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There is growing evidence that the hydrodynamic gradient expansion is factorially divergent. We
advocate for using Dingle’s singulants as a way to gain analytic control over its large-order behavior for
nonlinear flows. Within our approach, singulants can be viewed as new emergent degrees of freedom which
reorganize the large-order gradient expansion. Wework out the physics of singulants for longitudinal flows,
where they obey simple evolution equations which we compute in Müller-Israel-Stewart-like models,
holography, and kinetic theory. These equations determine the dynamics of the large-order behavior of the
hydrodynamic expansion, which we confirm with explicit numerical calculations. One of our key findings
is a duality between singulant dynamics and a certain linear response theory problem. Finally, we discuss
the role of singulants in optimal truncation of the hydrodynamic gradient expansion. A by-product of our
analysis is a new Müller-Israel-Stewart-like model, where the qualitative behavior of singulants shares
more similarities with holography than models considered hitherto.
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I. INTRODUCTION

The past two decades have been a true golden age for our
understanding of dissipative relativistic fluids. This surge
of interest has been primarily driven by the interplay
between growing sophistication in hydrodynamic modeling
of the newly discovered quark-gluon plasma at RHIC (and
later also at LHC) [1,2] and unprecedented progress in
studying nonequilibrium phenomena with hydrodynamic
tails at strong and weak interaction strength using, respec-
tively, holography and relativistic kinetic theory [3,4].

Today the domain of relativistic hydrodynamics encom-
passes also time-dependent black hole phenomena via the
holographic fluid-gravity duality [5], neutron star modeling
in the context of gravitational wave physics [6–8], as well
as condensed matter phenomena [9], including electron
flow in graphene [10]. Furthermore, recent developments
indicate that relativistic hydrodynamics can apply also to
far-from-equilibrium situations, which is a subject of the
hydrodynamics attractors research program [11–13].
The key notion underlying relativistic hydrodynamics is

that of constitutive relations. As an effective field theory of
transport of conserved currents, the fundamental object of
interest is the expectation value of the energy-momentum
tensor Tμν. Hydrodynamic constitutive relations provide an
ansatz for this quantity as an infinite series in gradients,

Tμν ¼ EUμUν þ PðEÞðgμν þ UμUνÞ þ Πμν; ð1aÞ

Πμν ¼
X∞
n¼1

ϵnΠðnÞ
μν ; ð1bÞ

where E and Uμ (UμUμ ¼ −1) are the local energy den-
sity and the local velocity encapsulating slow degrees of
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freedom and Πμν is a gradient-expanded dissipative part of
the energy-momentum tensor. Here and in the following, ϵ
is a formal bookkeeping parameter counting the number of
gradients, and equalities involving infinite power series in ϵ
are to be understood in the sense of a formal ansatz. To
remove ambiguities in the gradient expansion (1) associ-
ated to field redefinitions, we work in the Landau frame and
hence demand that Πμν is transverse to the fluid velocity,
ΠμνUν ¼ 0. We refer the reader to Refs. [3,4] for contem-
porary reviews on relativistic hydrodynamics.
The gradient expansion (1) can be constructed as long as

the energy-momentum tensor at the spacetime point being
considered has a single real timelike eigenvector [14].
Provided that this condition is met the gradient expansion
(1) can bewritten down, and thus it is natural to askwhether it
can capture processes arbitrarily far away from global
thermal equilibrium. The answer to this question depends
crucially on whether the gradient expansion is a convergent
series. If convergent, the gradient expansion (1) can in
principle provide a full description of the underlying micro-
scopic theory as it pertains to the expectation value of the
energy-momentum tensor. If this were the case, there would
be no obstruction in obtaining an approximation to Tμν with
an error as small as desired: one just needs to truncate the
gradient expansion at a sufficiently high order. On the other
hand, if thegradient expansion is a divergent series, this is not
possible, even in principle. In this situation, the first step
becomes that of finding the optimal truncation order.
Results for highly symmetric flows obtained in recent

years have provided indications that the hydrodynamic
gradient expansion has a vanishing radius of convergence
[11,15–33]. This was further corroborated in situations with
less [34] and even without any symmetry [35]. In these
highly symmetric flows [11,15–33], as well as in other
settings [36–38], the dominant large-order behavior of the
series coefficients in question, JðnÞ, takes on a factorial-over-
power form,

JðnÞ ∼ A
Γðnþ αÞ
χnþα ; ð2Þ

where χ and α are constants. This form of the expansion
coefficients JðnÞ at large order is motivated by the work of
R. B. Dingle [39] and subsequent studies of factorially
divergent series. A key role in these considerations in played
by the parameter χ, for which Dingle introduced the term
singulant. Indeed, the remaining parameters in Eq. (2) play
no role at leading order for large n. Asymptotic expansions
of the form (2) appear supplemented by exponential cor-
rections. Such generalized series (transseries) involve intri-
cate resurgence relations between their coefficients.
In this paper, we propose to systematically apply the idea

of the singulants to the gradient expansion (1b) regardless
of the presence of any flow symmetries. This leads to the
large-order ansatz (2),

ΠðnÞ
μν ðt; x⃗Þ ∼ Aμνðt; x⃗Þ

Γ½nþ αðt; x⃗Þ�
χðt; x⃗Þnþαðt;x⃗Þ ; ð3Þ

with the singulant itself becoming a scalar field in space-
time (see also Refs. [40,41]). Again, Aμνðt; x⃗Þ and αðt; x⃗Þ
play no role at leading order at large n. Our analysis will
focus on longitudinal flows [34,42], where we explicitly
confirm the validity of the ansatz (3) in a number of
models. We will see that, in general, there will be multiple
singulants which contribute additively to Eq. (3). From the
point of view of the hydrodynamic gradient expansion
alone, singulants can be thought of as a novel emergent
phenomenon in relativistic hydrodynamics, not necessarily
related to a single contribution to the expansion at a given
order, but rather to a reorganization of the whole series.
For systems near equilibrium (or other special solutions

such as attractors), quasinormal modes describe the decay
of nonhydrodynamic degrees of freedom and the approach
to equilibrium. Far from equilibrium, however, quasinor-
mal modes can no longer be used and it is not obvious what
concept or object replaces them, if anything. We advocate
that singulants can fill this role. The reason for this is that
singulants are fundamentally nonhydrodynamic collective
fields whose contribution to the energy-momentum tensor
decays over time. To see that they are nonhydrodynamic we
note that our large-order ansatz is intimately related to the
appearance of contributions to the transseries generaliza-
tion of the hydrodynamic gradient expansion which are
nonperturbative in ϵ. In all examples considered in this
paper, the value of jχj grows after enough time has passed.
This leads to a growth in the optimal truncation order and a
decrease in the truncation error, thus gradually extending
the applicability of the hydrodynamic expansion over time.
Our results indicate that singulants (χ) provide a new

perspective on collective states of matter that complements
and connects in a novel way the existing paradigms of the
hydrodynamic gradient expansion (H) and the amplitude
expansion exemplified by linear response theory (A). This
is represented by Fig. 1. In this work, we primarily consider
the region (i), where the large-order behavior of the
gradient expansion (1) for nonlinear fluids is governed
by singulants. One of our most relevant findings is a duality
between the singulant dynamics, as computed in region (i),
and a particular linear response theory problem defined in
region (ii). Region (iii) corresponds to the realm of
linearized hydrodynamics, where one considers the gra-
dient expansion (1) for infinitesimal perturbations away
from global thermal equilibrium, but does not focus on its
large-order behavior. Finally, in region (iv), when utilizing
the three approaches—singulants, the gradient expansion,
and linear response theory—we gain complete analytic
control of the singulants. Appendix D in the Supplemental
Material provides an example of such a study [43].
This paper is organized as follows. In Sec. II, we

introduce longitudinal flows and discuss several results
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pertaining to the large-order behavior of the gradient expan-
sion (1) and singulants in this context. Then, in Sec. III,
we test the general results for longitudinal flows put forward
in Sec. II in a series of phenomenological models of the
Müller-Israel-Stewart (MIS) class. These include the Baier-
Romatschke-Son-Starinets-Stephanov (BRSSS) model [46],
the Heller-Janik-Spaliński-Witaszczyk (HJSW) model [47],
and a new model we introduce for the first time in this work.
These and related models originate from the need to have
equations of motion for relativistic fluids that give rise to
causal and stable evolutions [48,49]. In particular, the
original MIS model is the workhorse for the vast majority
of hydrodynamic simulations of quark-gluon plasma in
nuclear collisions. In three MIS-like models we consider,
we demonstrate that the singulant dynamics can be mapped
to a linear response theory problem that consists in comput-
ing the poles of a momentum-dependent sound attenuation
length γs. In Sec. IV, we explore the large-order behavior of
the gradient expansion for longitudinal flows in the context of
holography and show that, if a factorial divergence is present,
then the singulant equation of motion is also determined by
the poles of γs. Section V discusses singulants in kinetic
theory, focusing on the gradient expansion of the distribution
function.We test our analytic predictions by explicit numeri-
cal computations for Bjorken flow in the relaxation time
approximation (RTA). Section VI explores the interplay
between singulants and optimal truncation in the context
of BRSSS theory. The paper closes with a discussion of the
physical interpretation of singulants and key open problems
in Sec. VII.
Several computations supporting the results presented in

the main body of the paper have been relegated to
Supplemental Material as appendixes [43]. Appendix A
provides the demonstration of the general results intro-
duced in Sec. II, while Appendix B discusses the large-
order behavior of the gradient expansion (1) beyond
longitudinal flows in the context of MIS-like models.

Appendix C contains the detailed computation of γs in
holography. Appendix D—which has been mentioned
before—explores the large-order behavior of the gradient
expansion (1) in linearized hydrodynamics. Finally, in
Appendix E we discuss the causality and stability of the
newMIS-like model we introduced in this work, at the level
of linearized perturbations of global thermal equilibrium.

II. SINGULANTS IN LONGITUDINAL FLOWS

In this paper, we develop the paradigm put forward in the
Introduction for a particular class of fluid flows which we
refer to as longitudinal. Longitudinal flows simplify dras-
tically the technical aspects of our analysis and, at the
same time, keep intact the essential features of far-from-
equilibrium fluid dynamics. In particular, as originally
shown in Ref. [34], for longitudinal flows in MIS-like
theories it is feasible to compute the gradient expansion
(1b) numerically up to an order sufficiently large to assess
its asymptotic behavior.
A longitudinal flow in d-dimensional Minkowski space-

time is defined by singling out one spatial direction x and
demanding translational invariance and isotropy in the
hyperplane spanned by the remaining spatial coordinates

xð1Þ⊥ ;…; xðd−2Þ⊥ . This requirement implies that the nontrivial
dynamics is confined to the plane spanned by t and x,
which we refer to as the longitudinal plane. With these
symmetry restrictions, both the fluid velocity Uμ and any
two-tensor Aμν which is symmetric, transverse to Uμ, and
traceless can be parametrized in terms of a single degree of
freedom. Specifically,

Uμ
∂μ ¼ cosh u∂t þ sinh u∂x; ð4aÞ

Aμν ¼ ð2 − dÞ
�
ημν þUμUν −

d − 1

d − 2
Pμν
T

�
A⋆; ð4bÞ

where Pμν
T is the projector into the transverse hyperplane

and u, A⋆ depend solely on t and x. In this work, we
consider only longitudinal flows in conformal theories, in
such a way that Tμν is traceless. This entails that the
equation of state of the fluid is given by PðEÞ ¼ E=ðd − 1Þ
and that Πμν is also traceless. Using the energy density we
define Tðt; xÞ ¼ ½Eðt; xÞ=E0�1=d and refer to this field as the
effective temperature. In equilibrium Tðt; xÞ becomes the
temperature of the system, as determined by the equation
of state.
In a longitudinal flow, the gradient expansion (1b)

becomes a gradient expansion for Π⋆,

Π⋆ðt; xÞ ¼
X∞
n¼1

ΠðnÞ⋆ ðt; xÞϵn; ð5Þ

and the asymptotic ansatz (3) reads

FIG. 1. Hydrodynamics (H) and linear response theory (A) are
well-known techniques to study collective states of matter. Our
paper introduces in this context a new perspective based on
singulants (χ). The main text discusses the meaning of different
overlaps between these domains represented as disks.
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ΠðnÞ⋆ ðt; xÞ ∼ Aðt; xÞΓ½nþ αðt; xÞ�
χðt; xÞnþαðt;xÞ : ð6Þ

The singulant field, χðt; xÞ, controls the subleading geo-
metric correction to the leading-order factorial growth of
the gradient expansion.
In this work, we explore the gradient expansion (5) in the

context of MIS-like models (Sec. III), holography (Sec. IV),
and RTA kinetic theory (Sec. V). We note the following.

