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Fault-tolerant quantum computing requires initializing the quantum register in a well-defined fiducial
state. In solid-state systems, this is typically achieved through thermalization to a cold reservoir, such that
the initialization fidelity is fundamentally limited by temperature. Here, we present a method of preparing a
fiducial quantum state with a confidence beyond the thermal limit. It is based on real-time monitoring of the
qubit through a negative-result measurement—the equivalent of a “Maxwell’s demon” that triggers the
experiment only upon the appearance of a qubit in the lowest-energy state. We experimentally apply it to
initialize an electron spin qubit in silicon, achieving a ground-state initialization fidelity of 98.9(4)%,
corresponding to a 20x reduction in initialization error compared to the unmonitored system. A fidelity
approaching 99.9% could be achieved with realistic improvements in the bandwidth of the amplifier chain
or by slowing down the rate of electron tunneling from the reservoir. We use a nuclear spin ancilla,
measured in quantum nondemolition mode, to prove the value of the electron initialization fidelity far
beyond the intrinsic fidelity of the electron readout. However, the method itself does not require an ancilla
for its execution, saving the need for additional resources. The quantitative analysis of the initialization
fidelity reveals that a simple picture of spin-dependent electron tunneling does not correctly describe the
data. Our digital Maxwell’s demon can be applied to a wide range of quantum systems, with minimal

demands on control and detection hardware.
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I. INTRODUCTION

Fault-tolerant quantum computing places strict require-
ments on preparation, control, and readout of qubits. Much
emphasis is placed in the literature on the fidelity of
quantum gate operations, but the most effective error
correction codes demand an abundance of initialization
and measurement steps. A well-known example is the
surface code: In this scheme, fault-tolerant operation of
a logical qubit is achieved when the probability of an error
occurring on one- and two-qubit gates, and initialization
and measurement, are all below 0.56% [1]. Similarly, a
fault-tolerance error threshold of 4.8% is obtained for
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topological color codes, assuming both qubit errors and
state preparation and measurement (SPAM) errors have the
same rate [2].

Many physical qubit platforms have now reached quan-
tum logic gate errors close to or below some fault-tolerance
thresholds [3-5], including nuclear [6] and electron [7-9]
spin qubits in silicon. Not as common, however, is the
achievement of equivalently low SPAM errors. The lowest
errors are typically achieved in systems that allow for
continuous or repetitive quantum nondemolition (QND)
readout, such as nuclear spins [10,11] and superconducting
transmon qubits [12,13]. Projective QND measurements
combined with feedback can be used to initialize the qubits
with high fidelity [14,15]. Other qubit types, like super-
conducting phase qubits [16] and electron spins in semi-
conductors [17,18], adopt instead a measurement method
based upon energy-dependent tunneling. There, the high-
energy state of the qubit is detected through its much higher
probability of tunneling out of the confining potential
barrier; the tunneling event, in turn, causes a change in
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the state of a nearby sensor. This method naturally results in
a SPAM fidelity limited by the thermal population of the
energy eigenstates. Recent work on electron spin qubits in
Si/SiGe quantum dots [19,20] has begun to address the
issue of SPAM errors by implementing QND readout via a
quantum logic operation with an ancilla dot.

In this paper, we describe and demonstrate a method to
beat the thermal limit for initializing the ground state of an
electron spin qubit, which is read out via energy-dependent
tunneling. Conceptually, energy-dependent tunneling is a
form of negative-result measurement [21]. The theory of
negative-result measurements has been extended to the case
of a driven qubit [22] at zero temperature. Here, we focus
instead on the finite-temperature case in the absence of drive,
by extending the model originally presented by Ruskov,
Mizel, and Korotkov [22] to account for thermally induced
tunneling out of the ground state, which represents a
measurement error. The goal of our work is to reduce such
error far below the thermal limit. We use the spin of the
electron bound to an ion-implanted *'P donor in silicon as our
qubit [23], which naturally comes equipped with a spin-1/2
nucleus coupled to it. We use the nucleus as an ancilla system
that can be read out with near-unity fidelity [11,24], solely to
prove the effectiveness of our electron initialization method.
The method itself does not require an ancilla to operate and,
thus, does not demand additional quantum resources.

The electron spin qubit is initialized by a real-time
monitoring system, implemented in field-progammable
gate array (FPGA) hardware, which acts as a Bayesian
Maxwell’s demon by selectively preparing the lowest-
energy spin state of an electron, which is initially drawn
from a charge reservoir at nonzero temperature. In the
original thought experiment, the demon separates high-
energy from low-energy particles in a gas at no energy cost,
and the separated gas is then operated as a heat engine to
extract work from the system. This appears to violate the
second law of thermodynamics; however, an information
theoretic approach reveals the entropic cost of the demon
resetting its knowledge at the beginning of each cycle
[25,26]. Maxwell’s demon has recently been applied in
charge [27-29] and superconducting [30,31] qubit systems
to study the thermodynamic cost of quantum information
processing and to extract work. Here, we adopt the
Maxwell’s demon idea to draw an electron from a warm
charge reservoir. By monitoring in real time the charge state
of the donor, our demon is able to obtain a higher probability
of the electron being in the ground state than would be
achievable without the demon’s careful observation.

Our device shares many similarities with the seminal
experiment of Koski et al. [29], who realize a Szilard
engine by using a single-electron box, whose charge state is
monitored in real time by a single-electron transistor
embodying the Maxwell’s demon. In their work, the
information acquired by the demon is used to then extract
work equal to kzT In2 from a thermal bath. However, our

work differs from previous Maxwell’s demon experiments
in that our interest is not in the thermodynamics itself, but
in the impact of the information gain on the initialization
fidelity of a qubit. Furthermore, because of the quantum
information focus of our work, the initialization speed is of
paramount importance. Our readout system is, thus, 3
orders of magnitude faster than the one used by Koski
et al. [29] in their Szilard engine experiment.

