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The exploration of quantum spin liquids (QSLs) has been guided by different approaches including the
resonating valence bond (RVB) picture, deconfined lattice gauge theories, and the Kitaev model. More
recently, a spin-liquid ground state was numerically established on the ruby lattice, inspired by the Rydberg
blockade mechanism. Here, we unify these varied approaches in a single parent Hamiltonian, in which local
fluctuations of anyons stabilize deconfinement. The parent Hamiltonian is defined on kagomé triangles—
each hosting four RVB-like states—and includes only Ising interactions and single-site transverse fields. In
the weak-field limit, the ruby spin liquid and exactly soluble kagomé dimer models are recovered, while the
strong-field limit reduces to the Kitaev honeycomb model, thereby unifying three seemingly different
approaches to QSLs. We similarly obtain the chiral Yao-Kivelson model, the honeycomb toric code, and a
new spin-1 quadrupolar Kitaev model. The last is shown to be in a QSL phase by a nonlocal mapping to the
kagomé Ising antiferromagnet. We demonstrate various applications of our framework, including (a) an
adiabatic deformation of the ruby lattice model to the exactly soluble kagomé dimer model, conclusively
establishing the QSL phase in the former and (b) demystifying the dynamical protocol for measuring off-
diagonal strings in the Rydberg implementation of the ruby lattice spin liquid. More generally, we find an
intimate connection between Kitaev couplings and the repulsive interactions used for emergent dimer
models. For instance, we show how a spin-1=2 XXZmodel on the ruby lattice encodes a Kitaev honeycomb
model, providing a new route toward realizing the latter in cold-atom or solid-state systems.
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I. INTRODUCTION

The study of quantum spin liquids lies at the intersection
of quantummagnetism, lattice gauge theories, and quantum
computing, and it has key implications for all three fields.
Beginning with the seminal idea of resonating valence bond
(RVB) liquids [1], early theoretical work connected this
picture to the notion of a gapped spin liquid (SL) [2] and
made connections to parallel work on Z2 lattice gauge
theories [3,4]. Such Z2 spin liquids and related states have
been studied as models of frustrated magnetism [5–9] and
other strongly correlated materials [10–19]. A complemen-
tary viewpoint emphasizes the long-range quantum entan-
glement and topological order [20–26] of gapped quantum
liquids. This has important implications for quantum error
correction and the quest to build a fault-tolerant quantum
computer [27,28]. In fact, the degenerate ground states of
the Z2 topological order underlie the “toric-code” [23,29]

and “surface-code” [30] models for topologically protected
quantum memory.
However, despite these strong motivations and years of

theoretical and experimental effort, and notwithstanding
multiple promising candidate materials [5,31], a clear-cut
realization of Z2 topological order has yet to be demon-
strated in a solid-state material. Recently, progress has been
reported by approaching this problem from an entirely
different angle, utilizing synthetic quantum platforms such
as Rydberg atom arrays [32,33] and near-term quantum
devices to engineer Z2 topological order [34–36]. While
these and other proposals [37–39] continue to be explored,
new theoretical approaches for constructing topologically
ordered states [40–47] are also being actively pursued. This
renewed interest in Z2 spin liquids and their realization in
new platforms calls for a deeper understanding of the
landscape of models stabilizing these phases.
Landscape of models.—Focusing on models realizingZ2

spin liquids, there are four approaches worth recalling. First
is the paradigmatic toric-code model [23], which, however,
requires multibody interactions and is challenging to
directly realize. Next are dimer models on nonbipartite
lattices [48,49], such as the kagomé [50] or triangular [51]
lattice. The dimers themselves may either represent singlets
between spins on neighboring sites or be an intrinsic degree
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of freedom where the dimer constraint is enforced [17,51]
or emerges from interactions [52–54]. Third, there are
Kitaev spin models [29], including the honeycomb lattice
S ¼ 1=2 model and related constructions [55–71], which
can be solved by mapping to noninteracting fermions. In all
these previous cases, one is guaranteed a spin-liquid phase
from analytical arguments. However, in some instances,
not just the ground state but every excited state can be
analytically obtained (toric code [23] or kagomé dimer
liquid [50]), while in other instances (triangular dimer
model at the Roksar-Kivelson point [17,51]), only the
ground state is analytically accessible. Finally, there are a
handful of models that require full-fledged numerics to
establish their phase diagrams. This includes the ruby
lattice spin liquid with Ising or PXP-type interactions
[34] and the spin-1 Kitaev model [72–74].
These various models may seem unrelated—not only

because they reside on different lattices but also because the
approach to solving them varies substantially. Furthermore,
one typically attributes the spin liquid in these different
models to different kinds of frustration—“geometrical”
frustration in the case of nonbipartite dimer models, in
contrast to spin-orbit induced “exchange” frustration in
Kitaev magnets [75]. Despite these apparent differences,
we show that there are a number of hidden relations
between these various models that are exposed by embed-
ding them in a larger parent model.
Deconfinement from fluctuations.—A common theme

running through this paper is that anyon fluctuations, in
certain settings, provide a route to deconfinement. This
may seem paradoxical since it is known that anyon
fluctuations beyond a threshold lead to anyon condensation
(and hence confinement of all other anyons that braid
nontrivially with it). However, in a recent work of a model
of Rydberg atoms on the ruby lattice [34], an intermediate
strength of e-anyon fluctuations was shown to stabilize the
toric-code topological order by melting a valence bond
solid. Indeed, the present work can be viewed as exploring
other contexts where such fluctuations can be helpful and
showing how the outcomes depend on the choice of the
fluctuating anyon. In fact, the parent model described
below has a fixed two-body interaction term that selects
the relevant constrained Hilbert space, but the different
transverse magnetic field terms correspond to choosing
distinct anyon fluctuations.
Parent model.—We study a simple emergent dimer

model on the kagomé lattice. We treat triangles as the
elementary unit, each of which can host four distinct states:

. As a concrete implementation, such an
effective four-level state, or “spin-3=2”, can naturally
emerge from, e.g., blockade interactions [76–79], such
as in the recent Rydberg atom array experiment [35] where
each red dimer represents an excited atom [80]. (We discuss
possible underlying spin-1=2 models in Sec. VI.) Our
Hamiltonian is then Ising-like: Diagonal two-body

interactions energetically enforce the dimer constraint
between kagomé triangles, and a single-site field introduces
ultralocal fluctuations of the anyons in a dimer model. In
fact, the previously studied case of the ruby lattice spin
liquid [34] corresponds to the following choice of trans-
verse field in this four-state system:

XPXP on ruby lattice ¼

0
BBB@

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

1
CCCA: ð1Þ

Its reported spin-liquid ground state is based on numerical
simulations. However, in this work, we show that a simple
modification,

X e-anyon fluctuations ¼

0
BBB@

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1
CCCA; ð2Þ

FIG. 1. Schematic phase diagram. We consider an emergent
dimer model on the kagomé lattice, which can locally be written
as a four-state model on the honeycomb lattice (Sec. II) or two-
body spin-1=2models on the ruby or star lattices (Sec. VI). Weak
e- or f-anyonic fluctuations generate a solvable dimer liquid
similar to the toric code [50]. Strong fluctuations give effective
Kitaev-type Hamiltonians: In the case of f fluctuations, this is the
paradigmatic spin-1=2 Kitaev honeycomb model, whereas for
(frustrated) e fluctuations, we discover a new spin-1 quadrupolar
Kitaev liquid. The f-fluctuating model is free-fermion solvable
and contains a non-Abelian phase or Majorana Fermi surface
(depending on the choice of sign); the e-fluctuating model is dual
to the frustrated Ising model on the kagomé lattice, showing that
the Z2 SL persists to the spin-1 Kitaev limit. Finally, our parent
model also contains the ruby lattice Ising model with Rydberg
blockade [34], and we numerically confirm that its SL is
adiabatically connected to the aforementioned solvable dimer
liquid.
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leads to an exactly solvable dimer liquid for small
fields, which we connect to the aforementioned model.
Remarkably, its spin-liquid phase is robust as we take the
field strength to þ∞, where we find that the dimer-
enforcing interactions effectively become spin-1 Kitaev-
like interactions. We also consider another choice of field
[81], which is integrable and provides a link to the spin-1=2
Kitaev model. Thus, it appears that the peculiar Kitaev
couplings can be motivated not just by the abstract require-
ment of exact solubility but also from a geometric RVB
picture. Some of the connections are summarized in Fig. 1.
Outline.—In Sec. II, we start by further motivating our

parent Hamiltonian by introducing convenient operators
and their graphical notation, after which we summarize
the key physical results. Section III discusses in more
detail the case of monomer fluctuations (2) in the
emergent dimer model, including how its exactly solvable
dimer model in the weak-field limit adiabatically connects
to a novel spin-1 quadrupolar Kitaev liquid in the large-
field limit. Section IV studies the case for fermionic
(monomer-flux composite) anyon fluctuations, which
turns out to be exactly solvable and connects to the
spin-1=2 Kitaev magnet; here, we introduce a Majorana
representation to aid the analysis alongside the graphical
notation. In Sec. V, we explore applications of some of
these insights, including interpolating the spin liquid of
the ruby lattice PXP model [34] to the exactly solvable
dimer liquid found in Sec. III, and elucidating the
“Hadamard” rotation used in recent Rydberg experiments
[35] to rotate off-diagonal string operators to diagonal
ones. Finally, Sec. VI highlights how our effective four-
state system can arise from spin-1=2 systems in two
different ways, before concluding in Sec. VII.

II. MODEL

A. Emergent dimer model in a tensor-product
Hilbert space

We study a quantum dimer model on the kagomé lattice.
Somewhat uncommon for dimer models, we define it in a
tensor-product Hilbert space. One option is to treat each
triangle as a four-level system: Either the triangle is empty
or one of the three bonds has a dimer. Thus, the dimer
model is encoded in an effective four-state or “spin-3=2”
model on the honeycomb lattice, whose sites represent the
triangles of the kagomé lattice; see Fig. 2. (To see how this
can emerge from a spin-1=2 model, see Sec. VI.)

1. Parity string operator and dimer constraint

By construction, this tensor-product Hilbert space
ensures that a given triangle cannot contain more than
one dimer. However, it does not ensure the full dimer
constraint, namely, that every vertex of the kagomé lattice is
touched by exactly one dimer. We enforce this constraint

energetically by coupling two neighboring triangles, giving
rise to an emergent dimer model at low energies.
To this end, it is very convenient to introduce diagonal

string operators that measure the parity of the dimers that it
intersects. Visually [82], we depict this as a dashed line:

ð3Þ

¼ j0ih0j − jxihxj − jyihyj þ jzihzj: ð4Þ
We find it convenient to work with the graphical notation as
in Eq. (3). However, for transparency and completeness, we
include Eq. (4) where the basis states are labeled by the type
of bond of the kagomé lattice supporting the dimer (see
Fig. 2 for the x, y, z labels of the three directions).We denote
the above operator asZα, with α ¼ x, y, z, depending on the
orientation of the line cutting through the triangle:

ð5Þ

Note thatZxZyZz ¼ 1. Equivalently, the product of any two
equals the third, which we can represent graphically

as .

The dimer constraint for any two touching triangles of
the kagomé lattice is then enforced by including the Ising

(a)

(b)

FIG. 2. Emergent dimer model on the kagomé lattice as a spin-
3=2 model on the honeycomb lattice. (a) Each triangle of the
kagomé lattice is effectively a four-level state as shown, making a
kagomé lattice dimer model into a spin-3=2 model on the
honeycomb lattice. Labeling the three different types of bonds
of the honeycomb lattice as x, y, z [29] also induces a labeling on
the kagomé lattice as shown. Correspondingly, we can label the
basis states according to whether the dimer occupies the x, y, z
bond of the kagomé lattice. (b) An example of how a dimer state
on the kagomé lattice is encoded in a spin-3=2 state on the
honeycomb lattice. This tensor-product Hilbert space not only
contains all dimer coverings but also defects: The dashed line
highlights a monomer (e-anyon) excitation (i.e., a vertex not
touched by a dimer). Directionally dependent two-body inter-
actions energetically penalize such configurations to obtain the
emergent dimer constraint in Eq. (6) (see also Fig. 3).
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penalty term
P

α∈fx;y;zg
P

hi;jiα Z
α
iZ

α
j on the honeycomb

lattice. For instance, for a z bond of the honeycomb lattice,
the Gauss law is

ð6Þ

Indeed, given the definition (3), this is satisfied if and only
if there is exactly one dimer touching this vertex [83].
Upon enforcing the Gauss law everywhere, the resulting

ground-state manifold is extensively degenerate, given by
all dimer configurations of the kagomé lattice. We let the
local pair creation of charges and/or fermions lift this
degeneracy (see Sec. II B for the Hamiltonian). Crucially,
such anyon fluctuations do not commute with the afore-
mentioned energetic dimer constraint: This is key to being
able to write down an ultralocal Hamiltonian that still gives
rise to an effective resonating dimer Hamiltonian for small
fluctuations. Before concretely defining the Hamiltonian,
we need to briefly discuss what the excitations are and what
operators create them.

