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Thermodynamics serves as a universal means for studying physical systems from an energy perspective.
In recent years, with the establishment of the field of stochastic and quantum thermodynamics, the ideas
of thermodynamics have been generalized to small fluctuating systems. Independently developed in
mathematics and statistics, the optimal transport theory concerns the means by which one can optimally
transport a source distribution to a target distribution, deriving a useful metric between probability
distributions, called the Wasserstein distance. Despite their seemingly unrelated nature, an intimate
connection between these fields has been unveiled in the context of continuous-state Langevin dynamics,
providing several important implications for nonequilibrium systems. In this study, we elucidate an
analogous connection for discrete cases by developing a thermodynamic framework for discrete optimal
transport. We first introduce a novel quantity called dynamical state mobility, which significantly improves
the thermodynamic uncertainty relation and provides insights into the precision of currents in non-
equilibrium Markov jump processes. We then derive variational formulas that connect the discrete
Wasserstein distances to stochastic and quantum thermodynamics of discrete Markovian dynamics
described by master equations. Specifically, we rigorously prove that the Wasserstein distance equals
the minimum product of irreversible entropy production and dynamical state mobility over all admissible
Markovian dynamics. These formulas not only unify the relationship between thermodynamics and the
optimal transport theory for discrete and continuous cases, but also generalize it to the quantum case.
In addition, we demonstrate that the obtained variational formulas lead to remarkable applications in
stochastic and quantum thermodynamics, such as stringent thermodynamic speed limits and the finite-time
Landauer principle. These bounds are tight and can be saturated for arbitrary temperatures, even in the zero-
temperature limit. Notably, the finite-time Landauer principle can explain finite dissipation even at
extremely low temperatures, which cannot be explained by the conventional Landauer principle.
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I. INTRODUCTION

A. Background

Thermodynamics, which is built upon several axioms,
is one of the most successful phenomenological theories
for studying energy exchanges in macroscopic systems.
Originally developed for the purpose of understanding the
behavior of steam engines, thermodynamics has since been
applied to various fields of science and engineering. The
laws of thermodynamics show extraordinary universality
and impose fundamental constraints on physical systems.

Beyond the macroscopic regime, the past two decades
have witnessed substantial progress in extending the notions
of conventional thermodynamics to microscopic systems,
resulting in the frameworks of stochastic and quantum
thermodynamics [1–5]. These comprehensive frameworks
provide a means of investigating small nonequilibrium
systems subject to significant fluctuations. Various universal
relations have been discovered, including fluctuation theo-
rems [6–11], thermodynamic uncertainty relations [12–15],
thermodynamic speed limits [16–26], and refinements of the
Landauer principle [27–32]. These equalities and inequal-
ities characterize the fundamental limits of small systems
and distinguish the possible from the impossible in terms of
thermodynamics. They not only are theoretically important,
but also lead to practical applications in estimating physi-
cally relevant quantities from experimental data, such as free
energy [33] and dissipation [34–40]. In addition, informa-
tion manipulations such as measurement, feedback, erasure,
and copying have been incorporated into thermodynamics,
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leading to significant developments in several subfields,
such as the thermodynamics of information [41,42] and
computation [43,44]. In parallel, concepts from other fields,
such as the resource theory [45,46] and information geom-
etry [47–49], have also been integrated into thermodynam-
ics, generating new avenues of research and offering new
tools for analyzing thermodynamic processes [50–58].
Accordingly, the integration of thermodynamics with other
disciplines provides new insights into the understanding of
nonequilibrium systems.
A key quantity in thermodynamics is entropy production,

which quantifies the degree of irreversibility of thermody-
namic processes. Entropy production plays a central role in
the fundamental laws of thermodynamics and provides a
quantitative characterization for investigating nonequili-
brium processes; a comprehensive review regarding entropy
production can be found in Ref. [59]. Recently, it has
been shown that entropy production must be increased to
achieve a high precision of currents [13] and fast state
transformation [16]. However, minimizing entropy produc-
tion is also a particularly relevant issue [60,61], because it is
closely related to the energy lost to the environment. Owing
to the critical role of entropy production, great efforts have
been made to elucidate its properties and its relationship with
other physical quantities [62–68].
Optimal transport [69], which is developed independ-

ently of thermodynamics, is a mature field in mathematics
and statistics, and its theory concerns the optimal planning
and optimal cost of transporting a distribution. Specifically,
given the individual costs of transporting a unit weight of a
resource from one location to another, the optimal transport
problem is to determine the optimal means of redistributing
the distribution of the resource into the desired distribution
to yield the lowest total cost. Historically, the optimal
transport problem was first defined by Monge in 1781 and
has since been reformulated in a more general and well-
defined form. Currently, this problem has several theoreti-
cal and practical applications in a variety of scientific fields,
including statistics and machine learning [70], computer
vision [71], linguistics [72], classical mechanics [73], and
molecular biology [74]. It is noteworthy that the solution to
this problem not only provides an optimal transport plan
between distributions, but also defines a useful metric in the
space of probability distributions. Although this metric is
identified by several names in the literature, such as the
Monge-Kantorovich distance or earth mover’s distance, we
refer to it as the Wasserstein distance throughout this paper.
Because the optimal transport theory is concerned with

transformations of probability distributions that are com-
monly used to characterize the state of small systems,
whether any connection exists between the two disciplines
of optimal transport and stochastic thermodynamics is
a natural question. Indeed, a deep connection between
these fields has been elucidated in the context of over-
damped Langevin dynamics, revealing that the problem of

minimizing entropy production can be mapped to the
optimal transport problem [27,61,75–78]. More specifi-
cally, the minimum entropy production among all processes
that transform the initial into the final distribution can be
expressed in terms of the Wasserstein distance between the
two distributions. In addition, the optimal transport plan
provides a feasible solution for the optimal control proto-
col. The essence of this connection can be intuitively
understood through the Benamou-Brenier formula [79],
which is given by the following equality:

W2ðpA; pBÞ ¼ min
Z

τ

0

ffiffiffiffiffiffiffiffi
Dσt

p
dt ¼ min

ffiffiffiffiffiffiffiffiffiffiffi
DτΣτ

p
: ð1Þ

Here, W2ðpA; pBÞ is the L2-Wasserstein distance
[cf. Eq. (10)], D is the diffusion coefficient, τ is the
operational time, σt is the entropy production rate, Στ is
the total entropy production, and the minimum is taken
over all the overdamped Langevin processes that transform
distribution pA into pB. The variational relation (1) links
two apparently unrelated quantities, namely, a mathemati-
cal metric and a thermodynamic cost. The metric
W2ðpA; pBÞ on the left-hand side of Eq. (1) is a static
quantity that is determined only by two distributions,
whereas the right-hand side represents a dynamical quantity
that indicates the thermodynamic cost associated with
overdamped Langevin dynamics. This formula leads to
remarkable applications for overdamped Langevin dynam-
ics, such as a thermodynamic speed limit [77] and a finite-
time Landauer principle of information erasure for classical
bits modeled by a continuous double-well potential [29,80],
to name only two. The finite-time correction in the
Landauer principle indicated by the speed limit expression
is consistent with experimental observations [81].
Moreover, the bounds obtained from Eq. (1) are tight in
the sense that, for any two given distributions, there always
exists an overdamped Langevin dynamics that transforms
the distributions and attains the equality of the bounds.
In contrast to continuous systems, a similar connection

between optimal transport and thermodynamics is yet to
be unveiled in discrete systems. We note that stochastic
thermodynamics of discrete systems is highly relevant to
experiments [82–85]. Even in continuous systems such as
biological systems, the dynamics can be represented by
effective discrete states [86–89]. In addition, the
Landauer principle of information erasure problem is a
statement for discrete bit operations [90]. Therefore,
elucidating the thermodynamic interpretation of the dis-
crete optimal transport problem is essential for an in-
depth understanding of the nonequilibrium thermody-
namic structure and, particularly, for its application to
the state transformation speed.
To reveal this type of relationship for discrete systems,

two nontrivial points are worth noting. First, the formula (1)
cannot be extended directly to discrete cases, because no
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exact correspondence to the diffusion coefficient exists in
generic discrete systems. Even if a proper correspondence
to the diffusion coefficient is defined for discrete cases,
no guarantee can be given that the discrete Wasserstein
distance can be expressed in the same manner as in Eq. (1).
Second, previous studies show that, without any additional
constraint, the distribution of Markov jump processes can
always be transformed to the target distribution with
arbitrarily small entropy production [91–93]. This implies
that entropy production alone is insufficient to characterize
the transport cost (i.e., the Wasserstein distance), or, equiv-
alently, this implies that another quantity that plays the same
role as the diffusion coefficient in continuous cases must be
introduced along with entropy production. These technical
remarks are an obstacle to elucidating the relationship
between optimal transport and thermodynamics in discrete
cases. Simultaneously, overcoming this obstacle is expected

to reveal essential and common thermodynamic structures
hidden in nonequilibrium processes.
With this background, we aim to elucidate the deep

connection between thermodynamics and optimal trans-
port in discrete cases (see Fig. 1 for illustration).
Specifically, we develop discrete generalizations of the
Benamou-Brenier formula in the context of Markovian
open classical and quantum dynamics described by the
master equations. Our formulas not only unify the
relationship between optimal transport and stochastic
thermodynamics for discrete and continuous cases, but
also generalize to the quantum case. Moreover, by
developing a thermodynamic framework for discrete
optimal transport, we can derive fundamental bounds
for nonequilibrium systems, including the thermodynamic
uncertainty relation, thermodynamic speed limits, and
finite-time Landauer principle for both classical and
quantum systems. These bounds are tight and stronger

(a)

(b)

FIG. 1. (a) Schematic of stochastic and quantum thermodynamics of discrete Markovian dynamics and the optimal transport problem.
This study aims to reveal the connection between thermodynamics and the optimal transport theory for discrete cases, including both
classical and quantum systems. (b) Our thermodynamic unification of optimal transport and its consequences, including minimum
dissipation and thermodynamic speed limits. By introducing dynamical state mobility mt, we provide a unified, discrete generalization
of the Benamou-Brenier formula for classical and quantum discrete systems. See Sec. I B for an explanation.
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than previously reported results. Concerning the Landauer
principle, finite-time information erasure should generate
finite heat dissipation even at zero temperature. However,
neither the original Landauer bound [90] nor finite-time
corrections that have been proposed thus far
for discrete systems [30,31] can explain heat dissipation
at extremely low temperatures. By contrast, our expres-
sion for the first time can predict heat dissipation even at
extremely low temperatures.

B. Summary of results

The main contributions of this study can be summarized
as follows.

(i) Dynamical state mobility and improved thermody-
namic uncertainty relation.—We define a novel
kinetic quantity mt [cf. Eq. (39)], which is essential
to our results. The motivation for this definition is
derived from Eq. (1), which suggests that a kinetic
term is relevant for characterizing the Wasserstein
distance. mt is defined by the microscopic Onsager-
like coefficients and reduces to the diffusion coef-
ficient D in the continuous limit; thus, it is referred
to as dynamical state mobility. Similar to dynamical
activity [94], mt should be measurable in experi-
ments. Using this kinetic term, we derive an
improved thermodynamic uncertainty relation for
time-integrated currents in Markov jump processes,
which can be expressed as [cf. Eq. (61)]

hJi2
var½J� ≤ η

Στ

2
; ð2Þ

where hJi and var½J� denote the mean and variance
of an arbitrary current J, respectively, and η ≔
2Mτ=Aτ ≤ 1 is an efficiency defined in terms
of dynamical state mobility Mτ ≔

R
τ
0 mtdt and

dynamical activity Aτ. The inequality (2) indicates
that the precision of currents is constrained by the
product of the thermodynamic and kinetic costs
divided by the timescale. Moreover, it provides
new insights into the relationship between precision
and cost in Markov jump processes; that is, increas-
ing only the thermodynamic cost does not guarantee
high precision of currents. Instead, given the same
timescale Aτ, the product of the thermodynamic
and kinetic costs must be increased to achieve
high precision. Notably, the relation (2) is tighter
than the conventional thermodynamic uncertainty
relation [13,14].

(ii) Variational formulas that connect optimal transport
to stochastic and quantum thermodynamics.—Using
the defined state mobility term, we derive variational
formulas that relate the discrete Wasserstein
distance to the thermodynamic and kinetic costs
in Markovian dynamics. More specifically, we prove

the following equality for the classical case
(cf. Theorem 1):

W1ðpA; pBÞ ¼ min
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
;

ð3Þ

where W1ðpA; pBÞ is the discrete L1-Wasserstein
distance between two distributions pA and pB

[cf. Eq. (69)] and the minimum is over all admissible
Markov jump processes that transform distribution
pA into pB over a period τ with a given connectivity.
The relation (3) provides a thermodynamic inter-
pretation for the Wasserstein distance, implying that
the Wasserstein distance is equal to the minimum
product of the thermodynamic and kinetic costs. We
also analogously generalize the formula (3) to the
quantum case, in which the classical Wasserstein
distance W1ðpA; pBÞ is replaced with a quantum
Wasserstein distance WqðϱA; ϱBÞ between density
matrices ϱA and ϱB. These formulas can be consid-
ered as discrete generalizations of the Benamou-
Brenier formula known in continuous cases.

(iii) Trade-off between irreversibility and state mobility.—
Through the developed variational formulas, we
reveal a trade-off relation between the irreversibility
and dynamical state mobility in discrete systems,
which reads as follows:

ΣτMτ ≥ W1ðpA; pBÞ2: ð4Þ

The inequality (4) implies that either the thermody-
namic cost Στ or kinetic cost Mτ must be sacrificed
(i.e., they cannot be simultaneously small) to evolve
the system state.

(iv) Minimum dissipation and optimal protocol.—The
problem ofminimizing entropy production in discrete
systems is trivial if no constraints exist on the
transition rates. Our results shed new light on this
issue. More specifically, the formula (3) implies that
fixing the dynamical statemobilityMτ is a reasonable
constraint from which minimum dissipation can be
immediately determined through the Wasserstein
distance, and the optimal control protocol can be
constructed from the optimal transport problem.
When additional constraints exist on system dynam-
ics, we show that a lower bound on minimum
dissipation can be obtained (seeFig. 4 for illustration).

(v) Thermodynamic speed limits.—From the resulting
variational formulas, we derive unified and stringent
thermodynamic speed limits that place lower bounds
on the time required for state transformation for both
open classical and quantum systems. The classical
bound reads [cf. Eq. (128)]
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τ ≥
W1ðpA; pBÞ
h ffiffiffiffiffiffiffi

σm
p iτ

≥
W1ðpA; pBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhmiτ
p ; ð5Þ

where hxiτ denotes the time average of a time-
dependent variable xt. The quantum bound has
the same form, where W1ðpA; pBÞ is replaced with
WqðϱA; ϱBÞ. The inequality (5) implies that the
speed of state transformation is constrained by the
time average of the product of the thermodynamic
and kinetic costs. Because we start from the equality
relations, these bounds are tight and can always be
saturated for arbitrary temperatures. In other words,
for an arbitrary pair of distributions or density
matrices, there always exist Markovian dynamics
that saturate the bounds. They are also stronger than
previously known bounds [16,22].

(vi) Finite-time Landauer principle.—From the varia-
tional formulas, we derive finite-time lower bounds
for heat dissipation Q incurred in classical and
quantum information erasure [cf. Eqs. (142) and
(150)]. The bounds characterize both finite-time
and finite-error effects on heat dissipation. Several
finite-time Landauer bounds are derived for dis-
crete systems in previous studies [30,31]. How-
ever, these bounds encounter the same problem as
the conventional Landauer bound; that is, they lose
the predictive power in the low-temperature re-
gime. By contrast, our new bounds are tight for
arbitrary temperatures, even in the zero-temper-
ature limit. A further simplified bound including a
finite erasure error ϵ ≥ 0 reads [cf. Eq. (146)]

Q ≥ T½ln d − hðϵÞ� þ ð1 − 1=d − ϵÞ2
τβhmiτ

; ð6Þ

where d is the system’s dimension, T is the
temperature of the heat bath, β is the inverse
temperature, and hðϵÞ ≥ 0 is a function that
vanishes as ϵ → 0. In the perfect-erasure (ϵ → 0)
and quasistatic (τ → ∞) limits, the above bound
reduces to the conventional Landauer bound
Q ≥ T ln d.

C. Relevant literature

Here, we briefly discuss several relevant studies that
attempt to link the (modified) Wasserstein distances to the
thermodynamics of Markov jump processes.
The Benamou-Brenier formula has two facets. It not only

provides a thermodynamic interpretation, but also reveals
a geometric structure for the continuous L2-Wasserstein
distance. More specifically, W2 can be interpreted as a
Riemannian metric on the manifold of probability dis-
tribution functions. Although the discrete L2-Wasserstein
distance is well defined and widely used in the literature,

unfortunately, it does not possess a geometric interpre-
tation, and its connection to thermodynamics also
remains unclear. For this reason, many studies generalize
the Wasserstein distance based on the geometric aspect of
the Benamou-Brenier formula for discrete cases [95].
This modified Wasserstein distance places a lower bound
on irreversible entropy production of Markov jump
processes [22,96]. However, it is system dependent,
because the transition rates are concretely used to define
this distance.
In contrast to the previous direction, in this study, we

consider the conventional discrete L1-Wasserstein dis-
tance and focus on its thermodynamic interpretation. In
this regard, Dechant obtains some interesting results by
relating the discrete L1-Wasserstein distance to the
entropy production and dynamical activity of Markov
jump processes [93]. Here, we consider a different
approach by introducing the dynamical state mobility
and obtain discrete generalizations of the Benamou-
Brenier formula. This approach not only unifies the
classical discrete and continuous cases, but also extends
to the quantum case. Although we focus on the discrete
L1-Wasserstein distance, it is noteworthy that the
obtained generalizations of the Benamou-Brenier formula
are similar to that for the continuous L2-Wasserstein
distance. This suggests that the discrete L1-Wasserstein
distance may play the same role as the continuous
L2-Wasserstein distance in continuous cases.
The remainder of the paper is organized as follows.

Section II presents a review of the optimal transport
problem and the relevant existing results in the context of
continuous-state overdamped Langevin dynamics. We
particularly emphasize the Benamou-Brenier formula of
the L2-Wasserstein distances and their connections to
stochastic thermodynamics. In Sec. III, we briefly intro-
duce stochastic thermodynamics of classical Markovian
dynamics. Next, we define the novel kinetic term mt and
discuss its relevant properties. We then derive the
improved thermodynamic uncertainty relation for
Markov jump processes and numerically demonstrate
it. In Sec. IV, we describe the optimal transport problem
in discrete cases and explain our first theorem that links
the discrete Wasserstein distance to stochastic thermody-
namics of Markov jump processes. The relationship
between the obtained and existing results in continuous
cases is also discussed. In Sec. V, we define a quantum
Wasserstein distance and explain our second theorem that
generalizes the variational formula to the quantum case.
From the derived variational formulas, in Sec. VI, we
describe two applications: the thermodynamic speed
limits and the finite-time Landauer principle. In
Sec. VII, we numerically demonstrate our findings.
Finally, Sec. VIII presents a conclusion with a discussion
and outlook. All detailed mathematical calculations and
derivations can be found in the Appendixes.
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II. REVIEW OF CONTINUOUS OPTIMAL
TRANSPORT

In this section, we briefly review the optimal transport
problem in continuous spaces and discuss the Benamou-
Brenier formula, which provides a thermodynamic inter-
pretation of the Wasserstein distances in the context of
overdamped Langevin dynamics.

A. Optimal transport problem

First, we succinctly introduce the classical transport
problem on the continuous space Rd with d ≥ 1 (see
Ref. [69] for details). The problem of optimal transport—
that is, determining how a pile of earth can be optimally
transported into another pile of the same volume but with a
different shape—was originally introduced by Monge. The
optimality here is interpreted to mean that the total transport
cost is minimized with respect to a given cost metric.
Suppose that the source and target piles of earth are
characterized by probability distribution functions pAðxÞ
and pBðxÞ, respectively, on the space Rd, and the cost
metric is given by c∶ Rd ×Rd ↦ R≥0. Then, the Monge
optimal transport problem is to identify a one-to-one map
φ∶Rd → Rd that minimizes the objective function

min
φ

Z
Rd

c½x;φðxÞ�pAðxÞdx; ð7Þ

where the minimum is over all φ satisfying pAðxÞ ¼
pB½φðxÞ�j det½∇φðxÞ�j. However, this formulation presents
an issue regarding the nonexistence of a valid transport map;
that is, the map φmight not exist in discrete cases because no
mass can be split. Fortunately, this issue was previously
resolved by the relaxation of Kantorovich, which led to a
more well-defined problem. Instead of a transport map φðxÞ,
Kantorovich considers a transport plan πðx; yÞ that is a joint
probability distribution function and represents a coupling
of pA and pB. This transport plan allows us to split a single
mass and transport it to multiple target locations. The
Kantorovich problem can be formulated as an optimization
of the following objective function:

min
π∈ΠðpA;pBÞ

Z
Rd×Rd

cðx; yÞπðx; yÞdxdy; ð8Þ

where ΠðpA; pBÞ denotes the coupling set of joint proba-
bility distribution functions whose marginal distributions
coincide with pA and pB:

Z
Rd
πðx;yÞdy¼pAðxÞ and

Z
Rd
πðx;yÞdx¼pBðyÞ: ð9Þ

The concept of optimal transport provides a means for
defining useful metrics on continuous spaces of probability
distribution functions. By employing the cost metric of the
Euclidean norm [i.e., cðx; yÞ ¼ kx − ykα for a positive

number α ≥ 1], the Kantorovich problem reduces exactly
to the Lα-Wasserstein distance, which is defined as

WαðpA; pBÞα ≔ min
π∈ΠðpA;pBÞ

Z
Rd×Rd

kx − ykαπðx; yÞdxdy:

ð10Þ

The Lα-Wasserstein distance is a genuine metric and
satisfies the triangle inequality. Applying Hölder’s inequal-
ity, we can derive a hierarchical relationship, that is,
Wα ≤ Wα0 for α ≤ α0. Of the several that exist, the
L1- and L2-Wasserstein distances are particularly relevant
from the thermodynamic and geometric perspectives. In the
following, we discuss some remarkable properties of these
two distances.

