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Turbulence in a conducting plasma can amplify seed magnetic fields in what is known as the turbulent,
or small-scale, dynamo. The associated growth rate and emergent magnetic-field geometry depend
sensitively on the material properties of the plasma, in particular on the Reynolds number Re, the magnetic
Reynolds number Rm, and their ratio Pm≡ Rm=Re. For Pm > 1, the amplified magnetic field is gradually
arranged into a folded structure, with direction reversals at the resistive scale and field lines curved at the
larger scale of the flow. As the mean magnetic energy grows to come into approximate equipartition with
the fluid motions, this folded structure is thought to persist. Using analytical theory and high-resolution-
magnetohydrodynamics simulations with the ATHENA++ code, we show that these magnetic folds become
unstable to tearing during the nonlinear stage of the dynamo for Rm≳ 104 and Re≳ 103. An Rm- and
Pm-dependent tearing scale, at and below which folds are disrupted, is predicted theoretically and found to
match well the characteristic field-reversal scale measured in the simulations. The disruption of folds by
tearing increases the ratio of viscous-to-resistive dissipation. In the saturated state, the magnetic-energy
spectrum exhibits a sub-tearing-scale steepening to a slope consistent with that predicted for tearing-
mediated Alfvénic turbulence. Its spectral peak appears to be independent of the resistive scale and
comparable to the driving scale of the flow, while the magnetic energy resides in a broad range of scales
extending down to the field-reversal scale set by tearing. Emergence of a degree of large-scale magnetic
coherence in the saturated state of the turbulent dynamo may be consistent with observations of magnetic-
field fluctuations in galaxy clusters and recent laboratory experiments.
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I. INTRODUCTION

Dynamo action refers to the amplification and sub-
sequent maintenance of magnetic fields through the con-
version of kinetic energy to magnetic energy [1,2].
Reconnection refers to the annihilation and topological
rearrangement of magnetic fields through the conversion of

magnetic energy to kinetic energy [3,4]. Given this recip-
rocal relationship, it is somewhat surprising that studies
of reconnection in the context of the dynamo are in their
infancy. Indeed, with the exceptions of unpublished
numerical work by Iskakov and Schekochihin (2008)
and Beresnyak (2012) (summarized in Ref. [5]), there
has been no systematic investigation of how reconnection
affects the geometry of magnetic fields produced by the
turbulent dynamo [6].
At least part of the blame for the lack of progress on

this front may be attributed to the steep computational cost
involved. It is now well established that very large
Lundquist numbers are required for current sheets to
undergo fast reconnection via the plasmoid (tearing)
instability [4,11], and large Lundquist numbers require
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high numerical resolution (the Lundquist number is the ratio
of a sheet’s resistive diffusion time to its Alfvén-crossing
time, and increases with decreasing resistivity). The fact that
the turbulent dynamo is an inherently three-dimensional
process [12] further compounds the cost. But in the face of
such computational adversity, theory can flourish, and one
may take inspiration from recent analytical developments
concerning the impact of resistive tearing modes on criti-
cally balanced, dynamically aligned magnetohydrodynamic
(MHD) turbulence in the presence of a mean magnetic
field [13–16]. Recent simulations in reduced geometries
appear to support those authors’ conjecture that the three-
dimensionally anisotropic Alfvénic fluctuations that occur at
the small scales of a turbulent cascade produce current sheets
that are susceptible to disruption (either incomplete or
complete) via tearing [17,18].
Following this line of reasoning, here we use analytical

arguments and high-resolution, viscoresistive MHD simu-
lations to determine under what conditions the geometry
of the magnetic field produced by the turbulent (or
“fluctuation”) dynamo is affected by the tearing instability.
The idea itself has three simple ingredients [5].
First, a generic outcome of (the kinematic stage of) the

turbulent dynamo is a dynamically important magnetic
field exhibiting a folded geometry [19,20], with existing
simulations predicting a characteristic length of the folds
set by the viscous scale of the fluid motions lν and a
characteristic width of the folds related to the resistive scale
lη [21,22]. When the ratio of the kinematic viscosity ν to
the resistivity η is large, i.e., when the magnetic Prandtl
number Pm≡ ν=η ≫ 1, these length scales satisfy
lν ≫ lη, and the folds may be viewed as elongated current
sheets whose characteristic direction-reversing scale is
much smaller than their characteristic coherence length
(see Fig. 1).
This view of the turbulent dynamo as an efficient

generator of thin current sheets motivates the second
ingredient, namely, the tearing instability. Depending on
the aspect ratio of the current sheet and the Lundquist
number, the tearing instability triggers the onset of recon-
nection by perturbing the reconnecting field to spawn one,
two, or even a whole chain of magnetic islands [11,23,24].

If allowed to proceed beyond its linear stage of growth,
tearing undergoes nonlinear evolution that ultimately leads
to the collapse and breakup of the current sheet [25–30].
The third and final ingredient is an appreciation for the

important role played in all of this by the material proper-
ties of the plasma. Namely, the larger the value of Pm,
the more spatially anisotropic the dynamo-generated folds
become, with the length-to-width ratio increasing approx-
imately as Pm1=2 in the kinematic regime [21]. This
arrangement is particularly conducive to tearing, as it
allows for modes with larger values of the tearing-insta-
bility parameter Δ0. On the other hand, large values of Pm
slow down tearing modes through viscous damping of the
fluid motions [31]. For example, the critical Lundquist
number for plasmoid instability in a Pm ≫ 1 Sweet-Parker
current sheet increases with Pm, making it more difficult to
trigger fast reconnection [32]. Clearly, there is a sweet spot
in the values of Pm.
This qualitative argument is made more quantitative in

Sec. II, where we develop a theory to estimate a “tearing
scale” at and below which tearing disrupts the dynamo-
generated folds. This theory does not, however, address
how this physics translates into the fluctuation statistics and
spectra, the ratio of viscous to resistive heating, and the
eventual structure of the dynamo-generated magnetic field
in its saturated state. To find that out, we perform a series of
numerical simulations, which are described and analyzed in
Sec. III. We close in Sec. IV with some thoughts on how
this tearing-mediated dynamo might manifest in astro-
physical systems and what its implications are for the
production of large-scale fields in turbulent astrophysical
plasmas. A related finding of our analysis is that the peak
of the magnetic-energy spectrum in the saturated state of
the dynamo appears to occur at large scales and to be
independent of the resistivity when the latter is sufficiently
small. In other words, the saturated state of the small-scale
dynamo is characterized by a degree of large-scale coher-
ence in the amplified magnetic field.

II. THEORETICAL CONSIDERATIONS

In this section, we summarize the salient features of the
Pm ≥ 1 fluctuation dynamo, as suggested by theory and
evidenced by low- and intermediate-resolution numerical
simulations (Sec. II A) and of the theory of the resistive
tearing instability (Sec. II B). These features are then
combined in Sec. II C to obtain a theory for how tearing
might disrupt dynamo-generated magnetic folds.

A. Generation and persistence of magnetic folds

Consider a statistically homogeneous MHD plasma
with constant magnetic resistivity η and kinematic viscosity
ν (≥η), in which an initially weak, zero-net-flux magnetic
field is amplified via random stretching by three-
dimensional, incompressible turbulence. We take this

FIG. 1. An illustrative sketch of a characteristic magnetic fold
produced during the kinematic stage of the turbulent dynamo,
with its length lk set by the viscous scale lν and its width l⊥ set
by the resistive scale lη. The possibility that such a fold might
be disrupted by resistive tearing modes (symbolized by the red
islands) in either the kinematic or the nonlinear stage of the
dynamo is investigated in this paper.
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turbulence to consist of fluid motions that are injected with
root-mean-square (rms) velocity U at the outer (forcing)
scale L and cascaded conservatively through an inertial
range down to a viscous scale lν, at and below which
dissipation occurs. This assumes that the magnetic field is
weak enough that the Lorentz force is negligible through-
out this inertial range—the so-called “kinematic” stage. For
a Kolmogorov cascade [33], the typical velocity increment
at scale l is given by δul ∼Uðl=LÞ1=3 resulting in, a
nonlinear eddy turnover time τnl that progressively
decreases at smaller and smaller scales, viz.,

