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We propose a microscopic picture for understanding the nonlinear rheology of supercooled liquids with
soft repulsive potentials. Based on Brownian dynamics simulations of supercooled charge-stabilized
colloidal suspensions, our analysis shows that the shear thinning of viscosity (η) at large enough shear rates
(_γ), expressed as η ∼ _γ−λ, originates from the evolution of the localized elastic region (LER). An LER is a
transient zone composed of the first several coordination shells of a reference particle. In response to the
external shear, particles within the LER undergo nearly affine displacement before the yielding of the LER.
The characteristic strain (γ) and size (ξ) of the LER, respectively, depend on the shear rate by γ ∼ _γϵ and
ξ ∼ _γ−ν. Three exponents, λ, ϵ, and ν, are related by λ ¼ 1 − ϵ ¼ 4ν. This simple relation connects the
nonlinear rheology to the elastic properties and the microscopic configurational distortion of the system.
The relaxation of the LER is promoted by the large-step nonaffine particle displacement along the
extensional direction of the shear geometry with the step length of 0.4 particle diameter. The elastic
deformation and relaxation of the LER are ubiquitous and successive in the flow, which compose the
fundamental process governing the bulk nonlinear viscoelasticity. We apply this model to analyze the rheo-
small-angle neutron scattering data of sheared charge-stabilized colloidal suspensions. It is seen that our
model well explains the neutron spectra and the rheological data.
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I. INTRODUCTION

The flow of supercooled liquids and glassy materials is
common in nature, daily life, and a variety of industrial
fields. Therefore, understanding this phenomenon is of
fundamental and practical importance [1]. With extensive
theoretical and numerical investigations [2–7] and exper-
imental evidence from colloidal glasses [8–10], now it is
known that, for glassy solids, the shear-induced yielding
and flow stem from the formation and accumulation of the
shear transformation zone (STZ), which contains a few
particles undergoing irreversible nonaffine displacements.
The localized plastic events are found to exhibit strain-rate-
dependent long-range anisotropic correlations [8,11–16].
Such correlations facilitate the formation of new STZs
in the vicinities of existing ones [8] and, under certain

circumstances, result in inhomogeneous flow [11,17,18].
The size of the STZ is linked to the particle self-diffusion,
which bridges the rheological behaviors and the dynamics
on the particle level [19,20]. An alternative approach to
understand the rheology of glasses is to focus on the
behaviors of the cage, formed by the nearest neighbors of a
reference particle [21–26]. With rheological [21–25],
small-angle scattering [27–29], and confocal measurements
[25] complemented by Brownian dynamics (BD) simula-
tion [23,25,30], the macroscopic deformation and yielding
of the colloidal glass are, respectively, related to the elastic
deformation and rearrangement of the cage. The caging and
the shear-driven cage-breaking effects tie in well with the
extension of the mode-coupling theory (MCT) [31] into the
flowing glasses [32–34]. Further studies of metallic glasses
by x-ray diffraction [35] and computer simulation [36]
suggest that the spatial range of the local elastic deforma-
tion in flowing glasses extends beyond the size of the cage.
On the other side of the glass transition point, materials

may fail to crystallize and stay as liquid. When subject to
slow shear, these supercooled liquids are free to flow but
are enormously viscous compared to the normal liquids
[37,38]. Upon increasing the shear rate _γ, the viscosity η of
supercooled liquids becomes shear thinning [39–41] and
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progressively approaches a relation of η ∼ _γ−λ with λ ≤ 1
[41–43]. Compared with the vast literature on the flow of
glasses, less attention has been paid to the nonlinear
rheology of supercooled liquids. One of the current under-
standings on the anomalous viscosity of the flowing
supercooled liquids is built on the concept of dynamical
heterogeneity, i.e., temporary regions where particles co-
operatively undergo large displacements to realize struc-
tural rearrangements [8,37,42–50]. Previous numerical
studies reveal the existence of temporary clusters of bond
breaks in sheared atomic supercooled liquids [42,43].
Similar dynamically heterogeneous effects are also char-
acterized by various four-point correlation functions
[46,48,49]. These studies establish the correspondence
between the evolution of the properties of the dynamical
clusters, such as the size and lifetime, and the shear
thinning of supercooled liquids [43,48,49]. Interestingly,
while many simulation results show that the supercooled
liquid becomes more dynamically homogeneous as shear
rate increases [42,43,48], it is suggested that in the shear-
thinning regime the mobile regions tend to form anisotropic
fluidized bands [49]. On the other hand, MCT framework
provides a homogeneous description of the nonlinear
rheology of supercooled liquids close to the glass transition
by encoding the caging effect and the resulting non-
Markovian slow dynamics of density fluctuations [32].
Its prediction nicely agrees with the experimental data of
hard-sphere-like microgels [33,34]. Despite these efforts,
the structural indicator, through which the shear-thinning
behavior can be directly connected to the microscopic
distortion in flowing supercooled liquids, remains elusive.
This topic is the focus of this work.
Herein, we adopt concentrated colloidal suspensions as

the model system to explore the flowing state of super-
cooled liquids. Colloidal systems possess large particle size
that enables one to probe the particle-level structure and
dynamics through confocal microscopy and scattering
methods [28,51–53]. The intercolloid interaction can be
well controlled and characterized [54–57], which adds to
the flexibility in experimental studies. Moreover, by intro-
ducing the effective interparticle interaction, slow dynamics
and collective phase behaviors of colloidal suspensions
can be mapped onto those of atomic liquids or other
condensed systems [58–63]. Hence, colloidal suspensions
are extensively used for experimentally verifying the
theoretical and numerical predictions built on atomic
liquids [64,65]. An important feature distinguishing col-
loidal suspensions from atomic liquids is that the colloids
can interact via the hydrodynamic force resulting from the
motion of solvent [66–68]. At high enough shear rates and
concentrations, it is suggested that hydrodynamic lubri-
cation forces spawn the hydroclusters, which cause the
shear-thickening phenomenon that does not exist in
atomic systems [67–70]. More recent studies show that
the frictional contact between colloidal particles plays the

crucial role in inducing the shear thickening at high
concentrations [71–73]. The shear-thickening effect is
particularly common in the most widely used hard-sphere
colloids [57]. To suppress this effect and highlight the
shear-thinning behavior, we adopt the charge-stabilized
colloidal suspensions with long-range screening Coulomb
potential [74]. First, the Coulomb repulsion inhibits
the shear thickening by weakening the near-contact
lubrication effect and preventing the contact [75].
Second, theoretical and experimental studies [75,76]
prove that the Coulomb repulsion remarkably enhances
the shear thinning. From the viewpoint of energy, the
strain-induced distortion and rearrangement of local
configuration, respectively, store and deplete the elastic
free energy arising from the Coulomb potential, which
contribute to the bulk viscoelasticity [77–79]. This mecha-
nism does not exist in hard-sphere colloids [80].
Considering these facts, we suggest that using charged
colloids rather than hard-sphere colloids makes it more
convenient to compare with the previous literature on
atomic liquids with soft repulsive potentials [42,43,48–
50] and to reveal the role of the long-range interparticle
repulsion in the nonlinear rheology.
For flowing liquids, the average change of the local

configuration is reflected by the distortion of the pair
distribution function gðrÞ [66,75,81] defined as ρgðrÞ ¼
hPN

i¼2 δ½r − ðri − r1Þ�i, where ri is the position of particle i,
r denotes the displacement from the reference particle
located at r1, N is the particle number, ρ is the average
particle number density, and h� � �i denotes the thermal
average [82]. Inspired by the idea of local elasticity in
flowing glasses [21,25,36,83], we perform a systematic
investigation on the gðrÞ of sheared supercooled liquids
generated by BD simulations. The results suggest that the
elastic deformation and relaxation of the localized elastic
region (LER) compose the microscopic source of the
nonlinear rheology of the system. In response to the
external shear, such a region, which contains the first
several coordination shells of a reference particle, under-
goes solidlike deformation until its yielding. The length
scale of the region shrinks with the shear rate as _γ−ν, while
the characteristic strain of the region is enhanced by shear
as _γϵ. The exponents ϵ, ν, and λ in η ∼ _γ−λ are related by
λ ¼ 4ν ¼ 1 − ϵ. The relaxation of the localized elastic
region is mainly promoted by the large-step nonaffine
particle displacement along the extensional direction of
the shear geometry. The step length is about 0.4 particle
diameter. Such nonaffinity becomes more prominent
upon increasing the shear rate. We also performed rheo-
small-angle neutron scattering (rheo-SANS) [84–86]
experiments on concentrated charge-stabilized colloidal
suspensions under steady shear. The experimental result
proves that the local elasticity plays a dominant role
in the shear-thinning behavior. Moreover, we find
the clue of the shrinkage of the LER with shear rate.
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These observations are well consistent with the predictions
of our model.
The rest of the paper is organized as follows. In Sec. II,

we present a framework for analyzing the distorted gðrÞ.
An empirical kinetic equation is introduced. A spherical
harmonic expansion method is employed to extract the
most relevant information from gðrÞ. In Sec. III, we identify
the localized elastic region in sheared supercooled liquids
from the BD results. Relevant length scale and properties
are explored in Sec. III A, and the yielding of this transient
localized elasticity is discussed in Sec. III B. Section IV
provides the details and results of our rheo-SANS experi-
ments. Concluding remarks are included in Sec. V.