(i) In MIS-like theories, we work directly at the level of
Π⋆ and the gradient expansion (5).

(ii) In holography, we work with the gradient expansion
of the bulk metric,

gABðXÞ ¼
X∞
n¼0

gðnÞABðXÞϵn; ð7Þ

from which the gradient expansion (5) descends by
holographic renormalization. In Eq. (7), X ¼ ðr; xÞ
and r parametrizes the radial direction of the higher-
dimensional geometry. The singulant field governing
the large-order behavior of the gradient expansion (5)
follows from the singulant field governing the large-
order behavior of the gradient expansion (7):

gðnÞAB ∼ AABðXÞ
Γ½nþ αðXÞ�
χðxÞnþαðXÞ : ð8Þ

Note that we have assumed that the singulant field is r
independent. We will show that this assumption is
self-consistent in Sec. IV.

(iii) In kinetic theory, we work with the gradient ex-
pansion of the distribution function,

fðx; pÞ ¼
X∞
n¼0

fðnÞðx; pÞϵn; ð9Þ

from which the gradient expansion (5) descends by
computing the second-order moments. In Eq. (9), p
is the momentum. The singulant field governing the
large-order behavior of the gradient expansion (5)
follows from the singulant field governing the large-
order behavior of the gradient expansion (9):

fðnÞ ∼ Aðx; pÞΓ½nþ αðx; pÞ�
χðx; pÞnþαðx;pÞ : ð10Þ

In every theory being considered in this work, the exact Π⋆
can be computed in terms of the energy density E and fluid
velocityU≡Uμ

∂μ associated to a given out-of-equilibrium
state by solving a nonlinear system of integro-PDEs (partial
differential equations). This nonlinear system of integro-
PDEs is specific to the theory in question. One has the
following.

(i) In MIS-like models, it corresponds to the relaxation
equation obeyed by Πμν [cf. Eqs. (22), (25), and (32)
in Sec. III].

(ii) In holography, it corresponds to a subset of the
Einstein equations governing the higher-dimensional
bulk geometry [cf. Eq. (62) in Sec. IV].

(iii) In kinetic theory, it corresponds to the Boltzmann
equation [cf. Eq. (83) in Sec. V].

Given the hydrodynamic fields E and U, we determine the
coefficients of the gradient expansions (5), (7), and (9),
through the following systematic procedure.

(i) We introduce the bookkeeping parameter ϵ into the
nonlinear system of integro-PDEs determining Π⋆
mentioned above by means of a homogeneous
rescaling of the longitudinal plane coordinates:

t →
t
ϵ
; x →

x
ϵ
: ð11Þ

(ii) We plug in the ansatz between Eqs. (5), (7), and (9)
appropriate for the theory in question.

(iii) We solve in a small-ϵ expansion.
The end result of this procedure is a set of recursion relations
that fix the nth-order coefficient of the relevant gradient
expansion in terms of the previous lower-order ones.
Explicit examples are provided in the rest of the paper
whenever necessary. We emphasize that, once the recursion
relations have been written down, any ambiguity in the
gradient expansion associated with the usage of the con-
servation equations is removed.
The singulant equation of motion is determined by the

recursion relations, and it follows straightforwardly from
the requirement that the asymptotic ansatz (6) [Eqs. (8) and
(10)] for the coefficients of the gradient expansion (5)
[Eqs. (7) and (9)] solves the associated recursion relations
at leading order at large n. A fact that will be crucial for our
analysis is that, for a factorially divergent gradient expan-
sion, the recursion relations simplify drastically in this large
n regime. The two major simplifications taking place at
large n are the following.
(a) The recursion relations become linear, and
(b) terms in the recursion relations associated with gra-

dients of the hydrodynamic fields, E and U, drop out.
Hence, rather than being sensitive to every possible term in
the recursion relations, the singulant dynamics only
depends on a subset of dominant terms, which are char-
acterized by points (a) and (b) above.
To illustrate the general discussion of the previous

paragraph, we consider the case of MIS-like models.
The cases of holography and kinetic theory are similar
and are discussed in Secs. IV and V, respectively. In MIS-
like models, when one introduces the large-order ansatz (6)
into the recursion relations and takes the n → ∞ limit, one
finds that the recursion relations simplify to

X2
p¼0

f
μ1…μp
ðpÞ ðT;UÞ∂μ1…∂μpΠ

ðn−pÞ⋆ ∼ 0; n → ∞: ð12Þ
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In accordance with property (a), Eq. (12) is linear in Π⋆; in
accordance with property (b), the tensors f

μ1…μp
ðpÞ only

depend on the local values of the hydrodynamic fields at
the spacetime point being considered. Terms involving
gradients of these fields and/or nonlinear in Π⋆ result in
subleading contributions at large n and are therefore not
included in Eq. (12). The singulant equation of motion
follows immediately from the fact that the factorial-over-
power ansatz (6) has to solve the simplified form of the
recursion relations (12) and the observation that, at leading
order at large n, the following identity holds:

∂μ1…∂μpΠ
ðn−pÞ⋆ ∼ ð−1Þp∂μ1χ…∂μpχΠ

ðnÞ⋆ : ð13Þ

One important consequence of the linearization of the
recursion relations is that the most general large-order
behavior of a factorially divergent gradient expansion of the
form (5) [Eqs. (7) and (9)] is described by a linear
combination of contributions of the form (6) [Eqs. (8)
and (10)],

ΠðnÞ⋆ ðt; xÞ ∼
X
q

Aqðt; xÞ
Γ½nþ αqðt; xÞ�
χqðt; xÞnþαqðt;xÞ ; ð14Þ

where each χq satisfies the same equation of motion but
with different initial conditions. Note that, in every theory
being considered, the reality of the gradient expansion
coefficients appearing in the left-hand side of Eq. (14)
implies that every singulant contribution appearing in the
right-hand side is either real or accompanied by a complex-
conjugated partner. In the specific models where we
computed the gradient expansion numerically, we always
find that these complex-conjugated singulant pairs are
present. When multiple singulant contributions are present,
we refer to the one with the smallest norm as the dominant
singulant.
A complementary viewpoint on the singulant dynamics

is provided by the observation that, when upgrading the
perturbative series (5) to a transseries, the singulants weight
the nonperturbative transseries sectors,

Π⋆ ¼
X∞
n¼1

ΠðnÞ⋆ ϵn þ
X
q

e−χq=ϵ
X∞
n¼1

Π̃ðnÞ⋆;qϵn þ � � � ; ð15Þ

where the ellipsis represents possible nonperturbative
transseries sectors associated to nonlinear interactions
between different singulants χq. In the holography and
kinetic theory cases, there exist transseries analogous to
Eq. (15) for gAB and f, from which Eq. (15) descends
naturally.
The transseries approach allows for an alternative der-

ivation of the singulant equation of motion. In this alter-
native derivation, one starts with the nonlinear system of
integro-PDEs appropriate for the theory in question after

the bookkeeping parameter ϵ has been introduced but,
rather than introducing the relevant gradient expansion
among Eqs. (5), (7), and (9), one plugs in its associated
transseries ansatz and expands around ϵ ¼ 0. Demanding
that the coefficient multiplying e−χq=ϵ vanishes at leading
order in the ϵ → 0 limit gives directly the singulant equation
of motion. From this perspective, the singulant equation of
motion can be interpreted as the eikonal equation coming
from a WKB analysis of the nonlinear integro-PDE system
determining Π⋆.
As we discuss in detail in Appendix A in the

Supplemental Material [43], the procedure described in
the previous paragraph is equivalent to

(i) take the original nonlinear system of integro-PDEs
and linearize it around the zeroth-order term of the
corresponding gradient expansion,

(ii) neglect terms associated to gradients of the hydro-
dynamic fields, and

(iii) perform the replacement,

∂μ1…∂μn → ð−1Þn∂μ1χ…∂μnχ: ð16Þ

The end result of (i)–(iii) is again the singulant equation of
motion. One of the main benefits of the transseries
approach, as embodied in these three steps, is that, in
the cases of MIS-like models and holography, it allows one
to identify in a straightforward way a linear response theory
computation dual to the singulant equation of motion.
Indeed, steps (i)–(iii) are respectively equivalent to first
taking the nonlinear system of integro-PDEs that deter-
minesΠ⋆, then setting the hydrodynamic fields, T andU, to
spacetime-independent constants, T0 and U0, and finally
finding the dispersion relation for linearized perturbations
of Π⋆:

δΠ⋆ ¼ δΠ̂⋆eikμx
μ
: ð17Þ

There exists a map involving the identifications,

T0 → Tðt; xÞ; U0 → Uðt; xÞ; ikμ → −∂μχ; ð18Þ

that transforms the equations determining the dispersion
relation of the linearized perturbation (17) into the equa-
tions of motion determining the singulant dynamics. This
map is discussed in further detail in Appendix A in the
Supplemental Material [43] and we will see explicit
incarnations of it in Secs. III and IV.
A linear response theory problem that features promi-

nently in studies of nonequilibrium physics in MIS-like
theories, holography, and kinetic theory is the computation
of the modes of the system [46,50–52]. A mode is a
singularity of a retarded thermal two-point correlator in
Fourier space, and can be thought of as being located at a
frequency ω ∈ C that depends nontrivially on the spatial
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momentum k ∈ Cd−1 as determined by the dispersion
relation ω ¼ ωðkÞ. In linear response theory, hydrody-
namic modes are associated with long-lived and slowly
varying excitations such that ωðkÞ → 0 as jkj → 0, while
nonhydrodynamic modes are associated with excitations
that do not obey the latter property.
A fact that the reader should keep in mind is that the

linear response theory problem dual to the singulant
equation of motion may not correspond to a mode
computation. The reason is that, in a mode computation,
the hydrodynamic fields T and U are treated dynamically.
These two problems are therefore equivalent if and only if
the dynamics of the hydrodynamic fields decouple from the
dynamics of δΠ⋆. For general longitudinal flows, this will
be the case in the MIS-like models discussed in Secs. III B
and III C, but not in the new model introduced in Sec. III D,
nor in holography.
To conclude our overview of singulants in longitudinal

flows, we comment briefly on how singulants can be
extracted from the numerical values of the gradient expan-
sion coefficients. For illustrative purposes, we focus on a
gradient expansion of the form (5) with the large-order
behavior (14), and note that identical strategies exist for the
gradient expansions of the metric (7) and the distribution
function (9).
First, in the restricted case in which one is solely

interested in the absolute value of the dominant singulant
jχdj, it follows from the relation

jΠðnÞ⋆ j1=n ∼ n
ejχdj

; n → ∞; ð19Þ

that, asymptotically, a root-test plot of gradient expansion
coefficients results in a straight line of slope 1=ðejχdjÞ, in
such a way that jχdj is fixed once this slope is known. (If the
dominant singulant belongs to a pair invariant under
complex conjugation there are oscillations of frequency
arg χ superimposed to the linear growth; however, these
oscillations are subleading in the n → ∞ limit.) On the
other hand, if one wishes to determine the values of the
subdominant singulants as well, the best strategy is to
consider the analytical continuation of the Borel transform
of the gradient expansion. In this case, each singulant
contribution χq appears as a singularity in the Borel plane
located at ζ ¼ χq, where ζ is a complex-valued variable
used to parametrize the Borel plane throughout this paper.