τ−1nl ∼
δul
l

∼
U
L

�
l
L

�
−2=3

: ð1Þ

In this case, the maximal stretching rate

τ−1nl;min ∼
U
L
Re1=2 ðkinematic stageÞ ð2Þ

occurs at the viscous scale lν ∼ LRe−3=4, where Re ≐
UL=ν ≥ 1 is the Reynolds number. When the magnetic
field is too weak to exert any influence on these viscous-
scale motions, the rms magnetic-field strength Brms
(defined throughout the paper in velocity units assuming
a constant background density) grows exponentially at this
Re-dependent rate,

d lnBrms

dt
∼
U
L
Re1=2 ðkinematic stageÞ: ð3Þ

During this exponential amplification, the magnetic field
is stretched, folded, and ultimately organized into a highly
intermittent patchwork of long, thin structures whose
energy spectrum MðkÞ ∝ k3=2 (here, k is the wave number)
peaks at the smallest available scale on which the magnetic
field can reverse its direction, viz., the resistive scale lη

[7,34,35]. In this folded geometry, there is an anticorrela-
tion between the field-line curvature and the field strength
[19–21]: The magnetic field is weakest in the regions of
curved field (bends) and strongest in the regions where
it reverses its direction. To obtain an estimate for lη, we
balance the maximal (viscous-scale) nonlinear stretching
rate τ−1nl;min ∼ ðU=LÞRe1=2, with the rate of resistive decay of
the folds τ−1η ∼ η=l2

η, finding lη ∼ LRe−1=4Rm−1=2, where
Rm≡UL=η is the magnetic Reynolds number. The
ratio of the viscous to resistive scales then satisfies
lν=lη ∼ ðRm=ReÞ1=2 ≡ Pm1=2. Reference [19] showed that
the characteristic parallel length of the magnetic folds lk
is inherited from the velocity fluctuations with the fastest
rate of strain, in which case, lk ∼ lν during the kinematic
stage. Thus, the value of Pm controls the aspect ratio of the
folds, with Pm ≫ 1 implying large-aspect-ratio current
sheets. In Sec. II C, we show that, despite these potentially
large aspect ratios, the lifetime of the folds during the

kinematic stage is too short for the tearing instability to
grow effectively.
Once the mean magnetic energy becomes comparable

to the energy of the viscous-scale motions (viz., B2
rms ∼

U2Re−1=2), the kinematic stage ends and the dynamo
becomes nonlinear. Namely, the Lorentz force due to the
spatially coherent magnetic folds backreacts on the vis-
cous-scale motions and suppresses their ability to amplify
the magnetic field [21,36–42]. As a result, progressively
larger (and slower) eddies are responsible for amplifying
the field, while the eddies whose energies are lower
δu2l ∼U2ðl=LÞ2=3 ≲ B2

rms are suppressed. This leads to
some steepening of the kinetic-energy spectrum just below
the energy-equipartition scale. The result is a resistive
“selective decay” of the magnetic energy at scales too small
to be sustainable by the weakened stretching [21,22,43].
With the maximal stretching rate now being given by

τ−1nl;min ∼
U
L

�
U
Brms

�
2

ðnonlinear stageÞ; ð4Þ

the magnetic energy grows secularly, with

dB2
rms

dt
∼
U3

L
¼ const ðnonlinear stageÞ ð5Þ

implying Brms ∝ t1=2 [43–45].
During this stage of secular growth, the resistive scale

that is obtained by balancing stretching with resistive
decay satisfies lη ∼ LðBrms=UÞRm−1=2 ∝ t1=2, and thus,
the energy-containing scale of the magnetic field shifts
gradually toward larger scales. The length of the folds
increases as well, matching that of the maximally stretching
eddies, viz., lk ∼ LðBrms=UÞ3 ∝ t3=2. Accordingly, the
folds become further elongated: lk=lη ∝ t. In Sec. II C,
we show that it is during this stage that the dynamo-
generated current sheets first become susceptible to tearing,
thereby modifying these scalings.
Eventually, the magnetic energy reaches approximate

equipartition with the kinetic energy at the outer scale
B2
rms ∼ U2. In this saturated state, all but the largest eddies

are suppressed by the magnetic tension associated with the
dynamically important, folded magnetic field. In low- and
intermediate-resolution simulations of the Pm ≥ 1 dynamo
[21,22], this folded geometry is found to persist in the
saturated state, with a parallel coherence length set by the
outer-scale motions and a perpendicular-field-reversal
scale that remains proportional to the resistive scale.
With the resistive scale being determined by a balance
between the stretching rate of the outer-scale eddies
τ−1nl ∼U=L, and τ−1η ∼ η=l2

η, we obtain lη ∼ LRm−1=2, from
which an aspect ratio lk=lη ∼ Rm1=2 follows. In Sec. II C,
we argue that these scalings should fail at large Rm due to
disruption of the folds by tearing instability. Before doing
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so, we recapitulate briefly the theory of tearing instability in
supercritical current sheets.

B. Tearing modes in supercritical current sheets

A current sheet with length l and characteristic half-
thickness λ is deemed “supercritical” if there is a tearing-
mode wave number kt ≳ l−1 for which the stability
parameter Δ0 ¼ Δ0ðktÞ > 0. For a Harris-sheet (i.e., tanh)
profile, Δ0λ ¼ 2ð1=ktλ − ktλÞ, so that modes with λ=l≲
ktλ ≪ 1 are the most susceptible to tearing; for a sinusoidal
profile, Δ0λ ≃ ð8=πÞðktλÞ−2 when ktλ ≪ 1 [46]. In either
case, for tearing modes with Δ0λ ≪ ðSλktλÞ1=3, where
Sλ ≡ λvA;λ=η is the Lundquist number of the sheet,
and vA;λ is the Alfvén speed of the reversing field
[the so-called “Furth-Killeen-Rosenbluth (FKR) regime”
[23]], the growth is exponential at the rate γFKR ∼
ðvA;λ=λÞS−3=5λ ðktλÞ2=5ðΔ0λÞ4=5. For a current-sheet profile
satisfying Δ0λ ∼ ðktλÞ−n at ktλ ≪ 1, the growth rate γFKR is
largest at the smallest available wave number (ktl ∼ 1) for
n > 1=2. In this case, low-aspect-ratio sheets will develop
tearing perturbations comprising just one or two islands.
If instead the current sheet is proportionally thin enough

that Δ0λ≳ ðSλktλÞ1=3, i.e., if λ=l ≲ ktλ≲ S−1=ð3nþ1Þ
λ , the

growth rate becomes independent of Δ0—the so-called
“Coppi regime” [24], with γCoppi ∼ ðvA;λ=λÞS−1=3λ ðktλÞ2=3.
In this case, the growth rate increases with increasing kt,
signaling that high-aspect-ratio sheets will spawn
whole chains comprising approximately ktl ≫ 1 islands.
One can then show by balancing the FKR and Coppi rates
[47] that, if the Coppi regime is accessible, the maximally

growing tearing mode has γt;max ∼ ðvA;λ=λÞS−ðnþ1Þ=ð3nþ1Þ
λ

at kt;maxλ ∼ S−1=ð3nþ1Þ
λ .

The above tearing scalings are valid only at Pm≲ 1.
For Pm ≫ 1, they must be modified to account for
viscous suppression of the fluid motions involved
in the tearing modes [31]. In this case, the corres-
ponding FKR and Coppi growth rates are given by
γFKR ∼ ðvA;λ=λÞS−2=3λ Pm−1=6ðktλÞ1=3ðΔ0λÞ and γCoppi ∼
ðvA;λ=λÞS−1=3λ Pm−1=3ðktλÞ2=3. For Δ0λ ∼ ðktλÞ−n with
n > 1=3, there is again a maximally growing tearing mode
intermediately between these two regimes, which may be
obtained as before by balancing the FKR and Coppi rates.
The result is

γt;maxλ

vA;λ
∼ S−ðnþ1Þ=ð3nþ1Þ

λ Pm−n=ð3nþ1Þ; ð6aÞ

kt;maxλ ∼ S−1=ð3nþ1Þ
λ Pm1=2ð3nþ1Þ; ð6bÞ

provided that kt;maxl≳ 1 [5].

