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Tensor-network (TN) states are efficient parametric representations of ground states of local quantum
Hamiltonians extensively used in numerical simulations. Employing TN Ansatz states directly on a
quantum simulator can potentially offer an exponential computational advantage over purely numerical
simulation. We implement a quantum-encoded TN Ansatz state using a variational quantum eigensolver on
an ion-trap quantum computer that approximates the ground states of the extended Su-Schrieffer-Heeger
model. The generated states are characterized by estimating the topological invariants, verifying their
topological order. Our TN encoding as a trapped-ion circuit employs only single-site optical pulses—the
native operations naturally available on the platform. We reduce nearest-neighbor crosstalk by selec-
ting different magnetic sublevels with well-separated transition frequencies to encode the qubits in
neighboring ions.
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I. INTRODUCTION

Quantum phases of matter that do not have a classical
counterpart, known as exotic phases, are pivotal in the
development of novel quantum materials and devices [1,2].
Recently, topologically ordered phases have drawn much
interest as potential fault-tolerant components for quan-
tum technologies [3–5]. Yet, our understanding of such
collective quantum phenomena remains incomplete [6].
While analytical treatment supports only a few (integrable)
examples [7–9], numerical studies are limited to small
systems due to the exponential growth of the state space in
many-body quantum problems. Numerical approximations
are thus used at intermediate and large systems. At these
sizes, tensor-network (TN) methods provide a successful
approach [10–12]. TN Ansatz states can efficiently repre-
sent ground states of bulk-gapped Hamiltonians in one and
higher dimensions [13–15], including topological insulators
[16,17]. In one spatial dimension, TNs—and matrix pro-
duct states (MPSs) as a special case—are efficient when

evaluating observables. However, numerical resources for
exact evaluations in higher-dimensional TN states often
increase exponentially in the system size. Various efficient
approximation techniques are known [18,19], although the
precision of these approaches is often not tunable.
Quantum simulators [20] provide an alternative pathway

toward understanding many-body quantum phenomena.
Recent progress in quantum hardware [21,22] enabled
state-of-the-art experiments that are at the cusp of out-
performing classical computers [4,23–34]. However, the
current noisy intermediate-scale quantum (NISQ) devices
[35] are still fairly limited, either by size, controllability, or
noise. Quantum-classical algorithms, such as variational
quantum eigensolvers (VQEs) [36–40], are protocols
designed for NISQ devices [41] and, in the near term,
have the potential to outperform either purely quantum or
classical approaches. Such hybrid methods aim to solve
problems where implementing a given computational task
with specialized quantum resources can provide an advan-
tage over the classical hardware. In this context, NISQ
processors can be tailored to represent and sample TN
states [42–49], e.g., by encoding specific classes of
variational TNs as programmable quantum circuits. Said
circuits thus allow the implementation of an efficient
variational Ansatz used, for instance, in VQEs [38,39],
to approximate ground states of local gapped Hamiltonians
on a quantum simulator. While the observables (including
the energy cost function) are measured directly on the
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quantum device, the circuit parameters are optimized by a
classical computer based on the respective measurement
outcomes. This provides a potential computational advan-
tage over purely classical approaches [50–52].
In the present work, we utilize trapped-ion quantum

resources, sketched in Fig. 1(a), to implement a tensor-
network-based VQE (TN VQE). Its purpose is to pre-
pare a many-body entangled ground state on the ion qubits.
As a variational resource, we use operations arising
naturally in ion traps. The ions are sequentially interacting
with a common motional (phonon) mode, which acts as an
entanglement carrier [53–55] or quantum data bus (QDB),
as highlighted in Fig. 1(b). In our approach, the interactions
are optimized by a classical algorithm with the ultimate
goal to realize a target many-body quantum state with the
phonon mode being disentangled from the ions at the end
of the circuit [46].
As a relevant target problem, we use our TN VQE to

demonstrate topologically ordered ground-state phases in
the nonintegrable extended Su-Schrieffer-Heeger (ESSH)
model [56,57] shown in Fig. 2(a). The target states allow
an accurate, efficient representation as MPSs since they
are ground states of 1D gapped Hamiltonians [11,12,58].
We experimentally approximate the ground states of
various model phases by running the TN VQE algorithm.
Finally, we measure many-body topological invariants
[57] (MBTIs) in the prepared states to detect phases
and identify their topological order [59,60]; see Figs. 2(b)
and 2(c).

(a)

(b)

(c)

FIG. 1. Scheme of the TN VQE realized on a string of eight
ions. (a) The logical states j0ik and j1ik are encoded in electronic
levels of ion k. jiic:m: are the basis states of the bosonic axial
center-of-mass (c.m.) phonon mode. We implement entangling
operations (vertical blue lines) between a single qubit and the
c.m. mode (blue horizontal line). (b) TN variational circuit built
with blue-sideband operations as the only resource. (c) The
resulting optimized many-body quantum state expressed in the
graphical notation of tensor networks, which clearly highlights
the bipartite entanglement distribution of a matrix product state.
The empty triangles indicate contraction with pure single-qubit
states written nearby. The dashed rounded rectangle indicates
tensor A½2�

j2;α;β
, which is given by Eq. (5).

(c)

FIG. 2. (a) Sketch of the ESSH model for N ¼ 8 sites, with neighboring sites connected by alternating coupling strengths 1� t−
denoted by solid red and dashed blue bonds. (b) Partial-reflection MBTI Z̃R Eq. (7) calculated numerically for a system of infinite size
N → ∞ and n ¼ 100 using the infinite-size density matrix renormalization group technique [11]; labels give the phases of the ESSH
model. (c) Comparison of numerical values of MBTIs for a finite-sized system (dashed), the thermodynamic limit (solid), and the
experimentally obtained data (square markers) for δ ¼ 0 (bottom) and δ ¼ 4 (top). (d) Real component of the reduced density matrices
for the four central ions at δ ¼ 4 and t− ∈ f−1; 0;þ1g. The corresponding data points of Z̃R are indicated by arrows.
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II. TENSOR-NETWORK VARIATIONAL
QUANTUMEIGENSOLVERWITH TRAPPED IONS

In this section, we briefly review the concept of the TN
VQE approach in trapped ions as previously proposed in
Ref. [46]. Further details on our experimental implemen-
tation are provided in Sec. IV. AVQE is a protocol which
aims to prepare ground states of interacting Hamiltonians
on programmable quantum hardware, while mitigating the
imperfections. A VQE can address Hamiltonians inacces-
sible for a given quantum platform and provide the best
possible outcome for the available resources. However,
identifying the best programmable resources accessible in a
specific quantum platform, for a given task, determines the
efficiency of the VQE.
As our platform, we consider a chain ofN ions in a linear

Paul trap as sketched in Fig. 1(a). For each site k, the qubit
ðj0ik; j1ikÞ is encoded in a pair of electronic levels of the
respective ion. The electronic levels can be controllably
coupled to collective vibrational (phonon) modes of the ion
chain. The entanglement among the ions is distributed
by bosonic excitations of the phonon modes, which act
as QDBs.
A successful approach to create entanglement in ion-trap

quantum computers is the Mølmer-Sørensen (MS) gate,
which simultaneously couples a set of target ions to the
QDB via an off-resonant bichromatic light field [54,55].
Two schemes can be implemented: (i) in an adiabatic
approach, phonons are excited only virtually [61], whereas
the nonadiabatic approach (ii) actively excites the motional
states and disentangles the qubits from the motion at
discrete time intervals [62,63]. However, simultaneously
addressing two or more qubits is prone to crosstalk,
where unwanted spectator ions participate in the MS gate,
introducing correlated errors in the system. In our work, we
investigate alternative operations relying merely on single
qubit operations, to implement a VQE in ion traps that can
provide an advantage in the number of variational para-
meters while preserving the robustness of the circuit to
decoherence. A comprehensive analysis comparing the
MS-gate-based approach to our implementation is provided
in Appendix A.
Here we consider elementary quantum-processing

resources that couple qubits and a single phonon mode
as a first-order process in η, thus actively creating entan-
glement between ions and phonons. In practice, we employ
controlled quantum dynamics generated by the anti–
Jaynes-Cummings Hamiltonian at any single site k,

Hk ¼ iηΩðaσ−k − a†σþk Þ ð1Þ

with Rabi frequency Ω, in the Lamb-Dicke regime. Here,
a†σþk excites the qubit j0ik⟼σþj0ik ¼ j1ik and simulta-
neously creates a phonon jni⟼a†jni ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p jnþ 1i,

while aσ−k does the opposite.