2. Monomers and fluxes in dimer models:
e and m anyons

It is known that a dimer model (orZ2 gauge theory, more
generally) admits three types of topological excitations
[12,23], commonly called the e, m, and f anyons. The first
is the “electric charge” of the emergent gauge theory; in the
dimer model, this corresponds to violations of the Gauss
law (6). Avertex withGv ¼ 1 has either none or two dimers
touching—indeed, since our Hilbert space only allows for
one dimer per triangle, there are no states with more than
two dimers touching per vertex. These two types of charges
can be called monomer and double-dimer, respectively,
although we will sometimes refer to both as a monomer for
simplicity, which is a harmless abuse of language since
both are in the same superselection sector. The m anyon is
the “magnetic flux” of the gauge theory (sometimes also
called a vortex or vison); in a dimer model, it is encoded in
the phase information of the wavefunction, as we will
discuss. The e and m anyons are bosonic, but they have
mutual semionic statistics; this is the Z2 analogue of the
Aharonov-Bohm effect [84]. This statistics implies that
their composite is a fermion (f ¼ e ×m).
By definition, a local operator can never create a single

topological excitation; instead, they are created at the end
of stringlike operators. Fluxes are created by an open string
of Zα operators (which we soon discuss in more detail).
Similarly, we can define an off-diagonal string operator that
shuffles dimers around and creates monomers (i.e., e
anyons) at its endpoints:

ð7Þ

We denote this blue wiggly line by Xα depending on which
type of bond (equivalently, in which direction) it acts:

ð8Þ

(We note that XxX yX z ¼ 1.) The key algebraic property is
that the diagonal string Z and off-diagonal string X anti-
commutewhen they intersect; otherwise they commute [85]:

ð9Þ

This can be interpreted as the mutual semionic statistics
between e and m anyons. Indeed, it implies that if one acts
with a string ofXα on a state that satisfies theGauss law (i.e.,
a valid dimer covering of the kagomé lattice), the resulting
state will violate the Gauss law at the two ends of the string
[i.e., measuring the Gauss operator Gv in Eq. (6) around
those vertices will give þ1 instead of −1, indicating the
presence of charges].
This is in agreement with the claim that fluxes are

created at the endpoint of a Z string, such that one can
interpret the Gauss operator (6) as a tiny worldline of a flux
excitation. Indeed, the latter measures the charge content of
the enclosed vertex by virtue of the mutual statistics. The
fact that Gv ¼ −1 for a dimer state (rather than Gv ¼ 1)
thus implies that every vertex hosts a “background” e
anyon; it is for this reason that a dimer model is sometimes
called an odd Z2 gauge theory. When we speak of an e-
anyon excitation, it is usually relative to this background.
This can be likened to a Mott insulator, where we might
describe the act of removing a background charge as
adding a hole excitation (and note that for a Z2 gauge
theory, there is no difference between charges and holes
since −1 ¼ 1 mod 2).
Similarly, closed X loops measure the parity of fluxes

enclosed. Indeed, this is the worldline of an e anyon (or
monomer) that picks up the presence of a flux on that
plaquette due to the Aharonov-Bohm effect. The smallest
such loop is the “Wilson” [86] plaquette operator:

ð10Þ

Note that such a closed-loop operator respects the Gauss
law and thus shuffles within the manifold of valid dimer
coverings; in fact, it resonates 25 ¼ 32 distinct dimer
patterns around the hexagon, making its action equivalent
to the operator defined by Misguich, Serban, and Pasquier
in Ref. [50]. We sayWp ¼ 1 (Wp ¼ −1) labels the absence
(presence) of a magnetic flux on this plaquette, which can
be toggled by the endpoint of a Zα string [due to Eq. (9)].
Relatedly, the mathematical identity XxXyX z ¼ 1 can thus
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be physically interpreted as saying that fluxes cannot live
on the triangles of the kagomé lattice—only on the
hexagons.
It is a special property of the kagomé lattice (or more

generally, lattices of corner-sharing triangles) that one can
even define such an off-diagonal string operator. For dimer
models on more generic lattices (including the square,
triangular, and honeycomb lattices), the dimer shuffles
needed to create charges usually depend on the particular
state on which one acts [88]. The absence of such a string
operator for those lattices prevents the definition of a
stabilizer [89] dimer liquid Hamiltonian—indeed, the
solvable Rokhsar-Kivelson models [17] do not have a
solvable spectrum. Only the ground state is exactly known.
In contrast, lattices of corner-sharing triangles admit such
stabilizer liquids [50]. In fact, the stabilizers defining the
fixed-point dimer liquid on the kagomé lattice are exactly
the commuting loop operators Gv in Eq. (6) and Wp in
Eq. (10), as we discuss in Sec. III A. (Note that while the
toric-code Hamiltonian is also a stabilizer Hamiltonian, its
space of states does not encode a dimer Hilbert space;
although see Sec. V D.)

3. Fermionic composite: f anyons

The emergent fermion in a dimer model is the composite
of the monomer and flux. Hence, one way of creating a
pair of fermions is by the product of the above string
operators, e.g.,

ð11Þ

Indeed, this creates an “e ×m” pair on both sides of the
triangle. However, this is not the ideal “string operator” for
creating a fermion pair separated by an arbitrary extent. To
see why, we need only consider a few more triangles:

ð12Þ

Note that while we indeed act with the product operator
X zZz on the left and right triangles, we act with X z on the
middle triangle. The reason for this is conceptually simple:
Charges live on the vertices of the kagomé lattice, whereas
fluxes live at the centers of the hexagons (i.e., vertices of a
triangular lattice). The spacing of these lattices differs by a
factor of 2; hence, whenever the flux moves by one step, the
charge needs to move by two steps. This is seemingly an
obstruction to defining a local operator whose product
gives the fermionic string operator. We note that defining,
say, XαZα for up triangles and Xα for down triangles does
not solve this issue since then the fermion cannot make
certain turns.
There is a simple way of avoiding this issue: We let the

flux move “sideways,” at a 60-degree angle relative to the

motion of the e anyon so that the flux effectively moves
2 × cosðπ=3Þ ¼ 1 steps in that direction. Visually,

ð13Þ

with all of its rotations, and with the mirror image for
downward-facing triangles. Indeed, their products give us
the movement of a fermion:

ð14Þ

There is also a more fundamental and general perspec-
tive on why these are the appropriate fermion hopping
operators. The key point is that fermions—being a bound
state of a charge and a flux—are “framed”: Upon placing a
charge on a vertex of the kagomé lattice, we have a choice
of putting the flux on one of the two neighboring
plaquettes. Hence, we first need to choose a “framing”;
i.e., for each e anyon, we have to choose whichm anyon we
want to pair with it to define our fermion f; once this choice
is made, one also directly obtains a notion of “fermion
hopping operator” for this choice of fermions living on the
kagomé lattice. This choice is equivalent to fixing an
orientation of the bonds of the honeycomb lattice: e anyons
live on the bonds of the honeycomb lattice (i.e., the vertices
of the kagomé lattice), and one can then associate them to
m anyons on the right-hand side of the arrow. A particularly
simple choice is to, e.g., choose arrows which point from
the A sublattice to the B sublattice of the honeycomb lattice

(a)

(b)

FIG. 3. Topological string operators and stabilizers for dimer
liquids. We define diagonal Zα [orange; Eq. (3)] and off-diagonal
Xα [blue; Eq. (7)] operators in the spin-3=2 Hilbert space, which,
respectively, create pairs of m and e anyons in our emergent
dimer model. (a) These string operators anticommute when they
intersect, encoding the mutual semionic statistics of e and m
anyons. (b) Closed loops of these operators define commuting
stabilizers. We add the diagonal loop (which is a two-body
operator in the spin-3=2 space) as an energetic constraint in the
model (15); at low energies, Gv ¼ −1 enforces the dimer
constraint. Single-site e-anyon (f-anyon) fluctuations perturba-
tively generate the Wp (W0

p) stabilizers, which can be interpreted
as worldlines of these anyons around a plaquette. The Hamil-
tonian for the fixed-point dimer liquid on the kagomé lattice is
simply H ¼ P

v Gv −
P

p Wp.
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or, equivalently, from the up triangles to the down triangles
of the kagomé lattice. With this choice of fermions, the
hopping operator is indeed given by Eq. (13). Moreover, all
choices of orientations are unitarily related [90].

B. Hamiltonian

We now have all the pieces to define our emergent dimer
Hamiltonian in the above Hilbert space. It takes the form of
an Ising model in terms of the above spin-3=2 operators on
the honeycomb lattice (see Fig. 2):

Ha ¼ J
X

α¼x;y;z

X
hi;jiα

Zα
iZ

α
j þ ht

X
i

Xa;i − hl
X
i

Zi ; ð15Þ

with a “longitudinal” field Z ¼ Zx þ Zy þ Zz, which
functions as a chemical potential for dimers. As discussed
above, J > 0 energetically enforces the dimer constraint
[imposing the Gauss law (6) for large J]. Note, the J term
has, in some ways, the flavor of a Kitaev interaction [29],
with terms like Zz

iZ
z
j on the vertical bonds and rotated

indices for the other two directions of bonds. In fact, we
will see that, in the presence of a large field, this diagonal
interaction—implementing the dimer constraint—can
indeed morph into an effective off-diagonal Kitaev cou-
pling (see Secs. III C and IV C). This result points to how
“geometric frustration” and “exchange frustration” are two
sides of the same coin.
The only quantum term is a “transverse field” Xa

corresponding to anyon pair creation. We consider three
choices (which we define in the following paragraphs),
corresponding to e-anyon pair fluctuations (a ¼ e-e),
fermionic fluctuations (a ¼ f-f), and the previously stud-
ied model given by the ruby lattice Ising PXP model
(a ¼ ruby) [34]. For the first two choices, we always set the
longitudinal field hl ¼ 0; only the ruby model has hl ≠ 0
(assigning different energy costs to monomers and double
dimers) to help stabilize the topological liquid phase.

1. He-e: e anyon fluctuations

The first choice of transverse field is the fluctuation
of e-anyon pairs:

ð16Þ

(and the same for down triangles); this corresponds to the
matrix (2) mentioned in the Introduction. As discussed in
the previous subsection, this indeed creates pairs of Z2

charges. Moreover, since the Xα operators mutually com-
mute, Wp defined in Eq. (10) is a local conserved quantity
for all J; ht (where hl ¼ 0):

½He-e;Wp� ¼ 0: ð17Þ

As discussed above, Wp can physically be interpreted as
the worldline of an e anyon wrapped around a hexagon, and
consequently, the valueWp ¼ �1measures the presence or
absence of a flux excitation on the plaquette p. (Later, we
will see that the ground state of He-e is flux-free: Wp ¼ 1.)

2. Hf -f : f -anyon fluctuations

The second case is the fluctuation of fermion pairs.
As we saw in Eq. (13), the right way to generate (framed)
f-anyon fluctuations or dynamics is

ð18Þ

We use the convention that we first act with the diagonal
(orange dashed line) operator. Explicitly (in the order of the
above pictures), Xf-f ¼ iXxZy þ iXyZz þ iX zZx for up
triangles and Xf-f ¼ �ðiXxZz þ iXyZx þ iX zZyÞ for
down triangles. Note that the factor of i is necessary to
make the Hamiltonian Hermitian [since the X and Z
operators anticommute when they intersect; see Eq. (9)].
We see that we have a choice of relative sign � in Eq. (18).
The choice þ is achiral [91] whereas the choice of − is
chiral, and we will see that they lead to very different phase
diagrams for strong fluctuations [and, in fact, even for
small fluctuations, they lead to distinct symmetry-enriched
topological (SET) order for the deconfined Z2 gauge
theory]. We will henceforth refer to these two choices as
the achiral and chiral fermion-fluctuating models.
Similar to the previous case, this model also has a

conserved plaquette operator:

ð19Þ

This can be interpreted as an f-anyon traveling around a
hexagon [92]. We will find that in the ground state,W0

p ¼ 1

for the chiral model, whereas the achiral model undergoes a
flux transition (W0

p ¼ −1 for small fields,W0
p ¼ 1 for large

fields; see Sec. IV B).
For both He-e and Hf-f (where we set hl ¼ 0), it can be

shown that the sign of J can be toggled by a unitary
transformation [101]. The physical interpretation of J < 0
is as a self-avoiding loop model on the kagomé lattice
(without any sharp turns), i.e., a toric-code model with
additional constraints. We henceforth set J > 0.
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3. Hruby: Ruby lattice Ising model

The third choice of transverse field is given by

ð20Þ

This term naturally arises in the spin-1=2 Ising model
on the ruby lattice [34] and corresponds to Eq. (1)
mentioned in the Introduction (up to a factor of 2).
More precisely, as explained in Sec. VI A, we can
equate a limit of Hruby in Eq. (15) with the PXP model
on the ruby latticeHPXP ¼ 1

2

P
i ðΩPσxi P − δσzi Þ introduced

in Ref. [34]. Here, P projects into the subspace where an
up-spin blockades the six nearest spins from being up,
which physically can arise from a Rydberg blockade (this
corresponds to theU;V → ∞ limit in Sec. VI A). This PXP
model was numerically argued to have a spin liquid for
0.5 ⪅ jΩj=δ ⪅ 0.7. The correspondence (see Sec. VI A) is
that in the limit that our longitudinal field hl → J, more
precisely 0 < J − hl ≪ J, we recover the PXP model with

Ω ¼ 4ht and δ ¼ 4ðJ − hlÞ: ð21Þ
C. Brief summary of the phase diagram(s)

In Fig. 4, we summarize the phase diagrams of Eq. (15).
While we discuss the phase diagram in more detail
throughout this paper, let us briefly discuss some of the
salient features. This also serves as an outline for the rest of
the paper.

1. Hruby

As we have already mentioned, the model Hruby
corresponds to a previously studied spin-1=2 Ising model
on the ruby lattice (see Sec. VI A). Using the correspon-
dence in Eq. (21), the known phase diagram of the PXP
model [34] implies the spin-liquid regime shown in Fig. 4.
Evidently, the anyon fluctuations in X ruby in Eq. (20) lead
to deconfinement; it is this observation that motivates
much of the present study.

2. He-e

Our charge-fluctuating model arises by simplifying the
transverse field of X ruby in Eq. (20) to Xe-e in Eq. (16).
Moreover, we set hl ¼ 0; this simply assigns the same
energy cost to monomers and double dimers.
In Sec. III A, we show how the limit of small transverse

field gives an exactly solvable stabilizer VII Hamiltonian
for the dimer liquid—a novel reincarnation of the kagomé
lattice model introduced byMisguich, Serban, and Pasquier
[50]. In Sec. VA, we adiabatically connect this solvable
point to the aforementioned ruby lattice spin liquid.

The fate for the large field (i.e., strong charge fluctua-
tions) depends on the sign of ht. If ht < 0, the charges
eventually condense, leading to a trivial phase. However,
for ht > 0, the charge fluctuations are frustrated, and we
find that the Z2 spin liquid is robust as ht → þ∞. This
claim turns out to be dual to the known disordered phase of
the spin-1=2 transverse-field Ising model on the kagomé
lattice (Sec. III B).
In Sec. III C, we show how this frustrated strong-field

limit gives a novel spin-1 quadrupolar Kitaev model on the
honeycomb lattice. Its interactions naturally descend from
the J couplings that enforce the dimer Gauss law. We find

FIG. 4. Phase diagrams for emergent dimer models on kagomé
lattice with fluctuating anyons. We consider the spin-3=2 Ising
model on the honeycomb lattice, defined in Eq. (15) with the
three different choices of transverse field in Eqs. (16), (18), and
(20). Setting ht ¼ 0 gives a degenerate space of dimer coverings
on the kagomé lattice, which is lifted in different ways by ht ≠ 0.
The model Hruby has been studied previously as a spin-1=2 Ising
model in the context of the Rydberg blockade, and numerical
studies indicate that monomer (e-anyon) fluctuations stabilize a
Z2 spin or dimer liquid (Z2 SL) [34]. Here, He-e is a simplified
model with the same mechanism, where we report an exactly
solvable dimer liquid (23) in the limit ht → 0, which we more-
over show to be adiabatically connected to the ruby model. If the
fluctuations are strong and unfrustrated (i.e., negative transverse
field), we find a trivial phase. In contrast, frustrated e-anyon
fluctuations (ht > 0) stabilize the spin liquid up to ht → ∞,
where we find a spin-1 quadrupolar Kitaev model (28). We also
consider the case with f-anyon (monomer-flux composites)
fluctuations, where the small-field case is similar, although in
the case of chiral fluctuations it leads to a distinct SET phase in
the presence of translation symmetry: Z2 SL (Z2 SL’) has a
background e anyon (f anyon). Larger fields stabilize a Majorana
Fermi surface (FS) for achiral fluctuations (which, moreover, has
a flux transition; see Sec. IV B) and a gapped non-Abelian Ising
topological order (Ising SL) in the chiral case (the latter
corresponds to a sector of the Yao-Kivelson model [55]). The
jhtj → ∞ limit recovers the spin-1=2 Kitaev honeycomb model.
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that its ground state is a remarkably robust Z2 spin liquid
with very short correlation length.