C. Tearing meets dynamo

For tearing to be relevant during the fluctuation dynamo,
the maximum growth rate for tearing of a current
sheet must be larger than both the sheet’s resistive decay
rate and its decorrelation rate, viz., γt;maxτη ≳ 1 and
γt;maxτnl;min ≳ 1. These requirements are tantamount to
asking whether the maximum current-sheet thickness at
which tearing can onset (denoted by λ�) is larger than the
resistive scale lη ∼ ðητnl;minÞ1=2. Here we use Eq. (6) to
determine λ� via the condition γt;maxτnl;min ∼ 1 in each stage
of the dynamo and ask whether it is≳lη; we also check that
kt;maxlk ≳ 1 (i.e., that the Coppi regime is accessible).
When doing so, we associate vA;λ in Eq. (6) with the
strength of the local dynamo-generated field whose reversal
scale is λ ¼ λ�.
As we explain in Sec. II A, during the kinematic

stage, τ−1nl;min ∼ ðU=LÞRe1=2 [see Eq. (2)] and so lη ∼
LRm−3=4Pm1=4. Demanding that λ� ≳ lη is then equivalent
to demanding that B2

rms ≳U2Re−1=2. This is the same as the
energy of the viscous-scale eddies, so such field strengths
are greater than those attained during the kinematic stage.
In other words, all current sheets produced during the
kinematic stage should diffuse resistively before tearing
can onset (this statement is independent of n). By the end
of the kinematic stage, however, λ� ∼ lη. For tearing to
onset during the subsequent nonlinear (secular-growth)
stage, λ� must then grow in time faster than lη ∼
LðBrms=UÞRm−1=2 ∝ t1=2. We now show that this is indeed
the case.
Using Eqs (4) and (6) and comparing γt;max to τ−1nl;min ∼

ðU=LÞðU=BrmsÞ2 ∝ t−1 during the nonlinear stage, we find
that

λ�
L
∼
�ðB2

rms=U2Þ4nþ1

Rmnþ1Pmn

�
1=2ð2nþ1Þ

∝ t
4nþ1
4nþ2; ð7Þ

and so

λ�
lη

∼
�
B2
rms

U2
Re1=2

�
n=ð2nþ1Þ

∝ tn=ð2nþ1Þ: ð8Þ

Although lη increases in time, λ� does so even faster,
affording the possibility of tearing disrupting the current
sheets before they diffuse resistively. With kt;max given by
Eq. (6b) and lk ∼ LðBrms=UÞ3 (see Sec. II A), a typical
current sheet should then spawn

N ∼ kt;maxlk ∼
�
B2
rms

U2
Re1=2

�
n=ð2nþ1Þ

Pm1=2 ≳ 1 ð9Þ

magnetic islands. Thus, unless Re≲ 1, a nonlinear dynamo
is a tearing-limited dynamo.
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Eventually, the dynamo should saturate with a near-
equipartition magnetic field Brms ∼U, so that, using
Eqs. (7) and (8),

λ� ∼ LðRmnþ1PmnÞ−1=2ð2nþ1Þ ð10aÞ

∼ lηRen=2ð2nþ1Þ: ð10bÞ

Thus, for there to be a range of scales on which tearing acts
much faster than resistive decay and nonlinear decorrela-
tion (i.e., λ� ≫ lη), we require that

Ren=2ð2nþ1Þ ≫ 1: ð11Þ

For n ¼ 1, this gives Re1=6 ≫ 1; for n ¼ 2, Re1=5 ≫ 1 [48].
If this inequality is satisfied, then in saturation we have
from Eq. (10) that

λ� ∼
�
LRm−1=3Pm−1=6 for n ¼ 1;

LRm−3=10Pm−1=5 for n ¼ 2:
ð12Þ

These predictions, alongside those that tearing should not
operate during the kinematic stage and that the magnetic
field should exhibit a reversal scale during the nonlinear
stage that evolves as λ� ∝ t5=6 (n ¼ 1) or t9=10 (n ¼ 2) [see
Eq. (7)] rather than as lη ∝ t1=2, are tested by the numerical
simulations in Sec. III.
If Re is sufficiently large that λ� is well separated from lη

[see Eq. (10b)], then there is the additional question of how
the magnetic field is arranged at sub-λ� scales; e.g., what is
its energy spectrum? This depends on whether the tearing
of the folds proceeds long enough to go nonlinear, induce
current-sheet collapse, and perhaps trigger the onset of
plasmoid-dominated reconnection. Because kt;maxlk ≳ 1 in
saturation [see Eq. (9)], the Coppi regime is accessible, and
so we do not anticipate a nonlinear “Rutherford” stage of
secular growth of the island width [52]. (Put differently, the
island widths are already comparable to the inner-layer
width δin of the tearing current sheet at the end of the linear
growth of tearing, and so no further evolution is needed to
obtain Δ0δin ∼ 1.) The X point(s) formed by the tearing
mode should then rapidly collapse into thin secondary
sheets, resulting in Sweet-Parker-like growth of the recon-
nected flux on a timescale comparable to γ−1t;max [26]. An
outstanding question then is whether plasmoid-dominated,
steady-state, fast reconnection can onset (e.g., see
Sec. 12.4.4 of Ref. [5]), but that is unlikely to be verifiable
by numerical simulations at resolutions that are currently
feasible.
In what follows, we assume that steady-state, fast

reconnection is not occurring, and that the role of tearing
is simply to break up the folds into a succession of smaller
structures (such an assumption is supported by the numeri-
cal results in Sec. III). We then argue that the turbulence at

scales below λ� should be similar to the tearing-mediated
turbulence proposed in Refs. [13,14], with the only differ-
ence being that the direction of the “local mean field” is that
of the strongly fluctuating dynamo field at larger scales. If
this is true, then the energy spectrum of the cascade should
exhibit a k−11=5ðn ¼ 1Þ or k−19=9ðn ¼ 2Þ spectral envelope
at scales below λ� [13,14]. Both of these slopes are steeper
than Kolmogorov’s. The derivation of this spectrum rests
on the assumption that the turbulence at sub-λ� scales is
approximately Alfvénic and critically balanced. For each
scale λ≲ λ�, the nonlinear turnover time τnl associated with
the Alfvénic motions on that scale is comparable to the
linear tearing timescale γ−1t;max at the same scale. Assuming
that tearing leads to a negligible amount of dissipation in
the tearing-mediated cascade (that is, tearing determines
only the lifetime and structure of the sub-λ� fluctuations),
Eq. (6) with γt;maxv2A;λ ∼ const below λ� leads to the scaling
vA;λ ∝ λð2nþ1Þ=ð4nþ1Þ, from which the aforementioned spec-
tra follow.
In the next section, we test these predictions with high-

resolution numerical simulations across a wide range of
Rm and Pm.

III. NUMERICAL RESULTS

A. Method of solution and dimensionless
free parameters

We employ the ATHENA++ code framework [53] to solve
the equations of nonrelativistic, compressible MHD in
conservative form. These are the continuity equation

∂ρ

∂t
þ ∇·ðρuÞ ¼ 0; ð13Þ

the momentum equation

∂ρu
∂t

þ∇·
�
ρuu−BBþ

�
ρC2þB2

2

�
I−ρνW

�
¼ρf ; ð14Þ

and the induction equation

∂B
∂t

− ∇×ðu × B − ηJÞ ¼ 0; ð15Þ

where ρ is the mass density, u is the fluid velocity, B is the
magnetic field, J ¼ ∇ × B is the current density,