II. ELECTRON SPIN INITIALIZATION
AND READOUT

We consider electron spin qubits in semiconductors [32].
An external magnetic field B creates an energy splitting
E, = E; — E| = hy,B, between the spin-down (|{)) and
spin-up (|1)) states due to the Zeeman effect, where y, is
the electron gyromagnetic ratio and & is the Planck
constant. For electrons in silicon, y, ~ 28 GHz/T, such
that By = 1 T results in E;/kp ~ 1.34 K, where kp is the
Boltzmann constant. From a microwave engineering point
of view, it is costly and challenging to operate spin qubits at
frequencies above 40 GHz, which means that E,/kp is
limited to approximately 2 K for practical purposes, which
corresponds to By =~ 1.4 T in silicon.

A natural way to initialize such a spin qubit is to cool down
the host material to a temperature 7 < E,/kp and wait a
time approximately 57'., where T, is the electron spin-
lattice relaxation time. At low magnetic fields and low
temperatures (typically, about 100 mK), 7', usually exceeds
one second [18,33-37]. Therefore, this method is practical
only if the electron spin possesses an energy level structure
which results in relaxation “hot spots” [38], where the
Zeeman splitting crosses an orbital or valley splitting,
shortening 7', to the microsecond range. Hot spots exist
in quantum dots [33,36] but not in donors [34,37].

More commonly, the electron spin is initialized by the
same method used for readout. Here, we focus on the case
where the readout occurs via energy-dependent tunneling
to a Fermi reservoir [17,18,39]. We use spin-to-charge
conversion to measure the state of an electron spin bound
to a3'P donor in isotopically enriched 28Si [40]. The device is
placed in a magnetic field By = 1.423 T and cooled to 7 <«
1 K with a dilution refrigerator. The donor electron is tunnel
coupled to a nearby SET which is tuned to be in Coulomb
blockade (no current flowing) when the donor is in the
neutral charge state (D). The blockade is lifted when the
donor becomes ionized and positively charged (D) [41]
upon tunneling of its electron onto the SET. The SET island
can be approximated as a Fermi reservoir, as shown in Fig. 1
(this approximation is examined in Sec. V). The fraction of
occupied electron states, f, follows the Fermi function

R (L S

where Er is the Fermi energy.
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FIG. 1. (a) False-colored micrograph of a device from the same
batch as the one used in this paper. The SET for electron spin
readout and initialization is shown on the right in green. The
microwave antenna, used for ESR and NMR, is shown on the left
in pink. Pulsing gates DG3, DG4, and SPL (identified by white
dots) form a virtual gate (VG). (b) Schematic energy landscape of
the device. The donor binding potential confines an electron in
the spin-down (blue line) or spin-up (green line) state. The
conduction band edge is indicated for both spin-up (£.4) and
spin-down (E,) electrons, split by the Zeeman energy E. The
green and blue shaded regions illustrate that [1) and || ) electrons
are expected to face the same energy barrier to the reservoir upon
elastic tunneling (see Sec. V). The electron is initially drawn from
the SET island, shown in tan, which acts as a finite-temperature
charge reservoir. (c) Level diagram of the electron-nuclear spin
system (not to scale), alongside the occupied states in the SET
island, which follow the Fermi-Dirac distribution f(E).

When E; > kpT, and the electrochemical potential of
the donor is tuned about the Fermi level, a |1) electron can
tunnel to the reservoir at a rate I'y ,, which is high because
of the large density of empty states in the reservoir, i.e.,
1 — f(E}) ~ 1. Tunneling of a || ) electron, atarate I"| o, is
greatly suppressed by the lack of available states,
1-f(E) <L

Single-shot electron spin readout is performed by
observing the SET current for a duration ... Traces
where the current shows a step increase indicate an
ionization event (transitioning from D° to D). The ability
to distinguish |1) and |} ) tunneling events is given by the
ratio of the tunnel-out rates for the two orientations.
Because I'y oy > I'y oy, We identify this event with tunnel-
ing out of a |1) electron. Conversely, the absence of current
steps is identified with a ||) electron remaining on the
donor. In a broader quantum measurement context, this
type of qubit readout belongs to the class of negative-result
measurements [21]: Even the absence of an event (in this
case, electron tunneling) provides information on the state
of the monitored quantum system. This should not be
confused with whether the sensor output that signals a
tunneling event is a positive or a negative current (or
voltage) [42]. Here, the “negative result” is the absence of a
sensor signal, regardless of its sign.

An alternative method to read out an electron spin
state is Pauli spin blockade (PSB). PSB distinguishes
the triplet states of two spins from the singlet state
|S) = [1)) = |4 1), as only a spin singlet can occupy the
same spatial quantum state [e.g., a (2,0) charge configuration
of two dots [43]]. PSB spin mapping errors arise from triplet-
to-singlet relaxation during the readout window, resulting in
a tunneling event for an initially blockaded spin configura-
tion. As a result of PSB readout, the final two-spin state is
either a singlet in the (2,0) charge configuration or one of
the triplet states in the (1,1) charge configuration. Under
certain conditions, PSB can be used instead to discern the
two-electron parity, i.e., discriminate ||71),|1]) from
[V4).111) [44].

This alone does not initialize a single electron spin state.
However, if one of the electrons can be independently
initialized to the fiducial state ||) through, e.g., energy-
selective tunneling or 7 relaxation, then PSB readout
resulting in a triplet or even-parity state prepares the

state [T_) = [ {).

III. BAYESIAN MAXWELL’S DEMON

To understand how the electron spin state populations
change under the Maxwell’s demon observation, we adopt
a Bayesian update framework, where the knowledge of the
state populations is updated with each measurement sam-
ple. This framework naturally describes a digital, discrete-
time measurement. In Appendix D, we describe the
equivalent continuous-time process.

In a setup as described above, the current through the
SET charge sensor is used to determine whether an electron
has tunneled to a reservoir. The current is then converted to
a voltage through a transimpedance amplifier at room
temperature, integrated over a short duration 7 = 10 us
and digitized to yield a digital sample D,. Each sample
yields information on whether the electron has tunneled or
not, which correlates to the electron spin state. This
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information is processed by a FPGA, which enables real-
time decision making based on the information extracted
from the sensor.

We define a Boolean parameter B, to represent the sensor
signal exceeding a threshold Sy, above which a tunneling
event is recognized, i.e., B= (D > Sy). The logical
complement to B is denoted —B and is recorded
when D < Sy,.