For optical qubits, such dynamics are realized by driving
with blue-detuned local laser pulses in resonance with the
motional sideband of a selected phonon mode [64] as
sketched in Fig. 1(a). Here, we consider the axial center-of-
mass (c.m.) mode due to the near homogeneous coupling to
all ions in the chain, the large frequency gap to higher-order
modes [65], and the geometry of the experimental setup,
making it the most accessible mode. Originally, these
sideband operations were proposed and used for imple-
menting the controlled-NOT gate in trapped ions [53,66,67].
However, the accurate implementation requires precise
calibration of the experimental setup as well as cooling
of the phonon modes to zero temperature, as the effec-
tive Rabi frequency of the sideband operations heavily
depends on the phonon population proportional to

ffiffiffi
n

p
.

Miscalibrations and any finite phonon population lead to
imperfect gates, and, as a result, residual entanglement
between the QDB and the qubits at the end of a circuit.
In our previous work [46], it was proposed to tackle this

problem by employing adaptive feedback-loop strategies
by a VQE in the presence of a quantum data bus [36–40].
For ion traps employing sideband operations, it was shown
[46] that a VQE can suppress the detrimental impact of the
finite motional temperatures. In Appendix A, we demon-
strate the robustness to finite temperature and compare our
approach directly to a VQE with MS gates. The goal is to
prepare the pure ground state of a given Hamiltonian Htarg

using the phonon mode as a data bus, which is required to
be disentangled (only) at the end of the circuit. To this end,
sideband operations are arranged to build a variational
circuit UðθÞ ¼ Q

l expð−iθlHkðlÞÞ, where the lth operation
acts on the kðlÞth ion, and the parameters θ≡ fθlg are
controlled by the durations of the laser pulses. For
simplicity, let us consider the ideal case where the ions
are initialized in some accessible pure state jψiin, and
the QDB is prepared at zero temperature j0ic:m:, with
aj0ic:m: ¼ 0. Unlike a VQE in closed systems, the output
variational states of the qubits

ρoutðθÞ ¼ Trc:m:½UðθÞðjψihψ jin ⊗ j0ih0jc:m:ÞU†ðθÞ� ð2Þ

are not restricted to pure states and are generally mixed due
to residual ion-phonon entanglement at the end of the
circuit. Nevertheless, the procedure to optimize the varia-
tional parameters is analogous to the standard VQE.
Namely, we experimentally measure the energy

EðθÞ ¼ Tr½HtargρoutðθÞ� ð3Þ

of the output state for the target model Htarg by evaluating
all contributing observables. As usual, several experimental
shots are required to evaluate the energy expectation value
within a desired error bar [26]. The measured energy then
acts as a cost function of a numerical variational optimizer,
which iteratively proposes new parameter sets θ to find a
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global minimum in the landscape of the variational Ansatz
manifold. The optimization algorithm we employ is dis-
cussed in detail in Sec. V. Upon convergence to the ground-
state energy, for some optimal parameters θopt, the prepared
state ρoutðθoptÞ approaches the manifold of (nearly) degen-
erate ground states. If the ground state is unique, then
ρoutðθÞ ¼ jψðθoptÞihψðθoptÞj; thus, qubits are disentangled
from the QDB at the end of the preparation. At this optimal
scenario, our circuit Ansatz guarantees [42] that the
optimized output state can be represented as

jψðθoptÞi ¼
X

j1;…;jN

A½1�
j1
;…;A½N�

jN
jj1;…; jNi; ð4Þ

as sketched graphically in Fig. 1(c) [46]. Here, jk ∈ f0; 1g
are indices of the canonical basis of the kth qubit, and A½k�

0 ,

A½k�
1 are Dk ×Dkþ1 parametric matrices which correspond

to the circuit. For example, the elements of matrix A½2�
j2

are

A½2�
j2;α;β

¼ hj2jhα3;4;c:m:jU2;3;4;c:m:ðθCÞjβ2;3;c:m:ij14i: ð5Þ

Here the unitary [colored green in Fig. 1(b)] acts on the c.m.
mode, and the qubits 2–4 as indicated by the lower indices
and jβ2;3;c:m:i and jα3;4;c:m:i are the corresponding joint
basis states. In this sense, the sizes Dk (rows) and Dkþ1

(columns) of the matrices A½k�
j are effectively determined by

the circuit design [46]. Figure 1(c) shows exactly how the
circuit can be graphically reshaped into a matrix product
state using the standard graphical notation of tensor net-
works: Solid lines represent quantum degrees of freedom
(black, qubit; blue, phonon mode), and they can interact
only while they are within the same box.
The states described by Eq. (4) are MPSs [42,68], and

the bond dimension D ¼ maxk Dk is the “refinement
parameter” of the Ansatz: In numerical simulations, this
integer value controls the degree of approximation and
complexity of the algorithm and approaches exact diago-
nalization in both precision and costs in the limit D → ∞.
The entanglement entropy of the real-space bipartitions in
the MPS is bounded as s ≤ logD matching the area law of
entanglement for the ground states of gapped 1D
Hamiltonians [69]. Indeed, it was shown that a MPS
provides an efficient and faithful Ansatz to approximate
such states [11,12,58]. In our circuit, D is controlled by the
lattice size m of the sideband operation blocks (colored
boxes in Fig. 1), such that D≲ 2m−1.
Additionally, typical quantum lattice Hamiltonians

exhibit translational invariance; namely, they can be
formally decomposed as Htarg ¼

P
k hk while satisfying

hk ¼ hkþl, which represents a period of l lattice sites
labeled by k. Ground states of translation-invariant
Hamiltonians are well approximated by bulk-translation-

invariant MPSs with tensors A½k�
jk

¼ A½kþl�
jkþl

in the bulk. In

our circuit, this can be achieved by repeatedly using the
same subset of variational parameters along the circuit with
period l: In the language of Fig. 1, boxes of the same color
use the same parameters. The optimal size of the edge
blocks with the unique parameters can be identified
variationally in the experiment, and it is expected to grow
solely with the quantum correlation length of the target
state. Consequently, the number of independent scalar
parameters in the circuit Ansatz does not ultimately grow
for increasing system size.

III. TARGET MODEL

We use a TN VQE in an ion trap to study phases in the
interacting extension of the Su-Schrieffer-Heeger model
[70,71], a one-dimensional spin-chain Hamiltonian captur-
ing the transport properties of polymer molecules [72].
Open-boundary conditions are required to exhibit topo-
logical order, and the Hamiltonian for N sites reads

HESSH ¼
XN−1

k¼1

½tþ þ ð−1Þk−1t−�

× ðσxkσxkþ1 þ σykσ
y
kþ1 þ δσzkσ

z
kþ1Þ ð6Þ

in dimensionless units, where σμk are the Pauli operators
acting on qubit k. In the following, we fix the coupling
tþ ¼ 1. The coupling t− controls the “staggerization” of the
interaction strength, separating even-odd from odd-even
pairs as sketched in Fig. 2(a). Additionally, δ defines the
anisotropy of the XXZ-type interaction, and the “standard”
SSH model [56] coincides with the case δ ¼ 0. For
δ ≠ f0; 1g, the model is not integrable, thus requiring
numerical techniques to study its behavior. In the anti-
ferromagnetic regime (δ ≥ 0), the model exhibits three
different energy-gapped phases at zero temperature [57], as
indicated in Fig. 2(b): (i) a nondegenerate trivial dimer
phase, (ii) a fourfold (quasi) degenerate symmetry-
protected topological (SPT) dimer phase with soft excita-
tions localized at the edges, and (iii) a spontaneously
symmetry-broken, Ising antiferromagnetic phase emergent
at large δ.
The transition between symmetry-protected topologi-

cally ordered phases can be detected using many-body
topological invariants [59,60] associated with the sym-
metries protecting the corresponding phases of the 1D
system. In the case of the ESSH model, these symmetries
[73,74] are the dihedral group of π rotations about two
orthogonal axes, reflection symmetry with respect to
the center of the bond, or time-reversal symmetry. In the
present work, we consider the partial-reflection and
the partial-time-reversal MBTIs [60] corresponding to
the two last symmetries. Each of the MBTIs can be used
as a separate phase detector. The partial-reflection MBTI
reads [57,60]
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Z̃R ¼ Tr½ρIR̂I�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr½ρ2I1 � þ Tr½ρ2I2 �Þ=2

q : ð7Þ

Here, ρI , ρI1 , and ρI2 are reduced states of subsystems
I ¼ I1 ∪ I2, where I includes an even number n < N of
sites in the middle, and I1 and I2 are their left and right
subsystems. The parity operator R̂I ¼ R̂†

I ¼ R̂−1
I reflects

the 1D lattice around its center, practically swapping each
symmetric pair of qubits. Analogously, the time-reversal
MBTI [57,60] is