W≡ ∇uþ ð∇uÞ⊤ −
2

3
ð∇·uÞI ð16Þ

is the (traceless, symmetric) rate-of-strain tensor, and I is
the unit dyadic. Equations (14) and (15) include explicit
momentum and magnetic diffusion with spatially uniform
kinematic viscosity ν and Ohmic resistivity η. In writing
Eq. (14), we adopt an isothermal equation of state with
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constant sound speed C and include a driving term f
specified below.
Equations (13)–(15) are solved using the ATHENA++ code

framework [53]. ATHENA++ is a widely used, finite-volume,
astrophysical MHD code that uses a directionally unsplit
Godunov scheme for MHD alongside constrained transport
on a staggered grid to conserve the divergence-free prop-
erty for magnetic fields ∇·B ¼ 0. All runs use the HLLD
Riemann solver to calculate the fluxes. All but two of them
employ a second-order-accurate van Leer integration algo-
rithm with second-order-accurate piecewise linear spatial
reconstruction; those exceptional two use third-order-accu-
rate Runge-Kutta integration with third-order-accurate
piecewise parabolic reconstruction. All of these runs are
summarized in Table I.
In each simulation, low-Mach-number turbulence

with rms fluid velocity urms ≈ 0.1C is driven in a three-
dimensional, periodic box of size L3 using an incompress-
ible, zero-mean-helicity, random forcing f . At each

simulation time step, the Fourier coefficients f k are
independently generated from a Gaussian-random field
in the wave-number range k ∈ ½1; 2�k0, where k0 ≡ 2π=L
is the box wave number, and constrained to satisfy
k · f k ¼ 0. The resulting force is then inverse-Fourier
transformed, shifted to ensure no net momentum injection,
and normalized to provide constant power per unit
volume. The force is then time correlated by an
Ornstein-Uhlenbeck process with correlation time tcorr;f ¼
10ðk0CÞ−1 ≈ ðk0urmsÞ−1. Across all of our simulations, the
rms density fluctuation is never more than 1%.
We define the Reynolds number Re≡ urms=k0ν and the

magnetic Reynolds number Rm≡ urms=k0η, for which
Pm ¼ Rm=Re ≥ 1. We vary Re and Rm across the suite
of simulations using grid resolutions 2803, 5603, 11203,
and 22403. For each resolution, we set η and then vary ν
while keeping Pm ≥ 1. In doing so, we explore a wide
range of plasma parameters, with Rm ∼ 103–5 × 104 and
Pm ∈ ½1; 500�. Two additional simulations (runs b2⋄ and

TABLE I. Run parameters at different resolutions N3. The subscripts “sat” and “kin” refer, respectively, to values measured during the
saturated and kinematic stages. Versions of runs c2 and d2 using third-order Runge-Kutta time integration and third-order spatial
reconstruction are also performed, here marked by a “⋆.” Versions of runs b2 and c2 with the same η and Pm but performed at twice the
resolution are marked by a “⋄.” Runs with Pm ¼ 1 are slightly under-resolved during the kinematic stage.

N3 Run 107η Pm Resat Rmsat urms;kin urms;sat Brms;sat

2803 a1 200 1 920 920 0.14 0.12 0.06
a2 200 10 76 760 0.11 0.10 0.07
a3 200 50 12.9 640 0.11 0.08 0.08
a4 200 100 7.0 700 0.14 0.09 0.10
a5 200 200 3.6 720 0.12 0.09 0.11
a6 200 300 2.5 750 0.12 0.09 0.12
a7 200 500 1.45 720 0.13 0.09 0.12

5603 b1 100 1 2200 2200 0.18 0.14 0.09
b2 100 10 189 1890 0.18 0.12 0.09
b3 100 50 33 1640 0.19 0.10 0.11
b4 100 100 18.7 1870 0.19 0.12 0.13
b5 100 200 10.2 2000 0.21 0.13 0.16
b6 100 300 7.2 2200 0.22 0.14 0.18
b7 100 500 4.7 2300 0.22 0.15 0.19

11203 c1 25 1 10 400 10 400 0.26 0.16 0.12
c2 25 10 940 9400 0.26 0.15 0.13
c2⋆ 25 10 920 9200 0.17 0.15 0.13
b2⋄ 100 10 250 2500 0.18 0.16 0.12
c3 25 50 163 8200 0.24 0.13 0.13
c4 25 100 82 8200 0.23 0.13 0.14
c5 25 200 47 9300 0.24 0.15 0.17
c6 25 300 33 10 000 0.30 0.16 0.19
c7 25 500 22 11 200 0.31 0.18 0.23

22403 d1 6 1 50 000 50 000 0.32 0.19 0.16
d2 6 10 4800 48 000 0.32 0.18 0.17
d2⋆ 6 10 5200 52 000 0.25 0.20 0.16
c2⋄ 25 10 1130 11 300 0.18 0.18 0.16
d3 6 50 870 43 000 0.32 0.16 0.17
d4 6 100 430 43 000 0.32 0.16 0.16
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c2⋄) are performed to test the robustness of our results
by doubling the resolution at fixed ν and η. All simulations
are initialized with density ρ ¼ ρ0 ¼ const, fluid velocity
u ¼ 0, and zero-net-flux magnetic field B with energy
randomly distributed at wave numbers k ∈ ½1; 2�k0 and rms
field strength Brms such that β0 ≡ 2ρ0C2=B2

rms ¼ 5 × 105.
Henceforth, all quantities are normalized so that
L ¼ C ¼ ρ0 ¼ 1.

B. Qualitative evolution: Evidence of magnetic folds
and their disruption at large Rm

Figure 2 displays snapshots of the magnetic-field strength
B and flow speed u at fixed Pm ¼ 10 for various Rm
increasing with resolution. Figure 2(a) focuses on the end of
the kinematic stage, at which point spatially intermittent
magnetic folds are readily apparent. As anticipated, there are

FIG. 2. Qualitative comparison of magnetic-field strength B (top row) and speed u (bottom row) during both the kinematic stage
(a) and in saturation (b) taken at fixed Pm ¼ 10 from runs a2, b2, c2, and d2. Both quantities are normalized in each snapshot so that the
color bars range linearly between their instantaneous minimum and maximum values in the domain. The resolution, and thus Rm,
increases from left to right as indicated.
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no clear signs of fold disruption by tearing modes, despite
the highly elongated and (particularly at high resolution) thin
structures. By contrast, Fig. 2(b) shows striking differences
in both the magnetic and velocity fields in the saturated state
across the sampled range of Rm. Namely, for Rm≳ 104 (i.e.,
for resolutions 11203 and above), the magnetic folds are
broken up into smaller structures, and the velocity field
becomes increasingly filamentary and spatially intermittent
(particularly at 22403).
In Sec. II C, we argue that small Re (i.e., large Pm at

fixed Rm) should suppress the tearing instability, despite
the associated increase in the aspect ratio of the folds.
Figure 3 provides support for this conjecture, showing a
snapshot of the magnetic energy in the saturated state of run
c7 (11203, Pm ¼ 500, Re ≈ 20). Although Rm ≈ 104 here
is similar to that in the 11203 box with Pm ¼ 10 and
Re ≈ 103 shown in Fig. 2, the magnetic folds do not appear
to be broken up into smaller structures and remain
relatively coherent, with strong fields concentrated on
small (resistive) scales.
The Rm dependence seen qualitatively in Fig. 2(b) is all

the more apparent in Fig. 4, which provides enlargements
of individual magnetic structures found in the saturated
state of run b2 (5603) and run d2 (22403), both with
Pm ¼ 10. The panels show the current density in color and
magnetic-field lines in white (with arrows indicating
direction). A fairly laminar structure is evident at the lower
value of Rm [Fig. 4(a)], with the magnetic field reversing
its direction across a smooth current sheet. By contrast,
Fig. 4(b) shows a fold obtained at a higher Rm that has
broken up into smaller current sheets and plasmoidlike
structures. A further enlargement on a similar disrupted
fold from run d2 is shown in Fig. 4(c), with the current

sheet oriented diagonally from the bottom left to the upper
right corner. The magnetic-field lines emanate from a small
region near the left side of the central plasmoid and wrap
around the central structure, revealing one of the flux ropes.
In the following sections, these qualitative results and

their agreement (or not) with the theoretical arguments
of Sec. II are made quantitative by examining a variety of
diagnostics. When directly comparing to the theory in
Sec. II, we adopt n ¼ 2 corresponding to field reversals
with sinusoidal (rather than Harris-like) profiles. This
choice is supported by the local profiles of the magnetic
folds highlighted in Fig. 3, which indicate volume-filling,
quasisinusoidal variations in the field rather than isolated
sheets with tanh profiles. In this case, we predict a
noticeable separation between the tearing scale λ� and
the resistive scale lη in the saturated state once Resat ≳ 103

[corresponding to Re1=5sat ≳ 4; see Eq. (10b) with n ¼ 2].
Given the values of Resat listed in Table I, we anticipate
clear evidence of tearing-disrupted folds in runs c1, d1, and
d2; runs c2 and d3 should be marginal.

