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With recent advances in time-resolved device control, the dynamical engineering of novel quantum phases
is becoming reality. One of the striking new options is the dynamical generation of space-synthetic
dimensions, transcending the confines of static crystalline solid-state physics. We apply this principle to
propose protocols allowing for the engineered realization of topological surface states in isolation. As a
concrete example, we consider 3D topological surface states of a 4D quantum Hall insulator via a ð1þ 2synÞ-
dimensional protocol. We present first-principle analytical calculations demonstrating that no supporting 4D
bulk phase is required for a 3D topological surface phase. We back the analytical approach by numerical
simulations and present a detailed blueprint for the realization of the synthetic surface phase with existing
quantum linear optical network device technology. We then discuss generalizations, including a proposal for a
quantum simulator of the ð1þ 1synÞ-dimensional surface of the common 3D topological insulator.
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I. INTRODUCTION

Surface states of topological insulators (TI) define one of
the most fascinating forms of quantum matter. Depending
on their symmetries and dimensionality, they conduct
charge, spin, or heat with topological protection against
the detrimental effects of impurity scattering or inter-
actions. These features make the TI surface distinct from
any other form of quantum matter and are believed to
harbor far-reaching potential applications in future devices.
At the same time, our understanding of the TI surface
physics remains incomplete, both experimentally and
theoretically. For example, even in the absence of inter-
actions, their conduction properties are not known quanti-
tatively, and according to recent numerical work [1],
they may even be enigmatic. The experimental analysis
of surface transport is hindered by the inevitable presence
of an “insulating” bulk, in quotation marks because heat or
electric currents easily leak away from the surface hinder-
ing a clear separation of surface and bulk currents.
According to the bulk-boundary principle, no lattice

quantum system in isolation can be in the universality class

of the TI surface. The necessity of a supporting bulk follows
from topological band theory or, more fundamentally, as a
consequence of anomaly inflow. The main message of
this paper is that this no-go theorem can be sidestepped
within the wider framework of Floquet quantum matter.
Specifically, we propose realizations of (dynamical) syn-
thetic matter in universality classes indistinguishable from
those of isolated (static) TI surfaces in the presence of
effective disorder. Our work includes three novel conceptual
elements: (i) the encoding of two- and three-dimensional
surface-state topologies in multifrequency dynamical proto-
cols, (ii) the first-principle demonstration of the equivalence
between the quantum states engineered in this way and
insulator surface states, and (iii) the formulation of a detailed
experimental blueprint suggesting that this program can be
implemented in realistic devices within the framework of
current date technology.
Previous work [2,3] indeed pointed out the realizability

of topological metallic phases in dynamically driven lattice
systems. However, the presence of a lattice structure made
these systems subject to the notorious fermion-doubling
principle, which requires an even number of Dirac cones in
the Floquet Brillouin zone. In the presence of impurities,
these mutually gap out, spoiling the surface-state analogy.
In order to realize a genuine surface state in isolation,
a more radical departure from the solid-state crystal
paradigm is required. In this paper, we demonstrate that
the toolbox of quantum optics contains platforms that are
up to this task: optical lattices [4,5] or linear optical
networks [6–8] driven by multiple incommensurate
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frequencies. The driving of d-dimensional realizations
of such systems by dsyn incommensurate frequencies is
microscopically identical to a time periodic (Floquet)
dynamics acting in an effective system of dimensionality
dþ dsyn [9], where the structure of the Floquet operator in
the d physical and dsyn synthetic dimensions depends on
the driving protocol. Importantly, the correlations in the
synthetic directions are not confined by the fermion-
doubling theorem, and this will be key to the engineering
of topological surface states in isolation. We label the
dþ dsyn-dimensional Floquet metallic (FM) systems real-
ized in this way as FMdþdsyn throughout the paper.
The simulation of higher-dimensional systems via driven

low-dimensional physical platforms is experimental reality.
In breakthrough experiments, it was applied to extend one-
dimensional Anderson localization in the quantum kicked
rotor [10–13] to higher dimensions. This process defined an
effectively disordered FM1þ2 and led to the first high-
precision observation of a three-dimensional Anderson
transition under parametrically controlled conditions [4,14].
However, the realization of the TI surface states

addressed in this paper requires the additional structure
of an internal bi-valued degree of freedom or “spin.” (For
earlier proposals to realize topological quantum matter
with synthetic dimensions via the driving of systems
with internal degrees of freedom, see Refs. [15,16].)
Specifically, we need full control over the lattice nearest-
neighbor hopping for a system with 2 internal degrees
of freedom (“spin”). The required technology is not yet
realized for the optical lattice [17], but it is available in
the alternative platform of linear optical networks [18].
Therefore, we focus on this hardware and discuss the
implementation of a FM1þ1syn

and a FM1þ2syn
TI surface

state. We demonstrate by numerical control simulations that
unique signatures of surface-state delocalization in the
synthetic disordered system are observable for experimen-
tally accessible timescales and length scales.
A further hallmark of our approach is that it realizes

surfaces in effectively “disordered” phases lacking trans-
lational invariance. The reason for this is that the generation
of synthetic dimensions requires noncommuting operators
both in synthetic and physical space. The simultaneous
presence of these operators in the dynamics leads to
nonintegrability and chaotic fluctuations, physically equiv-
alent to tunable disorder at mesoscopic length scales. Thus,
our approach simulates the surfaces of disordered topo-
logical quantum matter, which one may take as an added
element of realism.
The plan of the paper is as follows. In Sec. II, we present

dynamical protocols of 1D quantum walks that utilize
synthetic dimensions to simulate higher-dimensional sys-
tems. In Sec. III, we introduce a quantum simulator of
topological insulator surface states in isolation using the
example of the 4D quantum Hall insulator. We introduce
a 1D quantum-walk protocol, discuss its topological

property, and report on numerical simulations of the
protocol, all supporting the idea that the surface states of
the 4D quantum Hall insulator can be simulated by the 1D
quantum walk. We then discuss a concrete blueprint,
realizing the quantum walk within the existing optical
linear network setup. Section IV provides further details
and discusses generalizations. Specifically, we introduce a
simulator of surface states of a 3D quantum spin Hall
insulator. We conclude in Sec. VI. Aiming to keep the
presentation as nontechnical as possible, the details of
various derivations are relegated to the appendixes.

II. DYNAMICAL PROTOCOLS

Consider the quantum walk of a spin-1=2 particle on a
1D lattice, generated by successive applications of trans-
lations and spin rotations. The single time-step evolution
operator is of the general form

Ût ¼
X
m

R̂mðtÞ ⊗ T̂m; ð1Þ

where T̂m shifts the walker by m lattice sites, and R̂mðtÞ ¼
r⃗mðtÞ · σ⃗ rotates its spin. Here and in the following,
σ⃗ ¼ ðσ0; iσÞ and r⃗m ¼ ðrm0; rmÞ are four-component vec-
tors such that σ0 ¼ 12, σ ¼ ðσx; σy; σzÞ, and r⃗m ∈ C4.
Central for our proposal is the time-dependent spin-rotation
axes rmðtÞ, which are dynamically changed in the course of
the walk. As we show below, using dynamical protocols
with periods that are incommensurate with the discrete time
step of the evolution operator Eq. (1) enables the simulation
of dynamics in higher-dimensional systems. In the follow-
ing, we focus on quantum walks with short-range hops to
the nearest neighbors, m ∈ f0;−1;þ1g. The unitary oper-
ator Eq. (1) then simplifies to

Ût ¼ r⃗0 · σ⃗ þ ðr⃗þ · σ⃗Þ ⊗ T̂þ þ ðr⃗− · σ⃗Þ ⊗ T̂−; ð2Þ

and unitarity sets the following constraint on r⃗0, r⃗�:
Expressing r⃗� ¼ r⃗r � ir⃗i, with r⃗r;i ∈ R4 real four-
component vectors, the latter are orthogonal, r⃗r · r⃗i ¼ 0,
r⃗0 · r⃗r;i ¼ 0, and equal in magnitude, jr⃗rj ¼ jr⃗ij ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jr⃗0j2

p
at each time step t (see Appendix A for

details).
Finally, we add spin-dependent spatial disorder to the

dynamics. To this end, we introduce the unitary matrix
ðÛdisÞnn0 ¼ ÛdisðnÞδnn0 , where ÛdisðnÞ are independent
random spin-rotation matrices, acting locally on each
site n. The single time-step evolution jψ ti ¼ U t;t−1jψ t−1i
generating the 1D quantum walk is then composed of the
combined operator,

U t;t−1 ¼ ÛtÛdis; ð3Þ

KIM, BAGRETS, MICKLITZ, and ALTLAND PHYS. REV. X 13, 011003 (2023)

011003-2



and we next discuss its potential to simulate higher-
dimensional dynamics.

