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The relationship between many-body interactions and dimensionality is integral to numerous emergent
quantum phenomena. A striking example is the Bose gas, which upon confinement to one dimension (1D)
obeys an infinite set of conservation laws, prohibiting thermalization and constraining dynamics. In our
experiment, we demonstrate that such a 1D behavior can extend much further into the dimensional
crossover toward 3D than expected. Starting from a weakly interacting Bose gas trapped in a highly
elongated potential, we perform a quench to instigate the dynamics of a single density mode. Employing
the theory of generalized hydrodynamics, we identify the dominant relaxation mechanism as the 1D
dephasing of the relevant collective excitations of the system, the rapidities. Surprisingly, the dephasing
remains dominant even for temperatures far exceeding conventional limits of one dimensionality where
thermalization should occur. We attribute our observations to an emergent Pauli blocking of transverse
excitations caused by the rapidities assuming fermionic statistics, despite the gas being purely bosonic.
Thus, our study suggests that 1D physics is less fragile than previously thought, as it can persist even in the
presence of significant perturbations. More broadly, by employing the exact Bethe ansatz solutions of the
many-body system, we facilitate an interpretation of how the emergent macroscopic behavior arises from
the microscopic interactions.
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I. INTRODUCTION

One-dimensional (1D) integrable systems offer a unique
platform for studying many-body phenomena, as several
of their properties can be computed exactly via the Bethe
ansatz [1]. Its solutions are parametrized in terms of
quasimomenta, the rapidities θ, encoding an extended set
of conserved quantities. Physically, the rapidities are the
asymptotic momenta of microscopic scattering processes,
whereby they collectively depend on interactions among
many particles [2,3]. Further, to satisfy boundary

conditions of the many-body wave function, the rapidities
cannot assume the same value, effectively making them
obey fermionic statistics [4,5]. Such a fermionization at
arbitrary interaction strength between atoms is a manifes-
tation of the restrictions stemming from the 1D geometry;
in 3D, fermionization occurs only in the unitary limit [6].
Thus, the rapidity statistics, and the consequences thereof,
are emergent properties of the system. The evolution of the
rapidities determines the integrable many-body dynamics,
resulting in a description where conservation laws play a
ubiquitous role [7–9].
Many-body systems in reduced dimensions can be

realized experimentally through ultracold atomic gases
[10]. A Bose gas in a tight transverse confinement, whose
level spacing far exceeds all internal energy scales of the
gas, will be restricted to the transverse ground state,
effectively realizing a 1D integrable system [11–14]. As
these energy scales approach the transverse level spacing,
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excitations in the transverse confinement become energeti-
cally possible. If the behavior of the whole system remains
1D in character, whereby the transverse excitations can be
treated perturbatively, the system is regarded as quasi-1D
[15]. Once such perturbative treatments break down, we
consider the gas as truly three dimensional [16]. This
occurs, for instance, when the transverse excitations exhibit
collective behavior, thereby requiring a description through
3D Bogoliubov theory.
Unlike integrable dynamics, the transverse excitations

are not rapidity conserving and can thus lead to thermal-
ization [17]. Recent kinematic approaches offer a descrip-
tion of integrability-breaking scattering processes
consistent with Fermi’s golden rule [18–21]. The descrip-
tion permits a particular scenario owing to the fermionic
nature of the occupied rapidities: If one of the rapidities of
an outgoing scattering state is already occupied, the process
becomes Pauli blocked. This mechanism would allow
integrable dynamics to persist at much longer timescales,
thus enabling one dimensionality to extend far beyond
conventional energy scales [22]. Importantly, the mecha-
nism is entirely different from hard-core bosons [23] and
dynamical fermionization [24], as it relies solely on the
quantum statistics of the rapidities occupation numbers
present even in weakly interacting Bose gases.
To experimentally test how the emergent fermionic

statistics may influence the physical behavior of the system,
we realize a quasi-1D, weakly repulsively interacting Bose
gas in a box trap. The chemical potential and the thermal
energy can be tuned to the order of, or exceeding, the
transverse level spacing. By controlling the shape of the
bottom of the box trap, we can imprint a density perturba-
tion in the form of a single cosine mode. Following a
sudden quench to a flat box, the imprinted perturbation
evolves and eventually relaxes, as illustrated in Fig. 1(a).
Reducing the dynamics to the evolution of a single density
mode drastically simplifies the study of the ensuing
relaxation, thus making the setup an excellent probe for
integrability-breaking effects.

II. THEORETICAL MODELING

While the dynamics of the gas following the quench is
immensely complex on the microscopic level, on large
scales it exhibits emergent hydrodynamic behavior
described by the recent theory of generalized hydrody-
namics (GHD) [25,26]. Starting from equilibrium, the
thermodynamic Bethe ansatz encodes the thermodynamic
properties of a local equilibrium macrostate in a distribution
of occupied rapidities ρpðθÞ [5]. Given ρpðθÞ, thermody-
namic expectation values of local operators can be
computed, such as the atomic density n ¼ R

∞
−∞ dθρpðθÞ.

Occupied rapidities are considered fermionic quasiparticles
with an infinite lifetime, while unoccupied rapidities
are dubbed holes. The sum of their respective densities
yields the local density of states ρsðθÞ. Assuming local

equilibrium, GHD provides a coarse-grained hydrody-
namic description valid at large distance scales and time-
scales for systems near an integrability point. Its validity
has been demonstrated by several observations in 1D Bose
gas experiments [27–29]. According to the theory, the
infinite set of continuity equations associated with the
conserved charges can be written as a single kinematic
equation for the quasiparticles

∂tρp þ ∂zðveffρpÞ − ℏ−1
∂θð∂zUρpÞ ¼ 0: ð1Þ

Here, UðzÞ is the external 1D potential, while the effective
velocity veffðθÞ is the local propagation velocity of a
quasiparticle with rapidity θ. The effective velocity
accounts for interactions between particles, which in
integrable systems manifest as the Wigner delay time
associated with the phase shifts occurring under elastic
collisions [30,31]. Hence, the emergent GHD of the 1D
Bose gas comprises much richer physics than the conven-
tional hydrodynamics [32,33]. Expressions for GHD func-
tions can be found in Appendix B.

(a)

(b)

FIG. 1. (a) Illustration of the geometric quench setup. The gas is
initialized in a 1D box trap whose bottom is sinusoidal. At time
t ¼ 0, the potential is quenched to a flat box, initiating the
dynamics. (b) Schematic of emergent Pauli blocking. Excitations
in the transverse confining potential can occur following colli-
sions between quasiparticles with large, opposite rapidities
jθ2 − θ1j ≥

