the nesting feature of the FS, the ionic motion

will couple very strongly to the electronic degrees of
freedom. Such a system is unstable and can be dealt with
by the mean-field approach to replace the canonical
coordinate operators with their expectation values hX̂λQi,
then the mean-field Hamiltonian per unit cell reads (see
Appendix D 3)

ˆ̄HQ ¼ 1

N

X
mkz

ðHmkzQ þ ΔmkzQÞΨ̂†
mkzQ

Ψ̂mkzQ

þM
N

X
λ

ðg−1λ vphλ jΔλQjÞ2; ð4Þ

where HmkzQ now becomes the effective Hamiltonian

on the basis Ψ̂†
mkzQ

in the reduced Brillouin zone
kz ∈ ½−Q=2; Q=2�. The ratio of shear to longitudinal wave
speeds is determined by Poisson’s ratio σ through relation
vphT =vphz ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 2σÞ=ð2 − 2σÞp

. The order parameter is a
matrix, ΔmkzQ ¼ P

λ τþGmkzλQΔλQ=ðiQξλQgλÞ þ H:c:, and
will be determined through self-consistent loop iteratively,
where τ� ¼ ðτx � iτyÞ=2 span the valley degrees of free-
dom. In the following, we discuss two classes of realistic
materials, Dirac and Kramers-Weyl semimetals.

III. REALISTIC MATERIALS

The first class of materials considered in the present
study is Dirac semimetal, such as Na3Bi [15–18], in which
a pair of Dirac points located at kz axis are protected by
time reversal symmetry (TRS) T̂ , inversion symmetry P̂,
and rotation symmetry Ĉnz (n ¼ 3 for Na3Bi), as shown in
Fig. 1(a). Near Γ point, the effective Hamiltonian reads
HD

k ¼ ðmzk2z þm⊥kþk− −m0Þτzσ0 þ ℏv⊥ðτxσz − τyσ0Þ −
μ on basis Ψ̂D†

k ¼ ðĉ†1=2k; ĉ†−1=2k; ĉ†3=2k; ĉ†−3=2kÞT , where

electron states are denoted as ĉ†szk. After the magnetic field
is applied, the low-energy physics is dominated by two
zeroth Landau bands with spin sz ¼ 1=2 and −3=2 as
shown in Fig. 1(b). The basis becomes ĉszmkz , and the
effective magnetic Hamiltonian is HD

kz
¼ ðmzk2z −m0Þσz −

μ (see Appendix D 1). The FS contains four points (except
μ ¼ 0), corresponding to states ĉ†sz;�kF;sz

. Three phonons

with different wave vectors are possible to participate in FS
nesting, two intervalley QD

sz and one intravalley QD
T .

Enforced by the selection rules Eq. (2), the LA phonon
mode is only allowed to participate in two intervalley
scattering processes (connecting two electronic states with
the same sz) to form a CDW phase. Note that two different
sz states connected by the intervalley scattering are either
both electron type or both hole type and will not contribute

to the electron-hole-type instability. In contrast, the intra-
valley scattering process involving electronic states with
different sz can happen only when circularly polarized TA
phonon modes (lphz ≠ 0) are considered. Depending on the
electron-phonon coupling strength gλ, the competition
between LA and TA phonons results in different phases,
which are described by the Hamiltonian Eq. (4). The
condensation of the LA phonon mode leads to ordinary
CDW order, which spontaneously breaks the translation
symmetry only. The situation of the TA phonon is quite
different. Similar to electromagnetic wave, a TA phonon
mode X̂λqz has two polarizations, which can be expressed

on circularly polarized basis X̂�;qz ¼ ðX̂x;qz � iX̂y;qzÞ=
ffiffiffi
2

p
.

When a TA phonon mode connects two different FS
sections of the zeroth Landau bands as illustrated in
Fig. 1(b), it can also be softened or even condensed.
After condensation, in the generic case the expectation
value of the phonon operators with both polarizations will
be nonzero. Interestingly, the condensation of the TA
phonon modes can be either linearly, elliptically, or
circularly polarized depending on the relative phase factor
eiϕxy ¼ hX̂yi=hX̂xi between the order parameters of two
orthogonal linearly polarized TA modes as summarized in
Table I.
In particular, the presence of inversion symmetry in a

Dirac semimetal will guarantee left- and right-handed

FIG. 1. Dirac semimetal. (a) Band structure near Γ point in kz
axis. (b) Zeroth Landau bands when Bz ¼ 10 T. The area in olive
drab denotes the regime of tunable chemical potential μ. (c) The
ground state is either CDW with LA phonon softened (regime in
blue) or shear strain wave with linearly polarized TA phonon
softened (regime in burnt orange). When μ ¼ 0, effective coupling
strength jgDT =gDz j ¼ vphT =vphz ¼ ffiffiffi

3
p

=3 is the phase boundary while
it shifts to the right when μ increases. (d) Schematics of charge
center (black dots) distribution in shear strain wave (SSW) phase.
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TA modes to be condensed with the same amplitudes,
corresponding to a linearly polarized TA mode actually.
Unlike charge redistribution along the wave vector in LA
phonon condensation, the condensation of linearly polar-
ized TA phonon generates a shear strain with periodicity
QD

T instead, which is called a shear strain wave in our work.
Based on the model parameters listed in Table II, the mean-
field phase diagram is plotted in Fig. 1(c), in which CDW
and shear strain wave phases are both possible to be
stabilized in different regions of the parameter space.
The key parameter determining the ground state is the
ratio of coupling strength jgDT =gDz0j, which is the horizontal

axis of Fig. 1(c). When it exceeds vph;DT =vph;Dz ¼ ffiffiffi
3

p
=3 at

μ ¼ 0, the shear strain wave phase is more stable than the
CDW phase. Note that, after the CDWor self-twisting wave
phases have been stabilized, the Dirac semimetal becomes a
trivial insulator rather than 3D QHE state because the
energy gap is opened on the zeroth Landau bands.
Another class is Kramers-Weyl semimetal such as

β-Ag2Se [19,22,23], which is not centrosymmetric and
circularly polarized TA phonons will not be suppressed by
P̂. Unlike ordinary Weyl semimetals, the Weyl points in
Kramers-Weyl semimetal are all pinned at the time reversal
invariant momenta. For example, the band structure around
Γ point is shown in Fig. 2(a). Assuming that the system
contains a Cnz (n ¼ 2 in β-Ag2Se) symmetry, its k · p
model near Γ point reads HKW

k ¼ðuzkzþu⊥k2⊥Þσ0þ
ðvzkzσzþv⊥k⊥ ·σ⊥Þ−μ on basis Ψ̂KW†

k ¼ðĉ†1=2k; ĉ†−1=2kÞT .
Then in the quantum limit, the low-energy physics is
dominated by two Landau bands with Landau band index

n ¼ 1 and spin sz ¼ �1=2, as shown in Fig. 2(b) (see also
Appendix D 2).
To reach the nesting condition that the FS contains only

two points, the Fermi level has to be placed inside the gap at
the Γ point, which is generated by a rotational symmetry
breaking term in addition to the magnetic field. Such a
rotation symmetry breaking term can be generated by either
the Zeeman effect of an additional in-plane magnetic
field or some kinds of strain. Strictly speaking, the wave
functions of different Landau bands are mixed by the
symmetry breaking term and angular momentum is no long
a good quantum number. However, such mixing of states
with different angular momenta is only significant near the
Γ point, while for states at the FS, the mixing effect is
negligible and the angular momentum is still approximately
conserved as well as the corresponding selection rule of
electron-phonon coupling. Thus, in such a system the
dominant instability happens for the circularly polarized
TA phonons because of the selection rule. As a result,
electron-phonon coupling will lead to self-twisting wave
phase followed by the condensation of chiral TA phonon
modes, as shown in Fig. 3(c). Since now the gap opens for
the Landau bands with index n ¼ 1, the electronic ground

TABLE I. Three types of polarizations of ground states caused
by TA phonon condensation. Below n is an integer.