A. Synthetic dimensions from multifrequency
dynamical protocols

Let us specify the protocol in Eq. (1) to rotations R̂m,
which depend on dsyn time-dependent functions,

R̂mðtÞ≡ R̂mðφ2;t;…φdsynþ1;tÞ; ð4Þ

and where the time dependence for each of the functions
is of the form φi;t ¼ ki þ ωit with frequencies
ω2;…;ωdsynþ1 incommensurate to 2π and among them-
selves. Furthermore, ksyn ≡ ðk2;…; kdsynþ1Þ are arbitrary
initial phases that we consider to be averaged over in our
dynamical protocols below. The mapping to an effectively
1þ dsyn-dimensional Floquet system is achieved by
extending the Hilbert space of the system and interpreting
these phases as momenta conjugate to integer-valued
coordinates nsyn ¼ ðn2;…; ndsynþ1Þ, with canonical com-

mutation relations ½n̂i; k̂j� ¼ −iδij between the correspond-
ing operators. We note that n̂i ¼ −i∂ki in the phase-
momentum representation of the theory. These coordinates
extend the lattice in 1þ dsyn dimensions with sites
n ¼ ðn1; nsynÞ, where n1 ¼ n is the physical lattice
coordinate, conjugate to a phase k1. In the same notation,
k ¼ ðk1; ksynÞ.
Using the general relation eian̂fðk̂Þe−ian̂ ¼ fðk̂þ aÞ, the

time dependence in the arguments of the rotation operator
can be removed by the gauge transformation

R̂mðtÞ ¼ eiωjtn̂jRmð0Þe−iωjtn̂j ; ð5Þ

where a summation over j ¼ 2;…; 1þ dsyn is implicit.
This enables us to express the time-evolution operator
U t;0 ≡Q

t−1
τ¼0 Uτþ1;τ as

jψ ti ¼ U t;t−1U t−1;t−2 � � �U1;0jψ0i
¼ eiωjtn̂j ½U0;−1e−iωjn̂j �tjψ0i: ð6Þ

We notice that the time evolution is governed by powers
of the single Floquet operator UF ≡ U0;−1e−iωjn̂j ¼
Ût¼0Ûdise−iωjn̂j ≡UkWn. Here, Ŵn ≡ Ûdisðn1Þe−iωjn̂j is
diagonal in the coordinate representation while Ûk ¼
Û0ðkÞ is momentum diagonal. To understand this last
statement, we note that in Eq. (1) the coordinate translation
operator T̂mfðn1Þ ¼ fðn1 −mÞ affords the representation
T̂m ¼ eimk̂1 while R̂mð0Þ depends on the phases ksyn.
To summarize, our dynamics is governed by the effective

multidimensional Floquet operator UF ¼ ÛkŴn factoring
into two pieces, which are individually diagonal in
coordinates and momenta, respectively. Our numerical

simulations below demonstrate that the combined action
of these operators induces integrability breaking, physically
equivalent to static disorder, in all 1þ dsyn dimensions.
However, before introducing quantum simulators for the
combined effects of disorder and topology in this setting,
we briefly introduce observables probing topological sur-
face states in an experimentally accessible way.

B. Observable

The spreading after t time steps of a wave packet,
describing a quantum walker initially prepared at site
n1 ¼ 0 with spin σ, can be expressed as

hΔX2i≡X
n1

X
σ0;σ

n21jhn1; σ0jU t;0j0; σij2: ð7Þ

Here, the sum is over spin orientations σ ¼ ↑;↓, and ð…Þ
refers to the average over both an ensemble of realizations
of the random rotations Ûdis and the initial momenta ksyn. In
a mixed coordinate-momentum representation, basis states
of the extended Hilbert space are defined by the kets
jn1; σi → jn1; ksyn; σi. Specifically, the initial state of the
quantum walker is confined to n1 ¼ 0 and independent
of synthetic momenta. Upon Fourier transformation to a
full coordinate representation, jn1; ksyn; σi → jn1; nsyn; σi≡
jn; σi, this translates to localization at j0; σi in both
physical and synthetic space. The spreading of the quantum
walker is thus given by (see further details in Appendix B)

hΔX2i≡X
n

X
σ0;σ

n21jhn; σ0jU t
Fj0; σij2: ð8Þ

The correlation function Eq. (8) describes the width in the
physical n1 direction of the wave packet initially prepared
at n1 ¼ 0, and its finite time scaling encodes information on
the quantum-walk dynamics.

C. Topological invariants

All of our topological FMs discussed below are char-
acterized by integer-valued invariants. These numbers
afford two different interpretations:

1. Topological invariants and FM classification

The first relates to a classification of FM phases in
terms of the periodic table of Hamiltonian insulators [3].
Its idea is to map the translation-invariant part of the
Floquet operator Uk onto a block off-diagonal “auxiliary”
Hamiltonian

Hk ¼
�

Uk

U†
k

�
: ð9Þ

This Hamiltonian inherits the symmetries of Uk but,
in addition, possesses a “chiral” symmetry due to its
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off-diagonality; it belongs to a symmetry class that is
different from the class of the Floquet theory. For example,
if the latter is in class A (just unitary), H will be in
class AIII (chiral, no further symmetries). Bott periodicity
then implies that a class-A Floquet theory realizes a FM
state in odd effective dimension D ¼ dþ dsyn if the
associated D-dimensional Hamiltonian in class AIII is also
topologically nontrivial. Furthermore, the presence of
topologically nontrivial phases of the Hamiltonian theory
is signaled by invariants mathematically identical to those
constructible for the Floquet theory. For example, in the
above case, these invariants are “winding numbers” defined
by a unitary map from odd-dimensional Brillouin zones
k ↦ Uk into the unitary group. These winding numbers
classify class-AIII insulating phases in odd dimensions and
class-A Floquet metallic phases in even dimensions.

2. Topological invariants and localization theory

To understand this statement in more concrete terms, we
note that our Floquet theories are categorically disordered or
chaotic. Their physical description requires real-space meth-
ods, as defined by the nonlinear σ models of disordered
conductors. In these theories, protection against the effects of
Anderson localization, i.e., topological metallicity, is intro-
duced via topological terms [see Eq. (25) for a concrete
example]. These terms take a physical effect provided their
coupling constants are not vanishing. Below, we demonstrate
in two concrete case studies that the momentum-space
invariants responsible for the “abstract” classification of
topological FMs indeed appear as coupling constants in
topological field theories. In this way, they serve a double
function in the classification and the localization theory
of FMs. In the latter context, they protect topological FMs
from developing a “mobility gap” and force them to remain
metallic, including FMs in low dimensions, which would
otherwise show strong localization.

III. THREE-DIMENSIONAL TOPOLOGICAL
FLOQUET METAL FM1 + 2syn

The concept of synthetic dimensions is general and
can be realized for a wide class of driven or kicked Floquet
systems [16,19–22]. In the following, we introduce a
specific realization in 1þ 2syn dimensions, physically
equivalent to the surface of a four-dimensional topological
insulator in symmetry class A (aka a “four-dimensional
quantum Hall insulator”).

A. Model

We consider a one-dimensional quantum walker, whose
forward and backward hopping amplitudes are time-
dependent matrices coupling to the internal degrees of
freedom (see Fig. 1). In the notation of the previous section,
its time evolution from one discrete time step t to the next is
defined through

Ût ¼
1

2
ðσ0 þ rt · σÞ ⊗ T̂þ þ 1

2
ðσ0 − rt · σÞ ⊗ T̂−; ð10Þ

where the specific choice

rt ¼ ðcosφ2;t sinφ3;t; sinφ2;tj sinφ3;tj; cosφ3;tÞ; ð11Þ

will be explained momentarily, and the time dependence of
the phase arguments is defined below Eq. (4). Turning to
the gauge-equivalent representation in terms of a Floquet
operator acting in a space with one physical and two
synthetic dimensions, we describe the dynamics through
the Floquet operator ÛF ¼ ÛkŴn with Uk ¼ Ut¼0 and
T̂� ¼ e�ik1 . For later reference, we note that the unitaryUk
affords different representations, each useful in its own
right. First, it is straightforward to verify that

Ûk ¼ exp ½ik1ðrðkÞ · σÞ�;
rðkÞ ¼ ðcos k2 sin k3; sin k2j sin k3j; cos k3Þ: ð12Þ

Alternatively, we may represent the spin matrices as
rotations acting upon a translation operator with z-axis

FIG. 1. A 1D quantum walk with time-dependent spin quan-
tization axis r̂t simulating dynamics of a 2D systems when the
period of rt is incommensurate with the discrete time steps of the
evolution operator. This engineering of synthetic dimensions
allows us to sidestep the fermion-doubling principle and to
simulate, e.g., the 2D surface states in isolation of a 3D quantum
spin Hall insulator.
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polarization: Ûk ¼ R3ð−k02ÞR2ð−k3ÞT̂CR2ðk3ÞR3ðk02Þ, with
T̂C ¼ eik1σ3 , the momentum k02 ¼ k2sgnk3, and spin-
rotation operators RjðφlÞ ¼ exp ðiφlσj=2Þ.
A crucial feature of this realization is its nonanalytic

dependence on the momentum variables through j sin k3j.
In the Fourier conjugate representation, it translates to long-
ranged hopping ðUFÞn3n03 ∼ jn3 − n03j−2 [23]. At this point,
the synthetic dimensions begin to play an essential role:
Power-law hopping in physical dimensions is difficult to
engineer. More importantly, the j sin k3j nonanalyticity is
the essential resource allowing us to sidestep the fermion-
doubling theorem and to realize a synthetic topologi-
cal metal.

