
RETRACTED: Dynamics of Stochastic Integrate-and-Fire Networks

Gabriel Koch Ocker *

Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA

(Received 23 February 2022; revised 20 July 2022; accepted 22 September 2022; published 19 October 2022)

The neural dynamics generating sensory, motor, and cognitive functions are commonly understood
through field theories for neural population activity. Classic neural field theories are derived from highly
simplified models of individual neurons, while biological neurons are highly complex cells. Integrate-and-
fire models retain a key nonlinear feature of neuronal activity: Action potentials return the membrane
potential to a nearly fixed reset value. This nonlinear reset of the membrane voltage after a spike is absent
from classic neural field theories. Here, we develop a statistical field theory for networks of integrate-and-
fire neurons with stochastic spike emission. This reveals a new mean-field theory for the activity in these
networks, fluctuation corrections to the mean-field dynamics, and a mapping to a self-consistent renewal
process. We use these to study the impact of the spike-driven reset of the membrane voltage on population
activity. The spike reset gives rise to a multiplicative, rate-dependent leak term in the mean-field membrane
voltage dynamics. This leads to bistability between quiescent and active states in the mean-field theory of
homogenous and excitatory-inhibitory pulse-coupled networks. We uncover two types of fluctuation
corrections to the mean-field theory, due to the nonlinear mapping from membrane voltage to spike
emission and the nonlinear reset. These two fluctuation corrections can have competing effects, promoting
and suppressing activity, respectively. We then examine the roles of spike resets and recurrent inhibition in
stabilizing network activity. We calculate the phase diagram for inhibitory stabilization and find that an
inhibition-stabilized regime occurs in wide regions of parameter space, consistent with experimental
reports of inhibitory stabilization in diverse brain regions. Fluctuations narrow the region of inhibitory
stabilization, consistent with their role in suppressing activity through spike resets.
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I. INTRODUCTION

The activity of neuronal populations underlies sensory,
motor, and cognitive functions. Mathematical theories for
predicting the macroscopic activity of neural populations
are a core tool of computational neuroscience, psychology,
and psychiatry [1–4]. These theories typically rely on
neural activity equations, with variants also called rate
equations, neural mass equations, or, if placed on a spatial
domain, neural field equations:

∂tv ¼ −vþ Eþ J � ϕðvÞ; ð1Þ

where bold terms denote a vector or matrix-valued function,
ϕ is a single-unit nonlinearity applied elementwise, ∂t is the
derivativewith respect to time, and � is a matrix convolution:
J � ϕðvÞ ¼Pj

R
ds JijðsÞϕ(vjðt − sÞ). These and similar

equations are commonly understood as a coarse-grained
model for large populations of neurons [5–9]. Formally, they
are amean-field theory for populations of neurons that switch
between discrete active and quiescent states [10–13], or for
generalized linear point process models [Eq. (9)].
Biological neurons’ membrane voltages, however, have

complex nonlinear dynamics [14]. Neural field equations
have been supplemented with some biophysical detail in an
ad hoc fashion [3]. A principled mean-field theory of more
biophysical neuronmodels would expose how single-neuron
biophysics shape macroscopic population activity [15].
Integrate-and-fire models, which replace the nonlinear

dynamics of spike generation by a simple fire-and-reset rule
for the membrane voltage, are fruitful tools for investigat-
ing how network structure and synaptic and neuronal
biophysics shape macroscopic activity [16,17]. The classic
mean-field theory of integrate-and-fire networks focuses on
the density of membrane voltages across a population [18].
If the net recurrent input to each neuron is a white Gaussian
process, the membrane voltage density obeys a Fokker-
Planck partial differential equation [19]. Numerical or
special function solutions of that Fokker-Planck equation
expose steady-state and weakly nonequilibrium population
firing rates and pairwise statistics [20–24].
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The assumption of white Gaussian input currents is,
however, inconsistent with the resulting temporally colored
spike-train statistics [25]. In some cases, the Fokker-Planck
approach for the population voltage density can be extended
to temporally structured fluctuations [26–28]. Alternatively,
for generalized integrate-and-fire neurons with stochastic
spike emission, population firing rates and pairwise statistics
can be predicted from the density of inter-spike times rather
than the density of membrane voltages [29–34]. Population
density approaches expose approximate low-dimensional
dynamics through eigenfunctions of the density evolution
operator [35,36].
Here, we study the integrate-and-fire model with sto-

chastic spike emission. We construct the full joint proba-
bility density functional of a neuronal network’s spike
trains and membrane voltages using the response vari-
able path-integral formalism [37–40]. This formalism is
commonly applied to nonspiking models, where it has
exposed chaotic and metastable regimes [41–44], the
memory capacity of recurrent networks [45,46], and the
dynamical impact of computationally or biologically con-
strained connectivity [47–50]. It has also been applied
to spiking models without postspike resets of the mem-
brane voltage, or in a phase formulation [51–58].
The joint density functional exposes a new simple,

deterministic mean-field theory for stochastic integrate-
and-fire networks: activity equations like Eq. (1) with an
additional rate-dependent leak. This novel nonlinearity
qualitatively shapes networks’ macroscopic dynamics. We
study networks in an increasing order of complexity,
progressing from uncoupled neurons to single-population
recurrent networks, and then networks with multiple cell
types. Spike resets can stabilize strongly coupled excitatory
networks with unbounded spike intensity functions. We
uncover bistable regimes in homogenous and excitatory-
inhibitory networks. Examining the impact of fluctuations on
the activity using renewal theory and a self-consistent
Gaussian approximation with colored noise, we find that
due to the nonlinearity of the spike reset, fluctuations
suppress activity.
In the classic neural activity equations, inhibitory feed-

back is necessary to stabilize strong recurrent excitation
[8,59]. A paradoxical reduction of inhibitory activity after
inhibitory stimulation is a signature of an inhibition-
stabilized regime [60] and is observed in diverse mamma-
lian cortices [61–64]. We find that the phase diagram for
excitatory-inhibitory networks includes wide regions of

paradoxical responses, suggesting a generic mechanism for
their widespread experimental observation. Spiking fluc-
tuations narrow the region of inhibitory stabilization,
consistent with their intrinsically stabilizing effect through
resets of the membrane voltage.

II. STOCHASTIC INTEGRATE-AND-FIRE MODEL

We introduce the stochastic leaky integrate-and-fire (LIF)
model in discrete time first and then take a continuous-time
limit. At each small time step t ∈ ½T�, neuron i ∈ ½N�
generates dnit ∈ f0; 1g spikes (nit is the cumulative spike
count of neuron i at time t). Neuron i receives inputs dn
through weighted synaptic filters J. It also has a resting
voltage Ei, which may depend on external applied currents.
We take dnit to be generated as a Bernoulli random variable
with spike probability fðvitÞdt, for some intensity function
0 ≤ fðvÞ ≤ dt−1. After a spike is emitted, that neuron’s
membrane voltage is reset to withinOðdtÞ of the reset value
r. If fðvÞ ¼ θðv − bÞ=dt, where θðxÞ is the Heaviside step
function, the deterministic LIF neuron with threshold b is
recovered [65]. In the continuous-time limit (Appendix A),

∂tv ¼
1

τ
ð−vþ Eþ J � _nÞ − _nðv − rÞ: ð2Þ

Here, _niðtÞ ¼ ∂tnðtÞ and ð _nvÞiðtÞ ¼ _niðtÞviðtÞ. Each _niðtÞ is
an inhomogenous Poisson process with intensity f(viðtÞ).
The Poisson spike emission arises as the continuous-time
limit of the discrete-time Bernoulli spike train. The last term
in Eq. (2) is the reset of the membrane voltage after a
spike. This nonlinear coupling between the spike train and
membrane voltage is the key feature of this model compared
to generalized linear models. (See Appendix B for a
discussion of absolute refractory periods in this model.)
Wenondimensionalize themodel,measuring time relative to
τ and the membrane voltage relative to r (τ → 1, r → 0).
Equation (2) is a set of coupled stochastic differential

equations with multiplicative Poisson noise. The expected
trajectory of the membrane voltages obeys

∂thvi ¼ −hvi þ Eþ J � h _ni − h _nihvi − ⟪ _nv⟫; ð3Þ

where hi denotes a moment and ⟪⟫ denotes a cumulant. To
compute those requires the joint density functional of the
membrane voltages and spike trains. In the response
variable path-integral formalism, it is (Appendix A)

p½v; _n� ¼
Z

Dṽ
Z

Dñ exp−S½v; _n; ṽ; ñ�;

S½v; _n; ṽ; ñ� ¼ ṽTð∂tvþ v − E − J � _nþ _nvÞ þ ñT _n − ðeñ − 1ÞTf : ð4Þ
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Here, xTy ¼Pi

R
dt xiðtÞyiðtÞ is the functional inner

product and fiðtÞ ¼ f(viðtÞ). S is the action functional.
ñ; ṽ are purely imaginary auxiliary variables called the
response variables because joint moments with them
measure responses to fluctuations in the activity.
This density has the N-dimensional deterministic mean-

field theory

∂tv̄ ¼ −v̄þ Eþ J � f̄ − f̄ v̄ : ð5Þ
Themean-field value of _ni is f̄i ¼ fðv̄iÞ. TheN-dimensional
mean-field theory is an approximation of Eq. (3). If we
assume that
(1) the expectation of the spike trains is h _ni ¼ fðhviÞ,
(2) the spikes and membrane voltage are independent so

that the joint cumulant ⟪ _nv⟫ ¼ 0,
thenEq. (3) reduces toEq. (5).Assumption1 is only correct if
f is linear. Assumption 2 is generally incorrect, although it
may be a good approximation if hvih _ni ≫ ⟪ _nv⟫.
Formally, we expand the configuration variables v; _n

around their mean values. The mean-field theory is then
the result of a saddle-point approximation for integrals over
the fluctuations (Appendix D). This approximation corre-
sponds to assuming fluctuations are negligible so p½ _n� ¼
δ½ _n − fðvÞ�, or equivalently, truncating the action at linear
order in ñ. This implies assumptions 1 and 2, so Eq. (3)
reduces to Eq. (5). This approach also exposes fluctuation
corrections to the mean-field theory. We see in the next
section that the two nonlinearities in Eq. (2) impart different
fluctuation corrections to the mean-field theory. First, we
compare the mean-field theory Eq. (5) to the classic activity
equations (1).
The mean-field dynamics of Eq. (5) differ from Eq. (1) in

two ways. The first is the presence of the reset term
−fðviÞvi. The second is in the interpretation of the non-
linearity f. Here, f determines the instantaneous spike
emission probability as a function of the membrane voltage
and is typically required to be nonsaturating so that the
neuron is guaranteed to spike if vi → ∞. (This is not
mathematically necessary; f could be chosen to saturate at
a finite value. In discrete time, f must be bounded by 1=dt
so the spike probability does not exceed 1.) In the micro-
scopic-binary-switching model underlying Eq. (1), the
nonlinearity ϕ determines the single-neuron transition rates
from quiescence to activity and is typically chosen as a
sigmoid to prevent unbounded activity. In either case, the
nonlinearity f or ϕ is a property of individual neurons.
Can we map the new mean-field theory Eq. (5) onto the

classic activity equations (1) with an effective nonlinearity
ϕ that includes the effect of the rate-dependent leak?
Requiring Jϕ ¼ Jf − vf , with ðvf Þi ¼ vifðviÞ, we find
that if the coupling J has a left inverse,

