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We use tensor network techniques to obtain high-order perturbative diagrammatic expansions for the
quantum many-body problem at very high precision. The approach is based on a tensor train parsimonious
representation of the sum of all Feynman diagrams, obtained in a controlled and accurate way with the
tensor cross interpolation algorithm. It yields the full time evolution of physical quantities in the presence of
any arbitrary time-dependent interaction. Our benchmarks on the Anderson quantum impurity problem,
within the real-time nonequilibrium Schwinger-Keldysh formalism, demonstrate that this technique
supersedes diagrammatic quantum Monte Carlo by orders of magnitude in precision and speed, with
convergence rates 1=N2 or faster, where N is the number of function evaluations. The method also works in
parameter regimes characterized by strongly oscillatory integrals in high dimension, which suffer from a
catastrophic sign problem in quantum Monte Carlo calculations. Finally, we also present two exploratory
studies showing that the technique generalizes to more complex situations: a double quantum dot and a
single impurity embedded in a two-dimensional lattice.
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I. INTRODUCTION

Many important problems in physics can be formally
solved by expressing physical quantities as sums or
integrals in high-dimensional spaces, e.g., equilibrium
partition functions in condensed matter and statistical
physics or high-order perturbative diagrammatic expan-
sions in field theories and in the quantum many-body
problem. Calculating integrals in high dimensions is,
however, notoriously difficult. Quantum Monte Carlo algo-
rithms have emerged as a class of numerical methods of
choice for such problems and have been tremendously
successful in many situations [1–5]. They have, never-
theless, well-known major shortcomings. First, as sampling

methods, they can become exponentially inefficient due to
massive cancellations, a set of related phenomena famously
known as the “sign problem,” which typically becomes
exponentially more severe at low temperatures and for large
systems. Second, as stochastic methods, they have an
intrinsically slow convergence (as 1=

ffiffiffiffi
N

p
, where N is the

number of independent samples), which can severely limit
the accuracy of calculations. In fact, overcoming the
apparent exponential complexity of the fermionic quantum
many-body problem is one of the main motivations for the
development of full-scale quantum computers.
Parsimonious (or compressed) representations of high-

dimensional functions based on tensor trains, and more
generally on a low-rank tensor network (TN) [6–11], offer
another route to compute such large-dimensional integrals.
Indeed, they provide an effective separation of variables
that reduces the calculation of high-dimensional integrals to
the evaluation of a set of one-dimensional integrals, a much
simpler problem [7]. The tensor cross interpolation (TCI)
formula [12–14] is an algorithmically efficient way to
obtain such a representation, in time scaling polynomially
with the dimension. It is a generalization to tensors of cross
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interpolation for matrices [15–17] and is closely related to
the interpolative decomposition [18].
The subject of this article is the replacement of

Monte Carlo sampling by tensor network-based algorithms
such as TCI in some many-body algorithms, in particular,
diagrammatic quantumMonte Carlo.We emphasize that this
use of tensor networks is radically different from their
original application in the density matrix renormalization
group (DMRG) algorithm [19] and its descendants, where it
is used as a variational ansatz for the many-body wave
function. Here, we use tensor network representations for the
many-body correlation functions arising in the context of
Feynman diagram expansions. Like for tensor train appli-
cations in machine learning, e.g., [20], we use tensor trains
(also known asmatrix product states) to learn, in a controlled
manner, the function representing the sum of Feynman
diagrams.
Diagrammatic quantumMonte Carlo methods, i.e., high-

order diagrammatic perturbation expansions in powers of
the interaction strength, are natural candidates for tensor
network techniques. Despite their perturbative nature, when
properly combined with resummation techniques and
judiciously chosen (field-theory) counterterms [21–34],
diagrammatic expansions have been successfully used to
explore physics far beyond weak coupling. This includes
the Kondo regime of a quantum dot [29,30,33,35], the
pseudogap regime of the Hubbard model [36], and low-
density electron gas [28,34]. They are particularly useful in
nonequilibrium settings [25,30,33], for which there are
very few accurate methods available. Computing the
expansion coefficient at order n involves, at minimum,
computing n-dimensional integrals over time, as well
integrals or sums over other dimensions, and the different
Feynman diagrams themselves. Since the formulation of
perturbation theory as a stochastic sampling over n!
Feynman diagrams [21], there has been an effort to
reformulate the problem and develop new algorithms for
the coefficients in the perturbation series [25,27,33].
Despite major advances, the integration techniques used
thus far have been variations of sampling from a non-
negative probability distribution. These techniques inevi-
tably suffer from a sign problem for very oscillatory
integrals. Rapidly oscillating integrals are encountered
especially often in the real-time Schwinger-Keldysh for-
malism [25,30,33]. We note that, among the quantum
Monte Carlo algorithms, diagrammatic Monte Carlo typ-
ically manipulates the integrals with lowest dimensions,
since the complexity of the calculation of the sum of
Feynman diagrams grows exponentially with n [typically
asOð2nÞ] [25]. Hence, they are natural first candidates for a
tensor network approach to integration.
In this paper, we explore the use of TCI for real-time

nonequilibrium Schwinger-Keldysh perturbation expan-
sions up to high order n ∼ 30 and high precision. We
apply the tensor decomposition to the bare Keldysh
n-body correlators appearing in Feynman integrals. We

demonstrate very fast convergence, as fast as Oð1=N2Þ in
the number N of integration points. The final precision is
limited in practice only by machine precision and rounding
errors, something usually out of reach in Monte Carlo
calculations.
The main observation underlying our results is that the

n-body Keldysh correlators we consider are well appro-
ximated by a low-rank tensor train when viewed as
functions of n time differences. We refer to this property
as “ϵ-factorizability.” The ϵ-factorizability property yields a
separation of variables which reduces the high-dimensional
integrals to a sequence of one-dimensional integrals which
can be computed rapidly. Crucially, this ϵ-factorizability
persists even in parameter regimes in which the integrands
are highly oscillatory. This renders the approach largely
immune to the sign problem,which is reduced to the problem
of integrating oscillatory functions of a single variable.
Finally, the tensor train representation of the n-body corre-
lator directly provides the full time dependence of the
observable for an arbitrary time-dependent interaction cou-
pling strength with a costless postprocessing step.
The outline of this paper is as follows. In Sec. II, we

summarize our approach and present some illustrative
numerical results showcasing its efficiency. Section III
reviews the TCI method and can be read independently
from the rest of the article. Section IVA gives a concise
introduction to the many-body Keldysh formalism and the
notations used to compute high-order perturbative expan-
sions. In Sec. V, we adapt the TCI method in Sec. III to
calculate the high-order expansion presented in Sec. IVA.
We refer to this technique as tensor train diagrammatics
(TTD). Section VI presents some numerical results on TTD
for calculating properties of the single-impurity Anderson
model (SIAM). Section VII shows results beyond SIAM
for an impurity embedded in a 2D lattice and a double
quantum dot. Section VIII contains concluding remarks.

II. OVERVIEW OF THE MAIN RESULTS

Since TCI and the Wick determinant formalism for high-
order expansions might be unfamiliar to some readers, we
begin with a brief motivating overview, including a sample
of our main results. Most technical details are postponed
until later sections.
We consider a Hamiltonian of the form

H ¼ H0 þUHint ð1Þ

with interaction term U and a physical observable QðUÞ,
e.g., the charge in a simple quantum impurity model in the
steady state. It has a perturbative expansion

QðUÞ ¼
X
n

QnUn ð2Þ

with
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Qn ¼
Z

dv1…dvnQ̃nðv1;…; ; vnÞ; ð3Þ

where v are time differences. The Schwinger-Keldysh
formalism provides explicit expressions for Q̃n in terms
of the propagators of H0. The difficulty lies in the
calculation of the n-dimensional integral (3).
Our main result is a compressed approximate represen-

tation of Q̃n as a matrix product state (MPS):

Q̃nðv1;…; vnÞ ≈M1ðv1Þ � � �MnðvnÞ; ð4Þ

where M are matrices of maximal dimension χ, the so-
called bond dimension. As the variables are now separated,
we have

Qn ≈
�Z

dv1M1ðv1Þ
�
� � �

�Z
dvnMnðvnÞ

�
: ð5Þ

The central point of this paper is to demonstrate the
existence of a highly accurate tensor interpolation of the
form (4) for the bare n-body correlators involved in
the perturbative expansions at order n, with a moderate
bond dimension χ which does not grow significantly with
n. This tensor representation can be obtained from Oðnχ2Þ
evaluations of Q̃n using the TCI algorithm, even though
the integration volume grows exponentially with n.
Furthermore, the approximation is systematically con-
trolled by χ. Using this MPS form, the complexity of
computing the n-dimensional integral becomes Oðndχ2Þ
rather than OðdnÞ, where d is the number of discretization
points (or basis functions) in each dimension. These
complexities are expressed in the number of evaluations
of the integrand Q̃nðviÞ. To obtain the total complexity, a
factor 2n must be included to account for the complexity of
a single evaluation of Q̃nðviÞ in the Keldysh formalism.
The quality of the tensor interpolation is illustrated in

Fig. 1(a), for the coefficient Qn of the perturbative
expansion of the charge Q of the Anderson quantum
impurity model. We present Q̃n on a path in the
n-dimensional integration domain (orange line) and its
MPS approximation (4) (blue dots) for χ ¼ 30. In Fig. 1(b),
we show the convergence of the integral Q19 compared to
the exact Bethe ansatz solution, as a function of the number
N of evaluations of the integrand Q̃19. We obtain an
unprecedented Oð1=N2Þ convergence down to a relative
error level of 10−7.
Since it is based on a full interpolation of the correlators,

the TTD method allows one to compute, at no extra cost,
(i) the full time dependency of QnðtÞ after the interaction
quench at t ¼ 0 and (ii) the same for any time-dependent
coupling constant UðtÞ [by multiplying by UðtÞ before
integrating]. This is discussed in detail in Sec. VI B.

The TTD has two fundamental differences with DMRG
and its higher-dimensional generalizations. First, the tensor
decomposition applies to n-body correlators instead of
many-body wave functions. Second, in DMRG, the
unknown wave function is represented by a TN ansatz
which is variationally optimized. Here, the function Q̃n is
known (it is the input of the problem). We compress it in
order to avoid an exponential integration cost. TCI belongs
to the class of “active machine learning” algorithms: The
tensor approximation is constructed by evaluating an
n-body correlator and finding the region in its n-dimensional
space with the largest approximation error.
The TTD has two major advantages compared to

diagrammatic quantum Monte Carlo. First, we observe a
faster convergence rate of Oð1=N2Þ instead of Oð1= ffiffiffiffi

N
p Þ.

Second, the ϵ-factorization is completely unrelated to
the average sign of the integral, as illustrated in Figs. 1(c)
and 1(d). The average sign η10 [Fig. 1(c)] varies over 5
orders of magnitude as a function of one parameter of
the model (here, ϵd, the on-site energy of the Anderson
model), while the error of the factorization at fixed tensor
rank χ [Fig. 1(d)] is constant with ϵd. A small value of η
implies a major sign problem for diagrammatic
Monte Carlo—cf. Sec. V—whereas the TTD has no such

(a) (c)

(b) (d)

FIG. 1. Overview of the main results. (a) Slice of the corre-
sponding integrand Q̃10 (orange line) compared to the MPS
approximation (blue dots). The values of u2; u3;…; u10 are
arbitrarily fixed (vertical dashed lines). (b) Relative error of
the nth coefficient (for n ¼ 19) in the perturbative expansion of
the charge Q of the Anderson quantum impurity model (com-
pared with the exact Bethe ansatz solution) versus the number N
of evaluation of Q̃19. (c) Average sign defined as ηn ¼ Qn=

R jQ̃nj
for n ¼ 10 versus on-site energy ϵd. (d) Relative error of the rank-
50 MPS approximation [pivot error, as defined in Eq. (24),
divided by the value of the function Q̃n at the first pivot]
versus ϵd.
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problem. The limiting factors of TTD and Monte Carlo are,
therefore, completely different.
Finally, let us discuss the quasi-Monte-Carlo technique

whichwas recently introduced by some of the authors [33]. It
represents an intermediate step between Monte Carlo and
TTD, since it combines a (muchweaker) ϵ-factorizability for
the tails of Q̃n at large vwith a quasi-Monte-Carlo technique
to compute the Feynman integrals. While it produces
convergence as fast as 1=N in good cases, it is, in our
benchmarks,much less robust than theTTD. Furthermore, as
a (nonstochastic) sampling technique, it also suffers from a
sign problem when Q̃n is highly oscillatory.

III. TENSOR TRAIN CROSS INTERPOLATION

We start with a review of tensor cross interpolation. Most
of the material in this section is not original (see
Refs. [6,7,12–17]) except, to our knowledge, the environ-
ment-aware error function in Sec. III B 4. We present it here
in detail so that the article is self-contained. We also show
explicitly that most of the results initially derived for
matrices and tensors are directly generalizable to multidi-
mensional functions. The appendixes include explicit
proofs of the statements made here in the main text.
Note that, in this class of algorithm, the main difficulty
lies in the bookkeeping of the various slices of the tensor
held in memory. Hence, the choice of notation plays a
particularly important role.

A. Matrix cross interpolation

Given an M × N matrix A, the cross interpolation
technique (CI) yields an approximate rank χ factorization
of A. It is distinct from the truncated singular value decom-
position (SVD), in which one approximates A by its SVD
with all but the largest χ singular values set to zero. Although

the truncated SVDyields an optimal rank χ approximation of
A in the spectral norm, CI has the advantage that it may be
constructed by querying only a small subset of the entries of
A. CI is quasioptimal in the sense that its error is at most
Oðχ2Þ times the optimal one [37,38].
We begin by establishing our notation. Let I ¼

fi1; i2;…; iχg (respectively, J ¼ fj1; j2;…; jχg) denote
a list of rows (columns) of A, Ia ≡ ia its ath element,
and I ¼ f1; 2;…;Mg (J ¼ f1; 2;…; Ng) the list of the
indices of all rows (columns). Following the Python and
MATLAB convention, we denote by AðI ;J Þ the submatrix
of A comprised of the rows I and columns J ;
AðI ;J Þab ≡ AIa;J b

. In particular, AðI; JÞ ¼ A.
The matrix cross interpolation formula reads

A ¼ AðI; JÞ ≈ AðI;J ÞAðI ;J Þ−1AðI ;JÞ: ð6Þ

Equation (6) is illustrated graphically in Fig. 2. It has two
main properties:
(P1) It is an interpolation; i.e., it is exact for any i ∈ I or

j ∈ J . This can be straightforwardly checked from
the definition as, e.g., AðI ;J ÞAðI ;J Þ−1AðI ; JÞ ¼
AðI ; JÞ.

(P2) It is exact if the matrix A has rank χ (cf. Appendix B
for a simple proof).

