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Exploiting near-term quantum computers and achieving practical value is a considerable and exciting
challenge. Most prominent candidates as variational algorithms typically aim to find the ground state of a
Hamiltonian by minimizing a single classical (energy) surface which is sampled from by a quantum
computer. Here, we introduce a method we call CoVaR, an alternative means to exploit the power of
variational circuits: We find eigenstates by finding joint roots of a polynomially growing number of
properties of the quantum state as covariance functions between the Hamiltonian and an operator pool of
our choice. The most remarkable feature of our CoVaR approach is that it allows us to fully exploit the
extremely powerful classical shadow techniques; i.e., we simultaneously estimate a very large number
> 104–107 of covariances. We randomly select covariances and estimate analytical derivatives at each
iteration applying a stochastic Levenberg-Marquardt step via a large but tractable linear system of
equations that we solve with a classical computer. We prove that the cost in quantum resources per iteration
is comparable to a standard gradient estimation; however, we observe in numerical simulations a very
significant improvement by many orders of magnitude in convergence speed. CoVaR is directly analogous
to stochastic gradient-based optimizations of paramount importance to classical machine learning while we
also offload significant but tractable work onto the classical processor. As we demonstrate numerically, the
approach shares features with phase-estimation protocols that prepare eigenstates with a dominant initial
fidelity contribution.
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I. INTRODUCTION

Quantum computers are becoming a reality, and with an
accelerating pace experiments set more and more impres-
sive records [1–5]. Current generations of machines are
already well beyond the 50-qubit frontier and have been
demonstrated to being capable of significant computational
advantage over the best classical supercomputers. Despite
rapid progress in improving hardware, it is generally
believed the fault-tolerant, error-corrected systems that
are expected to emerge ultimately require significantly
better and larger hardware and may, thus, not be within
reach in the near term. The reason is that quantum states are
highly vulnerable to experimental imperfections, and cor-
recting those errors requires highly nontrivial measures,
such as encoding a single logical qubit into potentially
thousands of physical qubits.

It is, thus, a very exciting challenge in the near term to
achieve practical value with these noisy intermediate-scale
quantum (NISQ) [6] devices despite the damaging noise
in the hardware. The most promising candidates, gener-
ally known as variational quantum algorithms (VQAs) [7–
11], are robust against noise given the quantum circuit is
restricted to a shallow depth. The most prominent example
is the variational quantum eigensolver (VQE) whereby a
circuit of shallow depth is constructed of parametrized
quantum gates such that the emerging quantum state is
powerful enough to express the ground state of a problem
of interest, e.g., the Hamiltonian of a chemical system.
Nearly all such techniques proceed by efficiently estimat-
ing the energy (expected value of the Hamiltonian) or an
equivalent cost function via sampling with a quantum
computer, and then the circuit parameters are variationally
optimized to find the solution to the desired problem.
While these techniques seem promising, there are many
challenges, especially in reducing high sampling costs and
performing nonlinear parameter optimizations which suf-
fer from the presence of local traps and possibly flat
regions as barren plateaus [12–15].
Here, we make significant progress toward addressing

these challenges: First, our approach converges faster than
VQE in order(s) of magnitude fewer iterations and has a
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logarithmic measurement cost via classical shadows when
increasing our constraint size—finding a solution as an
eigenstate, thus, has a significantly reduced sampling cost.
Second, VQE optimizations are shown to be NP hard [12]
due to local traps—our approach is particularly robust
against local traps due to a stochastic generation of a large
number of constraints. Third, since in the present work we
resort to local Hamiltonians as we use the NISQ-friendly
variant of classical shadows [16], barren plateaus do not
necessarily exist and, thus, pose a less significant issue than
local traps [17,18].
In contrast to the usual variational minimization of a

single cost function, we define an entirely new class of
algorithms by leveraging the following observation: In
order to find an eigenstate, a large number of properties of
the variational quantum state must satisfy certain uncer-
tainty relations with respect to observable measurements.
We define these properties as covariances [19–21]
between the problem Hamiltonian and elements of an
operator pool of our choice. This definition leaves us
great flexibility in choosing our operator pools and the
ability to pose the problem of finding eigenstates as joint
roots of covariances. As we illustrate in Fig. 1 (left), these
covariances form surfaces as a function of circuit param-
eters, and roots of the individual covariances form
submanifolds [blue lines in Fig. 1 (left)]. Intersections
of these as joint roots (red dots) then correspond to
eigenstates of the problem Hamiltonian. In our covariance
root-finding (CoVaR) approach, we randomly select a
large number of such covariances as illustrated in Fig. 1
(right) and apply powerful classical numerical techniques:
We linearize the surfaces by computing their analytical

Jacobian with a quantum computer and solve a large but
tractable linear system of equations to estimate the root
[θ⋆1 ¼ 0 in Fig. 1 (right)]. We iteratively repeat this
procedure until a sufficiently good approximation of an
eigenstate is found—which we can verify classically
efficiently from our reconstructed covariances.
The most significant advantage of CoVaR is that we can

use classical shadows to reconstruct these covariances with
an extreme efficiency: We prove that the cost of estimating
a very large Jacobian is comparable to a standard gradient
estimation and grows only logarithmically with the number
of covariances. CoVaR is directly analogous to stochastic
gradient-based optimizers that have been the de facto
standard choice for most typical variants of machine
learning; e.g., Levenberg-Marquardt is considered to be
the fastest method for training classical neural networks
[22–25]. As such, CoVaR is a quantum-classical hybrid that
ideally combines the fast convergence speed of Levenberg-
Marquardt with the logarithmically efficient (quantum)
computation of our large Jacobian.
We demonstrate in a comprehensive set of numerical

experiments that the efficacy of root finding is significantly
increased by employing such large datasets and our
optimization procedure is robust against local traps, circuit
noise, shot noise, and noise due to random sampling of
constraints. We cover a number of important practical
applications, such as recompilation, finding ground and
excited states of local Hamiltonians, where CoVaR is
particularly powerful as we demonstrate in numerical
simulations. Given the rapidly growing literature on varia-
tional quantum algorithms, we discuss in detail connections
and differences to similar approaches.

covariance functions

joint roots
are eigenstates

FIG. 1. Left: a toy example of a two-qubit problem whose eigenstates we aim to find by finding parameters of a variational quantum
state jψðθ1; θ2Þi prepared by two parametrized gates. Covariances fk ≔ hOk;Hiψ between our problem Hamiltonian and between
observables Ok span classical surfaces (orange surfaces) and express uncertainty relations between those operators. Blue lines show
roots as regions in parameter space where these uncertainties (covariances) vanish; i.e., at roots θ⋆, the equation is satisfied f1ðθ⋆Þ ¼ 0.
Intersections of the lines in the above surface with those of the below surface (red dots) guarantee eigenstates of the problem
Hamiltonian as joint roots f1ðθÞ ¼ f2ðθÞ ¼ 0. Right: We use the extremely powerful classical shadow techniques to determine a very
large number of these covariances fkðθ1Þwhose slices along the parameter θ1 are shown in a practically relevant variational circuit (solid
lines). We initialize at θ1 ≠ 0 and iteratively find the joint root at θ⋆1 ¼ 0 (red dot): We use a Levenberg-Marquardt step whereby we
linearize the covariances through computing a Jacobian and solve the resulting large, overdetermined linear system of equations.
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The structure of this work is the following. In the rest of
this introduction section, we briefly introduce covariances
and related basic notations in Sec. I A which are both
fundamental to quantum mechanics but also form the basis
of our approach. In Sec. I B, we then briefly recapitulate
notations related to shallow variational quantum circuits.
Our main, general results are presented in Sec. II, where we
state conditions for finding eigenstates based on covarian-
ces and pose our problem as root finding. In Sec. III, we
introduce our CoVaR approach that uses classical shadows
to find eigenstates of local Hamiltonians and relies on
finding joint roots of very large systems. In Sec. IV, we
numerically demonstrate the power and utility of CoVaR in
solving practical problems, while we compare our tech-
nique to various others in Sec. V.

A. Preliminaries: Operator covariances
and their properties

In this section, we introduce all necessary tools for
deriving our main results. First, recall that a pure quantum
state is an element of the complex Hilbert space jψi ∈ Cd

with the dimension, e.g., in a system of N qubits d ¼ 2N .
We consider observables as Hermitian operators that act
on this Hilbert space as complex Hermitian matrices
A ∈ Cd×d. For any pair of such Hermitian operators, we
can define the following bilinear form that we refer to as a
covariance.
Definition 1 (covariances).—Given two arbitrary

Hermitian operators A;B ∈ Cd×d, we can define a covari-
ance functional between them that depends on a pure
quantum state jψi via the bilinear form

hA;Biψ ≔ hψ jABjψi − hψ jAjψihψ jBjψi ∈ C: ð1Þ

These covariances are fundamentally important in quan-
tum mechanics, and they are closely related to the statistics
when an observable property of a quantum system is
measured—covariances then express the compatibility of
these observable properties of a quantum system.
It simplifies following derivations to introduce an ortho-

normal set of Hermitian operators: For example, Pauli
strings Ok ∈ fId2; X; Y; Zg⊗N form a complete orthonor-
mal set with respect to the Hilbert-Schmidt scalar product
Tr½P†

kPl�=2N ¼ δkl. Here, δkl denotes the Kronecker delta,
and X, Y, and Z are Pauli matrices. Let us now define our
operator pool as a suitable set of such operators.
Definition 2 (operator pool).—We define an operator

pool P as a collection of rp orthonormal Hermitian
operators as

P ≔ fOkgrpk¼1; ð2Þ

where Tr½O†
kOl�=2N ¼ δkl and O†

k ¼ Ok. For example, our
operator pool can be constructed of Pauli strings as

Ok ∈ fId2; X; Y; Zg⊗N , where k ∈ f0; 1; 2; 3gN and the
overall number of terms is denoted as rp ≤ 4N .
Let us define the covariance matrix associated to our

operator pool from Definition 2 which depends on a
quantum state jψi.
Definition 3 (complex covariance matrix).—Given a

collection of operators Ok;Ol ∈ P from Definition 2, we
define an associated Hermitian covariance matrix CðψÞ ∈
Crp×rp that depends on a pure quantum state jψi and has the
matrix entries

½C†ðψÞ�kl ¼ ½CðψÞ�kl ≔ hOk;Oliψ
¼ hψ jOkOljψi − hψ jOkjψihψ jOljψi: ð3Þ

Note that the above covariance matrix CðψÞ expresses
fundamental uncertainty relations between the observables
Ok in the operator pool via the matrix inequation C ≥ 0
[21]. We remark that our definition above of a covariance
matrix has complex entries: While this definition simplifies
our following arguments, it is worth noting that in the
literature other conventions are also commonly used [19–
21]. For example, Ref. [21] defines a covariance matrix in
terms of the anticommutator as the real part

1

2
hψ jfOk;Olgjψi − hψ jOkjψihψ jOljψi ¼ Re½CðψÞ�; ð4Þ

while the imaginary part is often referred to as the
commutator matrix 1

2
hψ j½Ok;Ol�jψi ¼ iIm½CðψÞ�. We find

it convenient to compactly describe the covariance matrix
with complex entries, thereby simultaneously referring to
both the anticommutator and commutator matrices.
Given the above definitions, we can straightforwardly

derive a number of useful identities which we need not
prove here.
Corollary 1.—Given the decompositions A ¼ P

k akOk
and B ¼ P

k bkOk of Hermitian operators A and B in terms
of the orthonormal operator basis from Definition 2, we
can obtain the covariance functional from the covariance
matrix as

hA;Biψ ¼
X
k;l

akbl½CðψÞ�kl ¼ a⊺CðψÞb;

where a; b ∈ Rrp are coefficient vectors of the operators
andCðψÞ is the covariance matrix in this operator basis. We
later find it useful to express the special cases as the vector
of covariances, or covariance functions hOk; Aiψ ¼ Ca;
i.e., our primary quantities of concern are covariances with
the system Hamiltonian hOk;Hiψ .
The variance of any Hermitian operator A can also be

calculated conveniently from the covariance matrix using
the decomposition of A into orthogonal operators.
Lemma 1.—Given the decomposition A ¼ P

k akOk of
any Hermitian operator A in terms of the orthonormal
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operator basis from Definition 2, we obtain the variance of
the operator as

Var½A� ¼ hA; Aiψ ¼
X
k;l

akal½CðψÞ�kl ¼ a⊺Ca;

where a⊺ ∈ Rrp is a coefficient vector and aCa ≥ 0
guarantees that C is positive semidefinite given its
Hermiticity. We later find it useful to express the variance
in terms of covariance functions Var½A� ¼ P

k akhOk; Aiψ .

