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A vison is an excitation of the Kitaev spin liquid which carries a Z2 gauge flux. While immobile in the
pure Kitaev model, it becomes a dynamical degree of freedom in the presence of perturbations. We study an
isolated vison in the isotropic Kitaev model perturbed by a small external magnetic field h, an off-diagonal
exchange interaction Γ, and a Heisenberg coupling J. In the ferromagnetic Kitaev model, the dressed vison
obtains a dispersion linear in Γ and h and a fully universal low-T mobility, μ ¼ 6ℏv2m=ðkBTÞ2, where vm is
the velocity of Majorana fermions. In contrast, in the antiferromagnetic (AFM) Kitaev model interference
effects suppress coherent propagation and an incoherent Majorana-assisted hopping leads to a
T-independent mobility. The motion of a single vison due to Heisenberg interactions is strongly
suppressed for both signs of the Kitaev coupling. Vison bands in AFM Kitaev models can be topological
and may lead to characteristic features in the thermal Hall effects in Kitaev materials. Furthermore, we
argue that vison diffusion leads to universal signatures in quench experiments.
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I. INTRODUCTION

Gauge theories are central to our understanding of high-
energy physics where they mediate interactions between
fundamental particles. While in the standard model the
existence of gauge symmetries is postulated, they “emerge”
naturally in the description of certain strongly correlated
solid-state systems. Such systems host fractional excita-
tions with exotic quantum numbers. In this context, one
of the best understood models is the honeycomb Kitaev
model which hosts a spin liquid in its ground state [1]. In
this two-dimensional model the magnetic spin fractional-
izes into Majorana fermions coupled to a static Z2 gauge
field. This allows us to map the problem to that of
noninteracting Majorana fermions making it an exactly
solvable model. In the Kitaev model, the primary excitation
of the gauge field is the vison which carries half a flux
quantum. Visons are ubiquitous in Z2 lattice gauge theories
and have been predicted in several systems [2–4] but have
eluded experimentalists to date. Besides their fundamental
importance in predicting signatures of Z2 spin liquids, they
are much sought after for topological quantum information
processing [1,5].
Within the Kitaev model, a vison is an immobile finite-

energy excitation, strongly interacting with the gapless

Majorana fermions via its flux. The vison should therefore
be viewed as a kind of “polaronic” excitation: a π flux
dressed by a cloud of Majorana fermions. Adding pertur-
bations to the Kitaev model will generically make the gauge
field a dynamical degree of freedom with mobile visons.
Remarkably, there are a number of materials which are

believed to be approximately described by the Kitaev
model. The past decade witnessed a surge of experimental
efforts to detect fractionalization in such Kitaev materials
[6–11]. Arguably, the most direct evidence so far for an
exotic spin liquid phase have been reports of an approx-
imately half-integer [12–15] quantized thermal Hall effect
(THE) in a magnetic field in α-RuCl3 expected to occur in
chiral spin liquids coupled to phonons [16,17]. Recently,
very strong oscillations of the longitudinal thermal con-
ductivity have been observed [18] and also attributed to
fermionic excitations of an exotic spin liquid phase. Direct
experimental signatures of visons, or—more generally—of
emergent dynamical gauge fields, are, however, still miss-
ing. From the theory side, new detection protocols exploit-
ing vison-Majorana interactions in the pure Kitaev limit
have been proposed in recent works. This includes local
probes like STM [19–22], interplay of disorder and
fractionalization [23,24], and spin transport [25].
In all real materials the presence of further spin inter-

actions beyond the Kitaev coupling [7,11,26,27] is
unavoidable. Such terms, if sufficiently strong, destroy
the spin liquid phase, often inducing magnetic ordering. In
this case the fractionalized quasiparticles cease to be the
most natural description of the model. Several numerical
and mean-field studies have investigated the phase diagram
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of the Kitaev model in the presence of other interactions
[7,28–34] and provided useful insights. One interesting
feature is, for example, that the ferromagnetic (FM) Kitaev
model turns out to be much more fragile toward perturba-
tions by either an off-diagonal symmetric exchange (Γ
term) [31,32,34] or a magnetic field [30,33]. The zero
temperature phase transitions triggered by vison-pair
(located on two adjacent plaquettes) dynamics have been
studied by Zhang and co-workers recently [35,36]. In a Z2

gauge theory, such vison pairs do not carry a net flux. The
question whether an isolated vison, which defines due to its
fractional flux a singular perturbation for the gapless
fermions, is a coherent particle with a well-defined mass
is a nontrivial question and is largely unexplored. In this
paper we provide a controlled calculation of the dynamics
of single visons in the limit where perturbations by non-
Kitaev terms are weak.

II. MODEL

We consider the isotropic honeycomb Kitaev model [1]
in the presence of small perturbations:

H ¼ HK þ ΔHh þ ΔHΓ þ ΔHJ; ð1Þ

HK ¼ K
X
hijiγ

σγiσ
γ
j: ð2Þ

In the pure Kitaev model HK , each site on the honeycomb
lattice connects to its three neighbors with different
components γ ¼ x, y, z of the spin. We mainly focus on
two types of perturbations, a magnetic field in the [111]
direction and an off-diagonal symmetric interaction, the
so-called Γ term:

ΔHh ¼ −h
X
i;α

ð1; 1; 1Þffiffiffi
3

p · σi; ð3Þ

ΔHΓ ¼ Γ
X

hijiγ ;α;β≠γ
ðσαi σβj þ σαi σ

β
j Þ: ð4Þ

Furthermore, we will also comment on the effects of
perturbations arising from an isotropic Heisenberg term,
ΔHJ ¼ J

P
hiji σi · σj.

The pure Kitaev model can be solved exactly [1] by
mapping each spin to four Majorana fermion operators
bx, by, bz, and c on each lattice site with σαi ¼ ibαi ci. The
Kitaev Hamiltonian becomes

H ¼ −K
X
hijiγ

iûγijcicj; ð5Þ

where the “link operators” ûij ¼ ibαi b
α
j commute with the

Hamiltonian, take eigenvalues�1, and are identified with a
Z2 gauge field. The honeycomb lattice splits into two

sublattices, A and B, and in the following we use a
convention where i ∈ A and j ∈ B. On each link we define
bond fermions χ [37] and in each unit cell matter fermions:

χhijiα ¼ bαi þ ibαj ; fi ¼ ci þ icj: ð6Þ

The gauge variable ûhijiα ¼ 2χ†hijiαχhijiα − 1 now becomes

the parity of the bond fermion.
This spin-Majorana mapping necessarily enlarges the

Hilbert space of the original spin model. The projection
operator P̂ is used to project out unphysical states:

P̂ ¼
Y
k

ð1þ D̂kÞ
2

; D̂k ¼ bxkb
y
kb

z
kck: ð7Þ

From the gauge theoretical perspective, P̂ induces a
summation over all Z2 gauge transformations.
Visons.—The physical degree of freedom encoded in

the Z2 gauge field is the flux of each hexagonal plaquette.
The plaquette operator Ŵp ¼ Q

⬡ σγiσ
γ
j ¼

Q
⬡ uij with

eigenvalues �1 commutes with HK . In the ground state
of HK , Wp ¼ 1 on all plaquettes describing a flux-free
state. A vison is the gauge excitation with lowest energy
obtained by setting one of the Ŵp ¼ −1, thus creating a π
flux. In systems with periodic boundary conditions (PBCs)
visons can only be created in pairs, but with open boundary
conditions (OBCs) a single vison is a well-defined exci-
tation [1] with a finite-energy cost Ev

0 ≈ 0.1535jKj.
Within the gauge theory description, one can describe a

vison by a string of flipped link variables uij ¼ −1. This
string extends to the boundary (OBC) or connects a pair of
visons (PBC). To handle this unphysical gauge string while
calculating gauge invariant quantities, we find it useful to
project thewave functions back to the physical Hilbert space:

jΦðRÞi ¼ P̂jGðRÞijMðGÞi: ð8Þ

Here R denotes the position of the vison, jGðRÞi is the wave
function describing thegauge sector (i.e., the bond fermions),
while jMðGÞi is the many-body wave function of the
Majorana fermions in a fixed gauge G. Importantly, P̂
projects the wave function onto the physical Hilbert space.
To avoid numerical problems related to dangling bonds

and spurious boundary modes, we do all of our calculations
with periodic boundary conditions, placing two visons at
maximal separation. Using exact diagonalization, we typ-
ically consider systems with linear dimensions up to 80
corresponding to 12.800 sites.