ffiffiffi
8

p
=l⊥. Here an excitation from the ground state

j0i to the first excited state j1i is depicted. The process
corresponds to creating two particle-hole pairs with rapidities
θ−1;2 and θ1;2. If the rapidities of the outgoing particles are already
occupied, the transverse excitation cannot occur by virtue of the
fermionic quasiparticle statistics.
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The integrable dynamics of GHD following Eq. (1) does
not exhibit thermalization. However, if the energy of an
atomic collision exceeds twice the transverse level spacing,
a transverse excitation, which breaks integrability, can
occur. In our experiment, the transverse trapping potential
is parabolic and axially symmetric for the relevant excita-
tion energies, whereby the coupling strength between
two atoms is independent of their transverse state [34].
Therefore, the excitation of transverse states can be
accounted for using a multicomponent extension [35–38]
of Yang’s theory [39]; in addition to their rapidity, each
quasiparticle carries a pseudo-spin encoding its transverse
state [29]. Crucially, only a single rapidity distribution
ρpðθÞ exists, which is shared for all transverse states. Thus,
two quasiparticles cannot have the same rapidity even if
they are in two different pseudo-spin states. Note that
although only their rapidity component exhibits fermionic
behavior, we refer to the quasiparticles as fermionic in the
following for brevity. For integrability-breaking scattering
processes, one can associate the in states and out states with
particles and holes [18]. In the case of transversely exciting
collisions, the process creates two particle-hole pairs,
with the rapidities of the particles being much smaller
than those of the holes, reflecting the gain in transverse
potential energy. Within GHD, this process is accounted for
by adding a Boltzmann-type collision integral IðθÞ to the
right-hand side of Eq. (1). The multicomponent extension
was originally derived and experimentally verified near the
ideal Bose gas regime of the Lieb-Liniger model; however,
it has also been shown to capture leading-order processes in
the quasicondensate regime [29].
The aforementioned Pauli blocking can occur in systems

either sufficiently close to the many-body ground state or,
as in our case, in systems with a high chemical potential.
In either scenario, all low-rapidity states are filled, forming
a Fermi sea [4], leaving no holes available for the outgoing
particles of the transverse excitations to occupy [see
Fig. 1(b)]. In fact, the terms of the Boltzmann collision
integral describing the excitation processes scale with the
density of holes at the outgoing rapidities. Thus, any
occupation of low rapidities will lead to a suppression of
the transverse excitations. In a thermal state, higher
rapidities become increasingly populated as the temper-
ature increases. Hence, in the absence of the fermionic
statistics, one would expect to observe relaxation of the
system through thermalization, whose rate depends on
temperature.

III. EXPERIMENTAL SETUP

To achieve the scenario described above, we realize a
quasi-1D gas of ultracold bosons (87Rb atoms) on an
atom chip [40]. The chip produces a cigar-shaped magnetic
trap featuring a tight transverse confinement with
trapping frequency ω⊥ ¼ 2π × 1.38 kHz and width

l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω⊥

p ¼ 0.29 μm. The chemical potential of
the gas is μ ≈ ð0.8–1.1Þℏω⊥ while the interaction strength
characterized by the dimensionless Lieb-Liniger parameter
γ [4] is around 0.002, placing us fairly deep within the
weakly interacting quasicondensate regime. The temper-
ature of the gas can be adjusted by tuning the efficiency of
the cooling and can be measured via the technique of
density-ripples thermometry [41–43]. Heating and atom
losses are negligible.
Using a digital micromirror device (DMD), we can

create a desired optical dipole potential along the longi-
tudinal axis of the trap [44]. We superpose two hard walls
on the condensate, confining it to a region of L ¼ 80 μm.
Between the walls, we generate two different potentials: a
flat potential and a cosine-shaped potential. Adjusting the
amplitude of the cosine potential allows us to address
the corresponding density mode at different strengths. By
initializing the system in one configuration and then rapidly
switching to the other, we realize a geometric quench
instigating the dynamics of the condensate (see Fig. 1).
Following the quench, we measure the dynamical evolution
of the density profile of the gas using absorption imaging
after 2 ms time of flight. We denote the density profile
averaged over multiple repetitions as nðz; tÞ.

IV. DYNAMICS OF SINGLE DENSITY MODE

We perform three separate quenches, where we employ
the DMD to imprint the lowest cosine mode of the box onto
the condensate: (i) low temperature and small initial mode
amplitude, (ii) high temperature and small amplitude, and
(iii) high temperature and large initial mode amplitude [45].
For each quench, the system is prepared in a thermal state
[46], whose thermal energy scale for the high-temperature
realizations is close to twice the transverse energy gap.
Figure 2(a) shows the evolution of the density perturbation
δnðz; tÞ ¼ nðz; tÞ − hnðz; tÞit for each of the quenches,
where h·it denotes the average over time. Following the
quench at t ¼ 0, we find the evolution of each realization to
exhibit damped oscillations in time, with the dynamics of
those at higher temperature relaxing noticeably faster.
The density perturbation can be expressed as a sum

of cosine modes δnðz; tÞ ¼ P∞
j¼0 δnjðtÞ cos ðkjzÞ, where

δnjðtÞ is the amplitude of the mode and kj ¼ 2πj=L.
Figure 2(b) shows the mode decomposition of the mea-
sured density perturbations for the three realizations. Only
the four lowest modes are depicted, whose measurement
is not affected by the finite resolution of our imaging
apparatus. In all three cases, the j ¼ 1 density mode has a
far greater population than any other mode, demonstrating
that we indeed can address a single mode of the quasi-
condensate with high accuracy. The small population of the
higher modes occur naturally in the thermal state, although
small imperfections in the imprinted cosine potential will
add to said population.
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Figure 2(c) shows the evolution of the measured j ¼ 1
density mode compared with GHD predictions [47]. The
temperature and transverse trapping frequency (determin-
ing the coupling strength of the bosons) used in the
simulations are obtained using separate measurements.
The theory is computed for a hard-walled box of length
L ¼ 80 μm. Because of the finite width of the experimen-
tally realized walls, the measured density mode evolves in a
box that is effectively a little longer. We account for this by
scaling the time axis of the simulations accordingly. For
more details on the simulations, see Appendix A.
Comparing the experimental observations to the 1D

GHD predictions, we observe a remarkably good agree-
ment. This is highly surprising, as the internal energy of the
system (in particular, for the two realizations with high
temperature) are far beyond conventional conditions for
one dimensionality. Under such conditions, thermalization
through transverse excitations would normally have sig-
nificant contribution to the dynamics. However, when
accounting for the Boltzmann-type collision integral in
the calculations, we find that it hardly has any influence
on the evolution of the density mode. The reason is the
vanishing density of holes in the Fermi sea of rapidities
causing the excitation terms of the collision integral to
vanish. Note that deexcitations of thermally excited atoms
in the initial state can still occur. For the results presented
here, we assume no initial transverse excitations. Including
an estimated thermal population of excited states leads
only to slightly faster relaxation of the dynamics (see
Fig. 10). Hence, the observed relaxation of the mode

remains dominated by integrable processes, as the emer-
gent Pauli blocking significantly prolongs the timescale of
thermalization.
The observed behavior is not exclusive to the j ¼ 1

mode. Indeed, when exciting higher-density modes (see
Fig. 3 for evolution of the j ¼ 2 mode), we find their
dynamics to be captured by the 1D GHD as well [48].

(a)

(b)

FIG. 3. (a) Measured time evolution of the density perturbation
δnðz; tÞ ¼ nðz; tÞ − hnðz; tÞit for a quench of the j ¼ 2 cosine
mode. The temperature is T ¼ 76ð7Þ nK and the mean atomic
density is 65 μm−1. The dashed lines mark the theoretical
position of the hard walls. The inset shows the evolution of
the lowest density modes δnjðtÞ. (b) Evolution of the addressed
mode δn2ðtÞ with GHD theory comparison.

(b)

(c)

(a)

FIG. 2. (a) Measured time evolution of the density perturbation δnðz; tÞ ¼ nðz; tÞ − hnðz; tÞit for three separate quenches of the lowest
cosine mode. The mean atomic densities are 68, 60, and 82 μm−1, respectively. The dashed lines mark the theoretical position of the hard
walls. (b) Evolution of the lowest density modes δnjðtÞ obtained via a Fourier decomposition. (c) Evolution of the addressed mode
δn1ðtÞ compared with both 1D and quasi-1D GHD simulations.
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Additional sources of relaxation in the form of hydro-
dynamic diffusion could potentially become relevant for
even higher modes [49,50]. However, for the quenches
explored here, we find their contribution negligible.