ϕðvÞ ¼ f − J−1ðvf Þ: ð6Þ
So, to map the mean-field theory of Eq. (5) onto the classic
activity equations, the effective nonlinearity ϕ depends
explicitly on the coupling J; it is no longer a single-neuron

nonlinearity. If there are linear self-interactions and inter-
neuronal coupling is weak so that J is diagonally dominant,
the effective nonlinearity will be approximately a single-
neuron property.
The other classic form of rate equation is τ∂tv ¼ −vþ

ϕðJ � vþ EÞ. This is also a mean-field theory of binary
switching neurons [11–13]. Here, v is commonly under-
stood as a mean-field description of the firing rate or
proportion of active neurons in a population, rather than the
membrane potential or synaptic drive [8,9]. The two types
of activity equations differ in their assumptions on the
dominant synaptic or neuronal timescales [13,66].
To map Eq. (5) onto this requires ϕ(ðJ�vÞiþEi)¼

−vifðviÞþ
P

j Jij �fðvjÞþEi. In general, mapping Eq. (5)
onto this may require the nonlinearity to be a function of the
coupling operator, activity variable, and baseline drive
separately, rather than a function of their sum.
Mapping Eq. (5) onto the classic activity equations can

thus introduce nonlinearities tailored to a specific LIF
network, rather than as single-neuron input-rate functions.
This mapping is, however, not necessary. The mean-field
dynamics of Eq. (5) are amenable to direct analysis.

III. IMPACT OF SPIKE RESET AND
FLUCTUATIONSON SINGLE-NEURONACTIVITY

We now examine the input-rate transfer of a single
neuron or, equivalently, an uncoupled population. The
mean-field firing rate f̄ is given by steady-state solutions
of Eq. (5) with J ¼ 0. We consider neurons with threshold-
power-law spike probability functions fðvÞ ¼ bv − 1caþ,
which match the effective nonlinearity of mechanistic
spiking models and biological neurons in fluctuation-
driven regimes [67–71]. (The membrane voltage is non-
dimensionalized to set the threshold for spike generation at
v ¼ 1.) For simplicity, we take a threshold-linear neuron
with fðvÞ ¼ bv − 1cþ, so the equilibrium solution to the
mean-field equation is

f̄ ¼ b
ffiffiffiffi
E

p
− 1cþ: ð7Þ

The mean-field theory for the stochastic LIF neuron
predicts its equilibrium firing rate as a function of its
membrane voltage [Fig. 1(b), black line vs dots]. At higher
rates, Eq. (7) overpredicts the true firing rates. Since the
mean-field theory neglects all fluctuations, fluctuations
suppress activity in the stochastic LIF model.
For comparison, consider a stochastic LIF model with a

linear reset: Each spike causes a decrease in the membrane
voltage of size r [Fig. 1(a), blue] [72]. The action for that
model is

S½v; _n; ṽ; ñ� ¼ ṽTð∂tvþ v − E − J � _nþ _nrÞ
þ ñT _n − ðeñ − 1ÞTfL ð8Þ
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with the N-dimensional mean-field theory

∂tv̄ ¼ −v̄þ Eþ J � f̄ − f̄r: ð9Þ

This has a similar form to the classic activity equation (1)
and can be directly mapped onto it with the substitution
JiiðsÞ → JiiðsÞ − rδðsÞ. For this reason, we say that Eq. (1)
is a mean-field theory for a stochastic LIF neuron with
linear resets, also called a generalized linear model or
zeroth-order-spike response model [73]. The mean-field
firing rate of the uncoupled linear-reset model with
r ¼ vth ¼ 1 is

f̄L ¼
�
E − 1

2

�
þ
: ð10Þ

For a perithreshold stimulus E ¼ 1þ ϵ in Eqs. (7) and (10)
f̄ ¼ ϵ=2þOðϵ2Þ ≈ f̄L and the mean-field theories of the
stochastic LIF and linear-reset models match for infinitesi-
mal firing rates. At finite rates, however, the linear-reset
model provides a poor prediction for the stochastic LIF
neuron [Fig. 1(b), blue vs black].
Instead of matching the intensity functions of the two

models, we could match their mean-field membrane
voltage by giving the linear-reset model the intensity
function fMðvÞ ¼ vfðvÞ. [fðvÞ is the intensity function
of the stochastic LIF neuron.] The mean-field rate of this
matched linear-reset model is

f̄M ¼
ffiffiffiffi
E

p
b
ffiffiffiffi
E

p
− 1cþ: ð11Þ

For the matched linear-reset model, the mean-field firing
rate underpredicts the true activity level [Fig. 1(b), orange
line vs dots], so fluctuations promote activity. Why do
fluctuations suppress activity in the stochastic LIF model
but promote activity in the matched linear-reset model?
In ∂thvi, we need to account for (1) the nonlinearity in the

intensity function and (2) the nonlinear spike reset. To that
end, we expand the membrane voltage and spike trains
around their means to derive an expansion for the action
that self-consistently accounts for the impact of fluctuations
(the loop expansion of the effective action; Appendix D).
This allows us to derive diagrammatic corrections to the
mean-field theory. Loop diagrams measure the influence of
higher-order activity statistics on lower-order statistics.
There are loop corrections to the mean-field theory when
the model has a nonlinearity.
The stochastic LIF has two nonlinearities: the intensity

function and the nonlinear spike reset. Each nonlinearity
gives rise to a diagram in the one-loop equations of motion
for the mean voltage and rate:

ð12Þ

Without the one-loop diagrams, these reduce to the mean-
field theory of Eq. (5) with J ¼ 0. The one-loop diagrams
measure the impact of two-point fluctuations on the mean
through the two nonlinearities of the intensity function and
spike reset.
The edges in the Feynman diagrams correspond to

factors of the linear response of the configuration to a
perturbation Δ̄. Since the model has two configuration
variables, each with a corresponding response variable,
there are four types of linear responses:
(1) the spike response to a spike fluctuation Δ̄n;ñ,
(2) the voltage response to a spike fluctuation Δ̄v;ñ,

(a) (b)

(c) (d)

FIG. 1. Impact of fluctuations on firing rates through spike
resets and nonlinear intensity functions. (a) Membrane voltage
traces of the stochastic LIF neuron (top, black) and a neuron
with linear resets (bottom, blue). For comparison, in this panel
only the two neurons are forced to have the same spike times.
(b) Firing rate vs resting voltage E for three models. Black: the
stochastic LIF neuron with a threshold-linear-intensity function
fðvÞ ¼ bv − 1cþ. Blue: the linear-reset model with a matched
intensity function fLðvÞ ¼ fðvÞ. Orange: the linear-reset model
with matched mean-field membrane voltages fMðvÞ ¼ vfðvÞ.
Dots: simulation. Solid curves: mean-field predictions [Eqs. (7),
(10), (11)]. (c) Impact of fluctuations on the stochastic LIF
neuron’s firing rate. Dotted: mean-field prediction. Dashed: self-
consistent one-loop prediction accounting for Gaussian fluctua-
tions around the expected voltage and rate [Eq. (12)]. Solid: exact
renewal theory prediction from Eq. (17). (d) Difference between
the one-loop and mean-field rates for the three models.
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(3) the spike response to a voltage fluctuation Δ̄n;ṽ, and
(4) the voltage response to a voltage fluctuation Δ̄v;ṽ.

Only the first two of these edges appear in the one-loop
equations of motion for the mean voltage and rate. We
represent them with the edges

ð13Þ

The vertex • represents the intensity fðv̄Þ. Each diagram
also has a vertex ∘. These vertices have different origins in
the two diagrams. (The two types of ∘ vertices can be
distinguished by their incoming edges.)

In , the vertex ∘ arises from the intensity function

f and carries a factor proportional to its curvature fð2Þ=2.
The vertex fð2Þ=2 couples pairwise fluctuations in the
membrane voltage (the input to f) to a fluctuation in the
spike train. This vertex and the corresponding diagram
exists in both the stochastic LIF and linear-reset models,
though it vanishes almost everywhere with a threshold-
linear-intensity function.
The Feynman rules and definition of the propagators for

the stochastic LIF model are given in Appendix C 2 (see
also Appendix D). In a stationary state, the contribution
from this diagram is

ð14Þ

The curvature of the intensity function at the solution to
Eq. (12) determines whether this contribution will promote
or suppress activity. If fð2Þ > 0, fluctuations will promote
activity and vice versa. That curvature also determines the
magnitude of this contribution.