1. Winding number

To elucidate this last point, we interpret Eq. (12) as a
mapping from the 3D Brillouin zone torus to the two-
dimensional special unitary group T 3 → SUð2Þ (with unit
determinant, det½Uk� ¼ 1) and assign the topological
invariant

W ¼ 1

24π2

Z
d3kϵμνρtr½ðU†

k∂μUkÞðU†
k∂νUkÞðU†

k∂ρUkÞ�

¼ 1

2π2

Z
d3k sin2 k1j sin k3j ¼ 4; ð13Þ

where μ; ν; ρ ∈ f1; 2; 3g. As anticipated above, it is the
nonanalyticity j sin k3j that leads to a nonvanishing winding
number. Conversely, a model with analytic k dependence
would necessarily lead to a vanishing winding number, in
accordance with the fermion-doubling theorem.
Driving protocols with nonanalytic functions, simulating

power-law hoppings in synthetic space, allow us to
construct Floquet operators with even winding numbers
W ∈ 2Z: The starting points of our construction are
realizations of unitary operators, which display finite
winding numbers over certain subsets of a Brillouin zone,
say, W ¼ n in region I and W ¼ −n in region II. (The
numbers must add to zero by virtue of the fermion-doubling
theorem.) Then, the trick to generate a finite winding
number is to modify the momentum dependence in
region II via a sign change in the momentum dependence,
which inverts the winding number to WjII ¼ þn and
W ¼ 2n in total. We also construct an alternative model
with the minimal winding possible in this scheme, W ¼ 2.
However, since it is rather involved, we opted for a
discussion of the simplerW ¼ 4 variant, Eqs. (10) and (11).
We also emphasize that winding numbers for topological
Floquet systems cannot be simply understood from their
low-energy effective Hamiltonians [24]. Note that W ¼ 4
of Eq. (12) is not, e.g., related to four Weyl cones in a low-
energy description, but rather, it stores information on the
entire Brillouin zone [see also discussion on dispersion of
Eq. (12) in the next subsection].

The invariant in Eq. (13) indicates topological metallicity
of our Floquet system. Within the alternative interpre-
tation discussed above, the nonvanishing winding number
W signals topological nontriviality of the “auxiliary”
class-A III Hamiltonian. Bott periodicity implies nontrivial
phases of 4D class-A systems (the four-dimensional quan-
tum Hall effect), and the original Floquet system describes
the physics of its three-dimensional metallic surface state.
In more concrete terms, we will see in Sec. V that the
winding number W appears as a building block in our
construction of a gapless effective field theory equivalent to
that of a three-dimensional topological metal.

B. Numerical simulations

To independently verify the topological metallic nature of
the 3D dynamics simulated by the protocol in Eq. (10), we
run the numerical simulations. More specifically, we sim-
ulate the quantum walk with trivial and nontrivial winding
numbers for varying effective disorder strengths by intro-
ducing additional bandwidths in the model, as we discuss
next. This allows us to test our main prediction, that is, the
absence of Anderson localization for all disorder strength for
finite windingsW, contrasting Anderson localization at large
disorder for vanishing winding number W ¼ 0.

1. Simulation details

We numerically study the time evolution of initially
localized wave packets, under the influence of the 1D
quantum-walk operator in Eq. (10). To allow for a
comparison of topologically trivial and nontrivial quantum
walks with the same energy-momentum dispersion relation
of the clean system, we implement the walk with j sinφ3;tj,
as indicated in Eq. (12), and a second protocol with
j sinφ3;tj replaced by sinφ3;t. A metal-to-insulator transi-
tion with increasing disorder strength is expected for the
second protocol. The static spatial disorder Ûdis is imple-
mented by randomly drawing spin-rotation matrices from
the uniform Haar measure. In other words, the disorder
strength is fixed, and we need to introduce some tunable
parameter, allowing us to drive a (possible) metal-to-
insulator transition. We then notice that Eq. (12) and its
topologically trivial cousin have no energy dispersion in
the k2;3 direction, which makes the latter always prone to
localization. At the same time, we can perturb the original
models to generate a dispersion with tunable bandwidth w
in the k2;3 direction. This then allows us to study a
delocalization transition as a function of w. To realize this
idea, we multiply the original single time-step evolution
operators by the unitary operator

Ûw ¼ exp ½iwðsin k2;tσ1 þ sin k3;tσ2Þ�: ð14Þ

We then study the time scaling of the average spread hΔX2i
of the initial wave packet in the physical dimension.
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2. Results

Figure 2 shows the time evolution of hΔX2i for the
two protocols and different values of the bandwidth w, as
indicated in the legend. The vertical axis is rescaled by
the time dependence hΔX2i ∼ t2=3 expected at the metal-
to-insulator transition [5]. For the trivial protocol W ¼ 0
(left panel), one clearly sees the metallic (w > 0.1) and
insulating (w < 0.1) regimes separated by critical scaling
at w ≃ 0.1. In contrast, the topological nontrivial protocol
with W ¼ 4 (right panel) shows metallic behavior for all
values of w, with hΔX2i ∼ t up to the largest time steps
5 × 105. The two incommensurate frequencies here are
chosen as ω2 ¼ 2.4

ffiffiffi
5

p
, ω3 ¼ 2.4

ffiffiffiffiffi
15

p
, and disorder

averaging is over 50 realizations for each data point.
We also notice that the long-time numerical results
are independent of the specific value for the incommen-
surate frequencies.
In the case of the trivial protocol W ¼ 0, deviations

from classical scaling hΔX2i ∼ t signal Anderson locali-
zation, and eventually the dynamics will entirely freeze,
hΔX2i ∼ t0, on longer timescales and length scales. The
important observation for us is that a clear distinction
between quantum simulators of trivial and topological
metallic phases is noticeable already for a small number
ofOð20Þ time steps [see Figs. 3(c) and 3(d)]. This is crucial
for an experimental implementation of the quantum walks,
as we discuss next.

C. Experimental realization: A FM1 + 2syn simulator

So far, we have shown how the freedom of choosing
operators of arbitrary k dependence in the synthetic
momentum space allows for the engineering of

topological Floquet operators that cannot exist in autono-
mous lattice environments. Specifically, we have (i) pro-
posed a concrete dynamical protocol based on a 1D
quantum walk, (ii) shown that this simulates a topological
metal, e.g., realized on the isolated surface of a 4D
quantum Hall insulator, and (iii) demonstrated that its
most characteristic feature—absence of Anderson locali-
zation at strong disorder—can be observed already after
Oð20Þ time steps. The final piece of our proposal is to
indicate an experimental platform that offers the required
flexibility to implement dynamical protocols for spin-1=2
walkers. Here, we argue that linear optical networks are
ideally suited to realize the proposed quantum simulators.
After a brief review of their principal elements, we suggest
a blueprint for the quantum Hall simulator.

1. Principle elements

In the typical optical realization of a quantum walk,
photons propagate through a network of linear elements—
viz. beam splitters, phase shifters, and polarization
plates—realizing the “step” and “coin” operations. The
step operation typically implements chiral hopping (here as
a matrix in spin space)

T̂C ≡
�
T̂þ

T̂−

�
; ð15Þ

translating the walker to the right (Tþ) or left (T−)
according to its spin being in the up (first component)
or down state (second component), respectively. The
dynamical coin operations realize spin rotations R̂ðtÞ.
Using a Euler angle decomposition, they can be generated

FIG. 2. Spread of the quantum walker as a function of time steps for the two protocols and different values of bandwidth w introduced
in Eq. (14). To facilitate observation of the metal-to-insulator transition, the width of the wave packet is rescaled by the critical scaling at
the transition, hΔX2i ∼ t2=3. Left panel: topologically trivial protocol, W ¼ 0, which shows a metal-to-insulator transition for w ≃ 0.1.
Right panel: topological nontrivial variant,W ¼ 4, which shows no signatures of localization, i.e., hΔX2i ∼ t for all values of w and up
to t ∼ 5 × 105 time steps.
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from repeated application of elementary rotations around
any two of the three internal axes,