Relative phase ϕxy ¼ nπ ϕxy ≠ nπ=2 ϕxy ¼ ð2nþ 1Þπ=2
Polarization Linear Elliptical Circular

TABLE II. Model parameters for Dirac (Na3Bi) [16] and
Kramers-Weyl (β-Ag2Se) [19] semimetals. The relative atomic
mass M0 ¼ 1.661 × 10−27 kg and Landé g factor is set as 2. The
superscript D (KW) in the symbols stands for Dirac (Kramers-
Weyl) semimetals, while the subscript F stands for Fermi.

m0 mz m⊥ ℏv⊥ vDF
0.087 eV 10.64 eVÅ2 10.36 eVÅ2 2.46 eVÅ 289 km=s

MD=M0 gDz0 [20] vph;Dz σD

556 0.5 eV 2650 m=s 0.25

uz u⊥ vz v⊥ vKWF
−6 eVÅ2 2.5uz 0.2 eVÅ 0.3vz vz=ℏ

MKW=M0 gKWz0 [21] vph;KWz σKW

1180 0.1 eV 2088 m=s 0.4

FIG. 2. Kramers-Weyl semimetals. (a) Band structure near Γ
point in kz axis. (b) Lowest Landau bands when magnetic fields
Bz ¼ 10 T and rotation symmetry breaking term δT are both
applied, where the latter leads to a gap 2δT ¼ μ1 − μ2 ¼ 2.4 meV
between n ¼ 1 and 2 Landau bands. The color shades in red and
blue denote proportions of wave functions with sz ¼ �1=2, and
they are mixed due to C2z breaking. (c) The phase diagram of
ground state has two regimes, where the area in burnt orange is
self-twisting wave (STW) when Fermi level lies within the gap
[area in olive of (b)] while other blue regimes are CDW phase.
The red star marks the parameters used in Fig. 3. Here we set
coupling constants gþ ¼ 0.5g−. (d) Schematics of charge center
(black dots) distribution in self-twisting wave phase.
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state will have 3D QHE with quantized transverse con-
ductance σ3D ¼ QKW

T e2=h.

IV. PHYSICAL EFFECTS

In this section, we discuss the possible exotic physical
phenomena caused by the condensation or softening of the
TA phonon modes. The first is the Goldstone mode in self-
twisting wave phase. Similar to CDW phase where the
sliding mode is a supercurrent of charge as a result of
spontaneous breaking of translation symmetry, the chiral

sliding mode in the incommensurate self-twisting wave
phase is a supercurrent of angular momentum instead.
Also, the new ground state will be a perfect chiral crystal,
where the chiral phonon is discussed in recent works in the
context of chiral [24], nonsymmorphic [25], and two-
dimensional [26] materials.
More interesting effects are from acoustical activity

[27–29]. To analyze frequency renormalization, the leading
order of phonon self-energy is considered (Appendix E),

Δω2
λqz

¼ ðωren
λqz

Þ2 − ω2
λqz

¼ ðgTqzÞ2
M

Lλqzðωren
λqz

Þ;

Lλqz ¼
1

N

X
αβmkz

ðfαkzþqz − fβkzÞδðsαz − sβz − lphz;λÞ
εαkzþqz − εβkz − ℏðωþ iηÞ ; ð5Þ

where Lλqz is the Lindhard response function with fαkz ≡
fðεαkzÞ being Fermi-Dirac distribution. At low temperature
T < δT=kB, where the gap will not be smeared out by
thermal fluctuation, the TA phonon frequencies at long
wavelength regime are almost unscreened and quasi-
degenerate, while two different branches of chiral phonons
deviate hugely near wave vector QT. The effective
dispersion of the left-handed phonon branch near �QT is

ωð�QT Þ
δqz

¼ ωQT
þ bðδqzÞ2=2withωQT

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT − TcÞ=Tc

p
[2]

before phase transition happens (T higher than critical
temperature Tc), and b ¼ 8.71 × 10−4 m2=s is fitted at
T ¼ 1.1 K. Thus, the system is a gyromagnetic medium
with acoustical activity, in which the group speed of
the right-handed phonon branch is still vphT , and that of

the left-handed chiral waves is renormalized to vð�QT Þ
δqz

¼
∂ωð�QTÞ

δqz
=∂ðδqzÞ ¼ bδqz, as shown in Fig. 3(a).

After the degeneracy of TA phonon modes is lifted
by electron-phonon coupling, a series of magnetoa-
coustic effects immediately follow, such as Faraday,
Kerr, Cotton-Mouton, or Voigt effects [29,30]. As exam-
ples, here we discuss Faraday rotation and Kerr ellipticity
as results of magnetoacoustic circular birefringence, which
are also found in α quartz [31,32] and superfluid 3He-B
[33,34]. Consider a setup inwhich thegyromagnetic acoustic
medium is surrounded by a normal medium such as
chlorinated polyvinyl chloride (CPVC) with shear acoustic
wave speed 1060m/s. In the polar configuration, if a linearly
polarized TAwavewith frequencyω > ωQT

travels from the
CPVC side to the gyromagnetic medium, the reflected wave
from the interface will become elliptical, while the polari-
zation plane of refracted wave in the gyromagnetic medium
will gradually rotate, as shown in Fig. 3(b). Under external
magnetic induction Bz ¼ 10 T at T¼1.1K, for acoustic
wave with frequency ω¼58.0GHz, a significant Kerr
ellipticity ϵK ¼ 0.41, and a giant Faraday angle per distance
1.77 × 105 rad=cm (see Appendix G) are estimated to be
measured. Other typical effects, such as Faraday ellipticity

FIG. 3. Kramers-Weyl semimetals. (a) Renormalized TA pho-
non frequencies at T ¼ 1.1 K (near Tc ≈ 1 K). Here jgT=gz0j ¼
1.43 × 10−4 and the group speeds of left-handed (pink) and right-
handed (black) chiral TA phonons are vph� . ωs is the frequency
of standing acoustic waves. (b) Magnetoacoustic effects. The
gyromagnetic acoustic medium (cylinder in gray) is surrounded
by regular medium. When a linearly polarized (two-headed arrow
denotes the polarization direction) TAwave (red arrow) travels to
the interface normally, the reflected wave (blue) becomes
elliptical with Kerr ellipticity ϵK and rotation angle θK , while
the polarization plane of refracted wave (red) gradually rotates by
Faraday angle θF when it moves forward. (c) Left: schematics of
left-handed chiral standing acoustic wave between two nodes.
The red line denotes the amplitude of each center of mass and the
arrows refer to its anticlockwise rotating trajectory. Right:
resonant frequencies of standing modes. Given a finite length
system at T1 ¼ 1.1 K, the frequencies of chiral standing modes

with wave vector near QT are ωQT
þ ΔωðQT Þ

n , and of normal long

wavelength standing modes (black) are ωð0Þ
n0 . ω

ð0Þ
N is the Nth

normal standing mode close to ωðQT Þ
1 . When the system is cooled

down from T1 to T2 (∼0.02 K), the frequencies of ωð0Þ
n are almost

the same, while the fundamental chiral mode ωQT
decreases

rapidly and the frequency differences ΔωðQT Þ
n increase.
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and Kerr rotation induced by magnetoacoustic circular
dichroism, can also be observed.
Another easily observed signature of magnetoacoustic

circular refringence is resonant frequency of chiral standing
acoustic wave, as shown in Fig. 3(c). Given a system at
T1 ¼ 1.1 K with length d ¼ 1 cm along the z axis, the
resonant frequencies of the left-handed chiral modes with

wave vector around QT are ωQT
þ ΔωðQTÞ

n ¼ 56.1 GHzþ
0.086ðnþ 1=2Þ kHz and of the normal long wavelength

standing modes are ωð0Þ
n ¼ ð268nÞ kHz (see Appendix F).