III. FM KITAEV

A. Linear perturbation theory

We now turn to the case with small perturbations
ΔH ¼ ΔHΓ;ΔHh. These terms obviously break the exact
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solubility of the pure Kitaev model as the plaquette
operators are no longer conserved. Thus the gauge field
becomes a dynamical degree of freedom, visons are created
and destroyed by quantum and thermal fluctuations,
and they become mobile. Importantly, the vison number
remains conserved modulo 2, and thus a single vison
cannot decay but remains a stable quasiparticle. To linear
order in the perturbations, the hopping rate of the vison can
be computed from

tab ¼ hΦ0ðRaÞjΔHjΦ0ðRbÞi: ð9Þ

The second vison in our system is kept at a fixed position,
while computing the hopping from vison position Rb to Ra.
The computation of this harmless-looking overlap, dis-
cussed in Appendix A, turns out to be nontrivial for three
reasons. First, it is important to use the projection operator
P̂ in Eq. (7) to be able to match different gauges. Second,
one has to calculate fermionic matrix elements involving
the overlap of two different many-particle Majorana states
and corresponding Bogoliubov vacua which can be done
using methods developed by Robledo [38,39]. Third, some
(but not all) of the matrix elements have strong finite
size effects probably related to the presence of a gapless
spectrum and quasilocalized states induced by the vison
[40,41]. For the ferromagnetic Kitaev model, K < 0,

the Γ term induces a next-nearest-neighbor hopping tΓ
of the vison (on the dual triangular lattice formed by the
plaquettes). Figure 1(a) shows that finite size effects are
almost absent, and we obtain

tΓ ≈ −1.495Γ: ð10Þ

In Fig. 1(c), the resulting band structure is shown. For
Γ > 0, there are 6 minima located on the lines connecting
the Γ andM points. For Γ < 0, the minima of the dispersion
are located the Γ, K, and K0 points. That the energy at the Γ
point is exactly the same as at the K and K0 points is an
artifact of our leading-order approximation which includes
only next-nearest-neighbor hopping.
An external magnetic field h in the (111) direction has

two effects: to linear order in h it induces a hopping of the
vison, to cubic order a gap of size 2κ ∝ ðh3=K2Þ is opened
[1] in the Majorana spectrum (here we assume Γ ¼ 0 [16]).
While this scaling suggests that one can simply ignore the
effects of κ to lowest-order perturbation theory, the pres-
ence of a Majorana zero mode attached to the vison for
κ ≠ 0 (or a quasibound state for κ ¼ 0) makes the analysis
more subtle and induces strong finite size effects.
In Fig. 1(b) we show the amplitude of magnetic-field-

induced vison hopping for three different directions (across
x, y, and z bonds) as a function of Majorana gap κ.

(a) (b)

(c) (d)

FIG. 1. (a) Vison hopping amplitudes for K ¼ −1 as a function of inverse system size, L ¼ 3kþ n, k ∈ N, n ¼ 0, 1, 2, for a
perturbation by a small Γ term (next-nearest-neighbor hopping, κ ¼ 0). (b) Vison hopping amplitude (magnitude) induced by a small
magnetic field h for K ¼ −1 as a function of Majorana mass gap κ. The magenta plot shows the hopping from a ground state to an
excited state of a nearest-neighbor site. Color code is green tζy, red t

ζ
z , where ζ ¼ h;Γ. Symbols are used to label different system sizes. In

panels (c) and (d) the corresponding vison dispersions are shown. (c) κ ¼ 0 and (d) κ ¼ 0.1.
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Besides the ground-state to ground-state hopping rates, it
turns out that in the small κ limit one has also to include the
hopping to an excited state (with energy EV þ 2κ, where EV
is the ground-state energy of the vison) for certain direc-
tions of hopping.
The results depend on the ratio of two length scales, the

distance between the two visons dV , and the extent of the
Majorana bound state attached to the vison, ξm ∼ vm=κ. For
dV ≫ ξm (corresponding to κ > 0.03jKj in Fig. 1), one can
ignore the hopping to the excited state and one obtains
a finite, directionally independent hopping rate of the
vison with almost no finite size effects and only a weak
dependence on κ. For example, for jκj ¼ 0.05jKj we find

th ≈ −0.6jhj: ð11Þ

Note that the hopping rate is independent of the sign of h.
In the opposite limit, dV ≲ ξm [small κ limit in Fig. 1(b)],

in contrast, we obtain very large finite size effects and the
hopping rates across the y bonds become different from
those across the x and z bonds of the Kitaev lattice. This is a
consequence of the presence of the second vison which
explicitly breaks the rotational symmetries. Furthermore,

in the small κ limit one cannot ignore the hopping thð2Þy to
excited states [magenta lines in Fig. 1(b)] across the y bond
which becomes much larger than the ground-state to
ground-state hopping thy (green line) for κ → 0. The case

κ ¼ 0 is special and highly singular (thy ¼ 0 and thð2Þy ≈
thx ≈ thz ). As detailed in Appendix A, in this case the relative
fermionic parity of the states appearing in Eq. (9) depends
in a nontrivial way on the position of the second vison.
Thus certain hopping processes are only allowed if an extra
matter Majorana mode is occupied.
This analysis shows that the very notion of a single

and independent vison excitation is not well defined in the
limit when the vison-vison distance dV is smaller than ξm.
In this case one cannot formulate a theory of a single vison
because the (quasi)bound Majorana state attached to one
vison interacts with neighboring visons.
In contrast, for dV ≫ ξm, one can treat a single vison as a

well-defined independent particle. Remarkably, our calcu-
lation shows that the situation is also different for the Γ
perturbation: in this case the single-vison hopping is with
high precision independent of the presence of the second
vison. Thus it is possible to formulate a theory of single
visons also in this case even for a gapless Majorana
spectrum (see also Sec. III B).
In Fig. 1(d) we show the vison dispersion for dV ≫ ξm

for a finite gap m in the Majorana spectrum. In the
ferromagnetic Kitaev model discussed here [and in contrast
to the antiferromagnetic (AFM) case discussed in Sec. IV],
the vison hopping rates can be chosen to be real. This
implies that none of the vison lattice plaquettes enclose a
nontrivial flux and the vison bands carry no Chern number.

B. Vison mobility

So far we have shown that a dressed vison obtains a finite
hopping amplitude linear in h and Γ at zero temperature. At
finite temperatures, thermally excited gapless Majoranas
will scatter from the vison, leading to friction and a finite
mobility of the vison. The mobility μ describes the finite
velocity v obtained by a vison in the presence of external
forces, hvi ¼ μF. Via the Einstein relation D ¼ μkBT, the
mobility is directly related to the diffusion constant of the
vison which characterizes its dynamics. Note that calcu-
lation of the mobility of a vison is qualitatively different
from the problem of the mobility of a vortex in a d-wave
superconductor where extra complications arise due to the
presence of Goldstone modes and the external magnetic
field [42–44]. Here, we consider the effect of the Γ
perturbation for K < 0 and comment on the applicability
of our results for other situations below.
We consider the limit, where the temperature T is smaller

than the vison gap (so that the density of visons is small).
In this regime, we can describe the Majorana modes
by a Dirac equation with velocity vm. The scattering
cross section of 2D Dirac electrons from a π flux is well
known [45,46] (see also Appendix B) and given by
ðdσ=dθÞ ¼ ½1=2πksin2ðθ=2Þ�. Furthermore, we can use
that the momentum transfer Δp ∼ T=vm during a scattering
process is small compared to the typical vison momentum
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
T=Wv

p
=a, whereWv ¼ 9jtΓj is the vison bandwidth and

a the lattice constant. As shown in Appendix C, this allows
us to rewrite [47] the singular Boltzmann scattering kernel
into a nonsingular drift-diffusion equation in momentum
space describing Brownian motion:

∂tfp þ vvp · F
df0

dEv
p
≈Dp

�
∇2

pfp þ
1

T
∇pðvvpfpÞ

�
; ð12Þ

where fp is the vison distribution function, vvp ¼ dEv
p=dp

is the vison velocity, and Dp ¼ 6T3=v2m is the diffusion
constant in momentum space; see Appendix C. The
asymptotic behavior of the mobility can then be calculated
analytically:

μðTÞ ¼ DðTÞ
T

¼
8<
:

18t2Γv
2
m

T4 for K ≫ T ≫ Wv

6v2m
T2 for T ≪ Wv:

ð13Þ

Remarkably, the low-temperature mobility μðTÞ and there-
fore also the vison diffusion constant DðTÞ are fully
universal and completely independent of the vison
dispersion, which follows from the scale invariance of
the problem and the universal scattering cross section.
Similar results (with different prefactors) exist for the
problem of a vortex in a d-wave superconductor [44]. In
Fig. 2 we show the mobility as a function of T for different
values of Γ.
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Above we only considered the effect of a small Γ term
forK < 0. However, the same universal low-T mobility and
the same T dependence at larger T is expected for arbitrary
vison bands as long as (i) the vison bandwidth is small
compared to the Majorana bandwidth, (ii) their dispersion
is quadratic at the bottom of the band, and (iii) the Majorana
dispersion can be described by a Dirac equation. Thus, in
the case of magnetic field, the formula for the mobility is
only valid for temperatures large compared to the field-
induced gap in the Majorana spectrum.