B. Benamou-Brenier formula

The Wasserstein distance can be expressed in a varia-
tional form in several ways. Interestingly, Benamou and
Brenier developed a variational formula for the L2-
Wasserstein distance in terms of fluid mechanics [79].
The Benamou-Brenier formula casts the L2-Wasserstein
distance as a minimization problem of a time-integrated
cost in terms of probability distribution functions and
velocity fields:

W2ðpA; pBÞ2 ¼ min
vt

τ

Z
τ

0

Z
Rd

kvtðxÞk2ptðxÞdxdt; ð11Þ

where the minimum is over all smooth paths fvtg0≤t≤τ
subject to the continuity equation

_ptðxÞ þ∇ · ½vtðxÞptðxÞ� ¼ 0 ð12Þ

with the initial and final conditions p0ðxÞ ¼ pAðxÞ and
pτðxÞ ¼ pBðxÞ, respectively. Here, ∇ is the del operator,
and · denotes the standard Euclidean inner product between
vectors. Note that, given any absolutely continuous
curve fptg, we can always find a velocity field fvtg that
satisfies Eq. (12). The formulation (11) not only enables us
to find a numerical scheme for computing W2, but also
provides the thermodynamic and geometric interpretations
of the L2-Wasserstein distance.
Next, we discuss a thermodynamic interpretation of the

L2-Wasserstein distance (see Appendix A for a geometric
interpretation). Consider an overdamped system on the
continuous space Rd, which is constantly subject to a time-
dependent force FtðxÞ and weakly coupled to a single heat
bath. The system state at time t can be characterized by the
probability distribution ptðxÞ, the time evolution of which
is described by the Fokker-Planck equation:

_ptðxÞ ¼ −∇ · ½vtðxÞptðxÞ�; ð13Þ
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vtðxÞ ¼ FtðxÞ −D∇ lnptðxÞ: ð14Þ

Note that the velocity field vtðxÞ of the system in Eq. (14) is
an exact solution to the continuity equation (12), which
drives the source distribution p0ðxÞ to the target distribution
pτðxÞ. Based on the framework of stochastic thermody-
namics, the irreversible entropy production during period τ
can be calculated as [2]

Στ ¼
1

D

Z
τ

0

Z
Rd

kvtðxÞk2ptðxÞdxdt: ð15Þ

Irreversible entropy production clearly coincides with the
time-integrated cost in the integration in Eq. (11), ignoring
the scaling factor. Therefore, we can rewrite the Benamou-
Brenier formula as

W2ðpA; pBÞ ¼ min
vt

ffiffiffiffiffiffiffiffiffiffiffi
DτΣτ

p
: ð16Þ

From this, the following inequality can be immediately
derived:

Στ ≥
W2ðp0; pτÞ2

Dτ
: ð17Þ

Inequality (17) refines the second law of thermodynamics
by providing a stronger bound on irreversible entropy
production solely in terms of the initial and final distribu-
tions, given that the operational time and diffusion coef-
ficient are fixed. The bound can be interpreted as a
thermodynamic speed limit:

τ ≥
W2ðpA; pBÞffiffiffiffiffiffiffiffiffiffiffiffi

Dhσiτ
p : ð18Þ

Moreover, it can also be applied to derive a finite-time
Landauer principle [29,76]. It is noteworthy that the bound
can be saturated for any pair of the initial and final
distributions and is tight even in the zero-temperature limit.
Because vtðxÞ and FtðxÞ can be considered a one-to-

one correspondence, we can obtain the following
equality between irreversible entropy production and the
Wasserstein distance:

min
Ft

Στ ¼
W2ðp0; pτÞ2

Dτ
: ð19Þ

This relation implies that the minimum entropy production
in all overdamped processes that transform one distribution
into another can be determined exactly by the Wasserstein
distance between the two distributions. In Refs. [76,79], it
is demonstrated that the minimum in Eq. (11) can be
achieved with a velocity field of the form vtðxÞ¼−∇ϕtðxÞ,
where ϕtðxÞ is a time-dependent potential. Thus, the
minimum entropy production can always be achieved with

a conservative force FtðxÞ ¼ −∇VtðxÞ, where VtðxÞ ¼
ϕtðxÞ −D lnptðxÞ is a time-dependent potential.

III. STOCHASTIC THERMODYNAMICS OF
DISCRETE SYSTEMS

In this section, we first briefly introduce the stochastic
thermodynamics of classical discrete Markovian dynamics
described by the master equation; for a comprehensive
review, one can refer to Ref. [2]. We then define a novel
physical quantity called dynamical state mobility, discuss
its relevant properties, and derive an improved thermody-
namic uncertainty relation.

A. Markov jump processes

We consider a discrete-state system with N > 1 states,
which is weakly attached to single or multiple thermal
reservoirs. Examples of these systems include diffusive
processes on a lattice, biomolecular motors, chemical
reaction networks, and quantum dots. The system can be
described in terms of a time-dependent probability distri-
bution pt ≔ ½p1ðtÞ;…; pNðtÞ�⊤, where pxðtÞ denotes the
probability of finding the system in state x at time t.
Assume that the system is modeled by a time-continuous
Markov jump process and that the transitions from a state y
to a state x occur at a non-negative rate wxyðtÞ, which can be
time dependent according to an external control protocol.
The time evolution of the probability distribution is
described by the master equation

_pt ¼ Wtpt; ð20Þ

where dot · denotes the time derivative and Wt ¼ ½wxyðtÞ�
denotes the matrix of the transition rates with wxxðtÞ ¼
−
P

yð≠xÞ wyxðtÞ. We consider microscopically reversible
dynamics, that is, wxyðtÞ > 0 if and only if wyxðtÞ > 0.
Hereafter, we assume that the transition rates satisfy the
local detailed-balance condition [2]:

ln
wxyðtÞ
wyxðtÞ

¼ sxyðtÞ; ð21Þ

where sxyðtÞ denotes the entropy change in the environment
due to the jump from state y to x at time t. If we fix the
transition rates at any time, the system relaxes toward a
stationary state, which may no longer be an equilib-
rium state.
In a case wherein the system is attached to a single

reservoir at inverse temperature β and the transitions
between states are induced by the energy difference, the
entropy change reads

sxyðtÞ ¼ β½εyðtÞ − εxðtÞ�; ð22Þ
where εxðtÞ denotes the instantaneous energy level of state
x at time t. Whenever this occurs, we say that the system
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satisfies the global detailed-balance condition. Notably, the
thermal state peq

x ðtÞ ∝ e−βεxðtÞ becomes the instantaneous
stationary state of the system (i.e., Wtp

eq
t ¼ 0). Hereafter,

we consider generic dynamics satisfying the local detailed-
balance condition. However, dynamics satisfying Eq. (22)
are used occasionally for physical interpretation of
some quantities.
For convenience, we define the following quantities:

axyðtÞ ≔ wxyðtÞpyðtÞ; ð23Þ

jxyðtÞ ≔ wxyðtÞpyðtÞ − wyxðtÞpxðtÞ; ð24Þ

which quantify the frequency of jumps and the probability
current from state y to x at time t, respectively.

B. Entropy production and dynamical activity

Given the previous setup, we now discuss some relevant
thermodynamic quantities. One central quantity is irrevers-
ible entropy production, which quantifies the degree of
irreversibility of the thermodynamic process. Within the
framework of stochastic thermodynamics, total entropy
production during a period τ can be defined as

Στ ≔ ΔSsys þ ΔSenv; ð25Þ
whereΔSsys andΔSenv are the changes in the entropy of the
system and the environment, respectively, expressed as

ΔSsys ¼ SðpτÞ − Sðp0Þ; ð26Þ

ΔSenv ¼
Z

τ

0

X
x≠y

axyðtÞsxyðtÞdt: ð27Þ

Here, system entropy production is quantified via the
Shannon entropy SðpÞ≔−

P
xpx lnpx, whereas the entropy

change of the environment is defined as the sum of entropic
contributions from each transition between states. Simple
calculations show that the entropy production rate is always
non-negative:

σt ≔ _Σt ¼
X
x>y

½axyðtÞ − ayxðtÞ� ln
axyðtÞ
ayxðtÞ

≥ 0: ð28Þ

The non-negativity of irreversible entropy production cor-
responds to the second law of thermodynamics. The equality
of this zero bound is attained only when the system is in the
instantaneous thermal state at all times.
Another essential quantity in nonequilibrium thermody-

namics is dynamical activity, quantified by the amplitude of
transitions between states as

at ≔
X
x≠y

axyðtÞ: ð29Þ

The average number of jumps during period τ can be
calculated as

Aτ ≔
Z

τ

0

atdt: ð30Þ

The time average of dynamical activity characterizes the
timescale of thermodynamic processes. The higher the
dynamical activity, the stronger the thermalization. Entropy
production and dynamical activity are the time-antisymmetric
and time-symmetric parts, respectively, of the path-integral
action with respect to a time-reversed process [94]. Both
quantities constrain the fluctuation of currents according to
the thermodynamic and kinetic uncertainty relations [13,97].

C. Dynamical state mobility

1. Definition

Here, we introduce a new quantity called dynamical state
mobility, which plays a crucial role in our results. Before
getting into the details, let us briefly recall the linear response
relations [98,99], which express the equalities between
currents and forces in near-equilibrium systems. Consider
an irreversible transport process driven by thermodynamic
forces F ¼ ½Fx�⊤, such as affinities in temperatures or
chemical potentials. Let J ¼ ½Jx�⊤ be the thermodynamic
currents that characterize the response of the system to the
applied forces. In a linear-response regime, the currents
depend only on the thermodynamic forces and can be
expressed by the following linear relations:

Jx ¼
X
y

μxyFy or J ¼ LF: ð31Þ

These relations (31) are referred to as linear response
equations, where the coefficients μxy are known as
Onsager kinetic coefficients and L ¼ ½μxy� is called the
Onsager matrix. Onsager reciprocal relations imply that, in
the case of time-reversal symmetry, the Onsager matrix is
symmetric (i.e., μxy ¼ μyx). In addition, the entropy produc-
tion rate can be expressed in a quadratic form of the forces as

σ ¼
X
x

JxFx ¼
X
x;y

μxyFxFy or σ ¼ F⊤LF: ð32Þ

The non-negativity of the entropy production rate immedi-
ately derives that L is positive semidefinite.
The Onsager coefficients characterize the response of

dynamics close to equilibrium at the macroscopic level.
Nevertheless, they can be mimicked to dynamics far from
equilibrium at the microscopic level. To show this, let us
focus on local transitions between states. The generalized
thermodynamic force associated with each transition from
y to x is defined as [13]

fxyðtÞ ≔ ln
axyðtÞ
ayxðtÞ

; ð33Þ
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which is the sum of the entropy changes in the system
and environment derived from the jump. Since jxyðtÞ is
the probability current associated with the transition from y
to x, defining the following coefficient is logical:

mxyðtÞ ≔
axyðtÞ − ayxðtÞ

ln axyðtÞ − ln ayxðtÞ
¼ jxyðtÞ

fxyðtÞ
: ð34Þ

Intuitively, fmxyðtÞg characterize the responses of the
probability currents against the thermodynamic forces at
the transition level. Notice that fmxyðtÞg are always
non-negative and symmetric [i.e., mxyðtÞ ¼ myxðtÞ ≥ 0].
Equation (34) can also be rewritten in the form of

jxyðtÞ ¼ mxyðtÞfxyðtÞ; ð35Þ

which shows that the currents and thermodynamic forces
can be linearly related in terms of the coefficients fmxyðtÞg.
Moreover, the entropy production rate can be expressed in a
quadratic form of the thermodynamic forces ffxyðtÞg as

σt ¼
X
x>y

mxyðtÞfxyðtÞ2 ¼
X
x>y

σxyðtÞ: ð36Þ

Here, we define the entropy production rate associated with
each transition as σxyðtÞ ≔ mxyðtÞfxyðtÞ2. Equations (35)
and (36) have the same algebraic forms as Eqs. (31)
and (32), respectively, which suggests that the coefficients
fmxyðtÞg play similar roles with the Onsager coefficients
for far-from-equilibrium systems.
In a weak-thermodynamic-force limit [i.e., jfxyðtÞj → 0],

the coefficient mxyðtÞ reduces to the average dynamical
activity between states x and y:

mxyðtÞ →
axyðtÞ þ ayxðtÞ

2
: ð37Þ

This is somewhat analogous to the Einstein relation on
mobility in overdamped Langevin dynamics (see Table I).
Note that the weak-thermodynamic-force limit is defined at
the microscopic state level and can be achieved via two
routes: the completely equilibrium limit in discrete systems
and the continuous-state limit (e.g., the limit from the
discrete hopping particle system to the overdamped
Fokker-Planck equation). In the continuous-state limit,

the difference between neighboring states x and y is
infinitesimal, and, thus, the force fxyðtÞ is also infinitesimal
because axyðtÞ=ayxðtÞ ≃ 1. We discuss the continuous-state
limit in the following subsection and show that the right-
hand side in Eq. (37) is proportional to the diffusion
coefficient. In general, the following relation holds for
the coefficient mxyðtÞ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axyðtÞayxðtÞ

q
≤ mxyðtÞ ≤

axyðtÞ þ ayxðtÞ
2

: ð38Þ

It is, thus, natural to define the sum of fmxyðtÞg over all
transitions:

mt ≔
X
x>y

mxyðtÞ: ð39Þ

For convenience, we refer to this term as dynamical
state mobility throughout this paper. This nomenclature
derives from the analogy between microscopic coefficients
fmxyðtÞg and the macroscopic mobility (see Table I).
To clarify further the identity ofmt, let us consider a case

in which the system is attached to a single reservoir and
satisfies the global detailed-balance condition. In this case,
the master equation (20) can be written as [22]

_pt ¼ Ktft; ð40Þ

where Kt is a symmetric, positive semidefinite matrix
given by

Kt ≔
1

2

X
x≠y

mxyðtÞExy: ð41Þ

Here, ft ¼ ½f1ðtÞ;…; fNðtÞ�⊤ with fxðtÞ ¼ − lnpxðtÞ þ
lnpeq

x ðtÞ and Exy ¼ ½euv� ∈ RN×N is a matrix with eyy ¼
exx ¼ 1, exy ¼ eyx ¼ −1, and zeros in all other elements.
The quantities ffxðtÞg are identified as the entropic
thermodynamic forces, which characterize how far the
system is driven from the instantaneous equilibrium state.
Equation (40) represents the linear relations between the
rates _pt and forces ft through the symmetric matrix Kt.
Furthermore, the total entropy production rate can be
written in a quadratic form as [22]

σt ¼ f⊤t Ktft: ð42Þ

Therefore, Eqs. (40) and (42) can be viewed as far-from-
equilibrium counterparts of Eqs. (31) and (32), respectively.
The matrix Kt is, thus, identified as the Onsager-like
matrix. Because fmxyðtÞg are elements of Kt, they can
be regarded as the Onsager-like kinetic coefficients for out-
of-equilibrium systems. From the definition of Kt, we can

TABLE I. Analogy between the dynamical state mobility and
macroscopic mobility.

Microscopic level Macroscopic level

jxy ¼ mxyfxy J ¼ μF

Einstein-like relation jfxyj ≪ 1 Einstein relation jFj ≪ 1
mxy ¼ ðaxy þ ayxÞ=2 μ ¼ βD
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easily verify thatmt is exactly the sum of diagonal elements
of the Onsager-like matrix:

mt ¼
1

2
trKt: ð43Þ

Therefore, mt can be identified as a kinetic term. The time
integral of the kinetic term mt can be considered as the
kinetic cost of Markov jump processes, defined by

Mτ ≔
Z

τ

0

mtdt ¼ τhmiτ; ð44Þ

where we define the time-averaged quantity for arbitrary
time-dependent quantity xt as

hxiτ ≔ τ−1
Z

τ

0

xtdt: ð45Þ

By summing both sides of Eq. (38) for all x > y, we can
prove that dynamical state mobility is upper bounded by
dynamical activity as

mt ≤
at
2
: ð46Þ

The equality of Eq. (46) can be achieved in the equilibrium
limit. It is, thus, evident that Mτ ≤ Aτ=2.

2. Continuous limit

Next, we investigate mt in the continuous limit. To this
end, we consider an overdamped Brownian particle trapped
in a one-dimensional potential VtðxÞ. Let xt denote the
position of the particle at time t. Then, its dynamics is
governed by the Langevin equation:

_xt ¼ FtðxtÞ þ
ffiffiffiffiffiffiffi
2D

p
ξt; ð47Þ

where FtðxÞ ≔ −∂xVtðxÞ is the total force applied on the
particle, ξt is a zero-mean Gaussian white noise with
variance hξtξt0 i ¼ δðt − t0Þ, and D > 0 is the diffusion
coefficient. Let ptðxÞ be the probability distribution
function of finding the particle in state x at time t. Then,
its time evolution can be described by the Fokker-Planck
equation:

_ptðxÞ ¼ −∂x½FtðxÞptðxÞ −D∂xptðxÞ�; ð48Þ

where we set μ ¼ 1 for simplicity. We now consider the
discretization of the Fokker-Planck equation (48) with
space interval Δx > 0 and define xn ≔ nΔx. By defining
the probability distribution and transition rates as

pnðtÞ ≔ ptðxnÞΔx; ð49Þ

wnþ1;nðtÞ ≔
D

ðΔxÞ2 exp
�
VtðxnÞ − Vtðxnþ1Þ

2D

�

≃
FtðxnÞ
2Δx

þ D
ðΔxÞ2 ; ð50Þ

wn−1;nðtÞ ≔
D

ðΔxÞ2 exp
�
VtðxnÞ − Vtðxn−1Þ

2D

�

≃
−FtðxnÞ
2Δx

þ D
ðΔxÞ2 ; ð51Þ

we readily obtain the master equation:

_pnðtÞ ¼ wn;n−1ðtÞpn−1ðtÞ þ wn;nþ1ðtÞpnþ1ðtÞ
− ½wnþ1;nðtÞ þ wn−1;nðtÞ�pnðtÞ: ð52Þ

We note here from Eqs. (50) and (51) that

anþ1;nðtÞ ≃
�
FtðxnÞ
2Δx

þ D
ðΔxÞ2

�
pnðtÞ; ð53Þ

anþ1;nðtÞ þ an;nþ1ðtÞ
2

¼ DptðxnÞðΔxÞ−1 þOð1Þ: ð54Þ

The probability currents and thermodynamic forces can be
calculated as

jnþ1;nðtÞ ¼ FtðxnÞptðxnÞ −D∂xptðxnÞ þOðΔxÞ; ð55Þ

fnþ1;nðtÞ ¼
�
FtðxnÞ
D

−
∂xptðxnÞ
ptðxnÞ

�
ΔxþOðΔx2Þ: ð56Þ

From these expressions, mnþ1;nðtÞ can be calculated via the
definition (34), which gives

mnþ1;nðtÞ →
anþ1;nðtÞ þ an;nþ1ðtÞ

2

¼ DptðxnÞðΔxÞ−1 þOð1Þ: ð57Þ

Equation (57) indicates that mnþ1;nðtÞ converges to the
value ½anþ1;nðtÞ þ an;nþ1ðtÞ�=2, and these correspond to the
product of the diffusion coefficient and probability distri-
bution (see Table I). Summing both sides of Eq. (57) for
all n, we obtain

mt →
at
2
≃
X
n

DptðxnÞðΔxÞ−1 ¼ DðΔxÞ−2: ð58Þ

This implies that mt is proportional to D as the scaling
factor is ignored. Thus, mt should play the same role as
that of the diffusion coefficient. It is noteworthy that the
diffusion coefficient is exactly the diagonal Onsager
coefficient of overdamped Langevin processes in the
linear-response regime.
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D. Thermodynamic uncertainty relation:
State mobility is crucial in nonequilibrium

Here, we describe an improved thermodynamic uncer-
tainty relation, showing that the kinetic cost of dynamical
state mobility plays a critical role in constraining the
precision of time-integrated currents. For simplicity, we
consider a steady-state Markov jump process. The gener-
alization to the case of an arbitrary initial state and arbitrary
time-dependent driving is straightforward.
Let Γ ¼ fx0; ðt1; x1Þ;…; ðtK; xKÞg be a stochastic tra-

jectory, in which the system is initially at state x0 and
subsequently jumps from state xk−1 to xk at time tk for each
k ¼ 1;…; K. For each stochastic trajectory Γ, we consider a
time-antisymmetric current J, defined as

JðΓÞ ≔
XK
k¼1

ϒxkxk−1 : ð59Þ

Here, fϒxyg are arbitrary real coefficients satisfying
ϒxy ¼ −ϒyx for all x and y. Examples of currents include
the entropy flux and heat flux to the environment by
specific choices of fϒxyg. The precision of current J can be
quantified by the square of the current mean divided by its
variance hJi2=var½J�. The conventional thermodynamic
uncertainty relation [12,13] sets an upper bound on the
precision in terms of the total entropy production, given by
the following inequality:

hJi2
var½J� ≤

Στ

2
: ð60Þ

Numerous studies generalize this relation to other dynam-
ics, from classical to quantum [100–118].
We improve the thermodynamic uncertainty relation

by proving that the precision of currents is upper bounded
by the product of the thermodynamic and kinetic costs,
as follows:

hJi2
var½J� ≤ η

Στ

2
; ð61Þ

where η ¼ 2Mτ=Aτ ≤ 1 can be regarded as an efficiency
of dynamical activity (see Appendix C 3 for the proof).
The new relation (61) is tighter than the conventional
relation (60) and can be saturated in the case of a one-
dimensional random walk. Although the conventional
relation (60) implies that increasing dissipation is necessary
to achieve high precision, it does not ensure the converse;
that is, increasing dissipation is not sufficient for obtaining
high precision of currents. This can be explained through
our relation, where the kinetic contribution η appears in
the bound in addition to the thermodynamic contribution.
For systems far from equilibrium, it is tedious that η ≪ 1,

which equivalently indicates the unattainability of the
conventional bound.
For a case in which the system is in an arbitrary initial

state and is driven by a time-dependent protocol, the
derived relation can be analogously generalized as

½ðτ∂τ − v∂vÞhJi�2
var½J� ≤ η

Στ

2
; ð62Þ

where v is a speed parameter of the control protocol [112].
In the following, we exemplify the derived thermody-

namic uncertainty relation in a five-state Brownian clock
[119]. The Brownian clock is modeled as an inhomogeneous
biased random walk on a ring with five states [see Fig. 2(a)].
The clock’s pointer transits from state x to xþ 1ð6≡ 1Þ at
rate kþ > 0, whereas the backward rate is k− > 0. The net
number of cycles completed by the pointer characterizes the
clock’s time. In other words, time can be counted by a
stochastic current J that increases by 1 for each transition
from state 5 to 1 and decreases by 1 for the reverse transition
from state 1 to 5. The stochastic current J can be defined by
setting ϒ15 ¼ 1 ¼ −ϒ51 and ϒxy ¼ 0 for others. Thus, the
precision of the clock can be quantified by hJi2=var½J�.
We consider the clock operating in the stationary state.