II. THEORETICAL FRAMEWORK

The Smoluchowski equation is a common point of
departure for the theoretical investigation on colloidal
dynamics [66,87,88], while in scattering and simulation
studies, empirical kinetic equations are widely employed to
analyze the shear-induced microstructural anisotropy
because of their simplicity [89–93]. For a liquid undergoing
shear flow with the stream velocity along the x direction,
the velocity gradient along the y direction, and the shear
rate _γ, the kinetic equation of the pair correlation gðr; tÞ can
be written as [90,91]

∂

∂t
gðr; tÞ þ _γy

∂

∂x
gðr; tÞ þ ΩðgÞ ¼ 0: ð1Þ

In Eq. (1), the second term represents the convective
distortion, and ΩðgÞ denotes the damping effect on this
distortion. Generally,ΩðgÞ depends on the Brownian effect,

particle distribution, and interparticle interaction. A typical
form of ΩðgÞ is given by ΩðgÞ ¼ −2D0∇ · f∇gðr; tÞ−
½∇ ln geqðrÞ�gðr; tÞg, where D0 is the Stokes-Einstein
self-diffusion coefficient and geqðrÞ is the pair distribution
function at zero shear. This choice of ΩðgÞ leads to the
Smoluchowski equation of pair correlation, which can be
obtained by integrating over unnecessary degrees of free-
dom in the N-body Smoluchowski equation and neglecting
hydrodynamic interaction [66]. In this work, a practical
ΩðgÞ is adopted. Considering that Ωðg ¼ geqÞ ¼ 0 at the
quiescent state, an acceptable form of ΩðgÞ for the fluid
under steady shear can be written as

ΩðgÞ ¼ τ−1ðrÞ½gðrÞ − geqðrÞ�; ð2Þ

where τðrÞ has a dimension of time.
Spherical harmonic expansion (SHE) is a frequently

used method for analyzing the anisotropy of particle
distribution in flowing fluids [29,36,91–94] and deformed
polymers [95–97]. This approach allows a convenient
extraction of the key information that bridges the micro-
scopic distortion and the rheological behavior according to
the deformation geometry [36,91,96]. Here, we perform the
SHE on gðrÞ, and the following expansion is found:

gðrÞ ¼
X∞
l¼0

Xl

m¼−l
gml ðrÞYm

l ðΩÞ; ð3Þ

where gml ðrÞ is the expansion coefficient and Ym
l ðΩ ¼ r=rÞ

is the tesseral (real basis) spherical harmonic function
defined as

Ym
l ðΩÞ ¼ Ym

l ðθ;ϕÞ ¼

8>>>>><
>>>>>:

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ ðl−jmjÞ!

ðlþjmjÞ!
q

Pjmj
l ðcos θÞ sin ðjmjϕÞ ðm < 0Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

P0
l ðcos θÞ ðm ¼ 0Þ;ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þ ðl−mÞ!
ðlþmÞ!

q
Pm
l ðcos θÞ cos ðmϕÞ ðm > 0Þ;

ð4Þ

where Pm
l ðxÞ is the associated Legendre polynomial, θ is

the polar angle from the positive z axis, and ϕ is the
azimuthal angle in the x–y plane from the positive x axis.
The feature of the expansion given in Eq. (3) is determined
by the shear geometry. Because of the symmetry of
gðr; θ;ϕÞ ¼ gðr; π − θ;ϕÞ and gðr; θ;ϕÞ ¼ gðr; θ;ϕþ πÞ,
only terms with even l and m survive. In addition, it is seen
that the pattern of Y−2

2 ðθ;ϕÞ (Y−2
2 ∝ sin2 θ sin 2ϕ ∝ x̂ ŷ) is

consistent with the shear geometry. Thus, g−22 ðrÞ should be
the most prominent anisotropic term [39,91,92]. As l
further increases, the pattern of Ym

l becomes more and
more complicated, and the magnitude of gml ðrÞ is expected
to progressively weaken.

ΩðgÞ can also be expressed by spherical harmonics.
Based on computer simulation results, Hess et al. suggest
that anisotropic terms with the same l correspond to similar
characteristic relaxation time [90–92]. Consequently, ΩðgÞ
is approximated as

ΩðgÞ ≈ τ−10 ðrÞ½g00ðrÞ − geqðrÞ�

þ
X
l¼2

τ−1l ðrÞ
Xl

m¼−l
gml ðrÞYm

l ðΩÞ: ð5Þ

Inserting Eq. (5) into Eq. (1) yields a group of coupled
equations for gml ðrÞ. To decouple these equations, one can
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expand them with respect to _γτl in the case of _γτl < 1 and
terminate the expansions at a certain order of _γτl. To the
first order of _γτl, one has

g−22 ðrÞ ¼ −
1ffiffiffiffiffi
15

p _γτ2ðrÞr
d
dr

g00ðrÞ: ð6Þ

To the second order of _γτl, one obtains the relations
involving g02, g

−2
2 , g04, and g44. Currently, we focus on the

first-order result. Equation (6) links the two most prominent
terms: the isotropic term g00ðrÞ and the leading anisotropic
term g−22 ðrÞ. It plays a central role in our following analysis.
By assuming τ2ðrÞ as a constant about r, equations similar
to Eq. (6) are widely used to quantify the shear-induced
microscopic anisotropy in atomic liquids [39,90,91,98] and
colloidal suspensions [93,99]. In principle, the functional
form of τ2ðrÞ depends on the shear rate, the concentration
of colloidal particle, and the interparticle interaction [100].
In the following parts, we show that the form of τ2ðrÞ is
closely related to the way of the response of the liquid to the
imposed shear.
Since we are going to explore the viscoelasticity of the

sheared liquids, it could be useful to review the microscopic
anisotropy induced by elastic deformation. For a solid that
undergoes an affine deformation with a small shear strain γ,
it is straightforward to find that, to the first order of γ,
g−22 ðrÞ is written as [101]

g−22 ðrÞ ≈ −
1ffiffiffiffiffi
15

p γr
d
dr

geqðrÞ

≈ −
1ffiffiffiffiffi
15

p γr
d
dr

g00ðrÞ: ð7Þ

This equation works very well for γ ≈ 0.1 or less. To the
first order of γ, geqðrÞ and g00ðrÞ in Eq. (7) can be replaced
by each other. Equations (6) and (7) have similar forms. It
will be seen that this similarity is reflected in the nonlinear
viscoelasticity of the sheared supercooled liquids.

III. SIMULATION

Computer simulation provides an opportunity for under-
standing the macroscopic properties of experimental inter-
est from the microscopic states of liquids [102]. In this
work, we perform three-dimensional BD simulations upon
20 000 particles under steady Couette flow. To suppress the
shear-induced crystalline ordering, a binary mixture of
particles, including Ns ¼ 4000 small particles and Nb ¼
16 000 big particles, is adopted [103]. The diameter ratio is
set to be ds=db ¼ 2=3. The equation of particle motion is
expressed as [30,102,104]

riðtþ ΔtÞ − riðtÞ ¼
D0

kBT
f iðtÞΔt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0Δt

p
GþH · riðtÞΔt; ð8Þ

where riðtÞ is the position of particle i at time t, Δt is
the simulation time step, D0 is the Stokes-Einstein self-
diffusion coefficient of particle, kB is the Boltzmann
constant, f iðtÞ is the deterministic nonhydrodynamic force
exerted on particle i caused by the interparticle potential,H
is the strain rate tensor, and G represents the random
Brownian displacement with each component an indepen-
dent Gaussian variable of zero mean and unit variance. The
sliding brick periodic boundary condition proposed by
Lees and Edward is applied in accordance with the Couette
flow geometry [105]. The effective interparticle potential of
charge-stabilized colloidal suspensions can be modeled by
the hard-sphere Yukawa potential [74,106]. The potential-
free algorithm [30,107] is employed to describe the hard
core in the potential. The Yukawa potential is used to
represent the electrostatic interaction and is written as [106]

VYðrÞ ¼ K
e−zðr−dijÞ

r=dij
; r ≥ dij ≡ ðdi þ djÞ=2; ð9Þ

wheredi is the diameter of particle i and the parameters z and
K are determined from our previous SANS data analysis
[108] and are given by z¼4.86=db and K¼9.69kBT,
respectively. The potential function is truncated at r ¼ 5db.
Simulations at different volume fractions of particle

ϕ ¼ 42.5%, 45%, 47.5% and various shear rates are carried
out. Adequate time steps are simulated to guarantee that
enough data are collected after the system approaches
steady state. In this section, the space and time are
measured in units of db and τ0 ¼ d2b=D0, respectively.
The dimensionless bare Péclet number Pe ¼ _γd2b=4D0