In , the vertex ∘; arises from the nonlinear spike

reset and carries a factor of −1. It couples joint fluctuations
of the spikes and membrane voltages to a fluctuation in the
membrane voltage. This vertex does not exist in the linear-
reset model, so neither does the diagram. In a stationary
state, the contribution of this diagram is

ð15Þ

We expect that, due to the negative sign of this contribution,
it will lead to a suppression of activity.
Evaluating the one-loop predictions (at an equilibrium

of v̄) using the definitions of the linear response in
Appendix C 2, the stochastic LIF with a threshold-linear-
intensity function has the one-loop equilibrium

v̄ ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − 1=4

p
;

n̄ ¼ 3

4
bv̄ − 1cþ: ð16Þ

The one-loop prediction for the rate is suppressed by a
factor of 1=4 relative to the mean-field prediction v̄ − 1.
The prediction is not just 3

4

ffiffiffiffi
E

p
, however, since the

expansion point v̄ also changes when we self-consistently
incorporate fluctuations. Comparing the one-loop and
mean-field predictions, we see that the negative vertex
factor indeed leads to a suppression of activity [Fig. 1(c),
dotted vs dashed; Fig. 1(d), black]. This occurs because the
nonlinear spike reset negatively couples the mean mem-
brane voltage to joint fluctuations in the spikes and
membrane voltage.
We can also calculate the rate of the threshold-linear-

stochastic LIF neuron exactly. Because of the nonlinear-
reset mechanism, the spike train is a renewal process.
Standard results of renewal theory expose its rate [74]. With
a constant drive E, the membrane voltage evolves after
a spike at time t as vðtþ sÞ ¼ E(1 − expð−sÞ), with
vðtÞ ¼ 0. The time-averaged firing rate is the inverse of
the mean interspike interval: h _ni ¼ 1=hsi. For threshold-
linear f, the mean interspike interval is

hsi ¼ ln

�
E

E − 1

�
þ
�
E
e

�
1−E

γðE − 1; E − 1Þ: ð17Þ

γðx; yÞ is the lower incomplete gamma function. The term
ln ðE=E − 1Þ is the time for vðtÞ to reach the threshold
value of 1; the second term is the mean first spike time after
that. The one-loop prediction matches the true f − I curve
better than the mean-field theory [Fig. 1(c)].
In the uncoupled linear-reset model, the one-loop

equations of motion are

ð18Þ

The linear-reset model has the same four types of pro-
pagators as the stochastic LIF, although their definitions
differ between the two models due to the different spike
reset mechanisms (Appendix E). The equilibrium one-loop
predictions for the linear-reset model with matched mean-
field voltages fMðvÞ ¼ vbv − 1cþ are given by

v̄ ¼ 1

2
þ

ffiffiffiffiffiffi
2

3C
3

r
−

ffiffiffiffiffiffiffiffi
C
144

3

r
;

n̄ ¼ bv̄ − 1cþ
�
v̄þ ð2v̄ − 1Þ2

4

�
; ð19Þ
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where C ¼ 9–36Eþ ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
59 − 216Eþ 432E2

p
. This is

greater than the mean field prediction [Fig. 1(d), orange].
In summary: Fluctuations suppress activity in the sto-

chastic LIF neuron because the nonlinear spike reset
negatively couples the mean membrane voltage to joint
spike-voltage fluctuations. In the linear-reset model, the
only nonlinearity arises from the intensity function. To
match the mean-field voltage of the stochastic LIF neuron,
the linear neuron’s intensity function is fMðvÞ ¼ vfðvÞ,
where fðvÞ is the stochastic LIF intensity function. Since
fðvÞ has non-negative curvature, fM has positive curvature.
So, fluctuations of the membrane voltage promote spiking
activity in the matched linear-reset model [55].
A stochastic LIF network with a nonlinear intensity

function may have contributions from both diagrams, so
that the nonlinearities of the spike reset and intensity
function compete to determine whether fluctuations sup-
press or promote activity. From the second line of Eq. (12),
for fluctuations to suppress activity relative to fðv̄Þ requires

ð20Þ

so long as 1þ f̄ þ fð1Þv̄ > 0 [else, Eq. (20) holds with the
right-hand side multiplied by −1]. The second line of
Eq. (20) follows some simplifications after evaluating the
loop diagrams. If the activity is high relative to the
curvature of the intensity function, activity will be sup-
pressed by fluctuations. Equation (20) is satisfied almost
everywhere with a threshold-linear-intensity function, since
fð2Þ ¼ 0 except at v ¼ 1. With a threshold-quadratic-
intensity function fðvÞ ¼ bv − 1c2þ, this condition is sat-
isfied everywhere except at v̄ ¼ 2, where the contributions
from the two diagrams cancel. For threshold-linear or
threshold-quadratic intensity functions, the contribution
of the nonlinear spike reset dominates that of the intensity
function and fluctuations will not promote activity.

IV. HOMOGENOUS NETWORKS

Biological neural networks are coupled. We seek a low-
dimensional description of the population activity that
accounts for synaptic coupling. Here, we study the simplest
case: networks where the connectivity between neurons is
homogenous, so we take the synaptic weights between
neurons from a distribution with negligible second- and
higher-order cumulants. We assume that the mean synaptic
weight is Oð1=NÞ so the total synaptic weight onto a
neuron is Oð1Þ. An exemplar of this case is a network with
weak (Jij ∼ 1=N) but potentially dense (connection prob-
ability approximately 1) connections (Appendix C). To
examine the interaction between synaptic connectivity,

subthreshold dynamics, and stochastic spike emission in
shaping network activity, we average the partition functional
for the activity (equivalently, average themoment-generating
functional) over realizations of the synaptic connectivity
(Appendix C). In the limit of large N, the density factorizes
over the neurons, yielding the partition functional

Z� ¼
Z

Dv
Z

Dṽ
Z

D _n
Z

Dñ

× exp½−ṽTð∂tvþ v − E − J � h _ni þ _nvÞ
− ñT _nþ ðeñ − 1ÞTf�: ð21Þ

The result is a population of independent stochastic LIF
neurons, each receiving a self-consistent mean-field input
J � h _ni, where h _ni is the population-averaged spike train. For
self-averaging connectivity, the result describes the typical
behavior of the individual network, and the population
average h _ni matches the ensemble-averaged rate. Since
the density factorizes, we drop the neuron index. Robert
andTouboul proved convergence to thesemean-field dynam-
ics [75]. The connectivity has been reduced to its mean J,
which would be equivalent to assuming a network with all-
to-all connectivity. J can be either positive or negative. If the
connectivity has non-negligible higher cumulants, these will
give rise to corresponding fluctuations in the membrane
potential (Appendix C). This population-averaged mean-
field theory is one dimensional not because the neurons are
synchronized, but because they spike independently given a
self-consistent mean-field input.
If the network is in an asynchronous state so h _ni is

constant in time, after a spike at time t the membrane
voltage obeys

vðtþ sÞ ¼ ðEþ Jh _niÞð1 − e−sÞ; ð22Þ
and the spike train is a renewal process. [We write J for the
integral of the coupling kernel JðsÞ.] With a threshold-
linear-intensity function, the mean interspike interval is

hsi ¼ ln

�
C

C − 1

�
þ
�
C
e

�
1−C

γðC − 1; C − 1Þ; ð23Þ

where C ¼ Eþ Jh _ni. In a stationary state, the rate is the
inverse of the mean interspike interval: h _ni ¼ 1=hsi, which
allows us to find self-consistent solutions of Eq. (23)
numerically.
The mean-field (tree-level) equation of motion for the

membrane voltage is

0 ¼ ∂tv̄þ v̄þ v̄fðv̄Þ − E − J � fðv̄Þ; ð24Þ

with fðv̄Þ the mean-field approximation of _n. As in the
N-dimensional mean-field theory of Eq. (5), Eq. (24)
neglects all fluctuations, so we expect that it will not be
quantitatively correct. Since the spike trains are condition-
ally Poisson, those fluctuations are driven by the expected
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intensity. We thus expect that Eq. (24) should be a good
approximation when the true firing rate is low. As we see
below, it can provide a good qualitative description of the
population dynamics, including bifurcations from quies-
cence. The leading-order description of fluctuations is
given by the one-loop equations of motion,

ð25Þ

The one-loop contributions are given by Eqs. (14) and (15)
(Appendix C 2).

V. BISTABLE ACTIVITY IN HOMOGENOUS
NETWORKS

With a threshold-linear f, fðvÞ ¼ bv − 1cþ, and pulse
coupling JðsÞ ¼ JδðsÞ, there are three possible steady
states of Eq. (24). The first is v̄ ¼ E, which exists if
E < 1. There are two other possible steady states at v > 1,

v̄� ¼ J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 4ðE − JÞ

p
2

;

n̄� ¼ bv̄� − 1cþ; ð26Þ

which both exist if

E < 1 and J > 2þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − E

p
: ð27Þ

Whenever it exists, v̄− (v̄þ) is unstable (stable). If E > 1,
only v̄þ exists. With J > 2 and ½Jð4 − JÞ=4� ≤ E < 1, both
steady states exist, and the firing rates are thus bistable,
with v̄− providing a separatrix between the attractors v→E
and v → v̄þ. The mean-field theory has two saddle-node
bifurcation curves, where the unstable fixed point v̄− meets
either v̄ ¼ E or v̄þ [Fig. 2(a)].
These bifurcations also appear in the underlying sto-

chastic spiking model. We simulate a network of 100
stochastic LIF neurons [Eq. (2)] with Erdős-Rényi con-
nectivity (p ¼ 0.5) with different values of the baseline
drive E and coupling strength J [marked in Fig. 2(a)]. At
times 5 and 15, we apply pulse perturbations to the baseline
drive and observe monostable or bistable behavior match-
ing the predictions of the phase diagram [Figs. 2(b)–2(d)].