The sensor measurement has a backaction on the
electron spin, even when no tunneling event takes place
[45]. This constitutes a variable-strength measurement,
which is elaborated in Appendix D. The initial estimate
of the ||) probability P({ ) prior to the measurement can be
taken as P(}) = f(E,), since the electron is loaded from
the SET island Fermi reservoir. As the measurement
proceeds, we describe the probability of having a |])
electron on the donor by an iterative Bayesian update
process. If no blip is detected in a set of N measured
samples =B = (=By,-By_i,...,7B,), i.e., the signal
threshold is not exceeded, the prior ||) probability P(])
is updated based on the likelihoods L(||~BY) and
L(1|-BY) of a ||) or |1) electron not tunneling (see
Appendix B for derivations). Gathering N consecutive
samples that all show no blip gives the final posterior
probability [see Fig. 2(b)] as

L{[-BY)P(})

P(}|-B") = £(¢|ﬂ3N>P(¢) + E(T|ﬂBN)P(T) )
1
- 1 4 LOBP(Y) )

L{-BY)P(])

U Sl CO v A
= (1+W€ NT (T ou—T, )) ; (4)

which tends to 1 as N — oo.

If a tunneling event is observed, i.e., a positive readout
result, the knowledge of the Maxwell’s demon is reset. In
this manner, the positive result is simply discarded, and
initialization recommences when an electron rejoins
the donor.

The denominator in Eq. (2) is the marginal likelihood
[example shown in Fig. 2(a)]. It represents the likelihood of
an electron not tunneling out of the donor after N
observations, given the initial probabilities of occupying
each spin state. The likelihood tends to zero for long
observation times, which indicates that long records of no
tunneling become increasingly rare.

This is the sense in which our setup operates as a
Bayesian Maxwell’s demon: As N increases and the
memory fills up with more samples of —B, the demon
becomes increasingly confident that the electron, initially
drawn from the warm reservoir, is in the ground state. In
that sense, the electron can be thought of as being in

equilibrium with a much colder reservoir than the one it is
originally drawn from. A schematic depiction of the
process is illustrated in Fig. 3. Once the desired confidence
is reached, the demon can give a trigger signal to start
further quantum operations on the qubit. Below, we discuss
how to quantify such confidence.
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FIG. 2. (a) An example marginal likelihood function,

L(L|-BY)P(]) + L(1|~BY)P(1) [denominator of Eq. (2)],
calculated assuming I'y o, = 100I") . as a function of the
observation time f,,, expressed in units of the spin-up tunnel-
out time 1/T"4 4. For short 7, the electron is unlikely to have
tunneled from the donor. For long 7, the electron escapes the
donor regardless of its spin state. The ideal 7., (heavy black line)
for single-shot spin readout is found where the likelihood
function exhibits a large contrast between its values for
P(]})=0 and P(}) =1 (black line). For these tunnel rates,
the ideal spin readout contrast is approximately 95%. (b) Bayesian
update of the ||) probability. For increasing observation times
where a tunneling event is not observed, the postmeasurement ||,)
probability increases toward unity. Different priors are shown to
indicate that the prior spin population has only a small role in
determining the final ||) probability after a sufficiently long
observation time. With a prior probability of P(]) = 0, we know
with certainty that the electron spin state is initially |1).
Therefore, no amount of new information (data gathered through
observation) can update the || ) probability.
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FIG. 3. Electron spin initialization with Bayesian Maxwell’s demon. (a) A pulse on the virtual gate VG first empties the donor to

remove the electron and then returns to the initialization position (¢, = Er) to reload an electron from the SET island. The electron
loading is signalled by Iggr returning to approximately 0. A Maxwell’s demon (in this case, the FPGA that processes the values of I/ggt)
observes the digital trace with a stopwatch to count to NT'; = ¢, resetting the stopwatch when a tunneling event occurs. After a time
tohs Of measuring the electron not tunneling, the electron is labeled as | ) with high confidence. (b) The electron spin populations are
shown at each point (i)-(iv) from (a), indicated by individual ticks. The ||) population increases with increasing 7., but the spin
preparation is lost if the electron tunnels away from the donor. The demon automatically restarts the process until a long enough stretch
with no tunnel-out events is observed. (c) Finally, the electron spin preparation is mapped to a nuclear spin flip with an NMR pulse, and
the nuclear spin is read out via repeated ESR. The initial nuclear spin state (||})) and the prior spin-down probability [P({) = 0.75] are

chosen for illustration only.

IV. QUBIT INITIALIZATION FIDELITY

The qubit initialization fidelity is the probability of
correctly preparing a || ) electron. The basic method of
initialization by spin-dependent tunneling, i.e., the same
process used for electron spin readout, yields simply
F1(0) = P(}) = f(E,), limited by the thermal broadening
of the Fermi distribution. The Maxwell’s demon observa-
tion improves this fidelity as 7;(N) = P({|=B") [Eq. (4)].
However, we have no direct way to verify such improve-
ment if we resort to an electron spin measurement with
fidelity limited by the same thermally broadened reservoir.
This limit can be circumvented by introducing an ancilla
qubit which can be read out repetitively in a quantum
nondemolition (QND) fashion. For a P donor system, such
an ancilla is naturally provided by the *'P nuclear spin.
After the Maxwell’s demon cooling operation, we map the
state of the electron spin onto the nucleus [46,47] by a

simple nuclear magnetic resonance (NMR) 7 pulse condi-
tional on the electron ||) state, followed by repetitive
nuclear spin readout [11].

The total experiment fidelity F is, thus, composed of the
fidelities of the three stages: electron initialization (F7),
NMR control (F) to map the electron state onto the
nucleus, and nuclear readout (F):

Therefore, to extract F; from the experiment, we need to
independently quantify F and Fj. This is detailed in
Appendixes E and F, where we find F.=99.5(3)%
and Fp = 99.99%.