[109] is sometimes used to represent the shear rate _γ.
The long-time self-diffusion coefficient DLS at ϕ ¼ 42.5%
is found to be DLS ¼ 0.06D0, which is well below the
dynamical criterion for freezing of colloids [110], sug-
gesting that the system is in a supercooled state.
In concentrated charge-stabilized colloidal suspensions,

the major source of the shear viscosity comes from
the interparticle Yukawa potential [75] and is calculated
according to [102]

ηp ¼ −
1

V _γ

�XN
i¼1

ri;xfi;y

�
; ð10Þ

where V is the system volume and fi;y denotes the y
component of the Yukawa force exerted on particle i. The
results of ηp at different shear rates and volume fractions are
shown in Fig. 1(a). The partial shear viscosity ηpb, arising
from the pair Yukawa interaction between only the big
particles, is also shown in Fig. 1(b). For the studied binary
mixture, ηpb contributes to more than 80% of ηp, suggesting
that the distribution and interaction of big particles play the
dominant role in the nonlinear viscoelasticity of the system.
Both ηp and ηpb smoothly transform from the Newtonian
regime to shear thinning as shear rate increases. At large
shear rates, the shear-thinning behavior can be described by
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a power law η ∝ _γ−λ, as illustrated in Figs. 1(a) and 1(b). λ is
found to be about 0.7 for all shown volume fractions, which
are slightly smaller than that of a flowing hard-sphere-like
colloidal glass [9]. The pair distribution function of big
particles, denoted as gðrÞ, at ϕ ¼ 45% and Pe ¼ 0.75 is
displayed in Figs. 1(c) and 1(d). Figures 1(c) and 1(d) show
gðrÞ at the flow-gradient (v −∇v or x − y) plane and the
flow-vorticity (v−∇× v or x − z) plane, respectively. For all
conditions given in Fig. 1, we do not observe any significant
shear-induced long-range ordering at both planes. Layering
effect is found to become noticeable at Pe > 5. Whether this
ordering is necessary for shear thinning is in debate
[68,80,111,112]. From our simulation, it is seen that the
system is already in the η ∝ _γ−λ regime without the appear-
ance of significant layering. Therefore, the onset of shear
thinning should be attributed to some other mechanism.

A. Local elasticity

The remarkable shear-induced anisotropy shown in the
x–y plane [Fig. 1(c)] is mainly due to the nonzero g−22 ðrÞ.
Figures 2(a) and 2(b) show the g−22 ðrÞ of the ϕ ¼ 45%

system at Pe ¼ 0.002 and 0.75, respectively, in the
Newtonian regime and the shear-thinning regime. The
profiles of −ð1= ffiffiffiffiffi

15
p Þrdg00ðrÞ=dr at the same conditions

are also shown. According to Eq. (6), τ2ðrÞ connects these
two functions and, thus, is crucial for characterizing the
microstructural distortion. As shown in Figs. 2(a) and 2(b),
the characteristic variations of these two functions are
generally in phase. Therefore, we can depict the profile of
τ2ðrÞ by simply dividing g−22 ðrÞ by −ð1= ffiffiffiffiffi

15
p Þrdg00ðrÞ=dr

at each peak position. Some results of τ2ðrÞ are given in
Figs. 2(c) and 2(d). Figure 2(c) shows the τ2ðrÞ at
ϕ ¼ 45%, Pe ¼ 0.002 and ϕ ¼ 42.5%, Pe ¼ 0.005, both
of which are in the Newtonian regime. Figure 2(d) shows
the profiles of _γτ2ðrÞ of the ϕ ¼ 45% system at Pe ¼ 0.25,
0.75, 2.5, and 5, which are all in the shear-thinning regime
described by η ∝ _γ−λ.
Though our emphasis is the nonlinear rheology, it is

inspiring to have a glance at the Newtonian regime first.
Seen from Fig. 2(c), τ2ðrÞ at ϕ ¼ 42.5%, Pe ¼ 0.005
depends on r linearly. The profile of τ2ðrÞ at ϕ ¼ 45%,
Pe ¼ 0.002 also exhibits an increasing trend as r
increases, which can be roughly described by a linear
relation. We fit these two τ2ðrÞ by τ2ðrÞ ¼ τsðr=r1Þ þ τc,
where r1 is the position of the first positive peak of g−22 ðrÞ
and τs and τc are fitting parameters. Since r1 is close
to db, τ2ðr1Þ ¼ τs þ τc gives the characteristic time for
the relaxation of the anisotropy of the cage. For both
of these two cases, τ2ðr1Þ is close to the Maxwell
relaxation time. The linear behavior of τ2ðrÞ in the
Newtonian regime is similar to the observation in a
simulation study of equilibrium atomic liquids [113].
In that work, the authors find that the relaxation time
τvðrÞ of the van Hove correlation function increases
linearly with distance r [113]. It can be understood by
the argument that τvðrÞ should scale with the thermal-
activated particle number fluctuation ΔNðrÞ, which
behaves as ΔNðrÞ ∝ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρgðrÞp

according to the central
limit theorem [113]. At large r, gðrÞ → 1 and, conse-
quently, τvðrÞ ∝ ΔNðrÞ ∝ r. Such analogy suggests that
the shear-induced microscopic anisotropy in the
Newtonian regime is relaxed by the thermal fluctuation
of particles, which is as expected.
Figure 2(d) shows the profiles of _γτ2ðrÞ in the shear-

thinning regime. In contrast to the cases in the Newtonian
regime, here, τ2ðrÞ exhibits a plateau spanning several db.
We denote the range of this plateau by ξ. For r≲ ξ, _γτ2ðrÞ
can be approximated by a constant γ̄, and Eq. (6) reduces to
a form akin to Eq. (7) that describes the anisotropy induced
by small elastic deformation. To extract ξ and γ̄, we fit
_γτ2ðrÞ with the following equation:

γðrÞ ¼ _γτ2ðrÞ ¼
8<
:

γ̄; r ≤ g;

γ̄ exp

�
−
ðr − gÞ2
2a2

�
; r > g;

ð11Þ

where γ̄, g, and a are fitting parameters. ξ is then obtained
by ξ ¼ gþ ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

a. As the shear rate increases, the

FIG. 1. (a) Shear viscosity contributed by the interparticle
Yukawa potential (ηp). (b) Partial shear viscosity contributed
by the Yukawa interactions only between big particles (ηpb). Both
ηp and ηpb are normalized by the solvent viscosity ηsol. Solid lines
denote the fits with the power law Pe−λ in the shear-thinning
regime. (c) and (d), respectively, display the pair distribution
function of big particles, gðrÞ, at the flow-gradient (v −∇v or
x − y) plane and the flow-vorticity (v −∇ × v or x − z) plane at
the condition of ϕ ¼ 45% and Pe ¼ 0.75. The thickness is 0.8db
for both slices. No noticeable layering or crystallization is
seen here.
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plateau value γ̄ enhances, while its spatial range ξ shrinks.
Such a plateau has been observed in a simulation study of
sheared metallic glasses [36]. Because of its similarity to
Eq. (7), the authors of Ref. [36] identify the plateau as a
region of elastic response [36]: Within the spatial range of
this region, the local structure undergoes an elastic defor-
mation with an average strain given by γ̄ when the system is
under steady shear. This local solidlike response survives
only for a lifetime about 2γ̄=_γ and then is relaxed by flow.
We call this region the localized elastic region [114]. In this
picture, the major source of shear stress comes from the
elastic deformation of the LER:

_γηpb ≈G∞γNN; ð12Þ
where γNN is the strain of the nearest neighbors [γNN
equals the value of γðrÞ at the first shell] and G∞ is the
infinite shear modulus. In the preceding equation, we
choose γNN rather than γ̄ to calculate the particle-level
stress of the reference particle [115], because γNN gives a
better description on the local strain around the reference
particle. As for G∞, in the shear flow, it can be approxi-
mated by the angle-averaged modulus given by [39]

G∞ ¼ 2π

15
ρ2b

Z
½4r3V 0

YðrÞ þ r4V 00
YðrÞ�g00ðrÞdr; ð13Þ

where ρb is the number density of big particles. Figure 3
examines the validity of Eq. (12) by comparing the shear
stress σM ¼ _γηpb contributed by interparticle potential and
the microscopic elastic stress σel ¼ G∞γNN. For all points
shown in Fig. 3, σM equals about 85% of σel. We fit both
σMðPeÞ and σelðPeÞwith the power law σ ∝ Peϵ and find that
the exponents (ϵ) for σMðPeÞ and for σelðPeÞwell agree with
each other. The resemblance between σM and σel supports
the idea that the localized elasticity governs the rheology in
the shear-thinning regime. The difference between σM and
σel shows that such a simple elastic model overestimates the
stress, which should be attributed to the yielding and
rearrangement of the local structure induced by the non-
affine displacement of particles [116–118]. Note that G∞ is
not sensitive to the shear rate in our simulation. Suggested by
Eq. (12) and the results given in Fig. 3, γNN is expected to
depend on the shear rate by γNN ∝ _γϵ with ϵ ≈ 1 − λ.
Despite the good agreement shown in Fig. 3, the

existence and properties of the LER in sheared supercooled
liquids call for further investigations. Particularly, the
spatial range of the elastic response, ξ, should be quanti-
tatively related to the elastic properties of the sheared
liquid. In a series of papers, Dyre proposes the picture of
solidity to explain the viscous behavior of supercooled
liquids [119–122]. This scenario is based on the fact that, in

FIG. 2. (a) and (b) display g−22 ðrÞ as well as −ð1= ffiffiffiffiffi
15

p Þrdg00ðrÞ=dr of the ϕ ¼ 45% system at Pe ¼ 0.002 (Newtonian regime) and 0.75
(shear-thinning regime), respectively. The magnitude of −ð1= ffiffiffiffiffi

15
p Þrdg00ðrÞ=dr is rescaled to match that of g−22 ðrÞ in both (a) and (b).