C. Energy spectrum and transport

In this section, we discuss the evolution and parameter
dependence of the angle-integrated kinetic and magnetic-
energy spectra, which are given, respectively, by EðkÞ≡R
dΩk k2hjuðkÞj2i=2 and MðkÞ≡ R

dΩk k2hjBðkÞj2i=2
[54]. We also show how energy is pumped into and
converted across different scales by the Lorentz force using
shell-to-shell transfer functions.
Figure 5 shows the spectra computed from different

resolutions at fixed Pm ¼ 10 (similar to Fig. 2: runs a2, b2,
c2, and d2) at the end of the kinematic stage [Fig. 5(a)] and
averaged over five snapshots taken during the saturated
state [Fig. 5(b)]. During the kinematic stage, the magnetic
spectra in all runs (solid lines) follow the expected
Kazantsev spectrum ∝ k3=2 at small k, with a spectral
cutoff that shifts to larger k as Rm increases. This shift is
qualitatively consistent with arguments made in Sec. II that
the kinematic-stage magnetic spectrum should be cut off at
a wave number ∝ Rm3=4Pm1=2 (at fixed Pm in this case).
As the magnetic energy builds up exponentially, the
Lorentz force eventually becomes large enough to back-
react on the flow at the viscous scale, steepening the
kinetic-energy spectrum (dashed lines) in comparison with
its being approximately Kolmogorov’s k−5=3 at large scales.
During the nonlinear stage, when the magnetic energy

exhibits secular growth, the spectral peak of MðkÞ shifts
toward smaller wave numbers (larger scales), as expected
theoretically. However, this peak follows neither l−1

η ∝
Rm1=2 nor λ−1� ∝ Rm3=10Pm1=5 in the saturated state
[Fig. 5(b)], but rather appears to be independent of (or,
at most, very weakly dependent on) Rm at the higher
resolutions. This point is revisited in Sec. III D, where we
compute the integral scale of the magnetic field and show

FIG. 3. Snapshot of magnetic-field strength in the saturated
state of run c7 (11203, Pm ¼ 500, Re ≈ 20, Rm ≈ 104). Large
Pm results in elongated laminar current sheets, in contrast to
those seen in run c2 [11203, Pm ¼ 10, Re ≈ 103, Rm ≈ 104; see
Fig. 2(a)]. Two 1D spatial cuts of the magnetic field are shown on
the left side; colors indicate different projections of the magnetic
field: in plane (blue) and out of plane (red).
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quantitatively that it becomes approximately independent
of Rm in the saturated state for Rm≳ 104, Pm≲ 50.
On scales smaller than that on which the magnetic

spectrum peaks, MðkÞ steepens gradually and, at the
highest resolution, appears to acquire a power law that is
steeper than Kolmogorov but consistent with the k−19=9

envelope predicted at the end of Sec. II C for a cascade
controlled by tearing (the scale separation between λ� and
lη is not large enough to determine definitively the exact
spectral index). It is notable that the consistency with
−19=9 begins around k=2π ∼ 40 at 22403, which, perhaps
not coincidentally, matches the predicted value of λ−1� given
Pm ¼ 10 and the measured Rmsat for this run [indicated by
the black arrow; see Eq. (10)]. At lower resolutions, Re1=5sat
is not sufficiently large for tearing to act faster than resistive
decay, with the situation at 11203, Pm ¼ 10 being marginal
at best (purple arrow).
These changes in the magnetic- and kinetic-energy

spectra reflect not only the disruption of magnetic folds
by the tearing instability but also the modified interplay
between the flow and the Lorentz force. This interplay
may be studied using the local shell-to-shell transfer
function TðkÞ ¼ R

dΩk k2uðkÞ½J × B�ðkÞ� [55,56]. This
function describes the amount of work done by (T > 0)
or against (T < 0) the Lorentz force at a single scale k.
Following Ref. [55], we associate TðkÞ < 0with “forward
dynamo action” corresponding to growth of the magnetic
energy at the expense of the kinetic energy and TðkÞ > 0
with “reversed dynamo action” corresponding to a transfer
from magnetic energy to kinetic energy. Figure 5(c) shows
TðkÞ for the same runs as in Figs. 5(a) and 5(b). At the
largest scales, where EðkÞ > MðkÞ, energy injection is

working against the Lorentz force, corresponding to
forward dynamo action (denoted by open circles).
Work done by the Lorentz force increases gradually
toward smaller scales until EðkÞ ∼MðkÞ, beyond which
TðkÞ becomes positive (filled circles). For Rm≳ 104

(resolutions of 11203 and 22403), there is a wave-number
range in which TðkÞ is roughly constant, corresponding to
a constant magnetic-to-kinetic energy flux. We think that
it is in this range that the coherent magnetic folds are
driving flows by exerting a Lorentz force. That process
becomes more difficult if these coherent folds break up
into plasmoidlike flux ropes [10], and so it may be no
coincidence that the transfer function stops being constant
in k right at the wave number k ¼ 2π=λ� where tearing is
predicted to onset, and the measured MðkÞ steepens to a
spectrum consistent with k−19=9.
To close this subsection, we provide in Fig. 6 the kinetic-

and magnetic-energy spectra at 22403 (our largest Rm) for
Pm ¼ f1; 10; 50; 100g time averaged over the saturated
state. A close examination reveals a slight increase with
Pm of the wave number at which the magnetic spectrum
steepens to be consistent with the predicted −19=9
envelope for a tearing-mediated cascade. In particular, at
Pm ¼ 100, MðkÞ remains no steeper than k−5=3 until
k=2π ≳ 60. Substituting the values of Resat and Rmsat listed
in Table I for run d4 into Eq. (10) with n ¼ 2 yields
λ−1� ≈ 62 (yellow arrow), consistent with this observation.

D. Characteristic scales of the magnetic field

The geometry of the magnetic field can be further
quantified using the following characteristic wave
numbers [21]:

FIG. 4. Example of a typical current sheet during saturation for Pm ¼ 10 at resolution 5603 (a) and 22403 (b) (runs b2 and d2,
respectively). Color shows the magnitude of the current density; magnetic-field lines are traced by white arrows. Panel (c) shows a 3D
rendering of the current density (color) in a typical plasmoid formed within a disrupted current sheet that is oriented diagonally from
bottom left to top right. Magnetic-field lines (white) originate in a small area below and wrap around the central plasmoid; a slice of the
current density is also displayed on the back face of the volume.
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kk ≡
�hjB · ∇Bj2i

hB4i
�

1=2
; ð17Þ

kB·J ≡
�hjB · Jj2i

hB4i
�

1=2

; ð18Þ

kB×J ≡
�hjB × Jj2i

hB4i
�

1=2

; ð19Þ

where h…i denotes a statistical (box) average. These
wave numbers measure the characteristic variation of the

magnetic field along itself (“k”) and across itself, with the
latter two perpendicular directions oriented using the local
direction of the current density J. Following Ref. [21], we
associate with these scales the characteristic length, width,
and thickness (in that order) of the magnetic folds. The final
wave number kB×J is particularly important, as it quantifies
the characteristic reversal scale of the magnetic field.
During the kinematic stage, we expect kB×Jlη ∼ 1, whereas
during the nonlinear stage and saturated state, kB×Jλ� ∼ 1.
Thus, if tearing is important, then we predict kB×J ∝ t9=10

during the nonlinear stage and kB×J ∝ Rm3=10Pm1=5 in
saturation; if tearing is not important, then these scalings
become t1=2 and Rm1=2, respectively.
In Fig. 7, we examine the time evolution of kB×J during

the nonlinear stage using results at 22403 for Pm ¼
f1; 10; 50; 100g and at 11203 for Pm ¼ 500. At large
values of Pm, we obtain evolution consistent with a
field-reversal scale that is proportional to the resistive scale
kB×J ∝ t1=2. However, at Pm ¼ 10, the evolution is much
closer to the tearing scale, with kB×J ∝ t9=10. Again, this
particular value of Pm at 22403 is notable in that it is large
enough to facilitate the production of large-aspect-ratio
current sheets but not so large as to interfere with the
disruption of such sheets by tearing.