3. Hf -f

If we instead consider fermionic fluctuations (corre-
sponding to charge-flux bound states), we still find that
these stabilize a Z2 spin liquid for a small field, but the
phase diagram is richer.
First, both the chiral and achiral models give rise to an

exactly solvable dimer liquid for weak fields. However,
only the achiral model is in the same phase as the solvable
liquid we encountered in the discussion of He-e (i.e., the
Misguich-Serban-Pasquier model [50]). The chiral model
leads to a distinct SET phase: It is “double-odd” Z2 gauge
theory, whereas conventional dimer liquids on the kagomé
lattice (with one dimer per vertex) are only “odd.” Indeed,
in the presence of translation symmetry that does not
permute anyons, one can assign a “background” anyon
to each unit cell [102,103]; the choice of trivial anyon
corresponds to even gauge theory, while the e-anyon
corresponds to odd; the double-odd type corresponds to
a fermion in each unit cell (see Sec. IVA).
Second, we elucidate the phase diagram for arbitrary

fields by showing the models are solvable using the
methods introduced by Kitaev [29] (Sec. IV B). The
chiral model can be related to the Yao-Kivelson model
(see Sec. VI B), which is known to have both a Z2

spin liquid as well as a non-Abelian chiral spin liquid
[55]. We find a similar phase diagram for the achiral
case, where the latter phase is replaced by a Majorana
Fermi surface.
Lastly, the large-field limit transforms the J term in

Eq. (15) to the spin-1=2 Kitaev honeycomb model (see
Sec. IV C).

III. QUANTUM LIQUIDS FROM e-ANYON
FLUCTUATIONS

Let us consider He-e [i.e., the parent Hamiltonian in
Eq. (15) with Xe-e in Eq. (16)]. Using our graphical
notation,

ð22Þ

We show that in the weak-field limit, leading-
order perturbation theory gives us a stabilizer
Hamiltonian for a topological dimer liquid on the kagomé
lattice (Sec. III A). [Later, in Sec. VA, we adiabatically
connect this solvable point to the spin-1=2 ruby lattice Ising
model, i.e., Eq. (15) with Eq. (20).] In Sec. III B, we show
that for generic values of ht, we can effectively solve for the
ground-state properties of He-e via a duality to a previously
studied model with a known phase diagram. This suggests
that the spin liquid is very robust. The strong-field limit of

frustrated monomer fluctuations connects to a spin-1
Kitaev model (Sec. III C).

A. Weak-field limit: Dimer liquid stabilizer model

In Sec. II B, we discussed that the Ising term in Eq. (15)
enforces the dimer constraint on the kagomé lattice
(presuming the “antiferromagnetic” case J > 0). This gives
an exponentially large degeneracy if ht ¼ hl ¼ 0. A
straightforward exercise in degenerate perturbation theory
for a small transverse field jhtj ≪ jJj for the monomer
fluctuations in Eq. (16) gives

H ¼ J
X
α

X
hi;jiα

Zα
iZ

α
j −

63

256

h6t
jJj5

X
p

Wp þO

�
h10t
J9

�
; ð23Þ

where Wp ¼ Q
6
i¼1 X

αi
pi is the plaquette operator defined in

Eq. (10) (i.e., each αi corresponds to the bond that is
sticking out of the plaquette). Note that this is a stabilizer
VII Hamiltonian. It is instructive to depict it visually:

ð24Þ

corresponding to a two-site vertex and six-site plaquette
operator; we have K ¼ 63

256
ðh6t =jJj5Þ as the effective

description of He-e for small ht. The ground state is thus
characterized by the stabilizers Gv ¼ −1 in Eq. (6)
and Wp ¼ 1.
The terms in Eq. (24) commute and square to unity. The

first term is diagonal and enforces the dimer constraint (if
J > 0), and the second resonates all possible 32 dimer
configurations on a kagomé lattice star. Hence, if we
consider the dimer constraint as a hard constraint in the
Hilbert space, these 32 dimer moves are the ones proposed
by Misguich, Serban, and Pasquier to give rise to a solvable
dimer liquid [50]. There are several benefits to rewriting
their model in this spin-3=2 Hilbert space: (1) Since the
dimer constraint is no longer hardwired into the Hilbert
space, we can define local off-diagonal operators such that
the resonance term is just a product operator; (2) we do not
require any arbitrary choice of reference dimer configura-
tion (in contrast to the pseudospin representation of
Ref. [50]); (3) it is more natural when we interpolate to
models where the dimer constraint is lightly violated (such
as the ruby lattice model; see Sec. VA).

B. Arbitrary field: Duality to spin-1=2 transverse-field
Ising model on the kagomé lattice

For all values of the field ht, the plaquette operatorWp is
a symmetry of He-e [see Eq. (17)]. Using this, we can de-
fine a duality mapping of He-e to the transverse-field
Ising model on the kagomé lattice. To do so, we define

RUBEN VERRESEN and ASHVIN VISHWANATH PHYS. REV. X 12, 041029 (2022)

041029-8



the spin-1=2 Pauli operator on a vertex v of the kagomé
lattice as σxv ¼ Zα

iZ
α
j , where hi; ji is the corresponding

bond of the honeycomb lattice and α ∈ fx; y; zg its
orientation [see Fig. 2(a)]. Moreover, for two neighboring
vertices v, v0 of the kagomé lattice, we define σzvσ

z
v0 ¼ Xα

i ,
where α again corresponds to the orientation picked out by
hv; v0i and i is the site of the spin-3=2 honeycomb lattice
corresponding to the kagomé triangle. (Equivalently, we
can define a single σzv as a nonlocal X string; see
Appendix B for details.) We thus obtain the dual
Hamiltonian on the kagomé lattice:

H̃e-e ¼ J
X
v

σxv þ ht
X
hv;v0i

σzvσ
z
v0 : ð25Þ

In stating Eq. (25), we have implicitly assumed that the
ground state of He-e is in the sectorWp ¼ 1. If for a certain
plaquette Wp ¼ −1, the dual model (25) obtains a frus-
trated bond around that hexagonal plaquette. Such frus-
tration is unlikely to lower the energy, suggesting [104] that
the ground state should indeed be in the Wp ¼ 1 sector.
Note that we analytically derived this property in Eq. (23)
for a small field. For more generic values of ht, we have
numerically tested and confirmed that Wp ¼ 1; we discuss
the numerical setup in more detail in the next subsection.
The phase diagram of this dual model (25) is known.

First, let us observe that setting ht → 0 recovers the
(stabilizer) Hamiltonian for the trivial paramagnet, consis-
tent with the original theory being aZ2 quantum spin liquid
as in Eq. (23). For large negative ht, we expect Eq. (25) to
go into a symmetry-breaking ferromagnetic phase (dual to a
trivial phase in our original model). This is indeed known to
occur at ht ≈ −0.34jJj [105]. However, ht > 0 gives an
Ising model with frustrated triangles. Various approaches—
including Monte Carlo simulations—have shown that this
leads to a featureless paramagnet for all values of the
transverse field [106–109]; this paramagnet is adiabatically
connected to the product state limit ht → 0. This implies
that in our original spin-3=2 model, the Z2 spin liquid is
robust for all ht⪆ − 0.34jJj, as shown in Fig. 4.

C. Strong-field limit: Spin-1 quadrupolar Kitaev model

We thus know that even infinitely strong e-anyon fluctua-
tions ht → þ∞ give rise to a Z2 spin liquid, which is
moreover adiabatically connected to the emergent dimer
liquid at ht → 0. The effective description of this large-field
limit is rather interesting.For largeht > 0,

P
α¼x;y;z X

αwants
to be as negative as possible, which is frustrated since
XxXyX z ¼ 1. Hence, the best we can do for each spin-
3=2 site of the honeycomb lattice is to haveoneXα ¼ 1, with
the other two being −1. This gives rise to an effective qutrit
whosebasis states canbe labeledbyfjx̃i; jỹi; jz̃igdefinedby
Xαjβ̃i ¼ −ð−1Þδαβ jβ̃i. If we equate this with the p-orbital
basis of a spin-1 model, fjxi; jyi; jz⟫g [110], then

Xα ¼ eiπS
α
. Hence, we already see that our effective spin-

1 model will have a conserved quantity for every plaquette:
Wp ¼ Q

Xα ¼ Q
eiπS

α
. This quantity is the same local

integral of motion of the spin-1 Kitaev model [72,112–119].
To obtain the effective spin-1 Hamiltonian induced by

the J term, we need only project Zα into this qutrit [120]:

PZxP ¼ jỹihz̃j þ jz̃ihỹj;
PZyP ¼ jz̃ihx̃j þ jx̃ihz̃j;
PZzP ¼ jx̃ihỹj þ jỹihx̃j: ð26Þ

In terms of spin-1 operators, this action coincides with that
of the quadrupole operator [121] Qαβ ¼ fSα; Sβg:

PZxP¼−Qyz; PZyP¼−Qxz; PZzP¼−Qxy: ð27Þ

In conclusion, the ht → þ∞ limit of He-e gives a spin-1
honeycomb model with

Heff ¼ Jx
X
hi;jix

Qyz
i Q

yz
i þ Jy

X
hi;jiy

Qxz
i Q

xz
i þ Jz

X
hi;jiz

Qxy
i Qxy

i ;

ð28Þ

where, in our case, J ¼ Jx ¼ Jy ¼ Jz. This is the spin-1
Kitaev model, except with the spin operators replaced by
quadrupole operators. Indeed, there is arguably not a
unique natural choice of what “spin-1 Kitaev model”
should mean, unlike for the spin-1=2 case where quadru-
pole operators vanish (fσx; σyg ¼ 0).
Remarkably, such a “spin-1 quadrupolar Kitaev model”

has not yet appeared in the literature. (However, recently, a
spin-3=2 version was studied [66], which requires pertur-
bations to lift extensive degeneracies.) The analysis in
Sec. III B shows that it is a spin liquid. In fact, one can
repeat the nonlocal duality mapping (to a spin-1=2 kagomé
Ising model) for the spin-1 model: The qutrit encodes
which of the three bonds of the dual kagomé lattice has a
frustrated Ising interaction [see Fig. 5(a)]. Each quadrupo-
lar Kitaev interaction then simply maps to a PσxP spin flip
in the constrained manifold of frustrated Ising states [122].
The trivial disordered phase of this dual model [106–109]
shows that Eq. (28) is a Z2 spin liquid.
The above mapping relies on the ground state being in

the Wp ¼ 1 sector. We have numerically confirmed that
this is true using density matrix renormalization group
(DMRG) [124,125] simulations on infinitely long cylinders
[126] for the XC-n geometry [127], with n ¼ 4, 8, 12. The
simulations were performed using the TeNPy library [128].
We find a remarkably small correlation length ξ ≈ a (with a
being the lattice spacing of the honeycomb lattice);
correspondingly, a bond dimension χ ¼ 2000 was suffi-
cient to converge our quantities of interest, even for the
rather large XC-12 cylinder. In addition to confirming
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Wp ¼ 1, we have also extracted [129] topological entan-
glement entropy [25,26] [see Fig. 5(b)], which is close to
the expected value [24]. Moreover, we find that although
closed strings of Xα (or eiπS

α
in the spin-1 notation) leave

the ground state invariant, open strings have correlation
functions that decay quickly to zero. This is a sign of one-
form symmetry breaking, which defines topological order
[93,94]; it is a special case of the Fredenhagen-Marcu string
order parameter where the denominator is unity [132–135].
The vanishing of this topological string operator is dual to
the corresponding Ising model not having long-range order,
confirming our above analysis.
In conclusion, we have found that in the presence of

strongly frustrated e-anyon fluctuations, we obtain an
effective spin-1 model where the dimer-enforcing inter-
actions have morphed into a novel spin-1 Kitaev-type
model. Its ground state is a remarkably robust Z2 spin
liquid, with a correlation length of roughly a lattice spacing.
In that sense, it seems like a more ideal spin liquid
compared to the previously studied spin-1 Kitaev model
(with spin rather than quadrupole operators) [72,112–119],
where it remains unclear whether it is a Z2 or gapless spin

liquid. In fact, in Sec. V C, we discuss a natural path of
Hamiltonians interpolating from our novel model to the
conventional spin-1 Kitaev model, which could potentially
be used to provide new insight into the latter.

IV. QUANTUM LIQUIDS FROM f -ANYON
FLUCTUATIONS

Here, we study the emergent dimer model in the presence
of fermionic f-anyon fluctuations, i.e., Hf-f in Eq. (15)
with the transverse field Xf-f in Eq. (18). Similar to the
case with e-anyon fluctuations, we find that weak fluctua-
tions give rise to an exactly solvable stabilizer Hamiltonian
for a dimer liquid. However, the two different choices of (a)
chirality in Eq. (18) lead to distinct symmetry-enriched
versions (Sec. IVA). More generally, we find that Hf-f is
exactly solvable for all values of ht, leading to non-Abelian
and gapless topological phases for larger values of ht
(Sec. IV B). Finally, similar to the case studied in the
previous section, we find that the large-field limit ht → ∞
gives an effective Kitaev model, although now for S ¼ 1=2
rather than S ¼ 1 (Sec. IV C).

A. Weak-field limit: Distinct dimer liquid SETs

If we repeat the degenerate perturbation theory exercise
from Sec. III A for Hf-f, then to leading order in the
transverse field, we obtain

H¼ J
X
α

X
hi;jiα

Zα
iZ

α
j �

63

256

h6t
jJj5

X
p

W0
pþO

�
h10t
J9

�
; ð29Þ

where the sign � is the same as in Eq. (18); to wit, þ is the
achiral model, and − is the chiral model. Here, W0

p is the
plaquette operator defined in Eq. (19), which is a conserved
quantity for Hf-f for arbitrary values of ht and J (with
hl ¼ 0). We can interpretW0

p as the worldline of an f anyon
around the plaquette. Equation (29) implies that W0

p ¼∓ 1

in the ground state; i.e., W0
p ¼ −1 for the achiral model,

and W0
p ¼ 1 for the chiral model.