Z̃T ¼ Tr½ρIuTρT1

I u†T �
½ðTr½ρ2I1 � þ Tr½ρ2I2 �Þ=2�3=2

; ð8Þ

where T1 indicates the partial transpose operation on the
partition I1, and uT ¼ Q

i∈I1 σ
y
i , so that the antiunitary

mapping ρI → uTρ
T1

I u†T completely inverts the spin (thus,
time reversal) of each qubit inside I. In the thermodynamic
limit, with N ≫ n → ∞ (both N and n being multiples
of 4), Z̃R and Z̃T approach discrete values in the gapped
phases, as demonstrated in Figs. 2(b) and 2(c). In this sense,
they are actual invariants; i.e., their experimentally
observed values are insensitive to any local fluctuation,
which does not disrupt the SPT symmetry. This property
confirms that Z̃R and Z̃T are proper topological phase
indicators characterizing the topological content even when
there are residual (local, non-SPT-breaking) quasiparticle
excitations in the system.
Precisely, the MBTIs acquire the value Z̃R ¼ Z̃T ¼ 1 in

the trivial phase, −1 in the topological phase, and 0 in the
symmetry-broken phase, respectively. The subsystem size
n required to achieve the convergence depends on the
correlation length in the system [57]. Thus, in the finite-size
system, the measured MBTIs become smoothed in prox-
imity of phase boundaries, as shown in Fig. 2(c) for Z̃R,
where we take N ¼ 8 and n ¼ 4. While reconstructing the
estimators Eqs. (7) and (8) has a measurement cost that
scales exponentially with the bulk size n, we stress that the
MBTIs are expected to converge rapidly, in n, to values
which can clearly discriminate between the topologically
ordered phases [59].
Far from the phase boundaries, the ESSH ground states

are gapped phases satisfying the entanglement area law
[14,15], and thus allowing an efficient MPS representation
that can be realized with TN VQE. Notably, blue-detuned
sideband (BSB) operations of Eq. (1) are a sufficient
resource to prepare ground states of any real, z-magneti-
zation-conserving Hamiltonian [46]. Moreover, these oper-
ations take into account specific symmetry properties of
HESSH, eventually simplifying the optimization problem
within TN VQE. Precisely, due to its symmetries, HESSH
always exhibits at least one ground state with zero z
magnetization and all real amplitudes in the canonical

basis. Accordingly, BSB operations realize real-valued
variational unitaries UðθÞ since the Hk are fully imaginary.
Furthermore, they protect an “extended” magnetization
symmetry 1=2

P
k σ

z
k − a†a. Thus, if the initial qubit state

has well-defined z magnetization, so does the output qubit
state once the c.m. mode has been variationally disen-
tangled [46]. Thus, by protecting these two symmetries
(magnetization, complex conjugation), which are present
in the target model, we substantially simplify the variational
optimization problem [26]. Conversely, we cannot protect
the symmetry-protected topologically ordered symmetries
(reflection, time reversal, etc.): doing so would prevent
us from establishing topological order from a trivial
input state.

IV. EXPERIMENTAL IMPLEMENTATION

We implement a TN VQE on an ion-trap quantum simu-
lator using laser-cooled 40Caþ ions in vacuum [75]. All
experimental results presented here are carried out on linear
strings of eight ions. We encode the qubits in the optical
transitions from the electronic ground state 4S1=2 to the
3D5=2 manifold, such that j0i ¼ j4S1=2i and j1i ¼ j3D5=2i.
The 3D5=2 state is long-lived with a lifetime of T1 ¼ 1.15 s.
The system is prepared in the electronic and motional
ground state by a sequence of Doppler-, polarization-
gradient, and sideband-cooling and optical pumping
[75]; we achieve a mean phonon number n̄ ≤ 0.05.
The quantum state of each qubit is manipulated by a

sequence of laser pulses. For each circuit, we aim to
implement the sideband operations Eq. (1) on a single
qubit at a time, requiring precise control over the position of
the laser beam [76,77]. In our setup, we address the ions
individually via a high numerical aperture objective aligned
at an angle of 22.5° with respect to the ion string axis. Such
single-qubit operations will inevitably introduce crosstalk
errors in the nonaddressed ions. Because of the geometry of
the laser beam, a finite residual field will overlap with—
most prominently—immediate neighbors, inducing excess
rotations and phase errors [78]. Comparing the Rabi
frequency Ωj of a target qubit on site j with its neighbors
j� 1, we measure the ratio Ωj�1=Ωj to be as large as 5.9
(5)% in the center of the ion string, which corresponds to a
relative laser intensity of 0.35%.
We seek to minimize the crosstalk errors arising during

state preparation and measurement via two schemes. First,
resonant errors on the jSi ↔ jDi carrier transition are
suppressed by implementing a sequence of qubit rotations,
decoupling the spectators from the target ion j. Here, any
rotation R̃j of the qubit by the Euler angles θ, ϕ, and λ on
the Bloch sphere is decomposed into a set of single-qubit
rotations

R̃jðθ;ϕ; λÞ ¼ ZjðϕÞXjðπ=2ÞZjðθÞXjð−π=2ÞZjðλÞ; ð9Þ
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where Xj rotates the state vector about the x axis and Zj

about the z axis [79]. We implement Xj by resonantly
driving the carrier transition, while Zj is realized by a far-
detuned laser pulse inducing an ac Stark shift, in turn
rotating the state of the qubit in the equatorial plane of the
Bloch sphere. Since the ac Stark shift is proportional to
the intensity of the laser rather than the amplitude, as in the
case of the resonant transition, the crosstalk is suppressed
quadratically. Thus, resonant crosstalk can be attributed to
the X operations in the sequence in Eq. (9) alone, and as
both of them are subjected to the same systematic errors,
any resonant error is canceled out by the opposing phase
angles. With this method, we manage to suppress resonant
crosstalk to well below 1%. Alternatively, the ZjðθÞ
operations could be implemented virtually by increasing
the local phase reference of the addressed qubit [80].
However, we do not resort to this scheme, as our setup
allows us to achieve resonant single-qubit gate fidelities
beyond 99.9% and are thus negligible in the context of state
preparation and measurement. However, the decoupling
scheme we describe is not applicable when driving side-
band operations. First, the Stark shift experienced by the
individual states depends on the phonon occupation n [81].
Second, the effective Rabi frequency scales as

ffiffiffi
n

p
, yielding

a different evolution for each state. Here we implement a
novel scheme using the internal structure of 40Ca: We
encode the qubit in different, spectrally well-separated
transitions in the 4S1=2 and 3D5=2 manifolds; specifically,
we select two transitions with magnetic quantum numbers
m ¼ �1=2 as shown in Fig. 3. Thus, for a given site k, the
encoding is defined as j0i ¼ j4S;m ¼ ð−1Þk1=2i and
j1i ¼ j3D;m ¼ ð−1Þk1=2i, respectively. This method pre-
vents any unwanted sideband excitation on neighboring
ions. However, it introduces additional efforts during state
preparation. For each ion required to be initialized in the
j4S;m ¼ þ1=2i ground state, two additional laser pulses
would be needed. Conveniently, as our circuits start out
from a Néel state j0101…i, we initialize j3D;m ¼ þ1=2i
on all even sites where only a single pulse on the transition
j4S;m ¼ −1=2i ↔ j3D;m ¼ þ1=2i is required for each
respective site. We quantify the benefits of this scheme
via state tomography of a circuit with M ¼ 14 sideband

operations on four qubits using parameters optimized
in numerical simulation given in Appendix C and compare
the data with the state obtained by the circuit simulation.
We achieve a fidelity of F ¼ 89.7ð11Þ% compared to
82.5(12)% in the case with all qubits encoded in the
j4S;m ¼ −1=2i ↔ j3D;m ¼ −1=2i transition. Assuming
the state fidelity is described by F ¼ ðFBSBÞM, the fidelity
of a single BSB operation is given by FBSB ¼ 99.23ð7Þ%.
Apart from state preparation and measurement, the full

circuit is implemented using only single-ion sideband
operations. In these operations, the phonon-ion coupling
scales with the Lamb-Dicke parameter η, which heavily
depends on the trap geometry, or more precisely, on the
overlap of the incident laser beam and the trap axis. In our
setup, we measure η ¼ 0.038, implying a requirement of up
to 2 mW of peak laser power to implement the sideband
operations, which in turn induce ac Stark shifts Δ by
coupling to the carrier transition with a strength on the
order of Δ ≈ 5 kHz. These shifts are actively compensated
by a second, far detuned laser beam [82]. Since this requires
substantial power in the compensation beam and with
the total available laser power being finite, the achievable
Rabi frequency is also limited. We find the optimum to be
at a sideband coupling strength of ηΩ ¼ 2π × 8 kHz, such
that a π rotation j0; n ¼ 0i ↔ j1; n ¼ 1i is performed in
approximately 125 μs.
In contrast to other entangling schemes like the MS gate

[54], the sideband operations executed in our circuits
actively entangle the ions with the phonon mode. Uncon-
trollable interactions with the environment cause the
qubits to depolarize, mainly due to heating and motional
dephasing as a consequence of, predominantly, electric
field noise in the trap [83]. In our setup, we measure the
heating rate of ΓH ¼ 27ð2Þ phonons per second in an eight-
ion crystal. Furthermore, we measure the motional coher-
ence time τc:m:. of the c.m. mode via Ramsey spectroscopy.
For a single qubit, we obtain τc:m: ¼ 101.9ð1Þ ms, which is
comparable to the coherence time of the laser given by
T2 ¼ 107ð15Þ ms. However, the motional coherence time
will decrease with the number of ions in the trap. On an
eight-ion string, we measure τc:m: ¼ 21.9ð2Þ ms, which is
by a factor of 5 lower than T2. As such, we identify heating
and motional dephasing as our main decoherence mech-
anisms. Consequently, in our setup, it is paramount that
each sideband sequence is finished well within the char-
acteristic times τH ¼ 1=ΓH and τc:m: to ensure the faithful
implementation of the target state.