V. RELAXATION VIA DEPHASING OF
RAPIDITIES

Given that thermalization due to transverse excitations
has a negligible influence at the timescales explored here,
the observed relaxation of the density mode must be a
purely 1D phenomenon. From the perspective of low-
energy effective field theories, such as the Tomonaga-
Luttinger liquid [51,52] or Bogoliubov theory [53], the
relaxation may seem counterintuitive, as the initial state of
the experiment can be seen as a coherent population of a
single eigenmode of the field theory Hamiltonian. Within
this picture, the excitations created by the experimental
quench are long-wavelength phononic modes. In the basis
of phonon modes, which do not interact in the Luttinger
liquid (or Bogoliubov) approximation, the excited eigen-
mode would not relax, see Appendix D.
To fully understand the nature of the apparent relaxation

and why the phononic picture breaks down at the temper-
ature scale of the experiment, consider the microscopic
definition [54] of the sound velocity vs ≡ limp→0 ∂ε=∂p,
where εðpÞ is the spectrum of elementary excitations with
momentum p. In a fermionic system near the ground state,
low momentum excitations are found only in the vicinity of
the Fermi momentum Λ. According to the Bethe ansatz
of the Lieb-Liniger model, the elementary excitations of
the 1D Bose gas are the fermionic quasiparticles (rapidities)
[55], whereby the sound velocity reads [54]

vs ¼
∂θεðθÞ
∂θpðθÞ

����
θ¼Λ

≡ veffT¼0ðΛÞ: ð2Þ

Hence, the sound velocity is equal to the effective velocity
of GHD evaluated at the Fermi momentum for the many-
body ground state. As previously discussed, at zero temper-
ature the quasiparticles fill up all the low-rapidity states,
thus realizing a Fermi sea. However, the edges of the Fermi
sea start to melt as the temperature increases, whereby the
Fermi momentum becomes ill-defined. This is visualized
in Fig. 4(a), where the occupation function ϑ ¼ ρp=ρs is
plotted for the ground state of a Bose gas with density
similar to the experiment. The occupation function is
defined as the occupied fraction of the allowed rapidity
states, whereby ϑ ¼ 1 indicates a Fermi sea. For compari-
son, occupation functions for temperatures matching the
experimental realizations with low initial mode amplitudes
shown in Fig. 2 are plotted. In all three cases, a Fermi sea
can be found at low rapidities; however, for finite temper-
atures, long thermal tails are present and no clear Fermi
momentum can be identified. Therefore, at the temperature
scales of the experiment, low-energy excitations can exist at

a range of rapidities. Such a behavior is not captured by the
Luttinger liquid, where excitations are limited to the
vicinity of the Fermi edge.
The effect of the temperature (and initial mode ampli-

tude) on the observed relaxation of the density mode can be
illustrated as follows. First, we compute the occupation
functions ϑðθ; zÞ corresponding to the initial thermal states
of the low initial mode amplitude realizations from Fig. 2.
From their Fourier transforms, we extract the component
of the occupation functions corresponding to the j ¼ 1
density mode ϑ1ðθÞ [56], which are plotted in Figs. 4(b)
and 4(d). Indeed, we find ϑ1ðθÞ to have a significant width
in rapidity space. Thus, unlike the phononic modes of the
effective free field theories, at finite temperature the excited
density mode is carried by a distribution of quasimomenta
(rapidities) [57].
The time-dependent solution of the occupation function

for the perturbation can be obtained by linearizing the GHD

(c)

(e)

(b)

(d)

(a)

FIG. 4. Relaxation of the excited density mode through
dephasing of its rapidity components. (a) Occupation function
ϑðθÞ of a thermal state with density n ¼ 65 μm−1 computed for
the ground state (T ¼ 0 nK) and for temperatures corresponding
to the small quench amplitude experimental realizations of Fig. 2.
The occupation function is an even function of rapidity; therefore,
only positive rapidities are plotted here. (b),(d) j ¼ 1 cosine
mode of the occupation function δϑ1ðθÞ of the low- and high-
temperature realizations, respectively. The dashed line indicates
the Fermi momentum Λ of the zero-temperature state. The black
dots mark select rapidities θi, and the corresponding evolutions of
δϑ1ðθiÞ are plotted as thin, black lines in (c),(e). For reference, the
simulated mode density δn1ðtÞ is plotted on top. Note that in (c),
(e) the amplitudes of δϑ1ðθiÞ are scaled to match δn1.
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equation around a stationary background [58]. For a single
mode, the solution reads (see Appendix B)

δϑjðθ; tÞ ¼ δϑjðθ; 0Þe−ikjveff0
ðθÞt; ð3Þ

where the effective velocity is evaluated using only the
stationary background state. The effective velocity is a
monotonically increasing function of rapidity [55], whereby
each rapidity component of the modewill evolve at a slightly
different rate. Over time, this evolution will result in a
gradual dephasing of the rapidity components, as shown in
Figs. 4(c) and 4(e), which in turn leads to relaxation of the
density mode. Crucially, the occupation function of the
perturbations is centered on the zero-temperature Fermi
momentum, while their widths increase with the temper-
ature. Hence, while the propagation velocity of the pertur-
bation is (up to a small correction) given by Eq. (2), its
relaxation is determined by the spread of involved rapidities
and their dephasing according Eq. (3). The higher the
temperature, the larger this spread and, hence, the faster
the relaxation. Indeed, this is exactly the behavior observed
in the measured density carpets of Fig. 2(a). Thus, our
analysis demonstrates how one can readily identify the
various mechanisms of relaxation present within the system
by employing the GHD and the Bethe ansatz.

VI. TIMESCALES OF RELAXATION

The dephasing longitudinal dynamics and the thermal-
izing transverse dynamics present two competing time-
scales of relaxation in our system. To study the scaling of
the two mechanisms, we perform a number of experimental
quenches, and theoretical investigations thereof, for a wide

range of temperatures and initial mode amplitudes. We find
that the observed dynamics of the j ¼ 1 density mode
follows that of a damped oscillation. In order to quantify
the relaxation timescale τ, we fit the evolution of the
density mode with the heuristic formula

fðtÞ ¼ A exp ½−ðt=τÞ3=2� cosðωtþ ϕÞ: ð4Þ

We deduce empirically that the exponent 3=2 produces a
good fit to both the simulated and measured modes. The
results of our study are presented in Fig. 5. For the
integrable 1D GHD, we observe a faster relaxation for
both higher temperatures and greater initial mode ampli-
tudes, consistent with the greater spread in the rapidity of
the initial thermal state, see Fig. 11. Very similar relaxation
rates are exhibited by the quasi-1D theory, indicating that
thermalization occurs at timescales much slower than
dephasing in the system. Only at temperatures 3 times
larger than the transverse level spacing do we observe signs
of transverse excitations. Among a total of 13 different
experimental quenches performed, we consistently observe
agreement when comparing to either of the two theories.
This is indicative of the highly controlled manner in which
the state is prepared and quenched as well as evidence of
the robustness of the hydrodynamic description. A full
overview of all the performed experiments and correspond-
ing GHD simulations can be found in Fig. 10.
To demonstrate that the slow thermalization timescale is

indeedcausedbytheemergentPauliblocking,wesimulate the
quasi-1DGHDemployingaclassical collisionintegral,which
neglects the fermionic statistics of the quasiparticles. The
resulting relaxation times presented in Fig. 5 are much faster
and exhibit muchweaker dependence on the temperature and