FIG. 6. (a) Angle-integrated kinetic EðkÞ (dashed) and magnetic
MðkÞ (solid) spectra, time averaged over the saturated state of runs
d1, d2, d3, and d4 (22403 at different Pm), normalized by ρ0u2rms;sat.
The magnetic-energy spectrum steepens to be consistent with the
predicted−19=9 envelope for a tearing-mediated cascade at a wave
number that increases slightly with Pm; cf. Eq. (10), which predicts
λ−1� ∝ Pm1=5 at fixed Rm when n ¼ 2. The arrows indicate the
predicted λ−1� for Pm ¼ 10 (purple) and 100 (yellow). (b) Kinetic
spectra compensated by k5=3, and magnetic spectra compensated
by k, to illustrate the argument made at the end of Sec. III D; here,
kMðkÞ is multiplied by an arbitrary factor of 0.1 to separate it
visually from the other curves.

FIG. 5. Angle-integrated spectra for Pm ¼ 10 at different
resolutions (runs a2, b2, c2, and d2). Color coding of lines is
the same in all panels. (a) Kinetic EðkÞ (dashed) and magnetic
MðkÞ (solid) energy spectra at the end of the kinematic stage,
normalized by ρ0u2rms;sat. The spectral peak of the magnetic energy
depends on the resolution. (b) Kinetic EðkÞ (dashed) and
magnetic- MðkÞ (solid) energy spectra normalized by ρ0u2rms;sat,
time averaged over the saturated state. The arrows indicate the
predicted field-reversal scale λ−1� [see Eq. (10)] for Pm ¼ 10 at
11203 (purple) and 22403 (black). The magnetic-energy spectrum
acquires a slope steeper than −5=3 starting at k=2π ∼ λ−1� , which
at 22403 is consistent with the spectral envelope of k−19=9

expected for a tearing-mediated cascade. The spectral peak of
the magnetic energy appears to be independent of Rm. (c) Trans-
fer function TðkÞ in saturation, normalized by ρ0u3rms;sat, with
filled (open) circles corresponding to work done by (against) the
Lorentz force.
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The resistive scale predicted for the saturated state of the
dynamo was given in Sec. II A as lη ∼ LRm−1=2, inde-
pendent of Re. Therefore, if the reversal scale were set by
lη, the ratio kB×J=Rm1=2 should stay roughly constant as
Re and Rm are varied across our parameter scan. Indeed,
Fig. 8(a) demonstrates little variation in kB×J=Rm1=2 across
all Pm when Rm takes on relatively small values (at
resolutions 2803 and 5603 corresponding to runs a1–a7
and b1–b7, respectively). This scaling is consistent with
the results of other published Pm≳ 1 dynamo simulations
that had relatively low resolutions (see, e.g., Fig. 16 of
Ref. [21]). However, at higher resolutions (11203 and
especially 22403), the values of kB×J depart from this
scaling once Pm≳ 10: We now see kB×J=Rm1=2 increasing
with Pm. Such a dependence on viscosity is consistent with
the idea that, at sufficiently high Rm and intermediate values
of Pm, magnetic folds should have their reversals limited by
the tearing scale λ� ∝ Rm−3=10Pm−1=5 rather than by the
resistive scale ηη. Indeed, if we instead normalize kB×J using
Rm3=10 as in Fig. 8(b), we see behavior consistent with
Pm1=5 at our largest resolutions. Unfortunately, at present,
the steep numerical cost does not allow us to verify this
dependence at yet higher resolutions and larger values of
Pm, and so we view these trends as consistent with our
theory rather than as confirmatory in a definitive way.
In Fig. 8(c), these results are reorganized: kB×J is plotted

versus Rm, with different Pm indicated by the different
colors. As in the previous two panels, there is a general
trend away from the Rm1=2 scaling at low Rm and toward
one consistent with Rm3=10 at high Rm. We take this as our
clearest quantitative evidence for a change in the character-
istic field-reversal scale due to tearing at high Rm. Note that
kB×J ≳ 20 at our highest resolution, implying Lundquist
numbers on the order of Brms;sat=kB×Jη≳ 104.
The time evolution of the two other characteristic wave

numbers of the magnetic field kk and kB·J is shown

alongside that of kB×J in Fig. 9 at Pm ¼ 10 and resolutions
5603 and 22403. At low resolution, these wave numbers
have a clear ordering from the kinematic phase all the way
through to saturation: kk ≪ kB·J < kB×J, with the latter two
becoming closer to one another than the former two in
saturation (viz., kk∶kB·J∶kB×J ≈ 1∶7∶12; the exact numbers
depend on Rm). Such a hierarchy suggests folded magnetic
fields organized into flux ribbons. In the saturated state at
high resolution, this arrangement is modified quite dra-
matically: The two perpendicular scales become compa-
rable to one another, kk ≪ kB·J ≃ kB×J. This is instead
indicative of folded magnetic fields organized into flux
ropes, a natural outcome of plasmoid formation during the

FIG. 7. Time evolution of the field-reversal scale k−1B×J during
the nonlinear stage at resolution 22403 for different Pm (runs d1,
d2, d3, d4) and at resolution 11203 with Pm ¼ 500 (run c7; here,
kB×J is multiplied by an arbitrary factor of 1.4 to bring it nearer
visually to the other curves).

FIG. 8. Dependence of the field-reversal wave number kB×J on
plasma parameters in the saturated state. (a),(b) kB×J vs Pm at
different Rm; the color coding is the same for these two panels. In
(a), kB×J is divided by Rm1=2, the predicted Rm dependence of
the inverse resistive scale l−1

η ; in (b), kB×J is divided by Rm3=10,
the predicted Rm dependence of the inverse tearing scale λ−1� [see
Eq. (10)]. (c) kB×J vs Rm at different Pm. Low-Rm runs show an
Rm dependence consistent with the resistive scale kB×J ∼ 2π=lη;
high-Rm runs show an Rm and Pm dependence consistent with
the predicted tearing scale kB×J ∼ 2π=λ�.
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tearing disruption of current sheets. Interestingly, the rms
wave number of the velocity field in this high-resolution
run (the “Taylor microscale”),

ku ≡
�hj∇uj2i

hu2i
�

1=2

; ð20Þ

increases during the nonlinear stage to become comparable
to kB·J and kB×J, indicating flows on the flux-rope (field-
reversal) scale. That this does not occur at low resolution is
further support for the tearing disruption of folds at high
resolution.
Lastly, we follow up on the discussion of the magnetic

spectrum in Sec. III C and analyze quantitatively its
(conventionally defined) “integral scale”

kint ≡
Z

dkMðkÞ
�Z

dk k−1MðkÞ; ð21Þ

which is a reasonable proxy for the scale of the spectral
peak. For MðkÞ scaling as kα with α ∉ ½−1; 0�, kint is also
the energy-containing scale, i.e., the peak of kMðkÞ. As we
discuss in Sec. II A, the magnetic energy is concentrated
near the resistive scale lη ∝ Rm−1=2 throughout the kin-
ematic stage and subsequently moves to larger scales
during the secular stage of evolution.

Figure 10(a) shows the dependence of kint onRmobtained
from all our simulations during the kinematic stage (red
symbols) and in the saturated state (blue symbols); the
Rm1=2 scaling expected to hold during the kinematic stage is
overlaid for comparison. At all resolutions and for all values
of Pm, the Rm1=2 scaling appears to be well satisfied at the
end of the kinematic stage. In saturation, the values of kint
calculated at resolutions 2803 and 5603 (Rm≲ 2 × 103)
also satisfy this scaling. At resolutions 11203 and 22403

(Rm≳ 104), however, this trend breaks and kint measured in
saturation becomes nearly independent of Rm as Rm
increases. Confirming that kint becomes truly independent
of Rm awaits higher-resolution simulations, but our results
so far strongly suggest that this is the case.
This conclusion might appear to match the expectations

of a number of previous authors [8,45,57–60], but it is
important to understand the distinction between the scale of
the spectral peak and the energy-containing scale of the
magnetic field, which is the peak of kMðkÞ. The situation
with the latter is (even) murkier than with kint. Analogous to
Eq. (21), a proxy for the energy-containing scale can be
defined as

kEC ≡
Z

dkkMðkÞ
�Z

dkMðkÞ: ð22Þ

FIG. 9. Time evolution of the characteristic wave numbers
ðkk; kB·J; kB×JÞ describing the magnetic field [see Eq. (19)] and ku
describing the small-scale structure of the velocity field [see
Eq. (20)] at Pm ¼ 10 and resolutions 5603 and 22403.