R̂jðφl;tÞ ¼ exp ðiφl;tσj=2Þ; j ¼ y; z; l ¼ 2; 3; ð16Þ

with Pauli matrices operating in spin space. The great
flexibility offered by optical linear networks is that Euler
angles φl;t ¼ kl þ ωlt can be changed dynamically during
the realization of the quantum walk.
The successive application of chiral step and coin

operations composing the quantum-walk protocol is imple-
mented in a “feedback loop” [see Fig. 3(b)]. Typically,
a coherent laser pulse attenuated to an average single
photon per pulse injects photons into the linear network.
Horizontal and vertical polarizations of the photon con-
stitute the internal “spin” states. The step operation T̂C is
realized in time, employing a polarizing beam splitter
in combination with fiber delay lines. In other words,

horizontally and vertically polarized photons are separated
by the beam splitter and sent through fiber lines of different
lengths. The length mismatch of the fibers introduces a
well-defined delay between the two polarization compo-
nents. When coherently recombined, the temporal separa-
tion of the two components is equivalent to the spatial
separation by two lattice sites induced by the chiral trans-
lation to left and right neighbors of the 1D lattice.
Dynamical coin operations R̂jðφl;tÞ are realized via tunable
polarization rotations. In practice, the dynamical control
over only one rotation axis—e.g., the z axis—is required,
and rotations around the remaining axes are realized by the
combination with suitable polarization controllers, i.e.,
half- and quarter-wave plates [25].
The dynamical control is achieved via control voltages

applied to fast-switching electro-optic modulators (EOMs)
that change rotation angles on timescales shorter than a step
operation. Recent progress allows us to operate the latter

(a) (c)

(b) (d)

FIG. 3. (a,b) Blueprint of an optical linear network simulating the topological surface states of a 4D quantum Hall insulator in the
quantum-walk setting. The feedback loop is built of the step operator T̂C (upper and middle arms) followed by the coin operator
R̂ðtÞ ¼ Rtþ1ÛdisR

†
t (lower arm)—for details, see main text. To the left and right of the loop, source and detection units are connected.

The source consists of a laser and a polarizing beam splitter (PBS), allowing for the preparation of the initial state. The passage to the
detection unit can be activated by the dynamically tunable EOMs following the fiber lines of the step operation. In the detection unit,
photons are registered by an avalanche photodiode (APD). (c,d) Numerical simulations of wave-packet spreading for trivial and
topological quantum walks, here for varying incommensurate frequencies. The latter are chosen as ω2 ¼ C

ffiffiffi
5

p
and ω3 ¼ C

ffiffiffiffiffi
15

p
for

several values 2.0 ≤ C ≤ 2.6 (see legends). Differences between the two systems become visible already after t ≳ 10 time steps: The
topological metal (d) shows robust diffusion for all values of C, while a crossover from diffusive to subdiffusive dynamics is observed as
C > 2.4 for the trivial metal (c).
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without high additional losses, and walks up to t ¼ 30–40
time steps have been reported within this setup (see, e.g.,
Refs. [8,18]). From the numerical simulations of the
previous section, we expect this to be sufficient to dis-
tinguish the dynamics of a topological metal from a trivial
Floquet metal. After the light pulses have been fed back
into the loop of step and coin operations, realizing a single
time-step operation, for the desired number of time steps,
they are released to the detection unit [see Fig. 3(b)].
Repeating the procedure for varying numbers of time steps
and different realizations of coin operations, one obtains the
walker’s probability distribution, which allows for the full
characterization of its dynamics.

2. Blueprint for the FM1 + 2syn

A detailed blueprint for an optical linear network
simulating the topological FM1þ2syn

is shown in Fig. 3.
A crucial observation here is that the chiral translational
Ut in Eq. (10) with tunable spin-quantization axis rt
can be implemented via a step operation TC dressed by
coin operations, Ût ¼ R̂†

t T̂CR̂t, with the coin matrix R̂t
being a product of two elementary rotations,
R̂t ¼ R̂yðφ3;tÞR̂zðφ2;tÞ, where

φ3;t ¼ k3 þ ω3t; ð17Þ

φ2;t ¼
�
k2 þ ω2t sinðφ3;tÞ ≥ 0;

−k2 − ω2t sinðφ3;tÞ < 0
ð18Þ

[note the conditional value of φ2;t depending on the sign
of sinðφ3;tÞ, which follows from the definition (11) of the
vector rt]. The role of R̂t is to rotate the z axis into the
instantaneous spin quantization axis rt.
In the linear network setup, it is convenient to start the

feedback loop with a step operation. Thus, reorganizing
spin rotations and the local disorder potential in the
originally defined one-step evolution operator U t;t−1 ¼
ÛtÛdis (with Ûdis specified below), we construct the
equivalent one as the following succession of step and
coin operations:

U tþ1;t ¼ R̂ðtÞT̂C; R̂ðtÞ ¼ R̂tþ1ÛdisR̂
†
t : ð19Þ

This sequence is then iterated for the desired number of
time steps.
Figure 3(a) schematically shows the elements of quan-

tum-walk operations to be applied to an initial localized
wave packet before the detection after tf time steps. The
actual implementation of the linear optical network can be
prepared as in Fig. 3(b), realizing chiral quantum-walk and
coin operators. The EOMV;H are equipped for the initiation
and the readout of the quantum-walk simulation. For the
static disorder in real space, we suggest following the
protocol used in the numerical simulations with fixed

bandwidth. In other words, we choose Ûdis ¼ Rzðϕn1Þ
with static local angles ϕn1 , randomly drawn from the unit
circle −π ≤ ϕn1 < π, and frequencies ω2, ω3 indicated in
the previous section.
Figures 3(c) and 3(d) show numerical results for the

quantum simulators of the trivial (W ¼ 0) and topological
(W ¼ 4) metals over a range of experimentally accessible
time steps. Here, the bandwidth is set to w ¼ 0, and
incommensurate frequencies are varied as ω2 ¼ C

ffiffiffi
5

p
and ω3 ¼ C

ffiffiffiffiffi
15

p
, with values of C indicated in the legend.

There are already notable differences between the two
systems after t≳ 10 time steps: Dynamics for the topo-
logical metal is diffusive for all values ofC, while the trivial
system shows a C-dependent behavior reminiscent of a
metal-insulator transition as C is increased. Notice, how-
ever, that the metallic behavior for small values C ¼ 2 and
2.1 only holds for a short time, and localization sets in at
longer times (i.e., for the trivial protocol, there is no true
metallic phase at w ¼ 0, as discussed above).
This finalizes our discussion of a quantum simulator

for the surface states of a 4D quantum Hall insulator.
Next, we discuss generalizations to other dimensions and
symmetry classes.

IV. TWO-DIMENSIONAL FLOQUET
TOPOLOGICAL METAL FM1 + 1syn

To illustrate the generality of our approach, we discuss
the example of a quantum simulator for surface states in a
symmetry class different from the quantum Hall insulators.
Specifically, we propose a simulator for the 2D surface
states of a class-AII quantum spin Hall insulator in d ¼ 3.
To this end, we start from a 1D quantum walk, Eq. (2),

with a dynamical protocol,

r⃗0 ¼
1

2
ð1 − cosφ2;t; 0; 0; sinφ2;tÞ;

r⃗r ¼
1

4
ð−1 − cosφ2;t; 0; 0; sinφ2;tÞ;

r⃗i ¼
1

4
ð0; j sinφ2;tj;−1 − cosφ2;t; 0Þ; ð20Þ

where φ2;t ¼ k2 þ ω2t and the frequency ω2 is incommen-
surate to 2π. The three vectors in Eq. (20) are orthogonal to
each other, and unitarity of the single time-step evolution
operator follows from jr⃗0j ¼ j sinφ2;t=2j and jr⃗r;ij ¼
1
2
j cosφ2;t=2j (see also Appendix A). Upon Fourier trans-

formation in the physical coordinate and gauge trans-
formation to eliminate time dependence of the driving
protocol, we arrive at the Floquet operator

Ûk ¼ ðr̂0 · σ⃗Þ þ ðr⃗þ · σ⃗Þeik1 þ ðr⃗− · σ⃗Þe−ik1 ; ð21Þ

where k2 ¼ φ2;t¼0 and r⃗� ¼ ðr⃗r � ir⃗iÞ. We notice that
the specific choice of the driving protocol leads to the
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nonanalytical n2 component proportional to j sin k2j. It is
again this unusual dependence, impossible to realize on a
lattice with finite range hopping, that allows us to sidestep
the fermion-doubling theorem. It is readily verified that
Eq. (21) satisfies the time-reversal relation σ2Û

T
kσ2 ¼ Û−k

of class-AII systems. These systems host topological
insulating Z2 phases in 3D and thus topological metallic
Floquet phases in 2D.