III. MIS-LIKE MODELS

A. Introduction

In this section, we compute the singulants contributing to
the large-order behavior of the gradient expansion for
longitudinal flows in a class of phenomenological MIS-
like models. As mentioned in the Introduction, these are the
BRSSS model [46], the HJSW model [47], and the new

model introduced for the first time in this work. The
rationale behind these models is embedding hydrodynam-
ics in a framework compatible with relativistic causality. To
achieve this, the dissipative tensor Πμν is promoted to a set
of independent dynamical degrees of freedom obeying their
own equation of motion. While such models are inspired by
hydrodynamics, it is crucial to note that unlike hydro-
dynamics they are exact, in the sense that they are not
defined using a perturbative expansion in the number of
gradients.
Different models in this class are distinguished by the

different equation of motion obeyed byΠμν which we detail
case by case in the sections that follow; however, each case
obeys the same current conservation equations,∇μTμν ¼ 0,
which for longitudinal flows are

DE þ
�

dE
d − 1

− ð2 − dÞΠ⋆
�
ð∇ ·UÞ ¼ 0; ð20Þ

∇μE
d − 1

þ
�

dE
d − 1

þ ð2 − dÞΠ⋆
�
DUμ ¼ 0; ð21Þ

where D ¼ Uμ∇μ is a longitudinal derivative.
As a final comment, we note that the MIS-like models

we consider in this work are causal and stable at the level of
linear response around global thermal equilibrium; how-
ever, the reader should keep in mind that these are not
sufficient conditions for their causality and well-posedness
at the fully nonlinear level [49,53].

B. BRSSS model

In the BRSSS model the exact dynamical equation
governing Πμν, when specialized to longitudinal flows, is
given by

Π⋆ ¼ −ησ⋆ − τΠ

�
DΠ⋆ þ

dð∇ ·UÞ
d − 1

Π⋆
�
−
λ1
η2

ðd − 3ÞΠ2⋆;

ð22Þ

from which the series (5) can be obtained by solving the
following recursion relation:

Πð1Þ⋆ ¼ −ησ⋆; ð23aÞ

Πðnþ1Þ⋆ ¼ −τΠðU · ∂ÞΠðnÞ⋆ −
dð∂ ·UÞ
d − 1

τΠΠ
ðnÞ⋆

− ðd − 3Þ λ1
η2

Xn
m¼1

ΠðmÞ⋆ Πðnþ1−mÞ⋆ ; n > 1: ð23bÞ

This recursion relation is solved at large orders by the
factorial-over-power ansatz (14), provided the singulant
equation is obeyed:
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Dχqðt; xÞ ¼
1

τΠ(Tðt; xÞ)
: ð24Þ

In earlier work [34] we established the factorial growth of

ΠðnÞ⋆ for general nonlinear longitudinal flows in BRSSS, by
numerically solving Eqs. (20)–(22) and evaluating Eq. (23)
on them. An example of this is given in the top panel of
Fig. 2 where the n! behavior is illustrated. [The initial data
correspond to a periodic overdensity in T that locally
resembles a Gaussian; see Ref. [34] for more details on this
function and the numerical method. We have set E=T4 ¼ 1,
η=s ¼ 1=ð4πÞ, and τΠT ¼ 1=4.] The presence [Eq. (14)]
and motion [Eq. (24)] of the singulants governing the large-
order behavior of such flows can be readily confirmed for
such solutions, and we now present two such ways of
doing so.
First, according to Eq. (14) the singulant field χq with the

smallest jχqj at any given spacetime point dominates the

large-order behavior yielding the prediction jΠðnÞ⋆ j1=n ∼
ðn=ejχqjÞ, where χq obeys Eq. (24). Solving Eq. (24) on a
given background is unique up to a choice of complex
integration constant per flow line. Two such solutions are
presented as the blue and red curves in the middle panel of
Fig. 2 alongside the black dots which correspond to fitting a

straight line to the numerical series data, jΠðnÞ⋆ j1=n, showing
excellent agreement. Here we have chosen to determine the
singulant integration constants by adjusting for the best fit on
the entire flow line.
Second, the presence of χq can be seen as singularities

appearing in the Borel transform of Eq. (5). This is
demonstrated in the bottom panel of Fig. 2. This is a
snapshot at a time labeled by the dashed vertical line in the
middle panel, where the blue singulant dominates. Given
the integration constants as determined in the previous
paragraph, there is a precise match between χq and the
location of a singularity in the Borel plane inferred by a

Padé approximant of theΠðnÞ⋆ series. Along a flow line these
singulants move from left to right in the Borel plane
according to Eq. (24) as indicated by the arrows in the
lower panel. There is a time for which they are at their point
of closest approach to the origin, corresponding to the
maxima in the middle panel of Fig. 2. Similarly there is a
time for which jχredj ¼ jχbluej corresponding to an
exchange of dominance as seen by the crossing of the
red and blue singulant trajectories in the middle panel.

C. HJSW model

The HJSW model [47] is a generalization of conformal
BRSSS theory such that the equation of motion for Πμν

includes second-order derivatives along the fluid velocityU,

FIG. 2. Singulants in the BRSSS model for a nonlinear
longitudinal flow. Top panel: root test for a numerical evaluation
of the series ΠðnÞ⋆ (black), and the slope predicted by the dominant
singulant at this point χblue (blue). Middle panel: fitted slope of
the root-test plot evolving along a fluid flow line (black), with
singulant predictions (red and blue). The crossing corresponds to
an exchange of singulant dominance. The dashed line marks t
used in the other panels. Bottom panel: singularities in the Borel
plane ζ, indicated by Padé poles (black), illustrating agreement
with singulant values (red and blue circles).
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��
D
T

�
2

þ 2ΩI

�
D
T

�
þ jΩj2

�
Πμν

¼ −ηjΩj2σμν − cσ
T
DðησμνÞ; ð25Þ

where Ω ¼ ΩR þ iΩI ∈ C, cσ ∈ R, and we are neglecting
possible nonlinear terms in Πμν. As the temperature T is the
only dimensionful scale of the theory, the shear viscosity
takes the same functional form as it did in BRSSS theory.
The physical motivation behind the construction of the

HJSW theory was upgrading the original conformal
BRSSS theory to a model with a nonhydrodynamic sector
closer to the AdS/CFT one, in the sense of having two

nonhydrodynamic sound modes, ωð�Þ
NH ðkÞ, with opposite

real parts at zero momentum. Indeed, in the HJSW model,

ωð�Þ
NH ðk ¼ 0Þ are controlled by Ω as

ωð�Þ
NH ðkÞ ¼ T0ð�ΩR − iΩIÞ þOðk2Þ: ð26Þ

For linearized perturbations around thermal equilibrium (and
in the local rest frameof the fluid), theHJSWmodel is known
to be causal and stable provided that the parameters Ω, η=s,
and cσ are chosen appropriately. Linear stability, in particu-
lar, always requires a finite cσ [47]. Demonstrating the
causality of this model at the fully nonlinear level is a
challenging open problem. It should be kept in mind that
even in the case of MIS-type theories such a proof has only
become available recently [49]. That being said, exploratory
studies of numerical evolution in the HJSW model, with
appropriate parameters, have not exposed any pathologies.
It is immediate to compute the recursion relation obeyed

by ΠðnÞ⋆ once Eq. (25) is known. The only structural
difference with respect to the BRSSS case is that, since

Eq. (25) is second order, ΠðnÞ⋆ now depends both on Πðn−1Þ⋆
and Πðn−2Þ⋆ for n > 2. In the following, we work in d ¼ 4.
We have that

Πð1Þ⋆ ¼ 2

3
ηθ; ð27aÞ

jΩj2TΠð2Þ⋆ ¼ −2ΩIDΠð1Þ⋆ −
8

3
ΩIθΠ

ð1Þ⋆

þ 2

3
cσDðηθÞ þ 8

9
cσηθ2; ð27bÞ

jΩj2T2ΠðnÞ⋆ ¼ −D2Πðn−2Þ⋆ − 2ΩITDΠðn−1Þ⋆

þ
�
D logT −

8

3
θ

�
DΠðn−2Þ⋆ −

8

3
ΩITθΠ

ðn−1Þ⋆

þ 4

9
ð3θD logT − 4θ2 − 3DθÞΠðn−2Þ⋆ ; ð27cÞ

where θ is the expansion of the flow, θ ¼ ∇αUα.
Empirically, we always find that the gradient expansion

defined by the recursion relations (27a)–(27c) is factorially
divergent when evaluated on any longitudinal flow. In
Fig. 3, we provide an example for initial data of the form

Tð0; xÞ ¼ 1þ e−x
2=2σ2 ; uð0; xÞ ¼ 0;

Π⋆ð0; xÞ ¼ ∂tΠ⋆ð0; xÞ ¼ 0; ð28Þ

with σ ¼ 1. We have chosen E=T4 ¼ 1, η=s ¼ 1=ð4πÞ,
ΩR ¼ 2, ΩI ¼ 4, and cσ ¼ π. The root test applied to the
gradient expansion associated to these initial data at x ¼ 0
and t ¼ 0.5 is represented in the upper panel. The asymp-
totic behavior at large n is clearly linear, implying that the
gradient expansion is factorially divergent. In the lower
panel, we represent the singularities of the Padé approx-
imant to the Borel transform of the gradient expansion
as black dots. There are several well-defined lines of
pole condensation, grouped in complex-conjugated pairs.