FIG. 5. Relaxation timescale τ of the first density mode. For both experimental measurements (points) and GHD simulations (shaded
areas), τ is obtained by fitting the time evolution of the j ¼ 1 density mode δn1ðtÞ with the damped oscillation of Eq. (4). The
experimental results are grouped into four ranges of mode amplitudes A. In each plot, τ is shown for different temperatures T. The
temperature T is inferred from density ripples analysis, and the corresponding error bars represent the 68% of confidence interval (more
details can be found in Ref. [43]). Meanwhile, the error bars on τ represent the 95% confidence interval from the fit to Eq. (4). The
dashed lines mark kBT ¼ ℏω⊥. For each amplitude range, three different GHD simulations are carried out: standard 1D GHD (red),
quasi-1D GHD accounting for the fermionic particle statistics (cyan), and quasi-1D GHD with a classical collision integral neglecting
the statistics (blue). The GHD results are plotted as shaded areas, whose top and bottom edges mark the smallest and largest mode
amplitude within the given range, respectively. All simulations assume a mean atomic density of 75 μm−1, which deviates by up to 20%
for some of the measurements. Differences in mean density and effective box lengths between simulation and experiment are accounted
for by scaling the experimental time axis.
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amplitude thanboth the quantum theories and the experiment.
Indeed, by virtue of the high chemical potential of the
condensate, the system is alreadydeep in the quasi-1D regime
for even the weakest quenches and coldest temperatures
realized. Hence, without the Pauli blocking mechanism, the
dynamics relaxes through thermalization at a ratemuch faster
than the dephasing of integrable 1D GHD. This behavior is
clearly not what we observe in the experiment, illustrating
how the emergent behavior of the physical system is intrinsi-
cally linked to properties of the quasiparticles.
Finally, it is important to realize that the observed prolong-

ing of the thermalization timescale is inherently related to the
quench protocol employed: The box trap enables the Fermi
sea to be established across the entire system. Further,
switching the potential shape mostly preserves the Fermi
sea. For contrast, in protocols like the quantum Newton’s
cradle, only a few of the low rapidities are occupied following
the initial quench [59,60]. Indeed, following a cradlelike
quench in another atom-chip setup, clear signs of thermal-
ization were observed [27,29]. Determining whether a Bose
gas system is 1D is therefore not as straightforward as merely
checking whether the temperature and chemical potential
fulfill μ; kBT < ℏω⊥. Ultimately, the effective dimensional-
ity of these highly elongated systems is determined by the
presence and nature of transverse excitations, which near the
1D limit must respect the quantum statistics of the rapidities.

VII. CONCLUSION

To conclude, we demonstrate that the integrable GHD
accurately describes the dynamics of a Bose gas, whose
chemical potential and thermal energy far exceed conven-
tional limits for one dimensionality. While such a system
would be expected to immediately thermalize, we instead
observe a much slower relaxation of the dynamics consistent
with a dephasing of the rapidity constituents of the excited
mode. The rapidities themselves remain conserved due to an
emergent Pauli blocking of the integrability-breaking scat-
tering processes, here in the form of transverse excitations in
the trap. The fermionic nature of the rapidities, and thus the
Pauli blocking, emerge as a consequence of the microscopic
interactions. Emergent quasiparticle descriptions are ubiqui-
tous in quantum many-body physics. Unique to integrable
models, the quasiparticles provide an exact solution to the
many-body system, facilitating a powerful interpretation of
phenomena emergent from the complex microscopic details.
Thus, experimental studies of integrable systems in particu-
lar will enable a deeper understanding of the manifestation of
emergent behavior.
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APPENDIX A: EXPERIMENTAL METHODS
AND DATA ANALYSIS

1. Preparation of the initial state

We follow standard protocols of magneto-optical trap-
ping, laser cooling, and evaporative cooling to bring our
system to the degeneracy temperature and realize a quasi-
condensate of 87Rb atoms. The atom chip generates a rf-
dressed cigar-shaped magnetic trap where the final stage of
evaporative cooling is performed [61]. The magnetic poten-
tial has a fixed trapping frequency in the two tight (trans-
verse) directions. To measure such a frequency, a sudden
change in the current of the central chip wire (Fig. 6) is

Atom chip

quasi-BEC

DMD

x

z

y

FIG. 6. Illustration of the experimental setup. The cloud of 87Rb
atoms is trapped below the atom chip whose current-carrying
wires generate a cigar-shaped potential. In our convention, the
longitudinal direction is labeled as z and the transverse directions
as x and y. Here, gravity acts along the y axis. A blue-detuned
laser light is shined onto the atoms along the x direction; using the
DMD, its beam front is shaped to create the desired potential
along the longitudinal axis.
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performed, thus initiating an oscillation of the atoms in the
magnetic trap. For all the measurements here presented,
ω⊥ ¼ 2π × 1.38 kHz. On the other hand, the geometry of
the trapping potential in the elongated direction can be
arbitrarily modified. To this purpose, a blue-detuned laser
light of frequency 660 nm is overlapped on themagnetic trap
along one of the two transverse directions. The shape of the
dipole trap [62], and therefore of the effective longitudinal
potential, can be designed by means of a digital micromirror
device (DMD) [44]. The setup implemented is schematically
depicted in Fig. 6. In the presented experiments, we use the
DMD to imprint hard walls onto the atomic cloud and to
shape the trap bottom either as a homogeneous potential of
length L ¼ 80 μm, or as a sinusoidal modulation with a
specific k ¼ 2πj=L, with j ¼ 1, 2. In other words, we can
prepare the system either in a flat-box potential or in a cosine
potential [Fig. 7(b)]. The amplitude of the sinusoidal
modulation can be tuned with high accuracy such that the
resulting density perturbation changes significantly. In our
case, the amplitude of the addressed mode varies between
10% and 40% of the mean homogeneous density. The
observables needed to characterize the system are extracted
through absorption imaging in time of flight (TOF). A short
TOF of 2 ms is employed to extract the longitudinal density
profile of the atomic cloud at each realization [see Fig. 7(a)],
while to estimate the total number of atoms and the temper-
ature of the gas, we analyze the density ripples pattern
emerging after 11.2 ms TOF [41–43]. The total number of
atoms in the initial state can be tuned by adjusting the
evaporative cooling radio frequency.

2. Geometric quench and dynamics

For every experiment, we design two different optical
dipole potentials, a cosine-shaped potential and a flat box.
We initialize the dynamics by preparing the system in one
of the two configurations and subsequently quenching to
the other. Within our regime of temperatures and ampli-
tudes, the order in which the quench is performed does not
influence the emerging dynamics and the damping rate,
as shown experimentally in Fig. 8. The switch between the
two potentials occurs in a few microseconds, which is much
faster than the timescale of the longitudinal dynamics of the
system. To trace the evolution of the perturbation over time,

2
, x

5
(a)

(b)

z

x

z

x

FIG. 7. (a) Absorption picture of the atomic cloud taken after
2 ms TOF. The box length is L ¼ 80 μm. The image shows the
atomic cloud trapped in a flat-box potential (on the left) and in a
cosine potential (on the right). The short TOF produces an
expansion of the cloud in the transverse direction, due to the
strong 1D confinement, while its effect on the longitudinal
dimension is negligible. (b) Averaged longitudinal density profile
for the cloud trapped in a flat-box potential (on the left) and in a
cosine potential (on the right). The two density profiles on the
right side correspond to two different amplitudes.