IV. AFM KITAEV

A. First-order perturbation theory

When evaluating the vison hopping rate, Eq. (9), for a
antiferromagnetic Kitaev coupling, K > 0, we obtain the
remarkable result that it vanishes exactly for both h and Γ
perturbations in the limit of vanishing Majorana mass
gap κ. To understand the origin of this effect, it is useful
to realize that a single-vison hopping process arises
from the interference of two contributions, tab¼A1þA2,
due to two different terms in the Hamiltonian ΔH1 and
ΔH2. For example, for the z link shown in Fig. 3, ΔH1 ¼
Γσxi σ

y
j [or ΔH1 ¼ ðh= ffiffiffi

3
p Þσzi ] while ΔH2 ¼ Γσyi σxj [or

ΔH2 ¼ ðh= ffiffiffi
3

p Þσzj]. Importantly, these two terms are
related by a reflection symmetry (dashed lines in Fig. 3),
which ensures that A1 ¼ �A2. To fix the sign, we observe
that hΔH1ΔH2i ¼ hσziσzji is negative in the AFM Kitaev
model while it is positive in the FM Kitaev model. This
strongly suggests that A1 ¼ −A2 in the AFM phase as we
confirmed numerically by direct evaluation of Eq. (9): a
destructive interference eliminates the leading vison hop-
ping process:

lim
κ→0

th ¼ lim
κ→0

tΓ ¼ 0: ð14Þ

This effect is reminiscent of the “Aharonov-Bohm caging”
describing the localization by destructive interference
which is often induced in models with π fluxes and
nearest-neighbor hopping only [48,49]. Note that longer-
range hopping arising to quadratic orders in h or Γmay still
be possible in our system.
In the presence of an external (111) field, however, it is

important [50] to take into account that h also opens a gap
2κ in the Majorana sector with κ ¼ h3=K2 for Γ ¼ 0 [1].
Note that κ ∝ h when both Heisenberg and Γ perturbations
are present [16]. Importantly, κ breaks the mirror sym-
metries which led to the destructive interference of vison
hopping paths discussed above. Thus, in the presence of κ,
both the field-induced hopping rate th and the Γ-induced
rate tΓ become finite. In Fig. 4, we plot these hopping
amplitudes as a function of mass κ for different vison
separations (dv ¼ L=2). In Fig. 4(a) we can see similar
finite size effect as in the FM model (Fig. 1) where the
second vison breaks the rotation symmetry in the small
mass limit. For dV ≫ ξ, finite size effects are, however,
absent. For κ ¼ 0.05, for example, we find

jthj ≈ 0.07jhj: ð15Þ

Our numerical data are roughly consistent with

jthj ≈ 0.32jhj
ffiffiffiffiffiffiffiffiffiffiffi
jκ=Kj

p
ð16Þ

in the regime dV ≳ ξ, but a reliable extraction of the power
law in κ is not possible from our data.
We also determine the phase acquired by the vison around

a triangular plaquette, by calculating arg ½hR1jΔHhjR3i×
hR3jΔHhjR2ihR2jΔHhjR1i� ¼ −sgnðhÞðπ=2Þ for three
vison sites ordered anticlockwise around a honeycomb site.
Thus each triangular vison plaquette (i.e., each site of the
original honeycomb lattice) carries a flux of −π=2 for h > 0
[ðπ=2Þ for h < 0]. Reference [51] found a flux of π for a
vison transported around a unit cell of the honeycomb lattice,
consistent with our calculation. This leads to a doubling of

FIG. 2. Vison mobility μ=ð6v2m=T2Þ in the ferromagnetic Kitaev
model perturbed by a Γ term. μ is normalized to its low-T
asymptotics and plotted as a function of T=jΓj for both Γ > 0 and
Γ < 0. Deviations from the universal low-T mobility are more
pronounced for Γ < 0 at low T due to flat regions in the band
structure close to the band minimum; see Fig. 1. The dashed lines
indicate the low-T and high-T asymptotics; see Eq. (13).

(a) (b)

FIG. 3. Vison hopping processes induced by (a) ΔHΓ and
(b) ΔHh. The brown disks represent the visons (positions Ra and
Rb) and the black curves show different trajectories that interfere
constructively (destructively) for FM (AFM) Kitaev interaction.
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the unit cell (containing two triangular plaquettes each) and
results in two vison bands in a reduced Brillouin zone [see
Fig. 4(c)], with nontrivial topology characterized by Chern
numbers �1. This leads to a remarkable prediction that not
only the matter Majoranas but mobile visons can also
contribute to thermal Hall effect discussed below.
If an external magnetic field induces a finite mass term κ,

the interference effect which suppressed Γ-induced hop-
ping is also affected. In Fig. 4(b) we show that the
Γ-induced hopping is linear in κ in this case:

jtΓj ≈ 0.2Γ
jκj
K

: ð17Þ

Within our perturbative approach it is unlikely that this term
dominates: for small h and thus small κ, higher-order terms
in Γ, tΓ ∼ Γ2 will dominate, while for larger h, one reaches
the regime where jthj > jtΓj.

B. Majorana-assisted hopping

The perfect destructive interference, which prohibits
vison motion linear in ΔH in the AFM case, is disturbed
when the vison scatters from thermally excited Majorana
fermions. Thus at T > 0 there will be a Majorana-assisted
incoherent hopping process with rate W. As ΔH is small,
we can use Fermi’s golden rule to compute the hopping rate
W for a vison moving from site Ra to Rb. The fact that
the presence of the vison strongly disturbs the Majorana
fermions makes this a nonstandard calculation. We can use,
however, that for T ≪ K the Majorana density is low and
the calculation can be done in a continuum model describ-
ing the vison by a pointlike π flux; see Appendix D for
details:

W ¼ 2π
X
k;k0;l;l0

jhk0; l0; RbjΔHjk; l; Raij2nðϵkÞδðϵk − ϵk0 Þ:

ð18Þ

Here l, l0 are the angular momentum quantum numbers of
the scattering wave functions, nðϵkÞ is the Fermi function,

and ϵk ¼ vmk the dispersion of low-energy Majoranas.
The hopping rate W induces a random walk on the vison
lattice, from which the diffusion constant D and thus (via
Einstein’s relation) the mobility can be obtained. W and
thusD are linear in T, see Appendix C; therefore, we obtain
a T-independent mobility,

μðTÞ ¼ DðTÞ
T

∼

8<
:

Γ2a4

v2m
for K ≫ T ≫

ffiffiffiffiffiffiffi
ΓK

p

h2a4

v2m
for K ≫ T ≫

ffiffiffiffiffiffiffi
hK

p
;

ð19Þ

for perturbations by Γ and h, respectively. The formula is
valid only for rather high temperatures, because at lower T
coherent second-order (longer-range) hopping processes set

in, giving rise to a bandwidth of order Wð2Þ
v ∼ Γ2=K; h2=K.

In the low-temperature regime, one can simply replace Wv

and tΓ by Wð2Þ
v in Eq. (13) to obtain an estimate for the

mobility.
The T-independent mobility of Eq. (19) is reminiscent of

Ohmic friction, but its physical origin (assisted hopping) is
very different compared to, e.g., Landau damping.

V. HEISENBERG INTERACTION

Finally, we briefly discuss the effects of a small
perturbation by a Heisenberg term, ΔHJ ¼ J

P
ij σiσj.

Applying ΔHJ to a single vison creates a state with three
or five visons. Thus there is no vison hopping linear in J.
While we have not performed a complete calculation to
order J2, we argue in Appendix E that single-vison hopping
processes at order J2 cancel by an interference effect very
similar to the one discussed above for K > 0. An important
difference is, however, that this destructive interference
occurs for both signs of K. This suggests that coherent
vison hopping induced by J may occur only to order J4. In
contrast, a bound vison pair (b fermions) can hop already to
linear order in J, as recently shown by Zhang et al. [35].
For single-vison hopping, however, we expect that Γ is
much more important than J.