A. Topological invariant

To demonstrate the topological nature of the protocol
in Eq. (20), we focus on the translational-invariant part Uk
and consider the latter as a map from the 2D Brillouin
zone torus to the special unitary group T 2 → SUð2Þ
(det½Ûk� ¼ 1). Time-reversal symmetry imposes that
nðkÞke0 at the four time-reversal-invariant momenta:
Λ1 ¼ ð0; 0Þ, Λ2 ¼ ð0; πÞ, Λ3 ¼ ðπ; 0Þ, and Λ4 ¼ ðπ; πÞ.
At these points, the so-called sewing matrix wk ¼ −iσ2ÛT

k

is antisymmetric, and the map Ûk is thus characterized by
the Z2 topological index,

WZ2
¼

Y4
i¼1

Pf½−iσ2ÛT
Λi
� ¼ −1; ð22Þ

where, in the last identity, we used that ÛΛ1
¼ σ0 for Eq. (21)

while ÛΛi
¼ −σ0 for i ¼ 2, 3, 4. Notice that the nontriviality

of the index follows from the specific choice of the n2
component.
Building on the alternative interpretation of the topo-

logical invariant discussed earlier, WZ2
signals topological

nontriviality of its auxiliary class-DIII Hamiltonian [3].
Indeed, time-reversal symmetry of the latter is inherited
from the Floquet operator, while the block off-diagonal
structure induces the additional chiral structure. In this
interpretation, Eq. (22) then encodes topological properties
of the class-DIII system in 2D [26].

For a more intuitive interpretation of Eq. (22), we
prove in Appendix D that the Pfaffians can be expressed
as PfðwΛj

Þ ¼ − exp ðiϵΛj
Þ, where ϵΛj

are the quasienergies
of Uk at the time-reversal-invariant momenta Λj.
The Z2 topological invariant thus affords the alternative
representation

WZ2
¼ exp

�
i
X4
j¼1

ϵΛj

�
; ð23Þ

which has a simple intuitive visualization. To this end,
consider the 1D dispersion relationsE0

�ðk1Þ¼ ϵ�ðk1;k2¼0Þ
and Eπ

�ðk1Þ ¼ ϵ�ðk1; k2 ¼ πÞ of the quasienergy spectrum
ϵ�ðkÞ of the two-band model along the two high-symmetry
lines k2 ¼ 0; π, respectively. As shown in Fig. 4, bands
E0
�ðk1Þ touch at Λ1 and are split by energy 2π at Λ2. Bands

Eπ
�ðk1Þ, on the other hand, touch at both momenta Λ3

and Λ4. This different pattern of the dispersion along the
two high-symmetry lines results in the negative topological
index WZ2

¼ −1, as formalized by Eq. (23).

B. Numerical simulations

We simulate the time evolution of an initially localized
wave packet in (1þ 1syn) dimensions for three different
Floquet operators (all involving maximal disorder in the
real coordinate, viz. random Haar unitaries): The first
operator simulates the topological Floquet metal, described
in Eq. (20). Sharing the low-energy physics of 2D class-AII
topological metallic surface states, we expect anomalous
superdiffusion, hΔX2i ∼ t ln t [27], which is confirmed
in the left panel of Fig. 5. Numerical calculations are
performed for the incommensurate frequency ω2 ¼

ffiffiffi
5

p
C

(where the value C is indicated in the legend), and each
data point is obtained from averaging over 50 disorder
realizations. The second Floquet operator simulates a
critical state in class A. In other words, replacing the
nonanalytic function in Eq. (20) by an analytic function,

FIG. 4. Dispersion relations of the quasienergy spectrum of the two-band model along the high-symmetry lines k2 ¼ 0 (left panel)
and k2 ¼ π (middle panel), respectively (see also discussion in the main text). The former contributes to the topological invariant by
the factor Pf½wΛ1

�Pf½wΛ2
� ¼ −1, while the latter gives the factor Pf½wΛ3

�Pf½wΛ4
� ¼ 1. Here, wk is the antisymmetric sewing matrix.

Right panel: visualization of dispersions along the high-symmetry lines in the 2D Brillouin zone.
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j sinφ2;tj → sinφ2;t, we obtain a (1þ 1syn)-dimensional
class-A model fine-tuned to a quantum critical point
separating two topologically distinct Anderson insulating
phases [28]. The presence of a topological θ term fine-
tuned to the angle θ ¼ π in this case protects against
Anderson localization. The middle panel of Fig. 5 indeed
indicates subdiffusion on all accessible timescales in our
numerics. Notice that the energy dispersions for the first
and second Floquet operators are identical, and differences
in the dynamics therefore are rooted in the different
topological terms. For the third Floquet operator, we tune
the second Floquet operator away from the quantum critical
point. The low-energy physics in this case has a θ term,
however, with topological angle θ detuned from the critical
value (see also next section). At long distances or times, we
then expect conventional Anderson insulating behavior,
which is confirmed in the right panel of Fig. 5.

C. Incommensurability and synthetic dimensions

So far, we have discussed idealized quantum-walk
protocols with irrational driving frequencies and frequency
ratios. However, in view of our proposed experimental
implementations, a comment on rational approximations
is in order. A driving frequency ω ¼ 2πðp=qÞ generates a
synthetic dimension of finite extension around q. If the
dynamics on length scales less than or around q is diffusive,
a dimensional crossover takes place on timescales compa-
rable to the diffusion time associated with distance scales
around q. On larger scales, the system behaves as if it
existed in one dimension lower. The precision by which
frequencies have to be chosen thus depends on the
experimentally probed timescales: The above crossover
should remain invisible in that it occurs on scales larger
than the above crossover scales. (The precise value of these

scales depends on system-specific parameters, notably the
effective diffusion constant.)
To make these general considerations more quantitative,

we numerically study the protocol for the FM1þ1syn
of the

previous section, substituting ω2 ¼ 2.6
ffiffiffi
5

p
by ω2 ¼ 2πα

with rational approximations of increasing periodicity
α ¼ 0.9, 0.92, 0.925, 0.9253. The left panel of Fig. 6
shows the width of a wave packet normalized by the width
expected for diffusive dynamics, ΔX2=t, as a function
of t on a log-log scale. At the crossover scale to one-
dimensional dynamics, the (approximately) constant pro-
file for diffusive dynamics turns into a linear slope,

FIG. 5. Scaled width of a wave packet hΔX2=ti for different quantum walks in ð1þ 1synÞD and monitored over 5 × 105 time steps.
Left panel: topological quantum walk showing anomalous superdiffusion. Middle panel: critical quantum walk of a class-A model fine-
tuned to a topological phase transition. Right panel: topologically trivial quantum walk subject to Anderson localization. Colors
correspond to incommensurate frequencies ω2 ¼

ffiffiffi
5

p
C, with values C indicated in the legend.

FIG. 6. Wave-packet spread for quantum simulators of finite-
size class-AII topological metals FM1þ1syn

(left panel) and 2D
class-A critical metals (right panel). The size of the compact
dimension increases with the number of decimals kept in the
rational approximation α, and the dimensional crossover in the
dynamics is observed at increasingly later times (see also
discussion in main text).
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characteristic of localized wave packets. As anticipated, the
characteristic timescale increases with the periodicity of the
rational approximation, i.e., the number of decimals kept
in α. The right panel of Fig. 6 shows the corresponding
numerical results for the 2D critical class-A metal, also
discussed in the previous section.

V. LOW-ENERGY PHYSICS

A. Class A

To support our claim that the protocol in Eq. (10)
simulates the isolated surface of a topological 4D quantum
Hall insulator, we next apply field-theory methods for
disordered systems. Our aim in this section is to show that
the low-energy physics of both systems is described by the
same effective field theory. Readers interested in more
background material on field theories of disordered systems
are invited to look into the Supplemental Material [29].
To begin, let us recall that the dispersion of the low-

energy excitations simulated by the clean contribution
to the Floquet operator (10) is linear in k1 and flat in all
other directions. The emergence of Weyl fermions at low
energies then results from the interplay of a nontrivial
topology and nonintegrable chaotic fluctuations induced by
the protocol. Indeed, we see that the presence and stability
of the Weyl fermions are topologically protected by the
winding number, precisely in the same manner as the four
Weyl cones of surface states in a 4D class-A insulator at the
ν ¼ 4 integer quantum Hall plateau.
Applying methods for disordered systems [30–35],

we can evaluate correlation functions for the dynamical
quantum walk defined by Eq. (10) in the effective quantum-
field-theory (QFT) framework. Its matrix degree of free-
dom T acts in a replica space supplemented by additional
causal (“retarded” and “advanced”) structure. Within such
QFT, the physics at long timescales and length scales is
described by an effective action S½T� ¼ Sσ½T� þ Stop½T�,
consisting of two contributions:

Sσ ¼
1

8

X3
i;j¼1

σð0Þij Trð∂iQ∂jQÞ; ð24Þ

Stop ¼ iW × SCS½T�: ð25Þ

Here, the winding numberW is defined in Eq. (13), with U
the translational-invariant part of the Floquet operator.
The matrix field Q ¼ TQ0T−1 is expressed as rotations
aroundQ0 ≡ σ3 ⊗ 1R with the Pauli matrix σ3 operating in
the causal sector of the 2R-dimensional vector space, and
Tr ¼ R

d3xtr involves the trace over the latter and 3D space
of physical and synthetical dimensions. Readers interested
in further details are invited to look into the Supplemental
Material [29], where we explain the mathematical struc-
tures and outline a derivation of the above action. Here, we

restrict ourselves to a discussion of the physical implica-
tions of Eqs. (24) and (25).
The first observation is that Sσ is the standard model for