We stress that the Maxwell’s demon cooling method
does not require an ancilla to be implemented. The only
role of the ancilla qubit here is to verify the effectiveness of
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FIG. 4. The ||) population increases with increasing observa-
tion time. The median experiment fidelity F is shown by the blue
points with corresponding line of best fit to Eq. (8) (the blue
shaded region indicates one standard deviation model uncer-
tainty). The initialization fidelity F; is shown by the green line of
best fit (one standard deviation model uncertainty indicated by
the shaded green region).

the cooling method, to a precision better than the intrinsic
electron readout fidelity.

Figure 4 shows the total experiment (F) and initializa-
tion () fidelities of the donor electron spin, as a function
of observation times ?.,,. The error bars indicate the 25th
and 75th percentiles of the data. As the data are binomially
distributed, they are highly skewed (non-normal) near zero.
Percentiles are shown instead of the standard deviation, as
one standard deviation above the mean may be greater than
one, which is unphysical.

We observe that, in contrast with the ideal prediction of
Eq. (4), the initialization fidelity J; asymptotically
approaches an upper bound 1 — P, for P, # 0. We attribute
this discrepancy to fast tunneling events, resulting in current
blips that go undetected because they are shorter than the rise
time ;. of the transimpedance amplifier used to detect
changes in the SET current. Our amplifier has a low-pass
cutoff frequency f. = 50 kHz, which yields a rise time
(using a first-order approximation):

Liise = 2af
¢

log(1 — Sy) ~ 1.1 ps, (6)

where Sy, = 0.3 is the SET signal threshold [Fig. 3(a)] with
the SET signal rescaled between O and 1. The tunnel-in rate
[} in + T'y in, which determines the average blip duration, is
measured to be approximately 2700 s~' (Sec. V). The
probability P,, of missing a blip, i.e., the proportion of
tunneling events from the reservoir to the donor that occur
before the SET signal rises to the signal threshold, is (see
Appendix C for details)

PM =1- exp[_trise(FT,in + ri,in)] ~ 0.3%. (7)

Therefore, we fit the data to a modified version of Eq. (4)
to account for missed blips:

fie=P(L[-B") = Py

_ 1_P(\L_) ~Zobs L 4 out=1 '} out _I_
_(1+ i >> Pu. (8)

While we estimate P,; above, it is treated as a free fitting
parameter. The fit yields a total experiment fidelity
approaching F = 98.39(8)% for 14, > 10 ms, which
gives an initialization fidelity [by Eq. (5)] approaching
F; =98.9(4)%. This is in close agreement with the limit
predicted on the basis of the rise time limitation of the
transimpedance amplifier, Eq. (7). From this, we deduce
that a qubit initialization fidelity F; = 99.9% would be
achieved if the amplifier chain had a cutoff frequency of
300 kHz or if the electron tunnel-in rate is slowed down to
880 s~!. In the absence of Maxwell’s demon initialization,
the bare fidelity is F™™ ~ 80% [Fig. 5(b)], showing that
our method reduces the initialization error by a factor of 20.
The bare fidelity closely matches the prior || ) probability
F1(0) ~ 78% extracted from the fit.

Next, we consider (and rule out) other potential error
channels that could impose an upper bound to the initial-
ization fidelity. A possible mechanism could be the spurious
spin excitation caused by absorption of thermal phonons.
However, for an electron spin in silicon in a magnetic field
By > 1 T, the spin excitation rate W 4 is many orders of
magnitude lower than the spin decay rate W |, which itself is
about 3 orders of magnitude lower [37] than the tunnel rates.
Since the observation time is much shorter than the relaxation
and excitationrates (i.e., fon, < Wy | < W7}), the number of

thermally excited electrons recorded throughout this experi-
ment is expected to be negligible.

In the high-field limit y,B, > A, the eigenstates of the
electron-nuclear system are the simple tensor products
states of the electron (|| ), |1)) and nuclear (|{}), [f})) basis
states. We now consider the effect of the finite B, in mixing
the electron-nuclear eigenstates as a possible explanation
for the observed upper bound in || ) preparation fidelity. In
this experiment, the device is operated in a magnetic field
of 1.423 T (see Appendix A), giving an electron Zeeman
splitting of y,By ~ 39.8 GHz. For an isotropic hyperfine
interaction strength of A & 116 MHz, this gives a deviation
from the high-field limit electron spin eigenstates of only
1075, In the context of Bayesian initialization, this is not the
limiting factor in the present experiment.

The average time spent initializing the qubit 7 is
determined by the number of times the electron qubit is
reset (i.e., tunnels out and another tunnels back in) during
observation. For a given ¢, the total initialization time
increases with the average electron reset time (z;, =
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FIG. 5. (a) Cartoons of the electron spin states situated about

the Fermi reservoir in three different regimes: (i) plunge
(up < Ez), where the donor is almost always loaded, (ii) read
(up =~ 0), where the donor electron is able to tunnel to and from
the reservoir, and (iii) empty (up > E;), where the donor
electron is almost always unloaded. E is the electron Zeeman
energy. (b) Total measurement fidelity as a function of donor
potential y;,. The gray data (open circle) FY™ (up) is the fidelity
obtained with no monitoring, i.e., standard energy-dependent
tunneling. The blue data (closed circle) F;(up) are obtained with
real-time monitoring by the Bayesian Maxwell’s demon [F;(up ),
blue]. The lines are guides to the eye. The Maxwell’s demon’s
intervention yields a drastically improved initialization fidelity
over a wide range of donor potentials, making the effect robust
against even large electrostatic detunings.

(1/T4n + T i) scaled by the likelihood of observing no
blips during readout [the denominator in Eq. (2)]:

— Tin

o = LB P + et Ee) )

For this experiment, the average initialization time is #,; ~
40 ms with 7, = 10 ms.