To investigate the quality of the bounds, we fix the back-
ward rate k− ¼ 10 and vary the forward rate kþ ∈ ð0; 80�.
For each parameter setting, we calculate the precision of the
clock and the bounds of the conventional and new
thermodynamic uncertainty relations using the full count-
ing statistics. The numerical results are plotted in Fig. 2(b),
which verify that the new bound is always tighter than the
conventional bound. In particular, the new bound is tight
even in the far-from-equilibrium regime.

IV. RESULTS ON DISCRETE OPTIMAL
TRANSPORT

Thus far, the problem of optimal transport is discussed in
terms of continuous spaces. In the following, we focus on

(b)(a)

FIG. 2. Numerical illustration of the thermodynamic uncer-
tainty relations. (a) Schematic of the five-state Brownian clock
and (b) numerical verification. The current precision hJi2=var½J�,
new bound ηΣτ=2, and conventional bound Στ=2 are indicated
by the solid, dashed, and dash-dotted lines, respectively. The
forward rate kþ is varied, whereas the backward rate k− is fixed at
k− ¼ 10. The operational time is fixed at τ ¼ 1.
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the case of discrete spaces and explain the discrete
Wasserstein distance. We then state our first theorem,
which connects the discrete Wasserstein distance to sto-
chastic thermodynamics of Markov jump processes.

A. Optimal transport distance

The optimal transport problem in the discrete case is
analogous to that in the continuous case except that we
now deal with discreteN-dimensional distributions. Given
two discrete distributions pA ¼ ½pA

x � and pB ¼ ½pB
x �, the

optimal means of transporting distribution pA to pB with
respect to a cost matrix C ¼ ½cxy� becomes the focus.
Here, cxy ≥ 0 denotes the cost of transporting a unit
probability from pA

y to pB
x .

The transport problem can be formulated using a
coupling π ¼ ½πxy� between the probability distributions
pA and pB. Specifically, π is a joint probability distribution
such that its marginal distributions coincide with pA and pB

(i.e., the following conditions are satisfied for all x):

pA
x ¼

XN
y¼1

πyx and pB
x ¼

XN
y¼1

πxy: ð63Þ

Each coupling, thus, defines a transport plan: For each x
and y, we transport an amount πxy from pA

y to pB
x . Thus,

the discrete L1-Wasserstein distance can be defined as the
minimum transport cost over all admissible couplings:

W1ðpA; pBÞ ≔ min
π∈ΠðpA;pBÞ

X
x;y

cxyπxy; ð64Þ

where ΠðpA; pBÞ denotes a set of couplings between pA

and pB. Once the cost matrix is provided, the discrete
Wasserstein distance can be efficiently computed using a
linear programming method. In addition, as long as the cost
matrix satisfies

cxy þ cyz ≥ cxz ð65Þ

for any x, y, and z, the resulting distance fulfills the triangle
inequality:

W1ðpA; pBÞ þW1ðpB; pCÞ ≥ W1ðpA; pCÞ: ð66Þ

We observe that the definition of the Wasserstein distance
depends on the cost matrix. In other words, each matrix of
transport costs induces a quantitatively different measure
of distance. Evidently, an infinite number of approaches
can be used to choose the cost matrix. In the following, we
consider the cost matrix and corresponding Wasserstein
distance defined on the basis of a graph.
Let GðV; EÞ denote an undirected graph, where V and E

are the sets of vertices and unordered edges, respectively.
Then, any microscopically reversible Markov jump process

can be associated with an undirected graph, in which
V ¼ f1;…; Ng is the set of all states of the Markov jump
process, and two vertices x and y are connected by an edge
ðx; yÞ ∈ E if the transition between x and y is allowed.
A jump process that has a unique steady state can be
described by a connected graph; that is, for any unordered
pair ðx; yÞ, a sequence of vertices P ¼ ½v1;…; vk� always
exists such that x ¼ v1, y ¼ vk, and ðvi; viþ1Þ ∈ E for all
1 ≤ i ≤ k − 1. A subgraph G̃ of a graph G is one whose
edge set is a subset of that of G. In other words, G̃ can be
obtained from G by removing some edges. This is equiv-
alent to setting some transition rates of the Markov jump
process to zero. For convenience, hereafter, the underlying
graph structure of a Markov jump process is referred to as
its topology.
Given the topology of a jump process, we now can define

the transport cost matrix. For each path P, let lenðPÞ denote
its length, which is the number of edges contained in the
path. The shortest-path distance from vertex x to vertex y
can be defined as

dyx ≔ min
P
flenðPÞg; ð67Þ

where the minimum is over all paths that connect x to y. For
undirected graphs, clearly dxy ¼ dyx. From the definition of
the distances fdyxg, we can easily verify that the triangle
inequality is fulfilled, that is,

dxy þ dyz ≥ dxz ð68Þ
for arbitrary vertices x, y, and z. Employing these shortest-
path distances as the transport costs (i.e., cxy ¼ dxy),
we hereafter exclusively focus on the following discrete
Wasserstein distance:

W1ðpA; pBÞ ≔ min
π∈ΠðpA;pBÞ

X
x;y

dxyπxy: ð69Þ

It is noteworthy that only static information (i.e., graph
connectivity) is required to define the Wasserstein distance
at this time (see Fig. 3 for illustration).

FIG. 3. Example of the Wasserstein distance defined based on a
graph consisting of five vertices and five edges. Given the
topology GðV; EÞ, the shortest-path distances fdxyg can be
calculated, from which the Wasserstein distance can be defined.
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In a general case, since dxy ≥ 1 for all x ≠ y, the
Wasserstein distance is always lower bounded by the total
variation distance:

W1ðpA; pBÞ ≥ T ðpA; pBÞ ≔ 1

2

X
x

jpA
x − pB

x j: ð70Þ

However, when the underlying graph is fully connected
(i.e., the transition between any two states is admissible),
the shortest-path distance becomes

dxy ¼ 1 − δxy; ð71Þ

where δxy is the Kronecker delta of x and y. In this case, the
Wasserstein distance coincides with the total variation
distance (see Appendix D 1 for the proof):

W1ðpA; pBÞ ¼ T ðpA; pBÞ: ð72Þ

B. Thermodynamic interpretation

With the above setup, we can now state the results.
Conventionally, the discrete Wasserstein distance is
defined mathematically using the transport cost matrix
based on only the shortest-path distances. However, in the
following theorem, we explicitly show an intimate relation-
ship between the discrete Wasserstein distance defined in
Eq. (69) and the stochastic thermodynamics of Markov
jump processes.
Theorem 1: The Wasserstein distance based on a top-

ology GðV; EÞ can be written in variational forms as

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ð73Þ

¼ min
Wt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ð74Þ

Here, the minimum is taken over all transition rate matrices
fWtg0≤t≤τ which satisfy the master equation (20) with
the boundary conditions p0 ¼ pA and pτ ¼ pB and induce
subgraphs of GðV; EÞ for all times.
Theorem 1 is the first central result, and its sketch proof

is given in the following. Note that the minimization is
over all transition rate matrices which are microscopically
reversible and induce subgraphs of GðV; EÞ for all times.
This means that the transition rate between two states x and
y must be fixed to zero for all times if no edge exists
between vertices x and y in the graph G. Otherwise, as long
as an edge exists between the vertices, the transition rate
can be arbitrarily controlled. Notably, the equality of
Eq. (73) can always be ensured with dynamics that satisfy
the global detailed-balance condition (see Appendix D 3 for
the proof).
Proof.—Here, we provide an outline of the proof; see

Appendix D 2 for a detailed derivation. The proof strategy

can be mainly divided into the following two steps. We first
prove that

W1ðpA; pBÞ ≤
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
ð75Þ

holds for all admissible Markovian dynamics that transform
pA into pB, and we then construct a specific process that
attains the equality. Since the second inequality in Eq. (75)
is simply a consequence of the Cauchy-Schwarz inequality,
Eq. (75) can be proved after we verify the first inequality.
This can be done by proving the following relation:

W1ðpA; pBÞ ≤
Z

τ

0

X
x>y

jjxyðtÞjdt ≤
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt: ð76Þ

The second inequality in Eq. (76) can be derived using the
Cauchy-Schwarz inequality. Thus, we need only show
the first inequality in Eq. (76). To this end, we map the
Wasserstein distance to the minimum cost of the minimum
cost flow problem in the field of graph theory. For this
problem, we can show that the Wasserstein distance is
exactly the optimal flow cost. Moreover, the Markov jump
process also yields an admissible solution to the flow
problem with the cost

R
τ
0

P
x>y jjxyðtÞjdt. Consequently,

the first inequality in Eq. (76) is proved. Finally, we
inversely translate the optimal solution of the minimum
cost flow problem to construct a Markov jump process that
attains the equality of Eq. (75). ▪
Some remarks regarding Theorem 1 are in order. First,

Eqs. (73) and (74) provide a thermodynamic interpretation
of the discrete Wasserstein distance; that is,W1 equals the
minimum product of the thermodynamic and kinetic costs
over all admissible Markovian dynamics that transform
the source distribution into the target one. From a different
perspective, it can be regarded as a trade-off between
irreversible entropy production and dynamical state
mobility; that is, to transform a probability distribution
into another one, both Στ and Mτ cannot be simulta-
neously small:

ΣτMτ ≥ W1ðpA; pBÞ2: ð77Þ
In other words, either the thermodynamic or kinetic
cost must be sacrificed to achieve a feasible state
transformation.
Second, we show that the discrete Wasserstein distance

has analogous thermodynamic properties with the continu-
ous L2-Wasserstein distance. To this end, we rewrite
Eq. (74) in the following form:

W1ðpA; pBÞ ¼ min
Wt

ffiffiffiffiffiffiffiffiffiffiffi
D̄τΣτ

q
; ð78Þ

where we define time-averaged state mobility D̄ ≔ hmiτ.
As previously shown, the kinetic term mt reduces to the
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diffusion coefficient in the continuous limit. Therefore, its
time-averaged quantity D̄ here plays the same role as the
diffusion coefficient D does in the continuous case.
Consequently, Eq. (78) can be regarded as the discrete
analog of the Benamou-Brenier formula (16) known for
the L2-Wasserstein distance. Equation (78) immediately
derives a lower bound on irreversible entropy production:

Στ ≥
W1ðpA; pBÞ2

D̄τ
: ð79Þ

This bound is tight and can always be attained for an
arbitrary pair of distributions. In other words, the minimum
entropy production among all feasible dynamics that have
the same value of D̄ is given by the Wasserstein distance:

min
hmiτ¼D̄

Στ ¼
W1ðpA; pBÞ2

D̄τ
: ð80Þ

Equations (79) and (80) can be considered discrete analogs
of Eqs. (17) and (19), respectively.
Third, Theorem 1 provides insights into the problem of

minimizing entropy production in discrete Markovian
dynamics. Previous studies show that the irreversible
entropy production required to transform the initial into
the final distribution can be arbitrarily small if no constraint
is placed on the transition rates [91–93]. Equation (80)
also confirms this, where the minimum entropy production
depends on D̄ and can be arbitrarily adjusted. Theorem 1
suggests that fixing D̄ is a reasonable constraint under
which the minimum entropy production is determined by
the Wasserstein distance, as in the continuous case.
Notably, as Appendix C 1 shows, D̄ can be fixed to an
arbitrary positive value, indicating the flexibility of the
optimization problem. The optimal control protocol can
also be constructed from optimal coupling, as shown in our
proof of Theorem 1. Moreover, for arbitrary D̄ > 0, the
minimum entropy production in Eq. (80) can always be
attained using a system with conservative forces (see
Appendix D 4 for the proof). It is noteworthy that the
discussion thus far does not impose any other constraints on
the transition rates, except for fixing hmiτ. Therefore, if
some additional constraints are placed on the transition
rates, such as upper or lower bounds on the magnitude of
transition rates, it may not be the case. Nevertheless, a
lower bound can be derived for the minimum entropy
production in this case. Let D̄max be the maximum of hmiτ
among all processes that transform distribution pA into pB

under these constraints. Then, the minimum entropy
production is lower bounded by the Wasserstein distance
and D̄max as

Στ ≥
W1ðpA; pBÞ2

D̄maxτ
: ð81Þ

The thermodynamic structure of minimum dissipation is
illustrated in Fig. 4.
Finally, as shown in Sec. VI, the variational formulas (73)

and (74) have crucial implications for thermodynamic
speed limits and thermodynamic cost of information
erasure at arbitrary temperatures.
Note that each topology induces a different Wasserstein

metric. In the following, we consider a specific topology
and discuss the relevance of the variational formulas (73)
and (74). For other common topologies, see Appendix D 5.
One common topology is one-dimensional nearest-

neighbor, in which a jump between states x and y is
admitted if and only if jx − yj ¼ 1. This topology is
relevant to Brownian random walks and the discretization
of a one-dimensional Langevin system. The shortest-path
distances in this topology can be readily calculated as

dxy ¼ jx − yj: ð82Þ
Because this cost matrix is the discrete analog of the
cost function cðx; yÞ ¼ jx − yj used in the definition of the
continuous L1-Wasserstein distance W1, the discrete
Wasserstein distance W1 should be reduced to W1 in the
continuous limit. Let Δx be the space interval. Then, W1

converges to W1 as Δx → 0 and N → ∞:

W1ðpA; pBÞΔx ⟶
N→∞

Δx→0
W1ðpA; pBÞ: ð83Þ

In addition, as shown in the proof of Theorem 1,
W1ðpA; pBÞ can be expressed in terms of the probability
currents as

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

X
x>y

jjxyðtÞjdt: ð84Þ

Constrained space

Transition rate space

FIG. 4. Schematic of the thermodynamic structure of minimum
dissipation in the space of transition rates. Solid lines represent
dynamics that have the same value of the average state mobility
hmiτ. Black circles depict extreme points in which the minimum
dissipation is attained, provided that the average state mobility is
fixed. In the presence of other constraints on transition rates, the
minimum dissipation is lower bounded by the Wasserstein
distance and maximum value of hmiτ.
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Equation (84) implies that the discrete Wasserstein distance
is equal to the minimum sum of absolute probability
currents. In the case considered here, the equality (84) reads

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

XN−1

x¼1

jjxþ1;xðtÞjdt: ð85Þ

Noticing that
P

N−1
x¼1 jjxþ1;xðtÞjΔx→

R
R jjtðxÞjdx as Δx→0,

we obtain the following limit:

W1ðpA; pBÞΔx ⟶
N→∞

Δx→0
min
jt

Z
τ

0

Z
R
jjtðxÞjdxdt: ð86Þ

Combining Eqs. (83) and (86) gives the following relation:

W1ðpA; pBÞ ¼ min
jt

Z
τ

0

Z
R
jjtðxÞjdxdt; ð87Þ

where jtðxÞ is subject to the equation _ptðxÞ ¼ −∂xjtðxÞ.
Notably, Eq. (87) is exactly the Benamou-Brenier formula
for the continuous L1-Wasserstein distance in the one-
dimensional case [120]. Therefore, we can conclude that
Eq. (84) provides a unified generalization of the Benamou-
Brenier formula for the L1-Wasserstein distance.
Let us now consider the discretization of one-

dimensional Langevin dynamics, that is, Markov jump
processes with transition rates specified as in Eqs. (50)
and (51). For these jump processes, the dynamical state
mobility reduces to the diffusion coefficient in the con-
tinuous limit [i.e., MτðΔxÞ2 → Dτ as Δx → 0]. In the
continuous case, the Benamou-Brenier formula (87) can be
expressed as

W1ðpA; pBÞ ¼ min
jt

Z
τ

0

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtðxÞmtðxÞ

p
dxdt

≤ min
Ft

Z
τ

0

ffiffiffiffiffiffiffiffi
Dσt

p
dt ¼ min

Ft

ffiffiffiffiffiffiffiffiffiffiffi
DτΣτ

p
; ð88Þ

where we define mtðxÞ ≔ DptðxÞ and the local entropy
production rate σtðxÞ ≔ jtðxÞ2=½DptðxÞ�. From Theorem 1
and Eq. (88), we can conclude that, in the continuous
limit, the equality in Theorem 1 might not be achieved
with Markov jump processes whose transition rates are
expressed as in Eqs. (50) and (51). This shows the differ-
ence between the discrete and continuous cases, where the
discrete case has more degrees of freedom than the
continuous case.
Theorem 1 characterizes the discrete Wasserstein dis-

tance W1 in terms of the thermodynamic and kinetic costs
associated with Markovian dynamics. In Appendix D 6, we
show that Theorem 1 has some useful corollaries that
not only provide alternative expressions for W1, but also
lead to stringent bounds for thermodynamic speed limits.

Using other combinations of irreversible entropy produc-
tion, pseudo entropy production, and dynamical activity,
the discrete Wasserstein distance W1 can be expressed in
similar variational forms.

V. QUANTUM GENERALIZATION

We next generalize our framework to the quantum
case. We first briefly introduce quantum thermodynamics
of Markovian open quantum dynamics described by the
Lindblad equations and define a quantum analog of
dynamical state mobility. Then, we define a quantum
Wasserstein distance and derive analogous variational
formulas for the quantum Wasserstein distance in terms
of thermodynamic cost.

A. Markovian open quantum dynamics

We consider a finite-dimensional open quantum system,
which is attached to single or multiple thermal reservoirs.
In the weak-coupling limit, the time evolution of the
reduced density matrix can be described by the Lindblad
master equation [121]:

_ϱt ¼ LtðϱtÞ ≔ −i½Ht; ϱt� þ
X
k

D½LkðtÞ�ϱt; ð89Þ

where Ht is the time-dependent Hamiltonian, D is the
dissipator given by D½L�ϱ ≔ LϱL† − fL†L; ϱg=2, and
LkðtÞ are jump operators. ½∘;⋆� and f∘;⋆g denote the
commutator and anticommutator of the two operators,
respectively. Hereafter, we set the Planck constant to unity:
ℏ ¼ 1. To guarantee thermodynamically consistent dynam-
ics, we assume that the jump operators satisfy the local
detailed-balance condition [122,123]; that is, they come in
pairs ðk; k0Þ such that

LkðtÞ ¼ eskðtÞ=2Lk0 ðtÞ†; ð90Þ

where skðtÞ ¼ −sk0 ðtÞ denotes the entropy change in the
environment due to the jump operator LkðtÞ. In the case of a
single reservoir at inverse temperature β, we can write
skðtÞ ¼ βωkðtÞ, where ωkðtÞ is the energy change associ-
ated with the kth jump.

B. Entropy production and dynamical activity

Given the previous setup, we can now introduce quan-
tum entropy production and dynamical activity. Similar to
the classical case, irreversible entropy production can be
defined as the sum of entropy changes in the system and
environment as

Στ ≔ ΔSsys þ ΔSenv; ð91Þ

where ΔSsys ≔ SðϱτÞ − Sðϱ0Þ is the difference in the
von Neumann entropy SðϱÞ ¼ −trfϱ ln ϱg of the system
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and ΔSenv denotes environmental entropy production,
given by [122,123]

ΔSenv ≔
Z

τ

0

X
k

trfLkðtÞϱtL†
kðtÞgskðtÞdt: ð92Þ

With this definition, we can prove that Στ is always
non-negative, which implies the second law of thermody-
namics. For the case of a single reservoir and the jump
operators that characterize transitions between energy
eigenstates [i.e., ½LkðtÞ; Ht� ¼ ωkðtÞLkðtÞ], the entropy
production of the environment reduces exactly to the
conventional form [124]

ΔSenv ¼ −β
Z

τ

0

trfHt _ϱtgdt: ð93Þ

Quantum dynamical activity can be analogously defined
as in the classical case. The frequency of jumps at time t
can be quantified as

at ≔
X
k

trfLkðtÞϱtL†
kðtÞg; ð94Þ

and the average total number of jumps can be calculated as
Aτ ≔

R
τ
0 atdt. Quantum dynamical activity characterizes the

thermalization rate of thermodynamic processes. In addition,
it is shown that quantum dynamical activity constrains the
precision of generic counting observables and their first
passage time in quantum jump processes [109,118].
It is convenient to alternatively express entropy

production and dynamical activity defined in Eqs. (91)
and (94), respectively. Let ϱt ¼

P
x pxðtÞjxtihxtj be the

spectral decomposition of the density matrix ϱt. We then
define transition rates between eigenbasis as wxy

k ðtÞ ≔
jhxtjLkðtÞjytij2 ≥ 0. Notice that wxy

k ðtÞ ¼ eskðtÞwyx
k0 ðtÞ.