The elements of the nonsingular submatrix AðI ;J Þ are
called the pivots and AðI ;J Þ the pivot matrix. The pivots
should be chosen to minimize the error in the appro-
ximation (6). There is an exponentially large number of
possible choices of pivot matrix, so it is impossible in
practice (for a large matrix A) to try all of them. However,
well-established heuristic algorithms exist which provide
good quality pivots, by maximizing the magnitude of the
determinant of the pivot matrix. This is known as the
maxvol principle (i.e., maximum volume) [15,17].

FIG. 2. Illustration of the CI of a matrix. The large red triangles indicate real pivots, and the smaller red triangles indicate automatically
generated pivots. The right-hand side contains only small subparts of the matrix.
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In this work, we need a generalization of the CI to the
continuum [16,18,37]. We refer to a real-valued function
Aðx; yÞ as ϵ-factorizable in the CI sense with finite rank χ if
it can be approximated with error ϵ as

Aðx; yÞ ≈
X
ab

Aðx; yaÞ½AðI ;J Þ−1�abAðxb; yÞ: ð7Þ

Here, I ¼ ðx1; x2;…; xχÞ and J ¼ ðy1; y2;…; yχÞ are
finite sets of x and y values. The CI (7) uses a finite
number 2χ of one-dimensional functions Aðx; yaÞ and
Aðxb; yÞ. Using implicit summation, we rewrite Eq. (7) as

Aðx; yÞ ≈ Aðx;J ÞAðI ;J Þ−1AðI ; yÞ: ð8Þ

The continuous version of the CI also has the properties
(P1) and (P2).
Integrating an ϵ-factorizable function is greatly simpli-

fied by its approximate separability of variables, as only
one-dimensional integrals need to be performed:

Z
dxdyAðx; yÞ ≈

�Z
dxAðx;J Þ

�

× AðI ;J Þ−1
�Z

dyAðI ; yÞ
�
: ð9Þ

The CI has other similar properties. For instance if the one-
dimensional slices are sufficiently well represented (i.e., a
good interpolant is built for each of them), then we can also

obtain an approximation of the gradient ∇⃗Aðx; yÞ, from
which one may perform optimization:

∂A
∂y

ðx; yÞ ≈ Aðx;J ÞAðI ;J Þ−1 ∂A
∂y

ðI ; yÞ: ð10Þ

For practical implementations, it is important to note that
evaluating Eq. (7) directly may be numerically unstable,
since for large values of χ the pivot matrix becomes almost
singular. An equivalent but stable evaluation method using
the QR decomposition is explained in Appendix B for
the TCI.

B. Tensor train interpolation

We know turn to the TCI, as introduced in Ref. [12],
which is the generalization of the matrix cross interpolation
to n-dimensional tensors and functions. TCI is also
quasioptimal if the maxvol principle is used [14]. We
consider an n-dimensional function Aðu1;…; unÞ, where
the ui are either discrete or continuous variables. The TCI
literature typically deals with the discrete case, in which A
is a tensor, and each index ui can take d different values,
so that A has dn entries. In this work, we also use a
generalization to the continuous case. Following standard

notation, tensor networks are depicted as a rectangle with n
“legs” (indices); see Fig. 3.

1. Naive approach

Let us first present a simple algorithm, illustrated in
Fig. 3, to decompose a tensor. While it is not efficient and
not used in practice, it provides a pedagogical introduction
to TCI for the unfamiliar reader.
First, we view the tensor A as a matrix Aðu1Þ;ðu2;u3;…;unÞ

by regrouping the indices into u1 and a multi-index
ðu2; u3; u4…unÞ. Second, we apply the CI to this matrix
and decompose it as a product of three matrices, as shown
in the right-hand side of the first line in Fig. 3. Here, the
blue square stands for the inverse of the pivot matrix.
Crucially, since we keep only a finite number χ of pivots,
the summation over the repeated indices (green lines)
involves only a small number of terms, even if the variable
ui is continuous. Next, we consider the (orange) tensor on
the right side of the first line in Fig. 3. We regroup the χ
values of u1 of the pivots and the d values of u2 into a multi-
index ðu1; u2Þ and form the matrix Aðu1;u2Þ;ðu3;u4;…;unÞ.
Applying CI to this matrix yields the second line in
Fig. 3. This process is continued until all the orange
tensors have only one black leg, which yields the tensor
train represented in the last line in Fig. 3.
From this simple algorithm, we can already observe the

extension of property (P2) from matrices to tensors: If a
tensor has rank χ (which we define as each of the above
matrices has rank χ), then all the steps above are exact for a
correct choice of pivots, and the tensor train is an exact
representation of the tensor. Furthermore, like in the CI, the
orange rectangle (respectively, blue square) tensors in
Fig. 3 correspond to subtensors (respectively, matrix
inverses of subtensors) of the initial tensor A.

FIG. 3. Step by step representation of a simple algorithm to
factorize a multidimensional tensor into a tensor train. The blue
squares represent the inverses of the pivot matrices. Summation is
implicit over the indices connecting two tensors (green lines).
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2. Tensor train interpolation

The goal of TCI is to perform the decomposition
in Sec. III B 1 using only a few calls to the function
Aðu1;…; unÞ. Let us now introduce our notation and
definitions for TCI, in particular, the multi-index notation.
A graphical illustration of the tensor train notation is shown
in Fig. 4.
We consider a tensor Aðu1;…; unÞ, with ui taking a finite

set of d discrete values. The generalization to continuous
variables is discussed below. For any α such that 1 ≤ α ≤ n,
we use multi-indices of the following form: i ¼
ðu1; u2;…; uαÞ and j ¼ ðuα; uαþ1;…; unÞ. We let Iα ¼
fi1; i2;…; iχg denote a set of χ multi-indices of size α, and
let J α ¼ fj1; j2;…; jχg similarly denote a set of χ multi-
indices of size n − αþ 1. Since each of its elements is a
multi-index, I is a “list of lists” of values of the variables
ui. For notational convenience, we define I0 and J nþ1 as
singleton sets each comprised of an empty multi-index. In
the following, we reserve the notation i and j for such
multi-indices, without emphasizing their dependence on α
explicitly.
We use the symbol ⊕ to denote concatenation of multi-

indices:

ðu1; u2;…; uα−1Þ ⊕ uα ⊕ ðuαþ1;…; unÞ≡ ðu1;…; unÞ:
ð11Þ

Note that, when using the ⊕ operator, we omit parentheses
for a multi index of size 1. We also define Kα as the set of
all values of the multi-index ðuαÞ of size 1, with 1 ≤ α ≤ n.
Finally, we define I ⊕ J as the set of all concatenations of
the elements of I and J : I ⊕ J ≡ fi ⊕ jji ∈ I ; j ∈ J g.
To illustrate these notations, let us give a concrete

example for n ¼ 4 and χ ¼ 2 and 0 ≤ u1 < u2 < u3 <
u4 ≤ 1. A possible choice is I2 ¼ fð0.2; 0.45Þ; ð0.1; 0.6Þg,
I3 ¼ fð0.2;0.45;0.7Þ; ð0.1;0.6;0.8Þg, J 3 ¼ fð0.72; 0.92Þ;
ð0.76; 0.92Þg, and J 4 ¼ fð0.98Þ; ð0.92Þg. Note that this
choice respects the nesting condition defined below.
Operations provide, e.g., I2⊕J 3¼fð0.2;0.45;0.72;0.92Þ,
(0.1,0.6,0.72,0.92), (0.2,0.45,0.76,0.92), ð0.1;0.6;0.76;
0.92Þg.
We now define the tensors Tα and Pα by the

expressions

Tαði; uα; jÞ≡ Aði ⊕ uα ⊕ jÞ ¼ Aðu1; u2;…; unÞ; ð12Þ
with i ∈ Iα−1, j ∈ J αþ1, and

Pαði; jÞ≡ Aði ⊕ jÞ ¼ Aðu1; u2;…; unÞ; ð13Þ
with i ∈ Iα, j ∈ J αþ1. Here, 1 ≤ α ≤ n and 1 ≤ α ≤ n − 1
for Tα and Pα, respectively. More abstractly, we can write

Tα ≡ AðIα−1 ⊕ Kα ⊕ J αþ1Þ; ð14aÞ

Pα ≡ AðIα ⊕ J αþ1Þ: ð14bÞ

For notational convenience, we define P0 and Pn as the
1 × 1 unit matrix. For fixed α, Tα is therefore of dimension
χ × d × χ, except T1 and Tn, which are of dimension 1 ×
d × χ and χ × d × 1, respectively. Similarly, Pα is of
dimension χ × χ. Tα is, therefore, a three-leg tensor (whose
name comes from its “T” shape), and Pα is a matrix. From
these definitions, we see that if one selects one of the χ
multi-indices i ∈ I and one of the χ multi-indices j ∈ J ,
then Tα defines a one-dimensional slice of the original
tensor A along the variable uα. We lastly note that the
position of the indices in P−1 is transposed compared to P
due to the inversion. The Tα tensors and the Pα matrices are
given a schematic representation shown in the right-hand
side in Fig. 4 as, respectively, a three-leg orange tensor and
a blue matrix with the discrete indices i and j in green,
while the uα are in black.
We also use matrix notation for Tα by defining TαðuÞ as

the matrix of values of the tensor with fixed uα ¼ u. We
have

½TαðuÞ�ij ≡ Tαði; u; jÞ; ð15aÞ
ðPαÞij ≡ Pαði; jÞ: ð15bÞ

Using these notations, the TCI representation of A takes a
simple form in terms of matrix multiplications. It is a tensor
train of the form

Aðu1;…; unÞ ≈ ATCIðu1;…; unÞ≡
Yn
α¼1

TαðuαÞP−1
α : ð16Þ

Note that, given the dimensions of T1, Tn, and Pn, this
product is a scalar. This TCI representation is illustrated in

FIG. 4. Pictorial representation of TCI formula for A defined in Eq. (16). The Tα tensors and P−1
α pivot matrices are represented by

orange and blue squares, respectively. The green lines correspond to contracted discrete indices Iα or J α, as indicated by the arrows.
The thin black lines correspond to the variables uα.
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Fig. 4. Each green line corresponds to a set of multi-indices
Iα (“rows”) or J α (“columns”). It is important to notice
that the TCI representation is defined entirely by the
selected sets of rows and columns Iα and J α, so that
constructing an accurate representation of A amounts to
optimizing the selection of Iα and J α for 1 ≤ α ≤ n.
We impose a restriction on the possible choices of Iα and

J α called the nesting condition [7,14]—Iα (J α) is con-
structed from elements of Iα−1 (J αþ1), except for the last
(first) variable, which is taken from Kα:

Iα ⊂ Iα−1 ⊕ Kα; ð17aÞ
J α ⊂ Kα ⊕ J αþ1: ð17bÞ

In other words, if i ∈ Iα, then there is a k ∈ Iα−1 such that
i ¼ k ⊕ uα for some uα ∈ Kα. Similarly, if j ∈ J α, then
there is a k ∈ J αþ1 such that j ¼ uα ⊕ k for some
uα ∈ Kα. We show in Appendix C 1 that imposing the
nesting condition guarantees the generalization of the
interpolation property (P1) for the tensor train, namely,

ATCIðIα−1;Kα;J αþ1Þ ¼ AðIα−1;Kα;J αþ1Þ ð18Þ

for 1 ≤ α ≤ n. In other words, the approximation is exact
for any indices that define one of the tensors Tα and
a fortiori to those that define one of the Pα matrix.
The TCI approximation of Aðu1; u2;…; unÞ is built

from one-dimensional slices (i.e., partial evaluations) of
A (the Tα tensors with fixed α, i, and j). Therefore, only
Oðndχ2Þ ≪ dn entries of A are used in the approximation.
As for matrix cross interpolation, this construction can

be directly generalized to continuous variables. We call a
function Aðu1; u2;…; unÞ ϵ-factorizable if the factorization
(16) satisfies jjA − ATCIjj∞ < ϵ with χ finite and increasing
“slowly” as ϵ is decreased. The TCI is particularly useful to
compute the n-dimensional integral of A, which is our goal
in this paper. Indeed, it separates the variables, reducing
the calculation of the n-dimensional integral to that of
Oðnχ2Þ one-dimensional integrals, followed by the tensor
contraction (16):

Z
du1 � � � dunAðu1;…; unÞ ≈

Yn
α¼1

Z
duαTαðuαÞP−1

α : ð19Þ

3. Algorithm to construct the TCI

We now turn to the algorithm used to construct the
TCI and, in particular, to find the set of pivots. Our
implementation is essentially equivalent to that described
in Ref. [7]. We start with an initial point ðu1;…; unÞ ¼
ðu1;…; uαÞ ⊕ ðuαþ1;…; unÞ, which we split in n − 1
different ways to obtain one element for each of the sets
Iα and J α. This yields the initial χ ¼ 1 TCI, which is exact
if the function Aðu1;…; unÞ factorizes as a product of
functions of one variable.

Let us now define the tensors Πα, named for their four-
legged shapes (see Fig. 5), by

Πα ≡ AðIα−1 ⊕ Kα ⊕ Kαþ1 ⊕ J αþ2Þ: ð20Þ

A pictorial representation of Πα is shown in Fig. 5.
Considering Πα as a matrix with ði; uαÞ being the row
index and ðuαþ1; jÞ the column index, one can build a cross
interpolation of Πα using the pivots Iα and J αþ1. The
resulting approximation of Πα reads

Παði; uα; uαþ1; jÞ≈
X
kl

Tαði; uα; kÞP−1
α ðk; lÞTαþ1ðl; uαþ1; jÞ

ð21Þ

or, equivalently, using matrix notation, as

Παðuα; uαþ1Þ ≈ TαðuαÞP−1
α Tαþ1ðuαþ1Þ: ð22Þ

We introduce the error function ϵΠ:

ϵΠði; uα; uαþ1; jÞ≡
����Παði; uα; uαþ1; jÞ −

X
kl

Tαði; uα; kÞ

× P−1
α ðk; lÞTαþ1ðl; uαþ1; jÞ

����; ð23Þ

where i ∈ Iα−1, uα ∈ Kα, uαþ1 ∈ Kαþ1, and j ∈ J αþ2. We
show in Appendix C 2 that, as a result of the nesting
condition, the error function satisfies

ϵΠði; uα; uαþ1; jÞ ¼ jA − ATCIjði; uα; uαþ1; jÞ: ð24Þ

In other words, the error of the factorization of Πα is, in
fact, the error of the interpolation ATCI with respect to A,
computed on the two-dimensional slice determined by i
and j. Hence, improving the factorization of Πα does
indeed improve the overall TCI representation of A.
The algorithm adds more pivots to the sets Iα and J αþ1

in order to improve the approximation of Πα while
maintaining the nesting condition. It finds a local maximum
ði; uα; uαþ1; jÞ of the error function ϵΠ for i ∈ Iα−1 and
j ∈ J αþ2, adds the new pivots i ⊕ uα and uαþ1 ⊕ j to Iα

FIG. 5. Pictorial representation of the Πα tensor and its cross
interpolation. The notation is the same as in Fig. 4.
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and J αþ1, respectively, and then updates the pivot matrix
Pα. This procedure preserves the nesting condition. The
rationale for adding the pivot for which the error is
maximum is that this choice of pivot yields the largest
improvement in the accuracy of the TCI approximation,
since the corresponding point becomes exact. Another way
to understand this choice, as shown in Appendix B 2, is that
this choice gives the largest determinant for the corre-
sponding Pα matrix, i.e., follows the maxvol principle.
In the full search variant of the algorithm, the maximum

of ϵΠ is determined by a brute force search over all ðχdÞ2
values of Πα. In the much faster alternate search variant,
one searches for a local maximum of ϵΠ by starting from a
random point and scanning ði; uαÞ and ðuαþ1; jÞ alterna-
tively. The search ends when a local maximum is found or a
maximum number of iterations (typically three or four) is
reached. The computational cost of the alternate search
variant is only OðdχÞ for adding a new pivot and, hence,
Oðdχ2Þ globally. In practice, for the cases considered in this
paper, we observe little difference in the quality of the
approximation obtained using the two variants, and we
therefore use the alternate search variant for all results
presented below.
For the case of continuous ðuαÞ, we explore two

approaches: (i) search for the pivots on a predefined grid
and (ii) search for a localmaximumdirectly in the continuum,
using standard optimization algorithms. Since we do not
observe obvious advantages in using the second approach,we
use the first method for the results presented below.
We perform nsw sweeps of this procedure, each consisting

of a forward sweep, which improves allΠ tensors fromΠ1 to
Πn−1, and a backward sweep, which improves all Π tensors
from Πn−1 to Π1. Each sweep increases the bond dimension
χ by two (at most; see Sec. VI E) so that χ ≤ 2nsw þ 1.