A. Toward 2D geometries

The design of our experiment focuses on the ground-
state approximation of a one-dimensional model by
exploiting the properties of MPSs. However, it is impor-
tant to highlight that the ultimate goal of the TN-VQA
method is to efficiently reconstruct—on a hybrid quantum
simulator—equilibrium states of many-body Hamiltonians

FIG. 3. Crosstalk suppression by staggered encoding of qubits
in different, well-separated Zeeman transitions. For a given
site k, the qubit is implemented in the j4S;m ¼ ð−1Þk1=2i ↔
j3D;m ¼ ð−1Þk1=2i transition.
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in two or higher spatial dimensions. In fact, while MPSs
allow for an accurate, efficient algorithm to numerically
simulate 1D ground states, such as the density matrix renor-
malization group (DMRG) [84,85], their two-dimensional
counterpart (the projected entangled-pair states, PEPSs)
[86,87] is not exactly contractible, and their expectation
values are typically computed through uncontrolled appro-
ximations [18]. Thus, being able to experimentally con-
struct tensor-network variational states for two-dimensional
lattices allows us to circumvent the limitation of numerical
simulations via hybrid quantum algorithms. The past few
years gave rise to a variety of proposals for experimental
realization of a TN VQE to study 2D lattice systems
[43,88–91]. In particular, recent work [91] discusses
quantum circuits for sequential generation of plaquette
PEPS—a subclass of PEPS [86,87]—that is believed to
include a large class of 2D phases, including the topologi-
cal ones [89]. Some of the proposed experimental realiza-
tions [92] in circuit quantum electrodynamics (QED) could
in principle be translated on ion-trap platforms, provided it
is possible to measure and reset individual ions while
preserving coherence in the rest of the system [93]. The
technique demonstrated in the present work can be used to
implement local “plaquette” unitaries required to entangle
the emitters with ancillas. We speculate on how to build
such an experimental tensor-network state—albeit with
resources that may be available in the near future—and
detail the strategy in Appendix E.

V. VARIATIONAL OPTIMIZATION

The objective of our variational quantum eigensolver
is to prepare the many-body ground state of the target
HamiltonianHESSH of Eq. (6) via closed-loop optimization.
For a given set of couplings t− ∈ ½−1; 1� and δ>0, the
protocol proposes sets of trial parameters θ and evaluates
the energy functional

EðθÞ ¼ TrfρoutðθÞHESSHg ð10Þ

via data obtained directly on the ion-trap quantum simu-
lator. A simplified sketch highlighting the full VQE is
shown in Fig. 4(a). For each parameter set θ, we implement
the circuit Fig. 1(b) and measure collectively in the X, Y,
and Z basis. The measurement outcome is then fed back to
the classical computer, which evaluates Eq. (10) and makes
an improved guess for new input parameters, thus iter-
atively minimizing EðθÞ.
The classical optimization algorithm that minimizes the

energy functional over the parameters θ is based on the
pattern search algorithm [94,95]. This local search algo-
rithm moves around in parameter space by polling nearby
points to a candidate solution θc. The polling points are
organized according to a stencil centered at the candidate
solution and comprised of orthogonal vectors in each of the
possible search directions. Based on the experimentally

measured cost function values sampled at each of the
polling points, the algorithm decides to move the stencil to
a new candidate solution θcþ1. If none of the polling points
provides an improvement, the size of the stencil is
decreased. Contrarily, upon a successful energy-lowering
move, the stencil size is increased. The stencil is rotated
such that the first polling vector is oriented along the
direction of the last successful move.
Since the cost function landscape is sampled only

through noisy projective measurements, some additions
to the algorithm are made. First, a Gaussian process model
[96] is fitted to the data to provide a better estimate of the
cost function in the neighborhood of the current candidate
point. This is to be compared with standard gradient-based
algorithms that fit a linear model to the locally obtained
function values and move the candidate solution accord-
ingly. Here instead, we fit a global model, taking into
account all previous measurement outcomes. A second
modification for dealing with noisy cost function values is
the option for the algorithm to request additional samples at
already polled points in cases where the error bars on the
energy estimates are deemed too large to be able to make a
good decision on where the stencil should be moved. In this
refinement step, elements of optimal computational budget
allocation are employed [97].
We now briefly discuss details related to the implemen-

tation in the experiment. Each set of trial parameters θ is
defined by 14 individual angles θk in units of π, which are

(a)

(b)

FIG. 4. (a) Sketch of the VQE protocol. (b) Energy EðθÞ of the
prepared variational states jΨðθÞi for t− ¼ δ ¼ 0 during closed-
loop optimization; errors are calculated considering shot noise
and are shown as error bars. For each step, we show the
immediate minimum that is reached thus far by a solid line;
the energy of the exact ground state is shown as dashes. The
numerical data are derived from simulations of the circuits for the
respective parameters θ.
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transpiled into a sequence of sideband operations adhering
to the proposed pattern in Fig. 1(b) [46]. However, the
experimental setup imposes a lower limit on the θk. While
we are able to electronically control the pulse duration with
a step size of 8 ns, adiabatic amplitude shapes reducing off-
resonant carrier excitations set the minimum pulse duration
with some margin allowing the electronics to properly
execute the signal to 10 μs [98,99]. As such, small rotations
are automatically dropped by the transpiler. With a target
Rabi frequency of Ω ≈ 2π × 8 kHz, this pulse length
translates into an angle approximately equal to 0.03π.
Thus, the actual circuit might differ from Fig. 1(c).
Nevertheless, simulations show that such small angles
have negligible impact on the implemented quantum state.
An example of the closed-loop optimization presenting

real data for the parameters t− ¼ 0 and δ ¼ 0—the critical
point in the thermodynamic limit—is shown in Fig. 4(b).
Starting with an initial guess θ ¼ f0g, the algorithm
evaluates Eq. (10) for each optimization step. The solid
line indicates the minimum for EðθÞ in the experimental
data achieved thus far. For comparison, we show the
value from numerical simulations of the circuit for each
of the proposed parameter sets. We show our “best guess”
reaching EðθoptÞ ≈ −8 compared to the exact value of
Emin ¼ −9.52.

VI. RESULTS

In this section, we present the experimental verification
of different phases in the ESSH model by means of many-
body topological invariants as phase detectors. For each
dataset, we first run the variational optimization algorithm
and, upon convergence, obtain an optimal parameter set
θopt. In our experiment, the quantum state of the bulk
region, i.e., the four-ion state ρ3;4;5;6 in the center of the
string, as shown in Fig. 2(d), is measured via full state
tomography and reconstructed using maximum-likelihood
methods [100,101]. We calculate the MBTIs Z̃R and Z̃T
according to Eqs. (7) and (8) from the reconstructed density
matrices and calculate the measurement errors via boot-
strapping with 100 repetitions for each coupling strength
t−. We also compare the experimental results with (i) the
target values from the exact finite-size ground states,
(ii) values from a ground state close to the thermodynamic
limit, and (iii) values from the states obtained by numeri-
cally simulating the circuits with the experimentally
obtained optimal parameters θopt.
First, we discuss the case δ ¼ 0, where Eq. (6) is

equivalent to the plain SSH model. In the thermodynamic
limit, the transition between the topological and trivial
phases occurs with increasing t− at t− ¼ 0 and is indicated
by the abrupt change of the MBTI values from −1 to 1, as
given by solid black lines in Fig. 5. However, in the finite-
size ground states, the MBTIs shown by dashed black lines
change smoothly. Moreover, the center of the slope is
shifted from t− ¼ 0 to the negative values due to finite-size

effects, and specifically, that the number of odd-even terms
in the ESSH Hamiltonian, Eq (7) dominates the number of
even-odd terms by one.
The data obtained in our experiment shown by orange

square markers are in good agreement with the described
behavior and clearly demonstrate the transition of the
MBTIs from the negative values in the topological phase
to the positive in the trivial phases. We observe the most
pronounced deviation of the experimental values from the
target values and from the numerical simulation in the
topological phase, especially with respect to the time-
reversal symmetry in Fig. 5(b). This observation is attributed
to decoherence processes in the c.m. mode and residual
Stark shifts resulting in depolarization of the prepared states
along the quantization axis of the qubits, which both
MBTIs are sensitive to. A more detailed simulation analysis
of this qualitative argument is included in Appendix B.
Considering the example states shown in Fig. 2(d), it can be
shown that both theMBTIs are quite fragile under dephasing
in the topological phase, while they are relatively robust in
the trivial phase (see also Appendix D). This effect is due to
the algebraic properties of the MBTI itself, given that we
consider a bulk of four sites. In fact, in the topological phase,
losing coherences can cause Z̃R to increase all the way up to
zero. Conversely, in the trivial phase, Z̃R can decrease only
to 1=

ffiffiffi
2

p
. Such an asymmetry is reflected in the quality of the

MBTIs in either phase.
Having explored the integrable case, we now consider

the case δ ¼ 4, which exhibits the symmetry-broken phase
(an Ising antiferromagnet) between the topological and