(a)

(b)

(c)

FIG. 8. Symmetry of the geometric quench. The damping does
not change if the dynamics is initialized in a cosine potential or in
a flat box. In this measurement, the mean atomic density is
97 μm−1, and the temperature of the initial thermal state is
T ¼ 152 nK. In (a) is illustrated the evolution of the density
perturbation δnðz; tÞ after a quench from the cosine-mode
potential to a flat box; in (b) the quench is reversed. Panel
(c) shows the evolution of the excited mode δn1ðtÞ. The blue data
points correspond to the quench from single mode to flat box,
while the red ones correspond to the reversed one (with flipped
sign). Theoretically, the symmetry of the two quenches is easily
understood since the GHD model is invariant under time-reversal
transformation.
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we extract the longitudinal density profile of the quasi-
condensate at each time step and consider its averaged
value after several experimental repetitions. Since we are
limited by shot noise, we need a statistical ensemble of
around 100 realizations to measure the expectation value.
On average, the variation of the atom number is about 15%
of the mean value. Given the evolution of the mean atomic
density nðz; tÞ (measured or simulated), we compute the
density perturbation δnðz; tÞ ¼ nðz; tÞ − hnðz; tÞit, where
h·it denotes the average over time. For long enough
evolution times, hnðz; tÞit is equal to the asymptotic density
profile. To extract the amplitudes of the cosine mode, we
take the Fourier transform of δnðz; tÞ within the central
80 μm of the system for every time t and compute the
single-sided amplitude spectrum. Examining the Fourier
spectrum, we find the amplitudes of the odd modes to be
very small (see Fig. 9). Their population is due to small
asymmetries in the longitudinal box potential. During the
160 ms of evolution, the heating of the system is negligible,
and the measured atom loss rate is about 2 atoms/ms; it
arises from three-body recombination, collisions with the
background gas particles, and technical noise.

3. Scaling of time axes

We systematically find the oscillation frequencies of the
experimentally measured density mode to be slightly lower
than the GHD predictions. Examining the mode decom-
positions, we find the j ¼ 0 mode to oscillate out of phase
with the j ¼ 1 mode, indicating that the dynamics extends
past the theoretical position of the box-trap walls. As seen
in Fig. 7, the experimentally realized walls are not perfectly
hard but have a finite width due to experimental imper-
fections. We assume that the finite wall width does not
contribute to additional relaxation of the mode. However, it
does result in the density mode appearing to evolve in an

effective box, whose length Leff is slightly longer than the
theoretical box L ¼ 80 μm. To accommodate for this, we
can scale the experimental time axes by L=Leff. For each
quench, we estimate Leff by fitting the mean density profile
with two hyperbolic tangent functions. The wall width in
the present measurements ranges from 2 to 5 μm each,
which are then added to the theoretical box length L in
order to obtain Leff .
Further frequency differences between measurements

and simulations can be found when the two feature a
nonequal number of atoms. From the GHD perspective this
is easily understood, as the effective velocity depends on
the collective effects of interactions, which in turn depends
on the local atomic density. To account for the difference,
we find that the propagation velocity of the density
perturbation (not to be confused with that of the quasi-
particles) is very close to the speed of sound vs ¼

ffiffiffiffiffiffiffiffiffiffiffi
gn=m

p
.

Thus, when comparing the measured and simulated dynam-
ics of realizations with a different number of atoms, we
scale the time axes of the measurements with the fac-
tor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihnsimit=hnmeasit
p

.

APPENDIX B: THEORETICAL MODELING
OF THE SYSTEM

1. Thermodynamic Bethe ansatz
of the Lieb-Liniger model

An ultracold 1D gas of N bosons with mass m is
described by the Lieb-Liniger Hamiltonian [4] plus an
additional longitudinal potential UðzÞ,

H ¼ −
ℏ2

2m

XN
i¼1

∂
2
zi þ g

X
i<j

δðzi − zjÞ þ
XN
i¼1

UðziÞ; ðB1Þ

where g ¼ 2ℏω⊥asð1 − 1.03as=l⊥Þ−1 is the 1D contact
interaction [34], with as being the 3D scattering length
and l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmω⊥Þ
p

.
Following the thermodynamic Bethe ansatz, for finite

temperatures the local thermodynamic state of the Lieb-
Liniger model can be fully encoded in a distribution of
quasiparticles ρpðθÞ, with each quasiparticle uniquely
labeled by its rapidity θ [5]. Similarly, one can introduce
a distribution of unoccupied rapidities, or holes, ρhðθÞ and
the density of states ρsðθÞ obeying the relation

ρsðθÞ ¼ ρpðθÞ þ ρhðθÞ ¼
1

2π
þ 1

2π

Z
∞

−∞
dθ0Δðθ− θ0Þρpðθ0Þ;

ðB2Þ

where Δ is the rapidity derivative of the two-body scatter-
ing phase given by

-10

0

10

FIG. 9. Fourier spectrum of the measured density perturbation
of coldest quench illustrated in Fig. 2. In the GHD simulations,
the odd modes vanish, justifying the expansion of the perturba-
tion as a sum of even modes.

EMERGENT PAULI BLOCKING IN A WEAKLY INTERACTING … PHYS. REV. X 12, 041032 (2022)

041032-9



Δðθ − θ0Þ ¼ 2mg=ℏ2

ðmg=ℏ2Þ2 þ ðθ − θ0Þ2 : ðB3Þ

Given the quasiparticle distribution, one can compute
local thermodynamic expectation values of all conserved
quantities of the system

qi ¼
Z

∞

−∞
dθhiðθÞρpðθÞ; ðB4Þ

where hi is the single-particle eigenvalue of the ith
conserved quantity. In our case, we are interested only
in the expectation value of the atomic density, which
is typically denoted as the zeroth conserved quantity with
h0 ¼ 1.
Further, one can introduce the occupation function

ϑðθÞ ¼ ρpðθÞ=ρsðθÞ describing the fraction of allowed
rapidities occupied. Since the Bethe ansatz quasiparticles
of the Lieb-Liniger model obey fermionic statistics, a
thermal state can be calculated following

ϑðθÞ ¼ 1

1þ eϵðθÞβ
; ðB5Þ

where β ¼ 1=kBT is the inverse temperature, and the
pseudo-energy ϵðθÞ is given by the relation

ϵðθÞ ¼ ℏ2θ2

2m
− μþ 1

2πβ

Z
∞

−∞
dθ0Δðθ − θ0Þ ln ð1þ eϵðθ0ÞβÞ:

ðB6Þ

In the presence of an external potential UðzÞ, one can
locally shift the chemical potential accordingly μðzÞ ¼
μ0 −UðzÞ under the local density approximation.