The different eigenvalues for the plaquette operator tell
us that the fixed-point dimer liquids of the chiral and achiral
models are distinct SET phases in the presence of trans-
lation symmetry. Moreover, the achiral model is in the same
phase as the dimer liquid we found for the fluctuating
monomers in Eq. (23). Indeed, in the dimer limit [where we
have the Gauss law in Eq. (6)], we can equateW0

p ¼ −Wp;
this follows from the observation that the parity loop inW0

p

encloses an odd number of vertices of the kagomé lattice.
Since the achiral model hasW0

p ¼ −1, it satisfiesWp ¼ þ1

in the dimer limit, agreeing with Eq. (23). In contrast, the
chiral model has Wp ¼ −1 and is thus a distinct SET. We
might call this a double-odd Z2 gauge theory: It has one e
anyon per vertex and one m anyon per plaquette. In other
words, whereas a usual dimer model with an odd number of

(a)

(b)

FIG. 5. Spin-1 quadrupolar Kitaev liquid and its dual frustrated
PXP kagomé model. If we consider our spin-3=2 parent model
He-e of an emergent dimer model with e-anyon fluctuations, then
in the large field/fluctuation limit, we obtain an effective spin-1
model on the honeycomb lattice (see Sec. III C). (a) Its inter-
actions are Kitaev-like, except with quadrupole operators Qαβ

rather than spin operators Sα. This is dual to the frustrated Ising
model on the kagomé lattice, in the weak-field limit where we
project the transverse field σx into a PXP-type term. (b) Since the
latter is known to be disordered [106–109], we learn that the dual
spin-1 quadrupolar Kitaev model forms a Z2 topological liquid.
We independently confirm this by finding a topological entan-
glement entropy γ ≈ ln 2, and by showing that while closed loops
of the Wilson operator are unity in the ground state, open strings
decay exponentially fast; the latter is a sign of one-form
symmetry breaking which defines topological order [93,94],
and can be interpreted as a limiting case of the Fredenhagen-
Marcu string order parameter [132–135], detecting that e-anyons
have not condensed.
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dimers touching a unit cell (as in the kagomé dimer model)
has one background e anyon per unit cell, the chiral model
leads to a background f anyon.

B. Exact solution for arbitrary field: Majorana Fermi
surfaces and chiral non-Abelian Ising topological order

Themodel with fermionic fluctuations is exactly solvable
for arbitrary values of ht and J (with hl ¼ 0). Our strategy
closely follows the famous solution of the spin-1=2 Kitaev
model [29], which involves introducing four Majorana
operators satisfying a parity constraint bxbybzc ¼ 1, such
that the spin-1=2 Pauli operators can be written as
σαn ¼ ibαncn. Rewriting the Kitaev model with those oper-
ators transforms it into a free-fermion problem. Here, we
similarly solve our model by using the Majorana represen-
tation of a spin-3=2 [57–71,136].
Spin-3=2 in the Majorana representation.—To every site

of the honeycomb lattice, we associate six Majorana oper-
ators [137] satisfying the parity constraint ibxbybzcxcycz¼1.
Note that this has the correct dimension (

ffiffiffi
2

p
6=2 ¼ 4) to

represent a four-level system. We orient the operators on the
lattice as shown in Fig. 6, with α ¼ x, y, z following the
orientation convention of Fig. 2. We call bα the bond
Majoranas and cα the matter Majoranas. If we equate Zα ¼
ibαcα [Fig. 6(b)], then the parity constraint correctly implies
ZxZyZz ¼ 1. For Xα, it will be convenient to have a
different pairing for the two sublattices:

on A∶Xx ¼ ibycz; Xy ¼ ibzcx; X z ¼ ibxcy; ð30Þ

onB∶Xx ¼ ibzcy; Xy ¼ ibxcz; X z¼ ibycx; ð31Þ

where A (B) refers to the odd (even) sites of the honeycomb
lattice (i.e., upward- and downward-pointing triangles
of the kagomé lattice, respectively). They also satisfy
XxXyX z ¼ 1.

Let us now rewriteHf-f in this notation. First, the J term,
which energetically enforces the dimer constraint, becomes

JZα
mZα

n ¼ −JðibαmbαnÞðicαmcαnÞ ¼ −iJûm;ncαmcαn: ð32Þ

While this is a four-body term, we find that—similar to the
Kitaev model solution [29]—the bond pairing ûm;n ¼ �1 is
a local integral of motion. Indeed, the on-site fermionic
fluctuations Xf-f in Eq. (18) do not involve the bond
Majoranas:

on A∶ Xf-f ¼ iXxZy þ iX yZz þ iX zZx ð33Þ

¼ −iðcycz þ czcx þ cxcyÞ; ð34Þ

on B∶ Xf-f ¼ �ðiXxZz þ iXyZx þ iX zZyÞ ð35Þ

¼ �iðcycz þ czcx þ cxcyÞ: ð36Þ

Note that the chiral model corresponds to choosing the
minus sign, in which case we see that the Majorana
fermions hop with the same chirality on both triangles;
in contrast, the achiral model does not have net chirality
per unit cell.
To determine the ground-state value of ûm;n ¼ �1, we

need to relate it to the conserved plaquette operator W0
p in

Eq. (19). A simple calculation shows that

W0
p ¼

Y
ðm;nÞ∈∂p

ûm;n; ð37Þ

where we now fix our ordering such that ûm;n hasm on an A
sublattice and n on aB sublattice. In the previous subsection
on the limit of weak transverse field jhtj ≪ J, we found that
W0

p ¼ 1 (W0
p ¼ −1) for thechiral (achiral)model.Hence, for

the chiral model, we can choose the gauge [29] where
um;n ¼ 1 on all bonds, giving a translation-invariant free-
fermion problem with a six-site unit cell—two triangles per
unit cell with three matter Majoranas each. However, for the
achiral model, we have to work with a unit cell of 12
Majorana fermions, wherewemake um;n ¼ −1 on one bond
to ensure this background flux condition.
We have thus reduced Hf-f to a free-fermion problem,

from which we can easily extract the phase diagram. In fact,
for our chiral model, this happens to coincide with that of
the Yao-Kivelson model [55] (see also Sec. VI B). In
particular, at jhtj ¼ jJj= ffiffiffi

3
p

, our Z2 dimer liquid undergoes
a transition into a gapped non-Abelian phase with chiral
Ising topological order. For the Yao-Kivelson model, and
hence for our chiral model, it is known that the ground state
remains in the flux-free sector for all values of the tuning
parameters [55]. However, for our achiral model, we find a
flux transition: WhereasW0

p ¼ −1 for jhtj < jJj, it changes
to W0

p ¼ 1 for jhtj > jJj. The resulting phase diagram is
shown in Fig. 4: The achiral model also has a transition at

(a) (b) (c) (d)

FIG. 6. Majorana representation of a spin-3=2. (a) Our four-
state system (encoding the dimers on a triangle of the kagomé
lattice) represented by six Majorana operators with a parity
constraint ibxbybzcxcycz ¼ 1. (b) Diagonal string operator Zα

introduced in Eq. (3) (which measures the parity of dimers)
represented as ibαcα (shown for α ¼ z). (c) The off-diagonal
string operator Xα introduced in Eq. (7) (which shuffles dimers
around) is represented as ibαþ1cα−1 on the A sublattice (shown for
α ¼ z). (d) Off-diagonal string operator Xα transformed into the
diagonal operator Zα [34] by permuting the Majoranas, e.g.,
cx → cy → cz → cx and bx → bz → by → bx, thereby making it
a measurable observable in Rydberg atom arrays [35].
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jhtj ¼ jJj= ffiffiffi
3

p
but now into a gapless phase supporting a

Majorana Fermi surface. The aforementioned flux transi-
tion occurs within this phase, leading to a discontinuous
change of the Fermi surface. A similar phenomenology was
studied in Refs. [138,139].

C. Strong-field limit: Spin-1=2 Kitaev model

In Sec. III C, we saw that He-e effectively becomes
a spin-1 Kitaev-type model in the large-field limit. Here,
we obtain a similar result: Hf-f reduces to the (gapless
isotropic) spin-1=2 Kitaev model. More precisely,

lim
jhtj→∞

H ¼∓ J
3

X
α¼x;y;z

X
hi;jiα

σαi σ
α
j ; ð38Þ

where the sign implies that the achiral (chiral) model gives
rise to the ferromagnetic (antiferromagnetic) Kitaev model.
One way of seeing this is by utilizing the Majorana

description of the previous subsection. Let us considerXf-f
in Eq. (34). Note that this commutes with

c ¼ cx þ cy þ czffiffiffi
3

p : ð39Þ

For large htXf-f, we pin two of the three matter Majoranas,
leaving Eq. (39) as the remaining free matter Majorana.
In other words, we can think of the large ht field as fusing
the three Majoranas into one. In this limit, we obtain the
effective parity condition bxbybzc ¼ 1 (see Appendix A).
We thus recover the Majorana description of a single
spin-1=2 [29]. To map our operators, we can simply
replace cα→c=

ffiffiffi
3

p
. In particular, Zα ¼ ibαcα → ibαc=

ffiffiffi
3

p
.

Hence, projecting Zα into this constrained space gives us
the Pauli operator σα=

ffiffiffi
3

p
.

In the achiral case [where Eq. (36) has a different sign],
repeating the above exercise leads to the substitution

Zα → −ðσα= ffiffiffi
3

p Þ on the B sublattice. This is the reason
that the chiral and achiral models lead to a different sign
in Eq. (38).
We emphasize that this provides a striking connection

between dimer models and Kitaev physics: The J term
began as a dimer-constraint-enforcing condition, but in the
presence of large (fermionic) dimer-defect fluctuations, it
naturally morphed into the Kitaev interaction.

V. APPLICATIONS

In this section, we utilize the insights gained from the
above model—and more generally, the spin-3=2 Hilbert
space and its operators. In particular, in Sec. VA, we
adiabatically connect the solvable dimer liquid we found in
Eq. (23) to the previously studied ruby lattice model [34],
thereby confirming that the latter is indeed a spin liquid. In
Sec. V B, we use the Majorana representation to elucidate
the Hadamard transformation proposed in Ref. [34] and
used in Ref. [35] to measure the off-diagonal string
operators in a Rydberg atom array. We then revisit our
newly discovered spin-1 quadrupolar Kitaev model in
Sec. V C and show that there is a natural relation to the
spin-1 Kitaev model. In Sec. V D, we discuss the con-
nection between the solvable dimer liquid (23) and the
toric-code model. Lastly, in Sec. V E, we use the spin-3=2
framework to demonstrate how one can construct and
analyze generalizations of our parent model, focusing on
a XYZ-type model for illustrative purposes, where we again
find robust spin liquids due to anyon fluctuations.

A. Adiabatically connecting the ruby lattice spin liquid
to the solvable stabilizer Hamiltonian

Let us denote the model in Eq. (15) as HaðJ; ht; hlÞ. We
can then consider interpolating the ruby lattice model to the
solvable stabilizer Hamiltonian found in Eq. (24):

(a) (b) (c)

FIG. 7. Interpolating from the spin-1=2 ruby lattice Ising model to the solvable dimer liquid. Equation (40) interpolates from an
emergent dimer model at λ ¼ 0 [Eq. (15) with Eq. (20), which encodes the ruby lattice model [34]; see Sec. VI A] to the stabilizer
Hamiltonian (24) for a dimer liquid at λ ¼ 1 (see Sec. III A). (a) Ground-state correlation length (in units of the lattice spacing of the
ruby lattice) using iDMRG, which decreases as we tune toward the solvable point. In particular, we see no sign of a transition,
confirming that the ruby lattice Ising model is indeed a spin liquid. The fainter data are for XC-4, which has Lcirc=a ¼ ffiffiffi

3
p

× 4 ≈ 7; the
solid data are for XC-8 with Lcirc=a ≈ 14. (b) Topological entanglement entropy, which is roughly constant throughout, close to the
expected value of ln 2. (c) Fixed-point dimer liquid defined by both types of stabilizers [−Gv in Eq. (6) andWp in Eq. (10)] being unity.
We track their expectation value along the interpolation, with the fainter (solid) data being for XC-4 (XC-8) cylinders.
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HðλÞ ¼ ð1 − λÞHrubyðJ; ht; hlÞ þ λHstabilizerðJ; JÞ: ð40Þ

This particular choice of interpolation keeps the diagonal
Ising interaction constant throughout, and we set K ¼ J in
Eq. (24). For concreteness, we consider hl ¼ 0.9J and
ht ¼ 0.06J, i.e., ðht=J − hlÞ ¼ 0.6, such that, for λ ¼ 0, we
start in the middle of the claimedZ2 spin liquid in Fig. 4, as
reported in Ref. [34].
As explained in Sec. III, we use cylinder DMRG to

obtain the ground state of this two-dimensional system by
wrapping it on infinitely long cylinders with variable
circumference. As we tune λ∶0 → 1, we find a finite
correlation length along this path, which, moreover, is
converged in system size; as shown in Fig. 7(a), the result
barely changes upon doubling the circumference. Similar to
Sec. IV C, we extract the topological entanglement entropy
as plotted in Fig. 7(b), which is roughly constant along the
whole path. Finally, the expectation values of the two
stabilizers, i.e., −Gv for a vertex [see Eq. (6)] and Wp for a
plaquette [see Eq. (10)], monotonically increase towards
unity as we approach the exactly solvable limit. This
confirms that the claimed Z2 spin liquid [34] connects
to the fixed-point dimer liquid. Moreover, we have already
analytically demonstrated that this same fixed-point limit
connects to the He-e and (achiral) Hf-f models studied in
Secs. III and IV, respectively.

B. Hadamard transformation for a dimer model

When we introduced the Zα and Xα operators in
Sec. II A, we commented on the fact that the existence
of the latter is rather nontrivial. In particular, for dimer
models on more generic lattices, one usually cannot define
an operator on the Hilbert space which shuffles dimers
around. Here, we show that an even stronger property
holds: There are natural on-site rotations that transform the
diagonal and off-diagonal operators into one another. The
first instance of this process was described in Ref. [34],
which reported a Z3 transformation interchanging Xα and
Zα. This “change of basis” was essential to the exper-
imental implementation of the ruby lattice proposal [35], as
it allowed one to effectively measure off-diagonal
string operators—key to arguing that the state is a coherent
superposition rather than a mixture. Here, we add to this
known transformation in two ways: Sec. V B 1 introduces a
Z2 Hadamard transformation, and Sec. V B 2 uses the
Majorana representation to give insight into the previously
reportedZ3 transformation, which in turn also clarifies how
to implement the novel Z2 Hadamard transformation in the
existing Rydberg atom array platform.
In this section, we consider on-site transformations

(with respect to each triangle, which is effectively a four-
state system), so we will drop or omit spatial indices, for
simplicity—all operators are to be understood as acting on
the same site.