(a)

(b)

FIG. 5. Many-body topological invariants Z̃R (spatial reflec-
tion) and Z̃T (time reversal) with N ¼ 8 and n ¼ 4 in the ESSH
model for δ ¼ 0 as a function of t−. For comparison, a simulation
of the input parameters θopt is included together with Z̃R=T for the
ground states in the thermodynamic limit N → ∞ found by
infinite-size density matrix renormalization group, and the finite
system with N ¼ 8.
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trivial phases due to the sharp anisotropy favoring inter-
actions in the z direction. This phase is indicated by the
abrupt change of the MBTIs to zero, as shown in Fig. 6.
However, the exact finite-size ground state indicates almost
no presence of the symmetry-broken phase. Interestingly,
the symmetry-broken phase can be clearly observed from
the experimental data. We attribute this behavior to the fact
that at a finite size, the exact model resolves the ground-
state degeneracy, and, in the finite-size unique ground state,
the parity symmetry is not spontaneously broken. In
contrast, due to imperfections and noise, the experimental
VQE polarizes into a physical ground state with sponta-
neous symmetry breaking; see middle panel in Fig. 2(d).
This state is less entangled, has smaller finite-size effects,
and is thus closer to the values of the thermodynamic limit.
For more details, see Appendix B. Similar to the case
δ ¼ 0, we also observe deviation of the experimental values
from the target values in the topological phase.
Despite the fragility of the MBTI in the presence of

noise, the topological phase is well separated from the
symmetry-broken phase. We compare the outcomes for Z̃T
deep in the topological regime at t− ¼ −1 with the data at
t− ¼ 0; here, we find a deviation of more than 6 standard
deviations, which supports our claim of being able to
resolve the individual phases in the SSH and ESSH model.

VII. CONCLUSIONS AND OUTLOOK

In the present work, we implement a variational quantum
eigensolver in an ion-trap quantum device capable of
targeting tensor-network states. We demonstrate that our
technique is efficient at approximating entangled ground
states of gapped Hamiltonians, including symmetry-
protected topological phases. Our strategy encodes the
tensor-network variational Ansatz in a quantum circuit

which explicitly includes the c.m. vibrational mode as
an entanglement mediator. The native interactions of the
ions with the c.m. mode are used in our circuit as varia-
tional resource operations, and the target pure state is
approximated in ions via a variational quantum eigensolver.
We carry out our experiments in traps with eight ions and
successfully approximate each gapped phase of the non-
integrable interacting extension of the SSH model.
We view our work as a first step to realize a scalable

tensor-network simulator on an ion-trap platform. The
quality of our experiment is improved by spectroscopic
decoupling to suppress crosstalk between the ions—one of
the major imperfections in ion traps. We observe that one of
the limitations on the system size N in our circuit is the
finite coherence time τc:m: of the c.m. mode. Since the
coherence time τc:m: of the c.m. mode scales as 1=N and
with the Rabi frequency on the blue sideband decreasing as
1=

ffiffiffiffi
N

p
, one can estimate the error probability for a single

variational block in first order to grow as p ∝ N3=2. As the
c.m. is impacted the most by decoherence, working with
higher-order motional modes which exhibit longer coher-
ence times can overcome this limitation. However, this will
require careful selection of said modes for each variational
block, such that all qubits couple approximately equally to
the motion. This in turn induces significant experimental
overhead, mainly due to ac Stark shifts arising from the
blue-sideband operations, requiring different compensation
parameters for each qubit and mode. In more complex
schemes, one could tailor local phonon modes using optical
tweezers [102,103], which is beyond of the capabilities of
our setup.
Longer circuits can be realized with several sideband

sequences separated by intermediate recooling of the phonon
mode in order to counteract heating. Such a scheme would
require the qubits to be variationally disentangled from the
phonon mode before each cooling step to guarantee that
the qubit state is not impacted by decoherence introduced by
the cooling itself.Whether the TNVQEalgorithmwould still
work according to the same design, or if it would require a
different protocol, needs to be investigated.
Our TN circuit employs translation invariance in the

bulk; thus, we expect that the complexity of the optimi-
zation problem will not increase with the system size but
only with the entanglement growth in the target state.
Another challenge for large-scale simulation of many-body
phases is their verification. In ion traps, this problem can be
tackled by adapting randomized measurement techniques
[52,57,104,105].
We discuss the fundamental role of extending the TN

VQE toward 2D lattice systems [43,89–91] and tensor-
network geometries for 2D, such as PEPSs [86,87]. In
fact, we put forward a proposal for the generation of
variational plaquette PEPSs [89,91] while speculating on
potential implementation of 2D TN states in scalable ion-
trap architectures that allow ion-crystal reconfiguration.

(a)

(b)

FIG. 6. MBTIs Z̃R and Z̃T in the ESSH model for δ ¼ 4,
indicating a symmetry-broken phase in the region near t− ≈ 0.
The notations are the same as in Fig. 5.
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In Appendix E, we discuss a detailed schedule of
operations for a 5 × 5 lattice in a well-tested microstruc-
tured ion trap [102]. Ultimately, we are confident that
scalable realization of the TN circuit for 2D systems in
simpler trap architectures can be achieved by implementing
in-sequence projective measurements and reset of individ-
ual ions [93]. Indeed, assessing the optimal implementation
scheme for a given trap architecture will be the focus of
future research.
The demonstrated experimental capabilities open oppor-

tunities for ion-trap implementation of a variety of protocols
that make use of 1D variational tensor-network circuits.
These include protocols to study infinite 1D systems [47,48],
imaginary- and real-time evolution [106], and quantum
machine learning [107]. Finally, the resonant interactions
with one or several phonon modes potentially can be used to
construct circuits beyond the TN Ansätze, e.g., to address
problems in quantum chemistry [50,108]. The design of the
appropriate variational circuit might be obtained in a closed-
loop optimization on a quantum device itself using recent
hybrid algorithms such as adaptive algorithm [109] or
reinforcement learning [110].
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APPENDIX A: COMPARISON OF ION-TRAP
RESOURCES FOR TN VQE

In our work, we exploit monochromatic single-qubit
operations exciting the motional sideband as the elementary
resource. We now compare our approach to off-resonant
bichromatic operations as proposed by Mølmer and
Sørensen [54,111], which can be implemented either
adiabatically or nonadiabatically [112,113]. Both tech-
niques operate on different timescales; the adiabatic MS
gate is a second-order perturbative process and scales
quadratically in the Lamb-Dicke parameter η, which is
small in the Lamb-Dicke regime η ≪ 1 [114]. In contrast,
the nonadiabatic MS gate disentangles the qubits from the

motion at characteristic times τ ¼ π=ηΩ, making it effec-
tively linear in η. Consequently, the nonadiabatic approach
is about an order of magnitude faster than the adiabatic gate
and can be realized in a few tenths of microseconds.
Assuming a simple two-level model of the atom, tuning

the rotation angles of the nonadiabatic MS gate requires
only a fixed ratio between the gate duration τ and the
detuning of the laser field from the motional sideband. In
practice, additional levels of the atom will introduce addi-
tional ac Stark shifts, which need to be compensated for
high-fidelity gate operations [115,116]. While strategies
allowing for continuous gate parameters with MS gates do
exist [113], in our setup, experience shows that it is not
possible to characterize and predict these shifts with
sufficient accuracy to not limit the performance. Addi-
tionally, addressing pairs of qubits comes at the cost of
next-neighbor crosstalk, which further impacts the system
by introducing correlated errors, which spread uncontrol-
lably. For these reasons, the blue-sideband operations
are—at least in our experimental apparatus—better suited
for VQEs.
We thus analyze the TN VQE with our BSB operations