FIG. 2. Bistable activity in homogenous networks. (a) Phase diagram of the mean-field theory Eq. (24) in the input (E) vs coupling (J)
plane. There are three possible states: low activity (L), high activity (H), and bistability (B). (b)–(d) Raster plots of a homogenous
network’s activity at the parameter locations marked in panel (a). At t ¼ 5 and t ¼ 15, perturbations of amplitude 2 and duration 2 are
applied to the driveE (top). (e) Bifurcation curve in J with E ¼ 1=2. (f) Bifurcation plot in Ewith J ¼ 4. Gray circles: simulation. Black
dashed: the mean-field theory of Eq. (24). Black solid: the exact rate of the disorder-averaged system, using the numerical self-consistent
solution of Eq. (23). The simulated network has Erdő-Rényi connectivity. Simulated network parameters: N ¼ 100, p ¼ 0.5. All
nonzero connections have the same weight J=ðpNÞ.
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The mean-field theory neglects all fluctuations in the
spiking activity. Because of the nonlinear spike-voltage
coupling imparted by the reset mechanism, those fluctua-
tions can impact the firing rate. To determine the magnitude
of fluctuation corrections, we compute bifurcation dia-
grams of the exact firing rate [Eq. (23); Figs. 2(e) and 2(f)].
The mean-field theory systematically overestimates the true
firing rates. This implies that fluctuations in the activity
suppress firing.
Similar to the uncoupled neuron, the impact of fluctua-

tions can be explicitly described by loop corrections to the
mean-field dynamics [Eq. (25)]. To one loop, equilibria of v̄
are v̄ ¼ E (if v̄ < 1) and

v̄� ¼ 1

2
J � 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

4
J

�
2

−
9

4
J þ 3E −

3

4

s
;

n̄� ¼ 3

4
bv̄� − 1cþ ð28Þ

if v̄ > 1. At one loop, both equilibria of v̄ exist if

E < 1 and J > 2þ 27

16

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
1 − E

p
: ð29Þ

In the model with linear resets and a threshold-linear-
intensity function, the mean-field theory is linear in both
the sub- and suprathreshold regimes and does not exhibit

bistability. The classic activity equations can have bistable
regimes so long as the nonlinearity saturates; see, e.g.,
Ref. [8]. Here, bistability is due to the nonlinear coupling
between the spiking and membrane voltage.
The stochastic spiking network may not exhibit true

bistability in the bistable regime of the deterministic mean-
field or one-loop approximations. Rather, the quiescent
state should be truly stable, while the active state is
metastable. Fluctuations in the spiking activity may drive
the network into the quiescent state. In the quiescent state,
there are no fluctuations since all n-point correlation
functions are sourced by the intensity fðvÞ, which we take
to be 0 for v < 1. If the nonlinearity fðvÞ were small but
finite for v < 0, then fluctuations could be maintained in
the quiescent state and both would be metastable. The slope
of the intensity function at threshold can also play a key
role in metastability of the population activity [75].

VI. MULTIPLE CELL TYPES

Biological neural networks are composed of diverse
types of neurons with cell-type-specific connectivity; e.g.,
Refs. [76–83]. Motivated by this, we consider a network
with M populations, which impose a block structure on
the connectivity matrix J. The average over the connectivity
proceeds as for the single population,with anorder parameter
for each population’s mean activity. This yields an M-
dimensional mean-field theory. The partition functional is

Z� ¼
Z

Dv
Z

Dṽ
Z

D _n
Z

Dñ exp
XM
α¼1

�
−ṽTα

�
∂tvα þ vα − Eα −

XM
β¼1

Jαβ � h _nβi þ _nαvα

�

− ñTα _nα þ ðeñα − 1ÞTfðvαÞ
�
: ð30Þ

For self-averaging networks, the density factorizes over
the populations and neurons, so the neurons again spike
independently given a self-consistent mean-field input. The
typical spike train of population α (α ∈ ½M�) is an inho-
mogenous Poisson process. If the population-averaged
activities h _nαi are constant in time, the mean first-passage
times are

hsαi ¼ ln

�
Cα

Cα − 1

�
þ
�
Cα

e

�
1−Cα

γðCα − 1; Cα − 1Þ; ð31Þ

where Cα ¼ EþPM
β¼1 Jαβh _nβi. In a stationary state, the

rate is h _nαi ¼ 1=hsαi. The mean-field approximation of the
membrane voltages is

∂tvα ¼ −vα − vαfðvαÞ þ Eα þ
X
β

Jαβ � fðvβÞ: ð32Þ

The one-loop equations of motion, similarly, are given by
accounting for the input across populations in Eq. (25).

VII. BISTABLE ACTIVITY IN EXCITATORY-
INHIBITORY NETWORKS

Here, we consider the classic excitatory-inhibitory net-
work with pulse coupling and mean connection strengths�

JEE JEI
JIE JII

�
¼
�
J −gJ
J −gJ

�
; ð33Þ

as in Refs. [20,21] [Fig. 3(a)]. With input E to both
populations, the mean rates of the excitatory and inhibitory
populations are equal since they receive the same external
and recurrent inputs. The self-consistent fixed points with
positive rates are the same as those in the single-population
network with the replacement J → Jð1 − gÞ [Eq. (26) for the
mean-field theory; Eq. (28) to one loop]. In the mean-field
theory, both fixed points exist if
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E < 1 and J > 2; and

g ≤ 1 − 2

�
1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − E
p

J

�
: ð34Þ

With both population voltages under threshold, there is the
stable fixed point v̄ ¼ E, if E ≤ 1. If E > 1, only v̄þ exists.
The Jacobian eigenvalue Jð1 − gÞ − 2v is positive for v̄− and
negative for the v̄þ root. So, if these fixed points exist, the one
at higher v is stable and the other a saddle. Similarly, in the
one-loop theory, both fixed points exist if

E < 1 and J > 2; and

g ≤ 1 − 2

�
1þ 4ffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − E

p

J

�
: ð35Þ

As for the single-population network, the existence
conditions for these fixed points define saddle-node bifur-
cation curves for the mean-field and one-loop theories
[Figs. 3(b)–3(d)]. If the inhibitory coupling strength is
sufficiently low, we have the same types of bifurcation
curves as in the single-population network [Fig. 3(c)]. If the
inhibitory coupling g is too strong, the only stable equi-
librium is the low-rate state [Figs. 3(b) and 3(d)].
These bifurcations also appear in the stochastic spiking

network with block-Erdős-Rényi connectivity [Figs. 3(e)
and 3(f); network parameters are given in the caption].

VIII. FLUCTUATIONS

The temporal structure of fluctuations can shape sensory
codes [84–86] and determine neural circuit structures
through spike-timing-dependent plasticity [87–93]. The
classic Fokker-Planck mean-field theory of integrate-
and-fire networks assumes that the membrane voltages
experience a white Gaussian noise [20–22]. The resulting
predictions for the spike trains’ power spectra are not white,
however, so these predictions are not self-consistent [25]. In
the stochastic integrate-and-fire model, the output spike
trains also are not white. In the excitatory-inhibitory net-
work, for example, the population-averaged power spectrum
exhibits a high-pass shapewith a slight resonance [Fig. 4(a),
dots]. This is similar to the shape of the power spectrum of
networks of deterministic integrate-and-fire neurons with
white-noise inputs [23]. The one-loop equations of motion
account for Gaussian fluctuations, but do not make any
assumptions about their temporal structure. We next discuss
the temporal structure of fluctuations in this Gaussian
approximation and the full prediction from renewal theory.
The exact mean-field theory Eq. (30) is of an inhomo-

geneous Poisson process receiving the self-consistent
mean input

P
β Jαβh _nβi. Substituting this into Eq. (22)

yields the postspike membrane voltage, which defines the
intensities f(vαðtÞ). The interspike interval density is
pðsαÞ ¼ f(vαðsÞ) exp−

R
s
0 dt f(vαðtÞ). For a threshold-

linear-intensity function, it is

pðsαÞ ¼

8>>>>><>>>>>:

0; sα ≤ ln Cα
Cα−1

; or

½Cαð1 − e−sαÞ − 1�
×exp−½Cαe−sα þ ðCα − 1Þðsα − 1 − ln Cα

Cα−1
Þ�;

sα > ln Cα
Cα−1

;

ð36Þ
where Cα ¼ EþPβ Jαβh _nβi, and γ is again the lower
incomplete gamma function. This provides an exact

FIG. 3. Bistable activity in excitatory-inhibitory networks.
(a) Network diagram. (b) Phase diagram in the input (E) vs
inhibitory strength (g) plane with J ¼ 6. There are three possible
states: low activity (L), high activity (H), and bistability (B).
(c) Phase diagram of the two-dimensional mean-field theory
Eq. (32) in the input (E) vs coupling strength (J) plane with
g ¼ 1. (d) Phase diagram in the coupling vs inhibitory strength
plane with E ¼ 0.5. (e),(f) Example simulations with
ðJ; gÞ ¼ ð6; 0.3Þ, with E ¼ −0.5 (e) or E ¼ 0.5 (f). The network
has a block-Erős-Rényi structure. Simulated network parameters:
population sizes ðNe; NiÞ ¼ ð200; 50Þ, excitatory output connec-
tion probabilities pee ¼ pie ¼ 0.2, inhibitory output connection
probabilities pei ¼ pii ¼ 0.8. Within each block, all nonzero
connections have the same weight, e.g., J=ðNepeÞ for nonzero
excitatory projections.
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prediction for the interspike interval density in the limit
N → ∞, accurate for populations of a few hundred neurons
[Fig. 4(b)]. The interspike interval distribution defines the
spike-train power spectrum CðωÞ of a renewal process [94]:

CðωÞ ¼ h _ni 1 − jpðωÞj2
j1 − pðωÞj2 : ð37Þ

Together, Eqs. (36) and (37) provide an exact prediction for
the typical power spectrum in a large homogenous network.

Computing the Fourier transform pðωÞ numerically, we see
that these predictions are quantitatively accurate in simu-
lations of a few hundred neurons [Fig. 4(a), dots vs solid].
For analytic approximations of the power spectrum, we

turn to the field-theoretic formulation. If the fluctuations or
the nonlinearity are weak, we can expand the density
pertubatively around a solution of the deterministic mean-
field theory (Appendix C 1). The connected two-point
function of the spike trains can then be calculated dia-
grammatically. With a threshold-linear-intensity function,

ð38Þ

The expansion may contain terms with up to infinitely
many loops, inducing dependence on n-point correlation
functions of all orders. The same is true for any cumulant of
the activity. The simplest approximation of the two-point
correlation is the tree-level approximation given by the first
diagram of Eq. (38),

⟪ _n2α⟫0ðωÞ ¼
v̄2α þ ω2

4v̄2α þ ω2
fðv̄αÞ; ð39Þ

where v̄α is a solution to the mean-field equation for
population α. At ω ¼ 0, this yields ⟪ _n2α⟫ð0Þ ≈ fðv̄αÞ=4.
For ω → ∞, ⟪ _n2⟫ðωÞ → fðv̄αÞ, the mean-field approxi-
mation to the intensity. This simple approximation captures
the high-pass nature of the power spectrum but is not
quantitatively accurate [Fig. 4(a), dotted line].
The one-loop predictions for the meanmembrane voltage

and rate account for second-order fluctuations to tree level.
For the spike-train power spectrum. This one-loop theory
corresponds to Eq. (39), but with v̄ a solution to the one-loop
equations of motion. This provides a more accurate pre-
diction of the power spectrum [Fig. 4(a), dashed line] due to
the improved estimate of the intensity fðv̄αÞ.
As the coupling or input strength brings the network to a

bifurcation, the spike-train variance ⟪ _n2α⟫0ð0Þ undergoes a
sharp transition from 0 in the quiescent state to positive
values in the active state [Figs. 4(c)–4(f)]. The transition in
the spike-train variance follows that in the rate, since all
correlation functions are sourced by the intensity fðv̄Þ.