4. Improved pivoting using an environment-aware
error function

The error function ϵΠ is quite natural and is used in
Refs. [7,14]. The standard choice in the literature is to
follow the maxvol principle [12,13], where one looks for
pivots that maximize the determinant of the pivot matrix
Pα. Appendix B 2 shows that the two criteria are closely
related. Since our goal is to compute n-dimensional
integrals, we find that another error function, directly
associated to the error of the integral, yields significantly
better results in the cases we study.
Let us consider a single Πα tensor in the TCI (16) and

integrate over all variables uβ except uα and uαþ1. We have
(in matrix notation)

I ≡
Z

du1…dunAðu1;…; unÞ

≈
Z

duαduαþ1

X
i;j

Li½TαðuαÞP−1
α Tαþ1ðuαþ1Þ�ijRj; ð25Þ

where

L≡
�Z

T1

	
P−1
1 …

�Z
Tα−1

	
P−1
α−1; ð26Þ

R≡ P−1
αþ1

�Z
Tαþ2

	
…P−1

n−1

�Z
Tn

	
ð27Þ

are vectors of length χ andZ
Tα ≡

Z
duαTαðuαÞ: ð28Þ

A better approximation of the n-dimensional integral,
which replaces the part of the factorization involving the
uα and uαþ1 variables with the exact slice Πα, is

I ≈
Z

duαduαþ1

X
i;j

LiΠαðuα; uαþ1ÞijRj: ð29Þ

Here, we see that the Πα tensor in the integral is weighted
by the factors L and R, which we refer to as the
environment in a manner reminiscent of DMRG. We,
therefore, propose taking the difference of Eqs. (25) and
(29) and using the modulus of the resulting integrand as an
error function:

ϵenvΠ ði; uα; uαþ1; jÞ≡ jLiRjjϵΠði; uα; uαþ1; jÞ: ð30Þ
We refer to this as the env variant of the algorithm. In
practice, we also multiply this error with another weight
WaWb defined in the next section (weighted learning
variant).
We show that the env variant significantly outper-

forms the standard algorithm using ϵΠ in the cases
considered below. Indeed, it leads to the selection of pivots
in regions of large volume in which the integrand is small.
This is illustrated by analogy with the following integral:R∞
0 dxðe−xþe−x=100=100Þ¼2. One of the terms in the inte-
grand is rapidly decaying, and the other is slowly decaying
and small, but both contribute equally to the integral. The
ordinary choice of pivots leads to sampling the integrand
based on its absolute value, ignoring the weighting of the
corresponding contribution by its volume. The correspond-
ing algorithm would focus on improving the description of
the large term and start adding points in the tail region
x ≫ 1 only once the large term is known very accurately.
Instead, the two terms should be approximated with an
error weighted by their respective contributions to the
integral. By including the corresponding volumes in the
weight, the error function ϵenvΠ implements this idea.

5. Quadrature rules for numerical integration

It remains to specify a method of calculating the one-
dimensional integrals Eq. (28). The integration in the case
that the underlying domain is a simplex, rather than a
hypercube, is discussed below. This question is independent
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of tensor factorizability and the TCI construction. The
behavior of the functions TαðuαÞ varies from model to
model, as does the precise domain of integration, which is
discussed in the next section on real-time computations.
In this work, we use rules based on either Chebyshev

polynoms or Gauss-Kronrod quadratures to perform these
one-dimensional integrals [39]. The quadrature rule asso-
ciated to Chebyshev polynoms is known as the Clenshaw-
Curtis quadrature. However, we also use Chebyshev
interpolants to perform integrations on domains smaller
than the initial domain used to construct the Chebyshev
interpolant, and in that case we get different weights. We
note CHx (respectively, GKx) the rules for Chebyshev
polynoms (respectively, Gauss-Kronrod quadrature) with x
points. In one application, we encounter highly oscillatory
and slowly decaying integrals. Although these integrals
could be calculated with standard quadratures by brute
force, we find that building a specialized quadrature yields
a significant improvement in efficiency (see Appendix I).
These quadratures specify a set of d points xa and

weights Wa such that

Z
duTαðuÞ ≈

Xd
a¼1

WaTαðxaÞ: ð31Þ

The multidimensional integral I then reduces to the full
contraction of the tensor with the weights Wa, i.e., the
contraction of Aðxi1 ;…; xinÞWi1…Win . In the weighted
learning variant of the algorithm, the TCI is constructed
for this weighted tensor rather than the original tensor A. It
is argued in the literature [7] that weighted learning
improves the convergence of I with the bond dimension.
We show below that, in the cases considered here, the
improvement is marginal.

IV. REAL-TIME MANY-BODY FORMALISM

The formalism used in this article follows the Keldysh
approach in real time that is used in the context of
diagrammatic quantum Monte Carlo calculations [25].
For completeness, we review the main definitions and
expressions which are needed later. We refer to Ref. [30] for
proofs and additional details.

A. Perturbation theory with Wick determinants

Our starting point is a Hamiltonian H ¼ H0 þHintλðtÞ
consisting of an arbitrary noninteracting term H0 and an
interaction term Hint that is switched on at t ¼ 0. The
noninteracting part is arbitrary:

H0 ¼
X
ii0;σσ0

ðH0Þii0;σσ0c†iσci0σ0 : ð32Þ

However, for concreteness, we focus on H0 that are
diagonal in the spin sector. Here, the fermionic operator
c†iσ (ciσ) creates (destroys) an electron with spin σ on site i.

We consider systems directly in the thermodynamic limit,
i.e., with an infinite number of sites i. The interaction term
can, in principle, be an arbitrary quartic Hamiltonian.
However, since all of the calculations in this article are
performed using a Hubbard-like interaction, we concentrate
on this specific form for concreteness:

Hint ¼ UλðtÞ
X
i∈C

ðc†i↑ci↑ − ᾱÞðc†i↓ci↓ − ᾱÞ: ð33Þ

Here, the sum is taken over a finite subset C of interacting
sites. The ᾱ term shifts a quadratic term between the
noninteracting and the interacting part of the Hamiltonian
and, therefore, provides a mathematically different pertur-
bation expansion in powers of U [25,40] of the same
physical problem. The function λðtÞ captures the time
dependence of the interaction. One of the remarkable
features of TTD is that λðtÞ is needed only after the
factorization is performed, in the postprocessing step in
which the integration is carried out. Calculating the time
evolution of an observable for different functions λðtÞ
therefore comes essentially for free. Most of the examples
treated in this article use λðtÞ ¼ θðtÞ, a Heaviside function,
but we also describe a nontrivial example, where λðtÞ is
given by Eq. (57) to illustrate the algorithm’s capabilities.
The dynamics of H0 can be formally solved through the

introduction of the corresponding noninteracting Green’s
functions. The lesser andgreaterGreen’s functions g< and g>

can be computed explicitly from H0 and comprise, together
with the value of U and ᾱ, the actual input of the problem.
We have

g<ii0;σσ0 ðtÞ ¼ ihc†i0σ0 ð0ÞciσðtÞi; ð34Þ

g>ii0;σσ0 ðtÞ ¼ −ihciσðtÞc†i0σ0 ð0Þi; ð35Þ

where the time dependence of an operator O is given by
OðtÞ ¼ eiH0tOe−iH0t. These Green’s functions can be
computed analytically for simple models or numerically
in more complex cases using, e.g., Tkwant [41]. Their
explicit forms for the specific models considered here
are given below.
We introduce the general coordinate X ¼ ði; σ; t; aÞ,

which describes the site index i, the spin σ, the time t,
and a “Keldysh index” a taking the values 0 or 1. The
Keldysh Green’s function gðX;X0Þ is defined as

gðX;X0Þ

≡

8>>>>><
>>>>>:

g>ii0;σσ0 ðtÞθðtÞ þ g<ii0;σσ0 ðtÞθð−tÞ for a ¼ a0 ¼ 0;

g>ii0;σσ0 ðtÞθð−tÞ þ g<ii0;σσ0 ðtÞθðtÞ for a ¼ a0 ¼ 1;

g<ii0;σσ0 ðtÞ for a ¼ 0; a0 ¼ 1;

g>ii0;σσ0 ðtÞ for a ¼ 1; a0 ¼ 0;

ð36Þ
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where θðtÞ is the Heaviside function and we take t0 ¼ 0
since gðX;X0Þ is a function of t − t0. We also introduce the
full interacting Green’s functionsGðX;X0Þ associated to the
full HamiltonianH. Observables can be related to GðX;X0Þ
in a simple manner. For instance, the occupation of an
orbital ði; σÞ at time t is given by −iG<

ii;σσðt; tÞ.
Using this notation, we can write the perturbative

expansion ofGðX;X0Þ in powers of the interaction coupling
U. We obtain

GðX;X0Þ ¼
X∞
n¼0

GnðX;X0ÞUn; ð37Þ

where GnðX;X0Þ is defined as

Gn ¼
X

i1i2…in

Z
Su

du1du2…dunλðu1Þλðu2Þ…λðunÞG̃n: ð38Þ

The integration is carried out inside the simplex Su
defined by 0 ≤ un ≤ � � � ≤ u2 ≤ u1 ≤ t. Assuming for
simplicity that H0 conserves spin, the integrand G̃nðX;X0;
i1; i2…in; u1; u2…:unÞ is given explicitly by

G̃n ¼ in
X

a1;…;an

ð−1Þ
P

ak⟦ X;U1;…; Un

X0; U1;…; Un
⟧⟦U1;…; Un

U1;…; Un
⟧;
ð39Þ

where Uk ¼ ðik; uk; akÞ, and the “Wick determinant”
⟦ � � � ⟧ is defined, for A1;…; Am and B1;…; Bm any
collections of points on the Keldysh contour, as

⟦A1;…; Am

B1;…; Bm
⟧ ¼

��������

gðA1; B1Þ � � � gðA1; BmÞ
..
. . .

. ..
.

gðAm; B1Þ � � � gðAm; BmÞ

��������
: ð40Þ

For the case in which ᾱ ≠ 0, the diagonal terms of the Wick
determinants must be shifted by −iᾱ [25].
In the following, we illustrate the method for the

calculation of the total charge on site i ¼ 0 at a time t
after switching on the interaction:

Qðt; UÞ ¼ hei
R

dtHc†0↑c0↑e
−i
R

dtHi: ð41Þ

Here, the evolution operator e−i
R

dtH is a time-ordered
exponential. This observable admits an expansion
Qðt; UÞ ¼ P

n QnðtÞUn, and we refer to the corresponding
integrand (39) as Q̃nði1;…; in; u1;…; un; tÞ, so that

QnðtÞ ¼
X
i1…in

Z
Su

du1du2…dunλðu1Þλðu2Þ…λðunÞQ̃n:

ð42Þ

The nth-order contribution to the expansion is given by an
n-dimensional integral. The integrand Q̃n is given by a sum
of 2n Wick determinants, which can be computed explicitly
from the knowledge of the noninteracting dynamics. The
complexity of computing the integrand, therefore, appears
to be Oðn32nÞ, but there are known algorithms [42,43] to
compute it with Oð2nÞ complexity. In Appendix D, we
present a simpler version of such an algorithm using only a
few lines of codes. Hence, the computational problem is
reduced to that of computing the high-dimensional inte-
grals above.

B. Models

We consider three different models in this article: a single
quantum dot weakly coupled to electrodes, a quantum dot
strongly coupled to a two-dimensional infinite electrode,
and a double quantum dot weakly coupled to electrodes.
The inputs to the TTD method are the corresponding
noninteracting Green’s functions g. Their explicit forms
are given in Appendixes E and F. Figure 6 shows specific
examples of these Green’s functions for the three different
problems. Note that all the examples considered here are
invariant with respect to spin rotations, so the Green’s
functions do not depend on spin.

1. Single-impurity Anderson model (SIAM)

The first system is an interacting quantum dot connected
to noninteracting leads: the SIAM. The Hamiltonian is
given by H ¼ H0 þHintθðtÞ, with

FIG. 6. Real-time noninteracting lesser Green’s functions for
the three models considered in this paper. Upper panel: single
quantum dot (SIAM) and double quantum dot connected to leads
in the flat-band limit. Lower panel: one interacting site in the 2D
lattice, including the tail of g<ðtÞ.
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H0 ¼
X
iσ

γiðc†iσciþ1;σ þ H:c:Þ þ ϵd
X
σ

c†0σc0σ; ð43Þ

Hint ¼ Uc†0↑c0↑c
†
0↓c0↓: ð44Þ

The hopping parameters are all equal, γi ¼ γ, except for the
connection of the quantum dot to the leads, γ0 ¼ γ−1 ≠ γ.
We work in the flat-band limit (see Appendix E) in which
γ0; ϵd ≪ γ but Γ ¼ 2γ20=γ is finite. Γ is used as our unit
of energy. In this limit, the electron-hole symmetric case
ϵd ¼ 0 is taken as a benchmark. There, the exact expression
for the charge QðUÞ at equilibrium is given by the Bethe
ansatz [33].
The upper-left panel in Fig. 6 shows an example of the

noninteracting Green’s function g on the quantum dot for
ϵd ¼ −2. In this case, the integrand Q̃n has many oscil-
lations; see Fig. 1(c) (even more oscillations appear in other
cases, for example, ϵd ¼ −4).