FIG. 4. AFM Kitaev model. Vison hopping amplitudes for K ¼ 1 as a function of Majorana gap κ for a perturbation by (a) a small
magnetic field h and (b) Γ term, for different system sizes. The phases of the hoppings are such that every triangular plaquette of the
vison lattice carries a flux of −π=2 for h > 0. In panel (c) the resulting vison bands with Chern number �1 are plotted
(for txΓ ¼ tyΓ ¼ tzΓ ¼ 0).
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VI. EXPERIMENTAL SIGNATURES
OF MOBILE VISONS

The motion of visons is expected to affect practically all
physical properties and observables of Kitaev materials. In
most spectral probes, however, it will simply lead to an
extra broadening of spectra. On a more qualitative level,
vison motion breaks the integrability of the system
and allows it to thermalize. Consider, for example, the
transition from a state with a finite density of single visons
(e.g., after heating the system with a laser) to a state with
zero (or much lower) vison density. Without vison motion
such a system cannot equilibrate and thus the vison
motion is expected to be the bottleneck for equilibration.
For vison distances large compared to the vison-Majorana
scattering length, the motion of visons is diffusive and
thus the timescale τVV for two visons to meet is set by
τVV ∼ Δ2

V=D ¼ 1=ðDnVÞ, where D is the vison diffusion
constant, ΔV is a typical vison-vison distance, and nV is
the vison density. Thus, the vison-vison annihilation is
expected to obey the equation

∂tnV ¼ −αDn2V; ð20Þ

where α is the (dimensionless) probability that two visons,
which meet, annihilate each other. We have checked the
validity of this phenomenological equation for a simple two-
dimensional random walk toy model of diffusing particles
which annihilate when they meet. This equation is solved by
nVðtÞ ¼ ½n0=ð1þ αDn0tÞ�. Thus for timescales large com-
pared to the initial vison-vison annihilation time, one obtains
the remarkably simple and universal result

nVðtÞ ≈
1

αDt
for t ≫

1

αDnVðt ¼ 0Þ : ð21Þ

We thus expect that a characteristic 1=t tail will show up in
pump-probe experiments at low temperatures, with a pre-
factor governed by the diffusion constants of Eq. (13) with
D ¼ 6ℏv2m=kBT in the low-T regime. Any physical observ-
able that is sensitive to the density of visons will therefore
exhibit such 1=t longtime behavior. For example, in the
ferromagnetic Kitaev model in the presence of an external
magnetic field, a vison at the band minimum has a kinetic
energy of 6th and thus carries according to Eq. (11) the
magnetization 6ℏðdth=dhÞ ≈ 3.6ℏ, oriented parallel to the
external magnetic field. Therefore, the total magnetization
(measurable, e.g., by a Kerr rotation after a quench) obtains a
correction linear in nV . Note that 1=t longtime tails (typically
with very small prefactors) also exist in two-dimensional
systems with conservation laws [52], but here the vison
density is not conserved (and energy can be transported
from layer to layer by phonons in 3D experimental systems
like α-RuCl3).
A striking result is the emergence of vison bands with

finite Chern numbers in the antiferromagnetic Kitaev

model. This will lead to an extra contribution to the thermal
Hall effect. Note that any vison contribution to the THE
should come on top of the half-quantized Majorana Hall
effect. Therefore, the behavior of the Hall signal predicted
for a pure Kitaev model will be qualitatively modified when
visons are thermally excited at finite temperatures. Here an
important factor is the relative sign of the Majorana Hall
effect and the vison Hall effect. In principle, these are
independent parameters. We find that this vison hopping
amplitude is not affected by the sign of the Majorana mass
gap κ. Within our perturbation theory linear in h, we find
that the sign of the Chern number of the lowest vison band
is determined by the flux enclosed when the vison hops
along a triangular loop using hopping processes triggered
by hx, hy, and hz. This results in the Chern number CV ¼
−sgnðhxhyhzÞ for the lowest vison band. This has to be
compared to the Chern number of the Majorana band
[1,14], Cm ¼ sgnðκÞ, which leads to Cm ¼ sgnðhxhyhzÞ for
a Kitaev model perturbed by h ¼ ðhx; hy; hzÞ only [1].
As the signs are opposite, the Hall effects of Majorana
fermions and visons are subtractive.
We find that if the Majorana gap κ solely arises at cubic

order in the magnetic field i.e., κ ∝ h3, then the lowest
vison band has the Chern number −1—opposite sign as
that of the lowest Majorana band. As shown in Fig. 5(a),
the situation changes when one adds the effect of tΓ.
Depending on the sign and size of tΓ, the Chern number of
the lowest vison band takes the values 3, −1, or −3.
Remarkably, the vison band gets a large Chern number þ3
when tΓ=th < −1.
Experimentally, one can expect either a characteristic dip

or a peak in the Hall signal depending on whether the Chern
number of the lowest vison band is negative or positive,
as shown schematically in Fig. 5.
In α-RuCl3 a characteristic peak above a half-integer

quantized plateau has been observed in the thermal Hall
effect [12,14]. This suggests that the system hosts addi-
tional chiral excitations on top of the Majorana fermions.
As the amplitude of the peak is very large, almost twice the
plateau value, the experimental result is consistent with the
presence of a gapped excitation with a Chern number larger
than 1. It is tempting to associate this feature with a vison
Hall effect, but this would require the spin liquid state to
have the same projective symmetry group as the antiferro-
magnetic Kitaev model in an external field [51]. While it
has been suggested early on [53] that α-RuCl3 has an
antiferromagnetic Kitaev coupling, experimental evidence
is in favor of a ferromagnetic Kitaev coupling; see,
e.g., Ref. [54].
Above, we considered a magnetic field in (111) direc-

tion, perpendicular to the plane. When the field is rotated,
the sign of the Hall effect (for both the plateau and the peak)
in α-RuCl3 is approximately given by sgnðhxhyhzÞ [14].
This is consistent with theory as the Majorana mass κ (and
thus the Majorana Hall effect) is proportional to hxhyhz [1]
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in the h field-perturbed Kitaev model. The Chern number
of the vison band arising from th only is determined by the
sign of the flux enclosed by a vison hopping on a triangle
which is also determined by the product hxhyhz. As,
furthermore, tΓ → t�Γ for κ → −κ, we find that the sign
of the Chern number of the vison band jumps within our
approximations simultaneously with the sign of the
Majorana Chern number.

VII. DISCUSSION

Depending on temperature and the sign of the Kitaev
coupling K, we find that a vison can behave either as a
coherent quasiparticle with very large mobility or as an
incoherent excitation with a small mobility. For antiferro-
magnetic Kitaev coupling interference effects eliminate all
leading-order vison-tunneling processes. This immediately
explains why the antiferromagnetic Kitaev model is much
more robust against perturbations by Γ or h than its
ferromagnetic counterpart. In the ferromagnetic case the
vison gap shrinks for increasing vison hopping, thus
triggering a phase transition when the vison gap closes;
see Appendix G for a more detailed analysis and a
quantitative comparison to existing numerical studies.
Our theory provides a controlled calculation in the limit

of weak perturbations to Kitaev models. As such it cannot
be directly applied to materials like α-RuCl3 where at zero
magnetic field these perturbations induce magnetic order,
thus destroying the spin liquid state. The observation of a
half-integer quantized thermal Hall effect in this material
[12–15] at a field of about 10 T, however, suggests that
this field-induced phase is adiabatically connected to the
physics of a ferromagnetic [11,55–58] Kitaev model
weakly perturbed by a magnetic field. Thus it is highly
plausible that this phase also hosts a dynamical gauge field.

The fact that the quantized Hall effect has been seen only in
few samples [13,59], however, complicates the experimen-
tal interpretation. The presence of vison bands with non-
trivial topology can also show up in the thermal Hall effect
measurements. We showed that the presence of a Γ and
a (111) magnetic field perturbation can give rise to vison
bands with both positive and negative (�3;−1) Chern
numbers, depending on their relative strength and sign.
This in turn could lead to a characteristic peak or a dip on
top of the half-quantized Majorana Hall plateau; see Fig. 5.
In parallel to our study, the vison Chern bands were also
studied by Chen and Villadiego [50] using an exact
fermion-flux lattice duality.
Arguably, one of the most promising routes to detect the

dynamics of visons is to study the equilibration dynamics
of a perturbed Kitaev spin liquid. Vison diffusion is essen-
tial for equilibration and at low temperatures it is governed
by a fully universal diffusion constant D ¼ ð6ℏv2m=kBTÞ.
We therefore suggest to search for signatures of vison
dynamics in the longtime tails of pump-probe experiments
[60]. Although the currently leading Kitaev material
candidates are likely to have FM Kitaev couplings, recent
studies have reported that AFM Kitaev interactions can
emerge in certain materials [61,62]. Detection of vison
thermal Hall effects in such materials may also be a
promising experimental direction.
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conductivity of an AFM Kitaev spin liquid with both matter Majorana and vison contributions. Different curves are obtained for lowest
Majorana band having Chern number þ1 and lowest vison band with Chern number ðþ3;−1;−3Þ as marked in (a). We assume that the
vison bands lie within a large Majorana gap κ. The curves in (b) are calculated with the following parameters: (i) E0

v ¼ 0.6K, κ ¼ 0.25K,
th ¼ 0.05K, tΓ ¼ −0.08K, (ii) E0

v ¼ 0.6K, κ ¼ 0.25K, th ¼ 0.1K, tΓ ¼ 0.05K, (iii) E0
v ¼ 0.6K, κ ¼ 0.25K, th ¼ 0.05K, tΓ ¼ 0.07K.