Because the electronic screening leads to the frequency
local minimum ωQT

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT − TcÞ=Tc

p
[2], a tiny temper-

ature change will lead to a significant lowering of funda-
mental mode frequency of the chiral standing waves as
well as an increase of frequency differences. For example,

ωQT
will decrease to 48.1 GHz and ΔωðQT Þ

n increase to
0.097ðnþ 1=2Þ kHz if the system is cooled down to
T ¼ 1.08 K. Similar temperature sensitive behaviors of
resonances can also be observed in shear strain wave phase
of Dirac semimetal, while the standing modes are not chiral
but linearly polarized.
In the end, we would also mention the chiral phonon

correction to the Einstein–de Hass effect. When electron-
phonon coupling is turned off and the direct coupling of
ions to magnetic field is neglected, TRS will pair two
phonons with opposite angular momenta as T̂ X̂þ;qT̂

−1 ¼
X̂−;−q, resulting in a zero net phonon angular momenta,
which is one of the premises in the original proposal of
the Einstein–de Hass effect [35]. However, the TRS of
the TA phonon subsystem is broken mediated by the
electron-phonon coupling. As a result, the nonzero net
phonon angular momentum has to be included in the
conservation law of total angular momentum and will
lead to an observable correction to the Einstein-de Hass
effect. This correction is also investigated in the work of
Zhang and Niu [36] where they discussed spin-phonon
coupling. For β-Ag2Se under external magnetic field B ¼
5 T at temperature T ¼ 15.7 K, the net phonon angular
momentum per unit cell is estimated to be 1.5 × 10−3ℏ
(see Appendix I).

V. CONCLUSION AND OUTLOOK

The interaction between electron and TA phonon mode
has been overlooked for decades. In this article, we have
proposed two kinds of exotic condensation of TA phonon
modes, shear strain wave and self-density wave, induced by
electron-TA phonon coupling in specific TSMs under
magnetic field. We find that when a strong enough magnetic
field is applied along the rotational axis of Dirac and
Kramers-Weyl semimetal materials, the low-energy elec-
tronic states can be described by their zeroth or lowest
Landau bands with different internal angular momentum
szℏ. The presence of rotational symmetry enforces important
selection rules to electron-phonon coupling terms for both
LA and TA phonons. The combination of FS nesting and the
selection rules of electron-phonon coupling induce two
exotic new density wave states. The linearly polarized TA
phonon condensation leads to a shear strain wave state while
circularly polarized TA phonon condensation gives us a self-
twisting state. The self-twisting phase is a typical chiral
matter, which can lead to a number of new physical effects
including chiral sliding mode, chiral standing wave, mag-
netoacoustic effects, and chiral phonon correction to the
Eistein–de Hass effect.
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APPENDIX A: CHARGED HARMONIC
OSCILLATOR IN UNIFORM MAGNETIC FIELD

To estimate the magnitude of direct coupling of magnetic
field on lattice (ions) vibration, here we consider a simplest
3D harmonic oscillator carrying Ze charges. By minimal
coupling to vector potential A, its Hamiltonian reads

Ĥph ¼ 1

2M
½ðP̂x − ZeAxÞ2 þ ðP̂y − ZeAyÞ2 þ P̂2

z � þ
1

2
Mω2

TðX̂2
x þ X̂2

yÞ þ
1

2
Mω2

zX̂
2
z

¼
�

1

2M
ðP̂2

x þ P̂2
yÞ þ

1

2
M

�
ω2
T þ

�
ZeB
2M

�
2
�
ðX̂2

x þ X̂2
yÞ
�
þ
�

1

2M
P̂2
z þ

1

2
Mω2

zX̂
2
z

�
−
ZeB
2M

L̂z

¼
�
1

2M
ðP̂2

x þ P̂2
yÞ þ

1

2
Mω̃2

TðX̂2
x þ X̂2

yÞ
�
þ
�

1

2M
P̂2
z þ

1

2
Mω2

zX̂
2
z

�
−
Zme

Mℏ
μBBL̂z;

ω̃2
T ¼ ω2

T þ
�
Zme

Mℏ
μBB

�
2

; ðA1Þ
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where M is the mass and ωz and ωT are eigenenergies in
the z axis and xy plane (given rotation symmetry along
the z axis). L̂z ¼ X̂xP̂y − P̂xX̂x is z component of orbital
angular momentum operator. Comparing to the unper-
turbed Hamiltonian ĤphðA ¼ 0Þ, two in-plane effects are
introduced: the degenerate eigenfrequencies of states in xy
plane shifting from ωT to ω̃T , and the splitting ΔωT ¼
2ðZmeμBB=Mℏ2ÞL̂z between chiral modes with different
orbital angular momenta. Now we can do a rough estima-
tion: assuming that the frequency of a certain phonon mode
in realistic materials is around ωT ¼ 1 THz (speed vphT ¼
2 × 103 m=s and wave vector qz ¼ 0.5 × 109 m−1, smaller
than 1=10 scale of the first BZ), the mass ratio of the
electron to the ionme=M ∼ 10−6, the effective charge of ion
Z ∼ 10, and μBB=ℏ ≈ 1 THz when Bz ¼ 10 T. Taking the

unperturbed frequency ωT as a reference, the order of
magnitude of shifting and splitting are around jω̃T − ωT j=
ωT ≈ 10−10 and ΔωT=ωT ≈ 10−5 given jLzj ¼ ℏ. There-
fore, it is sensible to ignore both of these effects and treat
phonons as neutral particles when we investigate electron-
phonon coupling.

APPENDIX B: SELECTION RULES IN
SYMMETRIC GAUGE

In this appendix, we specify that, in the quantum limit,
indices n andm are conserved separately and then derive the
selection rules in electron-phonon coupling. Let us start with
the orbital angular momentum of the spinless 2D electron
gas. When a uniform magnetic field with symmetric gauge
A ¼ ð−y; x; 0ÞB=2 is applied, the Hamiltonian reads

Ĥ2D ¼ 1

2m
½ð−iℏ∂x − yeB=2Þ2 þ ð−iℏ∂y þ xeB=2Þ2� ¼ 1

2m
ðπ̂2x þ π̂2yÞ; ðB1Þ

where π̂x;y are covariant momenta. Based on the guiding-center coordinates r̂x ¼ x̂þ π̂y=eB and r̂y ¼ ŷ − π̂x=eB, we can
define two annihilation operators,

â ¼ lBffiffiffi
2

p
ℏ
ðπ̂x þ iπ̂yÞ; b̂ ¼ lBffiffiffi

2
p

ℏ
ðr̂x − ir̂yÞ; ðB2Þ

with magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
ℏ=eB

p
and commutation relations ½â; â†� ¼ ½b̂; b̂†� ¼ 1, ½â; b̂� ¼ ½â†; b̂� ¼ 0. Then all Landau

wave functions are able to be constructed as jn;mi ¼ ðn!m!Þ−1=2ðâ†Þnðb̂†Þmj0i, where n, m are Landau level index and
subindex, respectively. Then the Hamiltonian can be rewritten as Ĥ ¼ ðâ†âþ 1=2Þℏωc (cyclotron frequency ωc ¼ eB=m),
which is only dependent on Landau level index and all Landau level states distinguished by differentm quantum number are
highly degenerate. The continuous rotation symmetry gives us a conserved quantity, canonical orbital angular momentum,