IX. INHIBITORY STABILIZATION

In recent years, a body of work has emerged suggesting
that mammalian cortices reside in an inhibition-stabilized
regime [8,59,61–64]. There are two requirements for an
excitatory-inhibitory network to be inhibition stabilized:
The networkmust occupy a stable attractor, but the excitatory
population would be unstable on its own. These are dif-
ficult to directly test experimentally. Fortunately, inhibition-
stabilized fixed points have another signature: paradoxical

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Fluctuations in an excitatory-inhibitory network
with symmetric external inputs Ee ¼ Ei ¼ E. (a) Spike-train
power spectrum with ðJ; g; EÞ ¼ ð6; 0.3; 1.2Þ. Dots: simulation of
a network with 200 excitatory and 50 inhibitory neurons
(population-averaged power spectrum). Dotted: the perturbative
tree-level approximation (expanded around the deterministic
mean-field theory). Dashed: the tree-level approximation around
the one-loop rates. Solid: the renewal prediction of Eq. (37).
(b) Interspike interval density with ðJ; g; EÞ ¼ ð6; 0.3; 1.2Þ. Dots:
simulation. Solid: the renewal prediction of Eq. (36). (c),(d)
Bifurcation diagrams for firing rate as a function. (e),(f) Bifur-
cation diagrams for spike-train variance. In (c) and (e),
ðJ; EÞ ¼ ð6; 0.5Þ. In (d) and (f), ðJ; gÞ ¼ ð6; 0.25Þ. Simulated
network parameters: population sizes ðNe; NiÞ ¼ ð200; 50Þ,
excitatory output connection probabilities pee ¼ pie ¼ 0.5,
inhibitory output connection probabilities pei ¼ pii ¼ 0.8.
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responses to inhibitory neuron stimulation. In an inhibition-
stabilized network, stimulation of the inhibitory neurons
leads to a paradoxical reduction of their firing rates [60]. If
there are multiple inhibitory subtypes, the net inhibitory
input to excitatory neurons decreases upon inhibitory neuron
stimulation [95]. The widespread experimental observation
of paradoxical responses, and other response patterns con-
sistent with inhibition-stabilized networks, raises the ques-
tion: Is inhibitory stabilization a generic property, or does
it require fine-tuned parameters toward which cortical net-
works develop?
The inhibition-stabilized regime and paradoxical res-

ponses as its signature are predictions of the classic activity
equations (1). Does an inhibition-stabilized regime exist in
the mean-field theory of Eq. (5)? The stability requirements
are determined from the Jacobian matrix, 
−1 − f̄e þ ðJ − v̄eÞfð1Þe −gJfð1Þi

Jfð1Þe −1 − fi − ðgJ þ v̄iÞfð1Þi

!
;

ð40Þ

where f̄α ¼ fðv̄αÞ and fð1Þα ¼ ðd=dvÞfðvÞjv̄α . For a fixed
point to be inhibition stabilized, the first element of its
Jacobian must be positive (the excitatory-only subnetwork
would be unstable), but the maximum real part of its
eigenvalues negative (the full network is stable). For the
threshold-linear-intensity function, fð1Þðv̄αÞ ¼ θðv̄α − 1Þ,
where θðxÞ is the Heaviside step function. This leads to
the requirement that for the excitatory subnetwork to be
linearly unstable with a positive firing rate, 1 < v̄E < J=2.
Do paradoxical responses to inhibitory stimulation occur

in the stochastic LIF network? To investigate this, we return
to the tractable threshold-linear-intensity function. We
allow the external input to vary between the two popula-
tions E ¼ ðE; hEÞ [Fig. 5(a)]. h controls the relative
strength of the input to the inhibitory population. When
both population voltages are above threshold, the mean-
field inhibitory and excitatory nullclines are at

v̄�i ¼
−gJ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2J2 þ 4½Jðv̄e − 1þ gÞ þ hE�

p
2

;

v̄i ¼ ½−ðv̄�eÞ2 þ Jv̄�e − Jð1 − gÞ þ E�=gJ: ð41Þ

v̄�α is the nullcline of population α ∈ fe; ig. The supra-
threshold inflection point of the excitatory nullcline is at
v̄e ¼ J=2. An inhibition-stabilized fixed point must thus be
on the increasing branch of the excitatory nullcline. h does
not affect the excitatory nullcline but shifts the inhibitory
nullcline. An increase in h will lead to a paradoxical
reduction in firing rates if it shifts a stable fixed point to
lower v̄i. For example, consider the case when there is a
single fixed point on the increasing side of the excitatory
nullcline, to the left of its peak [Fig. 5(b)]. Increasing h

shifts the inhibitory nullcline up and to the left, moving that
fixed point to a lower ðv̄e; v̄iÞ. Depending on the magnitude
of the shift, it may also take the dynamics through a
bifurcation into a bistable regime. A sufficiently large
increase in h can shift the network into a regime with
no excitatory activity, which can also lead to a net decrease
in inhibitory rates [Figs. 5(b) and 5(c)].
In what regions of parameter space does an inhibition-

stabilized fixed point exist? As we discuss above, for the
excitatory subnetwork to be unstable, with nonzero excita-
tory rate, requires that the fixed point be on themiddle branch
of the excitatory nullcline: 1 < v̄E < J=2. The inhibitory
nullcline is an increasing function of v̄e. The excitatory
nullcline increases for v̄�e close to 1 and decreases for
sufficiently large v̄�e. At threshold (v̄e ¼ 1) the inhibitory
nullcline must be below the excitatory nullcline:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgJÞ2 þ 4gJ þ 4hE
q

<
2

gJ
ðEþ gJ − 1Þ þ gJ: ð42Þ

(a) (b)

(c)

FIG. 5. Paradoxical responses to inhibitory stimulation.
(a) Excitatory-inhibitory network with asymmetric drive.
(b) Phase diagram and nullclines of the excitatory (blue)
and inhibitory (orange) firing rates for the excitatory-inhibitory
network with threshold-linear-rate functions. (c) Simulation
of a block-Erdős-Rényi network with pee ¼ pie ¼ 0.5, pei ¼
pii ¼ 0.8. At time 0, ðE; hÞ ¼ ð2; 1Þ. At times 50 and 100, h
increases by 3

4
. Orange: inhibitory population-averaged spike train

smoothed with a Gaussian kernel of width 2 for visualization.
Parameters for (b) and (c): ðJ; g; EÞ ¼ ð6; 1=2; 2Þ. Simulated
block Erdős-Rényi network parameters as in Fig. 3.
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If h ¼ 1, this requirement imposes that E > 1; at E ¼ 1, the
two sides are equal, and the difference of the two sides grows
as

ffiffiffiffi
E

p
.

The peak of the excitatory nullcline is at v̄�e ¼ J=2. At the
peak of the excitatory nullcline, v̄i¼½−J2=4þJð1þgÞ þ
E�=gJ. At v̄e ¼ J=2, the inhibitory nullcline should be above
the excitatory nullcline:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgJÞ2 þ 4gJ þ 2JðJ − 2Þ þ 4hE

q
>

2

gJ

�
J2

4
− Jð1 − gÞ þ E

�
þ gJ: ð43Þ

Together, Eqs. (42) and (43) provide sufficient conditions for
a paradoxical response to inhibitory stimulation in the mean-
field theory. At fixed drive E, they predict a paradoxical
response for sufficiently large J or g. For stronger E, these
minimal couplings increase [Figs. 6(a) and 6(b), dashed].
To estimate how fluctuations impact inhibitory stabili-

zation, we compute the one-loop nullclines:

v̄�i ¼
−gJ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2J2 þ 4½Jðv̄e − 1þ gÞ þ 4

3
hE − 1

3
�

q
2

v̄i ¼
�
−ðv̄�eÞ2 þ Jv̄�e − Jð1 − gÞ þ 4

3
E −

1

3

�	
gJ: ð44Þ

The inflection point of the one-loop v̄e nullcline is at the
same position as the mean-field v̄e nullcline J=2. At one
loop, for the inhibitory nullcline to be above the excitatory
nullcline at v̄e ¼ J=2 requires

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgJÞ2 þ 4gJ þ 2JðJ − 2Þ þ 16

3
hE −

4

3

r
>

2

gJ

�
J2

4
− Jð1 − gÞ þ 4

3
E −

1

3

�
þ gJ: ð45Þ

For fixed E and J, this one-loop boundary requires a higher
g (stronger inhibition) than the mean-field boundary, better
matching the transition observed in simulations [Fig. 6(a),
dashed vs solid]. Similarly, for fixed E and g, the one-loop
boundary is at higher J (stronger coupling) than the mean-
field boundary [Fig. 6(b), dashed vs solid]. Together, this
comparison indicates that fluctuations shift the region of
paradoxical responses to more strongly coupled networks.
This comports with the role of fluctuations in suppressing
activity.
A paradoxical response could also occur from other

dynamical regimes than the single fixed point on the
decreasing branch of the excitatory nullcline, such as from
a bistable regime. To test whether the underlying spiking
model exhibits paradoxical responses, we simulate excita-
tory-inhibitory networks while varying J and g. For each
network, we apply a perturbation of amplitude 0.1 to the
inhibitory population’s input and compute the inhibitory
population’s average firing rate before and after the pertur-
bation. With J fixed and varying g, we observe paradoxical
responses for sufficiently large g [Fig. 6(a), blue]. Similarly,
with g fixed andvaryingJ, we observe paradoxical responses
for sufficiently large J [Fig. 6(b), blue]. The one-loop
predictions better match the region of paradoxical responses
than the mean-field predictions (Fig. 6: dashed vs solid).