Taking the time derivative of pxðtÞ ¼ hxtjϱtjxti, we obtain
the following master equation for the distribution fpxðtÞg:

_pxðtÞ ¼
X
k

X
yð≠xÞ

½wxy
k ðtÞpyðtÞ − wyx

k ðtÞpxðtÞ�: ð95Þ

Analogous to the classical case, we define

axyk ðtÞ ≔ wxy
k ðtÞpyðtÞ; ð96Þ

jxyk ðtÞ ≔ wxy
k ðtÞpyðtÞ − wyx

k0 ðtÞpxðtÞ: ð97Þ

Using these probability currents, we can write the master
equation as

_pxðtÞ ¼
X
k

X
yð≠xÞ

jxyk ðtÞ: ð98Þ

We emphasize that the classical-like master equation (95) is
rigorously derived from Eq. (89). This equation is intro-
duced only for the proof convenience of several properties
that the dynamics (89) possesses. After some simple
manipulations, we can prove that the entropy production
rate σt ≔ _Σt can be analytically expressed as (see
Appendix E 1 for the proof)

σt ¼
1

2

X
k

X
x;y

jxyk ðtÞ lnw
xy
k ðtÞpyðtÞ

wyx
k0 ðtÞpxðtÞ

: ð99Þ

Besides, plugging the spectral decomposition of ϱt and
inserting 1 ¼ P

x jxtihxtj into Eq. (94), the dynamical
activity rate can also be expressed as

at ¼
X
k

X
x;y

wxy
k ðtÞpyðtÞ ¼

X
k

X
x;y

axyk ðtÞ: ð100Þ

Note that both σt and at, which can be written in terms
of the transition rates of the master equation (95), are the
entropy production and dynamical activity rates associated
with the Lindblad dynamics (89), respectively.

C. Quantum dynamical state mobility

Analogous with the classical case, the quantum analog of
dynamical state mobility can be defined as

mt ≔
1

2

X
k

e−skðtÞ=2hLkðtÞ†; ⟦ϱt⟧skðtÞfPt½LkðtÞ†�gi; ð101Þ

where hX; Yi ≔ trfX†Yg denotes the scalar inner
product, Pt is a superoperator given by Pt½X� ≔
X −

P
xhxtjXjxtijxtihxtj, and the tilted operator ⟦ϕ⟧θðXÞ

is defined for arbitrary density matrix ϕ, real number θ,
and linear operator X as

⟦ϕ⟧θðXÞ ≔ e−θ=2
Z

1

0

eθuϕuXϕ1−udu: ð102Þ

The quantum kinetic cost can be analogously defined as

Mτ ≔
Z

τ

0

mtdt: ð103Þ

From the mathematical definition in Eq. (101), interpreting
the term mt as a kinetic term may not be intuitive. In the
following, we provide the physical interpretations of mt
from two perspectives.
First, by focusing on the master equation of the

distribution fpxðtÞg, we can show that mt is equal to the
dynamical state mobility associated with Markovian jump
dynamics (95):

mt ¼
X
k

X
x>y

axyk ðtÞ − ayxk0 ðtÞ
ln axyk ðtÞ − ln ayxk0 ðtÞ

: ð104Þ
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Note that, by applying the inequality (38) to Eq. (104),
we can readily prove that mt is upper bounded by the
dynamical activity:

mt ≤
X
k

X
x>y

axyk ðtÞ þ ayxk0 ðtÞ
2

¼ 1

2

X
k

X
x≠y

axyk ðtÞ

≤
at
2
: ð105Þ

Second, let us consider the case of a single reservoir,
in which the jump operators satisfy ½LkðtÞ; Ht� ¼
ωkðtÞLkðtÞ. In this case, the thermal state ϱeqt ≔
e−βHt=tr e−βHt is always the instantaneous equilibrium
state [i.e., Ltðϱeqt Þ ¼ 0]. Note that the Lindblad master
equation (89) can be rewritten as [22]

_ϱt ¼ Uϱtðt; ftÞ þOϱtðt; ftÞ; ð106Þ

where ft ≔ − ln ϱt þ ln ϱeqt is the quantum thermodynamic
force and Uϕðt; XÞ and Oϕðt; XÞ are time-dependent super-
operators defined, respectively, as

Uϕðt; XÞ ≔ iβ−1½X;ϕ�; ð107Þ

Oϕðt; XÞ ≔
1

2

X
k

e−skðtÞ=2[LkðtÞ; ⟦ϕ⟧skðtÞf½LkðtÞ†; X�g]:

ð108Þ

The superoperators U and O characterize the unitary
and dissipative parts of Lindblad dynamics, respectively.
They linearly relate the rate of the density matrix to the
thermodynamic force. In addition, the entropy production
rate can be written in a quadratic form of the thermody-
namic force as [22]

σt ¼ hft;Oϱtðt; ftÞi: ð109Þ

Since Eqs. (106) and (109) are analogous to Eqs. (40)
and (42) in the classical case, respectively, the super-
operator O can be regarded as a quantum Onsager-like
superoperator.
We now investigate the relationship between mt and the

Onsager-like superoperator O. To this end, we employ the
vectorization of a linear operator X as

X ¼
X
i;j

xijjiihjj → jX⟫ ¼
X
i;j

xijjii ⊗ jji: ð110Þ

Using this representation, we can rewrite the Lindblad
master equation (106) as

j_ϱt⟫ ¼ Utjft⟫þOtjft⟫; ð111Þ

where the linear matrices Ut and Ot are defined as

Ut ≔ iβ−1ð1 ⊗ ϱ⊤t − ϱt ⊗ 1Þ; ð112Þ

Ot ≔
1

2

X
k

e−skðtÞ
Z

1

0

eskðtÞuOkðt; uÞdu: ð113Þ

Here, ⊤ denotes the matrix transpose, and Okðt; xÞ is
given by

Okðt; uÞ
≔ LkðtÞϱut LkðtÞ† ⊗ ðϱ1−ut Þ⊤ þ ϱut ⊗ ½LkðtÞ†ϱ1−ut LkðtÞ�⊤
−LkðtÞϱut ⊗ ½LkðtÞ†ϱ1−ut �⊤ − ϱut LkðtÞ† ⊗ ½ϱ1−ut LkðtÞ�⊤:

ð114Þ

Note that Ut and Ot are the matrix representations of the
superoperators U and O, respectively. Simple algebraic
calculations show that the term mt can be related to the
diagonal elements of the Onsager-like matrix Ot as (see
Appendix E 2 for the proof)

mt ¼
1

2

X
x

hxtj ⊗ jxti⊤Otjxti ⊗ hxtj⊤: ð115Þ

In this sense,mt can be regarded as a quantum kinetic term.

D. Quantum optimal transport distance and
thermodynamic interpretation

Although the classical Wasserstein distance is well formu-
lated and studied, its quantum version remains under develop-
ment. Several quantum generalizations of the Wasserstein
distance have been proposed [22,120,125–129]. However,
defining the quantum L1-Wasserstein distance unambigu-
ously by directly generalizing the classical distance has been
shown to be impossible [130].
By a naive extension using quantum coupling, a quan-

tum optimal transport distance can be defined as

WqðϱA; ϱBÞ ≔ min
ϱAB∈ΠðϱA;ϱBÞ

trfCϱABg; ð116Þ

where the coupling ΠðϱA; ϱBÞ denotes the set of density
matrices ϱAB defined over the Hilbert space H ⊗ H and
satisfy trBϱAB ¼ ϱA and trAϱAB ¼ ϱB and C is a cost matrix
that must be properly chosen to guarantee that Wq is a
distance. In the classical case, the total variation distance is
a classical Wasserstein distance with an appropriate choice
of the cost matrix C. It is, thus, natural to ask whether a
cost matrix C exists such that the quantum version of the
total variation distance (i.e., the trace distance) can be
represented as a quantum Wasserstein distance defined in
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Eq. (116). Unfortunately, Ref. [131] shows that the trace
distance cannot be expressed in terms of this type of
Wasserstein distance. In other words, for any choice of the
cost matrix C, density matrices ϱA and ϱB always exist such
that the distance Wq defined in Eq. (116) differs from the
trace distance:

WqðϱA; ϱBÞ ≠
1

2
kϱA − ϱBk1 ≕ T ðϱA; ϱBÞ: ð117Þ

Our aim is to relate quantum optimal transport distances
and dissipation in Lindblad dynamics. Note that Lindblad
dynamics consist of a nondissipative unitary part and
dissipative Lindblad part. Both parts jointly contribute to
the time evolution of the system’s density matrix. In the
vanishing coupling limit, irreversible entropy production
becomes zero, whereas the distance Wqðϱ0; ϱτÞ may be
positive since ϱ0 ≠ ϱτ. Therefore, relating dissipation to
the optimal transport distances defined in the current
form (116) is impossible. Inspired by the dissipative struc-
ture of Lindblad dynamics, we define the following distance:

WqðϱA; ϱBÞ ≔
1

2
min
V†V¼1

kVϱAV† − ϱBk1: ð118Þ

Here, the minimum is over all possible unitaries V.
Intuitively, the distanceWq characterizes the state difference
induced by the dissipative Lindblad part. Thus, it is expected
to be relevant to dissipation. Note that in the zero-dissipation
limit (i.e., the system is unitarily evolved), this distance
also vanishes. Although the distance Wq is defined in a
variational form, it can be analytically calculated using the
eigenvalues of the density matrices. Interestingly, it becomes
exactly the classical Wasserstein distance between the
eigenvalue distributions:

WqðϱA; ϱBÞ ¼
1

2

X
x

jpA
x − pB

x j ¼ T ðpA; pBÞ; ð119Þ

where fpA
xg and fpB

x g are increasing eigenvalues of ϱA

and ϱB, respectively (see Appendix E 3 for the proof). For
this reason, hereafter, Wq is referred to as the quantum
Wasserstein distance. Evidently, this distance satisfies the
triangle inequality. However, it is a pseudo metric [i.e.,
WqðϱA; ϱBÞ ¼ 0 for ϱA ≠ ϱB is possible]. This originates
from our goal of relating the defined distance to dissipation
in Lindblad dynamics.
For the quantumWasserstein distance previously defined,

we provide the following thermodynamic interpretation.
Theorem 2: The quantum Wasserstein distance can be

written in the following variational form:

WqðϱA; ϱBÞ ¼ min
Lt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ð120Þ

¼ min
Lt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ð121Þ

Here, the minimum is taken over all superoperators
fLtg0≤t≤τ that satisfy the Lindblad master equation (89)
with boundary conditions ϱ0 ¼ ϱA and ϱτ ¼ ϱB.
Theorem 2 is the second central result, and its sketch

proof is given in the following. Interestingly, Theorem 2
has the same structure as Theorem 1 in the classical case.
This implies a universal relationship between the optimal
transport distances and dissipation in classical and quantum
discrete systems.
Proof.—We briefly describe the proof strategy; for a

detailed derivation, see Appendix E 4. We first prove that
the inequalities

WqðϱA; ϱBÞ ≤
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
ð122Þ

hold for any Markovian open quantum dynamics and then
construct a specific process that simultaneously attains all
the equalities of Eq. (122). The inequalities in Eq. (122) can
be proved similarly as in the classical case. To construct the
dynamics that can achieve the equalities, we first construct
a classical Markov jump process that transforms distribu-
tion pA into pB and satisfies

T ðpA; pBÞ ¼
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ð123Þ

Here, fpA
xg and fpB

x g are increasing eigenvalues of ϱA and
ϱB, respectively. Subsequently, we construct Lindblad
dynamics based on this classical jump process such that
the dynamics transforms density matrix ϱA into ϱB, and the
quantities σt and mt are identical to those in the classical
jump process. We can verify that this quantum dynamics
attains the equalities of Eq. (122). ▪
Similar to the classical case, the quantum Wasserstein

distance can also be determined through the entropy
production and dynamical activity associated with
Markovian quantum dynamics, which is stated in
Corollary 9 in Appendix E 5.

VI. APPLICATIONS FOR THERMODYNAMIC
INTERPRETATION OF OPTIMAL TRANSPORT

In this section, we present applications for our central
results, namely, Theorems 1 and 2. Specifically, we show
that these variational formulas lead to stringent bounds for
thermodynamic speed limits and information erasure at
arbitrary temperatures.

A. Classical and quantum thermodynamic speed limits

The speed of state transformation in any system
cannot be made arbitrarily fast because of physical
constraints. This fact leads to a natural question:
What is the ultimate limit for state transformation?
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This question sparked a lot of research and gave rise to
the concept of speed limits.
Precisely speaking, speed limits impose lower bounds

on the operational time required for evolving a system
from a given state to a target one. Originally, speed limits
were derived for closed quantum systems, inspired by the
Heisenberg time-energy uncertainty principle [132]. One of
the celebrated results is the Mandelstam-Tamm bound,
which applies to closed quantum systems and takes the
following form:

τ ≥
Bðϱ0; ϱτÞ
hΔHiτ

; ð124Þ

where Bðϱ; σÞ ≔ arccos trfj ffiffiffi
ϱ

p ffiffiffi
σ

p jg is the Bures angle and
ðΔHtÞ2 ≔ trfH2

t ϱtg − trfHtϱtg2 is the energy fluctuation.
Equation (124) implies that the speed of state transforma-
tion in closed quantum systems is constrained by the
fluctuation of energy. Various types of speed limits are
subsequently generalized for open quantum and classical
systems [132–146] (see Ref. [147] for a comprehensive
review).
Although several versions of classical and quantum

speed limits exist for open systems, here we aim to develop
thermodynamic bounds that satisfy two conditions: (i) They
should be tight (i.e., for generic initial and final states, a
configuration of the system always exists that transforms
these states and saturates the bounds), and (ii) they should
be physically interpretable (i.e., all quantities appearing in
the bound are physically meaningful). In the following, we
derive these thermodynamic speed limits from the varia-
tional formulas for both classical and quantum cases.

1. Classical case

We consider a discrete classical system modeled by a
Markov jump process [Eq. (20)]. The system is driven by
thermodynamic forces and evolves according to the laws of
thermodynamics. Intuitively, to achieve fast transformation,
we must pay some costs. In the following, we derive
fundamental bounds on the operational time that is required
to evolve the system’s distribution to the target one.
Let GðV; EÞ be the underlying topology of the jump

process (i.e., the graph connectivity that determines
whether the transition between two states is allowed).
Then, we can define the corresponding Wasserstein dis-
tance based on the graph G. According to Theorem 1,
we have

W1ðp0; pτÞ ¼ min
Wt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ min

Wt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ð125Þ

Since the system dynamics considered here is one of
the admissible dynamics that transform p0 into pτ, the
following inequalities follow immediately from the
equality (125):

W1ðp0; pτÞ ≤
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ τh ffiffiffiffiffiffiffi

σm
p iτ ð126Þ

≤ τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσiτhmiτ

p
: ð127Þ

Consequently, we obtain lower bounds on the operational
time in terms of the Wasserstein distance, thermodynamic
cost, and kinetic cost as follows:

τ ≥
W1ðp0; pτÞ
h ffiffiffiffiffiffiffi

σm
p iτ

≥
W1ðp0; pτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhmiτ
p : ð128Þ

Equation (128) implies that both irreversible entropy
production and state mobility jointly constrain the speed
of state transformation. Using Corollary 7 in Appendix D 6
and following the same procedure, we also obtain similar
but tighter bounds in terms of time-averaged entropy
production and dynamical activity as

τ ≥
2W1ðp0; pτÞ
hσΦðσ=2aÞ−1iτ

≥
2W1ðp0; pτÞ

hσiτΦðhσiτ=2haiτÞ−1
; ð129Þ

where ΦðxÞ is the inverse function of x tanhðxÞ.
Equations (128) and (129) are our new thermodynamic
speed limits for classical Markov jump processes.
Some remarks are in order. First, the thermodynamic

speed limits in Eqs. (128) and (129) are tight and saturable.
More specifically, for generic initial and final distributions,
we can always construct dynamics that satisfy the global
detailed-balance condition and transform the initial distri-
bution into the final one in a time duration equal to that of
the lower bounds.
Second, our bounds are tight for arbitrary temperatures,

even in the zero-temperature limit. Since hσiτ ¼ OðβÞ,
irreversible entropy production becomes infinite as
β → þ∞, whereas dynamical activity remains finite
[i.e., haiτ ¼ Oð1Þ]. Nevertheless, we show in the follow-
ing that our bounds remain useful in this low-temperature
limit. Indeed, in the β → þ∞ limit, bound (129) reduces to
a nontrivial inequality τ ≥ W1ðp0; pτÞ=haiτ. In addition,
bound (128) also remains finite, because we can prove that
βhmiτ does not diverge, in general. To this end, we assume
that the energy levels are nondegenerate and the system is
typically driven far from the instantaneous equilibrium.
Since mxyðtÞ can be calculated as

βmxyðtÞ ¼
β½axyðtÞ − ayxðtÞ�
ln axyðtÞ − ln ayxðtÞ

¼ axyðtÞ − ayxðtÞ
β−1½lnpyðtÞ − lnpxðtÞ� þ εyðtÞ − εxðtÞ

; ð130Þ

we have

βmxyðtÞ ⟶
β→þ∞ axyðtÞ − ayxðtÞ

εyðtÞ − εxðtÞ
; ð131Þ

THERMODYNAMIC UNIFICATION OF OPTIMAL TRANSPORT: … PHYS. REV. X 13, 011013 (2023)

011013-19



which remains finite. Therefore, the term βhmiτ does not
diverge in the zero-temperature limit β → þ∞.
Third, we compare our results with existing bounds in

the literature. In Ref. [16], a classical speed limit is obtained
for Markov jump processes, which reads

τ ≥
T ðp0; pτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhaiτ=2

p : ð132Þ

SinceW1ðp0; pτÞ ≥ T ðp0; pτÞ andmt ≤ at=2 for all times,
our speed limits in Eq. (128) are stronger than those in
Eq. (132). Our bounds also suggest that the conventional
bound (132) can be asymptomatically saturated only
when W1ðp0; pτÞ ¼ T ðp0; pτÞ (e.g., when the underlying
graph is fully connected) and the system is always near
the instantaneous equilibrium. In Refs. [24,26], another
thermodynamic speed limit, which is tighter than the
conventional bound (132), is derived as

τ ≥
2T ðp0; pτÞ

hσiτΦðhσiτ=2haiτÞ−1
: ð133Þ

Since W1ðp0;pτÞ≥T ðp0;pτÞ, our bound (129) is stronger
than bound (133). The essential difference is that our
bounds consider the topology of the jump process, whereas
the conventional bounds do not.

2. Quantum case

Next, we consider an open quantum system described
by the Markovian Lindblad master equation [Eq. (89)].
Following the same procedure as in the classical case, we
derive stringent thermodynamic bounds on the operational
time required to transform the initial density matrix into the
final one.
From Theorem 2,

Wqðϱ0; ϱτÞ ¼ min
Lt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ min

Lt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
; ð134Þ

we analogously obtain the following inequalities:

Wqðϱ0; ϱτÞ ≤
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ τh ffiffiffiffiffiffiffi

σm
p iτ ð135Þ

≤ τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσiτhmiτ

p
: ð136Þ

Consequently, we arrive at the following bounds on the
operational time:

τ ≥
Wqðϱ0; ϱτÞ
h ffiffiffiffiffiffiffi

σm
p iτ

≥
Wqðϱ0; ϱτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhmiτ
p : ð137Þ

Equation (137) implies that the speed of state transforma-
tion in open quantum systems is constrained by irreversible

entropy production and dynamical state mobility. Notably,
it has the same form as the classical bound (128), indicating
the unification of our results. Exploiting Corollary 9 in
Appendix E 5 and repeating the same procedure yield other
speed limits in terms of entropy production and dynamical
activity, which read

τ ≥
2Wqðϱ0; ϱτÞ

hσΦðσ=2aÞ−1iτ
≥

2Wqðϱ0; ϱτÞ
hσiτΦðhσiτ=2haiτÞ−1

: ð138Þ

Equations (137) and (138) are the new quantum thermo-
dynamic speed limits. Remarkably, these thermodynamic
speed limits are tight and saturable. In other words, for
any pair of generic initial and final states, a combination
of Hamiltonian and jump operators always exists that
attains the lower bound of the operational time.
Moreover, they are useful even in the zero-temperature
limit. The bounds imply that both the thermodynamic and
kinetic costs play a crucial role in the change speed of
open quantum systems.
We discuss the relevance of our results to previous

studies. In Ref. [22], a thermodynamic speed limit is
derived for Markovian open quantum dynamics and is
given by

τ ≥
Wqðϱ0; ϱτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhaiτ=2
p : ð139Þ

According to Eq. (105), we have mt ≤ at=2 for all t.
Therefore, bound (139) is looser than the new bound (137).
In addition, since ΦðxÞ ≥ ffiffiffi

x
p

for all x ≥ 0, the new bound
(138) is also stronger than the conventional bound (139). In
Ref. [18], another thermodynamic speed limit in terms of
trace distance is derived for open quantum systems. Since
the metrics used to measure the distance between quantum
states in these bounds are different (i.e., the Wasserstein
distance in our study and the trace distance in Ref. [18]),
they cannot be directly compared. Nonetheless, by exploit-
ing the dynamical state mobility introduced in this study,
we can derive a similar but tighter speed limit in terms of
the trace distance. The detailed form of this speed limit is
presented in Appendix F 1. However, it is worth noting that
the attainability of this bound is unclear.