B. Parametrization through variational
quantum circuits

A variational quantum circuit UðθÞ usually refers to a
series of ν parametrized quantum gates UðθÞ ≔ UνðθνÞ…
U2ðθ2ÞU1ðθ1Þ [10] in some specific form or Ansatz which
often has layers of the form

UlðθlÞ ¼
Y
m

e−iθlHmWm; ð5Þ

where Hm is the Hermitian generator of the gate para-
metrized by θm and Wm can be a nonparametrized unitary
associated with this layer. We find it useful later to consider
specific parametrized gates where Hm ∈ fId2; X; Y; Zg⊗N

is a Pauli string as typical in practice—we refer to these as
Pauli gates. The number of gates in a shallow Ansatz circuit
is usually chosen such that the circuit depth grows slowly,
such as polylogðNÞ [7–11]. Let us list here a number of
well-studied Ansätze.
Hardware-efficient Ansätze are designed to be optimized

for low circuit depth and maximal expressivity. UlðθlÞ are
typically chosen as the native gates of the given hardware
platform, and the rotation angles θl of each gate are treated
as parameters to be optimized [26].
The unitary coupled cluster Ansatz (UCC) is a problem-

inspired Ansatz for quantum chemistry. It proposes the
candidate ground state using excitations of orbitals from
some reference state jψ0i, typically the Hartree-Fock state
as eTðθÞ−TðθÞ† jψ0i. Here, the cluster operator TðθÞ [27] is
often restricted to single and double excitations, leading to
the “UCCSD” Ansatz (SD for single and double).
The quantum alternating operator Ansatz, Hamiltonian

variational Ansatz, and further variants are motivated
by a time-discretized and Trotterized adiabatic evolution
that is guaranteed to drag the eigenstate of a trivial
Hamiltonian H0 to the desired problem Hamiltonian H
for a sufficiently deep Ansatz. The evolution time θl of
each piecewise constant, Trotterized evolution UlðθlÞ ¼Q

m e−iθlHm is variationally optimized to find the
ground state.
Applying this quantum circuit to an easy-to-prepare

reference state of N qubits defines our parametrized
Ansatz states as

jψðθÞi ≔ UðθÞj0i⊗N:

Parameters of the Ansatz circuit θ are then varied through
classical optimization techniques such that the quantum
state jψðθoptÞi at the optimal set of parameters is a solution
to our problem [10]. Usually, this optimization is done by
minimizing a cost function, most typically the energy of a
problem Hamiltonian EðθÞ ¼ hψðθÞjHjψðθÞi [8,28], but
note that variants of the VQE paradigm allow for the
optimization of other cost functions, such as the variance of
the Hamiltonian [29] or nonlinear functions of expected
values [30].
In the usual case when the gate generators Hm in Eq. (5)

are Pauli gates, the cost function EðθÞ is shown to be a
trigonometric polynomial [31]. Finding the global mini-
mum of EðθÞ as trigonometric functions is shown to be NP
hard [12] given the rapidly increasing number of local
minima.
Here, we introduce a different paradigm; instead of

searching for the minimum of a single classical function
EðθÞ, we efficiently estimate a large number of covariances
that each depend on the set of parameters θ, and, thus, each
corresponds to a unique surface as a function of θ as
illustrated in Fig. 1. We prove that these parametrized
covariances are indeed smooth functions of the circuit
parameters θ.
Lemma 2 (smooth covariance functions).—Given

a variational quantum state jψðθÞi ≔ UðθÞj0i⊗N as defined
via a variational quantum circuit UðθÞ ∈ SUð2NÞ, we
define the parametrized covariances as

fkðθÞ ≔ hOk;HiψðθÞ; with Ok ∈ P: ð6Þ

The covariance functions fk∶Rν ↦ C are smooth,
infinitely differentiable functions of the circuit parameters
θ ∈ Rν for any Hermitian operator Ok and problem
Hamiltonian H.
Refer to Appendix B 1 for a proof. Above, we introduce

the more compact notation for these covariance functions
as fkðθÞ to highlight that we pose our problem of finding
eigenstates by finding simultaneous roots of a cohort of
smooth functions ffkðθÞgrpk¼1. Furthermore, in the practi-
cally important special case when the Ansatz circuit is
composed of Pauli gates, we show that the covariances
fkðθÞ are actually trigonometric polynomials in θ
via Ref. [31].
Corollary 2 (trigonometric polynomials).—In the spe-

cific but pivotal scenario when parametrized gates in the
Ansatz circuit in Eq. (5) are Pauli gates, the covariances are
trigonometric polynomials as fkðθÞ ¼

P
32ν

j¼1 CjT jðθÞ,
where the prefactors Cj ∈ C depend on the index k while
T jðθÞ are trigonometric monomials, i.e., products of
single-variate sine and cosine functions.
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As such, finding parameters such that fkðθÞ ¼ 0 for all k
is equivalent to finding roots of the corresponding (trigo-
nometric) polynomial system.

II. GENERAL RESULTS: FINDING EIGENSTATES
BY FINDING ROOTS

This section introduces the main theoretical underpin-
nings of our approach in a general setting, i.e., without
making any assumptions about the problem Hamiltonian or
the type of operator pool. In contrast, in Sec. III, we
introduce CoVaR which is a specific, practically motivated
approach where we restrict operators to local Pauli strings,
which in return allows us to utilize the powerful classical
shadow technique. We note that we also investigate another
theoretically interesting special case of operator pools in
Appendix A.

A. Finding eigenstates of a problem Hamiltonian

Finding approximate representations of eigenstates of a
problem Hamiltonian is a key application of near-term
quantum computers. The primary hope for quantum ad-
vantage in the near term is usually placed on variational
quantum algorithms whereby the solution to a problem is
encoded into the ground state of a Hamiltonian. Most
notable is the variational quantum eigensolver [8], which
aims to find the ground state of a Hamiltonian via a
variational minimization of the system’s energy. Finding
excited states is also of particular importance for, e.g.,
analyzing chemical reactions in drug discovery or in
catalysis [32].
Furthermore, applications for finding eigenstates also

exist outside of quantum simulation, for example, in
solving classical optimization problems using quantum
hardware via the quantum approximate optimization algo-
rithm (QAOA). These were introduced to solve problems
such as constraint satisfaction and max-cut [7] but have
been extended beyond. Furthermore, finding eigenstates is
also highly relevant to the continued design and improve-
ment of applications and quantum algorithms. For exam-
ple, recompilation problems are highly relevant as we
show. Similarly, the preparation of logical states in
quantum error correction can be cast as eigenstate-finding
procedures [33,34].
The aforementioned techniques typically proceed

by exploiting the fact that the problem Hamiltonians of
interest

P
r
a¼1 haHa decompose into a polynomially grow-

ing number r ∈ polyðNÞ of Pauli operators whose expected
values can be estimated efficiently with a quantum
computer. In the following, we denote the collection of
these Pauli strings as Q ¼ fHagra¼1. Let us now introduce
our main result which uses covariances described in the
previous section to finding eigenstates of a problem
Hamiltonian.

Theorem 1.—Given the decomposition of a fixed prob-
lem Hamiltonian H ¼ P

r
a¼1 haHa into a set of basis

operatorsHa ∈ Q ⊆ P which form a subset of our operator
pool, this subset usually has a polynomial size as
r ∈ polyðNÞ. Given a fixed quantum state jψi, simulta-
neous roots of all covariances

sufficient conds hHa;Hiψ ¼ 0; ∀Ha ∈ Q; ð7Þ

provide a sufficient condition for the eigenvalue equation
Hjψi ¼ hHijψi to hold. Further necessary conditions can
be introduced via roots of the covariances

necessary conds hOk;Hiψ ¼ 0; Ok ∈ P; ð8Þ

with respect to any basis operator in our pool Ok.
Proof: Sufficient conds.—A direct calculation shows

that the variance of the operator H can be expressed as
Var½H� ¼ hðH − hHiÞψ jðH − hHiÞψi and, therefore, the
condition Var½H� ¼ 0 immediately implies the eigenvalue
equation Hjψi ¼ hHijψi. Given our expression Var½H� ¼P

a hahHa;Hiψ from Lemma 1, simultaneous roots as
hHa;Hiψ ¼ 0 for all a guarantee that Var½H� ¼ 0.
necessary conds.—The explicit form of the covariance

as hA;Hiψ ¼ hψ jAHjψi − hψ jAjψihψ jHjψi simplifies
when the eigenvalue equation Hjψi ¼ hHijψi is satisfied
as hA;Hiψ ¼ 0 for Hermitian operators A ∈ Cd×d. ▪
We note that the individual covariance functions may

vanish without implying the presence of eigenstates of the
problem Hamiltonian; for example, hHa;Hiψ ¼ 0 can be
satisfied for a single index a in the special case when jψi is
an eigenstate of Ha. These form a submanifold of the
smooth covariances when viewed as a function of circuit
parameters as illustrated with blue lines in Fig. 1. We
therefore predicate that all covariance functions in our
operator pool simultaneously vanish (red dots in Fig. 1) for
all indexes k, which necessarily implies an eigenstate of the
problem Hamiltonian. The problem of searching for eigen-
states ofH then becomes that of finding simultaneous roots
of a system of covariances.
The above theorem ensures us that in an eigenstate all the

exponentially many covariances vanish (necessary condi-
tions); however, it is sufficient to verify only that the
polynomially growing number of covariances are zero
(sufficient conditions). Of course, Var½H� ¼ 0 certainly
guarantees an eigenstate; however, the experimental esti-
mation of Var½H� proceeds by computing expected values
of individual Pauli terms and is, thus, informationally
equivalent to estimating the above covariances [9–11].
While Eq. (7) lists all sufficient conditions with respect

the minimal operator pool that contains only the Pauli-
decomposition terms of our problem Hamiltonian as Q, in
the following, we consider unions such that our operator
pool is enlarged as Q0 ≔ fHagra¼1 ∪ fOkgNc−r

k¼1 with a
polynomially growing number of operators Ok that are
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orthogonal to our problem Hamiltonian Tr½HOk� ¼ 0 (via
not including common terms fHag ∩ fOkg ¼ ∅). Roots
of all covariances with respect to our enlarged operator
pool then signify an eigenstate, and we show below
that the enlarged operator pool increases the efficacy of
our optimization algorithm, i.e., by overconstraining the
Jacobian of our root-finding approach. We refer to the size
of our enlarged pool jQ0j ¼ Nc as the number Nc of
constraints.

B. Finding joint eigenstates of commuting observables

Many problems of practical interest are concerned with
finding joint eigenstates of a group of observables that all
commute with each other. For example, to prepare logical
states for quantum error correction, we wish to produce an
eigenstate of the generators of the corresponding stabilizer
group—these generators mutually commute [35]. Another
example is the case of recompilation of quantum circuits.
Here, we wish to transform a given gate sequence V into a
native gate sequence U with an optimal circuit depth, e.g.,
to make it resilient to noise.
In the case of both full unitary matrix compilation [33]

and fixed input state compilation [36], the problem can be
stated as applying U† after V onto our reference state j0i
(see Sec. IVA for details), which at the solution V ¼ U
corresponds to the identity operation U†V ¼ Id, and the
resulting state j0i is then the ground state of the
Hamiltonian −

P
N
j¼1 Zj. While one ultimately aims to find

the ground state of this Hamiltonian, note that we can also
accept any computational basis states jni which are
simultaneous eigenstates of the mutually commuting terms
fZjg. This motivates our approach of finding joint eigen-
states of the individual Hamiltonian terms.
Corollary 3.—Let us consider a set of mutually commut-

ing Hermitian operators fHagra¼1≕Q ⊆ P as our operator
pool with ½Ha;Hb� ¼ 0 for all a and b. Simultaneous roots
of all variances

sufficient conds Var½Ha� ¼ hHa;Haiψ ¼ 0; ∀ a;

provide a set of sufficient conditions such that the fixed
quantum state jψi is a simultaneous eigenstate of all Ha.
We can consider further necessary constraints as the
simultaneous roots of all covariances

necessary conds hOk;Haiψ ¼ 0; Ok ∈P; Ha ∈Q;

that need to be satisfied by jψi for any pair of operators Ok
and Ha.
Proof.—For each individual index a, we can apply

Theorem 1 to the corresponding operator Ha and obtain
necessary and sufficient conditions such that jψi is an
eigenstate of the particular operatorHa. It follows that if all

sufficient conditions from Theorem 1 are satisfied for all
indexes a, as listed above, then jψi is a simultaneous
eigenstate of all Ha. ▪

C. Conventional techniques for finding roots

As introduced above, our approach is based on estimat-
ing operator covariances with a quantum computer which
we use to inform our decision of updating parameters of our
variational quantum circuit. Our aim ultimately is to find a
simultaneous root of these covariances at which parameters
the variational state is guaranteed to be an eigenstate of our
problem Hamiltonian.
There are a large number of well-established techniques

for finding simultaneous roots of vector-valued functions,
and almost all such techniques are in some way related to
Newton’s original method [37,38]. Newton’s method pro-
ceeds by linearizing the nonlinear (but smooth) vector of
covariance functions fðθÞ via the first-order Taylor expan-
sion as

fðθ þ ΔθÞ ¼ fðθÞ þ JΔθ þOðkΔθk2Þ: ð9Þ

Given each covariance function is an infinitely differ-
entiable, smooth function of the parameters θ, one can
indeed apply Newton’s method and can approximate roots
by solving the equation fðθ þ ΔθÞ ¼ 0 using the above
expansion fðθÞ ¼ −JΔθ and neglecting second-order
terms. This results in a linear system of equations which
can be solved using techniques from linear algebra.
The approach results in an iterative procedure whereby at

every iteration we compute the Jacobian J with a quantum
computer and apply its (regularized pseudo)inverse to the
vector of covariances f to compute the parameter-update
rule as

θtþ1 ¼ θt − J−1f with ½J�kn ≔ ∂nfkðθÞ: ð10Þ

We derive expressions for computing the Jacobian with a
quantum computer in Appendix B 3 using well-established
techniques from the literature [9–11], e.g., parameter-shift
rules. Furthermore, we also discuss in Appendix C 4 that
stacking real parts of J and f on top of the imaginary parts
results in real J̃ and f̃—enforcing that the solution of the
linear system of equations is a real vector Δθ.
While we aim to compute the Jacobian and the cova-

riances with a quantum computer, we note that the resulting
linear systems of equations are solved with a classical
computer. It is important to note that we would obtain an
underdetermined system of equations if our operator pool
were smaller than the number of Ansatz parameters as
rp < ν. This is the reason why we require that our operator
pool, and thus the dimension of the vector f, is at least as
large as the number of circuit parameters—indeed, later we
aim to set up highly overdetermined systems of equations.
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While powerful, the vanilla Newton method has its
limitations and is guaranteed to converge only when
starting near a root—given the linear model in Eq. (9) is
accurate only for small kΔθk. Nevertheless, a number of
advanced techniques have been developed to increase the
radius of convergence, and some variants of the Newton
method have been proved to be globally convergent under
mild continuity conditions of the functions [37,39,40].
In particular, the simplest globally convergent approach
first attempts a conventional Newton step, and if the norm
of the vector-valued function kf̃k does not decrease, then a
line search is attempted in the step direction λJ̃−1f̃ [37],
whereby one searches for λ that minimizes kf̃k along the
one-dimensional search direction; see Appendix C 4 for
more details. This approach is guaranteed to converge to a
root as long as the Jacobian is nonsingular and well
conditioned [37].
Another family of closely related approaches are the

Levenberg-Marquardt (LM) methods which are addition-
ally robust against ill-conditioned Jacobian matrices. The
approach can be shown to be equivalent to the Gauss-
Newton algorithm for least-squares minimization with a
trust-region method [37]. It attempts steps along what is
formally a “regularized Newton direction” via the regular-
ized inverse Δθ ¼ ½Aþ λId�−1f̃ with A ¼ J̃⊺J̃ and accepts
the regularization parameter λ based on some condition,
e.g., such that kf̃k decreases. The regularization matrix is
either Id, but in practice it is often chosen to be the diagonal
matrix diagðJ̃⊺J̃Þ. In many practical applications of non-
linear least-squares fitting, LM can be interpreted as an
approximate Hessian optimization; however, we detail in
Sec. V D that this is not the case for our root-finding
approach.