X. DISCUSSION

We construct a path-integral representation for the joint
probability density functional of the membrane voltage and
spike trains of a network of stochastic LIF neurons Eq. (4).
This exposes a simple deterministic mean-field theory for
spiking networks: activity equations with an additional rate-
dependent leak arising from the spike reset [Eq. (5)]. It also
exposes fluctuation corrections to the mean-field theory,
arising from the two nonlinearities of the intensity function
and spike reset [Eq. (25)], the latter of which suppresses acti-
vity (Fig. 1). These N-dimensional systems expose predic-
tions for the activity that depend on a particular connectivity
J. Large-scale electron microscopy is now revealing such
wiring diagrams; e.g., Refs. [96–108]. Predicting the micro-
scopic dynamics of even deterministic, threshold-linear
neuronal networks is challenging [109–112]. Statistical
approaches focusing on stochastic models allow the pre-
diction of correlations between specific neurons’ activity
through linear response or Hawkes theory and its general-
izations [55,113–118]. Equation (4) provides a starting point
for making such predictions in a stochastic LIF network.
Here, we instead used the path-integral representation to

derive a population-averaged stochastic field theory for

FIG. 6. Phase diagrams for paradoxical responses to inhibitory
stimulation. (a) Boundaries of the paradoxical response region
with J ¼ 4. Dashed line: mean-field theory Eq. (43). Solid line:
one-loop theory Eq. (45). Color: simulation. Each simulation lasts
for 200 time units; at time 100, the inhibitory drive switches from
hE ¼ E to hE ¼ Eþ 0.1. (b) As in (a), with g ¼ 2. Simulated
block-Erdős-Rényi network parameters as in Fig. 3.
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large networkswith homogenous coupling, includingmulti-
population systems like excitatory-inhibitory networks.
That stochastic field theory is of the form of a renewal
process with a self-consistent input [Eqs. (21) and (30)].
Robert and Touboul studied the homogenous stochastic LIF
network rigorously [75]. They proved that the mean-field
process Eq. (21) can have one or several invariant densities
depending on the form of the firing function. The stochastic
field theory admits low-dimensional mean-field and loop
approximations of the voltage and rate as simple functions
of the model’s parameters. Using these approximations, we
demonstrate bistability of the deterministic mean-field
theory and its extension to the stochastic system and study
the contributions of recurrent inhibition and spike resetting
to stabilizing network activity.We also find that fluctuations
suppress activity through the spike reset also in coupled
networks [Figs. 2(e), 2(f), and 4(c)–4(e)]. Excitatory-
inhibitory networks of deterministic integrate-and-fire neu-
rons can also exhibit bistable equilibrium rates if the
inhibition is not too strong [21,119]. The field-theoretic
description here does not rely on a white-noise approxi-
mation for the membrane voltages, but exposes a systematic
method for calculating their statistics. It requires here,
however, a model with stochastic spike emission.
Deterministic integrate-and-fire networks can also

exhibit spatial, temporal, and spatiotemporal transitions
[21,120,121]. Temporal, spatial, and spatiotemporal bifur-
cations are often understood through the classic activity
equations [3]. The field theory developed here provides a
route to uncovering bifurcations in networks of stochastic
integrate-and-fire neurons with more temporal or spatial
structure in their interactions, as well as investigating the
impact of spiking fluctuations on such transitions.
In the classic activity equations [e.g., Eq. (1)], recurrent

inhibition is necessary to stabilize strongly coupled net-
works [8,59]. An inhibition-stabilized regime can be
exposed by a paradoxical reduction of inhibitory activity
after inhibitory stimulation [60]. We calculate the phase
diagram for paradoxical responses in stochastic LIF net-
works and find that an inhibition-stabilized regime exists in
wide regions of parameter space (Figs. 5 and 6). This
suggests a generic mechanism underlying the observation
of paradoxical responses widely in mammalian cortex
[61–64].
There are two complementary approaches to our focus

on the density functional of sample pathsp½vðtÞ; _nðtÞ� for the
stochastic LIF model. These complementary approaches

focus on the time-dependent probability density function
of the membrane voltages pðv; tÞ across a population of
neurons [18]. In the N → ∞ limit and with Jij ∼ 1=N, the
population density of membrane voltages in a stochastic
LIF network obeys a Volterra integral equation [29,30].
That integral equation can also be written as a partial dif-
ferential equation, which rigorously exposes the stochastic
stability of the population densities in a mean-field limit
[122–125]. A finite-size analysis introduces a stochastic term
to the population density equations [34,126]. Alternatively,
moments for finite-size networks can be analyzed through a
replica mean-field approach [127–129]. The path-integral
approach also exposes a finite-size mean-field theory
[Eq. (5)]. Fluctuation corrections to that finite-N mean-field
theory can be obtained in the same way as for the large-N,
connectivity-averaged system.
The field-theoretic approach is practical and flexible. It

exposes simple analytic approximations for any cumulant
of the membrane voltages and/or spike trains via diagram-
matic methods, is amenable to finite-size corrections, and
applies readily to other models such as those with temporal
synaptic interactions, spatially dependent connectivity,
conductance-based or strong Oð1= ffiffiffiffi

N
p Þ synapses, and

additional nonlinearities in the single-neuron dynamics.

Related code can be found in Ref. [130].
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APPENDIX A: JOINT PROBABILITY
DENSITY FUNCTIONAL

We construct the joint probability density of the
membrane voltages and spike trains using the response
variable path-integral formalism [37–40] reviewed in
Refs. [131–133]. We use boldface lowercase variables
for vectors and boldface capital letters for matrices and
operators. Given the membrane voltages vit, we require that
the spikes generated in the network are conditionally
independent across neurons i and time points t. Here we
take the model to be already nondimensionalized, so that
time is measured in units of the membrane time constant τ
and the spike reset is to 0. The joint probability density of
the membrane voltages v and the spikes dn conditioned on
the stochastic spike generation is

pðv; dnjηÞ ¼
YN
i¼1

YT−1
t¼1

δ

�
dvit
dt

þ vit þ
dnit
dt

vit − Eit −
X
j;s

Jijsdnj;t−s

�
× δðdnit − ηitÞ: ðA1Þ

Here, ηit ∼ Bernoulli (fðvitÞdt). Introducing the Fourier representation of the delta functions and marginalizing over η
yields the joint density
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pðv; dnjηÞ ¼
Z

Dṽ
Z

Dñ exp

�X
i;t

− ṽit

�
dvit
dt

þ vit þ
dnit
dt

vit − Eit −
X
j;s

Jijsdnj;t−s

�

− ñitdnit þ ln½1þ fðvitÞdtðeñit − 1Þ�
�
: ðA2Þ

The measures are Dñ ¼Qi;tðdñit=2πiÞ and Dṽ ¼Q
i;tðdṽit=2πiÞ. The integrals over the response variables

ñ and ṽ are along the imaginary axis. The logarithmic
term in the exponent is the cumulant-generating function
of the Bernoulli spikes. Galves and Lőcherbach proved
the existence and uniqueness of stationary densities for
the discrete-time model with a strictly positive intensity
function [134].
We next take a continuous-time limit dt → 0; T → ∞

with their product fixed. This defines the functional
integration measures D. With dt ≪ 1, we expand the

natural logarithm in its Taylor series around 1: ln½1þ
fðvitÞdt(expðñitÞ−1)�¼fðvitÞdt(expðñitÞ−1)þO(ðdtÞ2).
This yields Eq. (4).

APPENDIX B: ABSOLUTE
REFRACTORY PERIOD

With an absolute refractory period of Tr time steps in the
discrete-time dynamics, during which the membrane volt-
age is clamped with OðdtÞ of 0, the joint density of the
spike trains and membrane voltages instead obeys

pðv; dnjηÞ ¼
Z

Dṽ
Z

Dñ exp

�X
i;t

− ṽit

�
dvit
dt

þ vit þ
XTr

s¼1

dni;t−s
dt

vit − Eit −
X
j;s

Jijsdnj;t−s

�

− ñitdnit þ ln½1þ fðvitÞdtðeñit − 1Þ�
�
: ðB1Þ

This presents some complications in the continuous-time limit: The refractory term diverges when written as a
convolution.
One alternative would be to incorporate a strong, negative self-coupling in diagonal elements of J. While not strictly an

absolute refractory period, this may mimic its effects. This would affect the definition of the mean-field theory and
propagators, but it would not give rise to new types of fluctuation correction (no new vertices; Appendix C 2).
Another alternative is to consider an absolute refractory period in which the membrane voltage is not clamped at the reset

voltage. Rather, we can require that
(1) during the absolute refractory period, the spike probability is 0, and
(2) at the end of the absolute refractory period, the membrane voltage is reset to the reset voltage.

This yields the discrete-time density

pðv; dnjηÞ ¼
Z

Dṽ
Z

Dñ exp


X
i;t

− ṽit

�
dvit
dt

þ vit þ
dni;t−Tr

dt
vit − Eit −

X
j;s

Jijsdnj;t−s

�

− ñitdnit þ ln
�
1þ fðvitÞdtðeñit − 1Þ

�
1 −

XTr

s¼1

dni;t−s

���
; ðB2Þ

from which a continuum limit can be taken straight-
forwardly, yielding a spike reset term _niðt − τrÞviðtÞ and
spike intensity fðviÞð1 − _ni � BÞ, with the rectangular
function BðtÞ ¼ θðtÞ − θðt − τrÞ and refractory period
τr ¼ Trdt. This introduces a new state dependence to
the intensity, which would give rise to new types of
fluctuation corrections.