B. Finite-time Landauer principle

The Landauer principle [90] implies that erasing infor-
mation is always accompanied by a thermodynamic cost.
More specifically, the thermodynamic cost required to
erase a classical bit is at least T ln 2, where T is the
environment temperature. The lower bound T ln 2
(referred to as the Landauer bound) not only plays a
fundamental role in the thermodynamics of information
and computation [4,41–44], it also resolves the paradox of
Maxwell’s demon [148].
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Various classical and quantum platforms [81,149–153]
have experimentally confirmed that the Landauer bound
can be achieved in the slow quasistatic limit. However,
practical computing requires fast memory erasure in a
short time and, thus, in general, consumes a thermo-
dynamic cost far beyond the Landauer bound. This
background strongly motivates researchers to develop
finite-time generalizations of the Landauer bound, which
capture finite-time corrections and can better predict the
erasure cost. Although several finite-time bounds have
been developed for both classical and quantum discrete
systems [30–32], the attainability of these bounds
remains unclear. Moreover, these bounds have looser
predictive power in the low-temperature regime. In the
following, we attempt to derive finite-time bounds that
are tight for arbitrary temperatures.
Before presenting the new bounds, we first describe

the generic setup of information erasure for both
classical and quantum cases. We consider a finite-
dimensional discrete system attached to a thermal
reservoir at temperature T. Information is encoded in
the system state and subsequently erased by controlling
the classical energy levels or the quantum Hamiltonian
and driving the system toward its ground state. The
erasure protocol should work for an arbitrary initial
state; that is, any initial state should be reset close to the
ground state in a finite time τ. This erasure process
leads to a change in system entropy, which must be
compensated for by the heat dissipated into the reser-
voir. Because we are interested in the average thermo-
dynamic cost associated with the erasure protocol,
considering the maximally mixed state as the initial
state is convenient. Roughly speaking, the reasons for
this are that the maximally mixed state is sufficient to
understand the average dissipated heat of the erasure
process for all initial states and that if a protocol can
reliably reset the system from the maximally mixed
state, then it does so also for an arbitrary state. A
detailed discussion is given in the following.

1. Classical case

We consider an information erasure process using a
d-state classical system, the dynamics of which is gov-
erned by the master equation. The transitions between
states are mediated by a single thermal reservoir at
temperature T. The system state is characterized by the
probability distribution, which encodes information we
want to erase. The energy levels are controlled according
to a fixed protocol such that the system is always driven
toward the ground state p� ¼ ½1; 0;…; 0�⊤, irrespective of
the initial state.
Here, we explain why the initial state should be set to

the uniform distribution p̄ ¼ ½1=d;…; 1=d�⊤. First, let
Qðp0Þ be the heat dissipation of erasure for the initial
distribution p0. Then, due to the linearity of the master

equation and Qð·Þ, the average dissipation can be
calculated as

E½Qðp0Þ� ¼ QðE½p0�Þ ¼ Qðp̄Þ; ð140Þ
where E½·� denotes the average over all possible initial
distributions. Equation (140) implies that investigating
the case with initial distribution p0 ¼ p̄ is sufficient to
understand the average dissipation. Second, let Λτ ¼
T⃗ expðR τ

0 WtdtÞ be the map that represents the erasure
process, that is, Λτp0 ¼ pτ. We can then prove that if the
uniform distribution can be erased within error δ > 0
(i.e., kΛτp̄ − p�kF ≤ δ), the following inequality holds
for arbitrary initial distribution p0 (see Appendix F 2 for
the proof):

kΛτp0 − p�kF ≤
ffiffiffiffiffiffiffiffi
2dδ

p
: ð141Þ

Equation (141) indicates that if a protocol can erase the
uniform distribution, it can reliably do so also for
arbitrary initial states.
We can now present the new bound. Let pτ be the final

distribution for the case p0 ¼ p̄, and let ϵ ≔ T ðpτ; p�Þ ¼
j1 − p1ðτÞj be the erasure error, which should be suffi-
ciently small. From Eq. (79), the heat dissipation is lower
bounded by system entropy production and a finite-time
correction term as

Q ≥ −TΔSsys þ
W1ðp0; pτÞ2

τβhmiτ
: ð142Þ

Equation (142) is regarded as the finite-time Landauer
principle for classical systems. The bound is tight and can
be saturated for arbitrary temperatures, even in the zero-
temperature limit. As shown in the previous section, the
term βhmiτ remains finite even when β → ∞ (i.e., T → 0).
Therefore, bound (142) is useful for arbitrary temperatures.
By contrast, the conventional Landauer bound becomes
trivial in the low-temperature regime (i.e., Q ≥ 0). We also
note that bound (142) is tighter than the following bound:

Q ≥ −TΔSsys þ
T ðp0; pτÞ2
τβhaiτ=2

; ð143Þ

which is obtained from the conventional speed limit (132).
Bound (142) can be simplified by including the erasure

error. To this end, we further bound the terms in Eq. (142)
from below as

−ΔSsys ¼ ln d − SðpτÞ ≥ ln d − hðϵÞ; ð144Þ

W1ðp0; pτÞ ≥ T ðp0; pτÞ ≥ j1 − 1=d − ϵj; ð145Þ

where hðϵÞ ≔ −ϵ ln½ϵ=ðd − 1Þ� − ð1 − ϵÞ lnð1 − ϵÞ ≥ 0 is a
function of ϵ that vanishes as ϵ → 0. Consequently, we
obtain the following bound on the average heat dissipation:
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Q ≥ T½ln d − hðϵÞ� þ ð1 − 1=d − ϵÞ2
τβhmiτ

: ð146Þ

Equation (146) imposes a lower bound on heat dissipation
in terms of the operational time and erasure error. In the
limit of perfect erasure (i.e., ϵ → 0), a simple bound can be
derived:

Q ≥ T ln dþ ð1 − 1=dÞ2
τβhmiτ

: ð147Þ

For slow erasure (i.e., τβhmiτ ≫ 1), the second term in
the lower bound vanishes. Thus, Eq. (147) recovers the
conventional Landauer bound for the d ¼ 2 case. By
contrast, in the fast-erasure limit (i.e., τβhmiτ ≪ 1), this
correction term becomes dominant, implying that fast
erasure is accompanied by a thermodynamic cost far
beyond the Landauer cost.
If we consider dynamical activity instead of dynamical

state mobility, we can obtain another finite-time Landauer
bound. By transforming the speed limit (129), we can show
that heat dissipation is lower bounded by the Wasserstein
distance and dynamical activity as

Q
T
≥ −ΔSsys þ 2W1ðp0; pτÞ tanh−1

�
W1ðp0;pτÞ

τhaiτ

�
: ð148Þ

This new bound is always tighter than the bound reported
in Ref. [32], which uses the total variation distance to
quantify the distance between probability distributions. In
general, bound (148) can be either stronger or looser than
bound (142).

2. Quantum case

Here, we consider a quantum process of erasing infor-
mation. The erasure process is implemented using a
controllable d-dimensional qudit system, which is attached
to a thermal reservoir at temperature T. The density matrix
of the qudit encodes the information we want to erase
and then is driven toward the ground state ϱ� ¼ j0ih0j by
controlling the Hamiltonian.
Analogous to the classical case, the initial state is

conveniently set to the maximally mixed state ϱ̄ ¼ 1=d.
This is because assigning the maximally mixed state to the
initial state is sufficient to understand the average heat
dissipation in the quantum case. In addition, we can show
that if an erasure protocol can erase the maximally mixed
state, it can reliably do so also for arbitrary initial states.
More specifically, let Λτð·Þ ¼ T⃗ expðR τ

0 LtdtÞð·Þ be the
quantum map that describes the erasure process [i.e.,
Λτðϱ0Þ ¼ ϱτ]. Then, if the maximally mixed state can be
erased within error δ > 0 [i.e., kΛτðϱ̄Þ − ϱ�kF ≤ δ], the
erasure error for arbitrary initial state ϱ0 can be upper
bounded as follows [31]:

kΛτðϱ0Þ − ϱ�kF ≤
ffiffiffiffiffiffiffiffi
2dδ

p
: ð149Þ

Equation (149) provides insight into the reliability of the
erasure protocol by verifying the ϱ0 ¼ ϱ̄ case.
Next, we present the finite-time bound for quantum

information erasure. Because ϱ0 ¼ 1=d, the Wasserstein
distance coincides with the trace distance [i.e.,Wqðϱ0; ϱτÞ ¼
T ðϱ0; ϱτÞ]. Consequently, a finite-time bound on heat
dissipation can be obtained as

Q ≥ −TΔSsys þ
T ðϱ0; ϱτÞ2
τβhmiτ

: ð150Þ

Equation (150) is the finite-time quantum Landauer
principle, which is tight and can be saturated for arbitrary
temperatures. In addition to the conventional Landauer term
−TΔSsys, a finite-time correction term exists in the lower
bound, which does not vanish even in the zero-temperature
limit. Therefore, the inequality (150) provides a stringent
bound on heat dissipation for information erasure in both
fast-driving and low-temperature regimes.
We compare bound (150) with an existing bound derived

in Ref. [31], which reads

Q ≥ −TΔSsys þ
T ðϱ0; ϱτÞ2
τβhaiτ=2

: ð151Þ

Since mt ≤ at=2 for all times, it is immediately clear that
bound (150) is always stronger than bound (151).
Next, we derive a simplified bound which includes the

erasure error. Let ϵ ≔ T ðϱτ; ϱ�Þ be the erasure error, which
should be small. We can then analogously bound the terms
in Eq. (150) from below as

−ΔSsys ¼ ln d − SðϱτÞ ≥ ln d − hðϵÞ; ð152Þ

T ðϱ0; ϱτÞ ≥ jT ðϱ0; ϱ�Þ − T ðϱτ; ϱ�Þj ¼ j1 − 1=d − ϵj;
ð153Þ

where we use an inequality relating the entropy difference
between two quantum states to their trace distance in
the first line [154]. Inserting Eqs. (152) and (153) into
Eq. (150), we arrive at the following simple bound:

Q ≥ T½ln d − hðϵÞ� þ ð1 − 1=d − ϵÞ2
τβhmiτ

: ð154Þ

Equation (154) is the simplified Landauer bound that
includes finite-time and finite-error corrections. Remark-
ably, it has the same structure as the classical bound (142). In
the limit of perfect and slow erasure, bound (154) reduces to
the conventional Landauer bound as d ¼ 2.
In analogy to the classical case, a finite-time Landauer

bound in terms of the quantum Wasserstein distance and
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dynamical activity can also be obtained. By rearranging the
speed limit (138), we can prove that

Q
T
≥ −ΔSsys þ 2Wqðϱ0; ϱτÞ tanh−1

�
Wqðϱ0; ϱτÞ

τhaiτ

�
: ð155Þ

This finite-time bound can be considered a quantum analog
of the classical bound (148).

VII. NUMERICAL DEMONSTRATIONS

Next, we numerically illustrate the applications of our
results, the thermodynamic uncertainty relation, speed
limits, and finite-time Landauer principles in several
classical and quantum systems.

A. Illustration of classical thermodynamic speed limits
and finite-time Landauer principle

First, we illustrate the classical speed limits and finite-
time Landauer principle in a two-level system. The system
dynamics can be described by a Markov jump process with
transition rates given by

wxyðtÞ ¼ γxyðtÞ
eβεyðtÞ

eβεyðtÞ þ eβεxðtÞ
; ð156Þ

where γxyðtÞ ¼ γyxðtÞ are tunable parameters and εxðtÞ
denotes the instantaneous energy level of state x. For
simplicity, we set εt ≔ ε2ðtÞ − ε1ðtÞ and γxyðtÞ ¼ 1 for
all transitions. The parameter fεtg thus defines a time-
dependent control protocol.
To illustrate the bounds, we consider an information

erasure process in which an arbitrary initial distribution is
always reset to the ground state within a finite error. We
examine two control protocols, namely, optimal and
nonoptimal. The optimality here refers to the dissipation
of the least amount of heat while achieving the predeter-
mined error.
The optimal protocol is numerically obtained by solving

the minimization problem with the following objective
functional:

F c½fεtg� ≔ λQþ ð1 − λÞT ðpτ; p�Þ; ð157Þ

where λ ∈ ½0; 1� is a weighting factor. The functional F c
consists of two incompatible objectives, namely, heat
dissipation and erasure error, which cannot be simulta-
neously small. To reduce the erasure error, we must pay the
price of dissipation. Conversely, reducing dissipation
could enhance the error between the final and ground
states. As λ is fixed, the solution of the optimization
problem corresponds to a Pareto-optimal protocol, in
which heat dissipation cannot be further minimized with-
out increasing the error. Imposing constraints on the
control parameters is physically reasonable. Hereafter,

we consider the constraint εt ∈ ½10−2; 101�. To solve the
problem (157) under both equality and inequality con-
straints, we discretize the control parameters into 1000
points and optimize the functional F with the aid of
nonlinear programming solvers. We determine the weight-
ing factor λ such that both the optimal and nonoptimal
protocols reset the uniform distribution p̄ ¼ ½1=2; 1=2�⊤ to
the ground state within the same error. The time variation
of the protocol is plotted in Fig. 5(b). Notably, the increase
in the energy gap between the two levels ε1 and ε2 is
constant in the intermediate period but tends to slow down
in the late period.
The nonoptimal protocol simply lifts the energy level

ε2ðtÞ, forcing the system to descend to the ground state. The
time-dependent control parameter εt is specified as

εt ¼ 0.422 × exp

�
τ þ t
2τ − t

�
; ð158Þ

which is illustrated in Fig. 5(e). We can observe that, unlike
the optimal protocol, the energy gap in the nonoptimal
protocol rapidly increases in the late period. In the final
time, this naive protocol should dissipate more heat than the
optimal protocol.
The process of information erasure is performed within

the period τ. At each time t ≤ τ, according to Eqs. (128)
and (132), the operational time is lower bounded as

t ≥
W1ðp0; ptÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσithmit
p ≕ tc;1 ≥

T ðp0; ptÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσithait=2
p ≕ tc;2: ð159Þ

These bounds are numerically verified for the optimal and
nonoptimal protocols in Figs. 5(c) and 5(f), respectively. As
shown, the derived bound t ≥ tc;1 is tight and stronger than
the existing bound t ≥ tc;2 for all times.
Likewise, the dissipated heat is lower bounded by the

entropy change and finite-time correction term as

Q ≥ −TΔSsys þ
W1ðp0; ptÞ2

tβhmit
≕Qc;1

≥ −TΔSsys þ
T ðp0; ptÞ2
tβhait=2

≕Qc;2: ð160Þ

The numerical results are plotted in Figs. 5(d) and 5(g)
for the optimal and nonoptimal protocols, respectively.
As seen, the new lower bound Qc;1 tightly bounds the
dissipated heat Q in both protocols, whereas the existing
lower bound Qc;2 is loose and does not provide a good
prediction for heat dissipation. Notice that the average heat
dissipation at the final time τ ¼ 10 is approximately 0.33,
which is far beyond the conventional Landauer bound
β−1 ln 2 ≈ 0.069. This implies that the finite-time correction
is dominant over the entropy change in this case.
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B. Illustration of quantum thermodynamic speed limits
and finite-time Landauer principle

We next exemplify the quantum speed limits and finite-
time Landauer principle with a simple model of information
erasure using a spin-1=2 qubit. The qubit is weakly
attached to a heat bath at inverse temperature β. The time
evolution of the reduced density matrix can be described by
the Lindblad equation with the Hamiltonian

Ht ¼
εt
2
½cosðθtÞσz þ sinðθtÞσx� ð161Þ

and jump operators

L1ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γεtðnt þ 1Þ

p
j0tih1tj; ð162Þ

L2ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
γεtnt

p j1tih0tj: ð163Þ

Here, fj0ti; j1tig are the instantaneous energy eigenstates,
σx;y;z are the Pauli matrices, γ is the coupling strength,
nt ≔ 1=ðeβεt − 1Þ, and εt and θt are time-dependent control
parameters. More specifically, Et characterizes the energy
gap between the energy eigenstates, whereas θt quantifies
the relative strength of coherent tunneling to energy bias
[155]. The qubit is initially prepared in the state ϱ0 ¼ 1=2
and subsequently driven toward the ground state ϱ� ¼
j0ih0j of σz. If θt is time invariant, quantum coherence in
the energy eigenstates cannot be created, and the protocol is
thus classical. Otherwise, it becomes a quantum protocol.
An infinite number of approaches can be used to reset the

qubit with a probability close to 1. As in the classical case,

two protocols are considered, namely, Pareto-optimal and
nonoptimal. Both protocols are designed to erase informa-
tion with the same error.
The optimal protocol minimizes two incompatible

objectives, the average dissipated heat and erasure error.
Specifically, the protocol can be achieved by solving the
minimization problem with the following multiobjective
functional [31]:

F q½fεt; θtg� ≔ λQ − ð1 − λÞFðϱτ; ϱ�Þ; ð164Þ

where λ ∈ ½0; 1Þ is a weighting factor and Fðϱ; σÞ ≔
ðtrj ffiffiffi

ϱ
p ffiffiffi

σ
p jÞ2 is the fidelity of the two quantum states ϱ

and σ [156]. Because of the physical limitations, placing
constraints on the control parameters is natural. Hereafter,
we impose the following lower and upper bounds on the
parameters: εt ∈ ½10−1; 102� and θt ∈ ½−π; π�. By numeri-
cally solving the nonlinear optimization problem (164), we
can obtain the optimal protocol, as plotted in Fig. 6(b).
As seen, the parameter θt is fixed to 0 for all times,
implying that the optimal protocol is classical and does not
generate any amount of energetic coherence. Furthermore,
the energy gap increases gradually in the intermediate
period and changes rapidly in the final stage.
The nonoptimal protocol is defined as

εt ¼ 2.04 × exp

�
τ þ t
2τ − t

�
; θt ¼ π

�
t
τ
− 1

�
; ð165Þ

which is plotted in Fig. 6(e). This protocol naively increases
the energy gap while varying the coherent parameter.

(b) (c) (d)

(e) (f) (g)

(a)

FIG. 5. Numerical illustration of the classical thermodynamic speed limits and finite-time Landauer principle for both optimal and
nonoptimal protocols. (a) Schematic of the two-level system. (b),(e) Time variations of the control parameters of the optimal and
nonoptimal protocols. (c),(f) Numerical verification of the speed limits t ≥ tc;1 ≥ tc;2 and (d),(g) finite-time Landauer principle
Q ≥ Qc;1 ≥ Qc;2. The other parameters are fixed as β ¼ 10 and τ ¼ 10. The weighting factor λ is set such that ð1 − λÞ=λ ¼ 105.
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We also observe that the increase in the energy gap is
different from that of the optimal case.
We first demonstrate the quantum thermodynamic speed

limits. According to Eqs. (137) and (139), the operational
time is lower bounded as follows:

t ≥
Wqðϱ0; ϱtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσithmit
p ≕ tq;1 ≥

Wqðϱ0; ϱtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσithait=2
p ≕ tq;2: ð166Þ

We illustrate these bounds for both the optimal and non-
optimal protocols in Figs. 6(c) and 6(f), respectively. As
shown, the derived bound t ≥ tq;1 is tight for all times and is
stronger than the existing bound t ≥ tq;2.
Next, we verify the finite-time quantum Landauer

principle. The lower bounds on the average heat dissipation
are given by Eqs. (150) and (151) as

Q ≥ −TΔSsys þ
T ðϱ0; ϱtÞ2
tβhmit

≕Qq;1

≥ −TΔSsys þ
T ðϱ0; ϱtÞ2
tβhait=2

≕Qq;2: ð167Þ

The numerical results are plotted in Figs. 6(d) and 6(g)
for the optimal and nonoptimal protocols, respectively.
As shown, the new bound Q ≥ Qq;1 is tight for all times,
whereas the existing bound Q ≥ Qq;2 is loose. The optimal
protocol also clearly dissipates less heat than does the
nonoptimal protocol at the final time τ ¼ 10. In addition,
note that the average heat dissipation in both protocols is

approximately 2, which is significantly greater than the
conventional Landauer bound β−1 ln 2 ≈ 0.069.
We discuss the effect of quantum coherence in the finite-

time erasure process. For convenience, we quantify the
amount of energetic coherence using the l1-norm, which
is one of the most general coherence monotones in the
literature [157]:

Ct ≔
Z

t

0

½jh0sjϱsj1sij þ jh1sjϱsj0sij�ds: ð168Þ

That is, Ct is the time integral of the sum of absolute off-
diagonal elements of quantum states in the basis of energy
eigenstates. Since θt is invariant in the optimal protocol, the
instantaneous energy eigenstates remain unchanged, and
the density matrix is always diagonal in the eigenstates.
Therefore, the total amount of quantum coherence gen-
erated is always zero (i.e., Ct ¼ 0), which is plotted in
Fig. 6(d). On the other hand, for the nonoptimal protocol, θt
varies over time and quantum coherence is generally
generated. The positive finite value of Ct can be confirmed
from Fig. 6(g). We can observe that the nonoptimal
protocol that generates coherence is more dissipative
than the optimal protocol that does not create coherence.
This is consistent with the fact that the creation of quantum
coherence leads to unavoidable dissipation [31]. This also
suggests that a lower bound of heat dissipation that can
capture the effect of coherence is desirable.
It is, therefore, worthwhile discussing how quantum

coherence effects can be captured by the bounds.
According to the definition (94) of quantum dynamical

(b) (c) (d)

(e) (f) (g)

(a)

FIG. 6. Numerical illustration of the quantum thermodynamic speed limits and finite-time Landauer principle for both optimal and
nonoptimal protocols. (a) Schematic of the spin-1=2 qubit, which is coupled to a heat bath at inverse temperature β. (b),(e) Time
variations of the control parameters of the optimal and nonoptimal protocols. (c),(f) Numerical verification of the speed limits
t ≥ tq;1 ≥ tq;2 and (d),(g) finite-time Landauer principle Q ≥ Qq;1 ≥ Qq;2 as well as the amount of quantum coherence Ct. The other
parameters are fixed as β ¼ 10, γ ¼ 0.1, and τ ¼ 10. The weighting factor λ is set such that ð1 − λÞ=λ ¼ 103.
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activity, at can be explicitly expressed in terms of the
diagonal elements of ϱt in the basis of energy eigenstates as

at ¼ γεt½nth0tjϱtj0ti þ ðnt þ 1Þh1tjϱtj1ti�: ð169Þ

As seen, at has no coherent contribution from the off-
diagonal part of quantum state ϱt. On the other hand,
quantum dynamical state mobility mt implicitly includes a
coherent contribution. This can be validated from Eq. (101)
by noticing that the eigenbasis fjxtig of the spectral
decomposition ϱt ¼

P
x pxðtÞjxtihxtj is generally different

from the energy eigenstates fj0ti; j1tig. Although the
coherence present in the quantum state ϱt may contribute
to the bounds through the boundary terms ΔSsys and
T ðϱ0; ϱtÞ, such contributions are negligibly small as
compared to the time-extensive contribution thmit.
Therefore, the derived bound Q ≥ Qq;1 can capture the
effect of quantum coherence occurring during the process
and precisely predict heat dissipation even in the presence
of quantum coherence, whereas the existing bound
Q ≥ Qq;2 cannot.