2. Generalized hydrodynamics

In GHD, the system is treated as a continuum of
mesoscopic fluid cells in space-time, each in local equi-
librium. The macroscopic flow between neighboring fluid
cells occurs at a rate slower than the local microscopic
relaxation, such that local thermodynamic equilibrium in
the fluid cells is maintained at all times. Thus, each fluid
cell is characterized by a local thermodynamic Bethe ansatz
resulting in a time- and space-dependent quasiparticle
distribution ρpðθ; z; tÞ [25,26]. Note, for brevity we omit
all (equal) spatial and temporal arguments in the following.
The complicated dynamics of the interacting Bose gas can
be solved using a single continuity equation (1) for the
analogous system of quasiparticles. A key component of
this equation is the effective velocity

veffðθÞ ¼ ℏθ
m

þ
Z

∞

−∞
dθ0Δðθ − θ0Þρpðθ0Þ½veffðθ0Þ − veffðθÞ�

ðB7Þ

representing the propagation velocity of a quasiparticle
with rapidity θ. The propagation velocity encodes the
Wigner delay time [30] associated with the quantum-
mechanical phase shifts occurring upon elastic collisions
of the interacting atoms. In the presence of integrability-
breaking mechanisms, such as transverse excitations, a
Boltzmann-type collision integral can be added to the right-
hand side of Eq. (1).
To illustrate how the relaxation of a single density

mode in a hard-walled box trap occurs via dephasing,
we employ a linearized version of GHD [58]. First we split
the time-dependent occupation function into a stationary
background and an evolving perturbation ϑðθ; z; tÞ ¼
ϑ0ðθÞ þ δϑðθ; z; tÞ. The background can be identified as
the zeroth mode of the occupation function, while the
perturbation contains all higher modes. If δϑ ≪ ϑ0, we can
neglect interactions during evolution within the perturba-
tion itself and treat only the interactions between the
perturbation and the stationary background. Thus, the
GHD equation can be simplified as

∂tδϑðθ; z; tÞ þ veff0 ðθÞ∂zδϑðθ; z; tÞ ¼ 0: ðB8Þ

Here, the effective velocity is computed using only the
background state, as signified by the subscript. Since the
background state, and by extension the velocity field, is
homogeneous, each Fourier mode evolves independently.
Indeed, plugging a single mode δϑðθ; z; tÞ ¼ δϑjðθ; tÞeikjz
into Eq. (B8) yields

∂tδϑjðθ; tÞ þ ikjveff0 ðθÞδϑjðθ; tÞ ¼ 0; ðB9Þ

which has the time-dependent solution given in Eq. (3).

3. Transverse excitations as pseudo-spins

Consider a transverse confining potential that is har-
monic and axially symmetric for the relevant excitation
energies. This is, to a good approximation, the case of our
experimental setup. Since the anharmonicity of the poten-
tial is negligible, the center-of-motion degrees of freedom
separate from the relative-motion ones. The relative motion
of two atoms in the transverse plane is subject to the 2D
Hamiltonian

Ĥ2D ¼ −ℏ2

2mr

�
1

r⊥
∂

∂r⊥

�
r⊥

∂

∂r⊥

�
þ 1

r2⊥
∂
2

∂φ2

�
þmrω

2⊥r2⊥
2

;

ðB10Þ

where mr ¼ m=2 is the reduced mass of the atomic pair,
r⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the 2D radius, and φ ¼ arctanðy=xÞ is

the azimuthal angle.
A collision due to contact interaction requires two atoms

to come to the same spatial point; this is possible only if
their relative-motion wave function is nonzero for r⊥ ¼ 0.
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This is possible only when the principal quantum number n
for the relative motion is an even number, and the angular
momentum projection lz to the z axis is zero. The
respective (angle-independent, normalized) wave function
is [63]

Φn;0ðr⊥Þ ¼
1ffiffiffi
π

p
lr
exp

�
−
1

2
r2⊥=l2r

�
Lð0Þ
n ðr2⊥=l2rÞ; ðB11Þ

where Lð0Þ
n ðRÞ≡ LnðRÞ is the Laguerre polynomial and

lr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmrω⊥Þ

p ¼ ffiffiffi
2

p
l⊥. The interaction strength for

the pair of atoms is proportional to jΦn;0ð0Þj2, n ¼
0; 2; 4; 6;…. Since Lð0Þ

n ð0Þ ¼ 1 [64], we have jΦn;0ð0Þj2 ¼
1=ðπl2rÞ for all even n (for our purpose the maximum
transverse excitation energy is 2ℏω⊥, whereby only n ¼ 0
and n ¼ 2 are relevant). The independence of scattering
properties of atoms on their transverse states in an axially
symmetric, harmonic transverse confinement was used by
Olshanii [34] in his analysis of the confinement-induced
resonance as a key feature allowing for obtaining an
analytic expression for g for the arbitrary ratio as=lr.
Therefore, under the conditions of our experiment, the
coupling strength is the same for all pairs of colliding
atoms, independent of their transverse states.
It is well known (see, e.g., Ref. [65]) that if all the

components of a multicomponent bosonic system have
the same mass and their two-body interaction is of the
contact type (i.e., proportional to the δ function of the
interparticle distance) with the strength independent of
the component type of the colliding particles, then the
Yang-Baxter equation holds automatically. The latter
equation [66] is a consistency condition that factorizes
the three-body scattering matrix into two-body ones. In
our case, the independence of the interaction strength on
the transverse states of the colliding pair of atoms is
fulfilled accurately enough, and we can therefore treat our
system as integrable.
A few words have to be said about the relation between

transverse excitations and spin waves in the sense of
Ref. [39]. Pairwise atomic collisions can change the
symmetry type of the “coordinate” (longitudinal) and
“spin” (transversal) parts of the bosonic N-body wave
functions. These symmetry types are described by irreduc-
ible representations (IRs) of the symmetric group SN (the
group of permutations of N objects), uniquely denoted by
Young diagrams [67]. The number of particles in each of
the components of an integrable bosonic 1D multi-
component system are directly related to the lengths of
different rows in the Young diagram denoting the particular
IR, to which the spin function belongs.
Assume that initially all the atoms are in their radial

ground state. Their initial spin wave function j0i belongs to
the fully symmetric IR with the Young diagram fNg. Next,
assume that a collision of two fast atoms leads to an

excitation of one atom to the radial level with the energy
2ℏω⊥. The final wave function is

jΨfi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

NðN − 1Þ

s X
k>j

jSijkjZijk; ðB12Þ

where jSijk and jZijk are, respectively, the spin (transverse)
and coordinate (z-dependent) parts of the N-particle wave
function after collision of the jth and kth atoms. Since the
sum is taken over all NðN − 1Þ=2 pairs of atoms, the total
wave function remains invariant against simultaneous
permutation of both spins and z coordinates of any pair
of (bosonic) atoms. Further, since both atoms in a pair
experience a large momentum change after collision, the
functions jZijk are mutually orthogonal for different j, k
pairs. If one atom is brought to the second transversely
excited state, the spin part is

jSijk ¼
1ffiffiffi
2

p
�
j2ji

Y
l≠j

j0li þ j2ki
Y
l≠k

j0li
�
; ðB13Þ

where j2ji
Q

l≠j j0li denotes the jth atom in the second
excited state, and all the other atoms remaining in the
ground state. Projecting jSijk to the fully symmetric (i.e.,
corresponding to the Young diagram fNg) transverse
excited state ð1= ffiffiffiffi

N
p ÞPN

j¼1 j2ji, we find a small overlap

equal to
ffiffiffiffiffiffiffiffiffi
2=N

p
. The rest of the jSijk state corresponds to

the Young diagram fN − 1; 1g. In the case of a collision
that leads to excitation of both atoms to the first transverse
excited level, the probability amplitude of the fully sym-
metric component in the final spin state is even smaller,
being equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=½NðN − 1Þ�p

. We conclude therefore that
a radial-state-changing collision leads with almost 100%
probability to the change of the Young diagram for the
spin state, i.e., to the excitation of a “spin wave” in terms
of Ref. [39].