FIG. 10. Dependence of (a) the integral scale kint [Eq. (21)] and
(b) the energy-containing scale kEC [Eq. (22)] on Rm at the end
of the kinematic stage (red markers) and in saturation (blue
markers). Different markers correspond to different Pm, as
indicated; the green squares refer to the saturated state of runs
b2⋄ and c2⋄. At the end of the kinematic stage, both kint and kEC
vary approximately as Rm1=2, consistent with kint ∼ kEC ∼ l−1

η . In
saturation, kint appears to approach a constant value at large Rm,
at least for Pm ≤ 50, while kEC becomes consistent with the
tearing scale ∝ Rm3=10.

GALISHNIKOVA, KUNZ, and SCHEKOCHIHIN PHYS. REV. X 12, 041027 (2022)

041027-12



The dependence of kEC on Rm and Pm for all our runs is
shown in Fig. 10(b). Again, at lower Rm, kEC ∝ Rm1=2

works well, whereas at higher Rm, the scaling with Rm
becomes weaker but does not entirely flatten; indeed, it
may be consistent with kEC ∝ λ−1� ∝ Rm3=10Pm1=5. If this is
indeed true, it would suggest that, at kλ� ≲ 1, MðkÞ ∝ k−1;
equivalently, the mean squares of magnetic increments
across any distance λ > λ� would all have the same value, a
possibility mooted by Ref. [61] for a saturated folded field.
While the scale separation between λ� and the system size L
in our simulations is not large enough to tease out any such
scaling definitively, plotting kMðkÞ in Fig. 6(b) confirms
that a k−1 scaling of the magnetic spectrum cannot, at these
resolutions, be ruled out.

E. Viscous and resistive dissipation

To close this section, we compute the box-averaged
dissipation rates of the kinetic and magnetic energies,

ϵK ≡ νhj∇uj2i and ϵM ≡ ηhjJj2i; ð23Þ

respectively, and average them over the saturated state.
Figure 11 presents the ratio of energy dissipated viscously
versus resistively ϵK=ϵM, Fig. 11(a) as a function of Pm for
different resolutions (and therefore different Rm) and
Fig. 11(b) as a function of Rm at fixed Pm. At low and
moderate resolutions and for Pm ≤ 10, ϵK=ϵM is approx-
imately proportional to Pm1=3 (dotted line), an empirical

scaling reported previously in Refs. [62,63]. For Pm > 10,
this ratio becomes roughly independent of Pm at fixed Rm
for our two highest resolutions. The dissipation ratio at
fixed Pm also increases from Rm ≈ 104 to Rm ≈ 4 × 104

after being relatively flat for smaller values of Rm. We
attribute this increase in viscous dissipation at large Rm to
the tearing-initiated breakup of intense current sheets
leading to small-scale reconnection outflows and intrais-
land circulations, features that will be explored in a separate
publication alongside a detailed analysis of the flow and
field statistics in saturation.

IV. SUMMARY AND OUTLOOK

Using analytical arguments and high-resolution, viscor-
esistive MHD simulations at Pm ≥ 1, we demonstrate that
the elongated magnetic folds naturally produced by the
turbulent dynamo become unstable to tearing during the
nonlinear stage and in the saturated state once Re1=5 ≫ 1.
During the kinematic stage, the tearing instability of these
folds cannot grow fast enough to overcome their resistive
decay, a prediction confirmed by our numerical simula-
tions. As a result, current sheets are visually featureless, and
the magnetic energy resides at the smallest available scale
(resistive) until the magnetic field becomes strong enough
to backreact on the flow. Thereafter, the current sheets
begin to break up into plasmoidlike flux ropes on increas-
ingly larger scales. The characteristic field-reversal scale
in the saturated state changes from the standard resistive
Rm1=2 scaling toward one consistent with Rm3=10Pm1=5, as
predicted from a balance between the characteristic linear
tearing timescale of sinusoidal folds and the nonlinear
turnover time at the outer scale.
Other quantities calculated during the saturated state at

large Rm are also consistent with our expectations for a
tearing-limited dynamo. The magnetic spectrum appears to
steepen below the anticipated maximal tearing scale to take
on a spectral index consistent with −19=9, the spectral
envelope theoretically predicted for tearing-mediated
Alfvénic turbulence (albeit over an uncomfortably short
wave-number range due to limited resolution). And the
characteristic reversal scale and width of the magnetic folds
become comparable to one another, a feature not seen at
lower values of Rm and consistent with flux ropes being
produced by the tearing-induced disruption of thin current
sheets. That the Taylor microscale of the velocity field
decreases during the nonlinear stage of the dynamo to
become comparable to these fold scales supports this
scenario. The implied subviscous injection of kinetic
energy by the Lorentz force that occurs at these large
values of Rm is found to result in a pronounced excess of
viscous dissipation over resistive dissipation for Pm ≥ 10.
Finally, we find that the spectral peak of the magnetic

field becomes approximately independent of Rm at
Rm≳ 104, so long as Pm is not too large. In contrast,

FIG. 11. Ratio of turbulent energy dissipated viscously versus
resistively in the saturated state (a) versus Pm at different
resolutions (and therefore different Rm) and (b) versus Rm at
different Pm. Error bars reflect the standard deviation in time.
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the energy-containing scale may be consistent with the
field-reversal scale set by tearing, suggesting a shallow
negative spectral slope in between that scale and the system
scale of the turbulence. Thus, we see a degree of large-scale
coherence in the amplified field that might help reconcile
the view that the saturated dynamo must result in outer-
scale magnetic fields [8,45,57–60] and some previous
indications, numerical and theoretical, that it produces
fields whose energy resides on Rm-dependent scales
[20–22,64,65]. This may also be a step toward simulations
becoming more consistent with Faraday-rotation observa-
tions of magnetic fields in galaxy clusters suggesting
≳kpc-scale coherence [66,67], as well as recent laboratory
laser-plasma experiments exhibiting a Pm≳ 1 fluctuation
dynamo [68,69]. Determining whether or not this result
holds when using the pressure-anisotropic MHD [42,70] or
kinetic [71,72] descriptions more appropriate to the weakly
collisional intracluster medium awaits future work.
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by Magnetic Reconnection, Mon. Not. R. Astron. Soc. 468,
4862 (2017).

[14] N. F. Loureiro and S. Boldyrev, Role of Magnetic Recon-
nection in Magnetohydrodynamic Turbulence, Phys. Rev.
Lett. 118, 245101 (2017).

[15] S. Boldyrev and N. F. Loureiro, Magnetohydrodynamic
Turbulence Mediated by Reconnection, Astrophys. J. 844,
125 (2017).

[16] N. F. Loureiro and S. Boldyrev, Nonlinear Reconnection in
Magnetized Turbulence, Astrophys. J. 890, 55 (2020).

[17] J. Walker, S. Boldyrev, and N. F. Loureiro, Influence of
Tearing Instability on Magnetohydrodynamic Turbulence,
Phys. Rev. E 98, 033209 (2018).

[18] C. Dong, L. Wang, Y.-M. Huang, L. Comisso, and
A. Bhattacharjee, Role of the Plasmoid Instability in
Magnetohydrodynamic Turbulence, Phys. Rev. Lett. 121,
165101 (2018).

[19] A. Schekochihin, S. Cowley, J. Maron, and L. Malyshkin,
Structure of Small-Scale Magnetic Fields in the Kinematic
Dynamo Theory, Phys. Rev. E 65, 016305 (2001).

[20] A. A. Schekochihin, J. L. Maron, S. C. Cowley, and
J. C. McWilliams, The Small-Scale Structure of Magneto-
hydrodynamic Turbulence with Large Magnetic Prandtl
Numbers, Astrophys. J. 576, 806 (2002).

[21] A. A. Schekochihin, S. C. Cowley, S. F. Taylor, J. L. Maron,
and J. C. McWilliams, Simulations of the Small-Scale
Turbulent Dynamo, Astrophys. J. 612, 276 (2004).

[22] J. Maron, S. Cowley, and J. McWilliams, The Nonlinear
Magnetic Cascade, Astrophys. J. 603, 569 (2004).