(c) τ2ðrÞ at the conditions of ϕ ¼ 42.5%, Pe ¼ 0.005 and ϕ ¼ 45%, Pe ¼ 0.002 (Newtonian regime). Solid lines denote the linear fits.
(d) γðrÞ ¼ _γτ2ðrÞ of the ϕ ¼ 45% system at Pe ¼ 0.25, 0.75, 2.5, and 5 (shear-thinning regime). Solid lines denote the fitted curves
with Eq. (11).
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viscous liquids, most molecular motion is purely vibrational,
and flow events are relatively rare. Therefore, between two
successive flow events involving the same molecule, the
local dynamics is solidlike. This solidity happens onlywithin
the solidity length lsolid, which can be evaluated as follows
[120]. Set l0 the characteristic length scale of a flow event.
Within the range of lsolid, the number of possible locations for
flow events is aboutNf ≈ ðlsolid=l0Þ3. Denoting τ as the local
relaxation time, the average time between two flow events
within the solidity range is estimatedby τ=Nf ¼ τðl0=lsolidÞ3.
τ=Nf should be equal to lsolid=c to keep the solidity, where c
is the sound speed. Then, we have l4solid ¼ l30τc. Notice that
such spatially extended solidity does not exist in liquids at
high temperatures, in which the phonons are found to be
highly localized by computer simulations [123]. We directly
generalize this relation to the nonlinear regime of the sheared
supercooled liquids. Considering that the relaxation of local
configuration is mainly induced by external shear in the
nonlinear regime, the length scale of the LER ξ could be
estimated as

ξ ≈ l3=40

�
2γNN
_γ

�
1=4

c1=4T ; ð14Þ

where cT is the transverse sound speed. Assuming that l0 and
cT are not sensitive to _γ, Eq. (14) results in a power law of
ξ ∝ _γ−ν with ν ¼ λ=4. Figure 4 displays the power-law fit of
ξð_γÞ in the shear-thinning regime.
The above analysis shows that the three exponents in the

shear-thinning regime, λ in η ∝ _γ−λ, ϵ in γNN ∝ _γϵ, and ν in
ξ ∝ _γ−ν, are related by

λ ¼ 4ν ¼ 1 − ϵ: ð15Þ
Note that λ describes the macroscopic feature of shear
thinning, ϵ describes the amplitude of the shear-induced
microstructural distortion, and ν describes the spatial range
of the elastic response. Therefore, this relation connects the
bulk nonlinear rheology, the microscopic structure, and the
elastic properties of the system. Table 1 lists the values of λ,
ϵ, and ν of all simulated volume fractions. It is seen that
Eq. (15) works very well.
A fundamental difference between the shear-thinning

regime and the Newtonian regime lies in the way of local
structural rearrangement. In the shear-thinning regime, the
rearrangement of local configuration is driven by the
imposed shear, while in the Newtonian regime, the shear
rate is too slow to compete with the spontaneous relaxation.
In the latter case, the local structural relaxation is thermal
activated, and the relaxation time linearly depends on r.
Thus, though the solidity exists, one cannot identify an
extended-range zone within which the particles move in a
highly coherent way.
According to the above picture, the particle displacement

exhibits elastic coherency within r≲ ξ and becomes
uncorrelated at r≳ ξ. We can test this statement with the
correlation between the transient intensities of different

FIG. 3. The shear stress σM ¼ _γηpb (solid symbols) and the
microscopic elastic stress σel ¼ G∞γNN (open symbols) in the
shear-thinning regime. Lines denote the fits with the power law
σ ∝ Peϵ. The stress is in units of σ0 ¼ 4kBT=3πd3b. With this unit,
the stress can be expressed as σ=σ0 ¼ Pe · ðη=ηsolÞ.

FIG. 4. ξðPeÞ in the shear-thinning regime. Symbols denote the
simulated results. Lines denote the fitswith the power law ξ ∝ Pe−ν.

TABLE I. The values of λ, ϵ, and ν.

ϕ ν ϵ λ 4ν 1 − ϵ

47.5% 0.178 0.272 0.709 0.713 0.728
45% 0.170 0.329 0.680 0.681 0.671
42.5% 0.158 0.356 0.645 0.632 0.644
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peaks of g−22 ðrÞ. To perform this test, we define the transient
pair distribution function for particle j at time t by

gðr; j; tÞ ¼ 1

ρ

X
i≠j

δfr − ½riðtÞ − rjðtÞ�g: ð16Þ

Extracting its SHE coefficient with l ¼ 2 and m ¼ −2, we
obtain g−22 ðri; j; tÞ, the intensity of the ith peak of the
transient g−22 ðrÞ of particle j at time t [ri denotes the

position of the ith peak of g−22 ðrÞ]. To enhance the statistics,
we divide all 16 000 big particles into 50 groups according
to the ascending sequence of the value of g−22 ðr1; j; tÞ and
calculate the average value of g−22 ðri; j; tÞ for each group,
which is written as hg−22 ðri; tÞik for the kth group. Then, we
can evaluate the correlation between the transient intensity
of the first positive peak of g−22 ðrÞ and that of the peak at
r ¼ ri with the following function:

Cðr1; riÞ ¼
						
*

Ef½hg−22 ðr1; tÞik − g−22 ðr1Þ�½hg−22 ðri; tÞik − g−22 ðriÞ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½hg−22 ðr1; tÞi2k� − ½g−22 ðr1Þ�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½hg−22 ðri; tÞi2k� − ½g−22 ðriÞ�2

q
+

t

						; ð17Þ

where EðAÞ denotes the average of A over all groups and
is given by EðAÞ ¼ P

50
k¼1 Ak=50, and h� � �it means the

average about t. Figure 5(a) displays Cðr1; riÞ for the ϕ ¼
45% system at Pe ¼ 0.25, 0.75, 2.5, and 5. The behaviors
of Cðr1; riÞ can be summarized as follows: (i) Cðr1; riÞ
steadily decreases as ri increases and becomes negligible
as ri approaches ξ. This profile clearly reveals the
deformation heterogeneity within the LER. (ii) Similar
to ξ, the range of coherency shrinks with shear rate. We
define the coherency length ξc of Cðr1; rÞ by the value
of r at which Cðr1; rÞ decays to effective zero, and
compare ξc with ξ in Fig. 5(b). Linearly fitting all shown
points leads to a relation ξ ¼ 1.23ξc. The Pearson
correlation coefficient [124] between ξc and ξ is 0.98,
indicating a good linear correlation. The agreement
between ξc and ξ confirms the localization of the
elastic response. The fact that ξc is slightly smaller than
ξ can be understood by noticing that γðrÞ starts deviating
from γ̄ at r < ξ.
Summarizing the above results, we give the following

microscopic mechanism for the nonlinear rheology of
sheared supercooled liquids: In response to the imposed
shear, the particles within a limited spatial range,
which we term as the LER, undergo concerted elastic
deformation with a certain lifetime. The LER is the
structural unit that resists external shear, as suggested
by the agreement between the shear stress and the
average elastic stress sustained by the LER. The elastic
coherency of particle displacement decreases as the
distance from the reference particle increases and dis-
appears at the periphery of the LER. The deformation
and yielding of the LER are ubiquitous and persistently
successive in the flow. Note that it is important to
identify the mesoscopic structural unit that stores
and releases the elastic energy in viscoelastic materials
[83]. Thus, the LER is conceptually valuable for under-
standing the nonlinear viscoelasticity of supercooled
liquids.