Anderson localization in disordered single-particle sys-
tems, here in 3D. For sufficiently strong disorder, viz.

sufficiently small “bare” values σð0Þij , the model flows to an
Anderson insulating fixed point at long length scales with
vanishing coupling constant. Here, we consider Haar
random disorder, for which

σð0Þij ¼ 1

2

Z
d3ktrð∂kiUk∂kjU

−1
k Þ ð26Þ

is purely determined by the translational-invariant part of
the Floquet operator. As we detailed above, we can then
drive a metal-to-insulator transition by tuning the band-
width of the system; see discussion around Eq. (14).
The Anderson delocalization scenario at strong disorder

is provided by the second topological term with Chern-
Simons action SCS,

SCS ¼
1

8π

X
s¼�

sTr

�
As ∧ dAs þ

2

3
As ∧ As ∧ As

�
: ð27Þ

Here, As ¼ T−1dTPs, where Ps ¼ 1
2
ð1þ sσ3Þ ⊗ 1R are

projectors onto the retarded (s ¼ þ) and advanced
(s ¼ −) sectors of the 2R-dimensional vector space.
The key observation then is that the combined action
defined by Eqs. (24) and (25) realizes a 3D topological
metal, which, unlike systems with W ¼ 0, has a conduct-
ance growing in system size even at strong disorder.
In the field-theory language, this means that the “bare”

coupling σð0Þij grows under renormalization, and correlation
functions show similar behavior. The same action,
S½T� ¼ Sσ½T� þ Stop½T�, has previously been identified as
describing (at length scales exceeding the mean free path)
W disordered Weyl cones realized on the surface of a 4D
class-A quantum Hall insulator surface [36,37]. We have
thus established the equivalence between the protocol in
Eq. (10) for driven synthetic matter and quantum Hall
insulator surface states, demonstrating that both belong to
the same universality class.

B. Class AII

The nontrivial Z2 index in Eq. (22) indicates that the
low-energy physics of the dynamical protocol in Eq. (20) is
dominated by a single Weyl fermion, similar to the isolated
surface of a 3D quantum spin Hall insulator. The single
Weyl cone is not immediate from the low-energy dispersion
of the clean Floquet operator in Eq. (20) but rather emerges
as a consequence of the nontrivial topology in combination
with the chaotic fluctuations induced by the protocol.
Applying field-theory methods of disordered systems,

we can again derive a low-energy effective theory
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S½T� ¼ Sσ½T� þ Stop½T� that allows for the calculation of
correlation functions at long timescales and length scales.
Here, Sσ is the σ model action, already introduced in
Eq. (24), now for the 2D system in the symplectic class AII.
The latter alone predicts a metal-to-insulator transition
for strong disorder, a scenario changed by the second
topological contribution

Stop ¼ i
θ

π
× Γ½g�jgð0;xÞ¼QðxÞ: ð28Þ

Here, θ ¼ πWZ2
½U� is the topological angle from

Eq. (22), and

Γ½Q� ¼ 1

24π

Z
M

trðΦg ∧ Φg ∧ ΦgÞ ð29Þ

is “half” of a Wess-Zumino-Witten (WZW) action, involv-
ing the usual deformation of the field degree of freedom T.
Specifically, Φg ≡ g−1dg with gðx0 ¼ 0;xÞ ¼ QðxÞ, and
integration is over half the 3-torus M ¼ ½0; 1� × ½−1; 1�2.
This topological action was previously identified [38,39]
for the description of the 3D disordered quantum Hall
insulator. We refer the interested reader to the accompany-
ing Supplemental Material [29] for further explanations;
here, we only focus on a discussion of the physical
implications, which are similar to those of the Chern-
Simons action encountered in the unitary class. For θ ¼ π,
the system flows to a conformally invariant quantum
critical point, where the coupling constant of Sσ assumes
a disorder independent value [Eq. (26)], implying the
absence of Anderson localization also for strong disorder.
The same principle of delocalization is at work on 2D
surfaces of 3D topological spin quantum Hall insulators.
The latter are indeed described by the same effective
action [38,40], and we have thus shown that the protocol
in Eq. (20) belongs to the same universality class as the
isolated surface of a quantum spin Hall insulator.

C. More on topological terms

The possibility for disordered systems to escape the fate
of Anderson localization is signaled by topological terms in
their low-energy field-theory description. Whether the
latter are allowed depends on the dimension of the system
and the target space of the field degree of freedom. The
effective action of the aforementioned 3D class-A system
contains a Chern-Simons action, with a coupling constant
that is the winding number of the Floquet operator. The
winding number and Chern-Simons action signal the
presence of topologically inequivalent classes of mappings

Uk∶ T3 ↦ SUð2Þ; ð30Þ

Qðx0;xÞ∶T ð3þ1Þ ↦ Uð2RÞ=½UðRÞ × UðRÞ�: ð31Þ

Here, the boundary configuration Qðx0 ¼ 0;xÞ is para-
metrized by the 3D field TðxÞ, used in the Chern-Simons
action in Eq. (27). Introducing the deformation parameter
0 ≤ x0 ≤ 1, continuously transforming the boundary value
Qðx0 ¼ 0;xÞ to the constant matrix Qðx0 ¼ 1;xÞ ¼
σ3 ⊗ 1R, the Chern-Simons action can be expressed as a
WZW term. The latter is precisely what is necessary for a
3D class-A system to avoid Anderson localization (see
Supplemental Material [29]). The winding number of Uk
given in Eq. (13), on the other hand, defines the coupling
constant of theWZW term. In other words, the combination
of nontrivial homotopy groups π3(SUð2Þ) ¼ Z and
π4(Uð2RÞ=½UðRÞ × UðRÞ�) ¼ Z allows for nonvanishing
coupling constants weighting topologically nontrivial field
configurations TðxÞ.
For the 2D quantum spin Hall surface states, it is the

emergence of a WZWaction, weighted by a Z2 topological
angle in the effective low-energy description, that allows
for topological metallic phases. The involved maps in
momentum and real space read

Uk∶ T2 ↦ Uð2Þ=Spð2Þ; ð32Þ

QðxÞ∶T 2 ↦ Oð4RÞ=½Oð2RÞ × Oð2RÞ�; ð33Þ

with nontrivial homotopy groups, π2ðUð2Þ=Spð2ÞÞ ¼ Z2

and π2ðOð4RÞ=½Oð2RÞ × Oð2RÞ�Þ ¼ Z2, respectively.
Both maps are thus characterized by nontrivial Z2 indices,
and we already introduced a topologicalZ2 invariant for the
Floquet operator (32) in Eq. (22). Alternatively, one can
express the Z2 index as “half” of a Wess-Zumino-Witten
term, which is readily extended to Eq. (33); see also
Supplemental Material [29] for more details.
We conclude by remarking that the above discussion

only relies on general structures, such as the soft-mode
manifold identified in the course of the construction of the
effective field theory, and it applies as a matter of principle.
Whether there exist physical systems characterized by
nontrivial couplings is an independent issue. The models
we propose in the earlier sections are one option for how to
realize nontrivial mappings utilizing the idea of engineered
synthetic dimensions. In other words, in the present work,
we provide the field theories, physical models, and numeri-
cal confirmation of topological Floquet metals for both
complex and real symmetry classes, which are character-
ized by Z and Z2 topological indices, respectively. The
presented structures encompass topological Floquet metal
in other dimensions and symmetry classes.