[23] H. P. Furth, J. Killeen, and M. N. Rosenbluth, Finite‐
Resistivity Instabilities of a Sheet Pinch, Phys. Fluids 6,
459 (1963).

[24] B. Coppi, R. Galvăo, R. Pellat, M. N. Rosenbluth, and P. H.
Rutherford, Resistive Internal Kink Modes, Sov. J. Plasma
Phys. 2, 961 (1976).

GALISHNIKOVA, KUNZ, and SCHEKOCHIHIN PHYS. REV. X 12, 041027 (2022)

041027-14

https://doi.org/10.1016/j.physrep.2005.06.005
https://doi.org/10.1016/j.physrep.2005.06.005
https://doi.org/10.1017/S0022377819000539
https://doi.org/10.1017/S0022377819000539
https://doi.org/10.1146/annurev-astro-082708-101726
https://doi.org/10.1146/annurev-astro-082708-101726
https://doi.org/10.1088/0741-3335/58/1/014021
https://arXiv.org/abs/2010.00699
https://doi.org/10.1086/171743
https://doi.org/10.3847/1538-4357/833/2/215
https://doi.org/10.3847/1538-4357/833/2/215
https://doi.org/10.1103/PhysRevE.80.055301
https://doi.org/10.1103/PhysRevE.80.055301
https://doi.org/10.1103/PhysRevLett.77.2694
https://doi.org/10.1103/PhysRevLett.77.2694
https://doi.org/10.1063/1.2783986
https://doi.org/10.1093/mnras/stx670
https://doi.org/10.1093/mnras/stx670
https://doi.org/10.1103/PhysRevLett.118.245101
https://doi.org/10.1103/PhysRevLett.118.245101
https://doi.org/10.3847/1538-4357/aa7d02
https://doi.org/10.3847/1538-4357/aa7d02
https://doi.org/10.3847/1538-4357/ab6a95
https://doi.org/10.1103/PhysRevE.98.033209
https://doi.org/10.1103/PhysRevLett.121.165101
https://doi.org/10.1103/PhysRevLett.121.165101
https://doi.org/10.1103/PhysRevE.65.016305
https://doi.org/10.1086/341814
https://doi.org/10.1086/422547
https://doi.org/10.1086/380504
https://doi.org/10.1063/1.1706761
https://doi.org/10.1063/1.1706761


[25] F. L. Waelbroeck, Onset of the Sawtooth Crash, Phys. Rev.
Lett. 70, 3259 (1993).

[26] N. F. Loureiro, S. C. Cowley, W. D. Dorland, M. G. Haines,
and A. A. Schekochihin, X-Point Collapse and Saturation in
the Nonlinear Tearing Mode Reconnection, Phys. Rev. Lett.
95, 235003 (2005).

[27] R. Samtaney, N. F. Loureiro, D. A. Uzdensky, A. A.
Schekochihin, and S. C. Cowley, Formation of Plasmoid
Chains in Magnetic Reconnection, Phys. Rev. Lett. 103,
105004 (2009).

[28] A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers,
Fast Reconnection in High-Lundquist-Number Plasmas
Due to the Plasmoid Instability, Phys. Plasmas 16,
112102 (2009).

[29] D. A. Uzdensky, N. F. Loureiro, and A. A. Schekochihin,
Fast Magnetic Reconnection in the Plasmoid-Dominated
Regime, Phys. Rev. Lett. 105, 235002 (2010).

[30] N. F. Loureiro, R. Samtaney, A. A. Schekochihin, and D. A.
Uzdensky,Magnetic Reconnection and Stochastic Plasmoid
Chains in High-Lundquist-Number Plasmas, Phys. Plasmas
19, 042303 (2012).

[31] F. Porcelli, Viscous Resistive Magnetic Reconnection, Phys.
Fluids 30, 1734 (1987).

[32] N. F. Loureiro, A. A. Schekochihin, and D. A. Uzdensky,
Plasmoid and Kelvin-Helmholtz Instabilities in Sweet-
Parker Current Sheets, Phys. Rev. E 87, 013102
(2013).

[33] A. N. Kolmogorov, The Local Structure of Turbulence in
Incompressible Viscous Fluid for Very Large Reynolds'
Numbers, Dokl. Akad. Nauk SSSR 30, 299 (1941), https://
ui.adsabs.harvard.edu/abs/1991RSPSA.434....9K/abstract
[Proc. R. Soc. A 434, 9 (1890)].

[34] A. P. Kazantsev, Enhancement of a Magnetic Field by a
Conducting Fluid, Sov. Phys. JETP 26, 1031 (1968).

[35] A. A. Schekochihin, S. A. Boldyrev, and R. M. Kulsrud,
Spectra and Growth Rates of Fluctuating Magnetic Fields
in the Kinematic Dynamo Theory with Large Magnetic
Prandtl Numbers, Astrophys. J. 567, 828 (2002).

[36] F. Cattaneo, D. W. Hughes, and E.-J. Kim, Suppression of
Chaos in a Simplified Nonlinear Dynamo Model, Phys. Rev.
Lett. 76, 2057 (1996).

[37] E.-j. Kim, Nonlinear Dynamo in a Simplified Statistical
Model, Phys. Lett. A 259, 232 (1999).

[38] S. Boldyrev, A Solvable Model for Nonlinear Mean Field
Dynamo, Astrophys. J. 562, 1081 (2001).

[39] A. A. Schekochihin, S. C. Cowley, S. F. Taylor, G. W.
Hammett, J. L. Maron, and J. C. McWilliams, Saturated
State of the Nonlinear Small-Scale Dynamo, Phys. Rev.
Lett. 92, 084504 (2004).

[40] F. Cattaneo and S. M. Tobias, Dynamo Properties of the
Turbulent Velocity Field of a Saturated Dynamo, J. Fluid
Mech. 621, 205 (2009).

[41] A. Seta, P. J. Bushby, A. Shukurov, and T. S. Wood,
Saturation Mechanism of the Fluctuation Dynamo at
PrM ≥ 1, Phys. Rev. Fluids 5, 043702 (2020).

[42] D. A. St-Onge, M.W. Kunz, J. Squire, and A. A.
Schekochihin, Fluctuation Dynamo in a Weakly Collisional
Plasma, J. Plasma Phys. 86, 905860503 (2020).

[43] A. A. Schekochihin, S. C. Cowley, G. W. Hammett, J. L.
Maron, and J. C. McWilliams, A model of Nonlinear

Evolution and Saturation of the Turbulent MHD Dynamo,
New J. Phys. 4, 84 (2002).

[44] J. Cho, E. T. Vishniac, A. Beresnyak, A. Lazarian, and
D. Ryu, Growth of Magnetic Fields Induced by Turbulent
Motions, Astrophys. J. 693, 1449 (2009).

[45] A. Beresnyak, Universal Nonlinear Small-Scale Dynamo,
Phys. Rev. Lett. 108, 035002 (2012).

[46] S. Boldyrev and N. F. Loureiro, Calculations in the Theory
of Tearing Instability, J. Phys. Conf. Ser. 1100, 012003
(2018).

[47] D. A. Uzdensky and N. F. Loureiro,Magnetic Reconnection
Onset via Disruption of a Forming Current Sheet by
the Tearing Instability, Phys. Rev. Lett. 116, 105003
(2016).

[48] The requirement (11) that Re be large enough for there
to be a range of scales between λ� and lη is much more
forgiving (in terms of computational expense) than the
corresponding requirement governing the possible disrup-
tion by tearing of strong Alfvénic turbulence in the presence
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realize current sheets that are thin enough and have large
enough aspect ratios in the plane perpendicular to the guide
field to be supercritical. By contrast, elongated folds are
produced naturally by the turbulent dynamo when Pm ≫ 1.

[49] S. Boldyrev, Spectrum of Magnetohydrodynamic Turbu-
lence, Phys. Rev. Lett. 96, 115002 (2006).

[50] B. D. G. Chandran, A. A. Schekochihin, and A. Mallet,
Intermittency and Alignment in Strong RMHD Turbulence,
Astrophys. J. 807, 39 (2015).

[51] A. Mallet and A. A. Schekochihin, A Statistical Model of
Three-Dimensional Anisotropy and Intermittency in Strong
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