Inset: experimentally obtained κxy for α-RuCl3 (reproduced from Ref. [14]). The material, however, likely has a ferromagnetic Kitaev
coupling.
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APPENDIX A: MATRIX ELEMENT
CALCULATION

In this appendix, we describe the Pfaffian method [38] for
calculating hopping matrix elements, Eq. (9), which involve
the overlap of different Bogoliubov vacua. The starting point
of our analysis is themany-bodywave function, Eq. (8) in the
main text, of Majorana fermions scattering from a localized
vison (or a pair of visons; see below):

jΦðRaÞi ¼ P̂
Y
l∈γ

χ†l j0χijM0ðRa;GaÞi: ðA1Þ

The gauge configuration is expressed in terms of the bond
fermion wave functions, where γ is a semi-infinite string of x
links flipped by the action of χ†l on the bond fermionvacuum
j0χi. jM0ðRa;GaÞi is the many-body ground-state wave
function of the matter fermions in the chosen gauge. Note
that for jΦ0ðRaÞi we have the freedom to choose any gauge
configuration, but the projection operator ensures gauge
invariance. It is easy to see that themost convenient choice to
relate two vison wave functions located at positions Ra

and Rb, see Fig. 6, is jGbi ¼ χ†hmjiyχ
†
hikix jGai. Eliminating

the gauge sector by contracting the bond fermions, Eq. (9)
for Γ perturbation becomes

tΓab ¼ ΓhM0ðRa;GaÞjhGajðbyi bxjcicj
þ bxi b

y
jcicjD̂jD̂iÞjGbijM0ðRb;GbÞi

¼ ΓhM0ðRa;GaÞjð−icicj − 1ÞjM0ðRb;GbÞi: ðA2Þ

Similarly, one can show that for ΔHh, the matrix element for
hopping across the hijiz link can be written as

thz ¼ hM0ðRa;GaÞjð−iþ cicjÞjM0ðRb;GbÞi; ðA3Þ

where we used a gauge transformation for the spin operator
which is equivalent to rewriting σz ¼ −iσxσy. The positions
Ra and Rb are defined in Fig. 3(b). We used the following
decomposition of the projection operator that relates it to the
total fermionic parity (bond and matter fermions) [63]:

P̂ ¼ P̂0 ð1þ
Q

iD̂iÞ
2

¼ P̂0 1þ ð−1ÞθþNχþNf

2
; ðA4Þ

where θ ∈ Z is a geometric factor that depends on the lattice
boundary conditions; see Ref. [64] for details. This helps to
avoid choosinganunphysical statewhile evaluatingEqs. (A2)
and (A3) (for finite systems) which would otherwise give
zero as P̂ projects away any unphysical state. Hence we
choose the gauge configuration (Ga;Gb) such that the ground
states are physical by calculating the fermionic parities
explicitly using the methods discussed in Refs. [63,64].
For our calculation we use periodic boundary conditions

with two visons placed at a large distance. The position of
the second vison is always kept fixed [with its position
coordinate suppressed in Eq. (A1)] while the position of the
first vison is denoted by Ra. To compute the matrix
elements, we first diagonalize the Majorana Hamiltonian
with a vison at a reference position Rd, Ra, and Rb
using suitable gauge configurations. The corresponding
Bogoliubov transformations are of the form

�
XðaÞ� YðaÞ�

YðaÞ XðaÞ

��
f

f†

�
¼

�
a

a†

�
ðA5Þ

for Ra and the a ↔ b; d for Rb and Rd, respectively. We
define a reference vacuum j0̃i and fermionic operator di
with dij0̃i ¼ 0 [39]. Importantly, this state must have
the same total fermion parity as the two ground states of
our interest and must be physical. One can choose this to
be, say, the ground state of a third vison position. The
Bogoliubov operators a, which diagonalize the Kitaev
model for a vison located at position Ra, can be related
to d by unitary matrices (similarly for Rb):

�
X ðaÞ� YðaÞ�

YðaÞ X ðaÞ

��
d

d†

�
¼

�
a

a†

�
; ðA6Þ

with X ðaÞ� ¼ YðaÞYðdÞ†þXðaÞXðdÞ† and YðaÞ� ¼ YðaÞXðdÞ†þ
XðaÞYðdÞ†.
We can now express both jM0ðRa;GaÞi and

jM0ðRb;GbÞi in the following Thouless form [8,38]:

jM0ðRa;GaÞi ¼ j detðX ðaÞÞ1=2je−ð1=2Þd†ZðaÞd† j0̃i; ðA7Þ

FIG. 6. Schematic showing the gauge configurations for the
vison states used in the computation of matrix elements
[Eq. (A2)]. In a periodic system, a vison at Ra is created by
flipping the uij variables along the dashed line. The other end of
the line carries another vison far separated.
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with ZðaÞ ¼ ðX ðaÞ−1YðaÞÞ�. Matrix elements of the form
needed for Eqs. (A2) and (A3) can be computed using dðd†Þ
operators grouped into ðd̃1…d̃2NÞ ¼ ðd†1…d†Nd1…dNÞ.
Matrix elements of d̃md̃n can be computed using a coherent
state path integral technique to give

hM0ðRa;GaÞjd̃md̃njM0ðRb;GbÞi
¼ ð−1ÞNðNþ1ÞPfðXÞPfðXfm;ngÞ; ðA8Þ

where Pf denotes the Pfaffian and X is a 2N × 2N skew-
symmetric matrix defined using ZðaÞ and ZðbÞ:

X ¼
�
−ZðbÞ� −I

I ZðaÞ

�
; ðA9Þ

where

Xfm;ng ¼
� 0

Xnm

Xmn

0

�
ðA10Þ

is a 2 × 2 matrix. Pfaffians were computed using the
algorithm developed by Wimmer [65].

1. Ground-state parity and h-induced hopping

As discussed in the main text, a (111) magnetic field h
hops a vison between nearest-neighbor plaquettes. While
evaluating such an overlap, it turns out that, for certain
relative vison positions, the Bogoliubov vaccum state as
defined in Eq. (A7) is unphysical since it has an odd
fermionic parity. Therefore, one should add an extra
Boguliubov particle to the vacuum to get the true physical
states. So the physical states in the case of odd parity are
given by

jModd
l ðRa;GaÞi ¼ j detðX ðaÞÞ1=2ja†l e−ð1=2Þd

†ZðaÞd† j0̃i; ðA11Þ

where l ¼ 0 gives the physical ground state and l ¼ 1 gives
the first excited state. This results in a pattern of ground-
state parities as illustrated in Fig. 7, for a given position of
the second vison and a fixed gauge configuration (not
shown in the figure). While hopping along across the y
bond from a þ1 plaquette to −1 plaquette, one therefore
has to calculate the following overlaps for l ¼ 0 and l ¼ 1:

thðlÞz ¼ ΓhModd
l ðRa;GaÞjhGajðσzi þ σzjÞjGbijM0ðRb;GbÞi

¼ ΓhModd
l ðRa;GaÞjðibzi ci þ ibzjcjÞP̂jM0ðRb;GbÞi:

ðA12Þ

These can be evaluated using the same Pfaffian method as
described in Appendix A. Since the true physical ground
state for an odd parity state is obtained by filling the lowest-
energy mode which is the (quasi)localized Majorana zero
mode, it interacts with the second vison if the localization

length of the Majorana zero mode wave function is larger
than the distance between the visons. This finite size effect
results in a breakdown of the validity of an isolated vison
theory, in the small Majornana gap limit. However, for an
nnn hopping as induced by the Γ term, the many-body
wave functions are of the same parity and hence this finite
size effect is absent.