FIG. 5. (a) Cðr1; riÞ as a function of ri for the ϕ ¼ 45% system
at Pe ¼ 0.25, 0.75, 2.5, and 5. In this case, Cðr1; riÞ becomes
statistically noisy at Cðr1; riÞ≲ 2%. Therefore, we set 2% as the
effective zero for Cðr1; riÞ. (b) Scatter plot of ξ and ξc for all
simulated points in the shear-thinning regime. The solid line
denotes the relation of ξ ¼ 1.23ξc.
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B. Local structural rearrangement

In Sec. III A, we establish the existence of the LER in the
shear-thinning regime. In this subsection, we are going to
explore the relaxation of the LER, which is another
fundamental aspect of the local viscoelasticity. We start
our discussion by comparing g−22 ðrÞ and−ðγ̄= ffiffiffiffiffi

15
p Þrdg00ðrÞ=

dr in detail. According to the analysis in Sec. III A, these
two functions are similar to each other to some extent,
which leads to the identification of the LER. However, in
principle, they should be different, because g−22 ðrÞ and
−ðγ̄= ffiffiffiffiffi

15
p Þrdg00ðrÞ=dr, respectively, represent the micro-

scopic distortion of a liquid and that of an elastic solid.
An important distinction is that the characteristic variations
of these two functions exhibit a phase difference. An
example is given in Fig. 6, where we denote the phase
difference at the first positive peak of g−22 ðrÞ as qðr1Þ. qðr1Þ
enhances as the shear rate increases, as shown in the inset in
Fig. 6. In addition, qðrÞ exhibits a descending trend as r
increases. The appearance of qðrÞ signifies the nonaffine
particle motions.
To visualize the yielding process of the LER, we plot

the difference [ΔgðrÞ] between the pair distribution func-
tion of a sheared liquid [gliqðrÞ] and that of an affinely
deformed system [gaffðrÞ] in the x–y plane in Fig. 7(a)
[ΔgðrÞ ¼ gliqðrÞ − gaffðrÞ]. The simulated gðrÞ of the ϕ ¼
45% system at Pe ¼ 0.75 is adopted as gliqðrÞ. gaffðrÞ is
obtained by affinely shearing the equilibrium structure of
the ϕ ¼ 45% system with the strain of 0.095, which is just
the average strain γ̄ of the LER at Pe ¼ 0.75 and ϕ ¼ 45%
[125]. Similar to qðrÞ, the nonzero ΔgðrÞ reflects the
deviation from the purely elastic deformation caused by
the nonaffine particle displacements. The two-dimensional

(2D) pattern ofΔgðrÞ in the x–y plane is shown in Fig. 7(a).
It exhibits variations at all azimuthal directions. The most
prominent variation is along the extensional axis, where
there is a basin at the first coordination shell (blue, marked
by an arrow) followed by a peak located between the first
and second coordination shells (yellow, marked by an
arrow). Notice that, on the extensional axis, ΔgðrÞ has the
same profile with g−22 ðrÞ − ½−ðγ̄= ffiffiffiffiffi

15
p Þrdg00ðrÞ=dr� up to

the first order of _γτ2 (their difference comes from the

FIG. 6. Comparison between −ðγ̄= ffiffiffiffiffi
15

p Þrdg00ðrÞ=dr and g−22 ðrÞ
at Pe ¼ 0.75 and ϕ ¼ 45%. The phase difference qðr1Þ at the first
peak is denoted. Inset: qðr1Þ as a function of Pe in the shear-
thinning regime of the ϕ ¼ 45% system.

FIG. 7. (a) The slice of ΔgðrÞ ¼ gliqðrÞ − gaffðrÞ in the x–y
plane. gliqðrÞ is given by the pair distribution function of the flow
at Pe ¼ 0.75 and ϕ ¼ 45%. gaffðrÞ is the pair distribution
function obtained by affinely shearing the equilibrium structure
of the ϕ ¼ 45% system with the strain of γ̄ ¼ 0.095. The
thickness of the slice is 0.8db. Two arrows denote the basin
and the peak on the extensional axis. (b) The profiles of ΔgðrÞ
along the extensional axis, ΔgextðrÞ, at Pe ¼ 0.25, 0.75, 2.5, and
5 for the ϕ ¼ 45% system. The first negative peak and the first
positive peak of ΔgextðrÞ, respectively, correspond to the basin
and peak denoted by arrows in (a). The distance between these
two peaks is about 0.4db.
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higher-order terms, such as g02, g
−2
2 , and g44). Therefore, the

existence of these two lobes corresponds to the nonzero
phase difference qðr1Þ. The profile of ΔgðrÞ along the
extensional axis, denoted as ΔgextðrÞ, is plotted in Fig. 7(b)
for the ϕ ¼ 45% system. Similar to qðrÞ, the magnitude of
ΔgextðrÞ increases as the shear rate increases in the shear-
thinning regime and decreases as r increases.
In many previous studies of quiescent atomic [126,127]

or colloidal [128] supercooled liquids, the cage rearrange-
ment is attributed to particle motions with irreversible large
displacements. In Refs. [126,127], Candelier et al. call such
particle motion the cage jump. A similar mechanism is also
proposed in flowing colloids [9,12]. The emergence of the
basins and peaks in ΔgðrÞ uncovers the nonaffine particle
displacement in the flow. The prominent oscillation of
ΔgðrÞ along the extensional axis suggests that the distortion
of the nearest shell is mainly relaxed by the large-step
nonaffine displacement from the basin to the peak denoted
by arrows in Fig. 7(a). The step length ls is given by the
distance between these two lobes. Seen from Fig. 7, ls is
about 0.4db. Figure 8 shows the values of ls for all
simulated points in the shear-thinning regime. ls exhibits
a decreasing dependence on shear rate, because the LER is
more sheared at higher shear rates, which shortens the
escape path of the particle. In addition, ls decreases as the
volume fraction increases, corresponding to the reduction
of the free space. To justify the ls obtained from ΔgðrÞ,
we calculate the length of the cage jump, lcj, by general-
izing the method proposed by Candelier et al. [126,127]
into the flowing state. The detail in finding lcj is given in
Appendix A. The results are compared with ls in Fig. 8 for
the ϕ ¼ 45% system. It is seen that ls and lcj, found from
independent methods, highly agree with each other. As the
distance from the reference particle r increases, such a
nonaffine jump becomes less significant, as indicated by

the fact that both ΔgextðrÞ and qðrÞ decrease as r increases.
Note that the oscillation of g00ðrÞ also decreases with r. The
weak radial ordering at large r mitigates the restriction on
the movement of particle. Consequently, the relaxation of
the shell can be realized more flexibly and become less
direction dependent.
As shown in Figs. 6 and 7(b), both qðrÞ andΔgextðrÞ grow

as the shear rate increases, suggesting that the nonaffine
particle motion enhances. To quantify the strength of the
nonaffinemotion,we calculate the following quantity for the
basin on the extensional axis:

p ¼ Nnaff

Naff
; ð18Þ

where Nnaff and Naff denote the particle number in certain
regions. Nnaff is the number of big particles which leave
the region of the basin through large-step nonaffine
displacements. To calculate Nnaff , we pick a region that
encompasses the basin [marked by red lines in Fig. 7(a)].
The volume of this region is denoted as vb. Then, Nnaff is
obtained by Nnaff ¼ jρ Rvb ΔgðrÞdrj. Naff is the number of
big particles in region vb in the case that nonaffine
displacement does not take place. It is given by Naff ¼
ρ
R
vb
gaffðrÞdr. p evaluates the probability that a particle in

vb undergoes a significant nonaffine displacement in a life
cycle of the LER. Figure 9(a) shows the values of p at all
simulated conditions.
With above results and considerations, we can estimate

the long-time nonaffine self-diffusivity of the big particle
Dnaff , which is defined by

Dnaff ¼ lim
δt→∞

hr̃2ðδtÞi
6δt

; ð19Þ

where r̃ðδtÞ is the nonaffine displacement of a particle
during a time interval δt [43]. In our picture, an LER
sequentially experiences elastic deformation, yielding, and
flow in its life cycle. The average time of the elastic
deformation process is given by τel ¼ 2γ̄=_γ. The yielding
and flow of LER are induced by large-step nonaffine
displacement of particles. Assuming that such movements
are realized by self-diffusion of the particle, we find that the
characteristic time of the yielding and flow, τnaff , is written
as τnaff ≈ l2s=6D0. Then, the life cycle of an LER is given by
τLER ≈ τel þ τnaff . During one τLER, some particles in the
first shell undergo nonaffine large-step jump, while others’
movements are restricted by their nearest neighbors. For the
latter particles, their nonaffine mean square displacements
hr̃2slowi can be estimated by the plateau value in the double-
logarithmic plot of hr̃2ðtÞi. Noticing these two kinds of
particle motion within one τLER, the nonaffine mean square
displacement of the particle in the first shell is estimated by
hr̃2LERi ≈ pl2s þ ð1 − pÞhr̃2slowi. Here, we use p defined in
Eq. (18) to approximate the probability that a particle in the

FIG. 8. The step lengths ls found from the slice of ΔgðrÞ in the
x–y plane for all simulated conditions in the shear-thinning
regime (solid symbols). The cage jump lengths lcj for the ϕ ¼
45% system (open symbols) are also shown for comparison.
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first shell undergoes the nonaffine large-step jump. In
principle, p evaluates the particle jump in the first and
third quadrants shown in Fig. 7(a), and the hr̃2LERi found in
this way is more suitable for characterizing the nonaffine
motion along the extensional direction. Nevertheless, we
can accept this rough approximation, because many pre-
vious studies suggest that the nonaffine mean square
displacement does not strongly depend on the direction
[9,30,43]. With hr̃2LERi and τLER, we find a nonaffine
diffusivity given by

DðLERÞ
naff ¼ hr̃2LERi

6τLER
: ð20Þ

We check the value of τLER for all simulated conditions. It is
found that, at δt ¼ τLER, hr̃2ðδtÞi almost attains the long-
time diffusion behavior. Figure 9(b) displays the scatter plot

of Dnaff and DðLERÞ
naff in the nonlinear regime. These two

quantities exhibit very good linear correlation, as indicated
by their Pearson correlation coefficient [124] ρ ¼ 0.998.
Performing a linear fit on the points shown in Fig. 9(b)

results in a relation Dnaff ¼ 1.26DðLERÞ
naff . The agreement

between DðLERÞ
naff and Dnaff is impressive, especially con-

sidering that they are obtained by different approaches.
Their numerical difference could be due to the overesti-
mation of τnaff . Here, we calculate τnaff with a diffusive
picture, while this process could be more ballistic [23].