III. COVARIANCE ROOT FINDING VIA
CLASSICAL SHADOWS

In the previous sections, we describe the general theory
as the basis for our quantum optimization algorithm. We
now detail concrete settings where our approach may
achieve significant practical value in exploiting near-term
quantum devices. Our aim is that the number of con-
straints Nc in the linear system of equations is tractable
but is significantly larger than the number of circuit
parameters as ν ≪ Nc. For this reason, we choose a
p-local operator pool of size rp ∈ OðNpÞ that consists
of all Pauli strings that act nontrivially on only p qubits
as P ¼ fPk ∈ fId2; X; Y; Zg⊗N∶Pk is p-localg.
This fits very well with the use of classical shadows for

determining a very large number of local Pauli strings. In
particular, the recent development of the classical shadows
method [16] allows us in a NISQ-friendly way to measure
Nc covariances and their derivatives using a measurement
count that is only logarithmic in Nc. Therefore, it is
possible to offload processing to the classical computer

with only a small increase in the number of measurements
(quantum resources) required. This combination is ideal for
NISQ-era algorithms where quantum resources are limited,
and it is generally to our benefit if we can offload large but
tractable calculations to a classical computer. In the remain-
der of this section, we describe the application of this
method to local Hamiltonians, using ameasurement channel
of single-qubit Pauli gates [16]. In Fig. 2, we provide a
diagrammatic representation of the CoVaR algorithm.

A. Stochastic optimization with
very large operator pools

Despite very promising experimental progress [1–5],
near-term quantum devices are noisy, and, in order to
avoid practically prohibitive accumulation of errors,
the circuit depth DðNÞ is required to be shallow and is
usually assumed to grow polylogarithmically as
DðNÞ ∈ polylogðNÞ. The Jacobian is generally a non-
square matrix with dimension J ∈ CNc×ν, where ν is
number of Ansatz parameters typically scaling as ν ¼
NpolylogðNÞ due to shallow circuit depth. As such, for a
sufficiently large system we can always overconstrain the
Jacobian just by including covariances with respect to
only 2-local Pauli strings given then the number of
constraints Nc ¼ OðN2Þ grows faster than the number
of circuit parameters. We can, thus, conveniently define a
very large operator pool for Theorem 1 relative to the
number of parameters in the Ansatz circuit.

FIG. 2. Flowchart depicting the CoVaR algorithm showing the
separation between quantum and classical computations.
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For this reason, we set our operator pool P to contain all
p-local Pauli strings, and we randomly select constraints
f ∈ CNc of a large size Nc but much smaller than the full
operator pool as ν ≪ Nc ≪ rp—but still much larger than
the number of circuit parameters. This construction has the
following advantages. First, the large (but tractable) size of
the Jacobian yields an overconstrained linear system of
equations in Eq. (10), which significantly improves con-
vergence speed as we demonstrate below. Second, ran-
domly choosing constraints has the advantage of navigating
out of local traps as we numerically simulate in
Appendix D 2. Third, we employ stochastic LM methods
that adaptively regularize the Jacobian and are, thus, by
construction robust against the noise produced by random
choice of constraints, as well as the hardware and shot noise
on expectation values—and rigorous proofs of convergence
are available in the literature [41,42]. These are indeed
properties why stochastic LM and stochastic gradient
descent are extremely popular in the classical machine
learning context, i.e., due their robustness against noise as
well as their robustness against getting stuck in local traps
[43–45].
In Fig. 3, we confirm numerically on a 14-qubit

recompilation problem that indeed the performance of root
finding increases as the number of constraints Nc=ν in the
linear system of equations is increased. As we detail below
in Sec. IVA, this recompilation problem is a hard bench-
marking task with the advantage that our Ansatz is capable
of expressing the exact solution. In Fig. 3, we run CoVaR
for a fixed number 20 of iterations and plot how close the
evolution comes to the solution, i.e., the infidelity with
respect to the ground state. We assume an idealized
simulation with no shot noise or circuit noise; thus, the
only source of “error” is the linearization of the nonlinear
covariances via Eq. (9), while the performance is signifi-
cantly improved as we increase the number of constraints.
Let us attempt to intuitively explain on an analytical

example why such an increasingly overconstrained system
of equations improves our ability to find the solution. Take,
for example, the simple case when the Ansatz circuit has a
single parameter θ, and [as illustrated in Fig. 1 (right)],
thus, the covariance function vector fðθÞ can be linearized
via Eq. (9) as

fðθ þ ΔθÞ ¼ fðθÞ þ JΔθ þOðjΔθj2Þ: ð11Þ

Here, the Jacobian is Jk ¼ f0kðθÞ (assuming Jk and fk are
real, as we stack real and imaginary parts on top of each
other). For each individual function fkðθÞ, Newton’s
single-variate parameter update approximates the root as
Δkθ ¼ −fkðθÞ=Jk; however, we incur an error kfðθþ
ΔθÞk2¼P

j≠k½fjðθÞ−f0jΔkθ�2þ�� � due to the nonlinear-
ity of fkðθÞ as we illustrate in Fig. 4 (blue lines). On the
other hand, the least-squares solution simultaneously takes
into account all linearized constraints as fðθ þ ΔθÞ ¼ 0

and is given analytically as Δθ ¼ ðJ⊺JÞ−1J⊺f ¼
−
P

k JkfkðθÞ=½
P

k J
2
k�, which inherently minimizes the

aforementioned error via kfðθ þ ΔθÞk2 → min. Indeed,
the least-squares solution (Fig. 4, orange line) approximates
the solution much better than either the individual, single-
variate Newton solutions (blue lines) or their average
(black line).
Let us now analyze the time complexity of classically

computing the (pseudo)inverse of the Jacobian J̃. We prove
in Appendix C 6 that computing the least-squares solution
to the linear systems of equations is dominated by the
step of computing A ≔ J̃⊺J̃, which can be performed in
timeOðν2NcÞ and, as such, scales linearly with the number
of constraints. The rest of the procedure, including the
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FIG. 3. Performance improvement when we increase the
number of constraints Nc illustrated on a 14-qubit recompilation
problem of “rediscovering” unknown parameters (ν ¼ 124) of an
Ansatz (refer to Sec. IVA for more details). CoVaR is run
for a fixed number 20 of iterations (initial average fidelity
F ¼ 46� 7%), and the final achieved infidelity 1 − F with
respect to the ground state is reported: Blue crosses show the best
of three runs of CoVaR, and we plot their fit with the function
aðNc=νÞ−b þ c (blue curve) as we detail in Appendix E 1. The
worst of three runs are also fitted with the same function (blue
shade), confirming a polynomially (in Nc) increasing perfor-
mance with b ≈ 3.2—although we expect this degree to depend
on the problem. The large spread of data points is due to our
randomly generated constraints (with respect to 3-local Pauli
strings).

–1 –0.5 0 0.5 1

FIG. 4. Illustrating the advantage of overdetermined systems of
equations. The same variational circuit as in Fig. 3 with all
parameters optimal except for a single variable, which is
disturbed as θ ¼ 0.5, and, thus, the exact root is at θ⋆ ¼ 0. Blue
lines show single-variate Newton steps computed for 100
individual covariance functions θ þ Δkθ, and their average is
represented by the black line. With the orange line, we obtain a
better approximation of the root by solving a Nc ¼ 176 over-
determined system of linear equations (see the main text).
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computation of the inverse of the small square matrix
A ∈ Cν×ν, can then be computed in negligible additive
time. Given the number of constraints grows at most as
Nc ≤ OðNpÞ for our specific choice of p-local Pauli
strings, the computation time t grows at most as t ≤
O½Npþ2polylogðNÞ� with the number of qubits N.
We confirm these expectations in Fig. 5 and estimate

that a very large matrix with Nc ¼ 106 constraints for a
variational circuit of ν ¼ 103 can straightforwardly be
computed in a matter of minutes and fits into the RAM
of a typical single node—while distributed computation for
larger datasets > 107 is possible with negligible commu-
nication between nodes. We expect determining necessary
expected values from classical shadows has a comparable
computation time, which we detail below.

B. Noise robustness

Let us now demonstrate the aforementioned noise
robustness of our approach: As we experimentally esti-
mate the Jacobian and the covariances, we always incur a
certain amount of shot noise (due to finite sampling) but
also possible noise due to experimental imperfections.
While we demonstrate in a noise-free environment that
performance is improved when increasing the number of
constraints, one might think that it could also lead to an
accumulation of noise. For this reason, we prove in
Appendix C 5 that the error in our estimate of the update
rule Δθ in Sec. III A does not accumulate as we increase
the number of constraints; i.e., the error is constant
bounded by the worst-case error in a single Jacobian
or covariance entry.

We obtain a similar conclusion for the error (shot noise)
propagation in the general multivariate case by applying the
error propagation formula in Ref. [15] for matrix inversion.
In particular, the error in the update rule scales with the
fourth power of the smallest inverse singular value (or
regularization parameter λ−4) of J. Given singular values of
our ν × Nc-dimensional Jacobian matrix grow with Nc, we
expect CoVaR is particularly robust against shot noise. In
our ν ¼ 1-dimensional example in the previous subsection,
we have a singular value ½PNc

k¼1 J
2
k�1=2 of J⊺J which indeed

grows with the square root of Nc for nonzero deriva-
tives jJkj > 0.
In Fig. 6, we repeat our simulations from Fig. 3 with

added shot noise and circuit noise. In particular, Fig. 6
(orange) shows our simulations with only shot noise added
and confirms our above analytical arguments: As we
increase Nc=ν, the optimization is able to come closer
and closer to the root in a fixed number 20 of iterations up
until a point when we reach a shot-noise floor E where the
performance is no longer increased. This shot-noise floor is
indeed below the precision of determining individual
entries N−1=2

s ∝ 10−2.5.
Furthermore, Fig. 6 (black) shows the performance of

root finding under simulated circuit noise but without shot
noise. As we detail in Appendix E 2, we have assumed two-
and single-qubit gate error rates ϵ2 ¼ 10−3 and ϵ1 ¼ ϵ2=4,
respectively, which is comparable to the performance of

104 105 106 107
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101
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(Nc
0.87)

10 msec

1 sec
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1 hourtime (second)

number of constraints Nc

FIG. 5. Computation time with a Mathematica code of the
update rule Δθ ¼ J̃−1f via the regularized inverse of the non-
square matrix Jacobian J̃ ∈ R2Nc×ν with a fixed number of circuit
parameters ν ¼ 1000 and increasing number of constraints
(covariances) Nc. The time complexity is OðNcÞ linear in the
leading dimension, as the number of constraints and the absolute
time is very reasonable, i.e., less than an hour even for very large
matrices with Nc ¼ 107 (computed with a desktop PC).
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FIG. 6. Simulations and fits are identical to those in Fig. 3 but
now with added noise. Orange shows results including a shot
noise for Ns ¼ 105 shots, modeled as independent Gaussian
noise on all expectation values. At small Nc, shot noise
regularizes the ill-conditioned linear system of equations and
does seemingly improve performance. Black results show the
performance of CoVaR under simulated circuit noise as described
in Appendix E 2, indicating the resilience of the method to
reasonable levels of circuit noise. In the large-Nc limit, a noise
floor is approached whose magnitude in our particular example is
comparable for both cases of only shot noise (orange) and only
circuit noise (black)—large spread of the data points is due to our
randomly generated constraints, and fits of the best (solid curves)
and worst (shaded area) of three runs of CoVaR are included.
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state-of-the art hardware. While the optimization is per-
formed with noise, the plotted infidelities are calculated
without noise to reflect that the correct parameters are
found, as, e.g., error mitigation techniques are typically
applied for extracting noise-suppressed expected values
from a final state [46–49]. These results show a very similar
performance to the case with shot noise only in Fig. 6
(orange): The performance is increased up until a point
where a noise floor is reached—and the magnitude of this
noise floor in our example appears to be very close to the
case of shot noise only. Interestingly, our approach finds
circuit parameters very close to the ideal ones (small final
infidelities) despite circuit noise—this indeed resembles the
phenomenon of optimal parameter resilience [50], meaning
this recompilation task is not merely learning in the applied
circuit noise. These simulations confirm the robustness of
our approach against experimental noise.

C. Estimating a large number of covariances
via classical shadows

Recall that a p-local problem Hamiltonian can be

specified in terms of its Pauli decomposition as H ¼P
r
a¼1 hkP

ðpÞ
a where the Pauli strings PðqÞ

a ∈ QðpÞ are p-
local; i.e., they act on p qubits only nontrivially. Such local
Hamiltonians are highly relevant in many important prob-
lems which include, for example, recompilation, spin
models in materials science, boolean satisfiability problems
(3SAT), and fermionic models using mappings that retain
operator locality [9,11,51–54].
Let us consider an operator pool Pq that contains all

q-local Pauli strings and, thus, has size rp ∈ OðNqÞ. We
randomly choose covariances fk from this operator pool
such that Nc ≪ rp, and as we discuss we aim to estimate a
large number of covariances (constraints) via a large but
tractable Nc. Let us now establish that we need only
reconstruct expected values of at most pþ q-local Pauli
strings in order to determine all covariances.
Statement 1.—Given a p-local problem Hamiltonian H,

we can estimate covariances hPðqÞ
k ;Hiψ with respect to at

most q-local Pauli strings by reconstructing expected
values of at most pþ q-local Pauli strings of the

form hψ jPðpþqÞ
k jψi.