FIG. 3. Upper panel: large-order behavior of the gradient
expansion at x ¼ 0, t ¼ 0.5 for initial data of the form
Eq. (28) as quantified by a root-test plot. The factorial growth
is manifest. Bottom panel: singularities of the Padé approximant
of the Borel transform of the gradient expansion at x ¼ 0,
t ¼ 0.5. The points at which a line of pole accumulation starts
are singulants and have been highlighted as stars. Cyan, orange,
red, green, purple, and brown stars correspond to candidate
singulant pairs χ1;…; χ6 of progressively increasing norm.
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The poles from which these lines emanate are candidate
singulants, and have been highlighted as stars. The singu-
lants with the smallest norm correspond to the cyan stars.
According to the general results presented in Sec. II, the

singulant equation of motion is determined by the first three
terms in Eq. (27c). One finds that

Dχ ¼ ðΩI � iΩRÞT: ð29Þ

Hence, just as it happened in the conformal BRSSS model,

the singulant trajectory is determined by ωð�Þ
NH ðk ¼ 0Þ

evaluated at the effective temperature. Equation (29)
implies that, when one moves along a particular flow line,
the trajectories described by the singulants are inclined
lines in the Borel plane, with slopes of magnitude jΩR=ΩIj.
This is in stark contrast with the BRSSS case, where the
singulant trajectories were given by horizontal lines.
Let us select the flow line passing through x ¼ 0 at

t ¼ 0, which corresponds to the t axis in the longitudinal

plane. In Fig. 4, we plot the real and imaginary parts of the
three singulants of smallest norm as a function of time
along this particular flow line. We have selected the
singulants with positive imaginary part. These singulants,
which have been computed by means of a Padé approx-
imant to the Borel transform of the gradient expansion,
have to be compared with the prediction of Eq. (29):

χðt; 0Þ ¼ χðt ¼ 0; 0Þ þ ðΩI � iΩRÞ
Z

t

0

dt0Tðt0; 0Þ: ð30Þ

Since we cannot determine independently the initial values
of the singulants, we have chosen to match the prediction
(30) to the numerical results at t ¼ 0.5. The final outcome
of our analysis is that, for every singulant under consid-
eration, the prediction of Eq. (30), which is represented as a
solid line, does an excellent job in describing the time
evolution of the singulants we have computed numerically.

D. New model closer to holography

1. Physical motivation

The analysis performed so far in the BRSSS and HJSW
models revealed that the large-order behavior of the
gradient expansion is related to the sound channel non-
hydrodynamic mode frequencies evaluated at k ¼ 0
through the singulant equation of motion. Schematically,

Dχðt; xÞ ¼ iωNHðk ¼ 0ÞjT¼Tðt;xÞ: ð31Þ

This is not a coincidence. As we mentioned in Sec. II, both
the singulant equation of motion (31) as well as the
equation that determines the mode frequencies are obtained
through a linearization procedure and, in the BRSSS and
the HJSW models, the former equation can always be
mapped onto the latter one evaluated at zero momentum.
This rests crucially on the fact that the equation of motion
for Πμν only involves comoving derivatives along a flow
line. In light of this, one should not expect the relation
between the singulant equation of motion and the sound
channel nonhydrodynamic modes evaluated at zero
momentum to hold when the equation of motion for Πμν

features derivatives along directions orthogonal to U.
As we will see later in Sec. IV, there is strong evidence

that holography does not display the structure indicated in
Eq. (31): derivatives in directions orthogonal toU appear in
the singulant equation of motion. Motivated by this, we
introduce a new MIS-like model that also displays this
feature. We achieve this by extending Eq. (25) to include
derivatives along spacelike directions orthogonal to U.

2. Description of the model

We work in d ¼ 4. Our new model is defined by
the following the equation dictating the spacetime evolu-
tion of Πμν,

FIG. 4. Comparison between the time evolution of the three
singulants of smallest norm as determined numerically (open
circles) and the prediction Eq. (30) (solid lines). The matching
has been performed at t ¼ 0.5. The color coding of the lines
coincides with the color coding of the stars in the bottom panel of
Fig. 3. Upper panel: real parts. Lower panel: imaginary parts.
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��
D
T

�
2

−
cL
T2

Lþ 2ΩI

�
D
T

�
þ jΩj2

�
Πμν

¼ −ηjΩj2σμν − cσ
T
DðησμνÞ; ð32Þ

where the new term LΠμν corresponds to the symmetric,
transverse and traceless part of ðΔρσDρDσÞΠμν:

1

2

�
Δα

μΔ
β
ν þ Δα

νΔ
β
μ −

2

3
ΔμνΔαβ

�
ðΔρσDρDσÞΠαβ: ð33Þ

Note that, in principle, adding this term is only allowed by
hyperbolicity once we go beyond the first-order equation of
motion obeyed by Πμν in BRSSS theory. In this work, we
will not establish that the initial value problem associated to
the conservation equation and Eq. (32) is well-posed at the
fully nonlinear level. Despite this, we emphasize that (i) as
we discuss in detail in Appendix E in the Supplemental
Material [43] there exists a parametric regime for η=s, cL,
cσ , and Ω such that linearized perturbations around thermal
equilibrium are causal and stable in a general reference
frame (in particular, it is possible to have causal and stable
sound modes for cσ ¼ 0, unlike in the HJSW model) and
(ii) when performing numerical simulations of the non-
linear problem within such parametric regime, we have
seen no issues arise.
We conclude our presentation by clarifying that Eq. (32)

is not the most general equation of motion for Πμν featuring
second-order derivatives that one can write down. For
instance, the term DhμDαΠανi can certainly be incorporated
into the left-hand side. Since Eq. (32) already serves the
purpose we outlined, the question of finding out what the
most general version of this model is will not concern us
here, although it might be relevant for the phenomeno-
logical modeling of scenarios like Ref. [54], where MIS or
BRSSS approaches are known to fail.

3. Gradient expansion

In model (32), the recursion relations obeyed by ΠðnÞ⋆ are
related to the HJSW ones in a straightforward manner. To

wit,Πð1Þ⋆ andΠð2Þ⋆ obey the HJSW recursion relations while,
for n > 2, one has that

jΩj2T2ΠðnÞ⋆ ¼ ½HJSW� − 7cLðUαUβ∇αZβÞðZμ∇μÞΠðn−2Þ⋆
þ cLðZμ∇μÞ2Πðn−2Þ⋆

þ 2cL

�
1

3
θ2 þ 3ðUαUβ∇αZβÞ2

−2Zμ∇μðUαUβ∇αZβÞ
�
Πðn−2Þ⋆ ; ð34Þ

where [HJSW] represents the right-hand side of Eq. (27c)
and Z ¼ Zμ

∂μ is a longitudinal unit-normalized vector field
orthogonal to U ¼ Uμ

∂μ.

As in the BRSSS and HJSW cases, in this model we also
find that the gradient expansion is factorially divergent for
all our choices of parameters, initial data, and spacetime
point. To characterize the large-order behavior of the
gradient expansion, we turn now to the question of the
singulant trajectory.

4. Singulant trajectory

According to the factorial-over-power ansatz and
Eq. (34), the singulant equation of motion in the new
model is

UðχÞ2 − cLZðχÞ2 − 2ΩITUðχÞ þ jΩj2T2 ¼ 0: ð35Þ

where UðχÞ ¼ Uμ
∂μχ and ZðχÞ ¼ Zμ

∂μχ. This equation
features derivatives along Z, and, as a consequence, UðχÞ
stops being related to the nonhydrodynamic sound modes
at zero spatial momentum.
We now turn to verifying that Eq. (35) governs singulant

motion in our numerical examples. In order to solve
Eq. (35) it is no longer enough to specify integration
constants per flow line, due to the appearance of derivatives
transverse to the flow line ZðχÞ. This term did not appear in
the BRSSS and HJSW models. Now singulant initial data
must be specified for some portion of a Cauchy surface,
preventing us from testing Eq. (35) by fitting one or two
complex numbers. To sidestep this issue, we attempt to
extract ZðχÞ2; UðχÞ; UðχÞ2 for the dominant singulant and
test that Eq. (35) holds as an algebraic relation at each
spacetime point. To extract ZðχÞ2; UðχÞ; UðχÞ2 we utilize
the following relations,

UðχÞ ∼UðΠðn−1Þ⋆ Þ
ΠðnÞ⋆

; UðχÞ2 ∼U2ðΠðn−2Þ⋆ Þ
ΠðnÞ⋆

; ð36Þ

and similarly for ZðχÞ2 as n → ∞, and confirm Eq. (35) in
Fig. 5, up to some scatter associated with this numerical
procedure. Note that in this figure the new term ZðχÞ2
makes a contribution of similar magnitude as those
of UðχÞ; UðχÞ2.

5. Singulant trajectory and linear response theory

Despite the fact that the singulant trajectory is not
controlled by the nonhydrodynamic sound modes at zero
momentum, the lesson that the singulant equation of motion
can be understood in terms of a linear response theory
problem stands. Let us set the hydrodynamic fields to their
values at thermal equilibrium in the rest frame of the fluid,

T → T0; Uμ
∂μ → ∂t; ð37Þ

and consider linearized perturbations ofΠ⋆, δΠ⋆, around this
static state. At leading order, one finds that δΠ⋆ satisfies
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ð∂2t − cL∂2x þ 2ΩIT0∂t þ jΩj2T2
0ÞδΠ⋆ ¼ 0: ð38Þ

For a plane-wave perturbation of the form

δΠ⋆ðt; xÞ ¼ ˆδΠ⋆e−iðωt−kxÞ; ð39Þ

Eq. (38) reduces to a second-order polynomial equation
for ω,

−ω2 þ cLk2 − 2iΩIT0ωþ jΩj2T2
0 ¼ 0; ð40Þ

and the map,

ω → −iUðχÞ; k → �iZðχÞ; T0 → T; ð41Þ

transforms Eq. (40) into the singulant equation of
motion (35).
The above analysis is nothing but a particular illustration

of the general results from Sec. II. A crucial observation
that has to be emphasized is that, just as we foresaw at the
end of that section, the roots of Eq. (40), which determine
the singulant trajectory, do not correspond to the sound
channel nonhydrodynamic modes when the momentum is
finite. The latter (including the hydrodynamic modes) are
given by the roots of the following fourth-order polynomial
in ω,

ð−ω2 − 2iT0ΩIωþ cLk2 þ T2
0jΩj2Þ

�
ω2 −

1

3
k2
�

þ 4

3

η

s
ðT0jΩj2 − icσωÞiωk2 ¼ 0; ð42Þ

and only include the roots of Eq. (40) when k ¼ 0.
Despite the fact that they do not correspond to non-

hydrodynamic modes, the roots of Eq. (40) still allow for a
physical interpretation. This physical interpretation follows
from the observation that, due to rotational invariance, the
sound channel dispersion relation is constrained to take the
form [55]

ω2 þ iωk2γsðω; k2Þ þ k2Hðω; k2Þ ¼ 0; ð43Þ

where γs is a momentum-dependent sound attenuation
length. Indeed, the sound channel dispersion relation
(42) can be put in the form (43) with the identifications
Hðω; k2Þ ¼ − 1

3
and

γsðω; k2Þ ¼
4
3
η
s ðT0jΩj2 − icσωÞ

−ω2 − 2iT0ΩIωþ cLk2 þ T2
0jΩj2

: ð44Þ

It is immediate to see that the roots of Eq. (40) correspond
precisely to the poles of γs. It is important to keep in mind
that, for a general CFT in the linear response regime, γs can
be defined without resorting to Eq. (43) by the relation

δΠ̂⋆ðω; kÞ ¼
2

3
E0γsðω; kÞikδûðω; kÞ; ð45Þ

where E0 is the equilibrium energy density and δû
represents an infinitesimal perturbation of the fluid velocity
in the sound channel:

Uμ
∂μ ¼ ∂t þ δûe−iωtþikx

∂x; jδûj ≪ 1: ð46Þ

With the definition (45), the equation that the sound
channel modes have to obey always takes the form (43)
with H ¼ −1=3.
We conclude our analysis with two comments. The first

and most important one is that the connection between the
singulant equation of motion and the poles of γs implied by
the map (41) is not restricted to the case at hand: it applies
to the BRSSS and HJSW models as well. However, in the
BRSSS and HJSW cases, the poles of γs are independent of
the spatial momentum k. In this situation, these poles have
to coincide with the sound channel nonhydrodynamic
modes evaluated at zero momentum. This observation is
in agreement with our analysis of the singulant equation of
motion in the BRSSS and HJSW theories.
The second comment is that, when one restricts to

Bjorken flow [56], the singulant equation of motion is
always insensitive to the difference between the nonhy-
drodynamic sound modes and the poles of γs. The reason is

FIG. 5. Numerical confirmation of the singulant equation of
motion Eq. (35) along a flow line in the model Eq. (32). This
model is distinguished from BRSSS and HJSW by the appear-
ance of transverse derivatives in the singulant equation (con-
trolled by cL), a feature it shares with holography and our main
motivation for studying it. The values of ZðχÞ2; UðχÞ; UðχÞ2 are
extracted from the large-order behavior ofΠðnÞ⋆ and its derivatives,
as described in the text. Here the black disks are rendered
partially transparent to convey their density.
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that for Bjorken flow χ is a function of the proper time
τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − x2

p
alone. This implies that ZðχÞ ¼ 0 and,

according to the map (41), that the relevant poles of γs
are the ones with k ¼ 0, which agree with the zero-
momentum sound channel nonhydrodynamic modes.