1. Z2 Hadamard

For convenience, let us use the shorthand Z ¼ Zx þ
Zy þ Zz and X ¼ Xx þ Xy þ X z. We define

U ¼ ei
π
4
Zei

π
4
Xei

π
4
Z: ð41Þ

(In fact, one can insert arbitrary signs into any of the three
exponents without changing the following properties.)
Using the fact that

ðXαÞ2 ¼ XxXyX z ¼ 1 ¼ ZxZyZz ¼ ðZαÞ2; ð42Þ

we see that U2 ∝ 1; i.e., this is a Z2 transformation.
Moreover, using the (anti)commutation relations for Xα

and Zβ in Eq. (9), one obtains

UXαU ¼ Zα and UZαU ¼ Xα; ð43Þ
which constitutes what we might call a Hadamard trans-
formation, in analogy to the qubit mapping that exchanges
Pauli-Z and Pauli-X operators.
If one is able to implement He-e, one can straightfor-

wardly realize the transformation in Eq. (41). Indeed, note
that X ¼ Xe-e defined in Eq. (16), whereas Z is the
longitudinal field in Eq. (15). However, what if one only
has access to Xf-f or X ruby? We discuss this issue next.

2. Z3 isomorphism through the Majorana notation

TheMajorana notation introduced in Sec. IV B is not just
useful for solvingHf-f. More generally, it gives insight into
the structure of our spin-3=2Hilbert space and its operators.
In particular, let us recall that we can express

Zα ¼ ibαcα and Xα ¼ ibαþ1cα−1; ð44Þ

wherewe define xþ 1 asmeaning y, x − 1 asmeaning z, and
so on. In this representation, it is clear that if we cycle the
matter Majoranas cx → cy → cz → cx, then we can convert
Xα into Zα and vice versa. The generator of this cycling
is exactly 1

2
ffiffi
3

p Xf-f, where the
ffiffiffi
3

p
appears due to the Z3

nature of the cycling. More precisely, in Appendix A 2, we
derive how the unitary rotation exp ½ð2πi=3ÞðXf-f=2

ffiffiffi
3

p Þ�
implements the shift cx → cy → cz → cx while leaving bα

untouched.
Hence, if we have control over Xf-f, we can generate

rotations between the off-diagonal and diagonal string
operators. However, this is a chiral operator that we
might not have access to, like in the Hruby model, which
is of particular experimental relevance. Nonetheless,
there is a natural nonchiral transformation to consider,
namely, cycling cx → cy → cz → cx at the same time as
bx → bz → by → bx; see Fig. 6(d). Note that this trans-
forms Xα ¼ ibαþ1cα−1 → ibαcα ¼ Zα. In Appendix A, we
show how this simple Majorana rotation is generated by
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eiðπ=4ÞZX rubye−iðπ=4ÞZ , which reproduces the proposal of
Ref. [34] from a new perspective.
Finally, let us note that this perspective also clarifies how

to implement the Z2 Hadamard (43) using the same
resources (which are available, say, in the ruby lattice
model). Observe that Z ¼ P

α ib
αcα generates a rotation

between the bond and matter Majoranas. Clearly, if we
combine this with the above Z3 cycling, we obtain
a Z2 transformation [140] that interchanges Xα ↔ Zα.
Details—including the exact representation in terms
of the Rydberg atom Hamiltonians—can be found in
Appendix A. It would be interesting to use this proposal
in future realizations of the ruby lattice spin liquid and to
see whether it gives better or worse results compared to the
Z3 proposal that has been implemented [35].

C. Natural family of spin-1 Kitaev models

In Sec. III C, we discussed how strong and frustrated
e-anyon fluctuations effectively reduce He-e to a novel
spin-1 quadrupolar Kitaev model (28) on the honeycomb
lattice. We noted that it has the same conserved plaquette
operator as the usual spin-1 Kitaev model. Here, we further
explore the connection between these two models.
Let us define the following interpolation [141] of the

spin and quadrupole operators:

SxðφÞ ¼ cos

�
φ

6

�
Sx þ sin

�
φ

6

�
Qyz; ð45Þ

SyðφÞ ¼ cos

�
φ

6

�
Sy þ sin

�
φ

6

�
Qzx; ð46Þ

SzðφÞ ¼ cos

�
φ

6

�
Sz þ sin

�
φ

6

�
Qxy: ð47Þ

We define a corresponding Kitaev-type model:

HðφÞ ¼ J
X

α¼x;y;z

X
hi;jiα

Sαi ðφÞSαj ðφÞ: ð48Þ

In Appendix C, we show that, up to unitary transformation,
HðφÞ only depends on φ mod 2π. In particular, for
φ ¼ 0 mod 2π, we have the usual spin-1 Kitaev model
[72,112–119], whereas φ ¼ π mod 2π is unitarily equiv-
alent to the spin-1 quadrupolar Kitaev model (28)
since one can unitarily relate ½SxðπÞ; SyðπÞ; SzðπÞ� ¼
−ðQyz;Qxz; QxyÞ.
The spin-1 Hamiltonian (48) has a conserved plaquette

operator Wp ¼ Q
eiπS

αðφÞ ¼ Q
eiπS

αð0Þ for all values of φ.
This follows from the simple fact [142] that

eiπS
α
SβðφÞe−iπSα ¼ −ð−1ÞδαβSβðφÞ; ð49Þ

which in turn follows from the above definition of SβðφÞ,
remembering that Qab ¼ fSa; Sbg. Moreover, note thatWp

is independent of φ.

The fact that HðφÞ commutes with Wp implies that we
can perform the duality transformation (encountered in
Sec. III) to a frustrated Ising model on the kagomé lattice.
In Sec. III C, we found that, in the case of the quadrupolar
model (i.e., φ ¼ π mod 2π), the dual Hamiltonian is [143]
H ¼ J

P
v Pσ

xP, where P enforces the condition that the
two adjacent triangles remain frustrated; in other words, we
can flip a spin only if it is part of frustrated bonds on both
adjacent triangles [see Fig. 5(a)]. The only modification for
φ ≠ π mod 2π is that this term acquires a phase factor: In
particular, if we attempt to flip a kagomé spin on a α bond
of the corresponding honeycomb lattice, then the PσxP
term has a −eiφ=3 (−e−iφ=3) phase factor if both frustrated
bonds lie along the αþ 1 (α − 1) direction (e.g., if α ¼ z,
then αþ 1 ¼ x and α − 1 ¼ y). By absorbing phase factors
into the basis states, one can show that only φ mod 2π
matters; see Appendix C. If the two frustrated bonds do not
lie in the same direction [as in Fig. 5(a)], there is no
additional phase factor.
The above results suggest a way of gaining new insight

into the spin-1 Kitaev model—after all, in the latter model,
there is still some disagreement about whether the ground
state is a Z2 spin liquid or not [72,112–119]. First, Eq. (48)
can be investigated numerically; if one finds that this gives
rise to an adiabatic path, then this would confirm the Z2

spin liquid of the spin-1 Kitaev model (since Sec. III C
already established that φ ¼ π mod 2π is a Z2 spin liquid).
Second, the dual representation gives a slightly more
economical encoding of the model since, instead of the
32-dimensional unit cell (consisting of two spin-1’s on the
honeycomb lattice), we have a frustrated Ising model with a
23-dimensional unit cell. We leave such numerical explo-
rations for future work.

D. Kagomé dimer model as honeycomb toric code

In Secs. III, IV, and VA, we showed that the parent
model (15) with the three choices of transverse fields (Xe-e,
Xf-f, andX ruby) are all adiabatically connected to the fixed-
point dimer liquid on the kagomé lattice (24), with the
caveat that for chiral f-anyon fluctuations, we found that
the plaquette stabilizer is −Wp rather thanWp. We note that
this fixed-point model is a stabilizer Hamiltonian: The
entire spectrum is solvable. This feature makes it distinct
from the Rokhsar-Kivelson model [17], which is a com-
muting projector Hamiltonian such that only the ground
state is known; in fact, the kagomé dimer model seems
more akin to the toric-code model in this respect [23]. Here,
we show that this is not a coincidence: One can locally
rewrite the kagomé dimer liquid as a toric-code model on
the honeycomb lattice.
In fact, there is a well-known connection between

kagomé dimer models and honeycomb loop models, which
originates with the work by Elser and Zeng [144] showing
that dimer coverings on the kagomé lattice can be encoded
in a particular “arrow representation.” Misguich, Serban,
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and Pasquier used this to construct their exactly solvable
dimer liquid [50,145]. In particular, if one fixes such an
arrow representation, then any other state defines a loop
state on the honeycomb lattice, with the solvable model
corresponding to a toric-code Hamiltonian [146–148].
Here, we describe a different mapping, which dispenses
with the choice of a reference state by introducing odd loop
states.
We focus on the case where the dimer constraint is exact,

meaning we only consider states where Gv ¼ −1 [see
Eq. (6)]; the fixed-point model is then HMSP ¼ −

P
p Wp,

which was introduced by Misguich, Serban, and Pasquier.
[Our representation in Eq. (24) embeds this in a larger
Hilbert space where the dimer constraint is only energeti-
cally enforced, which has the benefit of making Wp in
Eq. (10) a product operator over six “sites”; see Sec. VI B
for its connection to a toric-code model on a decorated
honeycomb lattice [149].]
Let us briefly recall the toric-code model for the

particular case of the honeycomb lattice. We place qubits
on the links of the lattice, and for each vertex, we have
the three-body stabilizer Av ¼

Q
l∈v σ

z
l (where l ∈ v sig-

nifies that the qubit lives on a link l emanating from said
vertex v), and for each plaquette, the six-body stabilizer
Bp ¼ Q

l∈p σ
x
l . We observe that Av and Bp commute and

square to the identity. In fact, up to subtleties that depend on
boundary conditions, Av ¼ �1 and Bp ¼ �1 label all the
states in the Hilbert space [150]. The usual toric-code
Hamiltonian [23] is then HTC ¼ −

P
v Av −

P
p Bp; i.e.,

the ground state satisfies Av ¼ 1 ¼ Bp.
We have already discussed how a dimer model on

the kagomé lattice is an odd Z2 gauge theory; i.e., there
is a background e anyon per unit cell. The usual toric
code has Av ¼ 1, meaning that there is no e anyon in the
ground state. However, one can modify the toric-code
Hamiltonian by toggling the sign of certain Av terms, such
that the ground state satisfies Av ¼ −1. In the absence of
translation symmetry, this is unitarily equivalent [151] to
the original model; however, it can define a distinct
SET protected by translation symmetry. We can thus only
hope to relate the kagomé dimer model to a honeycomb
toric-code model if we ensure that they are in the
same SET phase. To obtain a toric code with an e anyon
per unit cell, we consider the modified Hamiltonian
H0

TC ¼ −
P

v∈A Av þ
P

v∈B Av −
P

p Bp, where we have
toggled Av on one of the two sublattices of the honeycomb
lattice.
We now locally relate the kagomé dimer and honey-

comb toric-code models. We already mentioned that we
will only consider exact dimer configurations (i.e.,
Gv ¼ −1). Similarly, we enforce the Av terms exactly—
Av ¼ 1 (Av ¼ −1) on the A (B) sublattice. In this limit, the
toric-code model is also called a pure gauge theory
[3,4,87] since there is no dynamical matter: Only mag-
netic fluxes can have dynamics, with, e.g., a perturbed

Hamiltonian H ¼ −
P

Bp þ g
P

l σ
z
l . For these restricted

Hilbert spaces, there is a local identification, as shown in
Figs. 8(a) and 8(b), with an example in Fig. 8(c); we note
that this is closely related to the notion of an arrow
representation [144], although here we leverage the
bipartite structure of the honeycomb lattice. It is then
easy to see how Hamiltonian terms map: Bp corresponds
to Wp in Eq. (10), whereas σzl on a bond in the α ∈
fx; y; zg direction [see Fig. 2(a) for labeling] maps to Zα

on the upward-pointing triangle of the kagomé lattice (or,
equivalently, −Zα on the downward triangle).

E. Emergent dimer liquids in a generalized XYZ model

The framework introduced in Sec. II (and its associated
graphical notation) can be used more broadly to define and
analyze interesting models. Here, we consider an exem-
plary case study, where the anyon fluctuations of the
emergent dimer model are not introduced by single-site
terms but rather by two-body interactions. In particular, we
still take the dimer-enforcing interaction,

P
hi;jiα Z

α
iZ

α
j , as

our starting point. A natural two-body off-diagonal inter-
action to consider is to simply replace Zα → Xα. Indeed,
we see that H ¼ P

hi;jiα ðJxXα
iX

α
j þ JzZα

iZ
α
j Þ leads to two

robust Z2 spin liquids, with a transition at jJxj ¼ jJzj.
In fact, we directly analyze a broader parameter space,
inspired by there being a natural isomorphism Xα →
Yα→Zα →Xα, where Yα ≔ −XαZα (see Appendix A).
Hence, we consider the following spin-3=2 honeycomb
model:

(a)

(c) (d)

(b)

FIG. 8. Equivalence between kagomé dimer model and honey-
comb toric code. There is a local map between the Hilbert space
of dimer coverings of the kagomé lattice and odd loop states on
the honeycomb lattice, by which we mean that (a) on the A
sublattice we enforce Av ¼ 1 such that we have loop states (with
σz ¼ −1 signifying a loop, shown in solid blue), but (b) on the B
sublattice Av ¼ −1 such that an odd number of strings terminate
there. (c) Example of the local equivalence between a dimer state
and such an odd loop state. (d) Usual plaquette operator Bp of the
toric code, which is equivalent to the dimer resonanceWp defined
in Eq. (10) under this local mapping.
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H ¼
X

α¼x;y;z

X
hi;jiα

ðJxXα
iX

α
j þ JyYα

i Y
α
j þ JzZα

iZ
α
j Þ; ð50Þ

where we use the x, y, z labeling of the bonds in Fig. 2.
Using our graphical notation,

ð51Þ

It is worth pointing out that unitary transformations can
arbitrarily permute Jx, Jy, Jz as well as toggle their signs—
up to the sign of the product JxJyJz, which is immutable.
We now obtain the phase diagram in Fig. 9. As a first

step, let us gain some intuition in the perturbative regimes,
where one of the Jα dominates. Without loss of generality
(i.e., up to an on-site unitary transformation), we can
presume that we then have large Jz > 0. In the dimer
regime (where the Gauss law Gv ¼ −1), we see that in
Eq. (50), the Jx term is effectively renormalized to Jx − Jy;
let us consider the generic case Jx ≠ Jy. Clearly, this term
brings us out of the dimer manifold, but it is simple to see
that at sixth order in perturbation theory, we effectively
generate the fixed-point dimer Hamiltonian (24), with the
dimer resonance Wp ¼ 1 in the ground state. In this limit,
we thus recover the same emergent dimer liquid as we
found for our e-anyon fluctuating model He-e in Sec. III A.
In this case, the deconfined phase is stabilized by e-anyon
fluctuations, which come in groups of four rather than two.