APPENDIX B: SCATTERING
FROM A STATIC VISON

In this appendix, we briefly review the scattering of low-
energy Majorana degrees of freedom from a single, static
vison. We will need the result to compute the mobility of
mobile visons in the next section, Appendix C. At low
energies the matter Majoranas c are described by Dirac
equation with velocity vm ¼ ffiffiffi

3
p jKj=2 at momenta K

and K0. Using the property ck ¼ c†−k, we can combine
the two Majorana cones into one single Dirac cone at K and
restrict the momenta to half-Brillouin zone. Expanding
around the momentum K one obtains in radial coordinates

H̃K ¼ vm

�
0 ieiθð∂r þ i

r ∂θÞ
ie−iθð∂r − i

r ∂θÞ 0

�
: ðB1Þ

The vison is described as a pointlike magnetic flux with
flux π located at the origin of the coordinate system. We
use a gauge where the presence of the flux can be absor-
bed into antiperiodic boundary conditions in θ direction,
ψðθÞ ¼ −ψðθ þ 2πÞ. This is equivalent to a singular gauge
often used in vortex-scattering problems [66]. The scatter-
ing solutions can be obtained by solving a second-order
Bessel differential equation:

FIG. 7. The pattern of ground-state fermionic parity is indicated
as −1 (odd) or þ1 (even) in the plaquette where the vison is
located. This is fixed for a given position of the second vison
which is placed on the far left (not shown). Here, L ¼ 34,
dV ¼ 14 as measured from the left plaquette. For the odd parity
case, one needs to calculate the hopping amplitudes to states with
a single particle added to the BCS vacuum to stay in the physical
Hilbert space. The two levels shown in the odd parity plaquette
denote the first two levels of the Majorana spectrum.
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ψ̃ s;l;kðrÞ ¼

8>>>>><
>>>>>:

ffiffiffiffi
k
4π

q �
s1=2J−lþ1=2ðkrÞeiðl−1=2Þθ

−s−1=2iJ−l−1=2ðkrÞeiðlþ1=2Þθ

�
l ≤ 0

ffiffiffiffi
k
4π

q �
s1=2Jl−1=2ðkrÞeiðl−1=2Þθ
s−1=2iJlþ1=2ðkrÞeiðlþ1=2Þθ

�
l > 0;

ðB2Þ

where s ¼ �1 labels the positive and negative energy
states, respectively.
The case of l ¼ 0 is special. The wave function weakly

diverges at the origin as r−1=2 and thus is a quasilocalized
state [23]. The well-known scattering cross section can be
obtained as [45,46]

dσ
dφ

¼ 1

2πk sin2 φ
; φ ≠ 0; ðB3Þ

where φ is the angle between incoming and outgoing beam.

APPENDIX C: MOBILITY OF A VISON

To discuss the mobility of a a single mobile vison, we use
the language of a Boltzmann equation for the momentum
distribution function fp ¼ f0p þ δfp of the vison. We argue
that the Boltzmann equation (and further approximations to
the Boltzmann equation discussed below) becomes exact in
the limit of low T. In this limit the density of visons is
exponentially small and thus we can focus on the properties
of a single vison ignoring vison-vison interactions and also
effects like a finite lifetime of Majorana states due to vison-
Majorana interactions. We will furthermore use below that
visons are much slower than Majorana fermions. Also the
density of Majorana excitations nm vanishes as nm ∼ T2

for low T. A semiclassical approximation is valid if the
mean-free path ξv of the vison is large compared to its
wavelength λv. Here it is important to take into account the
diverging cross sections, Eq. (B3). We can estimate ξv from
ξvσnm ¼ 1. Using k ∼ T for Majorana fermions, we obtain
ξv ∼ ð1=TÞ ≫ λv ∼ ð1= ffiffiffiffi

T
p Þ, justifying the use of a semi-

classical approximation [67]. The low density of Majorana
fermions at low T also justifies that we neglect Majorana-
Majorana interactions, which is an irrelevant perturbation
in the renormalization group sense.
In the presence of an external force F acting on the vison,

the linearized Boltzmann equation reads

F · vvp
∂f0p
∂Ev

p
¼

Z
M̃pp0δfp0

d2p0

ð2πÞ2 : ðC1Þ

Here the equilibrium distribution function of the gapped
vison, f0p ¼ ce−βE

v
p , is given by a Boltzmann distribution as

we work in the low-density limit and c is a normalization
constant which will drop out in the final result. Ev

p is
the dispersion of the vison, vvp ¼ ∂Ev

p=∂p its velocity.

The scattering rate from momentum p0 to momentum p
is determined from

Mp;p0 ¼
Z

d2k
ð2πÞ2

d2k0

ð2πÞ2 W
p
k;k0n

0
kð1 − n0k0 Þ

× δðkþ p − k0 − p0Þδðϵk þ Ev
p0 − ϵk0 − Ev

pÞ: ðC2Þ

with M̃pp0 ¼ Mpp0 − δðp − p0Þ R Mp0pd2p0, where the sec-
ond term describes the outscattering from p to an arbitrary
momentum p0. As we consider a single vison embedded by
many thermally excited Majorana modes, we can assume
that the latter stay in equilibrium. Thus n0k is the Fermi
distribution function in equilibrium. We consider the case
where the Majorana dispersion arises from a small Γ term
and we focus on the limit T ≪ K. Thus, we can approxi-
mate the Majorana dispersion by ϵk ≈ vmjkj. The transition
rates Wp

k;k0 are discussed below.
We use the ansatz δfp ¼ ð∂f0=∂Ev

pÞϕp, where ϕp is a
smooth function in momentum and obtain

F · vvp ¼
Z

M̃pp0e
βðEv

p−Ev
p0 Þϕp0

d2p0

ð2πÞ2 : ðC3Þ

A substantial simplification of this matrix equation occurs
because (i) the vison velocities are much smaller than
Majorana velocities and (ii) due to T ≪ K the typical
momenta of the Majorana modes, ∼kBT=vm, are small.
Because of energy and momentum conservation, the typical
vison momentum transfer, jp − p0j ∼ kBT=vm, is also small.
Therefore one can expand the smoothly varying function
ϕp0 and also Ev

p − Ep0 in the momentum difference retaining
only the leading-order terms. A similar approach has, for
example, been used to describe the relaxation of high-
energy quasiparticle in d-wave superconductors [47]. Thus,
we arrive at

vvp · F ≈
Z

M̃pp0e−βv
v
pðp0−pÞðϕp þ ðp0 − pÞ ·∇pϕpÞ

þ ðp0
i − piÞðp0

j − pjÞ
2

∂pi
∂pj

ϕpÞ
d2p0

ð2πÞ2 : ðC4Þ

The zeroth-order terms vanish exactly due to the out-
scattering term in M̃. In the limit of vanishing vison
bandwidth, vvp → 0, also the second term vanishes as
M̃p;p0 is only a function of jp − p0j in this case.
Therefore, we have to compute this term to linear order
in vvp, while this is not necessary for the second-order term.
Thus we arrive at the following drift-diffusion equation in
momentum space,

∂tϕp þ vvp · F ≈Dp∇2
pϕp þ γvvp · ∇pϕp; ðC5Þ

with yet undetermined prefactors Dp and γ. The ratio of γ
and Dp can be determined without any microscopic
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calculation by demanding that Eq. (C5) obeys particle
number conservation for arbitrary ϕp. From this condition,
we derive γ ¼ −Dp=T and obtain

∂tϕp þ vvp · F ≈Dp

�
∇2

pϕp −
1

T
vvp · ∇pϕp

�
; ðC6Þ

or, after rewriting the result in terms of the vison distri-
bution function fp, we obtain the equivalent equation.

∂tfp þ vvp · F
df0

dEv
p
≈Dp

�
∇2

pfp þ
1

T
∇pðvvpfpÞ

�
: ðC7Þ

The two equations (C6) and (C7) describe the Brownian
motion of the vison. There is a frictional force proportional
to −vvp which slows the vison down. This dissipation is
necessarily accompanied by fluctuations: random forces
due to vison-Majorana scattering lead to a diffusion in
momentum space.
Because of the momentum dependence of the drift term,

Eq. (C6) cannot be solved analytically, but we obtain a
numerical solution by Fourier transformation followed by
a matrix inversion. In the low-T limit it is important to take
a sufficient number of Fourier components into account as
Φp develops features with a width ∼

ffiffiffiffi
T

p
.