as resources compared to alternative circuits using MS
gates with precalibrated (fixed) angles and single-qubit Z
rotations. Two scenarios are considered: (i) n-qubit MS
gates acting locally on all n qubits in each variational block
as shown in Fig. 7(a) and (ii) local two-qubit MS gates
acting on nearest neighbors in Fig. 7(b). Our target is the
eight-qubit SSH model at δ ¼ 0 and t− ¼ 0.5. It was
already shown in Ref. [46] that parametrized MS operations
and local σz rotations can be used to target this model. As
we mention above, fast nonadiabatic MS gates are typically
calibrated for certain angles and cannot be used as a
resource in variational circuits; therefore, the tunable
parameters are the angles of the σz rotations.
We compare the infidelity of the prepared states with the

true ground state of the SSH model versus the number of
variational parameters in the circuit in Fig. 7(c). Similar to
the main text of this manuscript, we fix the size of the
variational boxes to two on the edges and to three in the
bulk. The circuit using sideband operations is similar to
the one presented in this manuscript. In the circuits using
MS operations, for each number of variational parameters,
we choose a fixed angle of all MS gates among a set of
values fπ=16; π=8; π=4g to mimic the experiment. Each
circuit is reoptimized for multiple initial parameter sets. For
the circuits using sideband pulses, we consider two initial
states of the phonon mode: (i) a perfectly cooled state with
the average number of phonons n ¼ 0 and (ii) a state with
finite temperature n ¼ 0.01. The circuits using MS oper-
ations are considered without imperfections.
The data presented in Fig. 7(c) demonstrate that the

variational circuit using sideband resources can perform
better than the alternative circuits for the same number of
variational parameters. Moreover, for a realistic initial
temperature of the phonon mode, the performance of the
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sideband circuit remains comparable to the circuit using
MS operations without additional experimental errors. In
any implementation, these experimental errors will deter-
mine the achievable infidelity. We note that a quantitative
comparison of these two approaches requires a detailed
numerical analysis that depends crucially on the specific
experimental parameters of the implementation. Thus, we
resort to a qualitative discussion of the expected main error
sources informed by our present experimental system:

(i) In our system, one of the main error sources is
crosstalk due to optical imperfections in qubit
addressing. Encoding the qubit in different, well-
separated transitions as described in Sec. IV
effectively suppresses unwanted coupling with im-
mediate neighbors. However, this encoding scheme
is applicable only for single-qubit gates: MS gates

require the simultaneously addressed qubits to
occupy the same subspace and as such, next-
neighbor crosstalk will negatively impact the circuit.

(ii) The MS gate approach is inherently resilient to a
nonzero initial phonon number of the QDB [99].
The blue-sideband approach requires more pulses
and parameters to compensate for a nonzero initial
phonon number. Both approaches are susceptible to
heating of the phonon mode during a gate operation.

(iii) We expect that the effect of qubit decoherence is given
by the length of the circuit for both approaches.

It should be noted that the experimental performance of a
given approach depends crucially on the specific exper-
imental parameters and requires a detailed error analysis
using numerical simulations. In our system, crosstalk is the
dominating error, and thus, we choose the blue-sideband
approach.

APPENDIX B: ANALYSIS OF EXPERIMENTAL
IMPERFECTIONS

In this section, we examine and compare different error
models to explain the deviation between the experimental
data and the predicted values for Z̃R=T in Figs. 2, 5, and 6 of
the main text. We numerically simulate the variational
circuit for δ ¼ 4 with the experimentally obtained optimal
parameter sets θopt considering the full circuit as a sequence
of operations on the blue sideband; errors are modeled to
occur after each individual sideband operation. We quantify
the performance of the considered error models via the
residual sum of squares (RSS)

RSS ¼
X
i

ðZ̃data
i − Z̃model

i Þ2

with i labeling each point obtained for Z̃R=T. From the
following analysis, we conclude that, in our task, the initial
temperature of the c.m. mode can significantly affect only
the symmetry-broken phase. Because of the finite temper-
ature, the VQE can prepare a low-energy symmetry-broken
state instead of the symmetric exact ground state. However,
this imperfection is not relevant for investigating condensed
matter phases. We identify the dominant sources of errors
as the c.m. mode heating, fluctuations of the tip voltages of
the trap electrodes, and imperfect compensation of the
Stark shift, which effectively result in depolarization of the
prepared states along the quantization axis of the qubits.

1. Finite temperature of the c.m. mode

We investigate the effect of finite temperature of the c.m.
mode in the initial state caused by imperfect cooling. In
Fig. 8, we show the results of the numerical simulation of
the VQE where we consider the mean phonon numbers
n̄ ¼ 0.00 and n̄ ¼ 0.05 in the thermal state of the c.m.
mode. Here we do not include heating and dephasing, as
these mechanisms are considered individually in the next

(a)

(b)

(c)

FIG. 7. Efficiency comparison for the variational Ansatz cir-
cuits: circuit using the sideband operations considered in the
present paper with n ¼ 0 and n ¼ 0.01 average number of
phonons in the initial thermal state of the c.m. mode and the
alternative circuits (a) and (b) using the nonadiabatic MS
operations with the fixed values and without experimental
imperfections. In (a), MS operations can be applied to n local
qubits and, in (b), only to neighbor pairs of qubits. The MS
operations (with the optimal fixed angle) are given by pattern-
filled ovals. White ovals represent variational σzi rotations.
(c) Optimized infidelity for the eight-qubit SSH model at
δ ¼ 0, t− ¼ 0.5 of the states prepared using the circuit for a
given number of variational parameters.
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section. For both values of n̄; we observe no shift of Z̃R in
the topological phase, which, in contrast, is present in our
experimental data. However, in the symmetry-broken
phase, unlike for n̄ ¼ 0, the case for n̄ ¼ 0.05 demonstrates
results close to the experimentally obtained values. For
n̄ ¼ 0.05, we obtain a residual sum of squares RSS ¼
1.11ð96Þ for Z̃R and RSS ¼ 1.92ð48Þ for ZT ; when
averaged, we get RSS ¼ 1.52ð22Þ. In contrast, n̄ ¼ 0.00
yields larger deviations, namely, RSS ¼ 2.41ð76Þ for Z̃R
and RSS ¼ 3.23ð46Þ for ZT [averaged RSS ¼ 2.82ð61Þ].
We attribute the significant difference in the MBTIs for

the cases n̄ ¼ 0.00 and n̄ ¼ 0.05 in the symmetry-broken
phase to the ground-state degeneracy. At finite size, the
exact model resolves this degeneracy. In the unique finite-
size ground state, the parity symmetry is not spontaneously
broken, as shown in the top left panel of Fig. 9, which gives
the reduced states of four middle qubits in the ground state
of the ESSH model at δ ¼ 4 and t− ¼ 0.333. In contrast,
due to the finite temperature of the c.m. mode, the VQE
algorithm polarizes into a physical ground state with
spontaneous symmetry breaking as indicated by the top
right panel in Fig. 9. This state is less entangled, has smaller
finite-size effects, and is thus closer to the value Z̃R ¼ 0 in
the thermodynamic limit.
The fragility of the global energy minimum correspond-

ing to the exact ground state of the ESSH model at δ ¼ 4,
t− ¼ 0.333 is shown in Fig. 8. We simulate the variational
circuit for a range of parameters θðαÞ ¼ ð1 − αÞθoptjn̄¼0 þ
αθoptjn̄¼0.05, which interpolates between the optimal param-
eters θoptjn̄¼0 found by the VQE for the cases with n̄ ¼ 0

and the optimal parameters θoptjn̄¼0.05 found for n̄ ¼ 0.05.
For the respective states, we calculate the relative energy
error Δrel ¼ ½Etarg − EðθÞ�=Etarg with respect to the ground-
state energy and compute the corresponding values of Z̃R.

At α ¼ 0 and α ¼ 1, Δrel exhibits two local minima as
shown in Fig. 10. For n̄ ¼ 0, the global minimum corre-
sponds to the symmetric state at α ¼ 0, while at n̄ ¼ 0.05
we observe a substantial energy shift. In contrast, the
symmetry-broken state at α ¼ 1 demonstrates almost no
energy shift when n̄ increases; thus, its energy becomes the

FIG. 8. Partial reflection MBTI Z̃R, Eq. (7), for the extended
SSH model, Eq. (B1), at δ ¼ 4 with N ¼ 8 and n ¼ 4. The
dashed lines give the MBTIs from the exact ground states. In
black we show the ground state without a pinned magnetic field
B ¼ 0, while red depicts the case with B ¼ −3; see the text.
Numerical simulations of the VQE with the c.m. mode having a
mean phonon number n̄ ¼ 0 and n̄ ¼ 0.05 are shown by the solid
lines. The experimentally measured data are represented by
squares.

FIG. 9. Reduced density matrices of the four central ions in an
eight-ion system. The top left state corresponds to the ground
state at t− ¼ 0.333. The experimentally measured data for same
t− are shown in the right top state. In the bottom panel, we show
the ground state of the ESSH model with a pinned magnetic field
B ¼ −3 [see Eq. 12] for t− ¼ 0.333, which is in good agreement
with the experimental data.