Another similarity to our He-e model is that Wp is a
conserved plaquette operator for the whole parameter
range of the model. However, a striking difference is that
Eq. (50) also conserves the product of Gauss laws around a
plaquette:

ð52Þ

Indeed, one can straightforwardly confirm that ½G̃p;H� ¼ 0,
which is simplest to see using the graphical notation
[Eq. (51)]. In the aforementioned perturbative regime,
we find that both of these conserved quantities are in the
flux-free sector: Wp ¼ 1 ¼ G̃p. It turns out that this is true
for almost all values Jx, Jy, Jz, which we have checked
with DMRG. The only exception is along the black dotted
lines in Fig. 9(b), where we find that, although Wp ¼ 1 ¼
G̃p still belongs to the ground-state manifold, it is degen-
erate with other sectors. This is in line with our above
analysis, where we found that if Jz > 0 and Jx ¼ Jy, then
perturbation theory could not generate the Wp term. Let us
henceforth focus on the generic case, where we set aside
this measure zero case.
Let us recall that in Sec. III B, we used Wp ¼ 1 to

perform a nonlocal change of variables, mapping our spin-
3=2 honeycomb modelHe-e into a spin-1=2 kagomé model.
Since Eq. (50) also conserves Wp, we could employ the
same mapping; however, in this case, it does not reduce
to a previously studied model. Fortunately, by using both
Wp ¼ 1 and G̃p ¼ 1, we can devise a different duality,
which maps to effective spin-1=2 operators on the honey-
comb lattice. Indeed, the conservation laws allow us to
effectively reduce the on-site Hilbert space dimension from
four to two. We provide more details about this novel
mapping in Appendix B, which can be interpreted as a
Z2 × Z2 Kramers-Wannier (or “gauging”) map. Let us
summarize the resulting correspondence for these spin-1=2
operators, for nearest neighbors hi; ji on a bond of type
α ∈ fx; y; zg on the honeycomb lattice:

σxi σ
x
j¼−Xα

iX
α
j ; σyi σ

y
j¼−Yα

i Y
α
j ; σziσ

z
j¼−Zα

iZ
α
j : ð53Þ

One can indeed confirm that the Pauli algebra is satisfied.
Thus, in the ground-state sector Wp ¼ 1 ¼ G̃p, we can
rewrite H in Eq. (50) as

Heff ¼ −
X
hi;ji

ðJxσxi σxj þ Jyσ
y
i σ

y
j þ Jzσ

z
iσ

z
jÞ: ð54Þ

Remarkably, we obtain the spin-1=2 XYZ model on the
honeycomb lattice. This model has a well-known phase
diagram, containing a gapless symmetry-breaking phase
extending from the solvable ferromagnetic Heisenberg

(a) (b)

FIG. 9. Emergent dimer liquid in a spin-3=2 model from two-
body off-diagonal terms. Complementary to the model in Eq. (15)
where deconfinement is stabilized by single-site anyon fluctua-
tions in the spin-3=2 honeycomb model, here we consider the
case with two-body fluctuations in Eq. (50). The conservation of
two plaquette operators allows for a nonlocal duality mapping as
in Eq. (53) to the spin-1/2XYZ honeycomb magnet, resulting in
the above phase diagrams with extended spin liquids, using
barycentric coordinates where jJxj þ jJyj þ jJzj ¼ 1. Panel
(a) shows that, if JxJyJz ≤ 0, the ground state always satisfies
Wp ¼ 1 ¼ G̃p; the three Ising phases of the spin-1/2XYZ magnet
map to three spin liquids. In panel (b), the phase diagram is very
similar for JxJyJz ≥ 0, except along the black dotted lines, where
there is an extensive ground-state degeneracy of the aforemen-
tioned plaquette operators.
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point (Jx ¼ Jy ¼ Jz with JxJyJz > 0) across the XY
magnet (Jz ¼ 0 and Jx ¼ Jy and permutations thereof)
[152] to the Heisenberg antiferromagnet (Jx ¼ Jy ¼ Jz
with JxJyJz < 0) [153]; for other values of parameters,
the model is gapped out into Ising phases. This leads to the
phase diagram in Fig. 9, where the three different Ising
orders of the spin-1=2 model correspond to Z2 spin liquids
in our original model because of the nonlocal change of
variables. The model in Eq. (50) thus constitutes another
example of how fluctuating anyon defects can stabilize
deconfinement.

VI. LOCAL REWRITING OF SPIN-3=2 MODEL AS
TWO-BODY SPIN-1=2 “GRANDPARENT”MODELS

Thus far, we have mainly discussed the above models as
(emergent) dimer models on the kagomé lattice or as spin-
3=2 Ising models on the honeycomb lattice. In this section,
we show that they can be locally rewritten as spin-1=2
models. We emphasize that the local aspect is key since it
implies that the physics is preserved. (In contrast, it is well
known that nonlocal mappings, such as the Kramers-
Wannier transformation, can radically change the physical
interpretation of a model. An example of such a nonlocal
rewriting of He-e was discussed in Sec. III B, where a Z2

spin liquid was mapped to a trivial paramagnet, or in
Sec. V E, where a different nonlocal mapping related Z2

spin liquids to Ising symmetry-breaking phases.)

A. Ruby lattice

We consider spin-1=2’s on the ruby lattice as shown
in Fig. 10(a). We envision this as a system of hardcore
bosons with a Hamiltonian H ¼ Hdiag þHoff‐diag, where
the diagonal piece encodes repulsive interactions of
strength U on the red triangles and strength V on the blue
bonds of the rectangles:

Hdiag ¼ U
X
hi;jired

ninj þ V
X

hi;jiblue
ninj − δ

X
i

ni: ð55Þ

If we consider the blockaded limit U → ∞, then
each triangle becomes an effective four-state system:
Either it is empty, or a hardcore boson occupies one of
the three corners. As shown in Fig. 10(b), this is in a
natural 1-to-1 correspondence with the emergent dimer
Hilbert space we introduced in Sec. II, i.e., spin-3=2’s
on the honeycomb lattice. Under this correspondence,
for a given rectangle of the ruby lattice, we can
identify

P
hi;jiblue ninj ¼ ð1 − Zα

i =2Þð1 − Zα
j =2Þ, where

α ∈ fx; y; zg corresponds to the orientation of the rec-
tangle. Similarly, up to a constant, we have that the
chemical potential on a triangle of the ruby latticeP

i∈△ ni ¼ − 1
4
ðZx þ Zy þ ZzÞ.

In conclusion,

lim
U→∞

Hdiag ¼
V
4

X
α¼x;y;z

X
hi;jiα

Zα
iZ

α
j þ

δ − V
4

X
i

Zi: ð56Þ

Hence, the blockaded limit of this spin-1=2 grandparent
model on the ruby lattice leads to our spin-3=2 parent
model (15) with J ¼ ðV=4Þ and hl ¼ ðV − δ=4Þ, or, equiv-
alently, δ ¼ 4ðJ − hlÞ. The three choices of transverse field,
X ruby, Xe-e, and Xf-f, correspond to choosing a particular
Hoff‐diag on the ruby lattice, as we discuss now.

1. Hruby as a spin-1=2 model on the ruby lattice

ChoosingHoff-diag¼ðΩ=2ÞPiσ
x
i meanswecanonly create

or destroy dimers; i.e., there are no direct dimer hoppings.
This corresponds to ðΩ=2ÞPα¼x;y;zð1þZα=2ÞXα, which is
exactly X ruby in Eq. (20). Hence, choosing the transverse
field in the spin-1=2 ruby lattice model (in the blockade
limit) leads to Hruby with ht ¼ ðΩ=4Þ.
This model is of particular interest since it can be

approximately realized in Rydberg atom arrays [34,35].
Various instances were explored in Ref. [34], including
models with longer-range interactions. However, one par-
ticularly simple instance is where we also take the blockade
limit for the blue bonds: V → ∞ [note that this requires

(a)

(c)

(b)

FIG. 10. Spin-1=2 model on the ruby lattice, which gives the
effective spin-3=2 model on the honeycomb lattice. In panel (a),
the black dots denote spin-1=2’s on the ruby lattice. We have
density-density repulsion (n ¼ ð1þ σz=2Þ) with strength Uninj
on the red bonds and Vninj on the blue bonds. In panel (b), if
U → þ∞, each triangle of the ruby lattice becomes an effective
four-state system. We show how this corresponds to an emergent
dimer model Hilbert space on the kagomé lattice, i.e., the spin-
3=2 Hilbert space on the honeycomb lattice introduced in Sec. II.
In the main text, we discuss how the spin-1=2 Hamiltonian leads
to our parent model in Eq. (15). (c) Example of how a kagomé
dimer state is mapped to a spin-1=2 (or hardcore boson)
configuration on the ruby lattice. Violations of the dimer
constraint correspond to rectangles with no (or two) hardcore
boson(s).
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taking J; hl → ∞ such that δ ¼ 4ðJ − hlÞ remains finite].
In this case, we obtain the so-called PXP model on the ruby
lattice. Using various probes based on entanglement,
correlations, and degeneracies, Ref. [34] reported a Z2

spin liquid for 0.5 ⪅ jΩj=δ ⪅ 0.7 [34]. Using the above
correspondence, this leads to the spin-liquid phase indi-
cated in Fig. 4. In Sec. VA, we have confirmed this
reported spin liquid by adiabatically connecting it to the
fixed-point dimer liquid.

2. He-e as a spin-1=2 model on the ruby lattice

If we add spin-flop terms that allow for dimer hoppings
within the triangle, we obtain our e-anyon fluctuating
model. More precisely, in a given triangle, we can equate
Hoff‐diag ¼

P
i∈△ σxi þ

P
hi;ji△ σ

x
i σ

x
j ¼ X e-e, where this is

to be understood as being projected into the blockaded
Hilbert space; for this reason, we can equally well write
Xe-e ¼

P
i∈△ σxi þ

P
hi;ji△ ðσþi σ−j þ H:c:Þ.

To summarize, the e-anyon fluctuating model He-e can
be written as a spin-1=2 model on the ruby lattice:

He-e ¼ 4J
X

hi;jiblue

�
ni −

1

4

��
nj −

1

4

�
ð57Þ

þht
X
hi;jired

ðσþi σ−j þ H:c:Þ þ ht
X
i

σxi ; ð58Þ

where we enforce the blockade condition of not having
more than one particle per triangle (i.e., we actually have an
additional termU

P
hi;jired ninj with largeU). This is simply

an XXZ model in a tilted field, with different values [154]
of the anisotropy on the blue and red bonds. It is remarkable
that this relatively simple Hamiltonian has an exactly
solvable dimer liquid for ht → 0, whose spin-liquid phase
extends all the way to ht → þ∞, where we obtain an
effective Kitaev model (28) (see Sec. III C).

3. Hf -f as a spin-1=2 model on the ruby lattice

We can similarly obtain the model Hf-f with fluctuating
f anyons as a spin-1=2 model on the ruby lattice. In fact, it
is the same [155] as Eq. (58), with the only change that we
insert a phase factor i in front of the spin-flop term:
σþi σ

−
j → iσþi σ

−
j . The hardcore boson thus effectively hops

in a magnetic field, which endows this term with a
directionality. If we take it to be, say, clockwise on all
triangles, we obtain the chiral Hf-f model, whereas
choosing alternating orientations leads to the achiral model.

B. Star lattice

In the previous subsection, the presence or absence
of a dimer on the kagomé lattice was encoded in the
presence or absence of a hardcore boson at the midpoint of
the bond (forming the vertices of the ruby lattice). Another

option for a local encoding is to represent the dimer by two
hardcore bosons at the endpoints of the dimer, which we
explore here.
Consider the star lattice in Fig. 11(a). We study (two-

body) Hamiltonians where the ground state satisfies the
three-body operator condition

Q
i∈△ σzi ¼ 1 on each tri-

angle. In this sector, a triangle becomes an effective four-
state system, which we can identify with our spin-3=2
Hilbert space as shown in Fig. 11(b). Under this corre-
spondence, the Zα and Xα operators also have a simple
form, as shown. This implies that the coupling Zα

iZ
α
j in the

honeycomb model in Eq. (15) becomes an Ising coupling
σziσ

z
j for the corresponding bond of the star lattice.

Similarly, it tells us that Xe-e in Eq. (16) is simply a
sum of σxi σ

x
j around the triangle.

The e-anyon fluctuating model He-e is thus realized as
follows in a spin-1=2 model on the star lattice:

He-e ¼ J
X

hi;jiblue
σziσ

z
j þ ht

X
hi;jired

σxi σ
x
j : ð59Þ

Note that this model indeed commutes with
Q

i∈△ σzi .
However, Eq. (59) is degenerate for all choices ofQ

i∈△ σzi ¼ �1, which can be seen by noting that
Eq. (59) commutes with σxi σ

x
j on blue bonds. One option

is to simply fix the value of the sector to be unity for
each triangle; for instance, this is a valid option if one
prepares the ground state of Eq. (59) by adiabatic state
preparation, where one can start in a product state j↑i⊗N .