Analytically, one can solve the drift-diffusion equation
for T ≫ Wv simply by ignoring the drift term proportional
to vvp and by integrating the dispersion twice maintaining
periodic boundary conditions. In the low-T limit, T ≪ Wv,
the stationary equation is approximately solved by ϕp ¼
−ðT=DpÞF · p. The periodicity of ϕp is thereby restored by
a jump of the distribution function far away from the band
minimum close to points where F · vvp vanishes.
The mobility μ of the vison is computed from

hvvpi ¼ μF;

hvvpi ¼
1

Nv

Z
d2p
ð2πÞ2 v

v
p
∂f0
∂Ev

p
ϕp; ðC8Þ

with Nv ¼
R
f0pðd2p=ð2πÞ2Þ.

We can now use the above described asymptotic sol-
utions for ϕp to calculate analytically the asymptotic
behavior of the mobility. We obtain

μ ≈

8<
:

3t2
DpT

for T ≫ Wv

T
Dp

for T ≪ Wv;
ðC9Þ

where t is the hopping matrix element of the vison.
The remaining task is to calculate the temperature

dependence of the diffusion constant in momentum
space Dp. By definition, Dp is independent of the vison
dispersion; therefore its T dependence is a simple power

law in this low-T regime. This can be obtained in the
following way. A two-dimensional Dirac equation has a
linear density of states, and therefore the density nm of
thermally excited Majorana fermions is proportional to
T2=v2m, where vm is the velocity. The diffusion constant in
momentum space is obtained from ðδkÞ2=τ, where δk ∼
T=vm is the typical momentum transfer in a scattering
event. The scattering time is estimated from σvmτnm ∼ 1,
where σ is the transport scattering cross section which
scales with 1=k, Eq. (B3), resulting in an extra factor vm=T,
and thus 1=τ ∼ T. Combining these factors one obtains

Dp ∼
T3

v2m
: ðC10Þ

To obtain the correct prefactors, one has to express the
transition matrix Wk;k0 in Eq. (C2) by the differential cross
section for vison-Majorana scattering which is given in
Eq. (B3). The two quantities are related by [68]

d2p0

ð2πÞ2
d2k0

ð2πÞ2Wk;k0 ð2πÞ2δðkþ p − k0 − p0Þ2πδðϵk − ϵk0 Þ

≈ vmdθk;k0
dσðk; θk;k0 Þ

dθk;k0
: ðC11Þ

This gives, using Eq. (C4),

Dp ¼ vm

Z
d2k
ð2πÞ2 dθk;k0k

2ð1 − cos θk;k0 Þ
dσðk; θk;k0 Þ

dθk;k0

× nðϵkÞð1 − nϵk0 Þ ¼
T3

6v2m
: ðC12Þ

This fixes the prefactor in Eq. (C10) in the limit where the
vison mass is large. Thus it allows us to compute analyti-
cally the exact mobility of the vison in both the low- and
high-temperature regime using Eq. (C9).

APPENDIX D: ASSISTED HOPPING RATE

In this appendix, we calculate the mobility in the
antiferromagnetic Kitaev model perturbed by Γ; similar
results apply for a perturbation by a magnetic field, see
below. In this section, we use r to label unit cells and A
and B to refer to the atom on sublattice A and B within the
unit cell.
Consider ΔHΓ ¼ Γðσxr;Aσyr;B þ σyr;Aσ

x
r;BÞ with r being the

coordinate of the center of the z bond. This term induces
a hopping of a vison along a z bond as shown in Fig. 8.
ΔHΓ can be written as

ΔHΓ ¼ Γ½bxr;Abyr;BðcAr − icBr ÞðcAr þ icBr Þ�; ðD1Þ

where we fixed ibzr;Ab
z
r;B ¼ 1 for the two single-vison

states. The bx=yr;A=B operators realize the hopping of a bare
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vison and thus can be simply contracted in the matrix
element calculation as we did in Appendix A; see Eq. (A2).
The remaining terms affect the matter Majorana sector,
which we will treat in the low-energy long-wavelength
approximation by replacing the c operators with their
continuum fields:

cAr ¼
Z

d2r0wðr0Þe�iðπ=4ÞψAðr0 þ rÞ þ H:c:; ðD2Þ

wðrÞ is a “Wannier function” defining an effective cutoff
of the low-energy theory. The position of the unit cell is
r ¼ Ra þ δ ¼ Rb − δ, which means that the vison hops by
the vector 2δ; see Fig. 8.
We have shown that the ground-state matrix elements

vanish for antiferromagnetic Kitaev coupling. Therefore,
we now consider initial and final states, with a single
fermionic excitation above the ground state, which we
denote by jMnðRaÞi. Here n ¼ s; l; k labels the eigenstates
with 3 quantum numbers. s ¼ þð−Þ labels particle (hole),
l ∈ Z labels the angular momentum, and the k denotes the
linear momentum. Those states will dominate in the low-T
limit when the density of thermally excited Majorana states
is low. Thus we need to compute for Eq. (18) the following
matrix elements:

w̃abðm; nÞ ¼ hMnðRaÞjðcAr − icBr ÞðcAr þ icBr ÞjMmðRbÞi:
ðD3Þ

In the continuum theory, we implement the π flux carried
by a vison as a branch cut that imposes antiperiodic
boundary conditions for the Majorana wave functions;
see Appendix B. As a next step, we expand the field
operators in eigenstates of the scattering problem:

ψA=Bðr − RaÞ ¼
X
l

Z
dk
2π

ffiffiffiffiffi
πk

p
ðaþ;k;l − ia−;k;lÞ

× ½fA=Bl;k ðr − RaÞ��: ðD4Þ

Here aþ;k;lða−;k;lÞ denote the eigenmodes with ϵk > 0

ðϵk < 0Þ.

fAl;kðrÞ ¼
�
J−lþ1=2el−ð1=2ÞθeiK·r l ≤ 0

Jl−1=2el−ð1=2ÞθeiK·r l > 0;

fBl;kðrÞ ¼
�
J−l−1=2elþð1=2ÞθeiK·r l ≤ 0

Jlþ1=2elþð1=2ÞθeiK·r l > 0.
ðD5Þ

Note that the low-energy wave functions are half-integer
Bessel functions naturally arising in vortex-scattering
problems [44,45]. One can now define particle and hole
operators with respect to the filled Fermi sea:

A†
þ≡a†þ; A†

−≡a−; with A�jM0ðRaÞi ¼ 0: ðD6Þ
Similarly, we denote by B the corresponding operators
using scattering states with a vison centered at position Rb.
Expansion of the matrix element, Eq. (D3), results in a sum
of various scattering events ∼A†B, AB†, A†B†, and AB. For
a hopping from Rb to Ra, we focus on the contribution from
terms of the form A†B. They describe processes where both
initial and final states contain a single excited Majorana
particle.
In contrast, the term AB†, for example, applied to an

initial and final states with a single excitations can be
interpreted as the overlap of vison states with two excita-
tions each. We expect that those give only subleading
contributions at low T and focus instead on the A†B term
which is also much easier to compute.
The total transition or hopping rate for a given initial

state n0 ¼ fs0; k0; l0g denoted by Wabðs0; k0; l0Þ ¼P
s;k;l

˜jwabðs0; k0; l0; s; k; lÞj2 is given by

Wabðs0; k0; l0Þ ≈ Γ2jhM0ðRaÞjM0ðRbÞij2½Ss0þðk0; l0Þ
þ Ss0−ðk0; l0Þ�; ðD7Þ

where the overlap of the ground-state wave functions
hM0ðRaÞjM0ðRbÞi is calculated numerically for a finite
size system. For a particle excitation in the initial state,
s0 ¼ þ, we obtain

Sþþðk0; l0Þ ¼
2π

vm

X
l

Z
dk
2π

����
X
l1;l2

Z
d2r1d2r2wðr1 − δÞwðr2 þ δÞ

×
Z

dk1dk2
ð2πÞ2 π

ffiffiffiffiffiffiffiffiffi
k1k2

p
½ηþk1;l1ðr1Þη−�l2;k2ðr2Þ�ð2πÞ2δðk0 − k1Þδðk − k2Þδl0;l1δl;l2

����
2

δðk0 − kÞ; ðD8Þ

where we introduce variables

FIG. 8. Position vectors of vison used in the calculation of the
assisted hopping rate due to a Γ perturbation. r is the position
vector of the unit cell chosen to be a z bond.