VIII. CONCLUSION AND OUTLOOK

In this study, we elucidated an intimate relationship
between thermodynamics and discrete optimal transport
for both classical and quantum cases. To this end, we
introduced a novel physical term, namely, dynamical state
mobility, which characterizes a complementary aspect of
irreversible entropy production in the time evolution of a
system. By deriving an improved thermodynamic uncer-
tainty relation, we showed that dynamical state mobility
plays a critical role in constraining the fluctuation of
time-antisymmetric currents, thus providing insight into
the precision of currents in Markov jump processes.
Exploiting this term, we derived variational formulas that
express the discrete Wasserstein distance in terms of the
thermodynamic cost associated with Markovian dynamics.
These formulas not only unify the relationship between
thermodynamics and optimal transport for both discrete
and continuous cases but also generalize to the Markovian
quantum dynamics. From the variational formulas, we
derived stringent thermodynamic speed limits and the
finite-time Landauer principle. The obtained bounds are
tight and can be saturated for an arbitrary pair of initial and
final states and arbitrary temperatures.
Our theoretical frameworks also shed light on the

minimization problem of entropy production in discrete
Markov dynamics. Recent studies [91–93] have shown that
entropy production can be optimized to be arbitrarily small
if there are no constraints on the transition rates. Our results
suggest that dynamical state mobility may be a reasonable
constraint, because, once it is fixed, minimum entropy
production is immediately determined by the discrete
Wasserstein distance. In addition, the optimal protocol that
attains the minimum entropy production can be constructed

from the optimal coupling between the initial and final
distributions, which can be numerically computed in an
efficient manner.
Although not explicitly stated in this study, our frame-

work is also applicable to bipartite systems [158], in which
two subsystems exchange information. In this case, the
Wasserstein distance between the initial and final distribu-
tions of a subsystem can be expressed in terms of the
entropy production of that subsystem and the information
flow with another subsystem.
Our study opens several possible directions for future

research, which are as follows.
(i) Generalizing the formulations to include measure-

ment and feedback control.—Measurement and feed-
back control are ubiquitous in physics and biology.
The thermodynamics of feedback control [159] has
been intensively developed in recent years. In this
study, we focused exclusively on discrete Markovian
systems subjected to deterministic control protocols.
Extending our framework to include the effects
of measurement and feedback control would be
significant, as it would provide a better understanding
of the role of information in nonequilibrium systems.
Because information obtained from measurements
can enhance the precision of observables [160,161]
and would violate the second law of thermodynamics
[162], in addition to entropy production, information
would be expected to play a crucial role in the speed
of state transformation and heat dissipation of finite-
time information erasure.

(ii) Decomposition of entropy production.—Decompos-
ing entropy production is theoretically appealing,
because it provides insight into the dissipative struc-
ture of thermodynamic processes. Previous studies
have shown that irreversible entropy production of
Markovian dynamics could be split into an adiabatic
and nonadiabatic contribution in both discrete and
continuous cases, which originates from the breaking
of detailed balance [163,164]. For overdamped Lan-
gevin dynamics, recent studies [165,166] have intro-
duced a new decomposition of the entropy production
rate in terms of the continuous Wasserstein distance
and a housekeeping entropy production rate as

σt ¼
1

D

�
lim
dt→0

W2ðpt; ptþdtÞ
dt

�
2

þ σhkt : ð170Þ

The term σhkt vanishes as the system is driven by a
conservative force. Inspired by this decomposition, the
entropy production rate ofMarkov jumpprocesses can
be split in a similar manner as

σt ¼
1

mt

�
lim
dt→0

W1ðpt; ptþdtÞ
dt

�
2

þ σ̃t: ð171Þ
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The term σ̃t is non-negative and vanishes only when
the system is driven by an optimal protocol, provided
that mt is fixed. Investigating the properties of the
contribution σ̃t would be an interesting direction and
may lead to a deep understanding of dissipation in
Markov jump processes.

(iii) Application to deterministic biochemical reaction
networks.—Although our framework deals with
stochastic dynamics, generalizing the formulas to
cases of deterministic dynamics such as biochemical
reaction networks [167] would be interesting. This is
feasible, because our results are derived from the
master equation, which is similar to the deterministic
rate equation characterizing the time evolution of
biochemical reaction networks.

(iv) Thermodynamic interpretation of the discrete L2-
Wasserstein distance.—Thus far, we have investi-
gated the connection between thermodynamics and
optimal transport through the discreteL1-Wasserstein
distance. Although we showed that the discrete L1-
Wasserstein distance has aspects similar to the con-
tinuous L2-Wasserstein distance, it remains an open
question whether a thermodynamic interpretation
exists for the discrete L2-Wasserstein distance. Clari-
fication of this interpretation is desirable and could
lead to new fundamental thermodynamic bounds.

(v) Formulation under constrained control protocols.—
In this study, we thermodynamically interpreted the
discrete Wasserstein distance using Markov jump
processes whose transition rates can be arbitrarily
controlled without any constraint. However, in prac-
tice, some constraints may be imposed on
the transition rates and protocols [92,93,168,169].
Developing analogous formulas for these settings
would be highly relevant and broaden the range of
applications. The specific form of transition rates
given in Eqs. (50) and (51) also suggests that
investigating this direction may reveal the thermody-
namic role of the discrete L2-Wasserstein distance.
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APPENDIX A: GEOMETRIC PROPERTY OF
CONTINUOUS L2-WASSERSTEIN DISTANCE

Here, we discuss a geometric interpretation of the
Wasserstein distance. Specifically, we show that the
L2-Wasserstein distance can be interpreted as a
Riemannian distance on the infinite-dimensional manifold
M of probability distribution functions. For each distribution

function pðxÞ, the tangent velocity space TanpM at point p
can be defined as [170]

TanpM ≔ fwðxÞj∇ · ½wðxÞpðxÞ� ¼ 0g⊥: ðA1Þ

Here, Ω⊥ denotes the orthogonal complement of a
subspace Ω. In other words, TanpM contains all velocity
fields vðxÞ that satisfy
Z
Rd
½vðxÞ ·wðxÞ�pðxÞdx¼ 0 ∀ w such that ∇ · ðwpÞ ¼ 0:

ðA2Þ

The tangent space can be indirectly defined via the tangent
velocity space as

TpM ≔ fuj ∃ v ∈ TanpM such that uþ∇ · ðvpÞ ¼ 0g:
ðA3Þ

Consequently, a Riemannian metric gp∶TpM×TpM→R
can be defined on the tangent space as

gpðu1; u2Þ ≔
Z
Rd
½v1ðxÞ · v2ðxÞ�pðxÞdx; ðA4Þ

where vi is the velocity field corresponding to the tangent
vector ui (i ¼ 1, 2). We can then show that W2ðpA; pBÞ is
exactly the geodesic distance betweenpA andpB induced by
the defined metric:

W2ðpA; pBÞ ¼ min
pt

�
τ

Z
τ

0

gpt
ð _pt; _ptÞdt

�
1=2

¼ min
pt

Z
τ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpt

ð _pt; _ptÞ
q

dt: ðA5Þ

Here, we consider the fact that the geodesic distance between
two points is equal to the minimum square root of the
divergence taken over all possible paths connecting those
points.
In general, obtaining a closed form for W2ðpA; pBÞ is

difficult except in the case in which pA and pB are normal
distributions. Therefore, a lower bound on W2 is often
considered. It has been previously proved that W2ðpA; pBÞ
can be bounded from below by the means and covariances
of distributions pA and pB as [171]

W2ðpA;pBÞ2≥kμA−μBk2

þ tr
�
ΞAþΞB−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΞA

p
ΞB

ffiffiffiffiffiffi
ΞA

pq �
; ðA6Þ

where μX and ΞX are the mean and covariance matrices,
respectively, of the probability distributionpX forX∈fA;Bg.
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APPENDIX B: USEFUL PROPOSITIONS

Proposition 3: Let x¼½x1;…;xn�⊤ and y¼½y1;…;yn�⊤
be vectors of real numbers and σ be a permutation of
f1;…; ng such that if xi > xj, then yσðiÞ ≥ yσðjÞ for any i
and j. Then, the following inequality holds:

Xn
j¼1

jxj − yjj ≥
Xn
j¼1

jxj − yσðjÞj: ðB1Þ

Proof.—Without loss of generality, we assume x1 ≤
x2 ≤ … ≤ xn. Let ν be a permutation of f1;…; ng such
that

P
n
j¼1 jxj − yνðjÞj is minimum among all possible

permutations and that the number of inversion pairs (i.e.,
i > j and yνðiÞ < yνðjÞ) isminimum.Assume that two indices
i and j ¼ i − 1 exist such that xi ≥ xj and yνðiÞ < yνðjÞ. We
then consider a new permutation ν0 obtained from ν by
swapping νðiÞ and νðjÞ; that is, ν0ðiÞ ¼ νðjÞ, ν0ðjÞ ¼ νðiÞ,
and ν0ðkÞ ¼ νðkÞ for all k ≠ i, j. In this case, we can easily
prove that

jxi−yνðiÞjþjxj−yνðjÞj≥ jxi−yν0ðiÞjþjxj−yν0ðjÞj: ðB2Þ
This means that

Xn
j¼1

jxj − yνðjÞj ≥
Xn
j¼1

jxj − yν0ðjÞj; ðB3Þ

and the permutation ν0 has fewer inversion pairs than the
permutation ν, which contradicts the optimality of the
permutation ν. Therefore, we have yνðiÞ ≥ yνðjÞ for any
xi > xj. Consequently, the permutations σ and ν satisfy

Xn
j¼1

jxj − yσðjÞj ¼
Xn
j¼1

jxj − yνðjÞj; ðB4Þ

from which Eq. (B1) is immediately proved because of the
optimality of the permutation ν. ▪
Proposition 4: Let x¼½x1;…;xn�⊤ and y¼½y1;…;yn0 �⊤

be vectors of non-negative numbers. If
P

n
i¼1 xi ¼

P
n0
j¼1 yj,

then a matrix Z ¼ ½zij� ∈ Rn×n0 exists with non-negative
elements such that

Xn0
j¼1

zij ¼ xi and
Xn
i¼1

zij ¼ yj: ðB5Þ

Proof.—We prove by induction on k ¼ nþ n0 ≥ 2. The
k ¼ 2 case is evident, since n ¼ n0 ¼ 1 and x1 ¼ y1; there-
fore, we can choose z11 ¼ x1. Supposing that it holds for all
k ≤ k̄, we can consider an arbitrary case with k ¼ k̄þ 1.
Let v ¼ minfx1; y1g and set z11 ¼ v. Without loss of
generality, we can assume that v ¼ x1. Then, z1i ¼ 0 for
all i ≥ 2. Consider two vectors x0 ¼ ½x2;…; xn�⊤ and y0 ¼
½y1 − x1;…; yn0 �⊤ with k0 ¼ nþ n0 − 1 ¼ k̄. A matrix Z0 ¼
½z0ij� ∈ Rðn−1Þ×n0 exists such that

Xn0
j¼1

z0ij ¼ x0i and
Xn−1
i¼1

z0ij ¼ y0j: ðB6Þ

Set zij ¼ z0ði−1Þj for all i ≥ 2. Then, the matrix Z satis-

fies Eq. (B5). ▪
Proposition 5: For arbitrary real numbers fxig and fyig

that satisfy xiyi ≥ 0 for all i, the following inequality holds:
X
i

xi
yi

X
i

xiyi ≥
X
i

xi
cothðyi=2Þ

X
i

xi cothðyi=2Þ: ðB7Þ

Proof.—The inequality (B7) is equivalent to

X
i>j

�
xi
yi
xjyj þ

xj
yj
xiyi −

xi
cothðyi=2Þ

xj cothðyj=2Þ

−
xj

cothðyj=2Þ
xi cothðyi=2Þ

�
≥ 0: ðB8Þ

It suffices to prove that each term in the above summation is
non-negative, that is,

xixj

�
yj
yi

þ yi
yj

−
cothðyj=2Þ
cothðyi=2Þ

−
cothðyi=2Þ
cothðyj=2Þ

�
≥ 0: ðB9Þ

Since xixjyiyj ≥ 0, Eq. (B9) is equivalent to

y2i þ y2j − yiyj

�
cothðyj=2Þ
cothðyi=2Þ

þ cothðyi=2Þ
cothðyi=2Þ

�
≥ 0: ðB10Þ

Since y cothðyÞ and y= cothðyÞ are even functions, we can
assume that yi ≥ yj ≥ 0 without loss of generality. The
inequality (B10) can be rewritten as

yi
yj

þ yj
yi

−
�
cothðyj=2Þ
cothðyi=2Þ

þ cothðyi=2Þ
cothðyj=2Þ

�

¼
�
yi
yj

−
cothðyj=2Þ
cothðyi=2Þ

��
1 −

�
yi
yj

cothðyj=2Þ
cothðyi=2Þ

�
−1
�
≥ 0:

ðB11Þ
Since cothðyÞ is a strictly decreasing function over ½0;þ∞Þ,
we have yicothðyj=2Þ≥yjcothðyi=2Þ. Therefore, Eq. (B11)
is equivalent to

yi
yj

≥
cothðyj=2Þ
cothðyi=2Þ

: ðB12Þ

The inequality (B12) is always valid, since y cothðy=2Þ is
an increasing function over ½0;þ∞Þ. Therefore, Eq. (B7) is
proved. ▪

APPENDIX C: DERIVATION OF
CALCULATIONS IN SEC. III

1. Property of mt

Here, we show a relevant property of dynamical state
mobility in terms of optimizing irreversible entropy
production.
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Lemma 6: For any Markov jump process fpt;Wtg0≤t≤τ
and arbitrary positive constant D̄, a Markov process
fp̃t; W̃tg0≤t≤τ exists that simultaneously satisfies the fol-
lowing conditions.

(i) The time evolution of probability distribution is the
same (i.e., p̃t ¼ pt for all times).

(ii) The time-averaged state mobility is equal to D̄
(i.e., hm̃iτ ¼ D̄).

(iii) The associated product of entropy production and
dynamical state mobility is smaller than that of the
original process (i.e., Σ̃τM̃τ ≤ ΣτMτ).

Proof.—We consider another Markov jump process with
the transition rate matrix W̃t defined in the following
manner. For each transition rate wxyðtÞ > 0, we define

w̃xyðtÞ ¼ wxyðtÞ þ
αxyðtÞ
pyðtÞ

ðx ≠ yÞ; ðC1Þ

where αxyðtÞ ¼ αyxðtÞ are real coefficients to be later
determined. We can easily verify that j̃xyðtÞ ¼ jxyðtÞ for
all x ≠ y. Therefore, given that the initial distribution is the
same (i.e., p̃0 ¼ p0), we immediately obtain p̃t ¼ pt for all
t, which fulfills condition (i). In addition, for any λ > 0,
αxyðtÞ always exists such that

m̃xyðtÞ ¼
j̃xyðtÞ

ln½w̃xyðtÞp̃yðtÞ� − ln½w̃yxðtÞp̃xðtÞ�
¼ λjjxyðtÞj:

ðC2Þ
This is because the following quantity can take an arbitrary
positive value depending on the manner in which αxyðtÞ
is chosen:

wxyðtÞpyðtÞ − wyxðtÞpxðtÞ
ln wxyðtÞpyðtÞþαxyðtÞ

wyxðtÞpxðtÞþαyxðtÞ
: ðC3Þ

Choosing αxyðtÞ such that Eq. (C2) is satisfied and setting
λ ¼ D̄τ½R τ

0

P
x>y jjxyðtÞjdt�−1, we can calculate

hm̃iτ ¼ τ−1
Z

τ

0

X
x>y

m̃xyðtÞdt

¼ τ−1λ

Z
τ

0

X
x>y

jjxyðtÞjdt

¼ D̄; ðC4Þ
which fulfills condition (ii). Finally, we prove that con-
dition (iii) is also satisfied. To this end, we first note that

σ̃t ¼
X
x>y

j̃xyðtÞ ln
w̃xyðtÞp̃yðtÞ
w̃yxðtÞp̃xðtÞ

¼ λ−1
X
x>y

jjxyðtÞj: ðC5Þ

Consequently, condition (iii) can be verified as follows:

Σ̃τM̃τ ¼
Z

τ

0

σ̃tdt
Z

τ

0

m̃tdt

¼
�Z

τ

0

X
x>y

jjxyðtÞjdt
�

2

≤
�Z

τ

0

X
x>y

σxyðtÞdt
��Z

τ

0

X
x>y

mxyðtÞdt
�

¼ ΣτMτ: ðC6Þ
It is noteworthy that if we choose D̄ ¼ hmiτ, condition
(iii) implies Σ̃τ ≤ Στ. ▪

2. Lower bound of dynamical state mobility

Here, we provide a lower bound of dynamical state
mobility in terms of entropy production and dynamical
activity. By performing algebraic calculations, we can show
that the kinetic coefficients fmxyðtÞg can be expressed in
terms of entropy production and dynamical activity rates at
the transition level as

mxyðtÞ ¼
σxyðtÞ
4

Φ
�

σxyðtÞ
2½axyðtÞ þ ayxðtÞ�

�
−2
; ðC7Þ

where ΦðxÞ is the inverse function of x tanhðxÞ. Since
xΦðx=yÞ−2 is a convex function over ð0;þ∞Þ × ð0;þ∞Þ,
we can derive a lower bound for mt as

σt
4
Φ
�
σt
2at

�
−2

≤ mt: ðC8Þ

The inequality (C8) indicates thatmt can be lower bounded
by both the entropy production and dynamical activity
rates. Exploiting the convexity of xΦðx=yÞ−2 also yields the
following inequality:

Στ

4
Φ
�

Στ

2Aτ

�
−2

≤ Mτ: ðC9Þ

3. Proof of Eq. (61)

Through the Cramér-Rao inequality [102], the precision
of time-antisymmetric currents can be upper bounded by
pseudo entropy production as [172]

hJi2
var½J� ≤ Σps

τ ; ðC10Þ

where Σps
τ denotes pseudo entropy production given by

Σps
τ ¼

Z
τ

0

X
x>y

jxyðtÞ2
axyðtÞ þ ayxðtÞ

dt: ðC11Þ
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Σps
τ is an empirical quantity that quantifies the degree of

irreversibility. Unlike irreversible entropy production Στ,
which diverges in the presence of unidirectional transitions,
pseudo entropy production always remains finite. However,
it cannot be related directly to heat dissipation in thermo-
dynamic processes. It is noteworthy that the magnitude
relation Σps

τ ≤ Στ=2 holds for all times.
Next, we prove the following inequality:

Σps
τ ≤

ΣτMτ

Aτ
: ðC12Þ

Noting that jxyðtÞ¼axyðtÞ−ayxðtÞ and fxyðtÞ ¼ ln½axyðtÞ=
ayxðtÞ�, we can show that

axyðtÞ þ ayxðtÞ ¼ jxyðtÞ
efxyðtÞ þ 1

efxyðtÞ − 1

¼ jxyðtÞ coth½fxyðtÞ=2�: ðC13Þ

Applying Proposition 5, we can prove the inequality (C12)
as follows:

Σps
τ Aτ ¼

Z
τ

0

X
x>y

jxyðtÞ2
axyðtÞ þ ayxðtÞ

dt
Z

τ

0

X
x>y

½axyðtÞ þ ayxðtÞ�dt

¼
Z

τ

0

X
x>y

jxyðtÞ
coth½fxyðtÞ=2�

dt
Z

τ

0

X
x>y

jxyðtÞ coth½fxyðtÞ=2�dt

≤
Z

τ

0

X
x>y

jxyðtÞ
fxyðtÞ

dt
Z

τ

0

X
x>y

jxyðtÞfxyðtÞdt

¼ ΣτMτ: ðC14Þ

Combining Eqs. (C10) and (C12) gives the following
thermodynamic uncertainty relation:

hJi2
var½J� ≤

ΣτMτ

Aτ
¼ η

Στ

2
: ðC15Þ

4. Additional illustration of Eq. (61)

Here, we numerically demonstrate the improved
thermodynamic uncertainty relation in a thermoelectric
device [173]. A thermoelectric device is an engine that
transports electrons from a low- to a high-potential lead
through a two-level quantum dot [see Fig. 7(a)]. Each
energy level εi of the quantum dot is coupled to a lead with
chemical potential μiðμ2 > μ1Þ and temperature Tc.
Electrons enter and exit the quantum dot due to inter-
actions with the leads. Because of the Coulomb repulsion
between electrons, we can assume that at most one
electron always exists in the quantum dot. The transitions
between the two levels of the quantum dot are mediated by
two heat baths, namely, cold and hot baths at temperatures
Tc and Thð> TcÞ, respectively. From a thermodynamic
perspective, the device can be considered a heat engine
that converts some of the heat absorbed from the hot heat
bath into work in the form of transporting electrons from a
low to a high potential.
The thermoelectric device can be described by a Markov

jump process with three states; that is, the quantum dot
either (i) is an empty (state 0), (ii) contains one electron in
energy level ε1 (state 1), or (iii) contains one electron in

energy level ε2ð> ε1Þ (state 2). Electrons are exchanged
with the leads at the following rates:

wi0 ¼ γi=ð1þ exiÞ; w0i ¼ γiexi=ð1þ exiÞ; ðC16Þ

where γi > 0 denotes the coupling strength to lead i and
xi ≔ ðεi − μiÞ=Tc. The transition rates between the two
energy levels of the quantum dot are given by

w12 ¼ wc
12 þ wh

12; w21 ¼ wc
21 þ wh

21; ðC17Þ

(b)(a)

FIG. 7. Numerical illustration of the thermodynamic uncer-
tainty relations. (a) Schematic of the thermoelectric engine that
transports electrons from the left to the right lead through the two-
level quantum dot and (b) numerical verification. The current
precision hJi2=var½J�, new bound ηΣτ=2, and conventional bound
Στ=2 are depicted by the solid, dashed, and dash-dotted lines,
respectively. γ2 is varied, whereas other parameters are fixed as
βc ¼ 10, βh ¼ 0.1, γ1 ¼ 10, γc ¼ γh ¼ 1, ε1 ¼ 0, ε2 ¼ 1,
μ1 ¼ 0.4, μ2 ¼ 0.6, and τ ¼ 1.
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where wa
21 ¼ γa=ðexa − 1Þ, wa

12 ¼ γaexa=ðexa − 1Þ, xa ≔
ðε2 − ε1Þ=Ta for a ∈ fc; hg, and γc and γh denote the
coupling strengths to the heat baths. Here, the symbols c
and h correspond to the cold and hot heat baths,
respectively.
We consider the thermoelectric device operating in a

stationary state. The current of interest is the net number of
electrons transported between the leads. The stochastic
current can be defined by setting ϒ10 ¼ 1 ¼ −ϒ01 and
ϒxy ¼ 0 for others. The precision of the current over a finite
period τ can be numerically calculated using full counting
statistics.
We vary γ2 ∈ ð0; 200� while fixing the remaining

parameters. For each parameter setting, we calculate
the precision of the electron current and the bounds of
the conventional and new relations. As Fig. 7(b)
shows, the new bound is always tighter than the conven-
tional bound and more effectively predicts the current
precision.