L̂z ¼ −iℏðx∂y − y∂xÞ ¼
B
2
ðr̂2x þ r̂2yÞ −

1

2eB
ðπ̂2x þ π̂2yÞ ¼ ðb̂†b̂ − â†âÞℏ≡ L̂ðmÞ

z þ L̂ðnÞ
z ; ðB3Þ

where L̂ðnÞ
z ¼ −â†âℏ, L̂ðmÞ

z ¼ b̂†b̂ℏ, and ½L̂ðnÞ
z ; L̂ðmÞ

z � ¼ 0.
Now we know a state jn;mi carries orbital angular
momentum Lz ¼ ðm − nÞℏ.
For a generic continuum model of 3D spinful electron

under magnetic field Bzẑ, the xy-plane orbital motions are
still described on the basis of Landau wave functions jn;mi,
and only the total angular momentum ðsz þm − nÞℏ is
conserved. Since HamiltonianHαβ

kz
ð−i∂x þ eAx=ℏc;−i∂y þ

eAy=ℏcÞ is quantized to Ĥαβ
kz
(ðâ† þ âÞ= ffiffiffi

2
p

lB; ðâ† − âÞ=
i

ffiffiffi
2

p
lB), all SOC terms are only related to LðnÞ

z and irrelevant

to LðmÞ
z . Therefore, the conservation of angular momenta is

actually able to be separated into two parts:

sz þ n ¼ s0z þ n0; m ¼ m0: ðB4Þ

As will be discussed in the next appendix, the electron-
phonon coupling we obtained only involves the spin flip and

it only happens within Landau bands with the same indices
n ¼ n0, so the selection rules arrive at a quite demanding
form:

sz ¼ s0z þ lphz;λ; m ¼ m0; ðB5Þ

where lphz;λ is the orbital angular momentum of a certain
phonon with polarization λ.

APPENDIX C: ELECTRON-PHONON COUPLING

1. Bir-Pikus formalism

The lattice vibration in the continuum limit is a time-
dependent local strain ε̂ðr; tÞ. For the small amplitude of
ions’ displacement ûλðrÞ ¼ N−1=2P

q X̂λqeiq·r compared
with the scale of the unit cell, the quantized strain operator
in terms of phonon creation and annihilation operators is

TRANSVERSE PEIERLS TRANSITION PHYS. REV. X 13, 011027 (2023)

011027-7



ε̂ijðrÞ¼
1ffiffiffiffi
N

p
X
q

iqjX̂iqeiq·r¼
1ffiffiffiffi
N

p
X
q

iqjξiqðb̂iqþ b̂†i;−qÞeiq·r;

ðC1Þ

with ξλq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Mωλq

p
, and it is natural to treat it by

perturbation theory. However, a generic deformed lattice
potential VεðrÞ does not have the same periodicity as the
original one V0ðrÞ and the regular perturbation theory is not
justified any more since the wave function of the perturbed
Hamiltonian is always expressed as a superposition of wave
functions of the unperturbed Ĥ0 satisfying the same
boundary conditions. The same difficulty shows up when
Bir and Pikus tried to tame the effect of a homogeneous
strain [12]. Therefore, we develop their formalism to deal
with the effect of lattice vibration and transform the
coordinates to make the periodicity in the new coordinate
system coincide with the unstrained situation in the old
coordinate system. Up to linear order of strain, this is done
by putting

r0i ¼ ri þ ε̂ijrj; p̂0
i ¼ −iℏ

∂

∂r0i
¼ p̂i − ε̂ijp̂j; ðC2Þ

where r, p are electron’s coordinate and momentum, and
the transformation between the reciprocal vectors is

k0i ¼ ki − ε̂ijkj: ðC3Þ

Correspondingly, the Bloch function in the deformed
system becomes

eik
0·r0unk0 ðr0Þ ¼ eik·runk0(ð1þ ε̂Þr)≡ eik·ru0nkðrÞ; ðC4Þ

having the same phase factor as in an undeformed system.
By this way, we are safe to use perturbation theory and
the difference of the Hamiltonian can be expanded in terms
of ε̂ij,

Ĥ0 ¼ p̂2

2m0

þ V0ðrÞ þ ℏ
4m2

0c
2
ðσ̂ ×∇V0Þ · p̂;

Ĥep ¼ Ĥεðr0; p̂0Þ − Ĥ0ðr; p̂Þ; ðC5Þ

so the strained electron Hamiltonian in the original coor-
dinates transforms into the deformed coordinates:

Ĥεðr0; p̂0Þ ¼ p̂02

2m0

þ Vεðr0Þ þ ℏ
4m2

0c
2
½σ̂ ×∇0Vεðr0Þ� · p̂0

¼ ½ð1 − ε̂Þp̂�2
2m0

þ Vε(ð1þ ε̂Þr)þ ℏ
4m2

0c
2
fσ̂ × ½ð1 − ε̂Þ∇�Vε(ð1þ ε̂Þr)g · ð1 − ε̂Þp̂

¼ Ĥ0ðr; p̂Þ − 1

m0

p̂iε̂ijp̂j þ Vijε̂ij −
ℏ

4m2
0c

2
ϵijkσ̂i½ð∂jV0Þε̂ktp̂t þ ðε̂jl∂lV0Þp̂k − ð∂jVlmε̂lmÞp̂k�; ðC6Þ

where Vij ≡ limε→0½Vε(ð1þ ε̂Þr) − V0ðrÞ�=ε̂ij, and we used a commutation relation:

½p̂i; ε̂jk� ¼
1ffiffiffiffi
N

p
X
q

iqkξjqðb̂jq þ b̂†j;−qÞ½p̂i; eiq·R� ¼
1ffiffiffiffi
N

p
X
q

iqkξjqðb̂jq þ b̂†j;−qÞðℏqieiq·RÞ ¼ 0þOðq2Þ; ðC7Þ

then

½ð1 − ε̂Þ∇�Vε(ð1þ ε̂Þr) ¼ ð∂i − ε̂ij∂jÞðV̂0 þ Vlmε̂lmÞêi ¼ ð∂iV0 − ε̂ij∂jV0 þ ∂iVlmε̂lmÞêi;
fσ̂ × ½ð1 − ε̂Þ∇�Vε(ð1þ ε̂Þr)g · ð1 − ε̂Þp̂ ¼ ϵijkσ̂ið∂jV0 − ε̂jl∂lV0 þ ∂jVlmε̂lmÞðp̂k − ε̂ktp̂tÞ

¼ ϵijkσ̂i½ð∂jV0Þp̂k − ð∂jV0Þε̂ktp̂t − ðε̂jl∂lV0Þp̂k þ ð∂jVlmε̂lmÞp̂k�
¼ σ̂ ×∇V0 · p̂ − σ̂ × ∇V0 · ðε̂ p̂Þ − σ̂ × ðε̂∇V0Þ · p̂þ σ̂ ×∇ðε̂VÞ · p̂; ðC8Þ

where we denote ε̂V ≡ ε̂lmVlm following the original notation by Bir and Pikus. Then we have

Ĥep ¼ Vε̂ −
1

m0

p̂ ε̂ p̂þ ℏ
4m2

0c
2
½σ̂ ×∇ðε̂VÞ · p̂ − σ̂ ×∇V0 · ðε̂ p̂Þ − σ̂ × ðε̂∇V0Þ · p̂�

¼ −
1

m0

π̂iε̂ijp̂j −
ℏ

4m2
0c

2
ðp̂ × σ̂Þiε̂ij∂jV0 þ Vijε̂ij þ

ℏ
4m2

0c
2
σ̂ × ðε̂ij∇VijÞ · p̂

¼ ε̂ijV̂ij þOðq2Þ; ðC9Þ
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where π̂ ¼ p̂þ ðσ̂ ×∇V̂0Þℏ=4m0c2, and note that σ̂ × ð∇ε̂ÞV · p̂ is in the order of q2. Here V̂ij is a rank-2 tensor operator.
Then the Schrödinger equation becomes