Proof.—Let us explicitly write the covariances as

hPðqÞ
k ;Hiψ ¼

Xr
a¼1

hkhPðqÞ
k ; PðpÞ

a iψ ¼
Xr
a¼1

hkhψ jPðqÞ
k PðpÞ

a jψi

−
Xr
a¼1

hkhψ jPðqÞ
k jψihψ jPðpÞ

a jψi: ð12Þ

Above, the product of the Pauli strings PðqÞ
k PðpÞ

a is propor-

tional to a pþ q-local Pauli string as PðpþqÞ
k up to possibly

a prefactor �i depending on whether PðqÞ
k and PðpÞ

a

commute or anticommute, etc., as discussed in
Appendix B 3. As such, above, we obtain a weighted
sum of only expected values of Pauli strings, and, thus, we

conclude that any covariance of the form hPðqÞ
k ;Hiψ can be

reconstructed by estimating expected values of at most
pþ q-local Pauli strings. ▪
Note that determining all covariances that satisfy the

sufficient conditions in Eq. (7) requires that the locality of
the operator pool is at least as large as the locality of the
problem Hamiltonian via q ≥ p.
The classical shadow procedure [16] fits very well with

our CoVaR approach, as it allows us to estimate a very large
number of these covariances such that the number of
samples (quantum resources) increase only logarithmically
with the number of constraints—while the required mea-
surements are very NISQ friendly. Let us briefly recapitu-
late the main steps to reconstructing Pauli strings using
classical shadows.

(i) We apply a random unitary U to rotate the state. In
our case of local Pauli strings, the unitaries are
chosen randomly from single-qubit Clifford gates on
each qubit, and the procedure is, thus, equivalent to
randomly selecting to measure in the X, Y, or Z
bases—we measure each qubit to obtain N-bit
measurement outcomes jb̂ii ∈ f0; 1gN .

(ii) We then generate the classical shadows by applying
the inverse of the measurement channel M, which
can be done efficiently as the channel chosen is a
distribution over Clifford circuits. The classical snap-
shots are generated as ρ̂i¼M−1ðU†jb̂iihb̂ijUÞ, and
the classical shadows are collections of these snap-
shots Sðρ;NÞ ¼ ½ρ̂1;…; ρ̂N �.

(iii) From these classical shadows, we can construct K
estimators of ρ from our Nbatch snapshots as ρ̂ðkÞ¼
ð1=rÞPkr

i¼ðk−1Þrþ1
ρ̂i with r¼bNbatch=Kc and classi-

cally calculate estimators of the Pauli expectation
values ôiðN;KÞ¼medianfTrðOiρ̂ð1ÞÞ;…;TrðOiρ̂ðKÞÞg.
The classical computational resources are quite
modest.

(iv) The sample complexity of obtaining these estimators
of M Pauli operators of locality l to error ϵ is
O½3l logðMÞ=ϵ2�.

Using classical shadows allows us to reconstruct
all (pþ q)-local Pauli strings with a sample complexity
that is merely logarithmic in the system size. This fits
particularly well with the preset approach: When the
locality pþ q of Pauli strings is modest, then we can
obtain a large, polynomially growing number of constraints
Nc ∈ OðNqÞ. Furthermore, given the covariances are fully
determined by expected values (of local Pauli strings), we
show that their analytical derivatives can be estimated using
expected values at shifted circuit parameters via the so-
called parameter-shift rules [55]. In particular, each partial
derivative in the Jacobian ½J�kn ≔ ∂nfkðθÞ is determined by
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estimating expected values at two different shifted param-
eters as discussed in Appendix C 1. As such, we can fully
determine our Levenberg-Marquardt step just using
expected values of local Pauli strings.
Let us now state the sample complexity of CoVaR whose

(quantum) cost is dominated by estimating the Jacobian,
and let us compare it to the cost of determining a gradient
vector used in energy minimization.
Statement 2.—Given a p-local problem Hamiltonian H,

we use classical shadows to determine a large numberNc of
covariances with respect to q-local Pauli strings. The
sample complexity of determining the Jacobian of size J ∈
CNc×ν to an error ϵ is

Ns ¼ O½3pþqν logðrNcÞ=ϵ2�:

In contrast, determining the gradient of the energy expected
value hHi using classical shadows has a complexity
O½3pν logðrÞ=ϵ2�. As such, determining a very large
Jacobian is only logarithmically more expensive than
determining an energy gradient (up to a multiplicative
constant 3q that depends on the modest locality of our
choice, e.g., q ¼ 2, 3).
Proof.—Theorem 1 in Ref. [16] establishes that M Pauli

strings Oi of locality l can be estimated to precision
parameters ϵ and δ via the number of batches K ¼
2 logð2M=δÞ and the number of samples in the individual
batches as Nbatch ¼ ð34=ϵ2ÞmaxikOik2shadow. This results in
an overall number of samples NbatchK, and the norm is
given in Lemma 3 in Ref. [16] as kOkk2shadow ¼ 3l.
We establish in Lemma 6 that we can determine the

Jacobian matrix J ∈ CNc×ν by applying the classical
shadow procedure 2νþ 1 times at different circuit-param-
eter configurations with M ≤ 3rNc. As such, determining
these Pauli strings of locality l ¼ pþ q requires the
number of samples NbatchK ≤ ð68=ϵ2Þ3pþq logð6rNc=δÞ.
Given we apply the classical shadow procedure 2νþ 1
times, we obtain the following upper bound on the sample
complexity:

Ns ≤ ð2νþ 1Þ3pþq 68

ϵ2
logð6rNc=δÞ:

In contrast, determining a gradient vector for gradient
descent requires 2ν applications of the classical shadow
procedure, each with M ¼ r, and, thus, we obtain the
sample complexity

NðgradÞ
s ≤ 2ν3p

68

ϵ2
logð2r=δÞ:

In both cases, we determine the necessary Pauli strings to
precision ϵ, and both the energy gradient and the covariance
Jacobian are then obtained from these as a linear

combination with respect to Hamiltonian coefficients
which leads to a worst-case error propagation of OðrÞ. ▪
Actually, this bound on the number of required mea-

surements in terms of the locality is noted to be
conservative, and it is expected that the actual constants
are much smaller in practice [16]. Furthermore, the
inclusion of the development of derandomized classical
shadows [56] has the potential to significantly reduce the
number of required measurements; i.e., an order of magni-
tude reduction has been demonstrated in numerical experi-
ments [16]. These techniques could, thus, greatly improve
the speed at which the covariances can be extracted by
optimizing the Pauli measurement basis to the specific
Pauli strings in our operator pool—but we do not consider
these in our above performance bounds. Furthermore, the
overhead of CoVaR relative to determining a single
gradient vector in gradient descent is the constant 3q (up
to the logarithmic dependence on Nc) and is due only to the
increase in the locality of Pauli strings with q ¼ 2, 3, etc.
We can, thus, expect that determining a very large Jacobian
has a comparable complexity to determining just a single
gradient vector in gradient descent. We demonstrate in the
following that this increased size of the Jacobian has
significant advantages in practical applications.

IV. APPLICATIONS

A. Recompilation

The ability to recompile a given quantum circuit into an
equivalent but practically feasible or more favorable rep-
resentation is crucial for the successful exploitation of
quantum computers. The ideas exist in many variants, from
the application of classically tractable analytical gate-
replacement rules to automatic discovery techniques
[57–59]. In variational recompilation, we want to find a
parametrized unitary circuit UðθÞ that approximates a
target unitary V. This target unitary is required to approxi-
mate the action of U on the entire Hilbert space in case
of recompiling a full unitary [33] in Fig 7(b) or just to
approximate the action on a specific input state in Fig. 7(a).
After applying the circuits V and UðθÞ† consecutively, the
goal is to find circuit parameters θ such that the state of the
registers is in the ground state j0i of the Hamiltonian H ¼
−
P

N
j¼1 Zj [36]. However, the problem would be equally

solved by finding Ansatz parameters to produce any
computational basis state (i.e., any eigenstate of H), given
we can then just append single-qubit X rotations to the
Ansatz to produce the desired operation. This feature, along
with the local Hamiltonian allowing for the efficient
measurement of many covariances, makes it particularly
amenable to root finding which is not limited to searching
only for the ground state.
For this reason, we apply Corollary 3 to the present

problem and define our problem Hamiltonians as
Q ≔ fZagNa¼1. We can indeed enlarge this pool by further
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considering products of single-qubit Pauli Z operators. Our
aim is then to find joint roots of the covariances from
Corollary 3 which then guarantee that the solution corre-
sponds to a joint eigenstate of all operators in Q as one of
the computational basis states. After having found one of
these computational states, we just apply single-qubit X
rotations to our Ansatz to map to the j0i state.
Here, we consider an example of parameter rediscovery

as a benchmark, whereby we recompile a unitary V ¼
Uðθ⋆Þ that has the same form as the parametrized quantum
circuit UðθÞ but with the parameters fixed at some random
solution values θ⋆. This has the advantage of being a very
hard problem to solve variationally while also giving us a
guarantee that our circuit is capable of expressing the
solution—note that below we benchmark our CoVaR
approach on practical problems as well.
Figure 7(c) shows the performance of root finding when

we initialize relatively close to the solution (by disturbing
parameters jΔθkj ≤ 0.3) on a ten-qubit, two-layer param-
eter rediscovery problem and compares it to the perfor-
mance of gradient descent. In this recompilation problem,
our operator pool P contains all 3-local Pauli strings, and
we choose randomly Nc operators at every iteration; see
details in Appendix E 2. Indeed, Fig. 7(c) confirms that root
finding is able to converge significantly faster to the shot-
noise floor, i.e., a limitation due to finite sampling of
expected values. Furthermore, Fig. 7(c) confirms that root
finding has a significantly improved convergence rate
(steeper slope), which is improved with a greater number
of constraints (blue vs light blue), while note that the
quantum resources required for a single iteration are
comparable to those of gradient descent.

Figure 7(d) (blue) shows applying root finding to an
initial state that we obtain by a short period of gradient
descent from a random state—applying gradient descent to
a random state has the effect of producing a state with an
appreciable overlap with the lowest-energy eigenstates,
allowing root finding to efficiently converge. In contrast,
in Fig. 7(d) (black), we demonstrate the performance of
root finding when we start from a randomly chosen initial
point in parameter space on the same problem. It fails to
make any progress; this is due to the fact that root finding
works well when there are only a small number of
eigenstates that significantly contribute to the state pro-
duced by the parametrized quantum circuit. In contrast,
random states as nearly equal superpositions of a large
number of basis states do not contain a dominant eigenstate
toward which root finding could converge; thus, CoVaR
fails to make significant progress. This is very much
analogous with fault-tolerant phase-estimation protocols
which do indeed similarly fail under random initialization
but enable us to efficiently prepare any eigenstate given a
good initialization is possible. These signify the importance
of initialization when searching for eigenstates and clearly
demonstrates that even a short period of gradient descent
may be sufficient for these purposes.
The performance of variance-VQE (a gradient based

method that minimizes the variance of the Hamiltonian; see
Sec. V B for more details) is also shown for comparison—it
is another method which, like root finding, is not searching
only for the ground state of the Hamiltonian. Variance-
VQE is not stuck in the same way as root finding but makes
slow progress due to its relatively (compared to root
finding) slow convergence speed.
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FIG. 7. Demonstration of CoVaR in fixed input state recompilation for a ten-qubit and two-layer (ν ¼ 88) Ansatz. The circuit in (a) is
used with V and U being the same Ansatz but with V having solution parameters θ⋆ that are randomly chosen as jθ⋆k j ≤ 2π but remain
fixed over 20 runs. We rediscover these hidden parameters using the Ansatz UðθÞ, where θ ¼ θ⋆ þ Δθ. All curves show mean and
standard deviation of infidelities over 20 runs, and simulations include shot noise (Ns ¼ 105). (b) shows the circuit for the recompilation
of a full unitary. (c) Performance of CoVaR (blue lines) using Nc=ν ¼ 5, 10 compared with gradient descent (orange). Infidelity 1 − F
from the ground state is plotted as we initialize close to the solution via small random parameter perturbations jΔθkj ≤ 0.3 resulting in an
initial fidelity 1 − F ¼ 41� 8%. (d) Performance when initialized completely randomly in parameter space via jΔθkj ≤ 2π, showing
the infidelity 1 − Fmax to the nearest computational basis state. Black shows progress for CoVaR and red for variance-VQE—when both
are initialized randomly, both fail to make significant progress, regardless of choice of Nc. Additionally shown is the use of a short
period of gradient descent to “initialize” (orange, dashed line) and then CoVaR (blue, Nc=ν ¼ 20), which reaches a final infidelity of
0.5% on average (the blue curve includes only the 16=20 runs which are able to converge).
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B. Spin models

Spin models are highly relevant in the study of
condensed matter physics and quantum statistical
mechanics, and many problems in practice can be mapped
to spin models, such asNP problems [60]; cf. approximate
optimization algorithms (QAOA) or spin systems in
materials science [9,11,52–54]. Furthermore, lattice mod-
els of quantum field theories [61] typically have local
Hamiltonians.
Here, we simulate CoVaR when used to search for low-

energy excited states of a spin chain described by the
Hamiltonian

H ¼ J
XN
i¼1

σ⃗i · σ⃗iþ1 þ ciZi: ð13Þ

We use periodic boundary conditions (N þ 1 ¼ 1), ci are
randomly selected on-site interactions comparable in
strength to the couplings J, and σ⃗i is the Pauli vector for
the ith qubit. This Hamiltonian cannot be simulated
classically for large N with reasonable computational
resource despite its simple structure [62,63]—and it is
relevant for studying the phenomenon of many-body
localization in condensed matter systems [64].
We use a hardware-efficient Ansatz of 20 layers for ten

qubits. Before root finding is performed, the Ansatz
parameters are initialized to θimag using imaginary time
evolution [65] to a state with low expected energy. This
ensures that only a limited number of eigenstates contribute
significantly to the state produced by the Ansatz. CoVaR is
then performed from points in parameter space with small
random variations from θimag to map out the low-energy
subspace. This process is shown in Fig. 8 in mapping out
the lowest-energy subspace of a ten-qubit spin chain;
CoVaR rapidly finds a state an order of magnitude closer
to the ground state in energy error than imaginary time
evolution is able to converge to. This indeed confirms that
root finding has a significantly improved convergence rate
when compared to imaginary time evolution, where the
latter is equivalent to natural gradient [66,67] and is, thus, a
second-order method that requires increased absolute
quantum resources (samples) [66]. While here we focus
on practical applications of CoVaR, we demonstrate addi-
tional numerical simulations in Fig. 12 whereby we
explicitly compare CoVaR to VQE; we conclude that, in
comparison to other variational methods, CoVaR again
exhibits superior performance on the present spin-ring
problem.