Our initialization method compares favorably to alter-
natives that use additional quantum resources. Exploiting
QND readout, Yoneda et al. achieve a single-electron
ground-state initialization fidelity of 95.9% with a conven-
tional majority vote of 20 consecutive reads [19].
Extending beyond majority voting to supermajority voting

(i.e., moving the majority threshold above 50%), a ||)
initialization fidelity of F; = 99.6% is reached with at least
a 76.6% majority vote spin down in ten consecutive reads,
on an approximately 600 us timescale. Similarly, Philips
et al. [48] achieve up to 98% single-electron ground-state
initialization in a six qubit register with a 100% majority
vote of three consecutive QND reads, on a timescale of
about 300 us. Our method achieves 98.9(4)%, which is
comparable to the state of the art while using fewer
quantum resources. That the measurement time (approx-
imately 40 ms) here is longer than in other methods should
not be taken as a fundamental feature of our system. A
device with faster tunnel rates could achieve similar
fidelities in much shorter times. The generic scaling of
initialization fidelity with observation time, expressed in
multiples of the inverse tunnel rate, is shown in Fig. 2(b).

The above analysis is conducted by tuning the donor
electrochemical potential yp in alignment with the Fermi
level. Next, we investigate how the initialization fidelity
varies with the initialization level, i.e., the position of donor
electrochemical potential u, relative to Ep during the
measurement phase. The donor initialization level is con-
trolled by the VG [see Fig. 1(a)], which maintains a
constant SET potential.

In standard energy-dependent tunneling readout, the
dependence of I'y o, I') oy ON p1p is reflected in a tuning
dependence of the initialization fidelity [Fig. 5(b), gray].
Conversely, the Bayesian Maxwell’s demon proves to be
very effective in reducing the tuning dependence, as shown
by the plateau in F; (blue) extending for about half the range
corresponding to the electron spin Zeeman energy. The range
over which the mean data remain within 3% of the maximum
value of each curve is approximately 40% larger when
Maxwell’s demon is employed (90 ueV cf. 64 ueV).
Therefore, Maxwell’s demon not only improves the initial-
ization fidelity in absolute terms, but also makes it more
robust against drift in the device tuning.

While common error-correcting codes place strict bounds
on state preparation and measurement errors, they also
typically require that the time taken for these steps is similar
to the gate operation time. This defines the “clock cycle” of a
quantum processor. In our case, the initialization and readout
steps (about 10 ms) take significantly longer than the gate
times (about 100 ns). We can slow down the gate operations
by reducing the microwave power; however, the coherence
time of the system 7, ~ 100 us then becomes a limiting
factor. Improving initialization and readout times is, thus, a
priority.

For spin readout based on energy-dependent tunneling
[17,18], decreasing initialization and readout times to
100 ns requires increasing the qubit-reservoir tunnel
coupling to I’y o, 7 107 s™'. The ultimate speed limit for
this method is set by the value of tunnel couplings where
the electron starts to behave as a Kondo impurity [49-51].
At that point, one loses the isolated nature of the spin qubit,
whose levels hybridize with the reservoir states. The
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theoretical analysis of the impact of Kondo physics on
readout speed is an ongoing project and will be discussed in
future work.

Alternatively, fast spin readout can be achieved using
PSB in two-electron systems [43,52]. This method works
also when one of the two electrons is hosted by a donor
coupled to a surface quantum dot. A hybrid donor-dot
device has been operated with interdot tunnel couplings
approximately 10° s~! in combination with latched elec-
tron readout [53]. In combination with PSB, our method
could be used to first prepare a fiducial one-electron ||)
state and then select the triplet or even-parity outcome of
PSB readout to obtain a two-qubit register initialized in the

|}]) state.

V. ELECTRON TEMPERATURE AND
SPIN-DEPENDENT TUNNELING

So far, we describe the action of the Bayesian Maxwell’s
demon in terms of its impact on the fidelity F; of
initializing the qubit in the || ) state. The increased fidelity
upon real-time observation by the demon should intuitively
be linked to a reduction in the effective temperature of the
system. In this section, we attempt to quantify such a
cooling effect.

The starting point is the electron temperature 7', in the
SET island. We measure 7', =~ 260 mK using the standard
method of observing the broadening on the SET Coulomb
peaks [54,55] as a function of the refrigerator mixing
chamber temperature [Fig. 6(a)]. This value is higher than
the refrigerator base temperature of approximately 20 mK
due to the modest (10 dB) attenuation along the microwave
line, necessary to allow for high-power delivery for nuclear
spin control. Moreover, the charge reservoir we use for spin
discrimination (the SET island) is also used as part of that
charge sensing device and, thus, subjected to a sporadic
current flow which can affect its temperature. As we detail
below, the attempt to relate F; to T, highlights some long-
standing (but seldom discussed) inconsistencies in the
standard models of spin-dependent tunneling.

We can define an effective temperature 7. that deter-
mines F; from the tunnel rates between the donor and the
Fermi reservoir. Let us call H' the Hamiltonian describing
the electron tunnel coupling between donor and SET island.
Applying Fermi’s golden rule, the (elastic) tunnel rate of a
|1) electron from the reservoir to the empty donor can be
written as

Chin(Tetr) = =~ [(O[H'|1) Pn(E ) f(Ey).  (10)

2n
|
where (0|H’|?1) is the tunneling transition matrix element
between initial (|0), i.e., donor ionized) and final (|1)
electron on the donor) state, H' is the tunnel coupling
Hamiltonian, n(E) is the reservoir density of states, and
E; ~82.5 ueV is the Zeeman energy of the |1) electron,
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FIG. 6. (a) The electron temperature 7, = 260 mK is deter-

mined by the onset of an excess thermal broadening oy of the
SET Coulomb peaks when increasing the temperature Tyxc of
the dilution refrigerator’s mixing chamber. (b) The initialization
fidelity prior to the Maxwell demon’s intervention (shown in red)
is F;(0) = 78%, which corresponds to the Fermi population at
Terr = 2.95 K. With Maxwell’s demon monitoring, F; reaches
approximately 99% (shown in blue), which corresponds to an
effective temperature 7 = 270 mK.

having set Er = 0 by convention. The dependence on 7'
is given by the Fermi function. Similarly, the tunnel rate of
a |}) electron to the reservoir is
2r
Lyin(Terr) = 2= [OIH'[L)Pr(E ) f(Ey). (1)
At the ideal readout position, £, = —Ej.