IV. HOLOGRAPHY

A. Introduction

In this section, we examine the large-order behavior of
the gradient expansion for a longitudinal flow in the context
of holography (see Refs. [55,57–72] for related work in the
context of the gradient expansion in linearized holography).
We do not attempt to perform the numerical computation of
the gradient expansion evaluated on a particular state.
Rather, we take advantage of the asymptotic ansatz (14)
to prove that a large-order factorial growth is allowed. We
remind the reader that finding out that the asymptotic ansatz
(14) is consistent in holography does not imply that the
gradient expansion is necessarily factorially divergent;
rather, this observation just demonstrates that such large-
order behavior is, in principle, possible.
Our study builds on previous developments in the AdS/

CFT context. The first one is the original construction of
fluid-gravity duality [73], which we employ to build the
gradient-expanded constitutive relations at the fully non-
linear level. The second one is the analysis of the exact
constitutive relations of the microscopic CFT in the linear
response regime [74,75]. The bridge between both
approaches is the linearization enacted by the asymptotic
ansatz (14).
The key result that we show in this section is as follows.

If a large-order factorial growth is present, then the
singulant equation of motion in holography is given by
the poles of the momentum-dependent sound attenuation
length γs, under a map analogous to that which we saw in
the MIS-like models (41).

B. Longitudinal flows in holography

To construct the geometry dual to a longitudinal flow, we
follow Ref. [76] and put forward the following metric
ansatz,

ds2 ¼ −2UμðxÞdxμ½drþ Vνðr; xÞdxν� þ Gμνðr; xÞdxμdxν;
ð47Þ

where xμ represents the boundary coordinates, Uμ as
elsewhere in the text is the unit-normalized fluid velocity,
and Gμν is transverse, GμνUν ¼ 0.
It is convenient to employ a curvilinear coordinate

system to describe the longitudinal flow. We focus on
longitudinal flows in four-dimensional Minkowski space-
time. We take our boundary coordinates to be

xμ ¼ ðτ; σ; xð1Þ⊥ ; xð2Þ⊥ Þ; ð48Þ

where τ and σ are, respectively, a timelike and a spacelike
coordinate that parametrize the longitudinal plane. We
choose this curvilinear coordinate system in such a way
that the boundary metric is diagonal,

dh2 ¼ −e2aðτ;σÞdτ2 þ e2bðτ;σÞdσ2 þ dx⃗2⊥; ð49Þ

and the fluid velocity reads

Uμ
∂μ ¼ e−aðτ;σÞ∂τ: ð50Þ

The orthonormal longitudinal vector field Z is thus given
by

Zμ
∂μ ¼ e−bðτ;σÞ∂σ: ð51Þ

Imposing flatness of the boundary metric (49) leads to an
equation linking a and b. Finally, to comply with the
symmetry restrictions of the flow, we take

Vμdxμ ¼ Vτdτ þ Vσdσ; ð52aÞ

Gμνdxμdxν ¼ Σ2e−2Bdσ2 þ Σ2eBdx⃗2⊥; ð52bÞ

where Vτ, Vσ, Σ, and B are functions of τ, σ, and r. The
transversality condition GμνUν ¼ 0 is automatically satis-
fied since Gττ ¼ 0.
The energy-momentum tensor of the dual CFT is

dictated by the holographic dictionary [77] in terms of
the coefficients of the series expansion of the metric around
the asymptotic boundary located at r → ∞. In our coor-
dinate system for a given quantity f, we denote the
coefficient of r−n in the near-boundary (large-r) expansion
as fn. A straightforward computation shows that (we work
with the normalization L ¼ 4πG ¼ 1)

hTμνi ¼ tμν; ð53Þ

where the only nonzero components of tμν are given by

tττ ¼
3

2
eaVτ;2; tτσ ¼ eaVσ;2;

tσσ ¼ e2b
�
−2B4 þ

1

2
e−aVτ;2 þΦ

�
;

t
xðiÞ⊥ xðiÞ⊥

¼ B4 þ
1

2
e−aVτ;2 −

1

2
Φ; ð54Þ

and we have defined
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Φ ¼ 4

3
Σ3
0e

−bUðbÞ þ 2

3
Σ2
0e

−2b=3UðbÞ2

þ 4

9
Σ0e−b=3UðbÞ3 þ 5

81
UðbÞ4: ð55Þ

To conclude our analysis, we impose the Landau frame
condition by demanding that the fluid velocity U ¼ e−a∂τ
is the only timelike eigenvector of Tμ

ν . This can only be
achieved provided that

Vσ;2 ¼ 0: ð56Þ

Once the Landau frame condition (56) is imposed, the
eigenvalues of Tμ

ν are in one-to-one correspondence with its
diagonal components. One has that the energy density E,
the longitudinal pressure Pk, and the transverse pressure P⊥
are given by

E ¼ 3

2
e−aVτ;2;

Pk ¼ −2B4 þ
1

3
E þΦ;

P⊥ ¼ B4 þ
1

3
E −

1

2
Φ: ð57Þ

Hence, Π⋆ ¼ B4 − 1
2
Φ. This relation can be simplified

further by recalling that the metric ansatz (47) is invariant
under

r → rþ fðxÞ; Vμðr; xÞ → Vμðrþ f; xÞ − ∂μf;

Gμνðr; xÞ → Gμνðrþ f; xÞ; ð58Þ

and that, in the r → ∞ limit,

Σðr; xÞ ¼ rþ Σ0ðxÞ þ � � � ; ð59Þ

implying that Σ0ðxÞ can be tuned to any desired value by a
suitable choice of fðxÞ. In our case, the gauge choice,

Σ0 ¼ −
1

6
eb=3UðbÞ; ð60Þ

sets Φ ¼ 0 and implies that Π⋆ can be directly identified
with B4:

Π⋆ ¼ B4: ð61Þ

The existence of this relation is one of the main advantages
of our metric ansatz and coordinate choice, as it implies that
the gradient expansion ofΠ⋆ can be obtained from the near-
boundary behavior of the gradient expansion of B in a
straightforward manner.

C. Gradient expansion

In order to construct the gradient expansion of Π⋆ we
follow the strategy we described in Sec. II. As it is standard
in fluid-gravity duality, the first step is decomposing the
Einstein equations into dynamical equations and constraint
equations. The dynamical equations can be employed to
express Πμν as a functional of E and U; they can be
interpreted as the AdS/CFT counterpart of the equation of
motion for Πμν in MIS-like theories. In our case, the
dynamical equations are

Err; Erσ; Eσσ; E
xð1Þ⊥ xð1Þ⊥

: ð62Þ

On the other hand, the constraint equations enforce the
conservation of the energy-momentum tensor of the dual
CFT.
Once the dynamical equations have been identified, we

take the metric (47) and introduce the bookkeeping
parameter ϵ by means of a homogeneous rescaling of
the boundary coordinates:

τ →
τ

ϵ
; σ →

σ

ϵ
; x⃗⊥ →

x⃗⊥
ϵ
; r → r: ð63Þ

Then, we express Vτ, Vσ , Σ, and B as asymptotic series in ϵ,

Vτ ¼
X∞
n¼0

VðnÞ
τ ϵn; Vσ ¼

X∞
n¼0

VðnÞ
σ ϵn;

Σ ¼
X∞
n¼0

ΣðnÞϵn; B ¼
X∞
n¼0

BðnÞϵn; ð64Þ

insert them into the dynamical Einstein equations, and
demand that they are a solution order by order in an
expansion around ϵ ¼ 0. This procedure transforms the

dynamical equations into recursion relations for VðnÞ
τ , VðnÞ

σ ,
ΣðnÞ, and BðnÞ. The zeroth-order solution reads

Vð0Þ
τ ¼ −

1

2
ea
�
r2 −

r4h
r2

�
; Vð0Þ

σ ¼ 0;

Σð0Þ ¼ e1=3br; Bð0Þ ¼ −
2

3
b; ð65Þ

where we taken into account that the bulk spacetime is
asymptotically AdS with boundary metric (49). Note that a,
b, and rh are functions of τ and σ only.
The gradient expansion of Π⋆ can be obtained from

Eq. (64) through the relation (61), provided that appropriate
boundary conditions are satisfied by the nth-order solution.
These boundary conditions are divided into two sets,
infrared and ultraviolet, depending on whether they are
imposed at the event horizon of the zeroth-order solution
(65), located at r ¼ rh, or at the asymptotic boundary,
located at r ¼ ∞. Our infrared boundary conditions are
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regularity of VðnÞ
τ , VðnÞ

σ , ΣðnÞ, and BðnÞ at r ¼ rh. Since
we are working in Eddington-Finkelstein coordinates,
demanding regularity of our metric functions at r ¼ rh
corresponds to imposing in-falling boundary conditions. As
for the ultraviolet boundary conditions:
(1) We demand that the metric is asymptotically AdS5.

Since this boundary condition has already been fully
taken into account by the zeroth-order solution (65),
it follows that

lim
r→∞

�
VðnÞ
τ

r2
;
VðnÞ
σ

r2
;
ΣðnÞ

r
; BðnÞ

�
¼ 0; ð66Þ

for n ≥ 1. We note that, when imposing Eq. (66), the
dynamical Einstein equations imply that, in the

r → ∞ limit, VðnÞ
σ ¼ Oðr−2Þ for n > 2 and BðnÞ ¼

Oðr−4Þ for n > 0. This observation will be impor-
tant later.

(2) We require that the Landau frame condition (56) is
obeyed at every order in the gradient expansion. This
requires that

VðnÞ
σ;2 ¼ 0; ð67Þ

for n ≥ 0. When combined with the last observation
performed in point (1) above, Eq. (67) implies that

VðnÞ
σ ¼ Oðr−3Þ as r → ∞ for n > 2.

(3) We demand that the energy density as computed
from the zeroth-order solution, 3

4
r4h, agrees with the

actual energy density of the system E. This requires
that

VðnÞ
τ;2 ¼ 0; ð68Þ

for n ≥ 1. rh is thus related to the effective temper-
ature T as πT ¼ rh.

(4) We enforce the condition (60). Since this relation is
first order in gradients, we must impose it at the level
of Σð1Þ. This implies that

ΣðnÞ
0 ¼ 0; ð69Þ

for n ≠ 1.