C. Finding excited states

Searching for excited states of a Hamiltonian is impor-
tant in many practical applications, and, indeed, variational
quantum algorithms have been proposed for solving this
class of problems. On the other hand, finding excited states
using orthogonality constrained VQE techniques [36,68]

can be difficult, because we need to discover the parameters
for and project out every state from the ground state up to
the energy of the state wewish to find. CoVaR is agnostic to
the energy of the state and acts to find states close to the one
it is initialized into. Although CoVaR could converge to
states that have been found in previous runs of the
algorithm, similar techniques of projecting out previously
found eigenstates could also be applied. We can also
potentially use classical techniques, such as interval analy-
sis [57], to find all the roots within an area of parameter
space, reducing the problem converging to an already
known eigenstate (root).
In Fig. 9, we show the probability of converging to the

ground state of our spin chain as a function of the overlap
between the ground state and the initial state. These initial
states are obtained by performing imaginary time evolution
from random points in parameter space down to energies
between −5.8 and the ground state (at E ¼ −5.99). The
initial fidelity where root finding is started is recorded
(Fig. 9, horizontal axis), and the fraction of runs that
converge to the ground state is listed. Indeed, we find a
nearly linear relationship, and the vast majority of runs that
do not converge to the ground state converge to one of the
other low-lying energy levels. We provide the distribution
of how these runs converge in Appendix D 3. Furthermore,
the observed relation between fidelity and probability is
directly analogous to phase estimation whereby a meas-
urement is used to collapse the system into the desired
eigenstate with a probability that is given by the fidelity
with respect to that state. In contrast, variational quantum
algorithms converge to local minima, and only an
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FIG. 8. Using root finding to explore a low-energy subspace of
a ten-qubit spin chain via an Ansatz circuit of 20 layers (ν ¼ 610).
The initialization to the low-energy subspace is performed by
imaginary time evolution (blue, dashed line) and is followed
by runs of CoVaR to find the three lowest eigenstates (marked by
dashed lines), to an accuracy of ΔE ≤ 4 × 10−4 in all cases.
Imaginary time evolution is run for 250 iterations after the point
where root finding starts and converges to a state with
ΔE ¼ 0.012. These simulations do not include shot noise.
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exponentially small fraction of such local energy minima
may be close to the ground state as proved in Ref. [17].

V. COMPARISON TO EXISTING TECHNIQUES

A. Relation to variational quantum algorithms

A large subset of variational quantum algorithms is
concerned with minimizing a cost function EðθÞ which is
usually the expected value of a Hamiltonian hHi, such as in
the case of VQE. Among other practical limitations, this
surface may have a large number of local minima that can
trap local optimizers [69]. The main difference is that
CoVaR uses a large number of such surfaces that are
randomly selected, and computing these large data requires
similar quantum resources (shots) as a standard gradient
estimation in the case of variational quantum algorithms. In
the following sections, we compare CoVaR in more detail
to specific variational quantum algorithms and related
techniques.

B. Comparison to variance minimization

Minimizing the variance σ2 ≔ hH2i − hHi2 of a
Hamiltonian allows us to find eigenstates and has been
explored in the context of quantum chemistry [29].
Furthermore, the so-called variance-VQE [70] approach
uses variational quantum circuits and estimates this vari-
ance as well as its derivative using a quantum computer.
Note that the tools we introduce can naturally be applied in
this context: Given a minimal pool P ¼ fHagra¼1 that

contains only Pauli terms of the Hamiltonian and, thus, a
covariance matrix hHa;Hbiψ of the Hamiltonian terms
only, our Jacobian allows us to compute the gradient of the
variance ∂nσ

2 ¼ J⊺h, as we detail in Appendix C 3.
While our CoVaR approach contains full information

about the variance and its gradient, it is important to
recognize, however, that a gradient descent optimization
has an inferior convergence rate when compared to the
quadratic Newton method. In Fig. 7, we compare the two
techniques and indeed find that CoVaR has a superior
performance. Furthermore, note that CoVaR uses strictly
more information than variance minimization: While
the operator pool P ¼ fHagra¼1 containing only the
Hamiltonian terms is sufficient in Theorem 1, we signifi-
cantly enlarge this pool such that Nc ≫ r and aim to find
joint roots of this large number of covariances.

C. Comparison to subspace expansion

Subspace expansion [71] is a method for discovery of
low-energy excited states starting from an estimated ground
state jψ̃Gi. One then explores directions in Hilbert space by
applying low-weight operators as excitations to the ground
state. Typically, operator pools of Pauli operators are used
to produce a new set of states jψki ¼ Pkjψ̃Gi for calculat-
ing the overlaps Hkj ¼ hψkjHjψ ji and Skj ¼ hψkjψ ji.
Diagonalizing Hkj then reveals better ground-state
energies than that of jψ̃Gi. As opposed to CoVaR, subspace
expansion cannot prepare the “good quality” representation
of the eigenstates with a quantum computer but is rather
limited to estimating their energies with a classical
computer.
The connection to CoVaR is elucidated further in

Appendix A 1, where we express covariance functions in
terms of a set of quantum-state overlaps hOk;Hiψ ¼
hϕOk

jϕHi, where we can define the (unnormalized) vectors
jϕAi ≔ ðA − hAiÞjψi. The covariance matrix in Eq. (3) is,
thus, a positive-semidefinite overlap matrix ½CðψÞ�kl ¼
hϕOk

jϕOl
i. We can make a weak analogy to subspace

expansion based on the following observation. Given
covariance functions can be expressed as state overlaps,
the method explores possible directions in Hilbert space via
our operator pool that is beyond the capabilities of the
Ansatz, and we gain information through a linearization as
the Jacobian at what parameters the nearest eigenstate may
be found via the vanishing overlaps. Similarly, subspace
expansion also uses operators additional to the Ansatz to
explore around the estimated ground state to extract low-
energy excited states. As such, we may be able to use
existing heuristics from subspace expansion for selecting
problem-specific operator pools.

D. Comparison to Hessian optimization

A Hessian-based Newton-Raphson optimization [72] of
the function EðθÞ uses the update rule
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FIG. 9. Probability Pgs as the proportion of 20 runs where
CoVaR converges to the ground state of the spin chain as a
function of starting infidelity from the ground state. While here
we report only the probability of converging to the ground state
specifically, we note that 97.1% of all runs converge to one of the
low-energy eigenstates—the distribution of eigenstates found is
detailed in Appendix D 3. Initialization is done the same way as
in Fig. 8 by running imaginary time evolution from a random
initial state until reaching selected energies between −5.8 and the
ground state. A linear decay of success probability—reminiscent
of phase-estimation protocols—with ground-state overlap is
found, although we expect the rate of this decay to strongly
depend on the population distribution of the lowest-energy
eigenstates.
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θðtþ1Þ ¼ θðtÞ − ηH−1∇EðθÞ; ð14Þ

where H is the Hessian matrix of second derivatives
∂n∂nEðθÞ which can be estimated on a quantum device
using standard techniques such as the parameter-shift
rule [31,73].
Let us compare our root finding with this Hessian

optimization. A similarity may be that both methods use
additional information to provide improved convergence
over methods that use only gradient information. The
Hessian obtains information about the local curvature of
the EðθÞ manifold which is a “classical” multivariate
function, and its local curvature can even be accurately
captured by analytical approximations [31]—with the use
of a quantum computer. In contrast, CoVaR uses informa-
tion from operator covariances of the variational state
jψðθÞi extracted from exploring directions in Hilbert space
through a randomly chosen, large operator pool as detailed
in Appendix A 1. In this sense, CoVaR is a quantum-aware
method, as it uses not only the fact that EðθÞ (and its
derivatives) are efficiently calculable on a quantum com-
puter, but also the relationship between jψðθÞi, the
Hamiltonian, and possible directions in Hilbert space.
The most pronounced difference between the two tech-
niques is from a practical point of view: While we can use
the classical shadow procedure ν times to estimate a very
large Jacobian, for the Hessian we need to use it Oðν2Þ
times at different circuit-parameter configurations. In this
sense, CoVaR obtains significantly more information using
fewer measurements.
It is also interesting to point out that the Gauss-Newton

and LM techniques can be interpreted as approximate
Hessian optimizations of the vector norm kfk2 when the
Jacobian H ≈ 2J̃⊺J̃ gives a good approximation of the
Hessian matrix by keeping only the first-order derivatives
½∂nfkðθÞ�½∂mfkðθÞ� but neglecting second-order derivatives
of the form ∂n∂mfkðθÞ. This, however, does not apply to
CoVaR, given in our case the functions fkðθÞ are trigono-
metric polynomials for which the second-order derivatives
are dominant, especially near solutions. Take, for example,
the simple function gðθÞ ¼ −

Q
ν
n¼1 cosðθnÞ which has a

minimum at θ ¼ ð0; 0…; 0Þ and, while its first derivatives
vanish near the minimum, the second derivatives
j∂n∂ngðθÞj ≈ 1 are dominant. Note also that the vector
norm kfk2 has no immediate relation with the energy
surface EðθÞ, and, thus, it is not related to a second-order
energy minimization.

E. Comparison to natural gradient

Quantum natural gradient, which is equivalent to imagi-
nary time evolution for ideal, unitary circuits, improves
over both the convergence rate and ability to avoid traps of
vanilla gradient descent by taking into account the geom-
etry of the space of quantum states. Here, we estimate the
quantum Fisher information [30,65–67] as

FijðθÞ ¼ h∂iψ j∂jψi − h∂iψ jψihψ j∂jψi; ð15Þ

which is equivalent to the real part of the quantum geo-
metric tensor FðθÞ ¼ Re½Fij� and is used to compute the
parameter update

θtþ1 ¼ θt − ηFþðθtÞ∇EðθtÞ: ð16Þ

Similarly to Hessian optimization, this method has a
complexity Oðν2Þ for calculating the tensor which, as
opposed to the Hessian, is independent of the energy
surface and rather expresses relations between states
reached by varying different parameters.
CoVaR can also be thought of as an optimization using

additional information about the space of quantum states
but in this case extracted from the many covariance
functions (which do depend onH) instead of the geometric
tensor.

F. Relation to parent Hamiltonians

Let us now relate CoVaR to existing techniques
that do not aim to find eigenstates but rather aim to
find Hamiltonians Hparent that encode a fixed state jψi
as an eigenstate. The Hparent are then called as parent
Hamiltonians to the state jψi.
In particular, these techniques proceed by assuming

that the parent Hamiltonian can be expressed in terms
of the Ansatz as a linear combination of basis operatorsHa
as [74,75]

Hparent ¼
Xr

a¼1

haHa; ð17Þ

via the real coefficient vector h ∈ Rr. Here, r is the rank
of the decomposition, i.e., the number of independent
basis operators. The covariance matrix CðψÞ ∈ Cr×r then
depends on our trial quantum state jψi that we define in
Eq. (3). The parent Hamiltonian is then found by finding
the null space of this covariance matrix given every
coefficient vector h in the null space satisfies Ch ¼ 0
and given our expression for the variance in Lemma 1
guarantees that h⊺Ch ¼ Var½Hparent� ¼ 0 in the particular
state jψi.
CoVaR clearly works according to a reverse logic

whereby the problem Hamiltonian is fixed and we search
for quantum states that result in 0 covariances. We then
search the space of quantum states via an efficient para-
metrization, i.e., variational circuits, using a quantum
computer.