ðĤ0 þ ĤepÞeik·ru0nkðrÞ ¼ E0
nke

ik·ru0nkðrÞ ⇒ ĤεðkÞu0nkðrÞ ¼ E0
nku

0
nkðrÞ: ðC10Þ

In the end, we arrive at the strained k · p Hamiltonian,

ĤεðkÞ ¼ Ĥ0 þ Ĥ0
k þ Ĥep þ Ĥep

k ;

Ĥ0
k ¼

ℏ2k2

2m0

þ ℏ
m0

k · π̂;

Ĥep
k ¼ ℏ2ε̂ijkikj

m0

þ ℏ
m0

ðε̂ij þ ε̂jiÞkip̂j þ
ℏ2

4m2
0c

2
½σ̂ ×∇ðε̂VÞ · k − σ̂ ×∇V0 · ðε̂kÞ − σ̂ × ðε̂∇V0Þ · k�; ðC11Þ

where the first two terms of Ĥep
k are nonrelativistic effects and all others are the contributions from SOC. In this work, we

only consider electron-phonon coupling up to the zeroth order of k, so Ĥep
k is ignored in the following. Note that, if we are

interested in Hamiltonian up to first order of q, treating strain tensor ε as a classical quantity during all the derivations then
quantizing it at the very end in Eq. (C11) will obtain the same result. Because we focus on phonons with well-defined
angular momenta along z direction, i.e., nonzero components are ε̂iz (i ¼ x, y, z), we only need to concern V̂iz terms and the
others have no contributions to electron-phonon coupling. Keeping these nonzero coefficients in mind, the spherical
components are defined as

V̂0 ¼ V̂zz; V̂�1 ¼
1

2
ðV̂xz � iV̂yzÞ; V̂�2 ¼ 0: ðC12Þ

As followed, we rewrite the electron-phonon coupling in terms of these symmetric components,

Ĥep ¼ ε̂zzV̂zz þ ε̂þ;zV̂−1 þ ε̂−;zV̂þ1; ðC13Þ

where ε̂�;z ¼ ε̂x;z � iε̂y;z. Now we arrive at the matrix elements of electron-phonon coupling Hamiltonian on chiral phonon
basis,

hψ sαzmkz jε̂�;zV̂∓1jψ sβzm0k0z
i ¼ 1ffiffiffiffi

N
p iqzξ�;qzðb̂�;qz þ b̂†�;−qzÞhusαzmkz jeiðk

0
zþqz−kzÞzV̂∓1jusβzm0k0z

iδðm0 −mÞ

¼ 1ffiffiffiffi
N

p iqzξ�;qzðb̂�;qz þ b̂†�;−qzÞhusαzmkzþqz jV̂∓1jusβzmkz
iδðk0z þ qz − kzÞδðsαz − sβz − lphz;�;qz

Þ

≡ 1ffiffiffiffi
N

p Gmkz�;qzðb̂�;qz þ b̂†�;−qzÞ; ðC14Þ

where V̂ has experienced Landau quantization procedure, jusβzmkz
i is the periodic part of Bloch wave function jψ sβzmkz

i, and
Ĥep is diagonal with respect to m index due to the selection rules. Similarly, for LA phonon we have

hψ sαzmkz jε̂zzV̂zzjψ sβzm0k0z
i ¼ 1ffiffiffiffi

N
p iqzξzqzðb̂zqz þ b̂†z;−qzÞhusαzmkzþqz jV̂zzjusβzmkz

iδðk0z þ qz − kzÞδðsαz − sβzÞ

≡ 1ffiffiffiffi
N

p Gmkzz;qzðb̂z;qz þ b̂†z;−qzÞ: ðC15Þ

In realistic materials, it is not practical to calculate these
integrals husαzmkzþqz jV̂λzjusβzmkz

i (λ ¼ �; z) either analyti-

cally or numerically. Thus, in the next section, we para-
metrize them based on the principles of symmetries.

2. Constrained by point group symmetries

In certain materials, electron-phonon coupling is con-
strained by the crystal symmetries. For Na3Bi (no. 194
space group P63=mmc) at Γ point, the point group is
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6=mmm generated by rotations C3z, C2z, C110 and
inversion P. For β-Ag2Se (no. 19 space group
P212121) at Γ point, the point group is 222, gen-
erated by C2z and C2x. Here we consider three sym-
morphic symmetries of our interest: rotation, inversion,
and mirror as their combination. Starting with the
rotational symmetry, on the basis Ψ̂†

mkzQ
¼

ðĉ†αmkzþQ=2; ĉ
†
βmkzþQ=2; ĉ

†
αmkz−Q=2; ĉ

†
βmkz−Q=2ÞT (here we

assume sαz > sβz ), up to the zeroth order of kz, with
the selection rule �ðsαz − sβzÞ ¼ lphz;∓;Q. And the angular
momentum of chiral phonon is defined as

L̂z;qz ¼ iℏðb̂†x;qz b̂y;qz − b̂†y;qz b̂x;qzÞ
¼ ℏðb̂†−;qz b̂−;qz − b̂†þ;qz b̂þ;qzÞ; ðC16Þ

where b̂†�;qz
¼ ðb̂†x;qz � ib̂†y;qzÞ=

ffiffiffi
2

p
, b̂�;qz ¼ ðb̂x;qz ∓

ib̂y;qzÞ=
ffiffiffi
2

p
, and correspondingly X̂�;qz ¼ ðX̂x;qz �

iX̂y;qzÞ=
ffiffiffi
2

p ¼ ξ�;qzðb̂∓;qz þ b̂†�;−qzÞ given amplitudes
ξx;qz ¼ ξy;qz ¼ ξ�;qz due to the rotation symmetry.
Consider a certain phonon mode ûλqzðz; tÞ ¼

X̂λqzðtÞeiqzz þ X̂λ;−qzðtÞe−iqzz, the electron-phonon coupling

Hamiltonian for the same n index Landau bands
reads

Ĥep
mkzqz

¼ 1ffiffiffiffi
N

p
X
λ

½τþGmkzλqz X̂λqz=ξλqz þH:c:�Ψ̂†
mkzqz

Ψ̂mkzqz ;

Gmkzz;qz ¼ iqzξzqzðg0σ0þgzσzÞδðsαz −sβzÞ;
Gmkz�;qz ¼ iqzξ�qzg�σ∓δðsαz −sβz − lphz;�Þ; ðC17Þ
where the coupling coefficients are complex constants
determined by specific materials. Note that, in the case of
jqj ¼ 0, three acoustic normal modes correspond to global
translations of the crystal, of which the displacement
amplitude is not defined and such translations will not alter
the electronic band structure. Therefore, it is assumed that
these modes are skipped throughout this article. Considering
that g0σ0 term means the coupling strengths between LA
phonon and electrons while gzσz term controls the strength
difference of coupling to two bands, either one is enough to
introduce a CDW gap. Hence, we simply set g0 ¼ 0 in the
numerical calculations to reduce complications.
To make the physical meaning of electron-phonon

coupling clearer, we rewrite the above electron-phonon
coupling Gmkzλqz on the linearly polarized basis:

X
λ¼�

Gmkzλqz X̂λqz=ξλqz ¼ iqz

�
0 g−ðX̂xqz − iX̂yqzÞ

gþðX̂xqz þ iX̂yqzÞ 0

�

¼ iqz

�
0 ðg1 − ig2ÞðX̂xqz − iX̂yqzÞ

ðg1 þ ig2ÞðX̂xqz þ iX̂yqzÞ 0

�

≡ iqzðg1X̂Tqz · σT þ g2X̂Tqz × σTÞ; ðC18Þ

where g1 ¼ ðg− þ gþÞ=2, g2 ¼ iðg− − gþÞ=2, X̂Tqz ¼
ðX̂xqx ; X̂yqzÞ, and σT ¼ ðσx; σyÞ. These are exactly two
possible forms of interactions between two vector oper-
ators: TA phonon normal coordinate and electron spin.
If inversion symmetry is considered, as in the Dirac

semimetal case, electron-phonon coupling is supposed to
be further constrained by P−1GλkzqzP ¼ G†