FIG. 10. Numerical simulation of the Ansatz circuit in Fig. 1 for
a range of parameter sets θðαÞ parametrized by α (see the text) for
the mean phonon numbers n̄ ¼ 0 and n̄ ¼ 0.05. The left vertical
axis gives the relative energy error of the obtained states with
respect to the exact ground-state energy of the ESSH model at
δ ¼ 4, t− ¼ 0.333; the right axis gives the corresponding value of
partial-reflection MBTI Z̃R.

MICHAEL METH et al. PHYS. REV. X 12, 041035 (2022)

041035-12



global minimum for n̄ ¼ 0.05. This robustness is a result of
the smaller amount of entanglement in the reduced bulk
state compared to the exact ground state—this is high-
lighted by the top panels in Fig. 9.
Breaking of the symmetry can also be achieved in the

target ESSH model by introducing sufficiently large pinned
staggered magnetic field B on the outermost ions

HESSH ¼
XN−1

k¼1

½1þ ð−1Þk−1t−�

× ðσxkσxkþ1 þ σykσ
y
kþ1 þ δσzkσ

z
kþ1Þ þ Bðσz1 − σzNÞ:

ðB1Þ
For B ¼ −3, the exact ground state is in good agreement
with the experimental data, as shown in Fig. 8 by the red
dashed line. This is also evident from the density matrices
in Fig. 9 when directly comparing the top right and bottom
panels. With increasing system size, the gap between the
ground state and the first excited states decreases, in turn
also decreasing the required pinning field B until it vanishes
in the thermodynamic limit.
Our analysis shows that for fixed circuit parameters θ,

moderate temperature of the initial state of the c.m. mode
does not affect the MBTIs significantly. Instead, it can
cause the VQE to obtain different optimal parameters θopt,
preparing a physical low-energy state with broken sym-
metry instead of the exact symmetric ground state in the
symmetry-broken phase. This imperfection, however, is not
important when investigating phases of quantum matter,
since, in the thermodynamic limit, the same symmetry
breaking occurs spontaneously regardless.

2. Heating of motional modes

Residual noise, most importantly due to electric field
fluctuations in the ion trap, disturbs the motional state of
the ion string, causing the string to heat up. In our setup,
these perturbations occur at a rate ΓH ¼ 27ð1Þ phonons per
second. This effect is modeled by the channel

ρ → ρ0 ¼ ð1 − pÞ · ρþ p · â†ϱâ

inducing an error with probability p ¼ tΓH on the state ρ
depending on the time t ≪ 1=ΓH. We simulate heating in
the circuits with the initial states having different temper-
atures, namely, n̄ ¼ 0.00 and n̄ ¼ 0.05. To establish a
notion of time, we assume each blue-sideband operation
implementing jS; n ¼ 0i → jD; n ¼ 1i to require a laser
pulse of length tπ ¼ 125 μs. In Figs. 11(a) and 11(b), we
observe a significant effect on the MBTIs Z̃R=T in the
topological phase t− → −1, which is less pronounced in the
trivial phase t− → þ1. However, we see deviations in Z̃T ,
which tend to increase as we approach t− ¼ 1. These can be
attributed to different lengths T required to execute the

pulse sequences as shown in Fig. 12. As T grows when
approaching the edge cases t− → �1, these sequences are
more affected by heating effects. Considering a perfectly
cooled initial state with a mean phonon number n̄ ¼ 0, the
residual sum of squares is given by RSS ¼ 0.84ð21Þ for Z̃R

and RSS ¼ 0.45ð11Þ for Z̃T ; when averaged, we obtain
RSS ¼ 0.65ð16Þ. Increasing the initial temperature to n̄ ¼
0.05 yields RSS ¼ 0.71ð18Þ for Z̃R and RSS ¼ 0.35ð10Þ
for ZT [average RSS ¼ 0.65ð16Þ]. However, as we discuss
in the previous subsection, the temperature of the initial
state does not affect the MBTIs significantly for fixed
circuit parameters.

3. Depolariziation and weighted Pauli errors

Decoherence processes on the motional modes translate
into errors on the addressed qubits. Such errors can be
modeled by a depolarizing channel, where each spatial axis
is equally affected by a product of single-qubit Pauli errors

σðx;y;zÞi with probability p=3. In reality, it is unlikely that all
errors are distributed equally; thus, we must consider

(a)

(b)

FIG. 11. Simulated heating of the motional modes for mean
phonon numbers n̄ ¼ 0.00 and n̄ ¼ 0.05 of the initial state. The
time reference is established via the average laser-pulse length
tπ ¼ 125 μs required to implement a π flip on the blue sideband.

FIG. 12. Lengths T of the individual laser-pulse sequences
required to implement the desired target state. T increases as t−
approaches �1, giving the system more time to be affected by
heating.
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probabilities for each axis px, py, and pz, such that for a
system of N qubits

ρ0 ¼ ð1 −
X

j∈fx;y;zg
pjÞNρþ

YN
i

X
j∈fx;y;zg

pjσ̂
j
i :

For simplicity, we assume px ¼ py ¼ pxy, which is shown
to be valid in simulations, where exchanging px for py and
vice versa yields identical results. We evaluate the model
for both Z̃R and Z̃T for all combinations pxy;z ¼
f0; 0.001; 0.005; 0.01; 0.02; 0.03; 0.04g and estimate the
“goodness of fit” via the RSS to deduce the most likely
source of error in our setup. Note that this analysis also
considers the case without any errors, i.e., pxy ¼ pz ¼ 0.
The results of our comparison are shown in Figs. 13(a)

and 13(b). The best fit is achieved when pxy ¼ 0 and pz ¼
0.03 for both MBTIs. We obtain a RSS ¼ 0.17ð7Þ for Z̃R

and RSS ¼ 0.098ð35Þ in Z̃T [RSS ¼ 0.13ð5Þ when aver-
aged] and conclude that the circuit is predominantly
impacted by dephasing, resulting in Z-type errors. From
a purely experimental point of view, this argument is
expected for two reasons: First, even in the presence of
laser intensity and laser phase noise, we are able to control
the rotation angles θ and ϕ of single-qubit gates to an extent
such that we can achieve average gate fidelities of beyond
99.99%. Second, the VQE algorithm is supposed to take

systematic over- and under-rotations into account when
converging to an optimal set of circuit parameters θopt. The
observed Z errors are a consequence of various sources: We
expect contributions due to heating and dephasing of the
motional states as well as residual detuning from the first
blue sideband, which is a consequence of imperfect Stark
shift compensation.
We also consider a finite temperature of the initial state

with mean phonon number of n̄ ¼ 0.05 and evaluate the
model’s performance. The results are shown in Fig. 14. We
find a best fit for the probabilities pxy ¼ 0 and pz ¼ 0.03 in
agreement with the data obtained for the ideally cooled
initial state. The residual sum of squares is RSS ¼ 0.15ð7Þ
for Z̃R and RSS ¼ 0.081ð32Þ for Z̃T. When averaged, we
find an overall RSS ¼ 0.12ð5Þ. This analysis yields a better
agreement than the previous analysis for n̄ ¼ 0.00; how-
ever, we find the RSS to overlap within their margin of
errors.

4. Comparison of error models

To conclude this section, we compare the individual
models via their respective RSSs in Table I: heating of the
phonon mode with a rate ΓH ¼ 27ð1Þ phonons per second
and a model considering dephasing of the qubits with
pz ¼ 0.03, neglecting X and Y errors. We consider both
cases of a perfectly cooled initial state n̄ ¼ 0.00 and a
finite-temperature state n̄ ¼ 0.05. As it is evident from both
models, the initial temperature in the considered range has
only a small effect. For n̄ ¼ 0.05, we find an average

(a)

(b)

FIG. 13. Goodness-of-fit estimation via residual sum of squares
for the weighted Pauli error model. We compare the model with
the data for Z̃R and Z̃T individually in (a). As we expect X and Y
errors to occur with the same probability, we assume
px ¼ py ¼ pxy. The best fit is achieved for pxy ¼ 0 and pz ¼
0.03 with RSS ¼ 0.17ð7Þ in Z̃R and RSS ¼ 0.098ð35Þ in Z̃T
shown in (b), respectively.