2. Single impurity in a 2D lattice

Our second system is a quantum dot strongly coupled to
a more complex electronic bath. The system is an infinite
two-dimensional lattice:

H0 ¼ γ
X
hijiσ

c†iσcjσ; ð45Þ

with only one interacting site i ¼ 0:

Hint ¼ Uc†0↑c0↑c
†
0↓c0↓: ð46Þ

Here, hiji corresponds to the nearest-neighbor indices in
2D, and γ is taken as the unit of energy. The noninteracting
correlators are highly oscillatory, with slow decay∼1=t; see
the lower panel in Fig. 6. The corresponding integrand Q̃n
decays very slowly, with rapid oscillations.

3. Double quantum dot

The last system is a double quantum dot connected to
two electrodes:

H0 ¼
X
iσ

γiðc†iσciþ1;σ þ H:c:Þ; ð47Þ

Hint ¼ U
X
i¼0;1

c†i↑ci↑c
†
i↓ci↓; ð48Þ

with γi ¼ γ, except for γ−1 ¼ γ1 ≠ γ and γ0 ≠ γ. We work
in the flat-band limit in which γ0; γ1 ≪ γ, and Γ ¼ γ21=γ is
taken as the unit of energy. Double quantum dots play an
important role in semiconducting quantum technologies, as
qubit systems or detectors.

V. TENSOR TRAIN DIAGRAMMATICS

We now turn to the discussion of the TTD technique,
i.e., the application of TCI to the calculation of high-
order perturbation expansions in the interacting coupling
strength, as in Eq. (42). We use the TCI algorithm to
factorize Q̃n and perform the corresponding n-dimensional
integral. This section focuses on impurity models, for
which the integral involves n time variables but no spatial
sums. The extension to multiorbital models is discussed in
Sec. VII.
The calculation can be split into two fundamentally

different steps. In Sec. VA, we discuss the factorization of
the tensor Q̃n appearing in Eq. (42) using a TCI decom-
position. In Sec. V B, we discuss the computation of the
integral, along the lines outlined above. We discuss the
various sources of error in Sec. V C. Detailed benchmarks
and numerical results are then presented in the next section.

A. Factorizability in time differences

The integration domain in Eq. (42) is the simplex Su
defined by 0 ≤ un ≤ � � � ≤ u2 ≤ u1 ≤ t. The TCI decom-
position itself is constructed in a different domain, the
hypercube ½0; t�n. We could simply integrate over the whole
hypercube and divide the result by n!, since the integrand
Q̃n is symmetric in the u variables as a result of the
anticommutativity of fermionic operators under the time-
ordered product. However, Q̃n has a cusp whenever two of
the ui are equal because of the Heaviside functions
introduced by time ordering. Some of these cusps can
be seen in Fig. 1(a) (e.g., when u1 ¼ u2). Such a function
does not factorize well; consider, for example, the
Heaviside function itself, θðu1 − u2Þ. We check explicitly
in Fig. 15(a) that a direct decomposition in the u varia-
bles fails.
We therefore change to the time difference variables vi,

defined by

v1 ¼ t − u1; ð49aÞ

vi ¼ ui−1 − ui for 2 ≤ i ≤ n: ð49bÞ

This change of variable has a Jacobian j det½∂ui=∂vj�j ¼ 1.
In the v variables, the integration domain becomes

vi ≥ 0; ð50aÞ

Xn
i¼1

vi ≤ t ≤ tM; ð50bÞ

where tM is the maximum time of the calculation (possibly
infinite for a steady state calculation). The condition (50a)
enforces the time ordering in u. As a result, the function
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Q̃nðviÞ has no cusps due to time ordering inside the
hypercube ½0; tM�n in the v variables.
Using the TCI algorithm, we first obtain a factorization

of Q̃nðviÞ on ½0; tM�n, as in Eq. (16):

Q̃nðv1;…; vnÞ ≈ Q̃TCI
n ðv1;…; vnÞ≡

Yn
α¼1

TαðvαÞP−1
α : ð51Þ

In practice, we enforce the simplex condition (50b) not only
for the integration, but also when choosing new pivots:
When searching for pivots which maximize the error ϵΠ or
ϵenvΠ , we consider only candidates that satisfy Eq. (50b).
Indeed, we need only to improve our approximation in the
integration region. Since the simplex is n! times smaller
than the hypercube, this provides a significant speedup. We
observe numerically that, for tM sufficiently large, the
disregarded candidate pivots would almost never have
been selected anyway. We also observe that the number
of evaluations of Q̃n used in the pivot search is only
approximately 30% of the number of evaluations required
to construct the TCI approximation given the pivots. In that
sense, the algorithm is close to optimal.
Even in the v variables, the ϵ-factorizability of

Q̃nðv1;…; vnÞ is far from obvious. For large vi, some
indications can be found. First, it is shown numerically
in Ref. [33] that a rank χ ¼ 1 approximation of Q̃n is
reasonably accurate. This is an essential ingredient in the
construction of the n-dimensional change of variables
required in quasi-Monte-Carlo methods. Second, when the
Green’s function g decays exponentially, we expect Q̃n to be
dominated by a single Feynman diagram (the nested tadpole
diagram) and, hence, to factorize with rank χ ¼ 2:

Q̃nðv1;…; vnÞ ∼
vi→∞

Tr
Y
i

MðviÞ; ð52Þ

where the 2 × 2 matrix M is given by Maa0 ðviÞ ¼
ð−1Þa½ĝaa0 ðviÞ�2.
In this paper, we demonstrate numerically a much

stronger property: Q̃n is ϵ-factorizable in the whole hyper-
cube in v, even for small time differences.

B. Integration in the simplex

After obtaining the factorization (51), we perform the
integral over the times u. For steady-state calculations
(t → ∞), we perform the integration in the full v hyper-
cube; see Eq. (50b). For calculations at finite t, we need to
integrate over the simplex in v defined by Eq. (50b).
The integration is carried out as a postprocessing step

after the factorization, which is the most time-consuming
task. A single tensor train interpolation is sufficient to
obtain the full curve QnðtÞ for 0 ≤ t ≤ tM, and for any λðtÞ.
We proceed as follows; Appendix G contains further
details. We define the one-dimensional functions Ψ by

ΨnðxÞ ¼
Z

x

0

dyλðyÞTnðx − yÞ ð53Þ

and

ΨpðxÞ ¼
Z

x

0

dyλðyÞTpðx − yÞP−1
p Ψpþ1ðyÞ ð54Þ

for p < n. We then have

QnðtÞ ≈QTCI
n ðtÞ ¼ Ψ1ðtÞ: ð55Þ

An alternative method using a Fourier transform to
perform the integration in v is presented in Appendix H.
However, the direct approach above is more general
[arbitrary λðtÞ] and numerically faster, so it is preferred
in practice.
Calculations in the steady state (t → ∞) limit or at large

tM present a specific difficulty. The tail of Q̃nðviÞ at large vi
is small, so it has little effect on the factorization but can
make a significant contribution to the integral because of its
large volume. This problem is addressed by the env error
function ϵenvΠ . Alternatively, this problem could be solved
manually in simple cases using a second change of
variables mapping ½0; tM� onto [0, 1]:

wiðviÞ≡ 2vi=ðtM þ viÞ: ð56Þ

Since this change of variables is diagonal, it does not affect
the factorizability of the tensor. However, decomposing
the function in wi introduces a large weight dvi=dwi ¼
2tM=ð2 − wiÞ2 in the tail region from the Jacobian, which
affects the choice of pivots. These techniques are illustrated
in Sec. VI E.

C. Error estimation

In this section, we present a practical error monitoring
scheme for TCI calculations. The TTD method has three
main sources of errors, which are controlled by χ (factori-
zation error), d (discretization error), and tM (time trunca-
tion error; only for steady state calculations), respectively.
The factorization error, which comes from the approxi-

mation of the integrand by a tensor train (51), is the most
important source of error. We use an estimator of this
factorization error defined, for a given value of χ, as the
maximum over the sweep at rank χ of the maximum error
ϵΠ (respectively, ϵenvΠ ) in the regular (respectively, env)
variant of the TCI algorithm. In machine learning termi-
nology, this is an in-sample error, since it is computed
solely from the data used in the construction of the
approximation. It is, nevertheless, a conservative in-sample
error, as we actively seek pivots with large values of the
error. In Fig. 7(a), we show this estimator for the SIAM
model with ϵd ¼ 0, for which the Bethe ansatz solution
gives high-accuracy benchmarks. In this case, the error
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decays quickly as ∼1=χ4. This fast decay is the signature of
ϵ-factorizability.
The error on the actual physical quantity Q10 in the

SIAM model with ϵd ¼ 0 is shown in Fig. 7(b). We
compare different estimates of the error: the exact error

(known here from the Bethe ansatz solution but unavail-
able, in general), the running relative error between
Qnðχ − 1Þ and QnðχÞ, where QnðχÞ denotes the approxi-
mation of Qn at rank χ, and the error with respect to the
largest value of χ used, available only at the end of the
calculation. We find that these estimators are in excellent
agreement. In practice, the running relative error yields a
satisfactory estimate of the true error. The saturation
observed for large χ is the result of discretization error.
Apart from the factorization error, three more sources of

error need to be controlled. First, the discretization error
stems from the one-dimensional integration and is deter-
mined by the number of integration points d. In highly
oscillatory cases, one may require a specialized integration
technique, as discussed in Sec. VII A. Second, for calcu-
lations at infinite time in the steady state tM ¼ ∞, the
convergence with tM must be verified as well. Third, in
some cases, rounding errors can become significant, in
particular, when very high precision (approximately 10−8

or smaller) is sought with large expansion orders n. These
result from cancellations in the summation over Keldysh
indices in the calculation of Q̃n (see Appendix D).
In practice, monitoring the different errors discussed

above is sufficient. Nevertheless, in order to illustrate the
quality of the TCI approximation, we now also present an
out-of-sample error estimate, obtained as follows. Starting
from a random point ðv1;…; vnÞ, we sweep over the
variables v1, v2;…; vn several times. At the ith step of
each sweep, we update vi to maximize the error, with all
other variables fixed. This eventually yields a point
ðv�1;…; v�nÞ that maximizes the error locally. We find that
the value of the error obtained by this procedure is robust
with respect to the starting point. The results are illustrated
in Fig. 8, which shows one-dimensional slices of Q̃7 along
every possible direction starting from v�i . The blue circles
indicate the position of v�i . The TCI approximation is
already qualitatively correct for χ ¼ 2, quantitatively cor-
rect for χ ¼ 4, and indistinguishable from the exact solution

(a)

(b)

FIG. 7. (a) Upper: factorization error estimator as a function of
the tensor rank χ, for the SIAM model, for n ¼ 10, ϵd ¼ 0,
tM ¼ 15, Gauss-Kronrod points with 63 points, using the error
functions ϵenvΠ (orange curve) and ϵΠ (blue curve); see the text.
(b) Lower: error of the integral Qn versus χ, measured using
different estimators. In this case,Qlast

10 isQ10 for χ ¼ 100. The red
line is the error due to the integral discretization obtained by
varying the number of integration points.

FIG. 8. Comparison of the integrand Q̃7 for ϵd ¼ −2 (red stars) with the TCI of rank χ ¼ 2, 4, 40 (dash-dotted, dashed, and
solid black lines, respectively). The function is plotted in the w variable (56) with tM ¼ 5. The maximum error point is
(0.71,0.62,0.0,0.07,0.45,0.60,0.25) (blue circles). Each panel corresponds to the variation of one variable wi starting from this point.
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for χ ¼ 40. Despite the presence of strong oscillations (the
average sign is 10−3 in this case), the maximum relative
error that we observe for this calculation is of the order of
1%, only one order of magnitude larger than the in-sample
factorization error.

VI. RESULTS FOR THE SIAM MODEL

In this section, we present comprehensive numerical
results for the SIAM model in various regimes, in order to
illustrate the practical performance of TTD.

A. High-precision benchmarks using the Bethe ansatz

We begin with calculations obtained using TTD on the
SIAM model at ϵd ¼ ᾱ ¼ 0 and tM → ∞. One primary
motivation for studying this particular regime is the
existence of an analytic Bethe ansatz solution [33,44],
from which we can extract the perturbative expansion with
arbitrary accuracy. Such a high-precision benchmark is
essential to study convergence and the scaling of errors
using different parameters and variants of the algorithm. In
most figures in this section, we show the relative error ϵQn ≡
jQn −QBethe

n j=jQBethe
n j of Qn calculated by TTD, compared

with the exact Bethe solution.
The error ϵQn is presented in Fig. 9(a) as a function of the

rank χ of the tensor train. The total number N of Q̃n

evaluations scales as N ∼ ndχ2, so the different dashed
lines correspond to different scalings ranging from 1=χ
(∼1=

ffiffiffiffi
N

p
, the scaling of Monte Carlo calculations) to 1=χ8

(∼1=N4). Remarkably, one can reach very high precision—
better than 10−8—even for large perturbation orders
n ∼ 20, using a moderate value of χ. We observe an
effective scaling of the error as 1=N2 for Q10, Q15, and
Q19 and a faster scaling for lower orders. The exact
asymptotic scaling is unknown. In Ref. [7], a stretched
exponential is observed at very high precision. This
behavior cannot be excluded by our data. In any case,
the convergence we observe is dramatically faster than
that of Monte Carlo methods, which scales as 1=

ffiffiffiffi
N

p
, or

even of quasi-Monte-Carlo techniques [33], which are at
best approximately 1=N in favorable cases but much less
robust.
The error is presented as a function of N in Fig. 9(b) for

lower-precision calculations, ϵQn ≥ 10−5, for tM ¼ 15.
Here, we use a coarser discretization (smaller d) than that
used in Fig. 9(a), which is less costly but limits the
accuracy. We see that 106 evaluations of Q̃n are sufficient
to obtain an error below 10−4 in all cases. We include the
total computation time for three points, using a single core
on a recent modern workstation, e.g., 17 seconds for Q10

with four-digit accuracy. Reaching the same accuracy using

(a) (b) (c)

(d)

FIG. 9. Relative error of the coefficientsQn with respect to the exact solution for n ¼ 3 (blue), n ¼ 5 (orange), n ¼ 10 (green), n ¼ 15
(red), and n ¼ 19 (purple). All calculations are carried out using the env and alternate search variants of the algorithm. (a) Error versus
tensor rank χ. Large values of tM and d are used so that the accuracy is limited only by χ: tM ¼ 20, CH255 (n ¼ 3), tM ¼ 25, CH255

(n ¼ 5), and tM ¼ 30, GK63 (n ¼ 10, n ¼ 15, n ¼ 19) The dashed lines are guides to the eye for 1=χp scaling, which corresponds to
1=Np=2 in terms of the number N of function calls. p ¼ 1 corresponds to Monte Carlo scaling. (b) Error versus N in a low-precision
calculation with tM ¼ 15 and d ¼ 15 (GK15). The colored circles indicate the CPU time of the calculation when performed on a single
core. (c) Error versus n for χ ¼ 10 (blue), χ ¼ 20 (orange), and χ ¼ 30 (green) (tM ¼ 30 and GK15). (d) jQnj versus n, distinguishing
positive and negative coefficients. The vertical lines indicate values of n where jQnj is very small, leading to larger relative errors.
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our previous Monte Carlo implementation [25] would
require thousands of CPU hours.
The error of Qn is plotted against n in Fig. 9(c), up to

n ¼ 30, and jQnj is plotted in Fig. 9(d). We note that we can
obtain Q30 with better than two-digit accuracy in approxi-
mately 104 CPU hours, a significant improvement over our
previous works (n ¼ 10–15 using Monte Carlo [25] and
n ¼ 20–22 using quasi-Monte-Carlo [33]).
Crucially, we observe that the ϵ-factorizability does not

deteriorate significantly with increasing n: In Fig. 9(a),
we observe a similar error for n ¼ 10, 15, and 19;
in Fig. 9(c), the error stabilizes after n ¼ 15 (note that
the indicated values at which the relative error is peaked
simply correspond to values of n for which Qn is particu-
larly small).