(a)

(c)

(b)

FIG. 11. Spin-1=2 model on the star lattice giving the effective
spin-3=2 model on the honeycomb lattice. In panel (a), the black
dots form the star lattice (also known as the Fisher lattice). We
only consider Hamiltonians that commute with

Q
i∈△ σzi on each

triangle; e.g., Hf-f corresponds to the Yao-Kivelson model [55],
with σxσy couplings along the red bonds and σzσz on the blue
bonds. In panel (b), if we fix

Q
i∈△ σzi ¼ 1, we obtain an effective

spin-3=2model on the honeycomb lattice. We also show how our
Zα [in Eq. (3)] and Xα [in Eq. (7)] operators act on this spin-1=2
model. (c) Example of how a kagomé dimer state is mapped to a
spin-1=2 model on the star lattice. Violations of the dimer
constraint correspond to ferromagnetic blue bonds.
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Another option is, of course, to add −
P

△

Q
i∈△ σzi to the

Hamiltonian, but this is a three-body operator and thus not
physically plausible. Instead, it is more natural to perturb
Eq. (59) with a small field −ε

P
i σ

z
i . Since He-e is gapped,

small values of ε will not disturb the phase diagram, but
third-order perturbation theory selects

Q
i∈△ σzi ¼ 1

(if 0 < ε ≪ jhtj).
Encoding the model Hf-f with fluctuating f anyons

corresponds to replacing σxi σ
x
j in Eq. (59) by σxi σ

y
j. This

model has been studied before: It is a known rewriting
[156] of the Yao-Kivelson (YK) model [55]. In the YK
model, one takes these σxi σ

y
j couplings to, say, run clock-

wise around each triangle; in Fig. 11(a), the arrow on the
bond represents σxσy with the first (second) Pauli matrix at
the tail (head) or the arrow. Note that the Hamiltonian itself
is not chiral: It is invariant under spinful time-reversal
symmetry, and moreover, one can exchange σx ↔ σy by an
on-site unitary transformation, such as conjugating the
model by eiπσ

z=4σx on every site. However, the ground state
is spontaneously chiral, and one of the two ground states
fixes

Q
n∈△ σzn ¼ 1 everywhere [55]. Hence, in this case,

we do not need to add extra terms. Reference [55] showed
that when the red bonds are dominant, the ground state is in
a non-Abelian spin liquid with chiral edge modes; when the
blue bonds are dominant, one obtains a Z2 spin liquid. This
follows from the free-fermion solution (Sec. IV B), where
they are the weak- and strong-pairing phases, respectively.
To the best of our knowledge, it has not yet been pointed
out that the weak-field limit gives a solvable dimer liquid
(Sec. IVA), and the strong-field limit reduces to the spin-
1=2 Kitaev model (Sec. IV C).
Lastly, let us remark that the weak-field limit of Eq. (59)

generates a plaquette term
Q

σx on the star lattice. Together
with the Ising interaction σziσ

z
j on the blue bonds as well as

the triangle condition
Q

i∈△ σzi ¼ 1, these are exactly the
three stabilizers one would write down for a toric-code
model on a decorated honeycomb lattice, where we dress
every bond with an additional vertex. In fact, this toric-code
model has been discussed before [149], where it was
obtained through a tensor network representation of the
Misguich-Serban-Pasquier dimer liquid [50]. If we take this
model and drive the bond terms to be infinitely strong
(J → ∞), we recover the honeycomb toric-code model of
Sec. V D.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In summary, we have highlighted an extensive connec-
tion between kagomé dimer models, Kitaev honeycomb
magnets, and the ruby lattice spin liquid. A central property
we leverage is that loop operators generating dimer
resonances can be defined for the kagomé dimer model
without having to specify the underlying configuration.
This property is special to lattices with corner-sharing
triangles and does not generalize to dimer models on the

square or triangular lattices. In fact, this property persists
when we admit violations of the dimer constraint.
We defined a parent Hamiltonian based on a four-state

model on each kagomé triangle (i.e., carrying one dimer or
being empty). This setup, which can equivalently be
thought of as a spin-3=2 model on the honeycomb lattice,
allows for a unified description of different models.
Interestingly, this spin-3=2 model has only Ising-like
(i.e., diagonal) interactions and is perturbed by single-site
transverse fields (with a generalization in Sec. V E). The
choice of transverse field leads to different known and
novel models, which we explored in detail. (Moreover,
we explicitly showed how these models can emerge from
two-body spin-1=2models on the ruby or star lattices.) The
implications of this are manifold, of which we recount only
a few. First, this sheds new light on the ruby Rydberg spin
liquid, highlighting its connections to two exactly soluble
spin liquids; an adiabatic path connecting the exact dimer
liquid to the ruby model further confirms the spin-liquid
phase in the latter. Second, we gained a new understanding
of how local anyon fluctuations can stabilize deconfined
phases of an emergent gauge theory—this viewpoint is
sufficiently fundamental to naturally link together seem-
ingly unrelated models. Third, we found a (nonlocal)
duality of the transverse-field Ising model on the kagomé
lattice to the generalized kagomé dimer model (He-e). This
duality is distinct from earlier approaches [108] and
captures both the ferromagnetic and the frustrated anti-
ferromagnetic Ising coupling. The latter case is known to be
disordered even for infinitesimal transverse fields [106],
which indicates a spin-liquid state in the dual model.
Interestingly, this corresponds to a new S ¼ 1 quadrupolar
Kitaev model that has not previously been discussed, which
is in a Z2 spin liquid. Fourth, more generally, we observe
the relation between emergent dimer constraints and an
effective Kitaev interaction, including the S ¼ 1=2 Kitaev
model for strong f-anyon fluctuations, confirming that this
transmutation reflects a deep connection. We summarize
some of these models in Table I.
Let us briefly mention several promising future direc-

tions opened up by this work.
Extended phase diagram.—It will be worth exploring the

rich global phase diagram as sketched schematically in
Fig. 1, where transitions between different topological
orders and symmetry enrichment thereof would be inter-
esting for future work. Thus far, we have established all
three axes and the fact that they are all connected to the
same fixed-point dimer liquid (with the caveat that the
chiral model has the opposite sign of the plaquette
stabilizer). Completing this picture should reveal a rich
landscape of phases and transitions.
Three-dimensional generalizations.—Extensions to 3D

lattices would be of great interest, given the existing
3D Kitaev models and materials [75,157–159] as well
as frustrated 3D lattices. In fact, the hyperkagomé
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lattice [160] is a lattice of corner-sharing triangles, such that
much of our framework directly carries over. For instance,
we can define He-e on this 3D lattice, and the perturbation
theory calculations in Sec. III A give us an emergent fixed-
point dimer liquid on the hyperkagomé lattice. Also, our
duality mapping carries through, as does our effective
S ¼ 1 quadrupolar Kitaev model in the large-field limit,
which now lives on the hyperhoneycomb lattice.
Duality of frustrated Ising models.—We saw that the

known paramagnetic phase of the transverse-field Ising
model on the kagomé model [106–109] gave rise to the
novel spin-liquid model, which only has two-body inter-
actions. This raises the question of which other known
paramagnets are hiding interesting new spin-liquid models.
(In addition, the other duality mapping discussed in
Appendix B is able to map symmetry-breaking phases to
spin liquids.) Moreover, related to the above suggestion of
3D generalizations, it would be interesting to know whether
the frustrated Ising model on the hyperkagomé lattice is
also disordered. Perhaps an interesting first step would be
to explore the same question on the infinite-dimensional
Husimi cactus lattice [161].
Other topological orders.—Can our framework be

expanded to include other types of spin liquids? Here, a
natural starting point is the double-semion (DS) topological
order. For instance, Refs. [146,147,162] showed that intro-
ducing certain phase factors in the dimer resonances of
Ref. [50] gives a dimer model for DS order; can we generate
this effective resonance using local anyon fluctuations?
Moreover, recent work [163] has shown that using a four-
state system, one can even write down a stabilizer model for
DS order (rather than just a commuting projector model
[146,147,162]); is this also possible using our formalism?
Quadrupolar models.—While spin-1=2 models cannot

form quadrupoles, spin-1 models can. Remarkably, in
Sec. III C, we found that a quadrupolar analogue of the
spin-1 Kitaev model gives a more robust spin liquid.
Perhaps such “quadrupolar brother models” could be
interesting to explore more generally. Here, it is worth
recalling that we found a natural interpolation between spin
and quadrupole operators (Sec. V C), and it would be very
interesting to see whether this gives an adiabatic path to the
spin-1 Kitaev model [72,112–119]. Moreover, it has been
reported that the spin-1 Kitaev model in a field gives rise to

a gapless liquid [112,113]; it is unclear whether this
property also holds for the quadrupolar model.
Connection between geometric and exchange frus-

tration.—A key finding of our work is the connection
between dimer models and Kitaev interactions. In particu-
lar, one is morphed into the other by tuning a field. Can this
be extended to other cases? Here, a natural starting point is
the study of other types of constrained models and their
related deconfined phases [164–167].
Solid-state realizations.—We have seen how various

models with simple Ising interactions and transverse fields
can have complex phase diagrams and exotic ground states.
Future work understanding the lattices, magnetic ions, and
interactions that could result in solid-state realizations of
some of these models is a promising direction [168,169].
Although historically much attention has been focused on
the SUð2Þ spin symmetric spin-liquid candidate, our work
makes the case for studying low-symmetry spin systems.
While spin-ice and Kitaev magnets also fit into this larger
case, here we emphasize that the ability to tune magnetic
fields along different directions, which correspond to
distinct perturbations in the low-symmetry limit, can be
used to guide the material towards small islands of spin-
liquid phases in parameter space. A second requirement is
that the magnetic exchange couplings not be much larger
than the magnetic fields one can apply in the lab. These
twin requirements should motivate a broader study of
candidate magnetic materials with rare-earth ions [169].
Interestingly, in certain instances where the magnetic
moments have a non-Kramers origin, mechanical strain
can play the role of magnetic field, introducing a new
route to applying effective magnetic fields on quantum
magnets [170–172]. This is a promising mechanism to
systematically explore in future work. A different direc-
tion is to investigate pathways to the physical realization
[173] of the quadrupolar S ¼ 1 Kitaev model, which is
predicted here to be a spin liquid. Note that related
theoretical proposals are either not in the S ¼ 1 space
[174], or the proposed S ¼ 1 models employ spin rather
than quadrupolar couplings [175].
Cold-atom implementation.—The strong diagonal inter-

actions in Rydberg atom arrays [33], combined with the
versatility of local off-diagonal fields and potentially hopping
terms, provide an enticing direction for realizing some of our

TABLE I. Overview of unified models. The first column indicates the size of the Hilbert space per unit cell.

dunit cell Models

82 Grandparent models on ruby and star lattices; Yao-Kivelson model [55]; toric code (decorated honeycomb) [149]
42 Spin-3=2 parent model (15) (honeycomb lattice) = ruby lattice with Rydberg blockaded triangles
32 Spin-1 quadrupolar Kitaev honeycomb model (28)ffiffiffi
2

p
6 ¼ 23 Free-fermion solution of Hf-f; Ising model on kagomé lattice (25) as dual of He-e

22 Spin-1=2 Kitaev honeycomb model [29]
2 Hard dimer model on kagomé lattice [50]; toric-code gauge theory on honeycomb lattice
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models and perturbations thereof. Indeed, Hruby is naturally
realized in Rydberg atom arrays [34,35]; in Sec. V B, we
identified a novel way of measuring its off-diagonal string
operators in future experimental realizations. Moreover,
we established a closely related model, He-e, which has an
exactly solvable limit and displays a very robust spin
liquid; it would thus be interesting to implement this model
as well. In fact, in Sec. VI A, we explicitly rewroteHe-e as a
spin-1=2XXZ model (in a tilted field) on the ruby lattice.
Various cold-atom platforms are able to realize XXZ
interactions [176–179], making this an exciting direction
for further exploration. Lastly, it would be worthwhile to
explore to what extent the spin-3=2 parent models can be
experimentally realized by encoding the four-state qudit
into Rydberg excited states of an atom [180].
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Note added.—Recently, a pre-print appeared [181] which
adiabatically connects the ruby lattice spin liquid proposed
in Ref. [34] to a toric code model (involving the study of a
model which is akin to our He-e for the case of unfrustrated
e anyon fluctuations, i.e., ht < 0). In addition, we have
presented a complementary parent Hamiltonian approach
which not only establishes such an adiabatic path
(Sec. VA) but also connects to various other models
(including Hf-f, the frustrated He-e, and their effective
Kitaev model descriptions).

APPENDIX A: SPIN-3=2 HILBERT SPACE

This appendix summarizes some of the key properties of
our on-site Hilbert space. For completeness and ease of
reference, it has some overlap with the main text.

1. Algebra: Majoranas and bosonic operators

We consider six Majorana operators with the condition
ibxbybzcxcycz ¼ 1. As illustrated in Fig. 12, we define

Zα ¼ ibαcα; Xx ¼ ibycz; Xy ¼ ibzcx; X z ¼ ibxcy : ðA1Þ
These six operators are the essential operators in the sense that all other operators that we need to consider can be defined as
products of these six. (In fact, we only need Zx, from which the other operators can be obtained by applying the two Z3

isomorphisms of Appendix A 2.)
It is also useful to define

Yα ¼ −ZαXα; i:e:; Yx ¼ ibzcy; Yy ¼ ibxcz; Yz ¼ ibycx : ðA2Þ
Some other useful relations are

ðXαÞ2 ¼ ðYαÞ2 ¼ ðZαÞ2 ¼ 1 ¼ XxXyX z ¼ YxYyYz ¼ ZxZyZz; ðA3Þ
½Xα;Xβ� ¼ ½Yα;Yβ� ¼ ½Zα;Zβ� ¼ 0; ðA4Þ

fXα;Yβgð−1Þδα;β ¼ fYα;Zβgð−1Þδα;β ¼ fZα;Xβgð−1Þδα;β ¼ 0: ðA5Þ

Finally, we also introduce the b-pairing and c-pairing operators:

Sx ¼ −ibybz ¼ iZzX x; Sy ¼ −ibzbx ¼ iZxXy; Sz ¼ −ibxby ¼ iZyX z ðA6Þ
(a) (b) (c) (d) (e) (f)

FIG. 12. (a) Six Majoranas with even-parity condition ibxbybzcxcycz ¼ 1 representing a four-state system. (b) Zz operator. (c) X z

operator. (d) Yz operator. (e) Chiral Sz and T z operators. In panel (f), we show that, using the Sα and T α operators, one can generate the
Z3 clocks that permute the operators; note that this transforms the operator Zz in panel (a) to the X z operator in panel (b).
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and

T x ¼ −icycz ¼ iXxZy; T y ¼ −iczcx ¼ iXyZz; T z ¼ −icxcy ¼ iX zZx : ðA7Þ

These operators have different algebraic properties than the ones defined above. Indeed, they are effectively Pauli operators:

½Sα;Sβ� ¼ 2iεαβγSγ and fSα;Sβg ¼ 2δαβ; ðA8Þ

and similarly for T α. We observe that ½Sα;T β� ¼ 0.
Expressing the kinetic terms or transverse fields encountered in the main text in terms of the above operators, we have

Xe-e ¼ Xx þ Xy þ X z; ðA9Þ
X ruby ¼ Xx þ Xy þ X z − Yx − Yy − Yz; ðA10Þ

Xf-f ¼
�
T x þ T y þ T z onA sublattice; i:e:; up triangles;

∓ ðSx þ Sy þ SzÞ on B sublattice; i:e:; down triangles:
ðA11Þ

More precisely, the last line equals Sx þ Sy þ Sz for the
chiral model and −ðSx þ Sy þ SzÞ for the achiral model;
see also Eqs. (34) and (36).