(a)

(b)

FIG. 14. (a) Residual sum of squares of the weighted Pauli error
model for the MBTIs Z̃R=T considering an imperfectly cooled
initial state with mean phonon number n̄ ¼ 0.05 for different
probabilities pxy;z. We obtain a RSS ¼ 0.15ð7Þ in Z̃R and RSS ¼
0.081ð32Þ [average RSS ¼ 0.12ð5Þ] shown in (b) for Z̃T.
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RSS ¼ 0.53ð14Þ assuming errors are related only to heat-
ing of the phonon mode, compared to RSS ¼ 0.12ð5Þ for
the weighted Pauli model. Dephasing of the qubits is
attributed to various mechanisms: First, heating yields to
the occupation of different motional states, each evolving
with a different frequency depending on the number of
phonons. Second, fluctuations of the tip voltages of the trap
electrodes induce phases on the c.m. mode, in turn inducing
a phase shift on the qubits upon each sideband operation. A
third mechanism is imperfect compensation of the Stark
shift resulting in a small detuning from the first blue
sideband of the c.m. mode. All of these sources manifest as
Z errors. As increasing the system sizeN extends the length
of the circuit while simultaneously decreasing the coher-
ence time of the c.m. mode, these errors will become
evermore relevant when adding more qubits. In contrast,
systematic X and Y errors do not impact the measurement
outcomes, as the VQE tunes the rotation angles to imple-
ment the desired operations.

APPENDIX C: A FOUR-QUBIT SSH TEST BED

We test our blue-sideband sequences on the smallest
instance of the SSH model, namely, on a system of four
qubits. The circuit follows the scheme shown in Fig. 1(a).
However, the final “box” θD is executed right after θC on
qubits 3 and 4. We obtain the optimal parameter set θopt
from theory; the 14 angles (in units of π) required to
implement the circuit are given in Table II.

APPENDIX D: BULK TOMOGRAPHY AND
FRAGILITY OF THE MBTIs

As an additional quality estimator for the ground-state
preparation, we also carry out the full quantum-state
tomography restricted to the bulk sites (i.e., the four
central ion qubits in the chain). Here, we reconstruct the
experimental four-site density matrices from projective
measurements in all possible combinations of Pauli bases.
Similarly, we acquire the reduced density matrix from
exact numerical simulations of the TN VQE circuit using
the pulses optimized on the experiment (but omitting
error channels). Then, we compare both of these density
matrices with the true ground state calculated via exact
diagonalization and estimate the quality of the ground-
state preparation (for the bulk sites) by calculating the
mixed-state fidelity.
Such an analysis is carried out for the case δ ¼ 0,

where the ground state is always nondegenerate in the
bulk, and thus bulk-state fidelity is a good quality
indicator. Our study shows that even for the experimental
data, which are exposed to real noise, we are always
capable of achieving a bulk fidelity well above 80% (and
mostly close to 90%), corroborating the success of our
strategy toward ground-state preparation, with remarkably
high quality as shown in Fig. 15. As a point of interest,
we observe that the loss of fidelity in states of the
topological phase (t ≈ −1) is small compared to the
deviation of the MBTI from the theoretical value that
we observe, e.g., in Fig. 5. This is especially pronounced
for the time-reversal MBTI Z̃T . The larger deviation is
attributed to the fact that the MBTI is not the expectation
value of an observable (i.e., it is not a linear functional of
the density matrix), and thus, its error is not bound
linearly by the infidelity. In this sense, this analysis
seems to suggest to us that the MBTIs Z̃R=T are fragile
phase indicators under experimental noise, since the
measured errors are large even when the ground-state
preparation is rather accurate.

TABLE I. Comparison of the RSS obtained for the “best fit” of
the considered error models. We show the values obtained for Z̃R

and Z̃T as well as their average for different mean phonon
numbers n̄ of the initial state.

Model n̄ RSS Z̃R RSS Z̃T RSS (av)

Finite temperature 0.00 2.41(76) 3.23(46) 2.82(61)
0.05 1.11(96) 1.92(48) 1.52(22)

Heating 0.00 0.84(21) 0.45(11) 0.65(16)
0.05 0.71(18) 0.35(10) 0.53(14)

Pauli pz ¼ 0.03 0.00 0.17(7) 0.098(35) 0.13(5)
0.05 0.15(7) 0.081(32) 0.12(5)

TABLE II. Rotation angles for the individual boxes of the
circuit shown in Fig. 1(a) for the four-qubit test-bed system; all
angles are given in units of π.

Box Angles (π)

θA 1.2036 −0.3984
θB 0.1526 0.9366 −1.1738 0.067 −0.0562
θC −0.9232 1.5904 −0.1288 −1.0344 −2.8254
θD 0.1792 3.8938

FIG. 15. Fidelity of the variationally implemented state in the
bulk obtained by state tomography on the bulk qubits. A
simulation of the state using the optimal parameters θopt is shown
for direct comparison. Experimentally, we achieve a fidelity of
>80% over the whole parameter regime for the case δ ¼ 0.
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APPENDIX E: PROPOSED IMPLEMENTATION
OF A 2D TN VQE IN A NOVEL ION TRAP

In this section, we speculate on a potential preparation
of plaquette PEPS [91] with 2D TN VQE using a novel
quantum technology of a linear ion trap as quantumhardware
[102]. We demonstrate a minimal scheme involving 25 ions,
which can exploit bulk-translation invariance in the target
state; the TN diagram is shown in Fig. 16(a). Similar to the
MPS diagram in Fig. 1(c), the plaquettes encode a sequence
of unitary operations on local sets of ions.
The architecture of choice is shown in Fig. 16(b) and has

already been tested under experimental conditions [102]. It
incorporates four “storage” branches, which are used to
load and store ions. Via “shuttling” zones, the ions can be
moved to the central “quantum region” (QR), where they
reside in a common potential and thus share a (local)
phonon mode. Similar to the scheme in Figs. 1(a) and 1(b),
we use single-ion sideband operations to implement a
variational unitary. However, we need to consider con-
trolled reconfigurations of ion string(s) in the QR to
realize the different plaquettes; these reconfigurations are
implemented by modulation of individual trap electrodes.

We employ three operations, namely, (1) shuttling oper-
ations, where ions are moved in between different trap
zones, (2) “splits,” which divide an ion string into sub-
strings, and (3) “merges,” where substrings are joined into
one, larger string.
We now show how the TN in Fig. 16(a) can be mapped to

the chosen trap architecture. Considering the lower left
corner of the TN diagram, we sketch the ion string
reconfiguration operations required to realize the first three
plaquettes A, B, and C in detail in Fig. 16(c); optical single-
qubit sideband operations are not explicitly shown. The
ions are represented by colored circles, where empty gray
circuits are considered “fresh” resources, i.e., ions that have
not yet participated in the circuit. Solid gray circles indicate
ions that have already been addressed but must be kept in
one of the memory regions to be used in later plaquettes.
Finally, solid black circles show those ions that have
already “dropped out” of the circuit; they are thus parked
in the lower left branch of the trap. To better identify the
movement of individual ions, we assign tuples of integers
ðn;mÞ, which correspond to the column and row of the
particle in the TN diagram.

(a) (c)

(b)

FIG. 16. Tensor-network VQE in a possible architecture of a 2D ion trap. (a) TN representation of a 2D circuit in a system of 5 × 5 ions
(circles). Each plaquette couples four qubits to a local phonon mode via sideband operations similar to Fig. 1. Plaquettes labeled by
identical letters can share variational parameters to enforce the approximate translational invariance. (b) A suitable linear trap
architecture [102]. The quantum region in the center is connected to four branches, which serve as loading and memory zones. Ions can
be shuttled in between regions by precise control of local trap potentials. (c) Possible implementation of the 2D circuit via sideband and
shuttling operations. We show the first three steps in the circuit with all participating ions shuttled to their respective positions. Here,
empty gray circles indicate ions that have thus far not participated in the circuit, while those in solid gray have already been addressed
and must be kept for later use in different plaquettes. Black circles highlight ions that have already dropped out of the circuit and remain
from this point on untouched.
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(1) We implement the first plaquette A by shuttling four
ions from the resource register to the QR region.
Note that the initial arrangement of the qubits is
chosen such that the number of required reconfigu-
rations required in later plaquettes are minimized.

(2) Continuing with B, we can move qubit (1,1) to the
lower left branch. This ion will not participate in
subsequent plaquettes. Ion (2,1) is split from the
substring (1,2) and (2,2) and shuttled to the left
memory. Two more ions (1,3) and (2,3) join the QR
and merge with the aforementioned substring.

(3) Plaquette C requires more reordering: (1,3) and (2,3)
are moved to the right memory, while (1,2) is parked
next to (1,1). Ion (2,1) is shuttled back to the QR and
joins (2,2) with two more ions (3,1) and (3,2) from
the resource branch.

In total, we need to implement 15 reconfiguration oper-
ations to implement the first three plaquettes; the individual
operations are listed in Table III. We extend our inves-
tigation to the full circuit, ending up with a total of 152
operations. However, the feasibility of such demanding
circuits remains an open question. Recently, a fault-tolerant
parity readout scheme has been realized, requiring more
than 40 split-and-merge operations and 110 shuttlings
including state preparation and readout [117]. However,
the trap geometry used in this experiment does not feature
branches as memory regions; an implementation in the trap
architecture described in this section might greatly simplify
the circuit.
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