Here, and in the near totality of the literature on spin-
dependent tunneling in quantum dots, two implicit assump-
tions are made: (i) that (| |H'|0) = (1|H'|0), i.e., the tunnel
barrier seen by either spin state is the same, and (ii) that the
density of states is constant over the range of interest, i.e.,
n(Ey) = n(E). Assumption (i) is physically justified on
the basis that the barrier profile is, in fact, the edge of the
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conduction band [Fig. 1(b)], which itself is subjected (to a
very good approximation) to the same Zeeman splitting as
the donor-bound electron [56]. Assumption (ii) is carried
over from the physics of spins in quantum dots tunnel
coupled to a two-dimensional electron gas, where n(E) =
const [57]. We know that our situation is rather different,
because the charge reservoir into which the electron tunnels
is an SET island with about 100 electrons, i.e., a near-zero
dimensional confining potential. A simple estimate yields a
single-particle level spacing ~24 peV [41], smaller than the
Zeeman splitting and comparable to the temperature of the
experiment.

In the absence of the Maxwell’s demon, the expected
initialization fidelity is simply

e (12)

This model fails to reproduce the no-monitoring (gray) data
in Fig. 5(b). At very negative initialization level, where
f(E;) = f(E))~1 and T'y;, #T'| ;,, the model predicts
FMM ~ 50% versus the observed ~70%. Such behavior is
ubiquitous in electron and hole spin qubits in GaAs [17], Si
[18,58], and Ge [59]. The initial spin-up fraction upon
loading a random electron is seen in spin-lattice relaxation
(T') experiments and is usually around 30%—40% instead
of the expected 50%. We are not aware of papers reporting
a 50% spin-up fraction from random loading.

More detailed analyses of spin-dependent tunnel rates in
quantum dots [56,60] further confirm such discrepancies.
Following Ref. [56], we introduce a phenomenological
parameter y as

n(Ey)[(1|H'|0)[?

n(E[(LHIO)F (13)

){:

We allow y # 1 but assume that it does not depend on 7.
Defining the ratio of tunnel-in rates

_JEY
“AE) "

_ 1—‘T,in
1—‘L.in

Riy(Tesr)

the bare initialization fidelity becomes

1 1

FWM — = ) (15)
) J(E

R

N

The no-monitoring data at very negative initialization level
in Fig. 5(b) can be used as a proxy for 7™ when Ty — oo,
because it describes the case where f(E}) = f(E ). From
FMM(up, < 0) =72% at deep plunge, we extract y =
0.388. The solid line in Fig. 6(b) describes "M as a function
of T, calculated from Eq. (15). From Fig. 5(b), the no-
monitoring data at the optimal readout point yield FiM~

81%, which corresponds to T4 ~2 K (gray dot). From
fitting the data in Fig. 4, we obtain F;(N) =~ 78% for N = 0,
which corresponds to T &~ 3 K (red dot). The action of the
Bayesian Maxwell’s demon results in F;(N) =~ 99% for
N =2000. To this result, following the black line in Fig. 6(b),
we can attribute an effective temperature 7o (N) &~ 270 mK,
indicating that the demon reduces the effective temperature
by about an order of magnitude.

The above discussion does allow us to frame the action
of the Bayesian Maxwell’s demon as a form of cooling.
However, it also highlights the fundamental inadequacy of
simple spin-dependent tunneling models to quantitatively
describe the data.

VI. CONCLUSIONS

We have presented a simple and effective method to
drastically improve the initialization fidelity of an electron
spin qubit. Starting from a poorly thermalized charge
reservoir, we have achieved F; = 98.9(4)%. The method
can be described as a form of Bayesian Maxwell’s demon,
that updates its confidence about the true state of the qubit
while performing a negative-result measurement, i.e.,
watching the absence of a tunnel-out event. The effect
can be conceptually described as drawing the electron from
a colder reservoir, but a quantitative analysis reveals that a
simple spin-dependent tunneling model is not adequate to
capture the details.

Our method is purely based on classical software and
does not require additional quantum resources such as
ancilla qubits. We used a nuclear spin ancilla solely to
verify the initialization fidelity beyond the intrinsic electron
spin readout fidelity, but once the method is “trusted,” it can
be applied to single qubits without ancillas. Further
increasing F; to 99.9% will be possible by adopting faster
readout techniques, e.g., with cold baseband [61] or radio-
frequency [52,62] amplifiers, or in cavity-based setups
[63-66].

Future work will focus on integrating this method within
multiqubit systems [6,67]. We expect it will improve the
fidelity in preparing highly entangled quantum states and
enable sufficient state preparation fidelity to implement
quantum error correction codes [1,2] at a fault-toler-
ant level.
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APPENDIX A: DEVICE FABRICATION AND
EXPERIMENTAL APPARATUS

The device is fabricated on a 0.9-um-thick enriched 23Si
epilayer with a residual 2°Si concentration of 730 ppm. The
epilayer is implanted with 3'P ions at an energy of 10 keV
and fluence of 1.4 x 10'2 cm™2. Further details on the
device design, fabrication, and ion implantation are given
in Ref. [6].

The device is mounted in a copper enclosure and wire-
bonded to a gold-plated printed circuit board with alumi-
num wires. The sample is then mounted in a Bluefors
LD400 cryogen-free dilution refrigerator with a base
temperature of 22 mK. The sample is mounted in the
center of a superconducting solenoid, which is set to a
magnetic field of approximately 1.423 T.

The electronic apparatus used to operate the sample is
identical to that in Ref. [68].

The Maxwell’s demon is implemented in the FPGA
hardware of a Keysight M3300A digitizer. The Maxwell’s
demon takes the form of a simple state machine with three
states: observation, trigger, and post-trigger wait. In the
observation state, a hardware counter increments while a
blip is not detected (—B,,) and resets otherwise (B,,). Once
the counter value N reaches the prescribed observation time
NT, = t,,, the demon’s state changes to trigger. While in
the trigger state, an output trigger is asserted for a fixed
duration, and then the state automatically changes to the
post-trigger wait which waits for the measurement pulse
sequence to complete before automatically transitioning
back to the observation state.

The logic is designed to operate in a single cycle of the
onboard clock to minimize the response time of the hard-
ware. The onboard clock runs at 100 MHz. There is a single
cycle delay between 7., being met and the trigger being
asserted, which accounts for an approximately 100 ns
latency.