λ;−kz;−qz with
P ¼ σz, then gþ ¼ −g⋆−. In Kramers-Weyl semimetal, a
noncentrosymmetric system, this constraint is not enforced.
Given additional mirror symmetry Mx ¼ PC2x ¼ σy, the
X̂Tqz · σT term is killed and we haveX

λ¼�
Gmkzλqz X̂λqz=ξλqz ¼ iqzg2X̂Tqz × σT: ðC19Þ

APPENDIX D: EFFECTIVE MODELS IN
QUANTUM LIMIT

1. Topological Dirac semimetal

Near the Γ point, on the basis Ψ̂D†
k ¼ ðĉ†1=2;k; ĉ†−1=2;k;

ĉ†þ3=2;k; ĉ
†
−3=2;kÞT , constrained by TRS T ¼ τ0ðiσyÞK with

complex conjugation operator K and inversion symmetry
P ¼ τzσ0, the effective Hamiltonian for Dirac semimetal
Na3Bi reads

HD
k ¼

0
BBB@

mk 0 ℏv⊥kþ 0

mk 0 −ℏv⊥k−
−mk 0

† −mk

1
CCCA − μ; ðD1Þ

FIG. 4. (a) Band structures along kz axis of Dirac semimetal
when inversion symmetry is broken. (b) Landau bands when a
strong magnetic field Bz ¼ 10 T is applied.
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where mass term mk ¼ m⊥ðk2x þ k2yÞ þmzk2z −m0. Let â†

and â be Landau level creation and annihilation operators
with ½â; â†� ¼ 1, the quantization scheme kx ¼ ðâþ â†Þ=ffiffiffi
2

p
lB and ky ¼ iðâ − â†Þ= ffiffiffi

2
p

lB gives the magnetic
Hamiltonian,

ĤD
kz ¼

0
BBBBB@

mkz 0
ffiffi
2

p
ℏv⊥
lB

â† 0

mkz 0 −
ffiffi
2

p
ℏv⊥
lB

â

−mkz 0

† −mkz

1
CCCCCA

þ 2m⊥
l2B

�
â†âþ 1

2

�
τzσ0 − μ; ðD2Þ

on the Landau level basis ðjni; jn − 1i; jn − 1i; jniÞT ,
where mass term becomes mkz ¼ mzk2z −m0. Then, the
effective Hamiltonian for two lowest Landau bands on
basis ðj0i; j0iÞT reads

HD
0;kz

¼
�
mkz þ

m⊥
l2B

�
σz − μσ0; ðD3Þ

and all higher Landau bands (n > 0) are

ED
�n;kz

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mkz þ

2m⊥
l2B

n

�
2

þ 2ℏ2v2⊥
l2B

n

s
�m⊥

l2B
− μ:

ðD4Þ

When Bz ¼ 10 T, the “zero-point” energy m⊥=l2B is
0.0016 eV, much smaller than m0 ¼ 0.086 eV and negli-
gible in the discussion of zeroth Landau bands.
As discussed in the main text, since two valleys are

connected by inversion symmetry, two degenerate linearly
polarized TA phonons will condensate simultaneously.
However, if inversion symmetry is broken, two Dirac
valleys are no longer degenerate, as shown in Fig. 4,
and the ground state will be a self-twisting phase rather than

a shear strain wave phase when TA phonons beat LA
phonons.

2. Kramers-Weyl semimetal

On the basis Ψ̂KW†
k ¼ ðĉ†1=2k; ĉ†−1=2kÞT , the effective

Hamiltonian for Kramers-Weyl semimetal reads

HKW
k ¼ ðvzkzσz þ v⊥k⊥ · σ⊥Þ þ ðuzk2z þ u⊥k2⊥ − μÞσ0:

ðD5Þ

And its magnetic Hamiltonian will be

ĤKW
kz ¼ ½vzkzσz þ ðuzk2z − μÞσ0� þ u⊥

2

l2B

�
â†âþ 1

2

�
σ0

þ v⊥
ffiffiffi
2

p

lB
ðâ†σ− þ âσþÞ þ ð−δZσz þ δTσxÞ; ðD6Þ

where σ� ¼ ðσx � iσyÞ=2, the first and second terms are
directly from diagonal elements of the Hamiltonian, the
third term is SOC, and the fourth term contains Zeeman
effects δZ ¼ gzμBBz in z axis and rotation symmetry
breaking term δT . Figure 5 is numerically computed on
the Landau level basis ðjni; jniÞT with cutoff n ¼ 10. To
clearly show the influences of each term, we start with the
band dispersion along the z axis shown in Fig. 2(a), then
turn to the case with only Landau level effect of magnetic
field considered. After that, the remaining terms are turned
on one by one, to demonstrate the evolution of band
structures shown in Fig. 5.

3. Mean-field approximation

In mean-field level, the phonon creation and annihilation
operators are approximated by their expectation values
leading to mean-field normal coordinates, then electron-
phonon coupling of a certain phonon wave vector Q
becomes

FIG. 5. Evolution of Landau bands of Kramers-Weyl semimetal. (a) Only Landau level effect, (b) Zeeman effect δZ added, (c) in-plane
chiral coupling term (SOC) v⊥k⊥ · σ⊥ considered, and (d) additional rotation symmetry breaking term δT .
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ˆ̄Hep
Q ¼ 1

N

X
mkz

ΔmkzQΨ̂
†
mkzQ

Ψ̂mkzQ;

ΔmkzQ ¼
X
λ

1ffiffiffiffi
N

p τþGmkzλQðhb̂λQi þ hb̂†λ;−QiÞ þ H:c:

¼ 1ffiffiffiffi
N

p τþ

�
0 ð1 − ieiϕxyÞΔ−;Q

ð1þ ieiϕxyÞΔþ;Q 0

�

þ 1ffiffiffiffi
N

p Δz;Qτþσz þ H:c:;

Δ�;Q ¼ i2g�Qξ�;Qhb̂�;Qieiϕx ;

Δz;Q ¼ i2gz0Qξz;Qhb̂z;Qieiϕz ; ðD7Þ

where ϕxy ¼ ϕy − ϕx is the relative phase between TA
modes in x and y directions. In the centrosymmetric case,
we have gþ ¼ −g⋆− and P̂X̂þ;qzP̂

−1 ¼ X̂†
−;qz , Meanwhile,

Δ−;Q ¼ ðΔþ;QÞ⋆. By defining ΔT;Q ¼ jΔ�;Qj, up to a
unitary transformation, the order parameter from elec-
tron-TA phonon coupling is simplified to

1ffiffiffiffi
N

p τþðσx þ eiϕxyσyÞΔT;Q þ H:c: ðD8Þ

Thus, the total phonon energy is

hĤph
Q i ¼ 1

N

X
λ

ℏωλQhb̂†λQb̂λQi ¼
1

N

X
λ

2ℏωλQhb̂λQi2 ¼ M
X
λ

ðg−1λ vphλ jΔλQjÞ2; ðD9Þ

where hb̂∓;Qi ¼ hb̂†�;−Qi is assumed. Now we have the total electronic Hamiltonian with a certain phonon wave vectorQ, in
mean-field level,

H̄D
kzQ

¼ ðHD
kzþQ=2 ⊕ HD

kz−Q=2 − μÞ þ τþ½ΔT;Qðσx þ eiϕxyσyÞ þ Δz;Qσz� þ H:c:;

HD
kzQ

¼
�
E−0;kz 0

0 Eþ0;kz

�
; ðD10Þ

for Dirac semimetal, and

H̄KW
kzQ

¼ ðHKW
kzþQ=2 ⊕ HKW

kz−Q=2 − μÞ þ τþ½ΔT;Qð1 − eiϕxyÞσþ þ Δz;Qσz� þ H:c:;

HKW
kzQ

¼

0
B@Eð1Þ

1=2;kz
δT

δT Eð1Þ
−1=2;kz

1
CA; ðD11Þ

for Kramers-Weyl semiemtal with additional rotation sym-
metry breaking term δT .