VI. DISCUSSION

We demonstrate that CoVaR shows significantly
improved performance by many orders of magnitude
compared to analogous variational algorithms due to its
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effective use of classical shadows. However, a main
limitation is its vulnerability to random parameter initial-
ization. Although this seemingly has a resemblance to
barren plateaus whereby expected-value landscapes suffer
from flat regions due to vanishing gradients [13,17,18], the
present limitation is quite different in nature. In particular,
recall that phase-estimation protocols provably efficiently
find an eigenstate of an efficiently simulable Hamiltonian
given an initial state is provided with a sufficiently large
overlap with the desired eigenstate. Our approach is quite
similar, as it gets attracted to any eigenstate with a
significant contribution to the initial state. For this reason,
we expect the main limitation of the present approach is not
decoupled from the general challenge of finding good
initialization for fault-tolerant phase-estimation protocols
or finding problem specific Ansätze for VQE problems—
and this challenge may be attributed to general hardness
results of finding ground states or eigenstates [76].
Interestingly, we demonstrate in numerical simulations that
even a short period of gradient descent evolution provides
sufficient initialization in practice.
Furthermore, barren plateaus do not necessarily exist for

our focus of local Hamiltonians and shallow Ansätze
[17,18]. Nevertheless, random initialization of gradient-
based VQE optimizers still prohibits finding eigenstates of
large systems due to local traps [17]: First, optimizing
VQAs has been shown to be NP hard due to persistent
local minima [69]; second, Ref. [17] proves that a broad
class of shallow VQA models that exhibit no barren
plateaus are untrainable due to local traps. As we demon-
strate in numerical simulations, our stochastic Levenberg-
Marquardt approach indeed does mitigate the effect of
these local traps: While gradient-based optimizers fail to
make progress around a local trap as the gradient of the
energy surface vanishes, CoVaR is not an energyminimizer,
and those specific parameters may well yield a nonzero step
for CoVaR. Furthermore, CoVaR is also less vulnerable to
getting stuck due to our randomly generated constraints
(covariances): Even if a single iteration makes no progress,
in the next iteration a new, randomly generated set of
constraints may well yield a nonzero step as we demonstrate
in Fig. 13, where sometimes several steps of CoVaR are
required to escape a trap. This is analogous to the well-
known advantage of stochastic gradient descent in the
machine-learning context [43], and we note that exploring
globally convergent root-finding techniques may also be a
fruitful direction for future research [37,39,40].
There are a number of apparent extensions to our

approach that we do not consider here. First, given the
classical shadows are stored in a classical computer, we
can, in principle, determine multiple sets of update rules
from them and apply the one that most decreases the
variance or any other metric as opposed to our fully
randomized scheme. Second, it would be worth exploring
some specific use cases of CoVaR in more detail, such as

finding highly excited states. Third, in this work, we use
classical shadows to extract a large number of covariances
in the case where both the Hamiltonian and operator pool
are constructed of local Pauli strings. It is an interesting
direction for further work to attempt to use other random-
ized measurement channels to measure covariances with
similar efficiency for nonlocal Hamiltonians or operator
pools. Several works have appeared recently that make
significant progress by developing shadow-measurement
channels that interpolate between Pauli measurements (as
in this work) and the powerful global Clifford measure-
ments [77,78]. These intermediate-depth techniques are
amenable to NISQ devices and allow for the measurement
of nonlocal properties. As a matter of fact, related tech-
niques leveraging simultaneous measurements of commut-
ing observables are also highly relevant, given they allow
the efficient reconstruction of a large number of not
necessarily local Pauli strings as crucial in applications
of quantum chemistry [79–82].
Finally, we expect the present approach to be resilient

against reasonable levels of experimental noise. First, our
update rule in Eq. (10) is invariant under global depolariz-
ing noise when the expected value hHi is known to high
precision, e.g., via well-established error-mitigation tech-
niques [46–49]. Second, we numerically simulate an
approximate noise model that goes beyond global depo-
larization, and we observe a very good robustness against
experimental noise. While these observations speak for the
practicality of the present approach, we leave it to future
work to confirm the performance in current and near-future
generation hardware.

VII. CONCLUSION

In this work, we considered powerful variational quan-
tum circuits that have been extensively investigated in a
hope to exploit near-term quantum computers. Most of
these near-term quantum algorithms aim to encode the
solution to a practical problem of interest to eigenstates of a
Hamiltonian, typically the ground state. As a direct analogy
to successful variational techniques in quantum chemistry,
nearly all quantum variational algorithms so far have
proceeded by posing the problem as a variational search.
In this paradigm, we minimize the single classical cost
function—typically, the expected value of a Hamiltonian—
with respect to circuit parameters.
Our work opens a new research direction in the efforts of

achieving practical value with near-term quantum com-
puters:We observe that the condition for finding eigenstates
can be posed as finding joint roots of a large number of
properties of the quantum state as covariance functions—
these express fundamental quantum-mechanical uncertainty
relations. We have devised the powerful root-finding tech-
nique CoVaR and demonstrated that increasing the number
of these constraining covariances significantly increases the
efficacy of the search procedure.
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The most remarkable feature of CoVaR is that it allows
us to fully exploit the extremely powerful classical shadow
techniques in a way that prior variational techniques could
not; i.e., we simultaneously estimate a very large number of
randomly chosen properties, e.g., > 104–107, of the quan-
tum state and their derivatives with respect to circuit
parameters. These inform our search procedure via a large
but tractable linear system of equations that we solve with a
classical computer.
Our approach can be viewed as directly analogous with

(stochastic gradient descent and) stochastic Levenberg-
Marquardt techniques that have been extremely popular
in the context of classical machine learning—and we
generally expect CoVaR inherits the fast convergence speed
of Levenberg-Marquardt as we indeed demonstrated in
practical examples. In fact, Levenberg-Marquardt is the
default and fastest method for training classical neural
networks [22–25]—but with a limitation that handling a
large Jacobian becomes the bottleneck for too-deep neural
networks. In stark contrast, we view this limitation of the
classical technique a major advantage of our approach
given we can populate the large Jacobian using only
logarithmic quantum resources. CoVaR thus allows us to
offload nontrivial but tractable calculations onto the
classical computer and combines the best of both worlds,
i.e., fast convergence and fast (quantum) computation of
the Jacobian. Furthermore, as we demonstrated, using a
large number of randomly generated constraints makes
CoVaR particularly robust against getting stuck in local
traps in analogy with stochastic techniques in the classical
machine learning context [22,43].
We proved that the quantum resources, using classical

shadows, required for a single iteration of our procedure are
comparable to those of a standard gradient estimation in
conventional VQE. In addition to its significantly improved
convergence speed, our approach exhibits a robustness
against shot noise and against experimental imperfections
thanks to our large dataset. We have explored a number of
practically motivated important applications whereby the
problem Hamiltonian is local given the classical shadow
procedure is very NISQ friendly in such scenarios, requir-
ing only single-qubit measurements in a random basis.
These include recompiling quantum circuits and finding
ground and excited states. Our numerical simulations
confirm the superiority of our approach and indicated that
it can significantly outperform others by many orders of
magnitude. Furthermore, previous techniques for finding
excited states of Hamiltonians assumed a sequential
search, whereas ours naturally converges to any of the
eigenstates—and can, thus, be applied naturally in this
context. Similarly, recompilation is another natural set of
problems for CoVaR given any eigenstate of the problem
Hamiltonian can be accepted as a solution. While the
presented applications tackling local Hamiltonian problems
are ideal for CoVaR, important quantum chemistry

problems may be nonlocal and may, thus, be challenging
for classical shadows depending on the encoding.
Fortunately, two fields of active research are making
progress to alleviate this issue: First, compact fermion
encodings result in local Hamiltonians at the cost of a
modest qubit overhead, and, second, recent advancements in
classical shadows allow for efficiently measuring nonlocal
properties or, specifically, measuring fermionic operators
[77,78,83,84]. It is, thus, expected that the present approach
will be highly competitive and will spark further develop-
ments in the field.
Finally, our work makes exciting connections to various

fields, including fundamental uncertainty relations in
quantum mechanics as covariances, exploitation of
classical shadows, stochastic optimization in machine
learning, and working with big data. We believe it will
be interesting to explore these connections to further
improve the presented techniques in the hope of achieving
practical value with near-term quantum computers.
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APPENDIX A: ORTHOGONAL CONSTRAINTS

We present the general theory of our approach in Sec. II,
whereby we compute covariances with respect to an
arbitrary operator pool P in order to search for eigenstates
of an arbitrary Hamiltonian H. While our practically
motivated CoVaR approach leverages powerful classical
shadows, it restricts the problem Hamiltonian and the
operator pool to local Pauli strings. While Pauli strings
are orthonormal in operator space, their actions on quantum
states are generally not orthogonal directions in Hilbert
space. In the present section, we explore another kind of
operator pool P whereby the operators represent orthogo-
nal directions in state space. Let us first start by interpreting
covariances as overlaps in Hilbert spaces.
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1. Interpretation as state overlaps

Lemma 3.—The covariances from Definition 1 can be
interpreted as overlaps between quantum states as

hA;Biψ ¼ hϕAjϕBi; ðA1Þ

where we can define the (unnormalized) vectors jϕAi≔
ðA−hAiÞjψi for any operator A∈Cd×d with norm kϕAk2 ¼
Var½A�.
Proof.—The above property immediately follows from

the defining expression of covariances from Definition 1.▪
The above lemma informs us that in Theorem 1 and in

Corollary 3 we compute overlaps as hOk;Hiψ ¼ hϕkjϕHi,
and, thus, we actually decompose the quantum state Hjψi
into a set of quantum states jϕli that we obtain by acting on
jψi with elements of our operator pool. Given that jϕHi
must be the null vector when the eigenvalue equation is
satisfied, it is necessary that any (nonparallel) overlap with
this vector must vanish.
While Pauli strings form an orthonormal basis of operator

space, they have the disadvantage that in Hilbert space they
result in nonorthogonal actions hϕkjϕli ≠ δkl; i.e., we
decompose the vector Hjψi into a nonorthogonal basis.
On the other hand, it is possible to define an operator pool
that corresponds to orthogonal directions in Hilbert space.
Lemma 4 (orthogonal operator pool).—Let us consider

strings of X Pauli operators as Xk ∈ fId; Xg⊗N using
the binary index k ∈ f0; 1gN . We define the orthogonal
operator pool P ≔ fOk ≔ UXkU†; k ∈ f0; 1gNg via the
operators, where the unitary quantum circuit U maps
our reference jψi ¼ Uj0i onto our quantum state. The
quantum states jϕki ≔ Okjψi form an orthonormal system
hϕkjϕli ¼ δkl, and, thus, the operators Ok map to orthogo-
nal directions in Hilbert space.
Proof.—Orthonormality in Hilbert space follows from

hOki ¼ δk0 and via

hψ jOkOljψi ¼ h0jU†UXkU†UXlU†Uj0i ¼ hkjli;

where jki are standard basis vectors with hkjli ¼ δkl ▪.
The resulting covariances can actually be shown to be

entries in a column vector of the Hamiltonian matrix. In
particular, given the states jϕki form an orthonormal basis,
they can be used to represent the Hamiltonian matrix as the
covariances fk ¼ hψ jOkHjψi ¼ hϕkjHjϕ0i ¼ Col0ðHÞ,
which are then actually elements of the first column vector
of the problem Hamiltonian. These covariances, as entries
of the Hamiltonian matrix, can be computed using the
Hadamard-test techniques presented in Ref. [86]. In par-
ticular, the covariances are obtained by applying our
variational quantum circuit U onto the standard computa-
tional basis states as jϕki ¼ UXkU†jψi ¼ Ujki, and we
compute the overlap of this state with our variational
quantum state jψi. The approach can straightforwardly

be implemented via the Hadamard test, whereby we apply
the Xk operations in jki ¼ Xkj0i controlled on an ancilla
qubit. Derivatives of these covariances can be similarly
computed by applying the generator of the quantum gate
controlled on the same ancilla. Let us now show that sum of
squares of the covariances is equivalent to the variance of
the Hamiltonian.
Lemma 5.—Given the orthogonal operators introduced in

Lemma 4, we compute the corresponding covariances.
While f0 ¼ hψ jHjψi is the energy expected value, we can
show that

X2N−1
k¼1

jfkj2 ¼ kfk2 ¼ Var½H�: ðA2Þ

Proof.—

X2N−1
k¼1

jfkj2 ¼
X2N−1
k¼0

hψ jHjϕkihϕkjHjψi − hψ jHjψi2:

As the jϕki are a complete basis set due to being a unitary
transformation of the computational basis,

P
k jϕkihϕkj ¼

Id, and we, therefore, obtain

kfk2 ¼ hψ jH2jψi − hψ jHjψi2 ¼ Var½H�:

▪
Importantly, while this operator pool has the advantage

that the covariances represent independent, orthogonal
directions in state space, it is clear that we generally need
to compute all 2N − 1 of these orthogonal constraints, as
elements of the first column of the Hamiltonian matrix, in
order to be able to compute the variance and, thus, to verify
that the quantum state jψi is an eigenstate of the
Hamiltonian. In stark contrast, in Theorem 1, we show
that, given a decomposition of a Hamiltonian into an
operator basis H ¼ P

r
k¼1 haHa which typically grows

polynomially with the system size, it suffices to compute
only the corresponding polynomial number of covariances.
Although these operators, such as Pauli strings, are ortho-
normal in operator space, they do not correspond to
orthogonal directions in Hilbert space.

2. Finding eigenstates via orthogonal operator pools

Let us now apply our orthogonal constraints to
finding eigenstates by finding roots. It is interesting to
note that it follows from our relation in Lemma 5 that the
Newton step through the inverse Jacobian from Eq. (10)
as J−1f is guaranteed to represent a descent direction
for the variance Var½H� given that the gradient vec-
tor gradðkfk2Þ ¼ J⊺f ¼ gradðVar½H�Þ.
Furthermore, we write our problem as a least-squares

minimization of the constraints fk, and, thus, the Gauss-
Newton and the Levenberg-Marquardt approaches can be
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interpreted straightforwardly: Our root-finding approach is
equivalent to a nonlinear least-squares minimization.
An advantage of this scheme is that we can randomly

sample the constraints according to an importance
sampling; i.e., the constraints are picked with a probability
proportional to their magnitude pk ¼ jfkj2. We can
efficiently upper bound these probabilities in an experi-
ment as pk ¼ hϕkjHjψi ¼ jhkjU†Hjψij2. In particular, we
run the quantum circuit U†HaU and measure samples
in the standard basis, whereby we obtain the binary
string k with probability jhkjU†Hajψij2. It then follows
that pk ≤

P
a cajhkjU†Hajψij2. There is, of course, no

guarantee that these probabilities have structure; however,
when performing energy minimization first, the proba-
bilities are more likely to be peaked around the lower-
energy basis vectors jϕki.
In case of finding eigenstates of a set of mutually

commuting HamiltoniansHa, we can compute covariances
as hϕkjHajψi individually for all operators Ha. If all such
variances vanish, then we are guaranteed that Var½Ha� ¼ 0
for all a. In Fig. 10, we compare the performance of root
finding for two choices of operator pool on a parameter
rediscovery problem (3-local Pauli strings and the orthogo-
nal operator pool), showing that both pools give very
similar performance.