APPENDIX C: CONNECTIVITY-AVERAGED
DENSITY

To examine the interaction between synaptic con-
nectivity, subthreshold dynamics, and stochastic spike
emission in shaping network activity, we average the
partition functional for the activity (equivalently, average
the moment-generating functional) over the synaptic
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connectivity. This is a standard exercise in statistical
field theory [133], relying on the assumption that the
system is self-averaging with respect to the con-
nectivity: That is, that the average over realizations
of J will give us an accurate description of a single
large system. The connectivity-averaged partition func-
tional is

Z ¼
Z

D _n
Z

Dv
Z

Dñ
Z

Dṽ
Z

DJp½v; _n; ṽ; ñjJ�pðJÞ:

ðC1Þ

Since the action S is linear in J, a cumulant-generating
function for J appears in Z:

Z ¼
Z

D _n
Z

Dv
Z

Dñ
Z

Dṽ exp−
�
ṽTð∂tvþ v − Eþ _nvÞ þ ñT _n − ðeñ − 1ÞTf

� Z
DJpðJÞ exp ðṽTJ � _nÞ

¼
Z

D _n
Z

Dv
Z

Dñ
Z

Dṽ exp−
�
ṽTð∂tvþ v − Eþ _nvÞ −WJðṽT _nÞ þ ñT _n − ðeñ − 1ÞTf

�
; ðC2Þ

where

WJðṽT _nÞ

¼
Z

DJpðJÞ exp (
Z

dt
Z

ds
X
j

ṽiðtÞJijðsÞ _njðt − sÞ):

ðC3Þ

So, each cumulant of J gives rise to a corresponding
cumulant in the connectivity-averaged partition functional
for the activity. We overload notation here, writing pðJÞ for
the distribution of the synaptic weight matrix while also
letting J be a function of the time lag. This notation
assumes that JijðsÞ ¼ JijGijðsÞ for some matrix of unit-
norm kernels G, which we leave implicit. The connectivity
gives rise to an effective noise in the membrane voltage.
Each cumulant of the connectivity gives rise to a cumulant
of the same order in the effective noise.
For example, consider an Erdős-Rényi network with

connection probability p and synaptic weight J for the
nonzero connections, with JðsÞ ¼ JδðsÞ. The distribution
pðJÞ factorizes over the weights; the cumulant-generating
functional for an individual synaptic weight is

WJðxÞ ¼ ln ½1þ pð−1þ exp JijxÞ�; ðC4Þ

and cumulants of the synaptic weights Jij obey the
recursion relation

hJiji ¼ Jp;

⟪Jnij⟫ ¼ Jpð1 − pÞ d
dp

⟪Jn−1ij ⟫; n ≥ 2: ðC5Þ

If the connection probability p and weight J are both of
order 1, the synaptic weights will have non-negligible
cumulants of all orders. If the synaptic weights are of order
one and the connectivity sparse p ∼ 1=N, the cumulants are
⟪Jnij⟫¼ JnpþOð1=N2Þ. If J > 1, higher cumulants of the
connectivity will dominate, giving rise to higher-order
cumulants in the effective noise of the membrane voltage.
In contrast, if J∼1=N and p∼1, then ⟪Jnij⟫∼N−n so in a
large network, the first cumulant of the connectivity
dominates.
Here, we consider that simple case where J has only a

first cumulant. Let hJijðsÞiJ ¼ JðsÞ=N. The average over
the connectivity yields

Z ¼
Z

Dv
Z

Dṽ
Z

D _n
Z

Dñ exp
X
i

�
−ṽTi

�
∂tvi þ vi þ _nivi − Ei −

1

N
J �
X
j

_nj

�
− ñTi _ni þ ðeñi − 1ÞTfðviÞ

�
: ðC6Þ

We like to examine this partition functional in the limit of a large network. Let R ¼ ð1=NÞPj J � _nj; we enforce this by
integrating against δðNR − J �Pj _njÞ. With the Fourier representation of that delta function, we have a generating
functional for the auxiliary fields R; R̃:

Z½k; k̃� ¼
Z

DR
Z

DR̃ exp

�
−NR̃TRþ

X
i

lnZi½R; R̃� þ kTRþ k̃TR̃

�
;

Zi½R; R̃� ¼
Z

Dvi

Z
Dṽi

Z
D _ni

Z
Dñi exp ( − ṽTi ð∂tvi þ vi − E − Rþ _niviÞ þ R̃TðJ � _niÞ

− ñTi _ni þ ðeñi − 1ÞTfðviÞ): ðC7Þ
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Note that the generating function for the neural dynamics
factorizes over the neurons; Zi½R; R̃� does not contain any
other indices. So, we drop the neuron indices and write
N lnZ½R; R̃� instead of

P
i lnZi½R; R̃�. For large N, we

evaluate the integrals over the auxiliary fields R; R̃ by a
saddle-point approximation. The saddle-point equations are

0 ¼ −NR� þ N
∂ lnZ½R; R̃�

∂R̃

�����
R
↔ R� ¼ J � h _ni;

0 ¼ −NR̃� þ N
∂ lnZ½R; R̃�

∂R

�����
R
↔ R̃� ¼ −hṽi ¼ 0: ðC8Þ

Here, h _niðtÞ is the population-averaged firing rate. Inserting
these saddle-point solutions yields the partition func-
tional, Eq. (21).

1. Perturbative expansion

If fluctuations or nonlinearities are weak, a perturbative
expansion around the mean-field theory can provide
accurate estimates of fluctuation effects. For ease of
notation, let x ¼ ðv; _nÞT and x̃ ¼ ðṽ; ñÞT . We expand x
around a background field

x ¼ x̄þ δx; x̃ ¼ x̃� þ δx̃; ðC9Þ

and collect terms up to linear order in the fluctuations in the
free action S0, with higher-order terms in the interacting
part of the action SV :

S ¼ S0 þ SV;

S0 ¼ ṽTð∂tv̄þ v̄þ v̄ n̄−E − J � h _niÞ þ ñT ½n̄ − fðv̄Þ�
þ ṽTð∂t þ 1þ n̄Þδvþ ṽT v̄δnþ ñTδn − ñTfð1Þδv;

SV ¼ ṽTδnδv −
X∞
p¼2

ñp

p!
fðv̄Þ −

X∞
p;q¼1
pþq>2

ñp

p!
fðqÞ

q!
ðδvÞq: ðC10Þ

(We should also expand the response variable x̃ around a
background field; we skip that here since in Appendix D we
constrain the background fields to be the mean trajectories,
and the mean of response variables is 0.) A joint moment of
v; _n isYa

i¼1

_nðtiÞ
Yb
j¼1

vðtjÞ
�

¼
Z

Dδx
Z

Dx̃
Ya
i¼1

Yb
j¼1

_nivj expð−S0 − SVÞ: ðC11Þ

Expanding exp−SV in a functional Taylor series around a
solution to the mean-field theory yields an expansion of the
moment in terms of Gaussian integrals with respect to the
free density exp−S0. Because of Wick’s theorem, these

integrals yield products of the propagators Δ̄. These
expansions can be efficiently organized diagrammatically.

2. Feynman rules

Here we give the Feynman rules for statistics of the
population-averaged system Eq. (30). This provides a
graphical algorithm for computing arbitrary cumulants of
the spike train _n or membrane voltage v. Moments can be
composed from the cumulants by the appropriate Bell
polynomials. We give the rules in the temporal frequency
domain, for an expansion around a stationary point. Each
cumulant can be decomposed into a sum of terms, each
represented by a connected diagram. Those diagrams are
composed of the vertices and edges in Tables I and II
(Feynman diagrams generated with Ref. [135]).
The source vertex • emits factors of the response variable

ñ corresponding to spike fluctuations. Each internal vertex
∘; receives configuration variables δn; δv and emits
response variables ñ; ṽ. In any connected diagram, each
pair of vertices will be linked by at least one pair of
configuration and response variables, e.g., (δv; ñ). Because
of Wick’s theorem, each pair of configuration and response

TABLE II. Edges corresponding to the components of the
propagator from S0 in Eq. (C10). Each measures the linear
response of one configuration variable to a perturbation of
another. For example, Δ̄v;ñ measures the linear response of the
voltage to a spike fluctuation. To obtain the simple approxima-
tions in this manuscript, we evaluate the propagators at the mean
field, replacing n̄ by fðv̄Þ in these edge factors.

Edge Propagator Factor

Δ̄n;ñðωÞ ð1þ n̄þ iωÞ=ð1þ n̄þ fð1Þv̄þ iωÞ
Δ̄v;ñðωÞ fð1Þ=ð1þ n̄þ fð1Þv̄þ iωÞ
Δ̄n;ṽðωÞ −v̄=ð1þ n̄þ fð1Þv̄þ iωÞ
Δ̄v;ṽðωÞ 1=ð1þ n̄þ fð1Þv̄þ iωÞ

TABLE I. Vertices corresponding to the interacting action SV in
Eq. (C10). fðqÞ is the qth derivative of the intensity function f
evaluated at the expansion point v̄. The intensity function vertex
fðqÞ=q! also has the constraint that the sum of its in- and out-
degrees must be at least 3 since the linear and bilinear terms in
ðñ; δvÞ went into the definitions of the background field and the
propagators [Eq. (C10)].

Vertex Factor
In-degree
(δv; δn)

Out-degree
(ṽ; ñ)

• fðv̄Þ (0, 0) ð0;≥2Þ
∘ fðqÞ

q! δ
�PKin

i¼1 ωi −
PKout

j¼1 ωj

� ð≥1; 0Þ ð0; qÞ; q ≥ 1

∘ −δ
�PKin

i¼1 ωi −
PKout

j¼1 ωj

�
(1, 1) (1, 0)

GABRIEL KOCH OCKER PHYS. REV. X 12, 041007 (2022)

041007-16



variables is replaced by the corresponding propagator edge.
For example, the pair δv; ñ gives rise to the propagator Δ̄v;ñ.
To calculate the joint cumulant ⟪ _navb⟫ðω1;…;ωaþb−1Þ:
(1) Place an external vertex for each of the aþ b factors

of _n and v.
(2) Using the internal vertices and edges in Tables I and

II, construct all connected graphs such that each
external vertex has one incoming propagator edge.
Each edge has its own frequency variable ωi.

(3) To evaluate a diagram, multiply the factors of every
edge and vertex together. Additionally, the sum
of external frequencies (those on the external ver-
tices’ incoming edges) is zero: Also, multiply by
δðPaþb

i¼1 ωiÞ. Finally, integrate over all of the internal
frequencies: For each internal frequency ωi, inte-
grate

R
dωi=2π.