APPENDIX E: RENORMALIZED PHONON
DISPERSION

The Mastubara Green’s function of “bare” phonon is

Dð0Þ
λq ðiνnÞ ¼

2ωλq

ðiνnÞ2 − ðωλqÞ2
; ðE1Þ

where νn ¼ 2πn=β is the Mastubara frequency. Consider
electron-phonon coupling in random phase approximation
and self-consistent Midgal approximation, the phonon
Green function and phonon self-energy are

D−1
λq ¼ ½Dð0Þ

λq �−1 − Πph
λqz

; Πph
λqz

¼ 1

ℏ
jGλqj2Lλq; ðE2Þ

where LλqðωÞ is the Lindhard response function. The pole
of DλqðiνnÞ gives the renormalized phonon frequency ωren

λq

in qz direction,

Δω2
λqz

¼ ðωren
λqz

Þ2 − ω2
λqz

¼ 2

ℏ
ωλqz jGλqz j2Lλqzðωren

λqz
Þ

¼ ðgλqzÞ2
M

Lλqzðωren
λqz

Þ; ðE3Þ

where the Lindhard response functions are

Lλqz ¼
1

Nz

X
αβ;kz

Sαβλkzqzðfαkzþqz − fβkzÞ
εαkzþqz − εβkz − ℏðωþ iηÞ ;

Sαβλkzqz ¼
X
ij

hsβz;kzþqz
jsðjÞz ihsðiÞz jsαz;kziδðs

ðiÞ
z − sðjÞz − lphz;λÞ;

ðE4Þ

KAIFA LUO and XI DAI PHYS. REV. X 13, 011027 (2023)

011027-12



where fαkz ¼ 1=ðeεαkz =kBT þ 1Þ is the Fermi-Dirac distri-
bution function, and i, j run over all possible spin
components. When the electronic states are polarized to
be independent on crystal momentum, sαz;qz ¼ sαz , Sαβλkzqz is

reduced to the spin selection rule δðsαz − sβz − lphz;λÞ.
For Na3Bi and β-Ag2Se, their bulk modulus (in the sense

of Voigt-Reuss-Hill average) K is 17 and 58 GPa and their
density ρ is 3.63 and 7.98 g=cm3, respectively. By the
definition of the Young’s modulus Y ¼ 3Kð1 − 2σÞ and LA
phonon group speed vLs ¼ ffiffiffiffiffiffiffiffi

Y=ρ
p

, the LAwave speeds are
estimated to be 2650 and 2088 m=s, respectively.

APPENDIX F: CHIRAL STANDING WAVE

At finite temperature, the dressed phonon frequencies
from Eq. (E3) of a generic system have to be solved
numerically. To get a flavor of the new standing modes
with wave vector around þQT , we expand the Lindhard
response function up to the first order of δqþz ¼ qz −QT
and ω:

Lλδqþz ðωÞ ¼ Lð0Þ
λ þ Lð1Þ

λ δqþz þ Lð2Þ
λ ω: ðF1Þ

Then Eq. (E3) becomes

ω2 −
g2T
M

ðLð0Þ
λ þ Lð1Þ

λ δqþz þ Lð2Þ
λ ωÞðδqþz þQTÞ2

− ðvphT Þ2ðδqþz þQTÞ2 ¼ 0; ðF2Þ

where the nonzero Lð2Þ
λ is induced by TRS breaking, and

we solve the effective frequency up to ðδqþz Þ2:

ωðþQTÞ
λδqþz

¼ ωQT
þ 1

2
bðδqþz Þ2: ðF3Þ

As plotted in Fig. 6, the parabolic approximation is
nearly valid within the ð0.95; 1.05ÞQT regime. Corres-
pondingly, the discrete wave vectors for standing modes
are δqþn ¼ ðnþNsÞπ=d−QT ≈ nπ=dðn¼ 0;1;…Þ, where
Ns is a big positive number to cancel the finite QT . Thus,
the frequency differences of these standing modes are

ωðþQTÞ
n ¼ ωQT

þ 1

2
bðδqþn Þ2: ðF4Þ

Around −QT , the dispersion could be different from the
þQT regime since time reversal, inversion, and rotation
symmetries are broken. However, the Fermi surface
can be simply treated as two points at low temperature,
and the inversion symmetry is approximately recovered.
Thus, the effective dispersion near −QT in terms of
δq−n ¼ ðn − NÞπ=d − ð−QTÞ ≈ nπ=d is

ωð−QTÞ
n ¼ ωQT

þ 1

2
bðδq−n Þ2: ðF5Þ

Given a resonant frequency ω > ωQT
, there are four

degenerate left-handed traveling modes, ðδqþn ;ωðQT Þ
n Þ,

ðδqþ−n;ωðQTÞ
n Þ, ðδq−n ;ωð−QTÞ

n Þ, ðδq−−n;ωð−QTÞ
n Þ, existing to

form two left-handed standing modes, and the frequency
differences between two adjacent modes are

Δωð�QT Þ
n ¼ ωð�QTÞ

nþ1 − ωð�QTÞ
n ¼ bπ2

d2

�
nþ 1

2

�
≡ ΔωðQTÞ

n :

ðF6Þ

FIG. 6. Phonon frequencies of Kramers-Weyl semimetal under B ¼ 10 T magnetic field at different temperatures.
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In the case of Ag2Se when T ¼ 1.1 K, we have QT ¼
6.67×108 m−1, ωQ¼56.1GHz, and b¼8.71×10−4 m2=s.
The Ns in this case is 2.12 × 106. Given d ¼ 1 cm, we

have ωQ þ ΔωðQÞ
n ¼ 56.1 GHzþ 0.086ðnþ 1=2Þ kHz.

Meanwhile, we have another long wavelength standing

wave, with ωð0Þ
n0 ¼ nvphT π=d ¼ ð268n0Þ kHz. When n is

small, the frequency difference between adjacent chiral
standing modes is indistinguishable compared with long

wavelength modes. However, ΔωðQTÞ
n will be even larger

than Δωð0Þ
n0 after nc ¼ 3116 and both of them should be

measurable experimentally. As well, nc=Ns ≈ 0.15% is a
close neighbor of QT and the parabolic approximation of
frequency dispersion still holds.
Because the effective dispersion is sensitive to temper-

ature, we compute the phonon dispersions shown in Fig. 6,
and the resonant frequencies at different temperatures are
listed in Table III.