APPENDIX B: PROPERTIES OF COVARIANCES

1. Proof of Lemma 2: Smooth covariance functions

Let us prove that the covariance functions are smooth
functions of the parameters θ of the variational quantum
state jψðθÞi. In particular, let us expand our expression
from Eq. (6) as

fkðθÞ¼hψðθÞjOkHjψðθÞi−hψðθÞjOkjψðθÞihψðθÞjHjψðθÞi
¼AreðθÞþiAimðθÞ−BðθÞCðθÞ; ðB1Þ

which we rewrite in terms of four expectation values of four
different Hermitian operators via using the real and
imaginary parts as in Eq. (4) as

ARe ≔
�
1

2
fOk;Hg

�
; AIm ≔

�
−
i
2
½Ok;H�

�
;

B ≔ hOki; C ≔ hHi; ðB2Þ

where we use h·i to denote the expected value with respect
to the parametrized quantum state ψðθÞ and we drop the
dependence on θ for ease of notation. Indeed, above in
Eq. (B1), all terms are expected values of Hermitian
operators.
It suffices to show that the expectation value of any

Hermitian observableO ∈ Cd×d is a smooth function of the
circuit parameters as

hOiðθÞ ¼ hψðθÞjOjψðθÞi ¼ h0jU†ðθÞOUðθÞj0i: ðB3Þ

Indeed, the Ansatz circuit is by definition [via Eq. (5)] a
smooth mapping as UðθÞ ∈ SUð2NÞ, and, thus, hOiðθÞ is a
smooth function of the parameters for any O.

2. Proof of Corollary 2: Trigonometric polynomials

Given the specific but pivotal scenario when every
parametrized gate in the Ansatz circuit is a Pauli gate, as
in the present work as illustrated in Fig. 11, Ref. [31]
establishes the following. The expected value of any
Hermitian observable is a trigonometric polynomial of
the form

hOiðθÞ ¼
X3ν
j¼1

cjTjðθÞ;

where cj ∈ R are real coefficients that depend on O
and TjðθÞ are trigonometric monomials as products
TjðθÞ ∈

Q
ν
n¼1faðθnÞ; bðθnÞ; cðθnÞg of single-variate trigo-

nometric functions [87], for example, bðθ1Þ
Q

ν
n¼2 aðθnÞ.
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FIG. 10. Performance of recompiling the parameters of a
2-layer unitary on 14 qubits. Plot shows the minimum infidelity
reached over 3 runs of 20 iterations of root finding with the ratio
of constraints to ansatz parameters ν, for two different choices of
operator pool with shot noise equivalent to taking 105 shots. Blue
for orthogonal pool and orange for the set of all 3-local Pauli
strings. Fits shown are of the form 1 − Fmin ¼ aðNc=νÞ−b þ c.

Rx

Rx

Rx

Rx

Rx

Rx

Rz

Rz

Rz

Rz

Rz

Rz

Ry

Ry

Ry

Ry

Ry

Ry

Rz

Rz Rz

Rz

Rx

Rz

Rz

Rx

Ry

Rz

Rz

Rx

Ry

Rz

Rz

Rx

Ry

Rz

Rz

Rx

Rx

Ry

Rz

Rz

Rx

Ry

Ry

Rz

Rz

Rx

Ry

Rz

Rz

Rx

Ry

Rz

Rz

Rx

Ry

Rx

Rx

Ry

Ry

Ry

FIG. 11. One layer of the hardware-efficient Ansatz used in
numerics for six qubits.
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The single-variate functions are aðθÞ≔ ð1þ cos½θ�Þ=2,
bðθÞ≔ sin½θ�=2, and cðθÞ ≔ ð1 − cos½θ�Þ=2. Given in
Eq. (B2) all four terms must be of this form, we obtain
the expression for the covariances via Eq. (B1) as

fkðθÞ¼
X3ν
j¼1

c̃jTjðθÞ−
X3ν
j;l¼1

c0jc
00
l TjðθÞTlðθÞ¼

X32ν
j¼1

CjT jðθÞ;

where c̃j ∈ C and c0j; c
00
j ∈ R are coefficients that

depend on the index k. Indeed, here, TjðθÞTlðθÞ are also
trigonometric monomials, and in the last equation we
denote these as T j ∈ ½Qν

n¼1faðθnÞ; bðθnÞ; cðθnÞg�2 with
prefactors Cj ∈ C.

3. Experimentally estimating covariances

Let us first compute covariances assuming the
Hamiltonian H ¼ P

r
a¼1 haHa is given in terms of

Pauli stringsHa ∈ fId2; X; Y; Zg⊗N . The covariances fk ¼
hOk;Hiψ ¼ Are þ iAim − BC are completely determined
by the expected values from Eq. (B2) of Hermitian
operators. We can significantly simplify these when Ok
and Ha are Pauli strings as

Are ¼
Xr
a¼1

ha

�
1

2
fOk;Hag

�
¼

Xr
a¼1

hahPkai; ðB4Þ

Aim ¼
Xr
a¼1

ha

�
−
i
2
½Ok;Ha�

�
¼

Xr

a¼1

hahQkai; ðB5Þ

where indeed Pka;Qka ∈ �fId2; X; Y; Zg⊗N are Hermitian
Pauli strings given any two Pauli strings Ok and Ha either
commute or anticommute and, thus,

1

2
fOk;Hag

¼
�
0; ifOk andHa anticommute;

Pka∈�fId2;X;Y;Zg⊗N otherwise;

and similarly for the imaginary part

i
2
½Ok;Ha�

¼
�
0; if Ok andHa commute;

Qka ∈�fId2;X;Y;Zg⊗N; otherwise:

Here, the particular Pauli strings Pka and Qka and their
signs� can be determined straightforwardly and efficiently
from the indexes k; a ∈ f0; 1; 2; 3gN using the algebra of
Pauli matrices, i.e., the Pauli group. We, therefore, con-
clude that the covariances can be computed in terms of only
expected values of Hermitian Pauli strings as

fk ¼
Xr

a¼1

haðhPkai þ ihQkai þ hHaihOkiÞ: ðB6Þ

We need to estimate overall 3r expected values of Pauli
strings to estimate a covariance fk given Pka ¼ 0 when
Qka ≠ 0 and vice versa.

APPENDIX C: PROPERTIES AND
APPLICATIONS OF THE JACOBIAN

1. Computing the Jacobian

We consider the covariances fkðθÞ with respect to Pauli
stringsOk ∈ P in our operator pool as defined in Eq. (6) for
a fixed Hamiltonian H ¼ P

r
a¼1 haHa. Recall that the

Jacobian is defined in terms of the partial derivatives
Jkn ≔ ∂nfkðθÞ. We can explicitly compute these derivatives
by recalling that the covariances can be expressed in terms
of expected values of Pauli strings via Eq. (B6) as

Jkn ¼
Xr
a¼1

ha

�
∂hPkai
∂θn

þ i
∂hQkai
∂θn

þ hOki
∂hHai
∂θn

þ hHai
∂hOki
∂θn

�
; ðC1Þ

wherePka,Qka,Ha, andOk are Pauli strings. Above,we can
use well-established techniques for experimentally estimat-
ing derivatives of general expected values for a variety of
Ansatz constructions and gate sets [9–11]. Furthermore, in
Sec. III, we focus on the typical practical scenario when the
Ansatz circuit consists of Pauli gates, and, thus, we can use
parameter-shift rules [55] for computing derivatives—while
generalizations in Refs. [88,89] are also applicable—as
linear combinations of two expected values as

∂hOiðθÞ
∂θn

¼ 1

2
hOiðθ þ vnπ=2Þ −

1

2
hOiðθ − vnπ=2Þ;

for anyHermitian observableO, where vn is the nth standard
Euclidean basis vector. As such, we can compute all
derivatives in Eq. (C1) by applying parameter-shift rules.

2. Computing the Jacobian using classical shadows

Let us now describe an explicit measurement protocol in
the specific case when our Hamiltonian is local and the
operator pool P ¼ fOkgNc

k¼1 is also local as in Statement 1,
and, thus, we can use classical shadows to determine a large
number M of local Pauli-string expected values. We then
compute the large Jacobian by estimating Pauli strings at
different shifted circuit parameters via the parameter-shift
rules for computing partial derivatives.
Lemma 6.—Given an operator pool P ¼ fOkgNc

k¼1 and a
problem Hamiltonian H ¼ P

r
a¼1 haHa in terms of local

Pauli strings Ok and Ha and a variational circuit with ν
parametrized Pauli gates, we can determine the Jacobian
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J ∈ CNc×ν by applying the classical shadow procedure
2νþ 1 times at different circuit-parameter configurations
with each estimating M ≤ 3rNc Pauli expected values. In
contrast, determining a gradient vector for gradient descent
requires 2ν applications of the classical shadow procedure
each with M ¼ r.
Proof.—First, at parameters θ, we determine overall

M ¼ rþ Nc expected values as hOki and hHai from
Eq. (C1) using a single application of the classical shadow
procedure. Second, we estimate derivatives of expected
values (∂hHai=∂θn, ∂hOki=∂θn, and either ∂hPkai=∂θn or
ið∂hQkai=∂θnÞ) via the above parameter-shift rule. We
determine all derivatives with respect to a fixed parameter
θn by estimating Pauli strings at parameters θ þ vnπ=2 as
well as at parameters θ − vnπ=2 by two applications of the
classical shadow procedure each with M ≤ rþ Nc þ rNc.
Thus, determining all derivatives requires 2ν applications
of the classical shadow. ▪

3. Computing the variance gradient from the Jacobian

The gradient of the variance can be computed via Lemma
1 when the operator pool is P ¼ fHagra¼1 as

∂nσ
2 ¼ ∂n

�Xr
a¼1

hafa

�
¼

Xr
k¼1

ha∂nfaðψÞ ¼ ½J�anha ¼ J⊺h:

This confirms that the gradient of the variance is deter-
mined by our Jacobian.
We can also compute the gradient of the vector norm

kfk2 ¼ Prp
k¼1 jfkj2. When the operator pool is larger than

the problem Hamiltonian terms, then we compute the
gradient of the norm of the covariance vector

∂nkfk2 ¼ ∂n

Xrp
k¼1

fkf�k ¼
Xrp
k¼1

½ð∂nfkÞf�k þ fkð∂nf�kÞ�

¼
Xrp
k¼1

½Jknf�k þ fkJ�kn� ¼ 2Re½J⊺f�� ¼ 2J̃⊺f̃;

where in J̃ and in f̃ we stack real and imaginary parts on top
of each other.

4. Computing the update rule classically

We need to first stack real and imaginary parts on top to
solve for only real parameter updates. In particular, wewant
to solve the linear system of equations JΔθ ¼ f. Here, we
estimate both J and f with a quantum computer, and we
want to compute the parameter update Δθ. If we merely
compute the pseudoinverse of J and apply it as J−1f, then
the resulting solution vector Δθ is generally complex.
However, we require that our parameter update be real
asΔθ ∈ R, which we enforce via the following set of linear
equations:

Re½J�Δθ ¼ Re½f� and Im½J�Δθ ¼ Im½f�:

We can simultaneously solve these systems of equations by
stacking real and imaginary parts J̃ ¼ ðRe½J�; Im½J�ÞT and
f̃ ¼ ðRe½f�; Im½f�ÞT on top of each other, and this guar-

antees that the solution is real J̃−1f̃ ∈ R, since J̃ and f̃ are
real matrices and vectors, respectively.
We invert the Jacobian via the usual damped, regularized

inverse

J̃−1 ≔ ½J̃⊺J̃þ λId�−1J̃⊺:

Here, λ is a regularization parameter that we dynamically
set by choosing λ ¼ 0.0001 × 2i, where i is incremented
from 0 until the condition kfðθtÞk < kfðθt−1Þk is met; i.e.,
the norm of the covariance vector decreases from the
previous iteration. If the step Δθ to be taken for any
individual parameter is too large jΔθij > 1, the update step
is rescaled to normalize this value to 1. This prevents our
algorithm from taking overly large steps. For the selection
of constraints, Nc constraints are selected randomly from
the chosen operator pool at every iteration.
We implement a line search algorithm whereby we

compute the update rule Δθ and compute the value of
the vector norm kfðθÞk at parameter values θ ¼ θt þ κΔθ
in small increments in κ. However, it is observed empiri-
cally that a step close to the canonical choice κ ¼ −1 is
almost always chosen, so line search is not used in the
numerics in this work.

5. Existence of a shot-noise floor

We extend our example in Sec. III A and consider noisy
entries of the Jacobian and the covariance vector as Jk þ ϵk
and fkðθÞ þ ηk for random variables ϵk and ηk due to shot
noise (and possibly other sources of random errors). The
solution to our linear equation in Eq. (11) is, thus, modified
as

Δθ ≈ −
P

kJkfkðθÞP
kJ

2
k

−
P

kJkηk þ fkðθÞϵkP
kJ

2
k

;

where we drop all higher-order terms as products ϵkηk as
well as consider the approximation ½Pk J

2
k þOðϵkÞ�−1 ¼

½Pk J
2
k�−1 þOðϵk=½

P
k J

2
k�2Þ, where we also drop the

term Oðϵk=½
P

k J
2
k�2Þ.

Let us now consider the error propagation to the solution
Δθ by considering the linear error propagation formula

Var½Δθ� ≈
P

kJ
2
kVar½ηk� þ fkðθÞ2Var½ϵk�P

kJ
2
k

≤ E2

�
1þ jfkðθÞj2P

kJ
2
k

�
;
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where we simplify the formula by bounding the variance of
each Var½ηk� ≤ E2 and Var½ϵk� ≤ E2; i.e., this is indeed the
case in practice where we determine each covariance and
Jacobian entry to the same guaranteed precision E using
classical shadows. Indeed, we see that, as we approach an
eigenstate, jfkðθÞj2 → 0, and, thus, the error that propa-
gates into our solution is bounded by Var½Δθ� ≤ E2 by the
worst-case error of a single Jacobian or vector entry. This
is a very powerful averaging of random errors: By
increasing the number of constraints, we gain increasingly
more information about the root; however, the random error
that propagates into our solution does not scale with the
number of constraints.