APPENDIX D: DERIVATION OF
CALCULATIONS IN SEC. IV

1. Proof of Eq. (72)

Here, we prove that W1ðp; qÞ ¼ T ðp; qÞ in the case of
dxy ¼ 1 − δxy. First, we prove that W1ðp; qÞ ≥ T ðp; qÞ.
Let Sþ ¼ fxjpx ≥ qxg and S− ¼ fxjpx < qxg. Evidently,
Sþ ∪ S− ¼ f1; 2;…; Ng. Moreover, since

P
x px ¼P

x qx ¼ 1, we have

X
x∈Sþ

ðpx − qxÞ ¼
X
x∈S−

ðqx − pxÞ: ðD1Þ

Consequently,
P

x jpx−qxj¼2
P

x∈S−ðqx−pxÞ. Exploiting
the positivity of dxy and πxy, we can boundW1 from below
as follows:

W1ðp; qÞ ¼ min
π∈Πðp;qÞ

X
x;y

dxyπxy

≥ min
π∈Πðp;qÞ

X
x∈S−

X
y

dxyπxy

≥ min
π∈Πðp;qÞ

X
x∈S−

X
y

dxyðπxy − πyxÞ

¼ min
π∈Πðp;qÞ

X
x∈S−

X
y

ðπxy − πyxÞ

¼ min
π∈Πðp;qÞ

X
x∈S−

ðqx − pxÞ

¼ 1

2

X
x

jpx − qxj

¼ T ðp; qÞ: ðD2Þ

Next, we show that this inequality can be attained
with a specific coupling. Since

P
x∈Sþðpx − qxÞ ¼P

x∈S−ðqx − pxÞ, according to Proposition 4, non-negative
coefficients fzxyg defined over S− × Sþ always exist
such that

X
y∈Sþ

zxy ¼ qx − px ∀ x ∈ S−; ðD3Þ

X
y∈S−

zyx ¼ px − qx ∀ x ∈ Sþ: ðD4Þ

We now construct a coupling π ¼ ½πxy� as follows:

πxx ¼ px ∀ x ∈ S−; ðD5Þ

πxx ¼ qx ∀ x ∈ Sþ; ðD6Þ

πxy ¼ 0 ∀ x ∈ Sþ and y ≠ x; ðD7Þ

πxy ¼ 0 ∀ y ∈ S− and x ≠ y; ðD8Þ

πxy ¼ zxy otherwise: ðD9Þ

We can verify that π ∈ Πðp; qÞ and
P

x;y dxyπxy ¼
T ðp; qÞ. From the definition of the Wasserstein distance,
we have

W1ðp; qÞ ≤
X
x;y

dxyπxy ¼ T ðp; qÞ: ðD10Þ

Combining Eqs. (D2) and (D10) yields W1ðp; qÞ ¼
T ðp; qÞ.

2. Proof of Theorem 1

Here, we prove Theorem 1, which can be restated as

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ min

Wt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ðD11Þ

To this end, we prove that rhs ≥ lhs and rhs ≤ lhs. First, we
prove the former. According to the Cauchy-Schwarz
inequality, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
≥
Z

τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt; ðD12Þ

ffiffiffiffiffiffiffiffiffi
σtmt

p ¼
�X

x>y

mxyðtÞfxyðtÞ2
X
x>y

mxyðtÞ
�

1=2

≥
X
x>y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mxyðtÞfxyðtÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
mxyðtÞ

q

¼
X
x>y

jjxyðtÞj: ðD13Þ
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We then need only prove that

Z
τ

0

X
x>y

jjxyðtÞjdt ≥ W1ðpA; pBÞ: ðD14Þ

For this purpose, we map the optimal transport problem to a
minimum cost flow problem. Let GðV; EÞ be the topology
of Markov jump processes, from which the Wasserstein
distance is defined. We consider a directed graph of N þ 2
vertices: source vertex, target vertex, and N intermediate
vertices f1;…; Ng (see Fig. 8 for illustration). Each edge e
of the graph is associated with a cost cðeÞ ≥ 0 and capacity
aðeÞ > 0 (i.e., the maximum flow that can be sent along
this edge). The cost of sending a flow f along an edge e is,
thus, f × cðeÞ. The set of directed edges is as

source → x∶ ðc ¼ 0; a ¼ pA
x Þ; ðD15Þ

x → target∶ ðc ¼ 0; a ¼ pB
x Þ; ðD16Þ

x ↔ y∶ ðc ¼ 1; a ¼ þ∞Þ if ðx; yÞ ∈ E: ðD17Þ

Consider a case in which an amount of flow 1 is sent from
the source vertex to the target vertex. We can then prove
that the minimum cost C of this flow problem is exactly the
discrete Wasserstein distance. To this end, we first show
that C ≥ W1ðpA; pBÞ. Assume that C is attained by effec-
tively sending a flow πxy from source → y → x → target
for each x and y. Since the shortest-path distance from y to
x is dxy, the total cost must be greater than or equal toP

x;y dxyπxy. Notice that fπxyg is a valid coupling.
Therefore, we obtain C ≥ W1ðpA; pBÞ from the definition
of the Wasserstein distance. We now need only prove

the reverse statement C ≤ W1ðpA; pBÞ. Assume that
W1ðpA; pBÞ is achieved by an optimal transport plan
π� ¼ ½π�xy� [i.e, for any pair ðx; yÞ, we move a probability
π�xy from state y to state x with the cost of dxy per unit
probability]. For each x and y, let P ¼ ½v1;…; vk� be the
shortest path of length dxy that connects y to x; that is,
y ¼ v1, x ¼ vk, k − 1 ¼ dxy, and ðvi; viþ1Þ ∈ E for all
1 ≤ i < k. We can then send an amount of flow π�xy along
the path ðsource → v1 → � � � → vk → targetÞ. The total
flow cost is exactly

P
x;y π

�
xydxy ¼ W1ðpA; pBÞ; thus,

C ≤ W1ðpA; pBÞ. Consequently, we arrive at the equal-
ity C ¼ W1ðpA; pBÞ.
We next show that the Markov jump process gives an

admissible solution of the minimum cost flow problem with
the cost

R
τ
0

P
x>y jjxyðtÞjdt. Consider discretization of the

master equation with the time interval δt, where τ ¼ Kδt.
For each k ¼ 0;…; K − 1, we have

px½ðkþ 1Þδt� ¼ pxðkδtÞ þ
X
yð≠xÞ

jxyðkδtÞδt: ðD18Þ

This means that we send an amount of flow jjxyðkδtÞjδt
from y to x if jxyðkδtÞ ≥ 0 and from x to y if jxyðkδtÞ < 0.
Since jxyðkδtÞ ≠ 0 only if x and y are directly connected
by an edge, the cost of each transport is jjxyðkδtÞjδt.
Therefore, the total flow cost associated with the Markov
jump process is

XK−1
k¼0

X
x>y

jjxyðkδtÞjδt ⟶δt→0
Z

τ

0

X
x>y

jjxyðtÞjdt: ðD19Þ

Since the Markov jump process realizes an admissible
manner of sending flow from pA to pB, we obtain

Z
τ

0

X
x>y

jjxyðtÞjdt ≥ C ¼ W1ðpA; pBÞ; ðD20Þ

which verifies Eq. (D14). Consequently, combining
Eqs. (D12)–(D14) yields

rhs ≥ min
Wt

�Z
τ

0

X
x>y

jjxyðtÞjdt
�

≥ W1ðpA; pBÞ ¼ lhs: ðD21Þ

We next prove that lhs ≥ rhs by showing that the optimal
cost W1ðpA; pBÞ can be achieved with a specific Markov
jump process, the underlying graph of which is a subgraph
of GðV; EÞ for all times. Note that the optimal transport plan
can be represented as a sequence of transportation between
neighboring states. Let ½ðx1; y1; χ1Þ;…; ðxI; yI; χIÞ� denote
the optimal transport plan; that is, at each step 1 ≤ i ≤ I, we
move a probability χi from state xi to yið≠ xiÞ. It is ensured

(b)(a)

FIG. 8. Mapping the Wasserstein distance defined based on
topology to a minimum cost flow problem. (a) Topology GðV; EÞ
with five vertices and five edges, from which the Wasserstein
distance is defined. (b) Directed graph of the minimum cost flow
problem, which is constructed using the given topology G. The
minimum cost of the flow problem is equal to the Wasserstein
distance.
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that at each step the probability of state xi is always greater
than or equal to χi. Since xi and yi are neighboring states,
the total transport cost is

P
I
i¼1 χi. Thus,

XI

i¼1

χi ¼ W1ðpA; pBÞ: ðD22Þ

We now construct a Markov jump process of time period τ
such that, for each 1 ≤ i ≤ I, a probability χi is moved from
xi to yi after time t ¼ iΔ, where Δ ≔ τ=I. Specifically, we
construct transition rates such that the probability distri-
bution evolves as follows:

pxi ½ði − 1ÞΔþ s� ¼ pxi ½ði − 1ÞΔ� − s
Δ
χi; ðD23Þ

pyi ½ði − 1ÞΔþ s� ¼ pyi ½ði − 1ÞΔ� þ s
Δ
χi; ðD24Þ

px½ði − 1ÞΔþ s� ¼ px½ði − 1ÞΔ�; ∀ x ≠ xi; yi: ðD25Þ

Here, 0 ≤ s ≤ Δ is a time parameter. This time evolution
of the probability distribution is effectively a two-level
system, which can be realized using the following
transition rates:

wyixiðtÞ ¼
1

Δð1 − e−ϕÞ
χi

pxiðtÞ
; ðD26Þ

wxiyiðtÞ ¼
e−ϕ

Δð1 − e−ϕÞ
χi

pyiðtÞ
; ðD27Þ

wxyðtÞ ¼ 0 otherwise: ðD28Þ

Here, ϕ > 0 is an arbitrary constant. During the time
interval ½ði − 1ÞΔ; iΔ�, the underlying graph of this process
has only one edge that connects vertices xi and yi. Thus, it
is always a subgraph of G. Using these transition rates,
we can verify that

_pxðtÞ ¼
X
yð≠xÞ

jxyðtÞ ∀ x: ðD29Þ

Moreover,

σt ¼
X
x>y

jxyðtÞ ln
axyðtÞ
ayxðtÞ

¼ ϕ
X
x>y

jjxyðtÞj; ðD30Þ

mt ¼
X
x>y

jxyðtÞ
ln½axyðtÞ=ayxðtÞ�

¼ 1

ϕ

X
x>y

jjxyðtÞj: ðD31Þ

In addition, note that

X
x>y

jjxyðtÞj ¼
χi
Δ

⇒
Z

iΔ

ði−1ÞΔ

X
x>y

jjxyðtÞjdt ¼ χi: ðD32Þ

By summing both sides of Eq. (D32) for all i ¼ 1;…; I,
we obtain

Z
τ

0

X
x>y

jjxyðtÞjdt ¼
XI

i¼1

χi ¼ W1ðpA; pBÞ: ðD33Þ

Consequently, we have

ΣτMτ ¼
�Z

τ

0

X
x>y

jjxyðtÞjdt
�

2

¼ W1ðpA; pBÞ2; ðD34Þ

which completes the proof.

3. Equality in Theorem 1 can be achieved
with global detailed-balance systems

Based on the previous construction of the dynamics that
attains the equality in Theorem 1, we can further prove that
the equality can be attained with global detailed-balance
dynamics. Here, we prove this fact using a different
approach.
Minimizing the integral term in Theorem 1 is equivalent

to minimizing the cost function σtmt at each instance of
time t. Consider the Lagrangian function

LðWt; λÞ ¼ σtmt þ λ⊤ð _pt −WtptÞ; ðD35Þ

where fptg0≤t≤τ is the probability distribution of a dynam-
ics that attains the equality of Theorem 1. For simplicity,
the time notation t is omitted hereafter. Taking the
derivative of L with respect to wxy, we have

∂L
∂wxy

¼ pyðfxy þ 1 − e−fxyÞmþ pyðfxy − 1þ e−fxyÞ
f2xy

σ

þ pyðλy − λxÞ ¼ 0: ðD36Þ

Recall that fxy ¼ lnðaxy=ayxÞ. If py ¼ 0, then wxy can be
arbitrarily determined. Therefore, we need only consider
the nontrivial case py ≠ 0. This leads to

ðfxy þ 1 − e−fxyÞmþ ðfxy − 1þ e−fxyÞ
f2xy

σ þ λy − λx ¼ 0:

ðD37Þ
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Likewise, taking the derivative of L with respect to wyx

yields

ðfyx þ 1 − e−fyxÞmþ ðfyx − 1þ e−fyxÞ
f2yx

σ þ λx − λy ¼ 0:

ðD38Þ

Notice that fxy ¼ −fyx. Adding Eqs. (D37) and (D38) side
by side, we obtain

ðefxy þ e−fxy − 2Þ
�

σ

f2xy
−m

�
¼ 0; ðD39Þ

which gives the solution fxy ¼ 0 or f2xy ¼ σ=m. Note that
fxy ¼ 0 is equivalent to jxy ¼ 0, which implies that the
transition between x and y does not contribute to the time
evolution of the probability distribution. Therefore, such
transitions need not be considered and can be eliminated
by simply setting wxy ¼ wyx ¼ 0. Otherwise, if f2xy ¼ σ=m,
then Eq. (D37) becomes

2fxymþ λy − λx ¼ 0; ðD40Þ

or, equivalently,

ln
wxy

wyx
¼ λx − λy

2m
þ lnpx − lnpy: ðD41Þ

Bydefiningan instantaneous energyβεx≔−λx=ð2mÞ− lnpx,
we can verify that the transition rates satisfy the global
detailed-balance condition:

ln
wxy

wyx
¼βðεy−εxÞ: ðD42Þ

4. Minimum entropy production can be achieved
with global detailed-balance systems

Here, we show that, given the time-averaged state
mobility (i.e., hmiτ ¼ D̄), there always exists a system
that satisfies the global detailed balance and achieves the
minimum entropy production:

min
hmiτ¼D̄

Στ ¼
W1ðp0; pτÞ2

D̄τ
: ðD43Þ

According to the equality of Theorem 1 and Lemma 6,
there exists a dynamics that satisfies Eq. (D43) with time-
dependent probability distributions fptg0≤t≤τ. We consider
the following minimization problem:

min
Z

τ

0

σtdt; ðD44Þ

given that _pt ¼ Wtpt and hmiτ ¼ D̄. Notice that the
minimum value for this problem is exactly W1ðp0; pτÞ2=
ðD̄τÞ. Consider the Lagrangian function

LðWt; λt; κÞ ¼
Z

τ

0

σtdtþ
Z

τ

0

λ⊤t ð _pt −WtptÞdt

þ κ

�Z
τ

0

mtdt − D̄τ

�
: ðD45Þ

For simplicity, the time notation t is omitted hereafter.
Taking the derivative of L with respect to wxy, we have

∂L
∂wxy

¼ pyðfxy þ 1 − e−fxyÞ þ pyðfxy − 1þ e−fxyÞ
f2xy

κ

þ pyðλy − λxÞ ¼ 0: ðD46Þ

Following the same procedure as in Appendix D 3, we
obtain the following relation:

2fxy þ λy − λx ¼ 0; ðD47Þ

or, equivalently,

ln
wxy

wyx
¼ λx − λy

2
þ lnpx − lnpy: ðD48Þ

By defining an instantaneous energy βεx ≔ −λx=2 − lnpx,
the transition rates satisfy the global detailed-balance
condition:

ln
wxy

wyx
¼ βðεy − εxÞ: ðD49Þ

This means that the minimum entropy production (D44)
can be achieved with conservative forces.

5. Particular topologies

a. Ring topology

Here, we consider a ring topology in which vertices x
and xþ 1 are connected for all x, where N þ 1≡ 1.
This topology can be seen in a one-dimensional asym-
metric simple exclusion process on a ring of N sites
and corresponds to a continuous-variable situation in
which a single particle is driven in a periodic potential.
For each integer number x, given x ¼ kN þ r, where
0 ≤ r ≤ N − 1 is the remainder, we define ½x�N ≔ r. Then,
the shortest-path distance between states x and y can be
calculated as

dxy ¼ minf½x − y�N; N − ½x − y�Ng: ðD50Þ
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In this case, the discrete Wasserstein distance can be
written as

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

XN
x¼1

jjxþ1;xðtÞjdt: ðD51Þ

We now consider the continuous case in which the
particle is driven in a ring with a diameter L ¼ NΔx.
Taking the continuous limit of Eq. (D51), namely,
N → ∞ and Δx → 0, we obtain the following relation:

min
π

ZZ
minfjx − yj; L − jx − yjgπðx; yÞdxdy

¼ min
jt

Z
τ

0

Z
L

0

jjtðxÞjdxdt; ðD52Þ

where jtðxÞ is subject to the continuity equation
_ptðxÞ ¼ −∂xjtðxÞ. The term on the left-hand side of
Eq. (D52) is exactly the L1-Wasserstein distance between
probability distributions defined periodically over ½0; L�
with the cost function

cðx; yÞ ¼ minfjx − yj; L − jx − yjg: ðD53Þ

Equation (D52), thus, provides a variational formula for
the periodic L1-Wasserstein distance.

b. Fully connected topology

Another topology is the fully connected topology; that is,
for an arbitrary pair of two vertices, an edge always exists
that connects them. In this case, the shortest-path distances
become

dxy ¼ 1 − δxy; ðD54Þ

and the discrete Wasserstein distance equals the total
variation distance. Theorem 1 thus implies the following
equality:

T ðpA; pBÞ ¼ min
Wt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ min

Wt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ðD55Þ

Here, the minimum is taken over all possible transition
rate matrices; that is, the transition rate between any two
states can be arbitrarily controlled. Although the total
variation distance is widely used in previous studies, its
connection with thermodynamics has thus far been veiled.
Equation (D55) reveals a thermodynamic interpretation of
this distance, showing that it equals the minimum product
of the thermodynamic and kinetic costs given the full
control of the transition rates.

6. Alternative variational expressions
of the discrete Wasserstein distance

Corollary 7: The discrete Wasserstein distance can be
expressed in terms of irreversible entropy production and
dynamical activity as

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

σt
2
Φ
�
σt
2at

�
−1
dt ðD56Þ

¼ min
Wt

Στ

2
Φ
�

Στ

2Aτ

�
−1
: ðD57Þ

Proof.—We first prove that

Z
τ

0

σt
2
Φ
�
σt
2at

�
−1
dt ≥ W1ðpA; pBÞ: ðD58Þ

Note that xΦðx=yÞ−1 is a concave function over
ð0;þ∞Þ × ð0;þ∞Þ. Applying Jensen’s inequality yields

σt
2
Φ
�
σt
2at

�
−1

≥
X
x>y

σxyðtÞ
2

Φ
�

σxyðtÞ
2½axyðtÞ þ ayxðtÞ�

�
−1

¼
X
x>y

jjxyðtÞj: ðD59Þ

By taking the time integration of Eq. (D59) and using
Eq. (84), we immediately prove Eq. (D58). Moreover,
using the concavity of xΦðx=yÞ−1 yields

Z
τ

0

σt
2
Φ
�
σt
2at

�
−1
dt ≤

Στ

2
Φ
�

Στ

2Aτ

�
−1

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ðD60Þ

Thus, we have

W1ðpA; pBÞ ≤
Z

τ

0

σt
2
Φ
�
σt
2at

�
−1
dt ≤

Στ

2
Φ
�

Στ

2Aτ

�
−1

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ðD61Þ

The proof is completed by taking the minimum of the terms
on the right-hand side of Eq. (D61) over all admissible
dynamics and applying Theorem 1. ▪
Equation (D57) implies that the discrete Wasserstein

distance can be expressed in terms of irreversible entropy
production and dynamical activity as

W1ðpA; pBÞ ¼ min
Στ

2
Φ
�

Στ

2Aτ

�
−1
; ðD62Þ

which recovers the result obtained in Ref. [93].
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Corollary 8: The discrete Wasserstein distance can be
expressed in terms of pseudo entropy production and
dynamical activity as

W1ðpA; pBÞ ¼ min
Wt

Z
τ

0

ffiffiffiffiffiffiffiffiffiffi
σpst at

q
dt ðD63Þ

¼ min
Wt

ffiffiffiffiffiffiffiffiffiffiffiffi
Σps
τ Aτ

q
; ðD64Þ

where σpst ≔ _Σps
t denotes the pseudo entropy produc-

tion rate.
Proof.—The proof strategy is the same as in Corollary 7.