We note that the SET signal is downsampled to a rate of
fs=100kS/s (T, =10 us) or 2 times the bandwidth
fs=2f.. The downsampling is a decimation from
100 MS/s without internal low-pass filtering and is per-
formed by the proprietary Keysight digital acquisition
system. As f;, < Ty, a higher proportion of missed blips
may occur, which could result in a worse initialization
fidelity.

APPENDIX B: ITERATIVE BAYESIAN
UPDATE MODEL

The probability of having a || ) electron after monitoring
the sensor current with a digital system can be described by

an iterative Bayesian update process. A single sample, B,,,
is acquired at times n - T, for positive integers n. If no blip
is detected in the first measured sample (=B;), i.e., the
signal threshold is not exceeded, the ||) probability is
updated based on the likelihood of the electron not
tunneling for either state (£(||-B;) and L(1|-B))):

__LURBP)

PURED =5 e8P () By

_ cuRBIPW)
LUFRBOP) + L(HRB)P()

(B2)

where P(]) is the |]) probability prior to obtaining a
sample, with P(]) + P(1) = 1. The denominator is the
marginal likelihood function over each spin state
w € {|,1}. The likelihood of not observing a blip during
a single sample is

L(NBy) = e 1o, (B3)

L(}[=By) = e7lsThow, (B4)
for a [1) and |]) electron, respectively. When the next
sample B, comes in, we can repeat the process as in
Eq. (B1), but we replace the prior with the first posterior,

P(}|=B,):

LBy L{[~B)P()
P(l[~By,7B)) = >y Ly |=By)P(w) Y, L(w|~B,)P(w)
(B3)
_ LU [-BH)P()
Y, Lw|~BHP(y) (50

where B? = (B,, B,) represents the collection of N = 2
samples and the likelihood functions of two samples is
simply the product of the likelihood function of each
sample. Substituting Egs. (B4) and (B3) into Eq. (B6) gives

e_ZTxF,L,(\ulP(J/)

P(}|-B,.7B)) = .
(“ 25 1) e_ZTSFi»O“‘P(i,) + e_QT*FT-D“‘P(T)

(B7)

When the data are independent, we can reformulate this
sequential process as a one-step process [69], collecting the
N samples and applying them “all at once.” The data are
independent in the case of tunneling, because an object has
the same likelihood of tunneling at all times over a fixed
duration, i.e., £(}|-B,) = L({|7B,,;) for all n, and
likewise for the 1) case.
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APPENDIX C: ACCOUNTING FOR IMPERFECT
DETECTION

A missed blip is the result of an electron tunneling to the
SET island followed by an electron rejoining the donor
before the amplifier output signal rises above the detection
threshold Sy,. Since these events are fundamentally unde-
tectable with the measurement apparatus, we do not know
when they occur. During an initialization trace where no
samples exceed the detection threshold, it is possible that a
blip is missed at any point in the trace. Moreover, it is also
possible (though unlikely) that multiple blips are missed in
a single trace. This makes the final || ) probability difficult
to exactly calculate, since the different times at which the
fast tunneling events occur yield different outcomes.
Despite this inherent complexity, the initialization fidelity
from a missed blip has a lower bound set by the prior || )
probability P(]) ~78%. We now formally extend the
model presented in Sec. III and Appendix B to account
for unobserved tunneling events.

The intuitive motivation for the following treatment is that
the final initialization fidelity arises from two distinct cases:
initialization where a blip is not missed P({|-B",-~M) and
where a blip is missed P(}|-B"Y, M). A missed blip con-
sequently reduces the average initialization fidelity. Since the
probability of missing a blip is inherently rare [Eq. (7)], this
yields only a small difference in the final outcome. The
probability of having a ||, ) electron after readout is, therefore,

P(}|-B") = P({|-BY.~M)(1 = Py)

+ P({|"BN, M)Py,. (C1)
Since the unobserved tunneling events happen at an
unknown time, the conditional probability P (| |-BY, M)
is difficult to define. However, we know the ||, ) probability is
lower in the cases where the electron does not tunnel due to
the effect of the Maxwell’s demon, i.e.,

P(}|-BN, M) < P(}|-BY,-M). (C2)
We can then reformulate Eq. (C1) as
P({[=B") = P(]|-B",~M)
— Py[P(L|=BY,~M) - P({|-B".M)] (C3)
= P({|=BY,~M) - ZPy. (C4)

where Z = P(||-BY,-M) — P(||~B", M) is a number
between zero and P() depending on when the electron
rejoins the donor in time. Z takes on its maximum value when
a new electron rejoins the donor in the final sample of the
initialization trace.

Since Z < 1, the upper bound to initialization fidelity JF,
is 1 — ZP,; at t,,, — oo. This is higher than the conservative
estimate 1 — P,; presented in the main text [Eq. (8)].

APPENDIX D: MAXWELL’S DEMON AS A
VARIABLE-STRENGTH OBSERVER

In this paper, we present a Maxwell’s demon that
initializes a || ) electron using readout. For long observa-
tion periods without a tunneling event, the initialization
fidelity drastically improves as the demon performs a
strong projective measurement onto the state | ).
Conversely, for short observation periods, the initialization
fidelity improves moderately, according to the amount of
information extracted from the system [70]. In this way, the
Maxwell’s demon is performing a weak measurement for
tobs S FT,Out“. Note that the measurement is weak only if
no tunneling event occurs during 7, since otherwise an
electron tunneling projects the spin state to |1).

The information extracted from the system is described
by a discrete-time Bayesian update process (Sec. III and
Appendix B), but it can also be described by a continuous-
time process. We define the measurement strength under
continuous readout as the projection onto the || ) state

m(tobs) = Tr[p<t0bs)|‘l’> <\L|]

We now introduce a quantum master equation to describe
the evolution of the electron state p(7,,) under continuous
measurement.