VI. DISCUSSION

In this paper, we have introduced quantum simulators
for topological surface states in isolation. Our proposal
sidesteps the bulk-boundary principle and overcomes the
fermion-doubling theorem, impeding the realization of
isolated surface states in generic solid-state (lattice)
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systems. The key element of our proposal is the dynamical
generation of physical dimensions via external driving,
using incommensurate frequencies. The simulation of
extra dimensions via driving physical platforms has already
been used in cold atom systems to measure the Anderson
localization-delocalization transition in three dimensions to
a degree of resolution not reachable in solid-state materials.
Here, we have applied the idea to one-dimensional quan-
tum walks of a spin-1=2 particle with time-dependent
spin-rotation matrices, viz. “coin operations,” following
multifrequency dynamical protocols. The latter provide a
flexibility absent in lattice systems, which allows for the
simulation of (gauge) equivalent real-space dynamics
involving long-range hopping.
We have illustrated the general idea with two specific

examples: the three-dimensional topological surface states
of a four-dimensional quantum Hall insulator and the two-
dimensional surface states of a three-dimensional spin
quantum Hall insulator. An inherent feature of both pro-
tocols is that the artificial generation of “synthetic” dimen-
sions induces diffusive dynamics in all (gauge) equivalent
space directions after a few iterations of the protocol, as
verified in numerical simulations. Thus, our approach
simulates the surfaces of “disordered” phases lacking
translational invariance, which adds an element of realism.
For both examples, we identified topological invariants
showing the nontrivial topological nature of the dynamical
protocols. Comparing simulations of the latter to those of
topologically trivial parents with variable disorder strengths
(respectively, bandwidth) clearly shows the impact of a
nontrivial topology. While strong disorder turns the simu-
lators of trivial metals into Anderson insulators, no signature
of localization is found for the topological nontrivial pro-
tocols for all disorder strengths, respectively, bandwidths.
Importantly, the numerical simulations show differences in
the dynamics simulated by the different protocols after an
experimentally accessible number of around Oð20Þ time
steps. This also sets the precision to which frequencies have
to be chosen in experiment. Approximating irrational
numbers by rational ones generates finite rather than
infinitely extended synthetic dimensions. As long as the
corresponding diffusion time (i.e., the time required to
explore the finite dimension) exceeds the timescales probed
in experiment, protocols with rational numbers can be used
for all practical purposes.
Employing field-theory methods, we have shown that the

quantum simulators generate dynamics within the same
universality class as the corresponding topological insulator
surface states. Specifically, we demonstrated that the univer-
sal long-timedynamics of the dynamical protocol is described
by precisely the same topological field theory proposed for
the simulated surface states. The field-theory construction
builds on the color-flavor transformation and can be readily
generalized to other symmetry classes and dimensions.
Generalizing, e.g., the simulator of topological quantum

Hall surface states to other (odd) dimensions, different from
three, one can derive the corresponding Chern-Simons
actions. Similarly, a topological field theory with Chern-
Simons actions can be derived for the simulator probing the
surface states of a quantum spin Hall insulator (class AII) in
four dimensions anddifferent from theZ2 field theory in three
dimensions discussed here in detail. An exception is provided
by class-AIII systems. These cannot be simulated within the
proposed scheme since thegauge transformation, establishing
the equivalence between the periodically driven and higher-
dimensional systems, breaks chiral symmetry.
Our proposal required full dynamical control over a two-

state internal degree of freedom (“spin”), which, at the
current state, may be difficult to achieve in optical lattices.
Therefore, we focused on the alternative platform of
linear optical networks, similar to that used in Ref. [8].
Specifically, time-multiplexing networks with fast switch-
ing electro-optic modulators seem promising candidates for
the implementation of the quantum simulators. We pro-
vided detailed blueprints for the experimental implemen-
tation of the two protocols within existing setups, realizing
the quantum simulators of the surface states of a four-
dimensional quantum Hall insulator and a three-dimen-
sional quantum spin Hall insulator. We have shown in our
numerical simulations that the experimental signature, viz.
absence of Anderson localization, is observable within the
experimentally realizable number of time steps. A tunable
quantum simulator of topological surface states in
isolation would open fascinating experimental possibilities.
Specifically, it would provide a new, direct window into the
intriguing physics resulting from the interplay of disorder
and nontrivial topology.
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APPENDIX A: UNITARITY OF
QUANTUM-WALK OPERATOR

The general, single time-step operator in Eq. (1) sim-
plifies to Eq. (2) when focusing on quantum walks with
short-range hopping m ¼ f−1; 0;þ1g. In the momentum
representation,

Ûk¼
X

m¼0;�
ðr⃗m · σ⃗Þeimk1

¼½r⃗0þðr⃗þþ r⃗−Þcosk1þ iðr⃗þ− r⃗−Þsink1� · σ⃗; ðA1Þ
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where r⃗m is a four-component vector and σ⃗ ¼ ðσ0; iσÞ. To
satisfy unitarity, the vector multiplying σ⃗ must be real
valued; that is, r⃗þ ¼ ðr⃗−Þ�. Expressing r⃗þ ¼ ðr⃗r þ ir⃗iÞ in
terms of two real vectors r⃗r, r⃗i,

Ûk ¼ ½r⃗0 þ ðr⃗r þ ir⃗iÞeik1 þ ðr⃗r − ir⃗iÞe−ik1 � · σ⃗; ðA2Þ

and requiring further that ÛkÛ
†
k ¼ 1, the following rela-

tions can be verified:

jr⃗0j2 þ jr⃗−j2 þ jr⃗þj2 ¼ 1;

jr⃗0j2 þ 2jr⃗rj2 þ 2jr⃗ij2 ¼ 1;

r⃗r · r⃗i ¼ 0; r⃗r · r⃗0 ¼ 0; r⃗i · r⃗0 ¼ 0;

jr⃗rj ¼ jr⃗i
���� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jr⃗0j2

q
: ðA3Þ

These relations are stated below Eq. (2) in the main text.

APPENDIX B: SPREADING OF A
WAVE PACKET

In this appendix, we demonstrate the equivalence of
Eqs. (7) and (8). To this end, we introduce the initial density
matrix

ρ0 ¼
1

Nsyn

X
ksyn;σ

j0; ksyn; σih0; ksyn; σj; ρ20 ¼ ρ0 ðB1Þ

(here, n1 ¼ 0 refers to the origin in the physical space and
Nsyn ≫ 1 is the number of initial phases) and note that
Eq. (7) for ΔX2 can be cast in the basis-independent form

hΔX2i ¼ trðρ̂0U†
t;0n̂

2
1U t;0Þ; ðB2Þ

where ð…Þ refers to a disorder average. The rationale
behind this expression is the following. The average over
initial phases (momenta ksyn) implies the trace operation in
the extended Hilbert space, and we discretize the corre-
sponding momentum integral so that it becomes a sum
over Nsyn terms.
Further applying the time-dependent gauge transforma-

tion introduced in Sec. II A, one writes

U t;0 ¼ eit
P

j≥2
ωjn̂jU t

F; ðB3Þ

where the Floquet operator UF was defined in Eq. (6). This
ansatz gives us the equivalent expression for the width of a
wave packet,

hΔX2i ¼ trðρ̂0ðU†
FÞtn̂21U t

FÞ: ðB4Þ

Lastly, to evaluate the trace above, one can use a full
coordinate representation, which gives us

hΔX2i ¼ 1

Nsyn

X
nn0;σσ0

n21jhn0; σ0jU t
Fjn; σij2; ðB5Þ

with jn; σi≡ jn1; nsyn; σi and jn0; σi≡ jn1; n0syn; σ0i. We
then notice that upon a disorder average, the transition
probability depends only on the difference in position,
n0 − n, and thereby, the expression (8) in the main text is
recovered.

APPENDIX C: BLUEPRINT FOR THE
FM1 + 1syn SIMULATOR

A detailed blueprint for the optical linear network
simulating the topological FM1þ1syn

is shown in Fig. 7.
The dynamical protocol, Eq. (20), involving all three
components R̂�;0 requires a more complex setup in
comparison to FM1þ2syn

in class A, which now has to be
built from two chiral half-step and two coin operations.
Therefore, we start by summarizing the optical scheme in
Fig. 7 and then provide its justification. To this end, we
decompose the translational-invariant part of the single
time-step evolution operator, Eq. (20), into the product

U tþ1;t ¼ ÛdisR̂aðtÞT̂
1
2

CRbðtÞT̂
1
2

C; ðC1Þ

of a chiral half-step T̂
1
2

C and coin operators R̂a=b. (The
former are positioned in the four horizontal arms; notice the
half fiber lengths τH=2 and τV=2, and the latter are placed
in the vertical arms.) Dynamical EOMs after fiber lines of
the first step operation allow us to terminate the walk by
sending the photons to the detection unit. The coin
operators are chosen as

R̂bðtÞ ¼ YRzð−φ2;tÞY† ≡ Ryðφ2;tÞ; ðC2Þ

where Y ¼ eiπσ1=4 is the matrix of y-basis change [25], and

R̂aðtÞ ¼ R̂ðIIÞ
a;tþ1R̂

ðIÞ
a;t, with

R̂ðIÞ
a;t ¼

(
Rzðφ2;tÞŶ† sinφ2;t ≥ 0

Ŷ† sinφ2;t < 0
ðC3Þ

and

R̂ðIIÞ
a;tþ1 ¼

(
Ŷ sinφ2;tþ1 ≥ 0

ŶRzðφ2;tþ1Þ sinφ2;tþ1 < 0
ðC4Þ

with φ2;t ¼ k2 þ ω2t. Finally, disorder is introduced by
placing the local, time-reversal-invariant random potential

Uðn1Þ ¼ eiϕn1
σ0 in between RðIÞ

a;t and RðIIÞ
a;tþ1, with position-

dependent angles ϕn1 , randomly drawn from the unit
circle −π ≤ ϕn1 < π.
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Coming back to the justification of Eq. (C1), we note that
expressing the time-evolution operator in Eq. (20) as the
product of elementary chiral translations and coin operators
is not immediately straightforward. We first notice that
upon replacing j sin k2j → sin k2 in Eq. (21), the model is
reduced to the familiar 2D class-A Floquet insulator
[28,41], which is built by the multiplication of simpler
operators. For an implementation of the protocol with
absolute value j sin k2j, we separate cases sin k2 ≤ 0 and
sin k2 > 0. Specifically, a class-A 2D Floquet model with
homotopy parameter s [28] is written as the product of four
unitary operators ÛA ¼ Û4Û3Û2Û1, with