2. Z3 isomorphisms

It is instructive to consider the Z3 operators Rb and Rc,
which cycle through the Majoranas, i.e., Rb∶bα → bαþ1

and Rc∶cα → cαþ1. These are generated by 1
2

P
αðSα=

ffiffiffi
3

p Þ
and 1

2

P
αðT α=

ffiffiffi
3

p Þ, respectively. More explicitly, let

Rc ¼ e
2πi
3
T xþT yþT z

2
ffiffi
3

p ¼ 1þ cycz þ czcx þ cxcy

2
: ðA12Þ

Then, indeed,

R†
ccxRc ¼

cx

4
ð1 − cycz þ czcx þ cxcyÞ

× ð1þ cycz þ czcx þ cxcyÞ ðA13Þ

¼ cx

4
ð2czcx þ 2cxcy − 2cyczðczcx þ cxcyÞÞ

¼ cx

4
ð4cxcyÞ ¼ cy: ðA14Þ

The effect of Rc is thus to cycle

Zα ¼ ibαcα → Xα−1 → Yαþ1 → Zα; ðA15Þ
where xþ 1 ¼ y, etc.; e.g., Zz → Xy → Yx → Zz.
The net effect of RbRc is then to cycle

Xx → X y → X z → Xx ðA16Þ
and similarly for Yα;Zα;Sα, and T α.
Finally, RbR

†
c maps as

Zα → Xα → Yα → Zα: ðA17Þ

3. Z2 Hadamard

We can also directly define a Z2 isomorphism that
exchanges, say, Zα ↔Xα. This is generated by Yα. Indeed,
let us consider UH ¼ eiðπ=4Þð1þYxþYyþYzÞ (observe that
U2 ¼ 1). Then,

UHZαUH ¼ Zαei
π
2
ð1þYαÞ ¼ −ZαYα ¼ Xα; ðA18Þ

and, similarly, UHXαUH ¼ Zα. One can also swap
Xα ↔ Yα by using Zα as a generator.

4. Reduction to spin-1=2

Suppose that for each S ¼ 3=2 site, we add a field in the
Hamiltonian,

Hfield ¼ λ
X
α

T α ¼ −iλðcxcy þ cycz þ czcxÞ: ðA19Þ

For large λ, this will pin two of the three modes. The one
that remains is the one that commutes with Hfield (i.e., the
zero mode). If we define c ≔ ðcx þ cy þ cz=

ffiffiffi
3

p Þ, we see
that

½c;Hfield� ¼ 0: ðA20Þ

To be more explicit, we can define the new basis fc; c0; c00g
with c ≔ ðcx þ cy þ cz=

ffiffiffi
3

p Þ, c0 ¼ ð2cx − cy − cz=
ffiffiffi
6

p Þ,
and c00 ¼ ðcy − cz=

ffiffiffi
2

p Þ. Then,

c0c00 ¼ 1ffiffiffiffiffi
12

p ð2cx − cy − czÞðcy − czÞ

¼ 1ffiffiffiffiffi
12

p ð2cxcy þ 2czcx þ 2cyczÞ; ðA21Þ
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and hence

Hfield ¼ −iλ
ffiffiffi
3

p
c0c00: ðA22Þ

For large λ, we pin ic0c00¼1, but c∝cxþcyþcz is unaf-
fected. Moreover, one can confirm that cxcycz ¼ cc0c00,
such that the total parity condition becomes

1 ¼ ibxbybzcxcycz ¼ ibxbybzc c|{z}0 c00

¼−i

¼ bxbybzc: ðA23Þ

We have thus effectively collapsed the three c-type
Majoranas into one; i.e., we now effectively have a total
of four Majoranas (bx; by; bz; c) instead of six, recovering
Kitaev’s description of a spin-1=2. In particular,

Zα →
ibαcffiffiffi

3
p ; ðA24Þ

so we see that for this large field, the three commuting
operators Zα can be identified with the (unnormalized)
Pauli operators σα=

ffiffiffi
3

p
. The prefactor is due to the fact that

we first have to decompose cx ¼ 1ffiffi
3

p cþ
ffiffi
2
3

q
c0, and then we

project out c0.
We also see that in this limit, we can identifyXα → Zαþ1

and Yα → Zα−1. This is consistent with the Z3 isomor-
phism Rc acting trivially on c. Hence, we see that, e.g.,
Xx;Yx;Zx generate the Pauli algebra in the large-field
limit. We can now also identify Sα →

ffiffiffi
3

p
Zα ¼ σα.

5. Matrix representation

We set

Zx ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA; Zy ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1
CCCA; Zz ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

1
CCCA ðA25Þ

and

Xx ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; X y ¼

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA; X z ¼

0
BBB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCCA; ðA26Þ

which indeed obey the above algebra.
From these matrices, we derive

Yx ¼

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; Yy ¼

0
BBB@

0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0

1
CCCA; Yz ¼

0
BBB@

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1
CCCA; ðA27Þ

Sx ¼

0
BBB@

0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

1
CCCA; Sy ¼

0
BBB@

0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

1
CCCA; Sz ¼

0
BBB@

0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0

1
CCCA; ðA28Þ

and

T x ¼

0
BBB@

0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

1
CCCA; T y ¼

0
BBB@

0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

1
CCCA; T z ¼

0
BBB@

0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

1
CCCA: ðA29Þ
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6. Connection to Rydberg atom array realization

There are only three operators that are available in the
Rydberg atom array context, corresponding to the density
and the projected Pauli-X and Pauli-Y operators:

1

4

X
α

ð1 − ZαÞ ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA ¼ n; ðA30Þ

1

2

X
α

ðXα − YαÞ ¼

0
BBB@

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

1
CCCA ¼ PXP; ðA31Þ

1

2

X
α

ðT α−SαÞ¼

0
BBB@
0 −i −i −i
i 0 0 0

i 0 0 0

i 0 0 0

1
CCCA¼PYP

¼U†ðPXPÞU with U¼ e−i
π
2
n: ðA32Þ

Fortunately, the latter is enough to generate the Z3

isomorphism, such that we can rotate the off-diagonal
Xα operators into diagonalZα. In fact, using n, we can also
generate the Z2 isomorphism, which swaps Xα ↔ Yα.
Sandwiching this with the Z3 isomorphism thus allows us
to implement the Z2 Hadamard Zα ↔ Xα.
We can be more explicit: Define

R¼ e−
2πi
3
PYPffiffi

3
p ¼ ei

π
2
ne−

2πi
3
PXPffiffi

3
p
e−i

π
2
n ¼−

1

2

0
BBB@

1 1 1 1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1

1
CCCA;

ðA33Þ

which nicely agrees with Eq. (D4) in the Appendix of
Ref. [34]. Note that R3 ¼ 1. Moreover,

R†ZαR¼Xα; R†XαR¼Yα; R†YαR¼Zα: ðA34Þ

The Z2 operator that toggles Xα ↔ Yα is given by

S ¼ e−iπn ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ðA35Þ

Finally, then, we obtain the Hadamard transformation:

UH ¼ SR¼ e−i
π
2
ne−

2πi
3
PXPffiffi

3
p
e−i

π
2
n ¼−

1

2

0
BBB@
1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1
CCCA:

ðA36Þ

Indeed,

U†
HZ

αUH ¼ R†ðSZαSÞR ¼ R†ZαR ¼ Xα ; ðA37Þ

U†
HX

αUH ¼ R†ðSXαSÞR ¼ R†YαR ¼ Zα : ðA38Þ

APPENDIX B: KRAMERS-WANNIER DUAL
DESCRIPTIONS OF THE SPIN-3=2

HILBERT SPACE

Here, we explicitly state two types of dualities that were
used in the main text to solve certain models. We note that
these dualities are general maps that can be applied to other
models of interest. Both dualities can effectively be
interpreted as gauging certain symmetries, as we discuss.

1. Gauging a Z2 symmetry in a spin-1=2
kagomé lattice model

Suppose one has a spin-3=2 model, as in the main text,
with the following conserved plaquette operator:

ðB1Þ

If one is in the sector with Wp ¼ 1 for all plaquettes, then
one can define effective spin-1=2 operators for a Hilbert
space of qubits on the vertices of the kagomé lattice as
follows (where we use the graphical notation introduced in
Sec. II to denote Zα and Xα):
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ðB2Þ

Here, the σx operator is defined by a string operator in the
original variables; we take it to trail off to infinity, ignoring
boundary effects (as is customary for nonlocal duality
mappings). Note that σx is independent of the location of
the string operator defining it since it can be freely moved
using the Wp ¼ 1 condition; only the endpoint is physical.
It is straightforward to see that the above σz and σx

operators satisfy the desired Pauli algebra.
Using this mapping, a local spin-3=2 model with the

local condition Wp ¼ 1 can be (nonlocally) rewritten as a
local spin-1=2 model on the kagomé lattice. In reverse, any
spin-1=2 model on the kagomé lattice with global Ising
symmetry (

Q
σz) can be dualized using our spin-3=2

variables. One can interpret this as a convenient way of
gauging a global Ising symmetry on the kagomé lattice.
Correspondingly, a paramagnetic phase of the spin-1=2
kagomé model becomes a Z2 spin liquid in the spin-3=2

variables. This is the mapping we used in Sec. III B when
we rewrote He-e as a spin-1=2 transverse-field Ising model
on the kagomé lattice (where we furthermore performed a
Hadamard transformation σx ↔ σz such that the Ising
interaction was in the diagonal basis).
We note that a remarkable property of the above duality

is that, whereas usually gauging an Ising symmetry leads to
multibody interactions (such as the famous toric-code
Hamiltonian [23]), the above spin-3=2 variables can lead
to just two-body interactions, as was the case forHe-e in the
main text.

2. Gauging a Z2 × Z2 symmetry in a spin-1=2
honeycomb lattice model

Here, we consider the case where every plaquette has two
conserved plaquette operators:

ðB3Þ

This occurs, for instance, in the “XYZ”-type model discussed in Sec. V E of the main text. If we are in the sector
Wp ¼ 1 ¼ G̃p, then these local conserved quantities allow us to define the following effective spin-1=2 operators on the
honeycomb lattice:

ðB4Þ

ðB5Þ
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These string operators (made out of Zα and Xα) run off to
infinity—ignoring boundary effects. Crucially, the precise
location of the string is unphysical: Using the local
conditions Wp ¼ 1 and G̃p ¼ 1, the strings can be moved
arbitrarily, as illustrated above. Only the location of the
endpoint is physical. It is straightforward to observe that
these operators indeed satisfy the Pauli algebra.
For these nonlocal variables, one can derive the follow-

ing identity for nearest neighbors hi; ji on a bond of type
α ∈ fx; y; zg on the honeycomb lattice:

σxi σ
x
j ¼Xα

iX
α
j ; σyi σ

y
j ¼−Yα

i Y
α
j ; σziσ

z
j ¼Zα

iZ
α
j : ðB6Þ

Here, Yα ¼ −ZαXα, as described in more detail in
Appendix A. After a unitary sublattice transformation, this
gives the correspondence claimed in Eq. (53) of the
main text.
One can interpret the above mapping as gauging two

nonanomalous one-form symmetries to obtain an effective
qubit model with two global symmetries,

Q
σzi and

Q
σxi . In

reverse, the above gives a prescription for how to gauge a
global Z2 × Z2 symmetry for qubits on the honeycomb
lattice, leading to an effective four-level qudit Hamiltonian
on the honeycomb lattice.

APPENDIX C: SPIN-1 QUADRUPOLE
OPERATORS

Let us define

Sx ¼ cos

�
θ

3

�
Sx þ sin

�
θ

3

�
fSy; Szg; ðC1Þ

Sy ¼ cos

�
θ

3

�
Sy þ sin

�
θ

3

�
fSz; Sxg; ðC2Þ

Sz ¼ cos

�
θ

3

�
Sz þ sin

�
θ

3

�
fSx; Syg: ðC3Þ

These satisfy the q-deformed commutator relation:

½Sx;Sy�q ¼ iSz; where ½A;B�q ¼ qAB − q−1BA;

with q ¼ eiθ ðC4Þ

(and similarly for cyclic permutations). For q ¼ 1, we have
that ½A; B�1 ¼ ½A;B�, in which case the above is the usual
(spin-1) relation ½Sx;Sy� ¼ iSz, whereas for q ¼ i we have
½A;B�i ¼ ifA;Bg, such that for θ ¼ π=2 we have that
fSx;Syg ¼ Sz. For θ ¼ π, we have q ¼ −1 such that
½A;B�−1 ¼ −½A;B�, and indeed, one can show that, in this
case, Sα is unitarily equivalent to −Sα. Hence, the operators
for θ ¼ 2π are unitarily equivalent to those at θ ¼ 0. In fact,
using the unitary operator

U¼ exp

�
−i

π

4
Sz
�
exp

�
i
θ

3
fSx;Syg

�
exp

�
i
π

4
Sz
�

¼ exp

�
i
θ

3
½ðSyÞ2− ðSxÞ2�

�
¼ exp

�
−i

θ

3
Qx2−y2

�
; ðC5Þ

the above interpolation is unitarily equivalent to

Sx ¼ Sx; Sy ¼ Sy; and

Sz ¼ cosðθÞSz þ sinðθÞfSx; Syg
¼ cosðθÞSz þ sinðθÞQxy: ðC6Þ

This shows that the above interpolation is really only a
function of θ mod 2π (up to unitary transformations). For
instance, ðSx; Sy; QxyÞ [Eq. (C6) with θ ¼ π=2] is unitarily
equivalent to

1

4
ð

ffiffiffi
3

p
Sx þQyz;

ffiffiffi
3

p
Sy þQxz;

ffiffiffi
3

p
Sz þQxyÞ; ðC7Þ

which is Eqs. (C1)–(C3) with θ ¼ π=2, which in turn is
unitarily equivalent to the case with θ ¼ π=2 − 2π ¼
−3π=2, i.e., −ðQyz;Qxz; QxyÞ.
Along the whole interpolation, we note that

eiπS
α ¼ eiπS

α
; i.e., the π rotations are independent of θ.

Finally, let us remark that the above interpolation (para-
metrized by θ) relates to the one in Sec. V C (parametrized
by φ) by φ ¼ 2θ. Hence, the operators in Sec. V C only
depend on φ mod 4π; in fact, since the Hamiltonian in
Eq. (48) only involves products of two operators, it is
insensitive to signs, such that it only depends on φ mod 2π.
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