C. Discussion

It is interesting to compare the LER with some existing
approaches resolving the nonlinear rheology of glass and
glass-forming liquids. In the study of nonlinear rheology of
glass, the key question is to figure out why and how an
amorphous solid flows. The typical experimental setup is
startup shear [8–10,23,25,26,28,29] (or startup extension
for metallic glasses; see Refs. [35,58]). From the micro-
scopic point of view, the concept of STZ is a natural choice
for explaining the yielding of amorphous solids. An STZ is
a liquidlike spot in the solid background, which plays as the
precursor of the bulk yielding and flow. For supercooled
liquids, flowing is not a problem, and the key question is
changed to why a liquid exhibits strong viscoelasticity, such
as strong shear thinning. Steady shear, rather than startup
shear, is the typical setup for the study of flow behaviors of
supercooled liquids [39–43,84,108,112]. The change of the
key question calls for a shift of consideration. One cannot
just focus on the “soft” regions within which particles
collectively undergo large nonaffine displacements, such as
the STZ or the cooperatively rearranging region that wewill
discuss in the next paragraph. The shift of consideration
leads to the concept of the LER. In contrast to STZ, an LER
is a solidlike spot in the liquid background. It provides
resistance to the imposed shear. Its deformation and
rearrangement are the microscopic source of the nonlinear
viscoelasticity of supercooled liquids. With the help of the
elastic model of supercooled liquids [119–122], the con-
nection between shear thinning and the evolution of the
LER is clearly established, as we show in Sec. III A.
Moreover, the LER picture offers a practical way to analyze
the distortion of gðrÞ by decomposing gðrÞ into a strong,
affine part gaffðrÞ and a smaller, nonaffine part ΔgðrÞ. By
analyzing ΔgðrÞ, one can evaluate the nonaffine particle
displacements hidden in the microscopic anisotropy, as we
present in Sec. III B. In many previous studies of glass
rheology [23,25,29,58], researchers adopt δgðrÞ, defined as
δgðrÞ ¼ gðrÞ − geqðrÞ, to represent the microscopic struc-
tural distortion. According to the LER picture, δgðrÞ
contains both the affine and nonaffine ingredients and,
thus, might bring ambiguity in its interpretation.
As mentioned in Sec. I, many studies of the nonlinear

rheology of supercooled liquids are based on the idea of
dynamical heterogeneity. For example, Yamamoto and

FIG. 9. (a) p as a function of Pe in the nonlinear regime.

(b) Scatter plot of Dnaff and DðLERÞ
naff . The solid line denotes the

relation Dnaff ¼ 1.26DðLERÞ
naff .
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Onuki find that the bond, defined as the connectivity
between two neighboring particles, breaks collectively in
the form of cluster in the shear-thinning regime of soft-
repulsive supercooled liquids [42,43]. Such a cluster of
bond breakage (CBB) is consistent with the celebrated
concept of cooperatively rearranging region put forth by
Adam and Gibbs [45]. As expected, the length scale of
CBB ξCBB grows as the quiescent system approaches the
glassy state. In sheared supercooled liquids, the dynamical
heterogeneity and its associated CBBs are significant in
the Newtonian regime. In the shear-thinning regime, the
CBB shrinks with shear rate by ξCBB ∼ _γ−0.5 in the three-
dimensional system [43]. Outside the CBB, most particles
still keep their connectivity with neighboring particles
and, thus, should move affinely in the flow. So, the LER
and CBB are the negative of each other to some extent.
Both the LER and CBB are temporary and fluctuating. It
is possible that, after the relaxation of an LER, the region
transforms to a CBB. It is inspiring to find that, in the
Newtonian regime, the dynamical heterogeneity is strong,
while the LER mechanism is not important. On the
contrary, in the nonlinear regime, LER mechanism is
dominant, while the dynamical heterogeneity is sup-
pressed. Therefore, it seems that the smooth transition
from the Newtonian regime to the nonlinear regime is
accompanied by the competition between the dynamical
heterogeneity effect and the LER mechanism. Our
research on this problem is under progress. It should be
pointed out that the concepts of CBB and LER are derived
from very different considerations. Thus, we cannot
expect them to exhibit the same dependences on shear
or the degree of supercooling.
The MCT-ITT (“ITT” is short for “integration through

transients”) approach [32,129], especially its schematic
form [130], highlights the caging effect in the nonlinear
rheology of deeply supercooled liquid and glass and works
well for concentrated hard-sphere-like microgel suspen-
sions [33,34]. The concept of cage elasticity is also
employed to discuss the rheological data of hard-sphere
glasses [21–25]. Indeed, the nearest neighbors contribute
most to the atomic-level stress [115] of the reference
particle. Nevertheless, as indicated by Eqs. (14) and
(15), by considering the elasticity that extends beyond
the spatial range of the cage, one establishes a straightfor-
ward connection between the elastic properties and the
nonlinear rheology of supercooled liquids.
Notice that there is no abrupt change in the structure

going from a supercooled liquid to a glass, at least at the
level of two-point correlation functions such as gðrÞ. From
the viewpoint of dynamics, both supercooled liquids and
glasses are featured by the significant limit on the diffusion
of particle, which results in the emergence of elasticity. In
the case that the flow is fast enough, the local structure are
relaxed mainly through the shear-driven process for both
systems. Considering these similarities, we suggest that the

concept of LER should also be applicable to the shear
thinning of glassy materials under steady homogeneous
flow, though it is introduced based on supercooled liquids.

IV. RHEO-SANS EXPERIMENT

As introduced in the beginning, confocal microscopy
serves as an invaluable tool for revealing the structure and
dynamics of colloidal glass at the particle level. However,
owing to the technical limit, its use in suspensions subject
to fast steady shear (e.g., _γ ≫ 1 s−1) or bulk fluids with
thickness larger than 1 mm could be restricted. On the
other hand, the neutron has the merit of strong penetrabil-
ity [131], which allows the thickness of the sample to
reach several millimeters. Moreover, neutron scattering
measures the average structure factor of the sample via
natural interference [131] and, therefore, is particularly
suitable for the study of the suspensions in steady state. In
the past two decades, the rheo-SANS technique has been
extensively adopted to study the nonlinear rheology
[54,68,69,108,132] and flow-induced ordering or melting
[133,134] of colloidal suspensions under steady shear. With
the above considerations, we use the rheo-SANS technique
with Couette geometry [84,86] to experimentally explore
the microscopic origin of the nonlinear viscoelasticity in the
supercooled colloidal suspension. In passing, rheo-small-
angle x-ray scattering is another state-of-the-art scattering
technique to investigate the nonlinear glassy rheology
[27–29], which provides better resolution than rheo-
SANS but is restricted by sample thickness.
The rheo-SANS experiment is performed at the D22

SANS beam line at the Institut Laue-Langevin. The
measurements of the x–y plane and the x–z plane are,
respectively, realized with a homemade flow cell and the
Anton Paar MCR 501 rheometer. The shear viscosity of the
suspension is measured during the rheo-SANS experiment.
Figure 10 illustrates the experiment and displays some
typical 2D SANS patterns in the two planes. We measure
the following two colloidal suspensions. Sample A is
composed of charged silica particles suspended in a solvent
consisting of a mixture of ethylene glycol and glycerol. The
volume fraction of the silica particle is about 40%. The
Kob-Andersen mixture of two kinds of silica particles
[103], with diameter of 120 and 80 nm in a number ratio of
4∶1, is used to avoid shear-induced crystallization. Sample
B is composed of charged silica particles suspended in
glycerol. The volume fraction of the silica particles is about
35%. The particles possess an average diameter D of
120 nm and a size polydispersity (σD=D, where σD is
the standard deviation of D) of 13%. The strong poly-
dispersity effectively prevents the sample from shear-
induced long-range ordering. For both samples, the proton
to deuterium ratio of the solvent is carefully adjusted to
avoid multiple neutron scattering [108].
For polydisperse colloidal suspensions, the SANS spec-

trum IðQÞ can be treated by the β approximation [135]
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IðQÞ ¼ npAPðQÞS0ðQÞ; ð21Þ

where Q is the scattering vector in scattering experiments,
np is the number density of colloids, A denotes the contrast
of the scattering length between solute particle and solvent,
PðQÞ is the average form factor normalized at zero
scattering angle, and S0ðQÞ is the apparent structure factor
given by S0ðQÞ ¼ 1þ βðQÞ½SðQÞ − 1�, where βðQÞ is the
polydispersity factor [135] and SðQÞ is the interparticle
structure factor [82]. For our silica particles, PðQÞ can be
well described by the spherical core-shell model [136]. For
sheared colloids, IðQÞ and SðQÞ are anisotropic and can be
expanded by spherical harmonics in the way similar to
Eq. (3). Then, we have