4. Multicomponent GHD and the collision integral

In the quasi-1D regime, excited states of the transverse
confinement can be populated through high-energy colli-
sions. We restrict our treatment to the three lowest states of
the transverse potential and assume that a majority of atoms
remains in the transverse ground state. By virtue of parity,
two possible excitation (and deexcitation) events are
possible: (i) two atoms in the ground state collide and
both are excited to the first excited state, or (ii) two atoms in
the ground state collide and one is excited to the second
excited state. Thus, the total collision energy must exceed
2ℏω⊥ for transverse excitations to occur.
In the quasiparticle framework of integrable models, the

collisions can be identified as scattering processes whose in
state and out state are given by holes and particles. In the
context of a transverse excitation, the process can be
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understood as the creation of two particle-hole pairs, while
the change in the transverse state is treated as the change
in the psedo-spin state. The 2ℏω⊥ gain in the transverse
potential energy following an excitation is reflected in the
created particles having much lower rapidities compared
to the holes, as the single-particle energy is given by
εðθÞ ¼ ℏ2θ2=2m.
In response to the creation of holes or particles in an

interacting integrable model, all local rapidities are shifted
following the so-called backflow function [55] modifying
the associated collision integral [18]. However, in the ideal
Bose gas phase of the Lieb-Liniger model, where the
collision integral of Ref. [29] originally was derived, the
backflow is negligible. In the quasicondensate regime,
contributions from the backflow may start becoming
relevant; however, the “bare” (ideal Bose gas) collision
integral should still represent leading-order processes.
Indeed, applying the bare collision integral to the exper-
imental results of Ref. [27] (which featured a system
comparable to ours) resulted in a better agreement with
observations than purely 1D GHD [29].
For the ideal Bose gas, the collision integral reads

IðθÞ ¼
X2
n¼1

1

2
ð½Iþ

h ðθÞ − I−
pðθÞ�

þ ½I−
h ðθÞ − Iþ

p ðθÞ�ðνnÞβnÞ; ðB14Þ

where νn is the probability of an atom to be in the nth
transverse excited state, and β1 ¼ 2 and β2 ¼ 1 are the
number of atoms changing state via the collisions. The
terms within the first set of square brackets of Eq. (B14)
describe the creation of quasiparticles and holes following
transverse excitations. The effects of deexcitations are
contained within the second set of square brackets. The
terms are defined as

I�
α ðθÞ ¼

ð2πÞ2ℏ
m

Z
R�

dθ0½jθ − θ0jP↕ðjθ − θ0j; jθ� − θ0�jÞ

× ραðθÞραðθ0Þρᾱðθ�Þρᾱðθ0�Þ�; ðB15Þ

where ᾱ ¼ h for α ¼ p and vice versa, P↕ðθ1; θ2Þ ¼
4c2θ1θ2=½θ21θ22 þ c2ðθ1 þ θ2Þ2� is the scattering probability
with c ¼ 2as=l2⊥, while θ� ¼ 1

2
ðθ þ θ0Þ þ 1

2
ðθ − θ0Þ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8=½ðθ − θ0Þl⊥�2
p

and θ0� ¼ 1
2
ðθ þ θ0Þ − 1

2
ðθ − θ0Þ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8=½ðθ − θ0Þl⊥�2
p

are the rapidities after a collision
leading to excitation or deexcitation of the transverse states,
respectively. The integration ranges in Eq. (B15) are the
following: Rþ is the whole real axis, and R− is comprised
of those real values of θ0, which yield real θ− and θ0−,
i.e., R− ¼ fθ0∶ θ0 < θ −

ffiffiffi
8

p
=l⊥g ∪ fθ0∶θ0 > θþ ffiffiffi

8
p

=l⊥g.
Neglecting any heating effects, the excitation probabilities
νnðtÞ follow the simple rate equations

dνn
dt

¼ 1

2
βn½Γþ

h − Γþ
p ν

βn
n �; ðB16Þ

where Γþ
α ¼ ð2NÞ−1 R∞

−∞ dz
R∞
−∞ dθIþ

α ðθÞ, α ¼ p; h.
In the case where all allowed rapidities are occupied

ρpðθÞ ¼ ρsðθÞ, the density of holes vanishes for most
incoming rapidities θ and θ0 resulting in Γþ

h ≈ 0, meaning
no transverse excitations can occur. Meanwhile, for a non-
degenerate 1D Bose gas, where the quasiparticle statistics
become insignificant, we have ρpðθÞ ≪ ρhðθÞ ≈ 1=ð2πÞ.
Inserting this approximation into Eq. (B15), the collision
integral in Eq. (B14) takes the classical (Boltzmann) limit.
For high temperatures, additional transverse states

beyond the three lowest may become relevant. In this case,
extending the multicomponent model with additional
components and collision channels may be possible,
however, very cumbersome. Meanwhile, if the product
of the 1D atomic density and the 3D s-wave scattering
length becomes larger than 1, then (i) the chemical potential
begins to exceed twice the radial excitation energy, and
(ii) the effective 1D mean-field description is given by an
essentially nonpolynomial nonlinear equation. In Ref. [16],
an effective 1D mean-field equation is derived to describe
the dynamics of a quasicondensate under tight radial
confinement in the high-density regime. The nonpolyno-
mial nature of this mean-field equation (replacing the 1D
Gross-Pitaevskii equation) corresponds in the quantum
regime to a Hamiltonian that substantially deviates from
the Lieb-Liniger model and therefore precludes the use of
the rapidity and other concepts inherent to 1D integrable
theories. In contrast, if the product of the 1D density to the
scattering length is well below 1, the integrability-breaking
processes can be taken into account as a small perturbation
of the integrable model [68]. Clearly, our setup corresponds
to the latter case, as the evolution of the rapidity distribution
(given by GHD) describes the observed dynamics well.

APPENDIX C: DETAILS OF THE NUMERICAL
SIMULATIONS

All the calculations presented in the following are
performed using the IFLUID package [47].

1. Fitting the initial state

Following the evaporative cooling, the system is well
described by a thermal state [46], whose corresponding
quasiparticle distribution ρpðθ; zÞ can be computed using the
thermodynamic Bethe ansatz [5]. The walls of the box
potential are modeled as hard and infinitely tall and separated
by a distance of L ¼ 80 μm. Further, for the potential
between the walls, a sinusoidal function is employed. We fix
the number of atoms N, temperature T, and coupling
constant g according to their measured values. Then, we
fit the amplitude of the sinusoidal potential and the chemical
potential of the system to obtain the best match between the
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measured initial density profile and the theoretical one of
Eq. (B4). The interaction strength is parametrized by the
parameter γ ¼ mg=ℏ2n, which for all realizations explored
here is around 0.002. The thermal state is a nonlinear
function of the potential, meaning higher modes will also
be populated initially, albeit much less than the addressed
mode. We find good agreement between the measured and
simulated dynamics of all modes, not just the one addressed
by the potential.