B. Real-time dynamics

As explained in Sec. V B, the full time dependency of the
charge QðtÞ and its expansion coefficient QnðtÞ, after
switching on the interaction at t ¼ 0, can be obtained from
a single factorization of Q̃n at negligible additional cost.
Figure 10 (upper) shows an example of QnðtÞ curves for
different orders n. At large t, each QnðtÞ converges toward
the Bethe ansatz equilibrium value.
The time integration (53) and (54) can be performed with

any time-dependent coupling constant UλðtÞ at a negligible
increase in cost. In Fig. 10(b), we show QnðtÞ in two cases:
(i) an abrupt turning on of the interaction λðtÞ ¼ θðtÞ and
(ii) a continuously differentiable λðtÞ given by

λðtÞ ¼
8<
:

sinðπt=2τÞ 0 ≤ t ≤ τ;

1

0

t > τ;

t < 0.

ð57Þ

The ability to quickly calculate the effect of any time-
dependent coupling constant suggests interesting possibil-
ities for studying the effect of various types of quenches. It
might also be used to optimize the convergence to the
asymptotic value. Indeed, although the series (2) has an
infinite radius of convergence for any finite time [29], a very
high-order expansion may still be required at intermediate
and long times. An interesting open question is whether a
smooth adiabatic turning on of the interaction could lead to
an easier resummation of the perturbative series (i.e., using
fewer terms) at intermediate times than an abrupt quench,
which puts the system far out of equilibrium.
In Fig. 11, we show an example of the actual physical

observable QðU; tÞ for two values of the switching time τ
and U ¼ 2. These results are obtained by truncating the

FIG. 10. QnðtÞ after a quench at t ¼ 0 for the SIAM model at
ϵd ¼ α ¼ 0, in equilibrium. The coefficients are normalized by
their exact asymptotic values Qnðt ¼ ∞Þ ¼ QBethe

n . Upper:
abrupt quench λðtÞ ¼ θðtÞ. Different curves correspond to dif-
ferent integration techniques, with indistinguishable results:
simplex integration (55) (yellow continuous line), Fourier tech-
nique (H4) (red dotted line), quantum quasi-Monte-Carlo
(QQMC) [33] (blue dashed line), and direct numerical integration
of Eq. (42) for n ¼ 2, 3, 4 (green dashed-dotted line). The arrows
indicate the value of n. Lower: QnðtÞ for n ¼ 3 (orange) and
n ¼ 10 (blue) using a continuous increase of the interaction
strength λðtÞ ¼ sinðπt=2τÞ for t < τ, and λðtÞ ¼ 1, for t ≥ τ (with
simplex integration).

FIG. 11. Charge QðU; tÞ on the dot for the SIAM model after
switching on the interaction abruptly (yellow solid line, τ ¼ 0) or
smoothly (blue dashed line, τ ¼ 2) with λðt ≤ τÞ ¼ sinðπt=2τÞ
and λðt ≥ τÞ ¼ 1. Both curves include terms QnðtÞ up to n ¼ 14.
The black dotted line corresponds to the resummed series using
the Euler transform of the first 20 QBethe

n coefficients, as
in Ref. [25]. In all calculations, we use ϵd ¼ α ¼ 0 with
U ¼ 2; tM ¼ 20.
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series (2) to a finite number of terms, varying the expansion
order to check convergence. Both curves converge to the
asymptotic Bethe ansatz value with high accuracy. Note
thatU ¼ 2 is beyond the radius of convergence of the series
for t → ∞, so the two curves can be obtained only up to a
finite time without resummation [29].

C. Factorizing the sign problem

In the previous benchmark, the integral is fairly non-
oscillatory. When ϵd is nonzero, Q̃n oscillates much more, a
challenge for high-dimensional integration techniques like
Monte Carlo and quasi-Monte-Carlo. We illustrate the issue
using a simple toy function

Aðv1;…; vnÞ ¼
Yn
i¼1

ð1þ a cos 2πviÞ ð58Þ

defined on the hypercube ½0; 1�n, which is com-
pletely factorizable. A direct Monte Carlo estimator of
the integral of A using NMC random points is given by
Ā ¼ ð1=NMCÞ

PNMC
α¼1 AðvαÞ. The variance of Ā is exponen-

tially large in n:

varĀ ¼ 1

NMC

��
1þ a2

2

�
n

− 1

�
: ð59Þ

By contrast, using the TTD of A simply requires computing
n one-dimensional integrals. The central question is then
the robustness of ϵ-factorizability in strongly oscillat-
ing cases.
A consequence of the presence of oscillations is the well-

known sign problem: The average sign at order n,

ηn ¼
R
du1…dunQ̃nðu1;…; unÞR
du1…dunjQ̃nðu1;…; unÞj

; ð60Þ

may be small as a consequence of cancellations in the
integral. If one is interested in maintaining relative accu-
racy, then a small ηn poses an additional challenge, as the
absolute precision of the factorization of Q̃n must be
increased. In our calculations, however, small ηn usually
means that the corresponding contribution to the observable
is small, and we are interested in absolute accuracy (or,
more precisely, in relative accuracy with respect to the
largest contribution usually found at low order).
Let us now review our empirical observations of the

behavior of TTD in the presence of strong oscillations in
the integral and a small average sign. The numerator and
denominator in the definition (60) of η10 are presented in
Fig. 12, as a function of ϵd, for the SIAM model. The sign
η10 is of magnitude approximately 1 for ϵd ≈ 0. Away from
ϵd ¼ 0, η10 decreases, reaching η10 ≈ 10−5 for ϵd ¼ −4.
A Monte Carlo simulation in this regime would be
prohibitively expensive. On the other hand, as illustrated
in Fig. 1(d), the TCI decomposition is performed with an

approximately constant computational time for every value
of ϵd, indicating its insensitivity to a small average sign.
Since the ϵ-factorizability is independent of the oscil-

latory character of the integrand, the difficulty is reduced to
that of integrating oscillatory one-dimensional functions, a
much less formidable problem. In practice, this may still be
a difficult task, and we discuss our approach for specific
cases in Sec. VII A and Appendix I.
However, a small average sign leads to a very general

and simple issue: The relative error involves division by a
small number. In order to keep it at a given level when
varying ϵd, a smaller absolute error is required by at most
1=ηn. This effect is illustrated in Fig. 13(a), where the
relative error of Q10 is presented as a function of χ for
various values of ϵd. The convergence rate is the same
(1=N2) for every ϵd, reflecting again that a small average
sign does not affect the quality of the ϵ-factorization.
However, we observe that a small η10 implies a larger
relative error. This effect is difficult to predict quantita-
tively, as it depends on cancellations in integrating the error
in Eq. (51), i.e., Q̃n − Q̃TCI

n . In Fig. 13(b), the relative error
is plotted as a function of η10, for fixed χ ¼ 50. We observe
that it increases approximately like 1=

ffiffiffiffiffiffi
η10

p
, slower than

1=η10. Since Q10 ¼ Oðη10Þ, it follows that the absolute
error actually decreases when η10 gets smaller (not shown).
Because of the 1=N2 convergence rate, keeping the same
relative error when varying ϵd therefore corresponds to a
moderate increase in computing time ∼1=η1=4 in this
model. Keeping a constant absolute error is actually easier
in the presence of a sign problem.
Since our implementation uses double-precision arith-

metic, we cannot go beyond an absolute precision of 10−9

in the integrand due to rounding errors in the Keldysh sum
of determinants (see Appendix D). This translates to a

FIG. 12. Integrals Qn ¼
R
Q̃n and

R jQ̃nj for n ¼ 10 versus ϵd
for the SIAM model. The green and orange colors correspond
Q10 < 0 and Q10 > 0, respectively.
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relative error in Q10 of 10−4 for the worst case ϵd ¼ −4.
Beyond this point, the error saturates.
In sharp contrast with Monte Carlo, computing

R jQ̃nj
with TTD is, in fact, significantly harder than computingR
Q̃n. Indeed, the function jQ̃nj is not ϵ-factorizable with a

low rank, most likely as a result of the cusps introduced by
taking the absolute value.
This section illustrates a central point of this paper:

The property of the integrand Q̃nðv1;…; vnÞ that makes the
problem amenable to integration with TTD (ϵ-factorizabil-
ity) is orthogonal to the property thatwouldmake it amenable
to a solution with Monte Carlo sampling (positivity). In
particular, TTD works seamlessly in some situations in
which Monte Carlo fails. This is a strong incentive to revisit
problems that suffer from a strong sign problem in
Monte Carlo algorithms using the TCI algorithm.

D. Extrapolation versus interpolation

In this section, we discuss a remarkable feature of our
integrand discovered by the TCI decomposition. As men-
tioned earlier, the crucial and nontrivial property of Q̃n is
the ϵ-factorizability of the core of the function (e.g., with all
variables confined to a small pocket vi ∈ ½0; 1�), while the
factorizability at large v is easier to understand. It turns out
that this core factorization is also an excellent extrapolation
at large v (e.g., vi ∈ ½0; 8�). The factorization of Q̃n at short
times (difference) is not only possible, it is, in fact,
sufficient to approximate the whole function.

We illustrate this observation with Fig. 14, where two
calculations ofQ10 are presented. The first one (blue curve)
is simplyQ10ðtMÞ ¼

R tM
0 Q̃10, the direct hypercube integral.

At large tM, as expected, the error with respect to the
stationary value decreases quickly. The second calculation
consists in computing the integral for the hypercube
vi ≤ 15, but with a TCI approximation computed for
smaller hypercube vi ≤ tM ≤ 15, i.e., with the pivots
confined to ½0; tM�n. The second computation converges
to the equilibrium value much faster than the first one. In
summary, in order to obtain a precision of three digits, the
integration must be done on a large volume ½0; 8�n, but it is
sufficient to perform the learning part inside a volume
½0; 1�n, which is exponentially smaller with n.

E. Effect of various parameters and variants
on the convergence

We next examine the convergence of TTD for different
parameter choices and variants of the algorithm. Results for
the error ϵQ10 are summarized in Fig. 15.
We first compare the factorizability in the u, v, and w

variables given in Eqs. (49) and (56). Figure 15(a) shows
the error in the factorization of Q̃10 for the three choices
of variables, using the pivot error function ϵΠ of Eq. (23).
We observe that Q̃10ðu1;…; unÞ is not ϵ-factorizable
(green curve). As discussed above, this is likely a conse-
quence of the cusps on the boundaries between the n!
different smooth components of the function, correspond-
ing to different orderings of the ui. By contrast, the error
decreases quickly when the v variables are used, and using
the w variables gives a further reduction by 2 orders of
magnitude. The observed saturation around 10−6 is a con-
sequence of making the cutoff tM ¼ 15, as shown below.
The factorizability is the same in v and w, and it would

FIG. 14. Relative error with respect to the Bethe ansatz for
Q10ðtMÞ ¼

R tM
0 Q̃10 and

R
15
0 Q̃extra

10 , versus tM. Q̃extra
10 is the

extrapolation of the TCI of Q̃10 obtained for vi ≤ tM. We used
Gauss-Kronrod rule with 63 points for the integration. The error
saturates at 10−5 due to the discretization error.

(a)

(b)

FIG. 13. (a) Upper: error of Q10 versus χ in the SIAM model,
for different ϵd. Gauss-Kronrod integration is used with d ¼ 31
points for ϵd ¼ 2; 0;−0.3 and d ¼ 255 points for ϵd ¼ −2;−4.
(b) Lower: the same error, but for fixed χ ¼ 50, varying η10.
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provide the same approximation if the same pivots had
been selected. The use of w clearly produces better pivots.
Figure 15(d) establishes that using the error function ϵenvΠ

defined in Eq. (30) removes the need for introducing a
problem-dependent change of variable w. We use this
function for all computations in this paper, unless otherwise
specified.
Figure 15(b) illustrates that the discretization of the one-

dimensional integrals limits the overall accuracy. The
different curves are essentially on top of each other until
the number of points becomes a limitation in the precision.
The closeness of the curves before this limit is reached
suggests a robustness relative to the precise position of the
pivots, which are different for the different curves, since
they are chosen from different grids. We also see that, for
this model, Gauss-Kronrod integration has slightly better
convergence properties than Chebyshev integration and has
the additional advantage of providing a built-in estimate of
the integration error. We have also tried Gauss-Legendre
quadrature rules (not shown), with similar convergence to
Gauss-Kronrod.
In Fig. 15(e), we show the error of the steady state value

with respect to the maximum time tM, since the interaction

is switched on in the Keldysh formalism. A large choice of
tM is required for high accuracy. We note that increasing tM
may also require increasing d to maintain the accuracy of
one-dimensional integrals.
In Fig. 15(c), we test the effect of using the alternate

search and full search pivot selection methods, defined in
Sec. III B 3. We find no significant difference in the result,
so for all calculations in this paper we use the alternate
search approach, which has computational complexity
∝ nχ2d rather than ∝ nχ2d2.
Figure 15(f) illustrates the robustness of the TCI algo-

rithm with respect to different criteria to accept pivots. We
introduce a pivot acceptance condition: We accept a new
pivot only if the error ϵΠ is above a given threshold, i.e., not
adding pivots that improve the error only marginally.
Figure 15(f) shows the convergence for two different levels
for this threshold as well as a dynamical algorithm where
the threshold is fixed to 1% of the current typical pivot error
ϵΠ. We observe no significant effect. For very large bond
dimensions (χ > 103), where the contraction of the tensor
train might require a significant computing time, using such
a condition might become useful. However, for the rather
small values of χ used in this article, the gain is marginal.