I00ðQÞ ¼ npAPðQÞf1þ βðQÞ½S00ðQÞ − 1�g; ð22Þ

I−22 ðQÞ ¼ npAPðQÞβðQÞS−22 ðQÞ; ð23Þ

where Iml ðQÞ and Sml ðQÞ are expansion coefficients corre-
sponding to Ym

l ðQ=QÞ. Experimental I00ðQÞ and I−22 ðQÞ,
which we denote as I00;expðQÞ and I−22;expðQÞ, respectively,
can be obtained from the measured 2D SANS patterns in
the x − y and x–z planes. The detail in extracting I00;expðQÞ
and I−22;expðQÞ is given in Appendix B. Note that the
measured spectra are smeared by the instrumental reso-
lution as

Iml;expðQÞ ¼ Iml ðQÞ ⊗ RðQÞ; ð24Þ

where RðQÞ is the instrumental resolution function and ⊗
denotes the convolution. Therefore, to obtain S00ðQÞ and
S−22 ðQÞ from I00;expðQÞ and I−22;expðQÞ with Eqs. (22) and
(23), one needs to first desmear the instrumental resolution
from the measured spectra and then eliminate the
influences of PðQÞ and βðQÞ. Taking sample A as an
example, Fig. 11 gives a typical procedure of finding S00ðQÞ

FIG. 10. (a) Illustration of the rheo-SANS experiment under Couette geometry. x, y, and z denote the directions of flow, velocity
gradient, and vorticity, respectively. (b) 2D SANS patterns obtained from the x–y plane and the x–z plane at _γ ¼ 1, 10, and 100 s−1 for
sample A. (c) 2D SANS patterns obtained from the x–y plane and the x–z plane at _γ ¼ 1, 10, and 100 s−1 for sample B. We do not see
long-range ordering in all measured 2D patterns. The sample thicknesses along the neutron beam are 5 and 2 mm for the x–y plane and
the x–z plane, respectively.
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and S−22 ðQÞ from experiments. As seen from Figs. 11(b)
and 11(f), microscopic anisotropy is noticeably enhanced
with shear.
The analyses shown in Secs. II and III are carried out in

real space, while the scattering experiment measures the
reciprocal space. SðQÞ and gðrÞ form a Fourier pair [82].
Their SHE coefficients are related by the spherical Bessel
transformation [101]

gml ðrÞ ¼
il

2π2np

Z
Sml ðQÞjlðQrÞQ2dQ; ð25Þ

Sml ðQÞ ¼ il4πnp

Z
gml ðrÞjlðQrÞr2dr; ð26Þ

where jlðxÞ is the l-order spherical Bessel function of the
first kind. In the Q space, the distortion for an affine shear
with a small strain γ is expressed as

S−22 ðQÞ ¼ γSisoðQÞ ¼ γffiffiffiffiffi
15

p Q
d
dQ

S00ðQÞ; ð27Þ

where

SisoðQÞ ¼ 1ffiffiffiffiffi
15

p Q
d
dQ

S00ðQÞ: ð28Þ

Equation (27) has a form similar to Eq. (7). According to
Eq. (27), we can find the average strain of LER γ̄ by
minimizing L ¼ P

j½S−22 ðQjÞ − γ̄SisoðQjÞ�2, where Qj

denotes the measured Q values. Nevertheless, as suggested
by Eq. (12) and Fig. 3, the microscopic stress is mainly
determined by the distortion of the cage γNN rather than γ̄.
Notice that many studies establish the correlation between
the cage configuration and the intensity and anisotropy of
the main peak of SðQÞ [27–29,82]. Therefore, γNN could be
quantitatively related to the first positive peaks of S−22 ðQÞ
and S00ðQÞ. We explore this possible relation with our
BD results. With Eq. (26), we calculate S−22 ðQÞ and S00ðQÞ
from the simulated gðrÞ and find that γNN can be nicely
estimated by

γNN ≈
A1p½S−22 ðQÞ�
A1p½SisoðQÞ� ; ð29Þ

where A1p½fðQÞ� denotes the area of the first positive peak
of fðQÞ. The results of γNN found from this empirical
approach for both samples are shown in Fig. 12(a). As
volume fraction increases, γNN is seen to decrease and
become less sensitive to shear rate. These observations are
consistent with our simulation results and the evolution of
the 2D anisotropic patterns shown in Figs. 10(b) and 10(c).
With γNN, we compute the microscopic shear viscosity

FIG. 11. Finding S00ðQÞ and S−22 ðQÞ for sample A from the rheo-SANS spectra. (a) and (b), respectively, show I00;expðQÞ and I−22;expðQÞ
at _γ ¼ 1, 10, and 100 s−1 extracted from the 2D SANS patterns through the method given in Appendix B. Experimental data are denoted
by symbols. Solid lines are calculated by convolving the I00ðQÞ and I−22 ðQÞ given in (c) and (d) with instrumental resolution function. (c)
and (d), respectively, show I00ðQÞ and I−22 ðQÞ obtained from I00;expðQÞ and I−22;expðQÞ by eliminating the resolution effect. (e) and (f),
respectively, show S00ðQÞ and S−22 ðQÞ obtained from I00ðQÞ and I−22 ðQÞ by eliminating the effects of PðQÞ and βðQÞ. For clarity, we
vertically shift the data shown in (a) and (c).
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ηLER ¼ G∞γNN=_γ, where G∞ is estimated by the storage
modulus G0 found in the small-angle oscillatory shear
measurement [108,137]. The results are displayed in
Figs. 12(b) and 12(c). We also show the macroscopic shear
viscosity ηM of both samples in Figs. 12(b) and 12(c). Here,
ηM is given by ηM ¼ ηtot − ηsolð1þ 2.5ϕÞ, where ηtot is the
total shear viscosity of sample measured by rheometer
and ηsol is the viscosity of solvent. ηM exhibits a power-
law dependence on _γ, suggesting that the flows are in
the nonlinear regime of glassy liquids. As seen from
Figs. 12(b) and 12(c), the agreement between ηLER and
ηM is remarkable. It confirms our prediction that localized
elasticity governs the shear thinning of supercooled and
glassy liquids.
With Eq. (25), we can calculate g00ðrÞ and g−22 ðrÞ from

S00ðQÞ and S−22 ðQÞ and use them to evaluate the spatial
range of the LER ξ. Figure 13(a) gives some examples of
g−22 ðrÞ of sample A. Here, we do not show the curves at
r < 2D (D ¼ 120 nm is the diameter of big particle in
sample A), because the results at small r are severely
deteriorated by the cutoff error in experimental S−22 ðQÞ

[138]. As expected, the amplitude of g−22 ðrÞ decays as r
increases. Such decay becomes more evident as the shear
rate increases, suggesting the shrinkage of the LER with
increasing shear rate. Figure 13(b) shows the results of ξ of
sample A. We fit the experimental ηMð_γÞ, γNNð_γÞ, and ξð_γÞ
of sample A with ηM ∝ _γ−λ, γNN ∝ _γϵ, and ξ ∝ _γ−ν, respec-
tively, as we do in Sec. III. The exponents are found to be
λ ¼ 0.728, ϵ ¼ 0.281, and ν ¼ 0.198. Therefore, we have
1 − ϵ ¼ 0.719 and 4ν ¼ 0.792. The values of λ, 1 − ϵ, and
4ν are reasonably close to each other.
Numerically, the shrinkage of the spatial range of g−22 ðrÞ

with shear rate is due to the broadening of the first positive
and the first negative peaks of S−22 ðQÞ. The values of ξ
found from experiment depend on the details in the
extraction of S−22 ðQÞ from I−22;expðQÞ. For example, in our
analysis, we use the Bessel function of the first kind to
describe the first positive peak of S−22 ðQÞ. By replacing it

FIG. 12. (a) Experimental γNN found through Eq. (29) for both
samples. (b) Comparison between the microscopic shear viscos-
ity ηLER and the macroscopic shear viscosity ηM for sample A.
(c) Comparison between ηLER and ηM for sample B.

FIG. 13. (a) Experimental g−22 ðrÞ of sample A at _γ ¼ 1, 10, and
100 s−1. The magnitude of g−22 ðrÞ is normalized by γNN. (b) The
range of LER ξ (symbols) of sample A estimated from exper-
imental g−22 ðrÞ. Here, we do not plot the result at _γ ¼ 1 s−1 since
its value is unreasonably large. The solid line denotes the fit with
the power law ξ ∝ _γ−ν, where ν is found to be 0.198.
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with a broader function, the values of experimental ξ can be
smaller. Nevertheless, we emphasize that the shrinkage of ξ
with shear rate does not depend on the specific strategy in
data analysis. In fact, the broadening of the first positive
peak of S−22 ðQÞ with shear rate can be directly observed
from the raw data.