D. Large-order behavior of the gradient expansion

In order to assess the large-order behavior of the gradient
expansion (64), we assume that the singulant fields
corresponding to Vτ, Vσ , Σ, and B are equal and, sub-
sequently, find that this assumption is self-consistent.
Hence, we take

VðnÞ
τ ðr; τ; σÞ ∼

X
q

V̄τ;qðr; τ; σÞ
Γ½nþ αqðr; τ; σÞ�
χqðτ; σÞnþαqðr;τ;σÞ ; ð70Þ

with analogous expressions holding for Vσ, Σ, and B. In the
end, this restriction is equivalent to the assumption that the
gradient expansion of the full spacetime metric (7) takes
the asymptotic form Eq. (8).
To simplify the subsequent argument we introduce Ψ,

which stands for any of the functions Vτ, Vσ , Σ, and B.
According to the general analysis presented in Appendix A
in the Supplemental Material [43]—and whose most
important take-home points were mentioned in Sec. II—the
terms in the dynamical equations that set the singulant
equation of motion are of the form

∂
p
r ∂μ1…∂μmΨ; ð71Þ

where p, m are non-negative integers. Since the dynamical
equations are second order in spacetime derivatives, one
has that pþm ≤ 2. Furthermore, it is very important to
stress that, due to the functional form of the dynamical
equations, the large-order ansatz (8) implies that χ is
independent of the radial coordinate r.
Let us discuss Err first. One finds that, at leading order in

n as n → ∞,

∂
2
r Σ̄ ¼ 0: ð72Þ

This relation, when combined with the boundary conditions
spelled out before, entails that

Σ̄ ¼ 0: ð73Þ

Taking into account this fact, the remaining dynamical
equations imply that, at leading order in n as n → ∞,

∂
2
r V̄σ þ

∂rV̄σ

r
−
4V̄σ

r2
þ 2ebZðχÞ∂rB̄ ¼ 0; ð74aÞ

∂
2
rB̄þ

�
1

r
þ 4r

fð0Þ
−
2UðχÞ
fð0Þ

�
∂rB̄

−
�
3UðχÞ
rfð0Þ

þ ZðχÞ2
3r2fð0Þ

�
B̄ −

2e−bZðχÞ
3r2fð0Þ

∂rV̄σ

−
2e−bZðχÞ
3r3fð0Þ

V̄σ ¼ 0; ð74bÞ

∂
2
rV̄τ þ

4∂rV̄τ

r
þ 2V̄τ

r2
−
2ea−bZðχÞ

3r2
∂rV̄σ

−
2ea−bZðχÞ

3r3
V̄σ −

eaZðχÞ2
3r2

B̄ ¼ 0; ð74cÞ

where fð0Þ ¼ r2 − r4hr
−2. Note that V̄τ decouples from

V̄σ and B̄.
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Let us assume that the singulant field χ is known at the
τ ¼ 0 slice. In order to integrate the singulant motion, we
need to find ∂τχ. This can be achieved by solving the
eigenvalue problem for ∂τχ posed by Eqs. (74a) and (74b)
with boundary conditions given by Eqs. (66) and (67). We
note that the singulant dynamics is ultralocal in the
boundary coordinates: to compute ∂τχ at a given spacetime
point, the inputs that we need are the values of ∂σχ and a, b,
and rh—or, equivalently, the energy density and velocity
of the fluid—at the point. This ultralocality is in line
with the general results discussed in Sec. II. Furthermore, in
the next section, we also confirm that the eigenvalue
problem spelled out above has a natural counterpart in
linear response.

E. Singulant equation of motion
and linear response theory

In Refs. [74,75] it was shown that, in the linear response
regime, it is possible to find the exact constitutive relations
that express the dissipative tensor as a functional of the
hydrodynamic fields in the Landau frame. Consider infini-
tesimal perturbations of the hydrodynamic fields and Πμν

around a reference thermal state of energy density E0 and
fluid velocity U0 ¼ ∂t. These infinitesimal perturbations,
which we denote as δE, δu⃗, and δΠμν, are defined as

E ¼ E0 þ δE; U ¼ ∂t þ δu⃗ · ∂⃗;

Πμνdxμdxν ¼ δΠijdxidxj; ð75Þ

where

δE
E0

; jδuj; δΠij

E0

≪ 1; ð76Þ

and we have enforced the Landau frame condition. Latin
indices range from one to three and refer to spatial
directions of the boundary.
The main result of Refs. [74,75] is obtaining the

constitutive relations that express δΠij as a functional of
δE and δui in closed form. In momentum space,

δΠ̂ij ¼ −ηðω; k2Þσ̂ij − ξðω; k2Þπ̂ij; ð77Þ

where δΠ̂ij is the Fourier transform of δΠij,

σ̂ij ¼
i
2

�
kiδûj þ kjδûi −

2

3
δijklδûl

�
; ð78aÞ

π̂ij ¼ −i
�
kikj −

1

3
δijklkl

�
kmδûm; ð78bÞ

and ηðω; k2Þ, ξðω; k2Þ are momentum-dependent trans-
port coefficients. As explained in Refs. [74,75], these
momentum-dependent transport coefficients are computed

by solving a system of four coupled radial ordinary
differential equations in a black brane background.
For a sound wave δu⃗ is parallel to k⃗ and one can employ

rotational invariance to set δûi ¼ δûδi;1, ki ¼ kδi;1 with no
loss of generality. This implies that π̂ij ¼ − 1

2
k2σ̂ij and,

hence,

δΠ̂⋆ ¼ δΠ̂33 ¼
1

3
ðη − k2ξÞikδû: ð79Þ

Recalling the general definition of γs given in Eq. (45), we
have that

2E0γs ¼ η − k2ξ: ð80Þ

Equation (80) shows that γs is a linear combination of the
dynamical transport coefficients η and ξ originally defined
in Refs. [74,75], and indicates that the method put forward
there can be straightforwardly modified to compute γs
directly. Both this computation and the results it leads to are
described in detail in Appendix C in the Supplemental
Material [43]. For our purposes here, it suffices to mention
the following.
(1) For fixed k ∈ R, γs is a meromorphic function of

ω ∈ C, with an infinite number of simple poles,

Ωð�Þ
q ðkÞ, symmetric around the imaginary ω axis,

ΩðþÞ
q ðkÞ¼−Ωð−Þ

q ðkÞ�. The imaginary part ofΩð�Þ
q ðkÞ

is always negative.
(2) These simple poles can be computed by solving the

following eigenvalue problem:

P00 þ P0

r
−
4P
r2

− 2ikQ0 ¼ 0; ð81aÞ

Q00 þ f þ 4r2 − 2irΩp

rf
Q0 þ k2 − 9iΩpr

3r2f
Q

þ 2ik
3r2f

P0 þ 2ik
3r3f

P ¼ 0; ð81bÞ

where f ¼ r2 − μ4r−2. The boundary conditions to
be imposed on P and Q are regularity at the black
brane horizon located at r ¼ μ and the near-boundary
behavior P ¼ Oðr−3Þ, Q ¼ Oðr−4Þ as r → ∞.

The two observations above are sufficient to state the main
result of this section: if the gradient expansion grows
factorially and the singulant field is independent of the
metric component under consideration, then the singulant
equation of motion is determined by the poles of γs, just as
it was the case in the model discussed in Sec. III D. This
fact follows immediately from the realization that the map,

P → �e−bV̄σ; Q → B̄; μ → rh;

Ωp → −iUðχÞ; k → �iZðχÞ; ð82Þ
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transforms Eqs. (81a) and (81b) into Eqs. (74a) and (74b)
and that the infrared and ultraviolet boundary conditions

obeyed by P, Q, and VðnÞ
σ ; BðnÞ are the same for n > 2. The

existence of this map conforms to the general expectations
put forward in Appendix A in the Supplemental Material
[43] and summarized in Sec. II.

V. KINETIC THEORY

In kinetic theory, we take a factorial ansatz for the
distribution function itself, and derive constraints on the
singulant from the Boltzmann equation. We cross-check
our results in RTA kinetic theory for Bjorken flow, where
we can compute precise numerical solutions. We also
reanalyze the 1=w expansion in this new perspective,
extending results from previous work on the large-order
behavior of moments [18,20,29].

A. Singulants of the distribution function

The Boltzmann equation is

ϵpμ
∂μfðx; pÞ ¼ C½f�; ð83Þ

which together with the ansatz (9) implies that fðnÞ is of
order n in gradients of fð0Þ. With the factorial-over-power
ansatz (10) the resulting linearization implies that up to
subleading corrections in 1=n,

½−pμ
∂μχðx; pÞ�

Aðx; pÞ
χnþαðx; pÞ ¼ C

�
A

χnþα

�
; ð84Þ

where C is the linearized collision operator:

C ¼ δC½f�
δf

				
f¼fð0Þ

: ð85Þ

Differently from the other theories, the factor A=χn does not
cancel out, so the large-order equation seems to depend
explicitly on n.
Let us sidestep the issue of defining what A=χn con-

verges to. In the limit, we see that the action of C must be
identical to the action of −pμ

∂μχðx; pÞ. The latter does not
couple different values of p. Thus, the equation of motion
for the singulant can be determined by finding those
distribution functions where C effectively acts diagonally
in p.
This is automatically fulfilled in the simplest RTA model

(however, additional terms must be included in order for the
momentum-dependent relaxation time to be consistent with
conservation laws [78]), where

C ¼ pμUμ

τrelðx; pÞ
; ð86Þ

leading to

pμ½∂μχðx; pÞ þ Uμ=τrel� ¼ 0: ð87Þ

We can write the solution as

χ ¼ −
Z

Uμ

τrel
dxμ þ χFS; ð88Þ

where χFS is any solution to the free-streaming Boltzmann
equation.

B. Moments

Consider some moment, whose nth term arises from the
nth term of the distribution function as

I
μ1…μj
n ¼

Z
p
fðnÞpμ1…pμj : ð89Þ

With the singulant ansatz for fðnÞ, this is

I
μ1…μj
n ¼

Z
p

Γðnþ αÞ
χðx; pÞnþα Aðx; pÞpμ1…pμj : ð90Þ

To evaluate this in the limit when n → ∞, we can try a
saddle point integration. Then the leading contributions
come from those points ps where ∇p ln χðx; pÞjp¼ps

¼ 0.
This heuristic argument suggests that the large-order
behavior of the moment is governed by the saddle point
singulant χsðxÞ≡ χðx; psÞ. This implies that

I
μ1…μj
n ∼

X
saddles

AsðxÞ
Γ½nþ αsðxÞ�
χsðxÞnþαsðxÞ p

μ1
s …p

μj
s ; ð91Þ

where αs ¼ αðx; psÞ − j=2. As gets contributions from A,
the Hessian of χ, and the measure [79].
We also note with this argument the tensor structure is

not sensitive to n, which is consistent with the general
ansatz in Eq. (3).

C. Gradient expansion in Bjorken flow

We now consider Bjorken flow in RTA kinetic theory,
where the singulant equation of motion can be verified
using the results of Ref. [29]. With a relaxation time
τrel ¼ γ=T the Boltzmann equation is

ϵ
γ

T
∂τfðτ; v; pTÞ ¼ feq − f; ð92Þ

where pT is the magnitude of the transverse momentum,
v ¼ tPL − zE, and feq¼ exp(−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½v2=ðτTÞ2�þðp2

T=T
2Þ

p
).