FIG. 15. Convergence with respect to the tensor rank χ of the ten-dimensional integral Q10, for the SIAM model. All panels show the
relative error ϵQ10 ¼ jQ10ðχÞ=QBethe

10 − 1jmeasured against the Bethe ansatz solution versus the bond dimension χ. (a) Comparison of the
choices of variables u, v, and w. (b) Comparison of different one-dimensional quadrature rules of d nodes: Gauss Kronrod (GKd) and
Chebyshev (CHd). (c) Comparison of different pivot selection algorithms, full search and alternate search, defined in Sec. III B 3, and
the weighted learning variant defined in Sec. III B 5. (d) Effect of using ϵΠ (23) or ϵenvΠ (30) as the error function in the pivot selection.
(e) Saturation of the error due to the maximum time cutoff tM. (f) Absence of a dependence on the pivot acceptance condition;
see the text.
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VII. PRELIMINARY STUDIES BEYOND
THE SINGLE-IMPURITY MODEL

The next step, after the benchmarks on a single-impurity
model, is to generalize the TTD method to more complex
systems like multisite and lattice models and to other
perturbative expansions. In this section, we take the first
steps in this direction with two preliminary studies which
indicate that the ϵ-factorizability property is robust beyond
a single-site model in a flat bath.

A. Single impurity embedded
in a two-dimensional lattice

We first consider a single-site model with a more
complex bath than the SIAM: an infinite 2D lattice in
which a single site is interacting, defined in Sec. IV B 2. As
a result of the band edges, the noninteracting Green’s
functions have strong oscillations at a frequency set by the
bandwidth (see lower panels in Fig. 6), so g<ðtÞ ∼
cosð4tÞ=t is both highly oscillatory and slowly decaying.
The upper panels in Fig. 16 show a one-dimensional

slice of the integrand Q̃5, demonstrating strong oscillations

with several harmonics ofω0 ¼ 4 present. Such a calculation
would be very challenging for Monte Carlo approaches [25].
Nevertheless, the TCI approximation, also shown in Fig. 16,
works well, indicating ϵ-factorizability despite the strong
oscillations (note, however, that χ ¼ 150).
In the lower panels in Fig. 16, we show the first 15

coefficients of the interaction expansion of the charge. The
rapid oscillation and slow decay of the integrand is so
severe that even the calculation of the one-dimensional
integrals in TTD is nontrivial. While for the SIAM a small
cutoff tM ¼ 15 is sufficient to obtain several digits of
accuracy, we find in this case that tM ¼ 10000 is required to
go beyond two digits or even a single digit at large n. To
perform these one-dimensional integrals efficiently, we use
a specifically tailored quadrature rule, described in
Appendix I, which makes use of an asymptotic expansion
of the integrand. The interval of integration is broken into a
short time region [0, 10], on which we use a 63-point
Clenshaw-Curtis rule, and a large time region ½10; tM�, on
which the custom quadrature rule is used. We note that the
slow decay with tM is specific to the T ¼ 0 case. We check
that, at a higher temperature T ¼ 0.1, convergence is
reached for a much smaller tM ≈ 10 (not shown).
However, the factorizability appears to be independent
of temperature.

B. Double quantum dot

We next consider a double quantum dot, i.e., with two
interacting sites. This system plays a central role in various
approaches to semiconducting qubits. Apart from its
intrinsic importance in mesoscopic physics, it is the
simplest case in which the perturbative expansion involves
sums over both spatial indices xi ∈ f0; 1g and time
differences vi, since Q̃nðx1;…; xn; v1;…; vnÞ now depends
on both. It is, therefore, a good starting point from which to
extend the TTD to a function of space and time.
We first emphasize that there are multiple ways to

include spatial indices in the tensor network form. Our
goal is to find the one with the lowest rank χ and the best

FIG. 16. One interacting site in an infinite two-dimensional
lattice. Upper: integrand Q̃5ðv1; v2; v3; v4; v5Þ versus v3 for a
random choice of the values v1, v2, v4, and v5. The right panel
enlarges the tail. Actual integrand (orange curve) and TTD
approximation at χ ¼ 150 (blue circles) are both shown. Lower:
jQnj versus n for three values of the maximum time, tM ¼ 10
(stars), tM ¼ 100 (pluses), and tM ¼ 10000 (circles). Blue (red)
symbols correspond to positive (negative) values of Qn.

FIG. 17. Three different factorizations used for the double
quantum dot problem. From top to bottom: vertex factorization,
time factorization, and full factorization.
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convergence rate with N. We study three possibilities,
depicted in Fig. 17. Corresponding results are presented
in Fig. 18.
First, we can take T tensors that depend on both a spatial

and a time variable, Tαðxα; vαÞ (first line in Fig. 17). We
refer to this approach as vertex factorization, since the
factorization is done vertex by vertex. The computational
cost is increased only by a factor of 2 compared to the
SIAM and scales linearly with the number L of dots (L ¼ 2
here), as ∝ Ld. In Fig. 18 (orange curve), we observe that
this method converges quite quickly, as 1=N, but more
slowly than the SIAM, which is 1=N2.
Second, we can fix the spatial indices x1;…; xn and use

TTD for the times (second line in Fig. 17). We refer to this
approach as time factorization. After integrating over times,
we obtain an intermediate function Q̂nðx1;…; xnÞ given by

Q̂nðx1;…; xnÞ≡
Z Y

i

dviQ̃nðx1;…; xn; v1;…; vnÞ: ð61Þ

The summation over the xi can be carried out in two ways.
We can explicitly simply sum over the Ln combinations,
with an exponential computational scaling ∝ Lnd, which is

manageable for L ¼ 2. In Fig. 18 (green curve), we observe
that this method converges as 1=N2, like the SIAM. We
also observe this convergence rate for each fixed set of
spatial indices xi. Alternatively, we can use TCI again on
the spatial variables to factorize Q̂n. We find (not shown)
that this approach also converges. However, for the small
value L ¼ 2, the Q̂ tensor is not large enough to draw a
definite conclusion on the performance of this technique for
large L.
Third, we can use an MPS form, with alternating v and x

variables (third line in Fig. 17). The computational cost of
this approach is essentially the same as that for the SIAM,
with d replaced by Lþ d. In Fig. 18 (blue curve), we
observe that this method converges more slowly with N—
only slightly faster than 1=

ffiffiffiffi
N

p
—indicating that the “entan-

glement” between space and time variables has a nontrivial
structure, which is not captured efficiently by this simple
tensor train.
Thus, various tensor forms can be used to apply TTD to

the double or multiple dots. The three methods presented
here are all convergent, but with different rates, and for
this example vertex factorization is the most efficient.
However, many further possibilities could be explored,
e.g., using spatial position differences, different orderings
of the variables in the MPS, or a PEPS generalization of the
tensor form in space-time. The search for an optimal tensor
form for the lattice case is an interesting open question
which we leave for future work.

VIII. CONCLUSION

Tensor network methods offer a new approach to high-
dimensional integration and, in particular, to computing
high-order diagrammatic perturbative expansions. The
n-body (bare) correlation functions have a mathematical
structure that allows a parsimonious representation in term
of a tensor network, which can be efficiently obtained using
the TCI algorithm. While a naive direct integration in n
dimensions would scale exponentially with n, the TCI
algorithm can reveal the underlying structure and perform
the sum in a number of calls of the integrand that scales
linearly with n. We illustrate this approach for quantum
impurity models (single and double dots) within the
real-time Schwinger-Keldysh formalism, with high-
precision benchmarks. It significantly outperforms pre-
vious Monte Carlo and quasi-Monte-Carlo methods. In
particular, it is insensitive to the infamous sign problem
appearing in parameter regimes in which the integrals are
highly oscillatory. Furthermore, it allows calculations of the
full time dependency and of the effect of a time-dependent
coupling constant, at negligible additional cost.
The main open question at this stage is the generality of

the ϵ-factorizability property and its potential application to
other diagrammatic techniques, e.g., for multiorbital or
lattice models, imaginary time perturbative expansions, and

FIG. 18. Double quantum dot. Upper: error of Q10 versus χ for
the three algorithms introduced in the text. The reference value
Qref

10 is obtained using the time factorization algorithm. Lower:
jQnj versus n, obtained using the vertex factorization algorithm.
Blue (red) symbols correspond to positive (negative) values
of Qn. We use γ0 ¼ 0.5Γ and tM ¼ 15.
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inchworm algorithm in real or imaginary time [45–50]. For
example, it is necessary to investigate whether a simple
MPS is sufficient to handle the lattice case (with spatial and
time indices), or whether a more sophisticated tensor
network like PEPS is needed.
We point out, more generally, that the limiting factor of

the TCI approach (i.e., the rank of the ϵ-factorization) is
entirely orthogonal to that of sampling methods like
Monte Carlo (the sign problem). This suggests reexamining
various cases (e.g., partition function calculations) which
are known to be limited by the sign problem when
Monte Carlo methods are used.
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APPENDIX A: SCHUR COMPLEMENT

Two important components of this article (the cross
interpolation formula and the principal minor algorithm)
are based on the concept of Schur complement [51] that we
recall here briefly for completeness. We consider an
arbitrary matrix A that we put in a 2 × 2 block form:

A ¼
�
A11 A12

A21 A22

�
: ðA1Þ

It is straightforward to show that, provided the A11 block is
invertible, one has

�
1 0

−A21A−1
11 1

��
A11 A12

A21 A22

��
1 −A−1

11A12

0 1

�

¼
�
A11 0

0 A22 − A21A−1
11A12

�
; ðA2Þ

from which we obtain that

detA ¼ det½A11� det½A22 − A21A−1
11A12�: ðA3Þ

The matrix A22 − A21A−1
11A12 is called the Schur comple-

ment of Awith respect to the 11 block. We refer to Eq. (A3)
as the Schur complement theorem. The 11 block is referred
to as the “pivot.”

APPENDIX B: PROPERTIES OF THE CROSS
INTERPOLATION

1. Proof of property (P2)

We begin with the proof of the property (P2) introduced
in the main text, i.e., that if a matrix A is of rank r, then a
cross interpolation with χ ¼ r is exact. Let us consider an
arbitrary point ðx0; y0Þ and form the ðrþ 1Þ × ðrþ 1Þ
block matrix by adding one row and one column to the
pivot matrix AðI ;J Þ:

�
AðI ;J Þ AðI ; y0Þ
Aðx0;J Þ Aðx0; y0Þ

�
: ðB1Þ

This submatrix of A has a vanishing determinant. Since the
determinant of the pivot matrix is nonzero, applying
Eq. (A3) to Eq. (B1) gives

Aðx0; y0Þ − Aðx0;J ÞAðI ;J Þ−1AðI ; y0Þ ¼ 0; ðB2Þ

which proves property (P2) using (P1).

2. Link between the pivot error and the volume
of the pivot matrix

The construction of the previous subsection can also be
used to show that, when adding a new pivot to a cross
interpolation, looking for the pivot that maximizes the error
of the approximant is equivalent to trying to maximize the
volume of the new pivot matrix. Indeed, suppose that we
have a pivot matrix AðI ;J Þ and we want to enlarge it with
a new pivot ðx0; y0Þ. Using Eq. (A3), the determinant of the
new pivot matrix reads

���� det
�

AðI ;J Þ AðI ; y0Þ
Aðx0;J Þ Aðx0; y0Þ

�����
¼ j detAðI ;J Þj × jAðx0; y0Þ
− Aðx0;J ÞAðI ;J Þ−1AðI ; y0Þj: ðB3Þ

Since detAðI ;J Þ is fixed, it follows that maximizing
the volume of the pivot matrix (left-hand side of
the above equation) is equivalent to finding the pivot
ðx0; y0Þ where the error of the approximant jAðx0; y0Þ −
Aðx0;J ÞAðI ;J Þ−1AðI ; y0Þj is the largest.

3. Stable QR decomposition for tensor
train contractions

During the evaluation of the tensor train approximant,
one needs to evaluate expressions of the form TαðuαÞP−1

α .
As the tensor train approximation becomes better, the
volume of the pivot matrices becomes smaller so that an
expression of this type, although mathematically well
defined, eventually become numerically unstable. Let us
consider the Tαði; uα; jÞ tensor as a matrix Tα of χ × d rows
indexed by ði; uαÞ and χ columns indexed by j. The nesting
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condition guarantees that the pivot matrix Pα is, in fact, a
submatrix of Tα. Using this structure, we perform a QR
decomposition of the Tα matrix, and we get

Tα ¼
�
Pα

T 0
α

�
¼

�
Q

Q0

�
R; ðB4Þ

where T 0
α contains all the rows of Tα that are not in Pα. The

diagonal of the triangular R matrix contains potentially
very small values, while the matrices Q and Q0 (which
together form a unitary matrix) are well conditioned. Using
this decomposition, the product TαP−1

α can be computed
explicitly without usage of the R matrix:

TαP−1
α ¼

�
1

Q0Q−1

�
: ðB5Þ

APPENDIX C: ROLE OF THE NESTING
CONDITION IN TCI

1. Proof of the interpolation property

In this appendix, we show that the nesting condition
(17a) and (17b) implies that the TCI form is a proper
interpolation of the tensor A as given by Eq. (18). The proof
is done in four steps (I)–(IV).

(I) We note that the nesting property (17a) implies

Iα ⊂ Iα−1 ⊕ Kα; ðC1Þ

Iα ⊂ Iα−2 ⊕ Kα−1 ⊕ Kα; ðC2Þ

Iα ⊂ I0 ⊕ K1 ⊕ … ⊕ Kα: ðC3Þ

In other words, one can see an element of Iα as an
element of Ip for p < α concatenated with some u
values. Similar relations apply for J .

(II) We reinterpret the three indices tensor Tα by
regrouping the left and u index, to obtain a matrix

TðLÞ
α of indices Iα−1 × Kα and J αþ1. This matrix is,

in general, rectangular. Because of the nesting
condition, a subset of its row indices is, in fact,

Iα, and the restriction of TðLÞ
α to these rows is Pα

from the definition of T and P (14). Similarly, we

introduce TðRÞ
α by regrouping the u index and the

right index, to obtain a matrix of indices Iα−1 and
Kα × J αþ1, and we have

TðLÞ
α ðIα;J αþ1ÞP−1

α ðJ αþ1; I 0
αÞ ¼ δðIα; I 0

αÞ; ðC4Þ

P−1
α−1ðJ α; Iα−1ÞTðRÞ

α ðIα−1;J 0
αÞ ¼ δðJ α;J 0

αÞ; ðC5Þ

where δðIα; I 0
αÞ and δðJ α;J 0

αÞ are identity
matrices.