V. CONCLUSION

In summary, we connect the shear thinning of colloidal
supercooled liquids to the transient elastic behavior in the
flow by introducing the concept of the localized elastic
region. The LER is the microscopic structural unit that
provides the resistance to the imposed shear. Upon increas-
ing the shear rate _γ, the size of the LER shrinks as _γ−ν,
while its characteristic strain increases as _γϵ. Three expo-
nents, ν, ϵ, and λ that describes the extent of shear thinning
by η ∼ _γ−λ, are related by λ ¼ 4ν ¼ 1 − ϵ. This equation,
which is a natural derivation of the LER picture, connects
the bulk nonlinear viscoelasticity to the microscopic
configurational distortion and elastic properties of the
system. The relaxation of the LER is mainly realized by
the large-step nonaffine particle displacement along the
extensional direction of the shear geometry. Such an effect
grows with shear rate, which contributes to the enhance-
ment of nonaffine diffusion as the shear rate increases.
These results offer a new perspective for understanding the
nonlinear rheology and viscoelasticity of glass-forming
liquids with long-range repulsive interactions.
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APPENDIX A: CAGE JUMP

In this part, we calculate the cage jump length lcj
following the method given by Candelier et al. [126,127].
First, it splits the trajectory of a particle SðtÞt∈½0;T� into two
sets of successive points, respectively denoted as S1 and S2,
at an arbitrary cut time tc. One can evaluate how well
separated these two sets of points are by

pðtcÞ ¼ ζðtcÞ½hd21ðt2Þit2∈S2hd22ðt1Þit1∈S1 �1=2; ðA1Þ

where ζðtcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tc=T × ð1 − tc=TÞ

p
and dkðtiÞ is the dis-

tance between the point at time ti and the center of mass of
the subset Sk. The average h� � �iSk is over the subset Sk. A

cage jump event is defined at tc ifpðtcÞ is maximal. Then, by
iteratively repeating this procedure for every subtrajectory
until pmaxðtcÞ is smaller than a threshold σ2c (σc is the cage
size), one separates the total trajectory into caging motions
connected by jumps. σ2c is determined as the crossover from
the plateau behavior to the long-time diffusive behavior in
the double-logarithmic plot of the particle mean square
displacement as a function of time. It is found to be 0.05d2b in
our case.
We apply this method on big particles at ϕ ¼ 45% and

_γ ¼ 0. lcj is found to be 0.418db. Figure 14(a) illustrates the
separation of the particle trajectory by cage jump.We verify
our analysis with the four-point correlation function [46], as
suggested by Candelier et al. [126,127]. For particle j, the
following function can be calculated:

FIG. 14. (a) Trajectory of a reference particle. The color of
trajectory changes at every jump. There are four segments shown
here. (b) Comparison between Qtða�; τ�Þ=hQtit and Ptðτ�Þ=
hPtit. The simulation condition here is ϕ ¼ 45% and _γ ¼ 0.
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Qj;tða; τÞ ¼ exp

�
−
jΔrjðt; tþ τÞj2

2a2

�
; ðA2Þ

where Δrjðt; tþ τÞ is the displacement of particle j
between t and tþ τ and a is a probing length scale.
With Qj;tða; τÞ, we calculate the four-point correlation
function χ4ða; τÞ:

χ4ða; τÞ ¼ N½hQ2
t ða; τÞi − hQtða; τÞi2�; ðA3Þ

where N is the particle number and Qtða; τÞ is defined as
Qtða; τÞ ¼

P
j Qj;tða; τÞ=N. χ4ða; τÞ reaches its maximum

at τ� and a�, indicating a dynamical heterogeneity. We
compute Qtða�; τ�Þ=hQtit and the relative percentage
Ptðτ�Þ=hPtit of particles that have not jumped between t
and tþ τ�. These two quantities are compared in
Fig. 14(b) and seen to match each other well. Note that
Qtða�; τ�Þ=hQtit measures the immobile particles. Thus,
the agreement between these two quantities supports our
analysis on the cage jump.
To find the cage jump length in the flowing state, we

adopt the nonaffine particle displacement r̃ðtÞ defined by
Yamamoto and Onuki [43] as the particle trajectory. The
results for the ϕ ¼ 45% system at Pe ¼ 0.25, 0.75, 2.5, and
5 are, respectively, 0.411, 0.402, 0.394, and 0.386 (db).
These values are slightly smaller than that in the zero shear
and decrease with shear rate, as expected.

APPENDIX B: FINDING I00; expðQÞ AND I − 22; expðQÞ
In this part, we give a description of finding I00;expðQÞ and

I−22;expðQÞ from the rheo-SANS experiment under the
Couette geometry. In following paragraphs, we drop the
subscript exp for shortness sake.
For anisotropic system, the SANS pattern can be

expanded by the real spherical harmonics

IðQÞ ¼
X∞
l¼0

Xl

m¼−l
Iml ðQÞYm

l

�
Q
Q

�
: ðB1Þ

The real spherical harmonics are mutually orthogonal in
three-dimensional space:

Z
dΩYm

l ðΩÞYm0
l0 ðΩÞ ¼ 4πδll0δmm0 : ðB2Þ

Because of the symmetry of Couette geometry, in Eq. (B1),
only terms with even l and m survive.
In experiment, we can access IðQÞ only in two planes.

Thus, to find Iml ðQÞ, Eq. (B1) needs to be simplified.
According to the analysis in Sec. II, terms with l ≥ 4 are of
higher orders of γ. In the case that γ is small, we can
tentatively simplify Eq. (B1) by ignoring these terms:

IðQÞ ≈ I00ðQÞY0
0

�
Q
Q

�
þ I−22 ðQÞY−2

2

�
Q
Q

�

þ I02ðQÞY0
2

�
Q
Q

�
þ I22ðQÞY2

2

�
Q
Q

�
: ðB3Þ

Notice that, in the nonlinear regime, S44ðQÞ can also be
significant. Therefore, the validity of above approximation
should be inspected. We do it in the end of this part.
From the measured pattern in the x–y plane [IðQ; θ ¼

π=2;ϕÞ], we can calculate the following quantities:

Ixy2;−2ðQÞ ¼ 1

2π

Z
2π

0

I

�
Q; θ ¼ π

2
;ϕ

�
Y−2
2

�
θ ¼ π

2
;ϕ

�
dϕ

¼ 1

2π

Z
2π

0

I

�
Q; θ ¼ π

2
;ϕ

� ffiffiffiffiffi
15

p

2
sin 2ϕdϕ; ðB4Þ

Ixy2;2ðQÞ ¼ 1

2π

Z
2π

0

I

�
Q; θ ¼ π

2
;ϕ

�
Y2
2

�
θ ¼ π

2
;ϕ

�
dϕ

¼ 1

2π

Z
2π

0

I

�
Q; θ ¼ π

2
;ϕ

� ffiffiffiffiffi
15

p

2
cos 2ϕdϕ: ðB5Þ

From the measured pattern in the x–z plane [IðQ; θ;
ϕ ¼ 0Þ], the following quantity can be found:

Ixz0;0ðQÞ ¼ 1

2

Z
π

0

IðQ; θ;ϕ ¼ 0ÞY0
0 sin θdθ

¼ 1

2

Z
π

0

IðQ; θ;ϕ ¼ 0Þ sin θdθ: ðB6Þ

Combining Eqs. (B2)–(B6), it is straightforward to show
that

Ixy2;−2ðQÞ ¼ 15

8
I−22 ðQÞ; ðB7Þ

Ixy2;2ðQÞ ¼ 15

8
I22ðQÞ; ðB8Þ

Ixz0;0ðQÞ ¼ I00ðQÞ þ
ffiffiffi
5

3

r
I22ðQÞ: ðB9Þ

Then, we have

I−22 ðQÞ ¼ 8

15
Ixy2;−2ðQÞ; ðB10Þ

I00ðQÞ ¼ Ixz0;0ðQÞ − 8

3
ffiffiffiffiffi
15

p Ixy2;2ðQÞ: ðB11Þ

With the preceding two equations, we can obtain I00ðQÞ and
I−22 ðQÞ from the rheo-SANS experiment.
We test the validity of the above approximation with our

BD results at ϕ ¼ 45%, Pe ¼ 0.75, which well locates in
the shear-thinning regime. We first generate the 2D cross
section of gðrÞ in the x − y and x–z planes with the
thickness of the plane to be 0.8db. Then, we calculate

LOCALIZED ELASTICITY GOVERNS THE NONLINEAR … PHYS. REV. X 12, 041006 (2022)

041006-17



g00ðrÞ and g−22 ðrÞ with the approximation given by
Eqs. (B10) and (B11):

g̃−22 ðrÞ ¼ 8

15
gxy2;−2ðrÞ; ðB12Þ

g̃00ðrÞ ¼ gxz0;0ðrÞ −
8

3
ffiffiffiffiffi
15

p gxy2;2ðrÞ; ðB13Þ

where the tilde denotes the approximated results. We
compare g̃−22 ðrÞ and g̃00ðrÞ with g−22 ðrÞ and g00ðrÞ in Fig. 15.
It is seen that the above approximation is acceptable. We
find that g̃22ðrÞ remarkably deviates from g22ðrÞ. Fortunately,
our analysis does not involve this term.
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