We first prove that

Z
τ

0

ffiffiffiffiffiffiffiffiffiffi
σpst at

q
dt ≥ W1ðpA; pBÞ: ðD65Þ

Applying the Cauchy-Schwarz inequality, we obtain

X
x>y

jjxyðtÞj ¼
X
x>y

jjxyðtÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axyðtÞ þ ayxðtÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
axyðtÞ þ ayxðtÞ

q

≤
ffiffiffiffiffiffiffiffiffiffi
σpst at

q
: ðD66Þ

By taking the time integration of Eq. (D66) and
using Eq. (84), we immediately prove Eq. (D65). Since
Σps
τ Aτ ≤ ΣτMτ, the following relation holds:

W1ðpA; pBÞ ≤
Z

τ

0

ffiffiffiffiffiffiffiffiffiffi
σpst at

q
dt ≤

ffiffiffiffiffiffiffiffiffiffiffiffi
Σps
τ Aτ

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
:

ðD67Þ

Taking the minimum of the terms on the right-hand side
of Eq. (D67) over all admissible dynamics and using
Theorem 1 complete the proof. ▪
Equation (D64) has the following implication. If

dynamical activity Aτ is fixed, then the minimum pseudo
entropy production can be calculated using the Wasserstein
distance as

minΣps
τ ¼ W1ðpA; pBÞ2

Aτ
; ðD68Þ

which recovers the result reported in Ref. [93]. From
Theorem 1 and Corollary 8, we can observe that, in the
context of optimal transport, (Στ,Mτ) and (Σ

ps
τ ,Aτ) are two

thermodynamic-kinetic conjugate pairs.

APPENDIX E: DERIVATION OF
CALCULATIONS IN SEC. V

1. Proof of Eq. (99)

Here, we derive an analytical expression of the entropy
production rate σt. Taking the time derivative of irreversible
entropy production, we can calculate the entropy produc-
tion rate as

σt ¼ −trf_ϱt ln ϱtg þ
X
k

trfLkðtÞ†LkðtÞϱtgskðtÞ

¼
X
k

− trf(D½LkðtÞ�ϱt) ln ϱtg þ trfLkðtÞ†LkðtÞϱtgskðtÞ

¼
X
k

trfLkðtÞϱt(skðtÞLkðtÞ† − ½LkðtÞ†; ln ϱt�)g: ðE1Þ

Notice that wxy
k ðtÞ ¼ eskðtÞwyx

k0 ðtÞ. Since tr A ¼ P
xhxtjAjxti

for any operator A, the entropy production rate can be
calculated further as

σt ¼
X
k

X
x

hxtjLkðtÞϱt(skðtÞLkðtÞ† − ½LkðtÞ†; ln ϱt�)jxti

¼
X
k

X
x;y

wxy
k ðtÞpyðtÞ

�
skðtÞ þ ln

pyðtÞ
pxðtÞ

�

¼ 1

2

X
k

X
x;y

jxyk ðtÞ lnw
xy
k ðtÞpyðtÞ

wyx
k0 ðtÞpxðtÞ

: ðE2Þ

Since ða − bÞ lnða=bÞ ≥ 0 for all a, b ≥ 0, the positivity of
σt is immediately derived.

2. Proof of Eq. (115)

First, quantum dynamical state mobility can be
expressed in terms of eigenvalues fpxðtÞg and transition
rates fwxy

k ðtÞg as

mt ¼
1

2

X
k

e−skðtÞ=2hLkðtÞ†;⟦ϱt⟧skðtÞfPt½LkðtÞ†�gi

¼ 1

2

X
k

e−skðtÞ
Z

1

0

eskðtÞuhLkðtÞ†;ϱut fPt½LkðtÞ†�gϱ1−ut idu

¼ 1

2

X
k

e−skðtÞ
X
x≠y

Z
1

0

eskðtÞuwxy
k ðtÞpyðtÞupxðtÞ1−udu:

ðE3Þ

Likewise, we can calculate
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X
x

hxtj ⊗ jxti⊤Okðt; uÞjxti ⊗ hxtj⊤

¼
X
x

hxtj ⊗ jxti⊤LkðtÞϱut LkðtÞ† ⊗ ðϱ1−ut Þ⊤jxti ⊗ hxtj⊤ þ
X
x

hxtj ⊗ jxti⊤ϱut ⊗ ½LkðtÞ†ϱ1−ut LkðtÞ�⊤jxti ⊗ hxtj⊤

−
X
x

hxtj ⊗ jxti⊤LkðtÞϱut ⊗ ½LkðtÞ†ϱ1−ut �⊤jxti ⊗ hxtj⊤ −
X
x

hxtj ⊗ jxti⊤ϱut LkðtÞ† ⊗ ½ϱ1−ut LkðtÞ�⊤jxti ⊗ hxtj⊤

¼
X
x≠y

½wxy
k ðtÞpxðtÞ1−upyðtÞu þ wyx

k ðtÞpxðtÞupyðtÞ1−u�

¼ 2
X
x≠y

wxy
k ðtÞpyðtÞupxðtÞ1−u: ðE4Þ

Consequently, combining Eqs. (E3) and (E4) yields the desired relation:

1

2

X
x

hxtj ⊗ jxti⊤Otjxti ⊗ hxtj⊤ ¼ 1

4

X
x

X
k

e−skðtÞ
Z

1

0

eskðtÞuhxtj ⊗ jxti⊤Okðt; uÞjxti ⊗ hxtj⊤du

¼ 1

2

X
k

e−skðtÞ
X
x≠y

Z
1

0

eskðtÞuwxy
k ðtÞpyðtÞupxðtÞ1−udu

¼ mt: ðE5Þ

3. Proof of Eq. (119)

First, we prove that WqðϱA; ϱBÞ ≤ T ðpA; pBÞ. Let ϱA ¼P
x p

A
x jxAihxAj and ϱB ¼ P

x p
B
x jxBihxBj be the spectral

decompositions of the density matrices. Setting V� ¼P
x jxBihxBjxA, we can verify that V� is a unitary operator

and V�ϱAV
†� ¼

P
x p

A
x jxBihxBj. From the definition ofWq,

we have

WqðϱA; ϱBÞ ¼
1

2
min
V†V¼1

kVϱAV† − ϱBk1

≤
1

2
kV�ϱAV

†� − ϱBk1

¼ 1

2

				
X
x

ðpA
x − pB

x ÞjxBihxBj
				
1

¼ 1

2

X
x

jpA
x − pB

x j ¼ T ðpA; pBÞ: ðE6Þ

Note that fpA
xg are increasing eigenvalues of VϱAV† for an

arbitrary unitary operator V. Let ςxðAÞ be the xth singular
value of operator A in ascending order. Then,

kA − Bk1 ¼
X
x

ςxðA − BÞ ≥
X
x

jςxðAÞ − ςxðBÞj ðE7Þ

holds for arbitrary Hermitian operators A and B [174].
Applying the above inequality for A ¼ VϱAV† and B ¼
ϱB yields kVϱAV† − ϱBk1 ≥

P
x jpA

x − pB
x j, from which we

immediately obtainWqðϱA;ϱBÞ≥T ðpA;pBÞ. Consequently,
Eq. (119) is proved.

4. Proof of Theorem 2

Here, we prove Theorem 2, which can be restated as

WqðϱA; ϱBÞ ¼ min
Lt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt ¼ min

Lt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
: ðE8Þ

First, we prove that rhs ≥ lhs. Note that

σt ¼
1

2

X
k

X
x;y

jxyk ðtÞ ln a
xy
k ðtÞ

ayxk0 ðtÞ
; ðE9Þ

mt ¼
1

2

X
k

X
x≠y

jxyk ðtÞ
ln½axyk ðtÞ=ayxk0 ðtÞ�

: ðE10Þ

Applying the Cauchy-Schwarz inequality and triangle
inequality, we obtain

ffiffiffiffiffiffiffiffiffi
σtmt

p
≥
1

2

X
k

X
x≠y

jjxyk ðtÞj

≥
1

2

X
x

j
X
k

X
yð≠xÞ

jxyk ðtÞj

¼ 1

2

X
x

j _pxðtÞj: ðE11Þ
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Consequently, taking the time integration and applying
Proposition 3 yield the following result:

min
Lt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
≥ min

Lt

Z
τ

0

ffiffiffiffiffiffiffiffiffi
σtmt

p
dt

≥
1

2
min
Lt

X
x

Z
τ

0

j _pxðtÞjdt

≥
1

2
min
Lt

X
x

j
Z

τ

0

_pxðtÞdtj

¼ 1

2
min
Lt

X
x

jpxðτÞ − pxð0Þj

≥ WqðϱA; ϱBÞ: ðE12Þ

Next, we need only show that the equality in the
inequality (E12) can be achieved with particular dynamics.
First, we construct a Markov jump process with the
transition rate matrix fWtg that transforms the initial
distribution pA into the final distribution pB. Let us
consider probability path pt ¼ pA þ tðpB − pAÞ=τ. We
then have _pxðtÞ ¼ ðpB

x − pA
x Þ=τ, which is invariant for

all times t. We next define Sþ ≔ fxjpB
x ≥ pA

xg and S− ≔
fxjpB

x < pA
xg. Then,

P
x∈Sþ _pxðtÞ ¼ −

P
x∈S− _pxðtÞ. Let

ϕ > 0 be an arbitrary real positive number. According
to Proposition 4, non-negative coefficients fzxyg exist
such that

X
y∈S−

zxy ¼
_pxðtÞ

1 − e−ϕ
∀ x ∈ Sþ; ðE13Þ

X
x∈Sþ

zxy ¼
− _pyðtÞ
1 − e−ϕ

∀ y ∈ S−: ðE14Þ

Using these coefficients, we consider the following tran-
sition rates:

wxyðtÞ ¼
zxy
pyðtÞ

∀ x ∈ Sþ; y ∈ S−; ðE15Þ

wyxðtÞ ¼ e−ϕ
zxy
pxðtÞ

∀ x ∈ Sþ; y ∈ S−; ðE16Þ

wxyðtÞ ¼ 0 otherwise: ðE17Þ

With these transition rates, we can verify that

_pxðtÞ ¼
X
yð≠xÞ

jxyðtÞ ∀ x: ðE18Þ

Moreover, the irreversible entropy production rate and
dynamical state mobility associated with this Markov jump
process can be calculated as

σt ¼
X

x∈Sþ;y∈S−

jxyðtÞ ln
axyðtÞ
ayxðtÞ

¼ ϕ
X
x>y

jjxyðtÞj; ðE19Þ

mt ¼
X

x∈Sþ;y∈S−

jxyðtÞ
ln½axyðtÞ=ayxðtÞ�

¼ ϕ−1
X
x>y

jjxyðtÞj: ðE20Þ

In addition, note that

X
x>y

jjxyðtÞj ¼ ð1 − e−ϕÞ
X
x∈Sþ

X
y∈S−

zxy

¼
X
x∈Sþ

_pxðtÞ: ðE21Þ

Consequently, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
¼

Z
τ

0

X
x>y

jjxyðtÞjdt

¼
X
x∈Sþ

Z
τ

0

_pxðtÞdt

¼
X
x∈Sþ

½pxðτÞ − pxð0Þ�

¼
X
x∈Sþ

ðpB
x − pA

x Þ

¼ T ðpA; pBÞ
¼ WqðϱA; ϱBÞ: ðE22Þ

We next construct Lindblad dynamics that transforms ϱA

into ϱB and simultaneously satisfies the equality (E22).
For each pair of positive transition rates fwxyðtÞ; wyxðtÞg,
we define the corresponding jump operators L̃kðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
wxyðtÞ

p jxAihyAj and L̃k0 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wyxðtÞ

p jyAihxAj. We con-
sider the following Lindblad equation:

_̃ϱt ¼
X
k

D½L̃kðtÞ�ϱ̃t: ðE23Þ

As the initial state is diagonal in the eigenbasis fjxAig,
Eq. (E23) is equivalent to the classical Markov jump
process previously constructed. Given the initial state
ϱ̃0 ¼ ϱA, we can easily see that ϱ̃t is always diagonal
in the eigenbasis fjxAig [i.e., ϱ̃t ¼

P
x pxðtÞjxAihxAj].

Moreover, from Eq. (E22), it is evident that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ̃τM̃τ

q
¼ WqðϱA; ϱBÞ: ðE24Þ

Now, consider the unitary operator Uτ ¼
P

x jxBihxAj. A
Hermitian Hamiltonian H exists such that Uτ ¼ e−iHτ.
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Using this Hamiltonian, we consider the following
Lindblad dynamics:

_ϱt ¼ −i½H; ϱt� þ
X
k

D½LkðtÞ�ϱt; ðE25Þ

where jump operators are given by LkðtÞ ¼ UtL̃kðtÞU†
t

and Ut ≔ e−iHt. The density matrix ϱt is related to that
in Eq. (E23) as ϱt ¼ Utϱ̃tU

†
t . We can confirm that the

dynamics (E25) transforms the density matrix ϱ0 ¼ ϱA into
ϱτ ¼ ϱB, and irreversible entropy production and dynami-
cal state mobility remain unchanged:

Στ ¼ Σ̃τ; ðE26Þ

Mτ ¼ M̃τ: ðE27Þ

Combining this with Eq. (E24), we can show that the
inequality (E12) can be saturated as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣτMτ

p
¼ WqðϱA; ϱBÞ: ðE28Þ

5. Quantum variational formula in terms of entropy
production and dynamical activity

Corollary 9: The quantum Wasserstein distance can be
expressed in terms of irreversible entropy production and
dynamical activity as

WqðϱA; ϱBÞ ¼ min
Lt

Z
τ

0

σt
2
Φ
�
σt
2at

�
−1
dt ðE29Þ

¼ min
Lt

Στ

2
Φ
�

Στ

2Aτ

�
−1
: ðE30Þ

Proof.—First, we prove that

WqðϱA; ϱBÞ ≤
Z

τ

0

σt
2
Φ
�
σt
2at

�
−1
dt ≤

Στ

2
Φ
�

Στ

2Aτ

�
−1
:

ðE31Þ

Noting that xΦðx=yÞ−1 is a concave function and

σt ¼
1

2

X
k;x;y

jxyk ðtÞ ln a
xy
k ðtÞ

ayxk0 ðtÞ
≕

1

2

X
k;x;y

σxyk ðtÞ; ðE32Þ

at ¼
1

2

X
k;x;y

½axyk ðtÞ þ ayxk0 ðtÞ�; ðE33Þ

we obtain the following result from Jensen’s inequality:

σt
2
Φ
�
σt
2at

�
−1

≥
X
k;x;y

σxyk ðtÞ
4

Φ
�

σxyk ðtÞ
2½axyk ðtÞ þ ayxk0 ðtÞ�

�
−1

¼ 1

2

X
k;x;y

jjxyk ðtÞj

≥
1

2

X
x

j _pxðtÞj: ðE34Þ

Taking the time integration, we can immediately prove
Eq. (E31):

WqðϱA; ϱBÞ ≤
1

2

Z
τ

0

X
x

j _pxðtÞjdt

≤
Z

τ

0

σt
2
Φ
�
σt
2at

�
−1
dt

≤
Στ

2
Φ
�

Στ

2Aτ

�
−1
: ðE35Þ

Next, we show that the equalities in Eq. (E31) can be
attained with the dynamics constructed in the proof of
Theorem 2. Notice that the density matrix ϱ̃t of Lindblad
dynamics (E23) can be expressed as ϱ̃t ¼

P
x pxðtÞjxAihxAj.

Therefore, the density matrix ϱt of Lindblad dynamics
(E25) reads ϱt ¼

P
x pxðtÞUtjxAihxAjU†

t , the time-
dependent eigenvectors of which are jxti ¼ UtjxAi. The
jump operators are given by LkðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
wxyðtÞ

p
UtjxAihyAjU†

t .
Using these quantities, we can calculate

wx0y0
k ðtÞ ¼ δxx0δyy0wxyðtÞ: ðE36Þ

In addition, the entropy production and dynamical activity
rates can be calculated as

σt ¼ ϕ
X
x>y

jjxyðtÞj; ðE37Þ

at ¼ cothðϕ=2Þ
X
x>y

jjxyðtÞj; ðE38Þ

where fjxyðtÞg are probability currents in the classical
Markov jump process. Consequently, we obtain the follow-
ing relations:

σt
2
Φ
�
σt
2at

�
−1

¼ 1

2
ϕ
X
x>y

jjxyðtÞjΦ
�

ϕ

2 cothðϕ=2Þ
�

−1

¼
X
x>y

jjxyðtÞj; ðE39Þ
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Στ

2
Φ
�

Στ

2Aτ

�
−1

¼
Z

τ

0

X
x>y

jjxyðtÞjdt: ðE40Þ

Combining Eqs. (E39), (E40), and (E22) verifies the
equalities of Eq. (E31). ▪

APPENDIX F: DERIVATION OF CALCULATIONS
IN SEC. VI

1. Thermodynamic speed limit in terms
of the trace distance

The Wasserstein distance is used as a metric between
quantum states in the speed limits in Eq. (137). Here,
we show that another thermodynamic speed limit with a
different metric can also be obtained. Specifically, we
derive a speed limit using the trace distance in the
following. Let ϱt ¼

P
x pxðtÞjxtihxtj be the spectral

decomposition of the density matrix ϱt. Then, as previously
shown in Ref. [18], we have

k_ϱtk1 ≤ 2ðΔHt þ ΔHD
t Þ þ

X
x

j _pxðtÞj; ðF1Þ

where

ðΔHtÞ2 ¼ trfH2
t ϱtg − ðtrfHtϱtgÞ2; ðF2Þ

ðΔHD
t Þ2 ¼ trfðHD

t Þ2ϱtg − ðtrfHD
t ϱtgÞ2; ðF3Þ

HD
t ≔

X
x≠y

ihxtj
P

kD½Lk�ϱtjyti
pyðtÞ − pxðtÞ

jxtihytj: ðF4Þ

In addition, as shown in Eq. (E11), we can prove that

X
x

j _pxðtÞj ≤ 2
ffiffiffiffiffiffiffiffiffi
σtmt

p
: ðF5Þ

Taking the time integration and using the triangle inequality
for the trace norm, we obtain

T ðϱ0; ϱτÞ ≤
1

2

Z
τ

0

k_ϱtk1dt

≤ τhΔH þ ΔHD þ ffiffiffiffiffiffiffi
σm

p iτ; ðF6Þ

which yields the following speed limit:

τ ≥
T ðϱ0; ϱτÞ

hΔH þ ΔHD þ ffiffiffiffiffiffiffi
σm

p iτ
≥

T ðϱ0; ϱτÞ
hΔHiτ þ hΔHDiτ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhmiτ
p : ðF7Þ

Since hmiτ ≤ haiτ=2, this new speed limit is stronger than
the bound reported in Ref. [18], which reads

τ ≥
T ðϱ0; ϱτÞ

hΔHiτ þ hΔHDiτ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhaiτ=2

p : ðF8Þ

In the classical limit, the speed limit (F7) reduces to the
following bound:

τ ≥
T ðpA; pBÞ
h ffiffiffiffiffiffiffi

σm
p iτ

≥
T ðpA; pBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihσiτhmiτ
p : ðF9Þ

2. Proof of Eq. (141)

Equation (141) is the consequence of the follow-
ing lemma.
Lemma 10: If an erasure protocol satisfies

kΛτp̄ − p�kF ≤ δ, where δ > 0 is a sufficiently small
number, then, for an arbitrary probability distribution p0,
the following inequality holds:

kΛτp0 − p�kF ≤
ffiffiffiffiffiffiffiffi
2dδ

p
⟶
δ→0

0: ðF10Þ
Proof.—For any probability distribution p0, a distribu-

tion p0
0 always exists such that p0 þ ðd − 1Þp0

0 ¼ 1 ¼ dp�.
Indeed, the distribution p0

0 can be chosen as p
0
0¼ð1−p0Þ=

ðd−1Þ. Here, 1 ¼ ½1;…; 1�⊤ is the all-one vector. We
then define pτ ≔ Λτp0 and p0

τ ≔ Λτp0
0 and obtain the

following relation:

Λτp̄ ¼ 1

d
Λτ½p0 þ ðd − 1Þp0

0� ¼
1

d
pτ þ

d − 1

d
p0
τ: ðF11Þ

Therefore, the condition kΛτp̄ − p�kF ≤ δ is equivalent to

k½pτ þ ðd − 1Þp0
τ�=d − p�k2F ≤ δ2: ðF12Þ

It suffices to prove that kpτ − p�k2F ≤ 2dδ. From Eq. (F12),
we have

j½pτ;1 þ ðd − 1Þp0
τ;1�=d − p�;1j2

≤ k½pτ þ ðd − 1Þp0
τ�=d − p�k2F

≤ δ2: ðF13Þ
Consequently,

1 − pτ;1

d
þ ðd − 1Þ 1 − p0

τ;1

d
≤ δ ⇒ 1 − dδ ≤ pτ;1 ≤ 1:

ðF14Þ
The last inequality in Eq. (F14) immediately derives
j1 − pτ;1j ≤ dδ and jpτ;1j ≥ 1 − dδ ≥ 0. From the
inequality

P
d
n¼1 jpτ;nj2 ≤

P
d
n¼1 pτ;n ¼ 1, the partial sumP

d
n¼2 jpτ;nj2 can be upper bounded as

Xd
n¼2

jpτ;nj2 ≤ 1 − jpτ;1j2 ≤ 1 − ð1 − dδÞ2 ¼ 2dδ − d2δ2:

ðF15Þ
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Combining these inequalities, we obtain

kpτ − p�k2F ¼ j1 − pτ;1j2 þ
Xd
n¼2

jpτ;nj2

≤ d2δ2 þ 2dδ − d2δ2 ¼ 2dδ; ðF16Þ

which completes the proof. ▪
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