At the readout position, the donor electron can either be
loaded (|1) or |])) or unloaded (|0)). These three states
now form our basis {|1),|]),]0)}. The electron state
evolves according to

(D1)

d
—p(t) = Lp(t), D2
(1) = Lo(1) (D2)
with Liouvillian [71]
Wi =Tt ou Wiy Ttin
L= Wiy o= Wy Ll :
FT,out Iﬁi,out _FT.in - l—‘L.in
(D3)

and where Wy (|4, are the electron spin-phonon relaxation
(excitation) rates. For the present consideration, the elec-
tron phonon relaxation and excitation rates W, < Wy <
Tl‘1 ~ 1 s7! [37] are much smaller than the tunnel rates and
so are treated as zero, giving

_FT,out 0 FTm
L= 0 _Fi,out Fl,in (D4)
Chow Tpow  —Thin—Tiin

We assume an initial, randomly prepared electron state
|}) with probability P(}) and [1) with probability
P(1) =1-P):
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1-P()
P{)
0

(D5)

By constraining p3(z,,,) = 0, we describe the evolution
p(tops) in the absence of any observed electron tunneling
events. The electron spin state then evolves as

[1- P(\L)]e_r‘r.oultobs

plig) =C| P(})e ot (D)
0
where
C= ] (D7)
o [1 — P(i)]e_rT.oult(wbs + P(\L)e_ri,oullnbs
normalizes the vector at each time 7.
The measurement strength then becomes
M(tobs) = P2(lobs) (D8)
P _r¢.oultobs
_ (Ve (09)

P(\L)e_rl.ou[fobs + [1 _ P(\L)]e_rT.Oultobs s

which agrees with the discrete-time Bayesian update
approach detailed in the main text [Sec. III, Eq. (4)].

The rate of change of the measurement strength,
(0/0typs)m(tops ), can be understood as the rate at which
we accumulate knowledge of the spin state. Note that the
rate of information gain depends on the initial population
P({). This can be intuitively explained by considering the
extreme cases of P(}) =1 or 0. Here, we know with
certainty that the electron is initially |]) or |1). Since there
is no knowledge to be gained, (9/0ys)m(t4s) = 0.

In the limit of measuring for infinite time without
observing a tunneling event, the measurement strength
(and the final electron || ) probability) approaches unity:

Hm m(ty,) = 1.

Tops—> 00

(D10)

APPENDIX E: NUCLEAR CONTROL FIDELITY

The control fidelity in these experiments is the accuracy
of the NMR 7 pulse used to map the electron spin state to
the nucleus. The fidelity of an NMR 7z pulse can be
hampered by both a frequency mismatch of the applied
stimulus and the system resonance (¢) and an over- or
under-rotation caused by miscalibrated pulses. We define
the control fidelity based on the Rabi formula

A (Q

where A is the drive strength, Q = VA% + €2 is the Rabi
frequency, and 7, is the duration of the pulse.

A nonzero frequency detuning e reduces the amplitude
of the oscillation while an imperfect pulse duration 7
leads to over- or under-rotation of the spin. Prior to each
experiment, we perform calibration routines that measure
the NMR frequency corresponding to the electron || ) state
using Ramsey fringes to tune to within 100 Hz. With the
precision of ¢ < 100 Hz, the amplitude of the Rabi oscil-
lations is expected to be 99.98% with a measured frequency
of Qr ~ 7.6 kHz.

The spin rotation angle € = Qi ;. can be determined by
comparing Carr-Purcell and Carr-Purcell-Meiboom-Gill
experiments, which allows us to extract the amount of
over- or under-rotation of the spin [72]. Note that this
method is insensitive to the sign of the angle of error due to
symmetry of sin?(6/2) about § = 7. We find a rotation
error 6 = 0 — 7 of 6 = £0.143(7) rad with e = 67 ps.

Substituting these values into Eq. (E1) gives a final
control fidelity of F¢ = 99.5(3)%.

APPENDIX F: NUCLEAR READOUT FIDELITY

The readout fidelity F is the accuracy of correctly
determining the nuclear spin state. Since we perform
repeated QND readout of the nuclear spin [11], the readout
fidelity is sensitive to both the accuracy with which the
nuclear spin state can be determined, F 4, and how often
the readout method causes the nuclear spin state to change
during measurement, Fonp. The nuclear readout fidelity
can then be expressed as

Fr = Fae Fono- (F1)

To determine the nuclear spin state, we load an electron,
perform an adiabatic electron spin resonance (ESR) pulse
conditioned on the nucleus being |{'), and then read out the
electron. We repeat this process n = 65 times and record
the fraction of these electron reads that are |1). Figure 7
shows a histogram of the electron |1) fraction recorded
from 100000 single nuclear spin readout shots. The
histogram shows two clearly resolved peaks which corre-
spond to the nuclear ||}) and |{}) states. We designate any
electron |1) fraction greater than a chosen threshold
(indicated by the dotted line) as resulting from a nuclear
|1) (red region); otherwise, it is designated a nuclear || )
result (purple region).

The visibility V is a measure of how distinct the two
peaks are and is determined by fitting two Gaussian profiles
to the peaks and calculating their overlap. The nuclear spin
visibility provides a lower bound for the nuclear spin
determination fidelity:

V=Fy+F;—1<Fge (F2)
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FIG. 7. Electron |1) fraction recorded throughout experiment

from 100000 nuclear reads which show two clearly resolved
distributions.

The two Gaussian fits have a numerically calculated
overlap of less than 5 x 1076, which gives a visibility of
V =99.9995%, and, hence, F 4o > 99.9995%.

While QND readout allows for the nucleus to be
repeatedly measured, QND readout itself is imperfect
due to “ionization shock” which can flip the nuclear spin
when loading or unloading an electron. This is due to the
components of the electron-nuclear hyperfine interaction
tensor A that do not commute with the measurement
operator_ and, thus, violate the QND condition [73]. We
find experimentally that each tunneling event has an
average probability p = 1.4 x 107% of changing the
nuclear spin state. The probability of encountering zero
erroneous spin flips during readout depends on the number
of electron tunneling events that occur during readout
which is on average the number of electron shots n:

Fonp = (1-p). (F3)

For a single nuclear readout, in which we perform n = 65
electron shots, the average QND fidelity is F onp = 99.99%.
Therefore, the average readout fidelity is F i = 99.99%.
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