6. Time complexity of classically solving the linear
system of equations

Let us now derive the time complexity of computing the
regularized inverse as ðJ̃⊺J̃þ λRÞ−1J̃⊺f̃ of the Jacobian J̃ ∈
R2Nc×ν in which we stack real and imaginary parts on top of
each other and R is a regularization matrix. This compu-
tation can be broken up into four steps.

(i) First, compute the square matrix A ≔ J̃⊺J̃þ λR as
the product of two nonsquare matrices as
½A�mn ¼ λRmn þ

P2Nc
k¼1½J̃�mk½J̃�kn. Computing all ν2

entries of A requires 2ν2Nc þ ν2 operations.
(ii) Second, we compute the inverse of A which requires

between Oðν2.373Þ and Oðν3Þ operations, depending
on the algorithm.

(iii) Third, compute the matrix-vector product v ≔ J̃⊺f̃ as
½J̃⊺f̃�n ¼

P2Nc
k¼1½J̃nk�f̃k, which requires overall 2νNc

operations.
(iv) Finally, we compute the matrix-vector product Av,

which requires ν2 operations.
Given Nc ≫ ν, the overall computation time is domi-

nated by the first step as computing A, and, thus, the time
complexity is t ∈ Oðν2NcÞ, which is merely linear in the
dominant dimension Nc. We confirm this theoretical
scaling in Fig. 5 and conclude that the absolute times
are very reasonable; i.e., we can compute the update rule in
a matter of minutes for up to a very large number of
covariances Nc ¼ 106. Of course, the computation can be
heavily parallelized and can also be performed in a
distributed-memory model with negligible communication
between nodes. As such, in principle, one could straight-
forwardly use a very large number of covariances Nc ≈ 108

that would still require reasonable classical computational
resources.

APPENDIX D: FURTHER NUMERICAL
SIMULATIONS

1. Comparison with VQE for the spin-chain problem

While in Sec. IV B we focus on practical applications of
CoVaR, here we demonstrate a comparison of convergence

speed between gradient descent and CoVaR. In particular,
in Fig. 12, we compare the speed of convergence to the
ground state of the spin chain, using an identical Ansatz and
hyperparameters as those used for runs of CoVaR in Fig. 8.

2. Demonstration of escaping local traps

As we note in the main text, even when gradient descent
is stuck in a local trap due to the gradient of the energy
surface vanishing, CoVaR can be used to navigate out from
such a trap, given CoVaR is not an energy minimizer and
may yield a nonzero step—especially that constraints that
determine a CoVaR step are generated randomly at every
iteration. We numerically demonstrate this in Fig. 13 using
our spin-chain problem, with all parameters the same
as those used for Fig. 8. The local traps are found using
1000 iterations of gradient descent with an adaptive step
size and achieve a mean energy difference from the ground
state of ΔE ¼ 0.019. CoVaR is then run for 100 further
iterations and is able to achieve a mean energy difference
of ΔE ¼ 1.8 × 10−4.

3. Convergence of root finding to eigenstates

In this section, we further analyze the property of CoVaR
that it converges to eigenstates that have a dominant
contribution to the initial state as reported in Fig. 9. For
this reason, in Fig. 14, we perform simulations of CoVaR
optimizations with initial states of increasing expected
energy starting near the ground state.

10–4
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10–2

10–1

0 20 40 60 80
Iteration

FIG. 12. Comparison of the performance of CoVaR to gradient
descent when starting from a point close to the ground state of the
ten-qubit spin chain, analogous to Fig. 7(c) for recompilation.
This initialization is done by randomly perturbing the parameters
of a state close to the ground state. Average initial fidelity to the
ground state is F ¼ 80� 4%. Mean and standard deviation are
shown for 20 runs of gradient descent and the 16=20 runs of
CoVaR that converge to the ground state rather than one of the
excited states. The Ansatz can only approximate the ground state
of the spin model; the grid line at ΔE ≈ 1.6 × 10−4 marks the
minimum achieved energy as the limit of precision. One can
further improve ΔE by only increasing the Ansatz depth.
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Recall that the expected value of the energy can be
written as E ¼ hψ jHjψi ¼ P

k Ekpk, where Ek are eige-
nenergies (eigenvalues) of H and pk are the probabilities
(fidelity) that jψi is in the kth eigenstate of H. Given a
gapped Hamiltonian with energies E0 < E1 < E2…,
quantum states with a low energy must necessarily have
a high probability (fidelity) to be in the lowest-lying
eigenstates. As such, an initial state that has expected
energy E ¼ E0p0 þ E1p1 þ � � � close to the ground-state
energy as E ≈ E0 guarantees the high probability (fidelity)
p0 ≈ 1. Indeed, CoVaR nearly always converges to the
ground state in Fig. 14 (bars on the left) when E ≈ E0 and,
thus, p0 ≈ 1.
On the other hand, starting CoVaR from initial states that

have higher expected energies than E0 causes CoVaR to not
always converge to the ground state due to the necessarily
increased populations of excited states: Fig. 14 (bars in the
middle) features instances where CoVaR does not converge
to the ground state; however, it then nearly always con-
verges to the first excited state. For example, when no
higher eigenstates are populated, the probability of the first
excited state is p1 ¼ 1 − p0. Interestingly, we find a nearly
linear relationship between the probability of the eigen-
state, such as p0, and the percentage when CoVaR con-
verges to that state in Fig. 9—and note that this relationship
would be exactly linear for the case of fault-tolerant phase-
estimation protocols. As we keep increasing the energy,
higher excited states start to contribute as in Fig. 14 (bars on
the right), and, thus, CoVaR may also converge to those
eigenstates.

4. Scaling of performance

We perform simulations to assess the scaling of the
performance of CoVaR, for both recompilation and spin-
chain problems, and plot the results in Fig. 15. For the
recompilation problem, we know by construction the
parameters θ⋆ of the ground state and the circuit depth
is constant due to a fixed number (two) of Ansatz layers for
all qubit counts N. For the spin-chain problem, we first
search for the solution at each qubit numberN using natural
gradient descent followed by CoVaR. The number of
Ansatz layers is then increased until a desired precision
with respect to the ground state is achieved (here, an
infidelity of 10−5), thus obtaining a series of solution
parameters θ⋆ at every qubit count.
These solution parameters are perturbed to obtain initial

states for CoVaR with a desired initial overlap with the
ground state (50% for recompilation and 80% for the spin
chain to suppress convergence to excited states). Of course,
such states could equally well have been created through
alternative initialization methods, including performing an
initial period of gradient or natural gradient descent.
Finally, CoVaR is run for a fixed number 20 of iterations
and statistics of the final achieved fidelity are plotted
in Fig. 15.
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FIG. 13. Ten examples of CoVaR escaping from practical local
traps demonstrated on the same ten-qubit spin-chain problem as
in Fig. 8. Gradient descent (orange) for 1000 adaptive size steps
to reach local minima, followed by 100 iterations of CoVaR
(blue). Several steps of CoVaR are sometimes required before
finding a set of operators that produce a step that escapes the
minimum. Mean energy differences from the ground state are
ΔElocalmin ¼ 0.019 and ΔECoVaR ¼ 1.8 × 10−4. The last step of
each run of gradient descent has an energy improvement below
2 × 10−5, indicating being stuck in a local trap. Note that a single
iteration of CoVaR does not necessarily decrease the energy,
given CoVaR is not an energy minimizer as is demonstrated here
but is also visible in Fig. 8. Indeed, escaping from a local trap of
the energy surface with CoVaR may result in an intermediate
increase of the energy.
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FIG. 14. Bar chart showing the distributions of states which
CoVaR converges to for the runs in Fig. 9 showing the probability
of converging to the ground state with initial overlap (conver-
gence being an energy difference of less than 10−3 in this case) as
a function of its initialization energy. Each bar corresponds to one
point in Fig. 9, but there are two additional points on the right of
the figure.
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APPENDIX E: DETAILS OF NUMERICAL
SIMULATIONS

We perform all state vector simulations using the open-
source tools QuEST [90] and its high-level Mathematica-
based interface QuESTlink [85]. Shot noise is simulated by
adding Gaussian noise of standard deviation 1=

ffiffiffiffiffiffi
Ns

p
to

computed matrix and vector elements. Numerics for
recompilation and the spin chain are both performed using
a hardware-efficient Ansatz of the form in Fig. 11.

1. Effect of constraint number on performance

Data for Figs. 3 and 6 are obtained by simulating a 14-
qubit parameter rediscovery problem using two layers of
the Ansatz in Fig. 11. The initial states are initialized close
to the solution by randomly perturbing the solution
parameters resulting in an initial average fidelity of
F ¼ 46� 7%. Fits in these figures are of the form
1 − Fmin ¼ aðNc=νÞ−b þ c, and we report fitted parame-
ters in Table I. The orange line in Fig. 10 is identical to the
orange line in Fig. 6.
The noisy simulations are performed assuming the

following simplified noise model. Recall that global depo-
larizing noise is a relatively good approximation in com-
plex quantum circuits and becomes near exact for random
circuits; refer for rigorous bounds to Ref. [91]. This error
channel acts on any density matrix via the Kraus map
DðρÞ ¼ Fρþ ð1 − FÞρmax, where ρmax is the maximally
mixed state, i.e., white noise, and F is the fidelity. The
expected value of any traceless Hermitian operator O, such
as Pauli strings as relevant in the present work, merely gets

attenuated as hOi ¼ Tr½Oρ� ¼ FhOiid where hOiid is the
ideal, noiseless expected value.
In practice, this error model does not capture more subtle

physical processes that corrupt the expected value meas-
urement. Nevertheless, it is shown in Ref. [48] that nearly
all typical error models used in practice admit the decom-
position Fρþ ð1 − FÞρerr, where ρerr ≈ ρmax is an error
density matrix that we do not expect to be exactly the
maximally mixed state, albeit in practice it is relatively
close to the maximally mixed state via its vanishing
commutator norm from Ref. [48]. In order to go beyond
global depolarization, but without resorting to computa-
tionally infeasible explicit noise simulations, we compute
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FIG. 15. Scaling results showing the infidelity with respect to the ground state of the state achieved after 20 steps of CoVaR from an
initial state of F init overlap with the ground state. The red curve and blue shaded region show the median and quartiles of ten runs of
CoVaR for each N, and the dotted lines show the median and quartiles of the data as a whole. Left: simulations for our recompilation
problem from Sec. IVA using a constant initial fidelity F init ¼ 50% and a constant Ansatz depth of two layers. Right: simulations for the
spin-chain problem using an increasing Ansatz depth that can estimate the ground state to at least an infidelity of 10−5. An initial overlap
of F init ¼ 80% is used to suppress convergence to excited states, and only the runs that do converge to the ground state (and not to an
excited state) are included in the present statistics. Compared to our recompilation simulations (left) using a constant Ansatz depth, here
the performance may appear to be decreasing slightly as we increase the number of qubits—which would be explained by the increasing
depth (polylogarithmically in Sec. III A) of the Ansatz circuit.

TABLE I. In our numerical simulations, we investigate the
effect of increasing the number Nc of covariances. We fit a
function to the fidelity achieved by CoVaR of the form
1 − F ¼ aðNc=νÞ−b þ c. Fits to the worst (Max) and best
(Min) of three runs of CoVaR are reported.

Fitted data Type a b c

Fig. 3 noise-free Max 15.6 3.00 7 × 10−4

Min 5.62 3.23 0.0

Fig. 6 shot noise Max 11.3 3.76 3 × 10−4

Min 0.0259 1.68 1 × 10−4

Fig. 6 circuit noise Max 7.80 3.09 2 × 10−4

Min 0.35 2.24 0.0

Fig. 10 orth. pool Max 15.6 2.99 7 × 10−4

Min 0.15 2.51 0.0
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the noisy expected value as hOki ¼ Tr½Okρ� ¼ FhOkiid þ
ð1 − FÞTr½Okρerr� by approximating the term Tr½Okρerr� ∼
N ð0; σ2Þ using random Gaussian numbers. Here, we set
σ ¼ 0.01, which is determined by the distance of ρerr
from the maximally mixed state which we simulate with
random Gaussian numbers that are unique to each observ-
able indexed by k. Furthermore, we choose the fidelity
F ¼ 0.9 ≈ ð1 − ϵ1Þν1ð1 − ϵ2Þν2 , such that it approximates
the performance of a typical, state-of-the-art experimental
device with two-qubit error rates ϵ2 ¼ 0.001 and single-
qubit error rates 4 times smaller ϵ1 ¼ 0.25ϵ2, given in our
circuit we have ν1 ¼ 196 and ν2 ¼ 52 single- and two-
qubit gates, respectively.

2. Recompilation problem in Fig. 7

The numerics for recompilation in Fig. 7(c) are done on a
ten-qubit parameter rediscovery problem for two layers of
hardware-efficient Ansätze (ν ¼ 88). Gradient descent is
performed with a learning rate η ¼ 0.1 for both VQE and
V-VQE.

3. Spin-chain simulations

The Hamiltonian in Eq. (13) is used with parameters
J ¼ 0.1 and ci chosen randomly between −1 and 1. For the
spin-chain simulations in Fig. 8, imaginary time evolution
is used from a random initialisation until an energy of E ¼
−5.9 is reached, with parameters θimag. These parameters
are then disturbed by jΔθkj ≤ 0.05 to produce seven low-
energy states. CoVaR is then run from these initial states for
40 iterations. Imaginary time evolution is also continued
from θimag until convergence and reaches an energy differ-
ence to the ground state of ΔE ¼ 0.012 compared to the
4 × 10−4 of CoVaR.
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