There is a simple recursion relation for fðnÞ:

fð0Þ ¼ feq; ð93aÞ
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fðnþ1Þ ¼ −
γ

T
∂τfðnÞ; ð93bÞ

and the singulant satisfies

∂τχðτ; v; pTÞ ¼
1

τrel
; ð94Þ

which is just Eq. (88) specialized to this model.
Equation (92) can be integrated to give an equation for

the temperature TðτÞ [80,81], which can be used to get
precise numerical solutions. Together with the recursion
relation this allows access to large orders of fðnÞ.
In Fig. 6, we verify that the singulant equation of motion

is satisfied, and that there are momentum-dependent
singulants.

D. 1=w expansion revisited

Another expansion, used in previous works [20,29], is to
expand the pressure anisotropy,

A≡ PT − PL

P
; ð95Þ

in inverse powers of the variable w≡ τT. The essential
difference between these expansions is that the latter one
uses the conservation equations to remove all appearances
of ∂τT; see Ref. [34] for details. This expansion leads to
different singulants from those in previous section.
It is convenient to change variables to

p1 ≡ v2

w2
; ð96aÞ

p2 ≡ p2
T

T2
; ð96bÞ

and we now expand as

f ¼
X∞
n¼0

f̃nðp1; p2Þ
wn ; ð97Þ

with f̃0 ¼ e−
ffiffiffiffiffiffiffiffiffiffi
p1þp2

p
. Here tildes denote series coefficients

in the 1=w expansion. The pressure anisotropy is also
expanded as

AðwÞ ¼
X∞
n¼1

ãn
wn : ð98Þ

The Boltzmann equation leads to the following recursion
relation for the expansion coefficients:

f̃nþ1

γ
¼ 2

3
nf̃n þ

4

3
p1∂p2 f̃n −

2

3
p2∂p2 f̃n

þ 1

18

Xn
k¼0

ãn−kðkf̃k þ 2p1∂p1 f̃k þ 2p2∂p2 f̃kÞ: ð99Þ

This recursion can be used to calculate several hundred
orders of f̃n and ãn analytically. The ãn coefficients were
observed to diverge factorially in Ref. [20]. Numerical
studies of these series show that the coefficients f̃nðp1; p2Þ
diverge factorially, with a slope that depends on the values
of p1 and p2. We are therefore led to the ansatz

f̃n ¼
Γðnþ αÞ

χðp1; p2Þnþα Aðp1; p2Þ; ð100Þ

with a momentum-dependent singulant. The recursion
relation implies that χ satisfies

3

2γ
¼ χ − 2p1∂p1χ þ p2∂p2χ; ð101Þ

where the terms involving the coefficients of the pressure
anisotropy have dropped out. This equation has the
solutions

FIG. 6. Singulants in the gradient expansion in RTA kinetic
theory in Bjorken flow. Top panel: Borel plane at τ ≈ 0.6 for three
values of the momentum ðv; pTÞ. One singulant seems to be
approximately momentum independent, and is the dominant one.
Another depends on their ratio. Bottom panel: test of the singulant
equation of motion. χ can be measured numerically at each point
in time by calculating the gradient expansion. Alternatively, we
can take the dominant singulant from the top panel and evolve it
by Eq. (94). The figure shows that these procedures agree.
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χðp1; p2Þ ¼
3

2γ
þ ffiffiffiffiffi

p1
p

Gðp2
ffiffiffiffiffi
p1

p Þ; ð102Þ

where G is an arbitrary function. G is in principle
determined by matching a sum of singulants to the zeroth
order of the perturbative series, but we do not know how to
do this in practice. However, even without knowing the
functionG, the values of χðp1; p2Þ on a curve where p2

ffiffiffiffiffi
p1

p
is constant can be calculated from any other. We verified
this using the explicit large-order computation; see Fig. 7.
For the pressure anisotropy, let us apply the saddle point

argument from above. Equation (101) immediately implies
that χ� ¼ ð3=2γÞ at a saddle point. Thus, even though G is
unknown, and therefore the saddle points p� cannot be
determined, the value of the singulant at the saddle point is
uniquely fixed. However, it is also known that there are
contributions with a nonzero imaginary part [20], which do
not correspond to physical excitations. We do not know
why they do not show up in this analysis, but a possibility is
that they come from end point contributions of the saddle
point integral.
Finally, note that introducing AðwÞ simplifies a lot of

analysis in the Bjorken flow and makes some features
manifest. For example, it led to the notion of hydrodynamic
attractors. Therefore, it has been an interesting and poten-
tially important question if AðwÞ acquires a natural
generalization when symmetries of the flow are relaxed.
While generalization of A can be trivially obtained as
long as the local rest frame exists, the w clock variable is
less obvious. Earlier attempts in this direction include
Refs. [82,83], and our work adds singulants as a particu-
larly natural possibility. The reason for it is twofold: the

leading singulant governs the asymptotics of the gradient
expansion and, through resurgence, also the most signifi-
cant exponentially decaying term supplementing optimally
truncated (see the next section) hydrodynamic constitutive
relations, as w also does.

VI. OPTIMAL TRUNCATION
OF THE GRADIENT EXPANSION

Having established that the gradient expansion (5) is
factorially divergent in MIS-like theories, the natural
question that arises is what its practical usefulness is.
There are two different ways in which one can employ a
factorially divergent gradient expansion: a fixed-order
truncation or an optimal truncation. In this section, we
explore the second option. We remove the bookkeeping
parameter ϵ by setting it to one.
The optimal truncation of the gradient expansion at a

given spacetime point is the partial sum,

SðnoptÞðt; xÞ ¼
Xnopt
n¼1

ΠðnÞ⋆ ðt; xÞ; ð103Þ

closest to the actual value of Π⋆ðt; xÞ. Note that, due to this
definition, the order of optimal truncation nopt is expected
to be spacetime dependent.
Our main objective in this section is to put forward a

criterion for estimating nopt that relies exclusively on the
gradient expansion itself. Our choice is the following. Let
jχdðt; xÞj correspond to the absolute value of the dominant
singulant at a given spacetime point. We propose to
estimate the order of optimal truncation at that spacetime
point by the relation

nopt;estðt; xÞ ¼ ½jχdðt; xÞj�; ð104Þ

where the brackets instruct us to take the integer part of the
quantity they enclose.
To explore the consequences of Eq. (104), let us consider

the case in which the large-order behavior of the gradient
expansion is of the form Eq. (6) and that jχdj ≫ 1. In this

situation, it is immediate to demonstrate that Πðnopt;estÞ⋆ is the
smallest coefficient of the gradient expansion,

jΠðnopt;estÞ⋆ ðt; xÞj < jΠðnÞ⋆ ðt; xÞj; ∀ n ≠ nopt;est; ð105Þ

and, furthermore, that this smallest coefficient is exponen-
tially suppressed in jχdj:

jΠðnopt;estÞ⋆ j ∼
ffiffiffiffiffiffi
2π

p
Pjχdj−1=2e−jχdj: ð106Þ

The standard expectation is that Sðnopt;estÞ provides a repre-
sentation of the actual Π⋆ which is accurate up to such
exponentially small term:

FIG. 7. Borel plane for the distribution function in RTA kinetic
theory in Bjorken flow, for the 1=w expansion. According to
Eq. (102), the value of the singulant χðp1;p2Þ can be predicted
along a certain trajectory in the space of ðp1;p2Þ. We verify this
by calculating the singulants for two points on such a curve.
These singulants are shown in the Borel plane and the two sets of
parameters correspond to the blue and green points in the figure.
From the singulant revealed by one set, we predict the location for
the other parameters and confirm this prediction using the explicit
large-order computation.
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jΠ⋆ − Sðnopt;estÞj ¼ Oðe−jχdjÞ; jχdj ≫ 1: ð107Þ

In the case that the dominant singulant is not real but rather

corresponds to a complex-conjugated pair, the norm ofΠðnÞ⋆
displays additional oscillations at large n with frequency
arg χ,

jΠðnÞ⋆ j ∼ 2jPj cos½ðnþ αÞ arg χ − argP�Γðnþ αÞ
jχjnþα ; ð108Þ

where we assumed that α is real. In this situation, the
definition (104) singles out the gradient expansion coef-
ficient for which the envelope of these oscillations is the
smallest.
To test our estimate, we consider the following initial

data in BRSSS theory:

Tð0; xÞ ¼ 2− tanhðxÞ2; uð0;xÞ ¼Π⋆ð0; xÞ ¼ 0; ð109Þ

which correspond to an initial overdensity in the effective
temperature such that ½jTð0; 0Þ − Tð0;∞Þj=Tð0;∞Þ� ¼ 1.
We have set E=T4 ¼ 1, η=s ¼ 1=ð4πÞ, and τΠT ¼
ð2 − log 2Þ=ð2πÞ. We evaluate the gradient expansion along
the flow line passing through x ¼ 0 at t ¼ 0. Our results
will be parametrized in terms of the dimensionless variable:

ξðtÞ ¼
Z

t

0

dt0

τΠ½Tðt0; 0Þ�
: ð110Þ

In the upper panel of Fig. 8, we represent the time evolution
of the dominant singulant and the corresponding nopt;est as
we move along this flow line. This dominant singulant has
been extracted with the help of the method put forward in
our analysis of the BRSSS model in Sec. III. The reader can

find where the gradient expansion coefficient Πðnopt;estÞ⋆
picked by our procedure sits at three different times in
the middle panel of Fig. 8.
Finally, in the bottom panel of Fig. 8, we plot the time

evolution of the error of our estimate for optimal truncation,

jΠ⋆ − Sðnopt;estÞj; ð111Þ

and compare it with the error of the actual optimal
truncation as originally defined. The latter is always upper
bounded by the former and, furthermore, both errors
decrease exponentially as ξ grows. For reference, we also
include the absolute errors incurred by the first and second-
order truncations of the gradient expansion.

VII. OUTLOOK

We have established that there exists a deep connec-
tion between far-from-equilibrium nonlinear relativistic
hydrodynamics and linear response around global thermal

FIG. 8. Upper panel: evolution of the norm of the dominant
singulant jχdj as a function of ξ along the flow line located at
x ¼ 0 for initial data [Eq. (109)]. A real singulant, whose
trajectory is denoted by the solid blue line, dominates at early
times. At late times, a complex-conjugated singulant pair, whose
trajectory corresponds to the solid red line, takes over. The
discontinuous solid black line corresponds to nopt;est, as given by
Eq. (104). Middle panel: coefficients of the gradient expansion at
three selected times. The ones associated to the corresponding
nopt;est have been highlighted in red. Lower panel: absolute error
of the optimal truncation (black crosses) and the truncation at
order nopt;est (red dots). Crucially, the latter error provides an
upper bound for the former that displays the same time depend-
ence. The dashed (dotted) black line represents the absolute error
of the first-order (second-order) truncation.
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equilibrium. This connection is manifest in the large-order
behavior of the hydrodynamic gradient expansion and is
naturally encoded in singulants. When viewing this duality
from the gradient expansion side, one can regard singulants
as emergent excitations coming from a dramatic reorgani-
zation of the series at large orders. We have outlined the
principles governing singulant dynamics in longitudinal
flows for MIS-like models, holography, and kinetic theory,
and checked their validity by explicit numerical computa-
tions in a number of cases.
In the course of this work we have also investigated the

large-order behavior of thegradient expansion and singulants
in nonrelativistic theories along the lines of Refs. [84,85],
finding results analogous to the ones presented here. This is
beyond the scope of the current paper and we hope to report
on it elsewhere [86]. This suggests that singulants are a useful
language for hydrodynamics in general.
Our work opens new research directions which come

with new technical and conceptual challenges to be
addressed. On the technical front, it would be interesting
to solve for nonlinear longitudinal flows as an initial value
problem in holography and RTA kinetic theory and confirm
the predicted behavior of singulants by analyzing the
gradient expansion at large order (just as we have done
here for MIS-like models). On the conceptual front, we
singled out four questions that we believe are of particular
importance and discuss them in the sections below.