(4) Evaluate each connected diagram constructed in
Eq. (2), and add the contributions of the diagram.

The integrals over internal frequencies can generally be
performed analytically by means of the residue theorem.
For a thorough introduction, see, e.g., Refs. [133,136]. For
an introduction to diagrammatic methods in the Poisson
generalized linear model without resets (no self-coupling),
see Ref. [55]. See Ref. [58] for detailed analytical cal-
culations of the integrals over internal frequencies in
that model.

APPENDIX D: EFFECTIVE ACTION

Here we briefly derive the effective action. For a
more detailed presentation, see, e.g., Ref. [136] Chap. 7
or Ref. [133] Chaps. 11–14. For ease of notation, let
x ¼ ðv; _nÞT and x̃ ¼ ðṽ; ñÞT . The cumulant-generating
functional is

expW½j; j̃� ¼
Z

Dx
Z

Dx̃ exp
1

h
ð−S½x; x̃� þ j̃Txþ jT x̃Þ:

ðD1Þ

We introduce a scale h into the exponent on the right-hand
side. For physical calculations, we set h ¼ 1. (Here, h has
no relation to that used in Sec. IX.) We expand x around a
background field x̄ [Eq. (C9)] and similarly for the response
variable x̃ ¼ x̃� þ δx̃. This yields

exp
1

h
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ

¼
Z

Dδx
Z

Dδx̃ exp
1

h
ð−Sþ j̃Tδxþ jTδx̃Þ: ðD2Þ

We now require that our background field be the mean
x̄ ¼ hxi so that

0 ¼ hδxii ¼
∂

∂j̃i
exp

1

h
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ; ðD3Þ

and similarly, we require x̃� ¼ hx̃i. These requirements can
be satisfied only at a stationary point of the exponent

0 ¼ ∂

∂ji
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ;

0 ¼ ∂

∂j̃i
ðhW½ j; j̃� − j̃T x̄ − jT x̃�Þ; ðD4Þ

which is a Legendre transform from −hW to the effective
action Γ:

Γ½x̄; x̃�� ¼ sup
j; j̃

j̃T x̄þ jT x̃� − hW½ j; j̃�: ðD5Þ

Substituting the effective action in Eq. (D2) yields

exp
1

h
ð−Γ½x̄; x̃�� þ S½x̄; x̃��Þ

¼
Z

Dδx
Z

Dδx̃ exp
1

h
ð−S½δx; δx̃� þ j̃Tδxþ jTδx̃Þ;

ðD6Þ

where S½x̄; x̃�� contains the terms in the S that depend only
on x̄; x̃� and not δx; δex; and S½δx; δx̃� contains the remaining
terms of S. This has the form of a generating functional for
x̄; x̃�. The mean is a stationary point of Γ; it obeys the
equations of motion

0 ¼ ∂

∂x̄i
Γ;

0 ¼ ∂

∂x̃�i
Γ: ðD7Þ

The loop expansion for the effective action is a diagram-
matic equivalent of the saddle-point expansion of the
integrals over δx; δx̃ in Eq. (D6), without requiring that
h be a bona fide small parameter [137,138]. The vertices
and edges corresponding to those integrals are those given
in Appendix C 2. The diagrams contributing to the equation
of motion for x̄ are all one-line-irreducible vacuum dia-
grams (those that cannot be disconnected by cutting one
edge; see, e.g., Ref. [133], Chaps. 11.4 and 13.3).

APPENDIX E: CONNECTIVITY AVERAGE
FOR THE LINEAR-RESET MODEL

The connectivity-averaged action for the linear-reset
model is

S½v; _n; ṽ; ñ� ¼ ṽTð∂tvþ vþ r _n − E − Jh _niÞ
þ ñT _n − ðeñ − 1ÞTfðvÞ; ðE1Þ

and expanding around a solution to the mean-field theory
∂tv̄ ¼ −v̄þ ðJ − rÞh _ni þ E yields the free and interacting
actions
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S0 ¼ ṽTð∂tv̄þ v̄þ rn̄ − E − J � h _niÞ þ ñT ½n̄ − fðv̄Þ�
þ ṽTð∂t þ 1Þδvþ ṽTrδnþ ñTδn − ñTfð1Þδv;

SV ¼ −
X∞
p¼2

ñp

p!
f̄ −

X∞
p;q¼1
pþq>2

ñp

p!
fðqÞ

q!
ðδvÞq: ðE2Þ

The components of the propagator for this model are
given in Table III. It has the same source and intensity
vertices as the stochastic LIF model (the first two entries in
Table I), but lacks the reset vertex.

[1] W. J. Freeman, Mass Action in the Nervous System:
Examination of the Neurophysiological Basis of Adaptive
Behavior through the EEG (Academic Press, New York,
1975).

[2] S. Coombes, Large-Scale Neural Dynamics: Simple and
Complex, NeuroImage 52, 731 (2010).

[3] P. C. Bressloff, Spatiotemporal Dynamics of Continuum
Neural Fields, J. Phys. A 45, 033001 (2012).

[4] R. Moran, D. Pinotsis, and K. Friston, Neural Masses and
Fields in Dynamic Causal Modeling, Front. Comput.
Neurosci. 7, 57 (2013).

[5] S. Grossberg, Learning and Energy-Entropy Dependence
in Some Nonlinear Functional-Differential Systems, Bull.
Am. Math. Soc. 75, 1238 (1969).

[6] S.-I. Amari, Characteristics of Randomly Connected
Threshold-Element Networks and Network Systems, Proc.
IEEE 59, 35 (1971).

[7] S.-I. Amari, Characteristics of Random Nets of Analog
Neuron-Like Elements, IEEE Trans. Syst. Man Cybern.
Syst. SMC-2, 643 (1972).

[8] H. R. Wilson and J. D. Cowan, Excitatory and Inhibitory
Interactions in Localized Populations of Model Neurons,
Biophys. J. 12, 1 (1972).

[9] H. R. Wilson and J. D. Cowan, A Mathematical Theory of
the Functional Dynamics of Cortical and Thalamic Nerv-
ous Tissue, Kybernetik 13, 55 (1973).

[10] I. Ginzburg and H. Sompolinsky, Theory of Correlations in
Stochastic Neural Networks, Phys. Rev. E 50, 3171 (1994).

[11] T. Ohira and J. D. Cowan, Master-Equation Approach to
Stochastic Neurodynamics, Phys. Rev. E 48, 2259 (1993).

[12] M. A. Buice and J. D. Cowan, Field-Theoretic Approach
to Fluctuation Effects in Neural Networks, Phys. Rev. E
75, 051919 (2007).

[13] P. C. Bressloff, Stochastic Neural Field Theory and the
System-Size Expansion, SIAM J. Appl. Math. 70, 1488
(2010).

[14] A. L. Hodgkin and A. F. Huxley, A Quantitative Descrip-
tion of Membrane Current and Its Application to Con-
duction and Excitation in Nerve, J. Physiol. 117, 500
(1952).

[15] C. C. Chow and Y. Karimipanah, Before and Beyond the
Wilson-Cowan Equations, J. Neurophysiol. 123, 1645
(2020).

[16] N. Brunel, V. Hakim, and M. J. Richardson, Single Neuron
Dynamics and Computation, Curr. Opin. Neurobiol. 25,
149 (2014).

[17] B. Doiron, A. Litwin-Kumar, R. Rosenbaum, G. K. Ocker,
and K. Josić, The Mechanics of State-Dependent Neural
Correlations, Nat. Neurosci. 19, 383 (2016).

[18] B. W. Knight, Dynamics of Encoding in a Population of
Neurons, J. Gen. Physiol. 59, 734 (1972).

[19] L. M. Ricciardi, Diffusion Processes and Related Topics in
Biology (Springer, New York, 1977).

[20] D. J. Amit and N. Brunel, Model of Global Spontaneous
Activity and Local Structured Activity during Delay
Periods in the Cerebral Cortex, Cereb. Cortex 7, 237
(1997).

[21] N. Brunel, Dynamics of Sparsely Connected Networks of
Excitatory and Inhibitory Spiking Neurons, J. Comput.
Neurosci. 8, 183 (2000).

[22] B. Lindner and L. Schimansky-Geier, Transmission of
Noise Coded versus Additive Signals through a Neuronal
Ensemble, Phys. Rev. Lett. 86, 2934 (2001).

[23] B. Doiron, B. Lindner, A. Longtin, L. Maler, and J.
Bastian, Oscillatory Activity in Electrosensory Neurons
Increases with the Spatial Correlation of the Stochastic
Input Stimulus, Phys. Rev. Lett. 93, 048101 (2004).

[24] B. Lindner, B. Doiron, and A. Longtin, Theory of Oscil-
latory Firing Induced by Spatially Correlated Noise and
Delayed Inhibitory Feedback, Phys. Rev. E 72, 061919
(2005).

[25] B. Lindner, Superposition of Many Independent Spike
Trains is Generally Not a Poisson Process, Phys. Rev.
E 73, 022901 (2006).

[26] R. Moreno-Bote and N. Parga, Auto- and Crosscorrelo-
grams for the Spike Response of Leaky Integrate-and-Fire
Neurons with Slow Synapses, Phys. Rev. Lett. 96, 028101
(2006).

[27] T. Schwalger, F. Droste, and B. Lindner, Statistical
Structure of Neural Spiking under Non-Poissonian or
Other Non-White Stimulation, J. Comput. Neurosci. 39,
29 (2015).

[28] S. Vellmer and B. Lindner, Theory of Spike-Train Power
Spectra for Multidimensional Integrate-and-Fire Neurons,
Phys. Rev. Res. 1, 023024 (2019).

[29] W. Gerstner, Time Structure of the Activity in Neural
Network Models, Phys. Rev. E 51, 738 (1995).

[30] W. Gerstner, Population Dynamics of Spiking Neurons:
Fast Transients, Asynchronous States, and Locking, Neu-
ral Comput. 12, 43 (2000).

[31] C. Meyer and C. v. Vreeswijk, Temporal Correlations in
Stochastic Networks of Spiking Neurons, Neural Comput.
14, 369 (2002).

TABLE III. Components of the propagator from S0 in Eq. (E2).

Edge Propagator Factor
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