2. Time evolution

At time t ¼ 0, we assume that the amplitude of the
sinusoidal potential instantly becomes zero, thus realizing a

flat-bottomed box trap. The subsequent evolution of the
quasiparticle distribution is given by the GHD equation

∂tρp þ ∂zðveff ½ρp�ρpÞ ¼ I ½ρp�: ðC1Þ

To numerically solve Eq. (C1), we employ a split-step
scheme: First, we propagate ρp a single time step Δt
(we use Δt ¼ 0.02 ms) following ∂tρpþ∂zðveff ½ρp�ρpÞ¼0

using the solution of characteristics. Next, we account for
the transverse excitations by solving ∂tρp ¼ I ½ρp� for the
same duration Δt.
For a box of length L centered on z ¼ 0, we model the

hard walls by imposing the following boundary conditions:

FIG. 10. Relaxation timescale of the first density mode. For both experimental measurements (points) and GHD simulations (shaded
areas), the timescale τ is obtained by fitting the time evolution of the first density mode δn1ðtÞ with the damped oscillation of Eq. (4).
Four different GHD simulations are carried out: standard 1D GHD, quasi-1D GHD assuming no initial transverse excitations, quasi-1D
GHD with an estimated thermal population of excited states, and quasi-1D GHD with a classical collision integral. The error bars of the
experimental data points represent the 95% confidence interval of τ from fitting with Eq. (4). The extent of the shaded areas reflects the
maximal variation in simulation results considering the uncertainties of both the mode amplitude A and temperature T listed in the table.
The uncertainty of A is given by the 95% confidence interval from fitting with Eq. (4). The measured temperature T is inferred from
density ripples analysis, and the corresponding uncertainties represent the 68% of confidence interval (more details can be found in
Ref. [43]). All simulations assume a mean atomic density of 75 μm−1 in the box. Meanwhile, the measured mean atomic densities hni
obtained by averaging over multiple experimental realizations, and their uncertainties given by the standard deviation can be found in the
table. Differences in mean density and effective box lengths between simulation and experiment are accounted for by scaling the
experimental time axis.
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ρpðz ¼ −L=2; θÞ ¼ ρpðz ¼ −L=2;−θÞ; ðC2aÞ

ρpðz ¼ L=2; θÞ ¼ ρpðz ¼ L=2;−θÞ; ðC2bÞ

which can be interpreted as the quasiparticles having their
rapidity reflected θ → −θ upon colliding with a wall. For
practical purposes, we propagate the filling function ϑ,
rather than the quasiparticle density, for the first part of the
split-step scheme. To this end, we employ the solution by
characteristics, which reads

ϑðt0; z; θÞ ¼ ϑ(t;Uðt0; t; z; θÞ;Wðt0; t; z; θÞ); ðC3Þ

where the position and rapidity characteristics are given by

Uðt0; t; z; θÞ ¼ z −
Z

t0

t
dτveffτ (Uðτ; t; z; θÞ;Wðτ; t; z; θÞ);

ðC4Þ

Wðt0; t; z; θÞ ¼ θ −
Z

t0

t
dτaeffτ (Uðτ; t; z; θÞ;Wðτ; t; z; θÞ);

ðC5Þ

respectively. Here, the subscript τ denotes the dependence
on the state at said time. Further, aeffτ ¼ −ℏ−1

∂zUðzÞ in our
case. For the numerical simulation, we discretize the time
axis in steps of Δt and approximate the characteristics to
first order [47]. To account for the boundary conditions
(C2a) and (C2b), the characteristics are modified in the
following manner:

Wboxðt0; t; z; θÞ ¼
8<
:

−W for U − L=2 > 0;

−W for U þ L=2 < 0;

W otherwise;

ðC6Þ

and

Uboxðt0; t; z; θÞ ¼
8<
:

L − U for U − L=2 > 0;

−L − U for U þ L=2 < 0;

U otherwise:

ðC7Þ

Note that all initial states of ρp (and therefore, ϑ) treated
here are symmetric in both real and rapidity space, whereby
the solutions obtained using the characteristics above are
identical to the ones obtained using periodic boundary
conditions. We check this numerically.
Next, to account for collisions leading to transverse

excitations, we update the quasiparticle distribution follow-
ing ρpðtþ ΔtÞ → ρpðtþ ΔtÞ þ 0.5Δt(3I ½ρpðtþ ΔtÞ�−
I ½ρpðtÞ�). For the simulations presented in the main text,
we assume no atom losses and no initial transverse
excitations. However, we also perform a number of
quasi-1D simulations starting with a thermal occupation

of the transverse states, yielding similar results (see
Fig. 10). To estimate the thermal occupation, we fit the
initial measured density profiles to the combined density

profile of three thermal states fρðlÞp gl¼0;1;2 corresponding
to the three lowest transverse levels, with the
chemical potential of each thermal state offset by
the transverse potential energy lℏω⊥. The fraction of
atoms in each transverse state follow from

νl ¼
R
dx

R
dθρðlÞp =

P
j

R
dx

R
dθρðjÞp .

APPENDIX D: APPARENT RELAXATION IN THE
TOMONAGA-LUTTINGER LIQUID MODEL

As argued in the main text, the Tomonaga-Luttinger
liquid (TLL) model is unsuitable to describe the many-body
dynamics observed in our experiments. Indeed, for the
quenches performed, the model does not predict any
relaxation of the excited dynamics. However, due to the
statistical nature of our experiment, the model does
facilitate an apparent relaxation: Following variations of
the atom number, and hence of the speed of sound, between
individual experimental repetitions, the dynamics of said
repetitions can dephase with respect to one another. Thus,
when averaging the measured densities, an apparent relax-
ation of the mean density nðz; tÞ may occur.
The TLL Hamiltonian can be derived from a perturbative

expansion of the Lieb-Liniger Hamiltonian, under the
assumption of small density fluctuations and long-
wavelength phase fluctuations [53]:

HTLL ¼
Z

dz

�
g
2
δn̂2ðzÞ þ ℏ2

2m
n0ðzÞ∂zϕ̂ðzÞ2

�
; ðD1Þ

FIG. 11. Relaxation timescale τ obtained by fitting the first
density mode δn1ðtÞ from 1D GHD simulations with the damped
oscillation of Eq. (4). The fitted timescale is shown as a function
of temperature T and initial mode amplitude A. By increasing
either the temperature or the mode amplitude, the spread in
rapidities of the density perturbation increases, thus resulting in a
faster dephasing.
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where δn̂ are the density fluctuations relative to the back-
ground n0, and ϕ̂ is the phase of the quasicondensate. In the
box trap, the eigenfunctions of the TLL Hamiltonian are
noninteracting phononic modes of frequencies ωk ¼ vsk,
where vs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gn0=m

p
and k ¼ ð2π=LÞl, with l ¼ 1; 2; 3;…

[61]. In the limit of low-energy excitations, that means low
temperatures and weak perturbations, the geometric quench
implemented in our experiment can be viewed as the
excitation of the coherent population of a single phononic
eigenmode.
In the following, we demonstrate that even upon con-

sidering such statistical sources of relaxation, low-energy
field theories remain unable to capture the observed
dynamics of the experiment. To this end, we consider
the two quenches of Fig. 2 with low initial mode amplitude
and temperatures of T ¼ 46 nK and T ¼ 120 nK. To study
how a given variation in the atom number affects
the dynamics of the mean density, we postselect the full
dataset of measurements to obtain subsets with variations

of ΔN ¼ 20% and ΔN ¼ 10%. Note that following post-
selection, we ensure that the atom numbers of the subsets
remain normally distributed around the same mean value.
From the selected subset, we compute the expectation value
of the density perturbation δnðz; tÞ and extract the evolution
of the addressed mode δn1ðtÞ, as described in the main text.
The resulting evolution of δn1ðtÞ is plotted in Fig. 12 for the
ΔN ¼ 20% and ΔN ¼ 10% subsets as blue and red dots,
respectively. As is evident from the figure, the observed
relaxation exhibits no change following the postselection.
Further, we confirm no significant increase in the error
of the mean. For comparison, we compute the expected
relaxation of dynamics following the Tomonaga-Luttinger
liquid model for the two subsets. Here we model each
realization in the subsets as the excitation of a single
phononic mode propagated according to Eq. (D1).
Averaging over the different realizations produces the
results plotted in Fig. 12 as continuous lines. As one
can see, the TLL apparent relaxation strongly depends on
the variance of the atom number; the greater the variation of
the speed of sound, the faster the damping. Such a behavior
is not reflected in the measured dynamics, again demon-
strating the inability of the TLL model in describing our
experimental system.
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