A. Singulants and initial conditions

While we have succeeded in determining the time
evolution of individual singulants, we have not discussed
how the number of singulants and their initial values are
related to the initial out-of-equilibrium state under consid-
eration. The complete answer to this problem remains
unknown to us; we have, however, made partial progress on
this front by working in the linear response regime. In this
case, the problem of finding initial conditions for the
singulant fields can be solved, and we refer the reader to
Appendix D in the Supplemental Material for a worked-out
example in BRSSS theory [43].
Revisiting this question for nonlinear flows is of funda-

mental importance in order to understand how to promote
the gradient expansion (1) to a full-fledged transseries
representation of the energy-momentum tensor. If there
were a method to extract the values of the singulant fields at
t ¼ 0 from the initial data, then the singulant equation of
motion would allow us to determine the dominant singulant
at any given point without having to compute the gradient
expansion itself. In light of the results presented in Sec. VI,
the natural expectation that arises is that full knowledge
of the spacetime profile of the dominant singulant would
allow us to single out the spacetime region where relativ-
istic hydrodynamics, when truncated at low order, will
not be applicable—for instance, because jχdj ∼ 1 and no
optimal truncation even exists.

Finally, it would be interesting to find out whether
making progress on this front could shed light on the
necessary conditions that the initial data have to obey for a
factorial growth to be present and the singulant ansatz (3) to
be applicable. Further discussion on necessary conditions
for factorial growth can be found in Ref. [34].

B. Singulants beyond longitudinal flows

Another important question we have not discussed up to
this point is whether the results presented in this work
generalize beyond longitudinal flows. The main simplifi-
cation brought by restricting ourselves to this class of fluid
flows was that Πμν could be described in terms of a single
scalar field, Π⋆. We have seen that a longitudinal flow is
nothing but a nonlinear sound wave. Because of this, and
the linearization entailed by the asymptotic ansatz (14), the
singulant equation of motion was determined by a linear
response theory problem formulated in the sound channel.
In the absence of symmetry constraints, a d-dimensional
conformal energy-momentum tensor is associated with a
Πμν that encompasses dðd − 1Þ=2 − 1 degrees of freedom.
It is natural to wonder whether, in this completely general

situation, the leading large-order behavior of ΠðnÞ
μν can be

expressed as a linear superposition of contributions defined
in independent channels (we omit the sum over indepen-
dent singulant contributions within a given channel for
presentational simplicity),

ΠðnÞ
μν ∼

X
c

Γðnþ αÞ
χnþα
c

Ac;μν; ð112Þ

and, furthermore, if these conjectured channels can be put
into one-to-one correspondence with the tensor, vector, and
scalar channels that arise when decomposing an infinitesi-
mal perturbation of the energy-momentum tensor around
thermal equilibrium.
In Appendix B in the Supplemental Material we provide

the first steps to address this question in the context of MIS-
like theories [43]. The analysis presented there shows that,
for a decomposition along the lines of Eq. (112) to be
possible, one would need to work with a basis for the
tangent space at a given point that depends explicitly on the
singulant fields themselves. A fully fledged numerical
analysis beyond the realm of longitudinal flows in these
models along the lines of Ref. [34] is required to find out
whether this conclusion is correct. This computation will be
numerically more costly than the longitudinal flow one, but
we expect it to be feasible.
We would like to point out that, when it comes to this

issue, kinetic theory stands aside the other models we
have considered. In the kinetic theory case, we know that
the large-order behavior of the gradient expansion of the
distribution function does not decompose into channels.
It would be interesting to understand whether, in spite of
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this, computing the second-order moments to get the
energy-momentum tensor leads naturally to a channel
decomposition.
While this discussion might sound a bit technical, it does

have interesting physical implications. The key reason for it
is an idea of rheology, which aims to improve hydro-
dynamic predictions by making transport coefficients
depend on gradients of fluid variables; see, in particular,
Ref. [87] for a pioneering effort in this direction. Recently it
was revisited in Refs. [12,82,88–90] by including contri-
butions from transients in redefined transport coefficients.
The true potential of the latter approach depends on
correctly accounting for transient effects, which in our
language are simply the singulant fields. In particular, the
extent to which this is feasible in general depends crucially
on understanding the detailed tensor structure of the non-
hydrodynamic sectors of the transseries representing the
energy-momentum tensor. Our work opens this possibility.

C. Singulants in other gradient expansions

Finally, we would like to point out that Eq. (1b), while
defining classical relativistic hydrodynamics as an effective
field theory, is not the only gradient expansion one can
work with. Our analysis of the 1=w expansion in RTA
kinetic theory already illustrates that singulants provide
novel insights beyond the realm of the gradient expansion
(1b), and we expect this observation to be completely
general.
To further illustrate this point, let us stay within the realm

of longitudinal flows and consider a scenario in which,
besides Π⋆, both E and U are gradient expanded,

E ¼
X∞
n¼0

E
∘ ðnÞ

ϵn; U ¼
X∞
n¼0

U
∘ ðnÞ

ϵn;

Π⋆ ¼
X∞
n¼1

Π
∘ ðnÞ
⋆ ϵn; ð113Þ

with the conservation equation ∇μTμν ¼ 0 being solved in
a small-ϵ expansion. In this alternative gradient expansion,

E
∘ ð0Þ

and U
∘ ð0Þ

represent the solution of ideal hydrodynamics
associated with the initial spatial profiles of the energy
density and the velocity field, while higher-order terms
encode dissipative corrections to the ideal solution which
vanish at t ¼ 0. We refer to the gradient expansion (113) as
the ideal expansion. In the context of Bjorken flow, the
ideal expansion is precisely the expansion in inverse
powers of the proper time τ, and the 1=w expansion arises
as a (partial) resummation of it.

Let us assume that the large-order behavior of E
∘ ðnÞ

, U
∘ ðnÞ

,

and Π
∘ ðnÞ
⋆ is governed by a common singulant field. The

general rules we put forward in Appendix A in the
Supplemental Material [43] entail that the singulant

equation of motion is connected to a linear response theory
problem through the map (A22). In this regard, the
fundamental differences between the gradient expansions
(1) and (113) are twofold. First, the role that the micro-
scopic E and U had in the map associated to the gradient

expansion (1) is taken over by E
∘ ð0Þ

and U
∘ ð0Þ

when the ideal
expansion is considered. Second, the particular linear
response theory problem associated to the ideal expansion
is different from the one relevant for the gradient expansion
(1): rather than being determined by the poles of γs, the
singulant equation of motion in the ideal expansion is set by
the transient sound channel modes. The reason is that, to
compute the ideal expansion, the conservation equation is
also gradient expanded.
Another expansion to which one can apply some of the

techniques developed in this work is the Cauchy data
expansion. In this case one employs the conservation
equations to systematically replace longitudinal derivatives
in the constitutive relations by transverse ones. The Cauchy
data expansion is known up to third order in gradients at the
fully nonlinear level [91,92], and its large-order behaviorwas
analyzed in Ref. [35] for conformal fluids in the context of
linearized hydrodynamics, where it only involves spatial
derivatives—hence our nomenclature. The aforementioned
replacement, while inconsequential from the effective field
theory perspective, makes a difference when the constitutive
relations are evaluated on a fluid flow. Given the results of
Ref. [35], we expect the Cauchy data expansion to be
factorially divergent at the nonlinear level, and it would
be interesting to explore in detail the link between singulant
dynamics and linear response theory in this case.
Finally, we want to mention that our general expectation

is that different frame choices, i.e., different choices of
collective fields, would result in singulants with different
dynamics. This should not come as a surprise, given the
previous discussion on the ideal expansion. In fact, as the
causal completions of relativistic hydrodynamics recently
put forward by Bemfica, Disconzi, Noronha [93] and
Kovtun [94] (BDNK) illustrate, there exist phenomeno-
logical models for which even the very existence of
the gradient expansion (1) is contingent on the choice of
collective fields. To make meaningful comparisons
between gradient expansions across different models,
one has to keep the choice of collective fields invariant.
In this regard, it might be worthwhile to perform a field
redefinition in the BDNK theories (or the theory put
forward in Ref. [95]) to put their gradient-expanded
constitutive relations in the Landau frame and check
whether the singulant dynamics in longitudinal flows is
still controlled by the poles of γs.

D. Physical interpretation of singulants

For systems near thermal equilibrium a particularly
useful theoretical language is provided by linear response
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theory. To the leading order in the amplitude of distortions
away from equilibrium, the dynamics of the system is
determined by the properties of retarded two-point func-
tions of local operators. Singularities of these correlators in
Fourier space determine the dynamics of the system. In
particular, black hole quasinormal modes in holography
arise as single pole singularities of boundary correlators.
MIS-like theories also have such single pole singularities,
whereas in kinetic theory it is known that this singularity
structure is richer and also includes branch points.
In holography (with a straightforward generalization to

MIS-like theories), short-lived quasinormal modes describe
the decay of nonhydrodynamic degrees of freedom with
the subsequent approach to equilibrium being governed by
a few long-lived quasinormal modes realizing linearized
hydrodynamics. It is fair to say that quasinormal mode
picture underlies much of the progress achieved in studying
strongly coupled systems in the course of the past two
decades. However, outside the realm of linear response
theory and in the absence of high degree of symmetries, it
has never been clear what object, if any, arises as a natural
generalization of a quasinormal mode. We advocate that
singulants can fill this role.
They are quasinormal-mode-like because they are exci-

tations which describe nonhydrodynamic decay, reflected in
the fact that in all examples considered in this paper, the
value of jχj grows after enough time has passed.We have not
observed any exampleswhere χ orbits the origin of the Borel
plane, which is fundamentally tied to this interpretation. At
the same time, they do not call for a proximity of global
equilibrium. They differ from standard quasinormal modes
in the sense that they apply arbitrarily far from equilibrium.
Finally, for singulants to fill the role of quasinormal

modes for far-from-equilibrium systems, then what is their
imprint on a given flow? We now outline a class of
measurements that can be performed, at least in principle.
The data we assume are a measurement of the energy-
momentum tensor Tμν in a given spacetime region. Given
this data one can solve the eigenvalue problem TμνUν ¼
−EUμ at each spacetime point to obtain the fields E and U.
Taking derivatives of E and U one can assemble the
structures we have given in detail and directly observe
singulant dynamics, just as we have done through numeri-
cal simulation in the preceding sections.
In the special case of Bjorken flow, see Sec. V D, the

hydrodynamic gradient expansion is the same for all non-
equilibrium states. Therefore, another way of accessing the
singulant dynamics in this case is to constructAðwÞ for two
different flows and subtract them from one other. In this case
the hydrodynamic sector of the transseries cancels com-
pletely, leaving singulant physics visible to the naked
eye [96].
As we discussed in Sec. VII C, one has the freedom to

vary the type of gradient expansion. This leads to different
singulant dynamics which can be observed by constructing

combinations of derivatives of E and U appropriate for the
gradient expansion in question. In this way, the freedom to
choose the gradient expansion leads to an infinite family of
related self-consistent predictions.
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