APPENDIX G: MAGNETOACOUSTIC
BIREFRINGENCE

1. Faraday rotation

Since the right-handed and the left-handed TA
acoustic waves propagate with different speeds, vþs and
v−s , in the gyromagnetic media, the linearly polarized wave
becomes

Xðd; tÞ ¼ Xþeiðkþd−ωtÞêþ þ X−eiðk−d−ωtÞê−

¼ X
2
½ðeikþd þ eik−dÞx̂þ iðeikþd − eik−dÞŷ�e−iωt

¼ Xei½ðkþþk−Þd=2−ωt�

×

�
x̂ cos

ðk− − kþÞd
2

þ ŷ sin
ðk− − kþÞd

2

�
; ðG1Þ

where jX�j ¼ jXx � iXyj ¼ X=
ffiffiffi
2

p
. The polarization plane

therefore rotates by a Faraday angle,

θF ¼
				tan−1 Xy

Xx

				 ¼ d
2
jk− − kþj ¼

d
2

				 ω

vph−
−

ω

vphþ

				
¼ ωd

2vphT

�
1 −

vphT
vphþ

�
≡ VBzd; ðG2Þ

where we used the left-handed TA wave speed vph− ¼ vphT ,
and V denotes the Verdet coefficient, which is in general a
nonlinear function depending on frequency rather than a
constant. Then it is numerically estimated that vphþ ¼
1811 m=s (another possibility −1811 m=s is dropped)
for the ω ¼ 58.0 GHz acoustic waves when T ¼ 1.1 K,
jgT=gz0j ¼ 1.43 × 10−4, Bz ¼ 10 T, and δT ¼ 1.2 meV for
Kramers-Weyl semimetal β-Ag2Se system. Consider that
vphT ¼ vphz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ σÞ=ð2 − 2σÞp ¼ 852 m=s, we find a giant
Faraday rotation with θF=d ¼ 1.77 × 105 rad=cm.

2. Kerr ellipticity in polar configuration

In optics, according to the relative configuration of
incident light and magnetic materials, there are three types
of magneto-optical Kerr effects: polar, longitudinal, and
transverse. Similarly, we also have three configurations in
the acoustical counterpart. For simplicity, here we only
take the polar configuration near normal incidence as an
example since it has larger effect than the other two. The
reflection coefficients for two chiral acoustic waves are
obtained through Fresnel relations:

rþ ¼
				 1 − nþ=nT
1þ nþ=nT

				 ¼ 0.262; r− ¼
				 1 − n−=nT

1þ n−=nT

				 ¼ 0.109;

ðG3Þ

where we used n−=nT ¼ vph;CPVCT =vph;KWT ¼ 1060=852 ¼
1.244 and nþ=nT ¼vph;CPVCs =vph;KWþ ¼1060=1811¼0.585.
The left-handed TA wave will be completely incident
into the gyromagnetic material, while a proportion of
the right-hand rotating wave can reflect with nonzero
reflection coefficient rþ. So the Kerr ellipticity ϵK ¼
ðrþ − r−Þ=ðrþ þ r−Þ ¼ 0.412.

APPENDIX H: FIRST-PRINCIPLES
CACULATIONS OF Na3Bi

All calculations were performed using density-functional
theory (DFT) and density-functional perturbation theory,
pseudopotentials, and plane waves basis sets as imple-
mented in the QUANTUM EXPRESSO suite [37,38]. We
employed the Perdew–Burke–Ernzerhof exchange-correla-
tion functional [39], optimized norm-conserving pseudo-
potentials [40] from the PSEUDO-DOJO library [41] for total
energy and lattice dynamics calculations, and the plane

TABLE III. Resonant frequencies of standing modes at different temperatures.

Temperature (K) b (m2=s) ωð0Þ
n (kHz) ωQT

(GHz) ΔωðQT Þ
n (kHz)

1.2 6.17 × 10−4 268n 81.8 0.061ðnþ 1=2Þ
1.1 8.71 × 10−4 268n 56.1 0.086ðnþ 1=2Þ
1.08 9.80 × 10−4 268n 48.1 0.097ðnþ 1=2Þ
1.05 12.0 × 10−4 268n 35.3 0.118ðnþ 1=2Þ
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waves kinetic energy cutoffs are set to achieve 1 meV
accuracy as recommended in these libraries. The conver-
gence criterion for the ionic steps was that the forces on
every ion were less than 0.01 eV=Å.
The crystallographic data for Na3Bi are listed in Table IV

[16,42]. We used a Γ-centered 8 × 8 × 4 k-point grid. Two
well-known Dirac points near the Fermi level lie at the
Γ-A axis, as shown in Figs. 7(b) and 7(c). The phonon
calculation employs a Γ-centered 4 × 4 × 2 q-point grid
and its convergence threshold needs to be refined to 10−16

(in atomic unit) to achieve convergence after many tests.
Along the Γ-A direction, all acoustic phonon modes are
almost linear and two TA phonon modes are degenerate as
shown in Fig. 7(d), which well satisfies our assump-
tion for the speeds of acoustic phonons in the main
text. The phonon self-energy based on electron-phonon

coupling g matrix is computed by using the software
package EPW [43]. In Fig. 7(e), we plot the coupling
strength between valance and conductance bands with TA
and LA phonon modes at two specific phonon wave
vectors: long wavelength limit Q ¼ 0.06 and finite wave
vector Q ¼ 0.31 connecting two Dirac cones. First, the
magnitude of jgj is around 0.2–1.0 eV, which justifies our
parameter 0.5 eV used in the model. Along the Γ-A
direction, the speed of TA phonon vphT is around half of
a LA phonon vphL , as shown in Fig. 7(d). According to our
analysis of Na3Bi in the main text, the shear strain wave is
favored when jgDT =gDL j > vphT =vphL ≈ 0.5. And the electron-
TAphonon coupling strength jgDT j is similar and even stronger
than electron-LA phonon coupling jgDL j. Therefore, it is
promising to predict that shear strain wave phase could be
the ground state of Na3Bi at zero temperature.

APPENDIX I: ESTIMATION OF CORRECTION
TO EINSTEIN–DE HASS EFFECT

With external magnetic field B ¼ 5 T, the rotation
symmetry breaking term δT ¼ 0.2 meV, the renormalized
phonon dispersion, and density of state (DOS) of each
chiral acoustic phonon mode are as shown in Fig. 8(b).

TABLE IV. Lattice constants and atomic parameters of Na3Bi.

Space group P63=mmc
Atom

(Wyckoff position) x y z

a (Å) 5.448 Na1 (2b) 0 0 1=4
b (Å) 5.448 Na2 (4f) 1=3 2=3 0.583
c (Å) 9.655 Bi (2c) 1=3 2=3 1=4

FIG. 7. (a) Upper: crystal structure of Na3Bi. Two Na1 atoms (green), four Na2 atoms (green), and two Bi atoms (gray) lie at 2b, 4f,
and 2c Wyckoff positions, respectively. Bottom: Brillouin zone (BZ) and high-symmetry path used in the electron and phonon
calculations. (b) Band structures (black lines) from DFT of Na3Bi with SOC included. Twelve low-energy bands (red lines) based on
maximally localized Wannier functions using the prior selected columns of the density matrix (SCDM) method. (c) Enlarged view of
band structure near Γ point. c and v refer to the conduction and valence bands near Fermi level. (d) Acoustic phonon dispersion in the
Z-Γ-Z path with rotation symmetry. Longitudinal acoustic (LA) and degenerate transverse acoustic (TA) phonon branches are almost
linear until the BZ boundary. (e) jgj-matrix elements of TA and LA phonon modes coupling to the c and v bands. Upper: in the long
wavelength limit where we select a Q ¼ 0.06 (in unit of reciprocal lattice constant) example, the left is the intraband coupling and the
right is the interband coupling. Red (balck) lines refer to TA (LA) phonon modes and solid (dashed) lines refer to valance (conductance)
band. Bottom: in the finite wave vector case where we select a Q ¼ 0.31 (the wave vector connecting two Dirac cones) phonon mode.
Color and line type follow the same convention as the upper figure.
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Inherited from sensitivity of phonon dispersion to temper-
atures, the net phonon angular momentum is also quite
sensitive. At three different temperatures, 15.65, 15.7, and
15.8 K, the net phonon angular momentum per unit cell is
−2.7 × 10−3ℏ, −1.5 × 10−3ℏ, and −1.47 × 10−4ℏ, respec-
tively. They are close, in the order of magnitude, to the
estimation of paramagnetic materials CeF3 and Tb3Ga5O12
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