(III) Wewrite the TCI in the following form, with implicit
contraction over repeated indices Iα and J α, which
highlights the role of the different sets of indices:

ATCIðu1;…; unÞ ≈ T1ðI0; u1;J 2ÞP−1
1 ðJ 2; I1Þ

× T2ðI1; u2;J 3ÞP−1
2 ðJ 3; I2Þ

× T3ðI2; u3;J 4ÞP−1
3 ðJ 4; I3Þ…:

ðC6Þ

(IV) We now fix one value of α and evaluate the TCI
form on the pivot indices and uα, as in Eq. (18).
Our goal is to show that the T and P on the left and
on the right of Tα cancel. For any multi-index
ðu�1;…; u�α−1Þ ∈ Iα−1 and ðu�αþ1;…; u�nÞ ∈ J αþ1,
we evaluate ATCI:

ATCIðu�1;…; u�α−1; uα; u
�
αþ1;…; u�nÞ

¼ TðLÞ
1 ðu�1;J 2ÞP−1

1 ðJ 2; I1Þ
× TðLÞ

2 ðI1 ⊕ u�2;J 3ÞP−1
2 ðJ 3; I2Þ � � �

TðLÞ
α−1ðIα−2 ⊕ u�α−1;J αÞP−1

α−1ðJ α; Iα−1Þ � � �
TαðIα−1;Kα;J αþ1Þ

× P−1
α ðJ αþ1; IαÞTðRÞ

αþ1ðIα; u�αþ1 ⊕ J αþ2Þ � � �
P−1
n−2ðJ n−1; In−2ÞTðRÞ

n−1ðIn−2; u�n−1 ⊕ J nÞ
× P−1

n−1ðJ n; In−1ÞTðRÞ
n ðIn−1; u�nÞ: ðC7Þ

Using Eq. (C4), the first line reduces to δðI1; u�1Þ;
hence, the second line becomes TðLÞ

2 ððu�1; u�2Þ;J 3Þ ×
P−1
2 ðJ 3; I2Þ ¼ δðI2; ðu�1; u�2ÞÞ since ðu�1; u�2Þ ∈ I2.

The TðLÞ cancel telescopically from the left until Tα.
The same happens from the right, and we obtain
finally

ATCIðu�1;…; u�α−1; uα; u
�
αþ1;…; u�nÞ

¼ Tαðu�1;…; u�α−1; uα; u
�
αþ1;…; u�nÞ

¼ Aðu�1;…; u�α−1; uα; u
�
αþ1;…; u�nÞ; ðC8Þ

where we use the definition of T (14) in the last line.
This is exactly Eq. (18).

2. Proof of Eq. (24)

Here we prove Eq. (24), i.e., that the error between
the Π tensor and its cross interpolation is equal to the
global error of the TCI of A on the corresponding subset of
points. Let us define AΠα

TCI by the TCI form in which the
product TαP−1

α Tαþ1 is replaced by Πα in Eqs. (C6) and
(C7). In other words, we keep Πα whole and factorize
only the other degrees of freedom. The proof of

YURIEL NÚÑEZ FERNÁNDEZ et al. PHYS. REV. X 12, 041018 (2022)

041018-22



Appendix C 1 can be straightforwardly extended to show
that, ∀ ðuα; uαþ1Þ ∈ Kα × Kαþ1,

ATCIðIα−1; uα; uαþ1;J αþ2Þ ¼ TαðuαÞP−1
α Tαþ1ðuαþ1Þ;

AΠα
TCIðIα−1; uα; uαþ1;J αþ2Þ ¼ ΠαðIα−1; uα; uαþ1;J αþ2Þ

¼ AðIα−1; uα; uαþ1;J αþ2Þ;

where the last line is due to Eq. (20). From the definition of
the error function (23), we get

ϵΠði; uα; uαþ1; jÞ ¼ jA − ATCIjði; uα; uαþ1; jÞ ðC9Þ

for i ∈ Iα−1, uα ∈ Kα, uαþ1 ∈ Kαþ1, and j ∈ J αþ2.

3. Canonical form and the nested condition

We end this appendix with a short remark. In analogy
with the same standard notations in the DMRG literature,
we introduce the mixed canonical forms of the TCI
approximation. Noting

B⃗αðuÞ ¼ TαðuÞP−1
α ; ðC10Þ

B⃖αðuÞ ¼ P−1
α−1TαðuÞ; ðC11Þ

the TCI approximation can be written in the mixed
canonical form centered around Tβ:

ATCIðu1;…; unÞ ¼
Yβ−1
α¼1

B⃗αðuαÞTβðuβÞ
Yn

α¼βþ1

B⃖αðuαÞ: ðC12Þ

In this form, the interpolation property (P1) is the direct
analog of the norm computation of a canonical MPS [52]:
When Eq. (C12) is evaluated on the elements of the T
tensor, the product of B matrices telescopically reduces to
identity.

APPENDIX D: FAST SUMMATION OVER
KELDYSH INDICES

The calculation of the integrand Q̃nðuiÞ amounts to
summing up 2n determinants of size ð2nþ 1Þ × ð2nþ 1Þ
[25]. These determinants factorize into products of a n × n
with a ðnþ 1Þ × ðnþ 1Þ determinant in the case con-
sidered in this article. A naive calculation of a determinant
requires a computing time ∝ n3 so that the overall com-
putational price of one call to the integrand is 2nn3.
Reference [42] proposes an algorithm to calculate all the
principal minors of a n × n matrix M (the determinants of
all the submatrices ofM) at a much smaller cost of 2n. This
algorithm was later adapted to speed up both imaginary and
real-time diagrammatic quantum Monte Carlo calculations
[43]. Here, we propose an algorithm that is equivalent to the
one developed in Ref. [43] yet does not require the use of
nilpotent polynomials and as a result is perhaps more

transparent. We also discuss the techniques used to avoid
numerical instabilities or loss of precision.

1. Algorithm

The problem can be formulated as follows. Let
gða; α; a0;α0Þ be a (Green) function that depends on the
Keldysh indices a; a0 ∈ f0; 1g and on all the other degrees
of freedom (time, space, and possibly spin, orbitals, etc.)
labeled collectively as the α; α0 variables. Let ai (αi) be a list
of n values of the Keldysh (other variables). Calculating the
integrand Q̃ðα1…αnÞ amounts to performing sums of the
form

Q̃ ¼
X
a1…an

ð−1Þ
P

p
ap detMfapg; ðD1Þ

where the matrix Mfaig is defined as

Mfa1a2…angij ¼ gðai; αi; aj; αjÞ: ðD2Þ

Note that Eq. (D2) defines only the first n rows and
columns. The matrix can be completed by adding more
columns and rows of arbitrary value depending on
which observables is computed. The first step of the
algorithm is to introduce a matrix M that contains all
the matricesMfapg defined in Eq. (D2) as submatrices.M
is obtained by stacking the two values of the Keldysh
indices one after the other. More precisely, using the “C”
convention where matrix indices start from zero, we write
p ¼ 2iþ a and p0 ¼ 2i0 þ a0 with a; a0 ∈ f0; 1g and i; i0 ∈
f0; 1; 2;…; n − 1g and define

Mpp0 ¼ gða; αi; a0; αi0 Þ: ðD3Þ

The first column and row of M contains the elements of g
corresponding to a1 ¼ 0, the second column and row
corresponds to a1 ¼ 1, the third to a2 ¼ 0, and so on.
The principal minor algorithm uses the Schur com-

plement (see Appendix A) to iteratively “remove”
Keldysh indices. One starts with a1. For a given value
of a1 ∈ f0; 1g, one first removes the row and column
corresponding to the other value 1 − a1. Then one uses the
Schur complement to “integrate out” the row and column
associated with a1 and define the matrix Ma1 with the
following elements:

½Ma1 �pp0 ¼ ½M�pp0 − ½M�p;a1
1

z1ða1Þ
½M�a1;p0 ðD4Þ

with

z1ða1Þ ¼ ½M�a1;a1 ðD5Þ
and p; p0 ∈ f2; 3…2n − 1g. One can continue and define
Ma1a2 ,Ma1a2a3 , etc., by integrating out a2 and then a3, etc.
We define Ma1…ak iteratively by
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½Ma1…akþ1 �pp0 ¼ ½Ma1…ak �pp0 − ½Ma1…ak �p;2kþakþ1

×
1

zkþ1

½Ma1…ak �2kþakþ1;p0 ðD6Þ

with p; p0 ∈ f2kþ 2;…; 2n − 1g and

zkþ1ða1;…; akþ1Þ ¼ ½Ma1…ak �2kþakþ1;2kþakþ1
: ðD7Þ

The coefficients ziðaiÞ are directly linked to our target
determinant:

detMfa1a2…ang ¼
Yn
i¼1

ziða1;…; aiÞ: ðD8Þ

The key remark to prove Eq. (D8) is a property of the Schur
complement (A3): If one is interested in the determinant of
a submatrixM ofM, one can equivalently either apply the
Schur complement before or after deleting the correspond-
ing rows or columns; i.e., the Schur complement commutes
with row and matrix selection as long as the Schur pivot
belongs to the submatrix. Noting M=a0a1…ap the sub-
matrix of M where one has deleted the rows and columns
corresponding to ā0 ¼ 1 − a0;…; āp ¼ 1 − ap, one has
M ¼ M=a0a1…an. Using the Schur complement theorem
(A3), one can prove iteratively that

det½M=a0a1…ap� ¼
�Yp

i¼1

ziða1;…; aiÞ
�
detMa1…ap

ðD9Þ

from which Eq. (D8) follows.
With these notations, the algorithm reads as follow. One

initializes the algorithm with a1a2…an ¼ 00…0 and con-
struct the list of matrices M0;M00;…;M00…0 as well as
the associated list of weights z1ð0Þz2ð0Þ…znð0Þ. Then, one
iterates over the different values of a1a2…an sequentially
with the inner loop on an. At each stage, we keep the list of
matrices ðMa1 ;Ma1a2 ;…;Ma1a2…anÞ and the weights
½z1ða1Þ; z2ða2Þ;…; znðanÞ�. Upon going from one set of
Keldysh indices to the next, one uses Eqs. (D6) and (D7) to
update the matrices and weights that have changed. The
result of Eq. (D8) gives the contribution of the set
ða1; a2;…; anÞ to the integrand. One can check that the
overall computational cost is ∝ 2n.
The algorithm can also be extended straightforwardly to

compute integrands of the form

Q̃ ¼
X
a1…an

ð−1Þ
P

p
ap detMfapg detM0fapg; ðD10Þ

where Mfapg and M0fapg are two matrices of the form
defined by Eq. (D2), possibly with two different functions g
and g0. One simply performs the algorithm simultaneously
on the two matricesM andM0. The product of the result of

Eq. (D8) for the two matrices gives the contribution of the
set a1a2…an to the integrand.

2. Technical implementation

The above algorithm can be implemented in a straight-
forward way. Below, we show a simple C++ implementation
using the “armadillo” library [53]. The input of the function
EvalSum is the matrix M in Eq. (D3). We find that the
speedup of the simple implementation below against a
direct sum of determinants is a factor 15 for n ¼ 12. A more
optimized (but less transparent) version can be obtained by
preallocating the matrices or using an iterative implemen-
tation instead of a recursive one. In the implementation
used in this article (using two matrices as input M and
M0), we observe a typical speed up of a factor 40 compared
to the direct sum for n ¼ 12.

cx_mat SchurComplement(cx_mat const& M, bool a)
{

int s=M.n_rows;
cx_mat Mc(s-2, s-2);
for(int j=2;j<s;j++)
{

auto f=M(a,j)/M(a,a);
for(int i=2;i<s;i++)

Mc(i-2,j-2)=M(i,j)-M(i,a)*f;
}
return Mc;

}
cx_double EvalSum(cx_mat const& M,

cx_double r=1.0,bool sg=0)
{

if (M.n_rows<2) return sg ? -r*det(M)
: r*det(M);

cx_double sum=0;
for(int a=0;a<2;a++)
{

cx_mat Mc=SchurComplement(M,a);
sum+=EvalSum(Mc,r*M(a,a), sg!=a);

}
return sum;

}

Lastly, we mention two practical issues.
First, one call to the integrand is a summation over 2n

terms
P

ai fðaiÞ, and there is a possibility of large
cancellation between these terms resulting in a loss of
precision. To detect this problem, we compute bothP

ai fðaiÞ and the sum of absolute values
P

ai jfðaiÞj.
When these two quantities differ by many orders of
magnitude, we recompute

P
ai fðaiÞ using the higher-

precision “long double” mode.
Second, the above algorithm is not applicable if the

diagonal elementM00 vanishes, as the corresponding 1 × 1
Schur complement is ill defined (or ill conditioned if M00

is nonzero but very small). To address this issue for
M00 ≪ kMk, we switch to a 2 × 2 Schur complement
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and use “partial pivoting” to maximize the determinant of
the 2 × 2 matrix on which we perform the Schur comple-
ment (i.e., we reorder the matrix to maximize the magni-
tude of the incoming 2 × 2 determinant). The practical
implementation of this 2 × 2 variant is only a factor 2
slower than the 1 × 1 version.

APPENDIX E: NONINTERACTING GREEN’S
FUNCTIONS IN THE FLAT-BAND LIMIT

In this appendix, we discuss how to obtain the non-
interacting Green’s functions that form the input of the
TTD algorithm. These Green’s functions can be calculated
for arbitrary tight-binding models using approaches devel-
oped, e.g., in the Tkwant package [41]. For systems weakly
coupled to an environment, such as the quantum dots or
double quantum dots studied in this article, an excellent
approximation of this Green’s function is given by the flat-
band limit. This is the limit considered in this article. It is
very suitable for benchmarks as (i) it corresponds to the
limit for which we have the Bethe ansatz analytical solution
at ϵd ¼ 0 and (ii) the Green’s function can be written in
terms of the exponential integral special function for which
there exists machine precision implementations.
We partition our system into the “system” S (a set of

quantum dots) and an “environment” E (typically the
infinite leads). To compute the correlators of a given
noninteracting Hamiltonian H0, we need the retarded
Green’s function

gRðωÞ ¼ ðω −H0Þ−1: ðE1Þ

The one-particle Hamiltonian H0 has a 2 × 2 block
structure:

H0 ¼
�
HSS HSE

HES HEE

�
: ðE2Þ

Since we are interested only in the correlator gRSS in the SS
subblock, we can write (using the inverse by block of a
matrix; see Ref. [51])

gRSSðωÞ ¼ ½ω −HSS − ΔðωÞ�−1; ðE3Þ

where the hybridization function

ΔðωÞ ¼ lim
η→0þ

HSE
1

ω −HEE þ iη
HES ðE4Þ

contains all the effect of the bath E.
In many practical situations, the coupling of the system

to the bath is sufficiently weak that the hybridization
matrix ΔðωÞ can be considered as constant in the energy
range of interest for the system. Neglecting the fre-
quency dependence of the hybridization, we arrive at,
i.e., ΔðωÞ ≈ Γ1 − iΓ2 ¼ constant matrix which is known

as the flat-band limit. In this limit, the local Green’s
function above is given by

gRSSðωÞ ¼ Uðω −DÞ−1U−1; ðE5Þ

where U (respectively, D) are the eigenvectors (respec-
tively, eigenvalues) of the effective Hamiltonian

Heff ¼ HSS þ Γ1 − iΓ2 ¼ U ·D ·U−1: ðE6Þ

Note that Heff is not Hermitian and the eigenvalues D are
complex, in general.
Once the retarded Green’s function is known in the

energy domain, we can obtain the lesser and greater
Green’s functions in real time. At thermal equilibrium
and zero temperature, the lesser and greater Green’s
functions are given by,

g≶SSðtÞ ¼
∓i
π

Z
dω expð−iωtÞθð∓ωÞImgRSS; ðE7Þ

where Im stands for the imaginary part.
Since in Eq. (E5) the eigenvectors U do not depend on ω

andD is a diagonal matrix, these integrals can be computed
explicitly:

g≶SSðtÞ ¼
1

2π
½UI≶ðD; tÞU−1 −U�I≶ðD�; tÞðU−1Þ��;

g<SSð0Þ ¼
−i
π
ImfU½logð−DÞ þ iπsgðImDÞ�U−1g;

g>SSð0Þ ¼ −
i
π
ImfU logð−DÞU−1g ðE8Þ

with

I≶ða; tÞ ¼ expð−iatÞfE1ð−iatÞ
� 2πisgðtÞθ½−ImðatÞ�θ½∓ReðaÞ�g; ðE9Þ

where E1ðzÞ ¼
R∞
z dt expð−tÞ=t is the exponential-integral

function E1 (see Ref. [54]), sgðxÞ is the sign function, and
θðxÞ is the Heaviside step function with θð0Þ ¼ 1=2.