ÛiðkÞ ¼ cosðsÞ þ i sinðsÞ
�

e−ik·vi

eik·vi

�
:

Here, ðv1; v2; v3; v4Þ ¼ ð0;−e1;−e1 þ e2; e2Þ, with e1;2
lattice unit vectors in the horizontal or vertical direction.
At s ¼ π=4, the product of unitaries can be expanded in the
quantum-walk form,

ÛA ¼ ðr̂0 · σ⃗Þ þ ðr⃗þ · σ⃗Þeik1 þ ðr⃗− · σ⃗Þe−ik1 ;

where

r⃗0 ¼
1

2
ð1 − cos k2; 0; 0; sin k2Þ;

r⃗r ¼
1

4
ð−1 − cos k2; 0; 0; sin k2Þ;

r⃗i ¼
1

4
ð0; sin k2;−1 − cos k2; 0Þ:

FIG. 7. Blueprint of an optical linear network simulating the topological surface states of a 3D quantum spin Hall insulator in the

quantum-walk setting. (a) Feedback loop built from the step operator T̂
�1

2

C (upper and middle arms, respectively) and the coin operators
R̂a and R̂b (right and left arms, respectively); for details, see main text. To the left and right of the loop, source and detection units are
connected. (b) Numerical simulation of a topological metal (Z2 ¼ −1) in a ð1þ 1synÞD quantum walk for short time steps accessible by
experiments. The width of the wave packet scaled by time is plotted on a log scale, showing that diffusion is anomalously fast.
(c) Critical quantum walk in ð1þ 1synÞD class A at a topological quantum phase transition, showing the same scaling with the classical
diffusion hΔX2i ∼ t. (d) Quantum walk in ð1þ 1synÞD class A without a topological term, showing Anderson localization. Colors

correspond to incommensurate frequencies ω2 ¼
ffiffiffi
5

p
C with values for C as indicated in the legends.
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Following the general recipe outlined in Sec. II A, we
simulate the 2D dynamics as a 1D quantum walk with a
time-dependent protocol, replacing momentum k2 → φ2;t

by a time-dependent angle. We then notice that for
sinφ2;t > 0, vectors r⃗0;r;i of ÛA are identical to those of
ÛAII in Eq. (20). Hence, when sinφ2;t > 0, the quantum-
walk operator in Eq. (20) can be written as the product
of the four unitary operators, ÛAIIðsinφ2;t > 0Þ ¼
ÛAðk1;φ2;tÞ. When sinφ2;t < 0, on the other
hand, one can verify that ÛAII;sinφ2;t<0ðk1;φ2;tÞ ¼
ÛT

A( − k1;φ2;t; s ¼ ðπ=4Þ).
Next, we express Ûj¼1;2;3;4 as a combination of shift and

rotation operators,

Û1 ¼ eisσ1 ;

Û2 ¼ T̂
−1
2

C eisσ1 T̂
1
2

C;

Û3 ¼ eiφ2;tσ3=2T̂
−1
2

C eisσ1 T̂
1
2

Ce
−iφ2;tσ3=2;

Û4 ¼ eiφ2;tσ3=2eisσ1e−iφ2;tσ3=2;

with the “half” translation operator T̂
1
2

C ¼ eik1σ3=2. We stress
that the full Floquet operator ÛA is 2π periodic in k1, and
the appearance of a half translation operator does not imply
a doubling of the unit cell. The same is true for the
topological Floquet metal model.
The 2D class-AII model is expressed as

ÛAII;sinφ2;t≥0ðk1;φ2;tÞ

¼ ÛA

�
k1;φ2;t; s ¼

π

4

�

¼ eiφ2;tσ3=2YT̂
−1
2

C Ye−iφ2;tσ3=2YT̂
1
2

CY;

¼ −eiφ2;tσ3=2Y†T̂
1
2

CY
†e−iφ2;tσ3=2YT̂

1
2

CY; ðC5Þ

and to arrive at this result, we used YT̂
−1
2

C Y ¼ −Y†T̂
1
2

CY
†

and commutativity of operators T̂
1
2

C and e−iφ2;tσ3=2. On the
other hand,

ÛAII;sinφ2;t<0ðk1;φ2;tÞ

¼ ÛT
A

�
−k1;φ2;t; s ¼

π

4

�

¼ YT̂
−1
2

C Ye−iφ2;tσ3=2YT̂
1
2

CYe
iφ2;tσ3=2

¼ −Y†T̂
1
2

CY
†e−iφ2;tσ3=2YT̂

1
2

CYe
iφ2;tσ3=2; ðC6Þ

and from the relations (C5) and (C6), we notice that

ÛAII ¼ RðIÞ
a T̂

1
2

CRbT̂
1
2

CR
ðIIÞ
a . Up to a cyclic permutation of

the operator RðIIÞ
a , this is equivalent to the clean part of

U tþ1;t; see Eq. (C1). Notice that in both cases, ÛAII involves

the same unitary sandwiched between the two T̂
1
2

C, which
simplifies the implementation of R̂bðtÞ ¼ Y†e−iφ2;tσ3=2Y.
On the other hand, R̂aðtÞ depends on the sign of sinφ2;t.

APPENDIX D: Z2 TOPOLOGICAL INVARIANT

In this appendix, we further discuss the Z2 topological
invariant for the two-band model and prove the
relation (23). The unitary operator Ûk gives rise to the
auxiliary Hamiltonian [3,42]

H̃UðkÞ ¼
�

0 Uk

U†
k 0

�
; ðD1Þ

which shares time-reversal and particle-hole symmetries,
Θ̂1H̃UðkÞΘ̂−1

1 ¼ H̃Uð−kÞ and Θ̂2H̃UðkÞΘ̂−1
2 ¼−H̃Uð−kÞ,

respectively, with Θ̂1 ¼ τ1 ⊗ iσ2K and Θ̂2 ¼ iτ2 ⊗ iσ2K.
In other words, HU belongs to class DIII. Notice that in
Eq. (D1), off-diagonal elements are the Floquet unitary
operators without band flattening, allowing us to make a
connection between the Z2 invariant and the eigenenergies
at time-reversal-invariant momenta.
One way to compute the Z2 topological invariant is as

follows [26]: The Hamiltonian has two valence bands at
energy E ¼ −1, and their eigenvectors are

u−1 ðkÞ¼
1ffiffiffi
2

p

0
BBBBB@

−1
0

U�
k;11

U�
k;12

1
CCCCCA; u−2 ðkÞ¼

1ffiffiffi
2

p

0
BBBBB@

0

−1
U�

k;21

U�
k;22

1
CCCCCA; ðD2Þ

where U�
k;ij ¼ ðU†

kÞji. The sewing matrix, which is needed
to compute the topological invariant [26], can be obtained
from these two vectors as ðwkÞab ¼ hu−a ð−kÞjΘ̂1u−b ðkÞi. In
other words,

wk ¼ 1

2

�−Uk;12 þ U−k;12 −Uk;22 − U−k;11

Uk;11 þU−k;22 Uk;21 −U−k;21

�
ðD3Þ

¼
�−Uk;12 −Uk;22

Uk;11 Uk;21

�
ðD4Þ

¼ −iσ2UT
k; ðD5Þ

where, in the second line, time-reversal symmetry of
the unitary operator is used, i.e., Uk;11 ¼ U−k;22,
Uk;12 ¼ −U−k;12 and Uk;21 ¼ −U−k;21 (as follows from
σ2Ukσ2 ¼ UT

−k). One can then readily verify that the
sewing matrix is antisymmetric at time-reversal-invariant
momenta Λ1 ¼ ð0; 0Þ, Λ2 ¼ ðπ; 0Þ, Λ3 ¼ ð0; πÞ, and
Λ4 ¼ ðπ; πÞ, i.e.,
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wΛj
¼ 1

2

�
0 −UΛj;11 −UΛj;22

UΛj;11 þ UΛj;22 0

�
; ðD6Þ

where UΛj;11 ¼ UΛj;22, and the Pfaffian is Pf½wΛj
� ¼

− 1
2
ðUΛj;11 þ UΛj;22Þ ¼ − 1

2
tr½UΛj

� ¼ − exp ðiϵΛj
Þ. Finally,

the Z2 topological invariant becomes

WZ2
¼

Y
j¼1;2;3;4

Pf½wΛj
� ¼ exp

�
i

X
j¼1;2;3;4

ϵΛj

�
; ðD7Þ

which implies that the condition for a nontrivial
Floquet topological metal, WZ2

¼ −1, translates intoP
j¼1;2;3;4 ϵΛj

¼ π (mod 2π).
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