1. Single quantum dot (SIAM)

For a single quantum dot, the effective Hamiltonian
matrix becomes a scalar Heff ¼ ϵd − iΓ yielding to

g≶SSðtÞ ¼
1

2π
½I≶ðϵd − iΓ; tÞ − I≶ðϵd þ iΓ; tÞ�;

g<SSð0Þ ¼
−i
π
Im½logð−ϵd þ iΓÞ þ iπsgð−ΓÞ�;

g>SSð0Þ ¼ −
i
π
Im logð−ϵd þ iΓÞ: ðE10Þ
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This expressions form the inputs for our SIAM benchmark.
All the energies (times) are measured in units of Γ (1=Γ).

2. Double quantum dot

We also consider a double quantum dot with local
Hamiltonian matrix

HSS ¼
�

0 γ0

γ0 0

�

and hybridization function

ΔðωÞ ≈ −i
�Γ 0

0 Γ

�
;

leading to

Heff ¼
�−iΓ γ0

γ0 −iΓ

�
¼ U ·D · U−1; ðE11Þ

U ¼
�−1 1

1 1

�
; D ¼

�−iΓ − γ0 0

0 −iΓþ γ0

�
: ðE12Þ

In our example, we use γ0 ¼ 0.5Γ and apply Eq. (E8) to
compute the noninteracting Green’s functions. All the
energies (times) are measured in units of Γ (1=Γ).

APPENDIX F: NONINTERACTING GREEN’S
FUNCTIONS IN 2D LATTICE

Here, we calculate the noninteracting Green’s func-
tion for a particle in an infinite two-dimensional lattice
used in Sec. VII A. The noninteracting Hamiltonian reads
(omitting the spin index, since the problem is diagonal in
spin)

H0 ¼
X
hiji

c†i cj ðF1Þ

with sum over nearest neighbors.

1. Explicit summation in momentum space

The dispersion relation of H0 is Ek ¼ 2 cos kx þ
2 cos ky. Since the corresponding velocities v⃗ ¼ ∂E=∂k
are bounded by 2 in both spatial directions, it follows that
it is enough to consider a finite lattice of length L > 2t to
calculate the Green’s function without finite size effects.
Hence, we consider a system of L × L sites with periodic
boundary conditions. It can be diagonalized using the
operators fdkg in the momentum basis

ci ¼
1

L

X
k

eik·ridk; ðF2Þ

where ri is the lattice position of site i and k ¼ ðkx; kyÞwith
kx;y ¼ ð2π=LÞκx;y, and κx;y ¼ 0; 1;…; L − 1. In Heisenberg
representation, we simply have dkðtÞ ¼ e−iEktdk. It follows
that the lesser and greater Green’s functions in real time
at i, j are given by

g<ijðtÞ ¼
i
L2

X
k

eiðk·rij−tEkÞfFDðEkÞ; ðF3Þ

g>ijðtÞ ¼
−i
L2

X
k

eiðk·rij−tEkÞf̄FDðEkÞ; ðF4Þ

where rij ¼ ri − rj ¼ ðx; yÞ is the position difference
with x; y ∈ Z, fFDðEÞ ¼ 1=½eβðE−μÞ þ 1� is the Fermi-
Dirac distribution, f̄FDðEÞ ¼ 1 − fFDðEÞ, β is the inverse
of the temperate, and μ is the chemical potential. In
practice, we compute the sum above for L ¼ 500 and
i ¼ j ¼ 0 for the single impurity in a lattice problem.

2. Thermodynamic limit

For L → ∞, the previous expression for g<ijðtÞ can be
written as

g<xyðtÞ ¼
i

ð2πÞ2
Z

π

−π
dkx

Z
π

−π
dkyeiðk·rij−tEkÞfFDðEkÞ: ðF5Þ

At zero temperature, the Fermi function can be expanded as
a Fourier integral:

lim
β→∞

fFDðEÞ ¼ θð−EÞ ¼ i
2π

Z
dw

wþ i0þ
eiwE; ðF6Þ

which allows one to decouple the two integrals on kx and ky
in Eq. (F5). Using the definition of the Bessel’s functions
(for n ∈ Z) [see Eq. (10.9.2) in Ref. [54]],

Z
π

−π
dkeiðkn−x cos kÞ ¼ ð−iÞn2πJnðxÞ; ðF7Þ

we arrive at

g≶xyðtÞ ¼ ∓ð−iÞxþy

2π

�Z
� dw

w
Jxð2t∓ 2wÞJyð2t∓ 2wÞ

þiπJxð2tÞJyð2tÞ
�
; ðF8Þ

where the last integral represents its Cauchy princi-
pal value.

APPENDIX G: CALCULATION OF THE
INTEGRAL IN THE SIMPLEX DOMAIN

The calculation of the integral in the simplex domain Su,
0 ≤ un ≤ un−1…u1 ≤ t is not as straightforward as the
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hypercube integration and requires an iterative algorithm
that we now explain. The multidimensional integral (42)
over the simplex in u variables has the explicit form

QnðtÞ ¼
Z

t

0

λðu1Þdu1…
Z

un−2

0

λðun−1Þdun−1

×
Z

un−1

0

λðunÞdunQ̃nðu1;…; unÞ: ðG1Þ

Since the TTD approximation is performed in the v
variables, our approximation reads

Q̃nðu1; u2;…; unÞ ≈ T1ðt − u1ÞP−1
1 T2ðu1 − u2ÞP−1

2

…P−1
n−1Tnðun−1 − unÞ: ðG2Þ

The integrals over the u variables are performed one by one
starting with un and ending with u1. The un variable is
present only in the last tensor Tn. We perform the
corresponding one-dimensional integral. Defining

ΨnðxÞ≡
Z

x

0

dyλðyÞTnðx − yÞ; ðG3Þ

we find that

QnðtÞ ≈
Z

t

0

λðu1Þdu1…
Z

un−2

0

λðun−1Þdun−1T1ðt − u1ÞP−1
1

× T2ðu1 − u2ÞP−1
2 …Tn−1ðun−2 − un−1Þ

× P−1
n−1Ψnðun−1Þ: ðG4Þ

We continue with the one-dimensional integral over un−1
which is present only in the terms Tn−1ðun−2 − un−1Þ×
Ψn−1ðun−1Þ. Defining for p < n

ΨpðxÞ≡
Z

x

0

dyλðyÞTpðx − yÞP−1
p Ψpþ1ðyÞ; ðG5Þ

we find that

QnðtÞ ≈
Z

t

0

λðu1Þdu1…
Z

un−3

0

λðun−2Þdun−2T1ðt − u1ÞP−1
1

× T2ðu1 − u2ÞP−1
2 …Tn−2ðun−3 − un−2Þ

× P−1
p−2Ψn−1ðun−2Þ: ðG6Þ

We continue to perform the integrations one by one until we
arrive at the final integration

QnðtÞ ≈
Z

t

0

λðu1Þdu1T1ðt − u1ÞP−1
1 Ψ2ðu1Þ ¼ Ψ1ðtÞ: ðG7Þ

In practice, the above algorithm requires the precise
knowledge of the Ψpðup−1Þ functions. We use precise
Chebyshev interpolants of the TnðvnÞ matrices and

Ψpðup−1Þ vectors to define the right-hand side of
Eqs. (G3) and (G5) in terms of large-order polynomials
whose primitive is known exactly. The result is projected
again on Chebyshev polynomials. It is important to note
that the last integral (G7) provides the entire t dependence
ofQnðtÞ and that it is a posttreatment calculation that can be
performed for any time-dependent switching on of the
interaction λðtÞ.

APPENDIX H: CALCULATION OF THE
SIMPLEX INTEGRAL USING

FOURIER TRANSFORM

As an alternative to the integration in u variables in the
simplex domain discussed in Appendix G, the multidi-
mensional integral can be as well calculated in the variables
v [defined in Eq. (49)], together with the domain condition
(50a) and (50b). Note that this alternative route is defined
only for the abrupt switching of the interaction λðtÞ ¼ θðtÞ
and cannot be generalized to arbitrary functions λðtÞ. In the
v variables, the integral in Eq. (42) is essentially a
multidimensional convolution:

QnðtÞ ¼
Yn
α¼1

Z
t

0

dvαθ

�
t −

Xn
i¼1

vi

�
Q̃nðv1;…; vnÞ; ðH1Þ

where θðxÞ is the Heaviside step function. The Fourier
representation of the Heaviside function,

θðtÞ ¼ lim
ϵ→0þ

Z
∞

−∞

dω
2πi

eiωt

ω − iϵ
; ðH2Þ

can be used to remove the constraints on the v variables.
Using the tensor train factorization approximation in
Eq. (51) for Q̃nðv1;…; vnÞ, one can write Eq. (H1) as

QnðtÞ ≈
Z

∞

−∞

dω
2πi

eiωt

ω − i0þ
Yn
α¼1

Z
t

0

dvαe−iωvαTαðvαÞP−1
α :

ðH3Þ
With ðx� i0þÞ−1 ¼ ∓iπδðxÞ þ p:v:ð1=xÞ, where p.v.
stands for the principal value, one arrives at

QnðtÞ ¼
q̃nð0Þ
2

þ
Z
�

∞

−∞

dω
2πiω

eiωtq̃nðωÞ; ðH4aÞ

q̃nðωÞ ¼
Yn
α¼1

Z
t

0

dvαe−iωvαTαðvαÞP−1
α : ðH4bÞ

Instead of the initial n-dimensional integral, the above
equation for q̃nðωÞ is a product of n one-dimensional
integrals, which can be computed numerically. Moreover,
the function q̃nðωÞ can be precomputed once and the
entire QnðtÞ curve obtained a posteriori by evaluating
the remaining one-dimensional integral in Eq. (H4a) for
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different values of the time t. In practice, as the integrands
in Eqs. (H4a) and (H4b) decrease fast, the integrals are cut
off at finite, large enough values of ω and v. Appropriate
quadratures [55] are used to compute the principal value
integral numerically around the pole atω ¼ 0, as well as for
the oscillatory integrals in Eqs. (H4a) and (H4b). For the
precomputation, q̃nðωÞ is interpolated using piecewise
adaptive polynomials as in Ref. [56].

APPENDIX I: EFFICIENT QUADRATURE
FOR TαðvÞ

In the case of the single impurity embedded in a two-
dimensional lattice, the tensors TαðvÞ oscillate rapidly and
decay slowly with respect to v. We present a specialized
quadrature scheme to compute them efficiently.
Since the integrand Q̃nðuiÞ is a sum of products of

noninteracting Green’s functions, we are able to character-
ize the behavior of TαðvÞ as v → ∞. For the single impurity
embedded in a two-dimensional lattice, we find empirically
that we can accurately approximate TαðvÞ by an expansion
of the type

TαðvÞ ≈
XNp

p¼0

XNn

n¼2

apn
cosð4pvÞ

vn
þ bpn

sinð4pvÞ
vn

ðI1Þ

when v > vcut, for vcut a sufficiently large cutoff. The
chosen frequencies originate from the bandwidth of the
noninteracting Hamiltonian, and the algebraic decay is
observed empirically. Np and Nn are used to control the
precision of the expansion, and in practice we observe rapid
convergence in these parameters. We therefore split the
integral into two parts:

Z
∞

0

TαðvÞdv ¼
Z

vcut

0

TαðvÞdvþ
Z

∞

vcut

TαðvÞdv: ðI2Þ

TαðvÞ typically contains only a few oscillations on ½0; vcut�,
so the first integral can be computed efficiently using a
standard Gauss-Legendre quadrature rule. For the second
integral, we use Eq. (I1) to design a custom quadrature rule,
as follows.
We describe the method for a generic collection of

functions f∶ða; bÞ → C defined as the span of N basis
functions ϕk:

fðxÞ ¼
XN
k¼1

f̂k ϕkðxÞ: ðI3Þ

The functions Tα form such a class approximately, with
ða; bÞ ¼ ðvcut;∞Þ and the basis functions ϕk given by
Eq. (I1). Given a collection xj of N sampling points for the
functions ϕk, we define the matrix Φjk ≡ ϕkðxjÞ and have
fj ≡ fðxjÞ ¼

P
N
k¼1 Φjkf̂k. If Ik ≡ R

b
a ϕkðxÞdx, then

Z
b

a
fðxÞdx ¼

XN
k¼1

Ikf̂k ¼
XN
j;k¼1

IkΦ−1
kj fj ≡

XN
j¼1

wjfj; ðI4Þ

where we define the quadrature weights wj.
The nodes xj must be chosen properly to ensure stability.

To do so, we form theM × N matrix ϕkðx̄jÞ, where fx̄jgMj¼1

is a fine grid on ða; bÞ, sufficient to accurately discretize all
of the functions ϕk. It can be shown that the nodes xj
corresponding to the pivot indices obtained by pivoted
Gram-Schmidt orthogonalization on the rows of this matrix
yield a stable quadrature rule [57]. Roughly speaking, this
procedure chooses the N most linearly independent rows of
the matrix, yielding the N most independent nodes in the
fine grid. Alternatively, we find in practice that the nodes
corresponding to the pivots of the cross interpolation of
ϕkðx̄jÞ may be used as well.
We can follow this procedure to compute a quadrature

rule for the functions Tα using the expansion (I1). In this
case, it is straightforward to write the integrals Ik in terms
of the well-known En functions:

EnðzÞ≡
Z

∞

1

e−zt

tn
dt: ðI5Þ

E1 is the exponential integral, which can be evaluated
using standard libraries [58], and EnðzÞ can then be
obtained by a simple recurrence [see Eq. (8.19.12) in
Ref. [54]]. In practice, we set vcut ¼ 10, use 63 Gauss-
Legendre nodes for the integral on ½0; vcut�, and set Np ¼ 2,
Nn ¼ 4 to obtain 15 nodes for the integral on ½vcut;∞Þ.
These 78 quadrature nodes yield 2–3 digits of accuracy in
the final result.
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