DYNAMICS OF VISONS AND THERMAL HALL EFFECT IN … PHYS. REV. X 12, 041004 (2022)

041004-13



η��
k;l ðrÞ ¼ eiðπ=4ÞfA�

k;lðrÞ � e−iðπ=4ÞfB�
k;lðrÞ: ðD9Þ

To obtain Sþ−, one simply has to replace η− by ηþ in
Eq. (D8). Substituting the low-energy solutions for fk;lðrÞ
from Eq. (D5), the matrix elements effectively become
products of half-integer Bessel functions whose arguments
are shifted by the vison separation 2δ. We can also simply
replace the Wannier functions by δ functions for long-
wavelength incoming Majorana excitations. Observing that
the leading contribution for k0δ ≪ 1 comes from the l ¼ 0
state, we get

Sþþðk0; l0Þ ≈
Ω2

0π
2

vm
k20jηþk0;l0ð−δÞj2

�
k0δþ

1

k0δ

�
;

Sþ−ðk0; l0Þ ≈
Ω2

0π
2

vm
k20jiηþk0;l0ð−δÞj2

�
k0δþ

1

k0δ

�
;

S−þðk0; l0Þ ≈
Ω2

0π
2

vm
k20j − iη−�k0;l0ð−δÞj2

�
k0δþ

1

k0δ

�
;

S−−ðk0; l0Þ ≈
Ω2

0π
2

vm
k20jη−�k0;l0ð−δÞj2

�
k0δþ

1

k0δ

�
; ðD10Þ

where Ω0 is the unit cell area. The incoherent hopping rate
is obtained using the Fermi distribution nk0;l0 to sum over
the initial states:

Wab ≈
Z

dk0
2π

X
l0

nk0;l0W̃
ð1Þðk0; l0Þ

¼ 0.75Γ2Ω2
0π

3

32βδ2v2m

Z
du

1

1þ eu
¼ 0.39π3a2Γ2T

32v2m
: ðD11Þ

The result obtained above for a system perturbed by Γ can
easily be generalized to the case where the perturbation
arises from a magnetic field. In this case the perturbation
can be written as

ΔHh ¼ ih½bxr;Abyr;AðcAr − icBr;BÞðcAr þ icBr;BÞ�; ðD12Þ

where Ra and Rb are nearest-neighbor plaquettes, as shown
in Fig. 3(b). The contribution from the c Majoranas is
identical to the one in Eq. (D1), and thus we obtain the
same transition rates with Γ2 replaced by 3h2 where the
factor 3 arises because δ → δ=

ffiffiffi
3

p
due to the smaller

hopping distance of the vison in the magnetic-field case.

APPENDIX E: HEISENBERG INTERACTION

In this appendix, we argue that the single-vison hopping
processes induced by the Heisenberg term at order J2

interfere destructively. We consider a hopping across two y
links as shown in Fig. 9. Let us denote the hopping induced
by processes depicted on the left-hand and right-hand sides
of Fig. 9 by tL and tR. A mirror symmetry maps the
processes onto each other. We now repeat the argument
used in the main text to discuss the interference of hopping

processes induced by Γ or h. By symmetry tL ¼ �tR,
and the sign will decide whether there is a destructive
interference, tL þ tR ¼ 0, or a constructive interference,
tL þ tR ¼ 2tL, of the two terms.
To determine the sign, we analyze a simplified question

and consider the sign of

t̃L=R ¼ hΦ0ðR1ÞjðΔHJΔHJÞL=RjΦ0ðR2Þi; ðE1Þ
where we denote by ðΔHJΔHJÞL=R those terms which con-
tribute to the processes on the left (right) side of Fig. 9

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 9. Eight single-vison hopping processes (R1 → R2) that
pairwise interfere destructively. The dashed arrows pass through
the bonds that are flipped (in black), and do not imply a multistep
process.
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(written below each figure). Note that t̃L=R ≠ tL=R, but the
two quantities are expected to have the same symmetry
properties.
To map an L process to an R process we need the

information on the flux configuration. The central plaquette
in all diagrams in Fig. 9 does not carry any flux in the initial
and final state. The plaquette operator Ŵ ¼ σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6

has eigenvalue þ1 (−1) in the absence (presence) of a
flux [1]. Thus,

jΦ0ðR2Þi ¼ ŴjΦ0ðR2Þi ¼ σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6jΦ0ðR2Þi: ðE2Þ

Using this formula and the algebra of Pauli operators it is
straightforward to show that

hΦ0ðR1Þjσx1σx2σz2σz3jΦ0ðR2Þi
¼ −hΦ0ðR1Þjσz6σz5σx5σx4jΦ0ðR2Þi: ðE3Þ

Therefore the processes shown in Figs. 9(a) and 9(b)
contribute with opposite sign.
A straightforward extension of this argument is not

possible for all the other processes shown in Fig. 9. But
a direct evaluation of t̃L and t̃R in a finite size system using
the methods from Appendix A reveals that

t̃L ¼ −t̃R: ðE4Þ
We therefore expect that tL ¼ −tR, and processes to order
J2 thus cancel by an interference effect independent of the
sign of the Kitaev coupling.
A weak Heisenberg coupling is hence expected to con-

tribute only to order J4 to the dispersion of single visons (as
J3 terms map a single vison to either 3 or 5 visons). Pairs of
visons, however, can even hop by processes linear in J, as has
been shown in Ref. [35].

APPENDIX F: THERMAL HALL
CONDUCTIVITY OF VISONS

In the presence of Berry curvatures, even noninteracting
particles contribute to the (thermal) Hall effect. Independent
of the statistics of the particles, bosonic or fermionic, the
thermalHall effect at a given temperatureT can be calculated
from [69]

κxyðTÞ ¼ −
1

T

Z
∞

0

dϵϵ2 σvðϵÞ ∂n
∂ϵ

; ðF1Þ

wherenðϵÞ describes the thermal occupationof the particle as
a function of their energy and σxyðϵÞ is computed from

σxyðϵÞ ¼ −
X
α

Z
d2k
ð2πÞ2 ΩαkΘðϵ − Ev

αkÞ: ðF2Þ

Note that σxyðϵÞ is in general not the electrical conductivity at
temperature T but is only used to write the formula in a
compact way. Ωαk is the Berry curvature of a band with
index α. For a single-particle Hamiltonian of the form

HðkÞ ¼ hðkÞ · σ it can be computed from Ωαk ¼ ĥ ·
(ð∂ĥ=∂kxÞ × ð∂ĥ=∂kyÞ) with the unit vectors ĥðkÞ ¼
hðkÞ=jhðkÞj.
To calculate the total thermal Hall effect in the presence

of a magnetic field, we have to compute both the con-
tribution from Majorana fermions and visons. Here we
neglect all interaction effects, which is only justified in the
low-T limit when the density of visons is low.
A magnetic field h induces next-nearest-neighbor hop-

ping of Majorana fermions with amplitude tmAA. Such a
hopping on the same sublattice, from A to A or B to B
sublattice, breaks time-reversal symmetry and opens a gap
in the Majorana spectrum. For the calculation of the
thermal Hall effect, tmAA is, however, essential as it renders
the Majorana bands topological. The Majorana modes ck
and c−k can be combined to a complex fermion, thereby
reducing the size of the first Brillouin zone [and therefore
the integral in Eq. (B3)] by a factor of 2. The thermal Hall
effect is computed from using Eq. (F1) with nðϵÞ being
the Fermi distribution function. At low temperature, the
Majorana contribution obtains a quantized value:

κmxyðTÞ ≈
1

2

πT
6

; for T ≪ tmAA: ðF3Þ

In a quantum Hall system one obtains instead κmxy ¼
nðπT=6Þ with integer n. The half-integer value of the
prefactor 1=2 arises because we consider Majorana par-
ticles instead of fermions. For larger T, when also the upper
Majorana band gets occupied, the Majorana contribution
drops. Thus it cannot explain the peak in κxy=T observed
experimentally [12,14].
Exactly the same formalism can be used to calculate also

the contribution to the thermal Hall effect arising from
visons. However, here we have to take into account that
each vison carries a Majorana zero mode. Thus a pair of two
visons at large distance from each other carries an extra
twofold degeneracy. This gives rise to an extra entropy of
ln

ffiffiffi
2

p ¼ 1
2
ln 2 per vison. In the low-density limit we can

ignore any possible hybridization of these zero modes. Thus
we can describe the distribution function in this limit by

nðEv
α;pÞ ≈ exp

�
−
Ev
α;p − T ln

ffiffiffi
2

p

T

�
ðF4Þ

including the entropic correction due to the zero mode.
The vison single-particle Hamiltonian arising from the

field- and Γ-induced hopping is given by

HvðpÞ¼Ev
01−hðpÞ ·σ;

hðpÞ¼2th

0
B@

sinðp ·η1Þ
cosðp ·η2Þ
sinðp ·η3Þ

1
CAþ2tΓ

0
B@

sin½p ·ðη1þη3Þ�
cos½p ·ðη2þη3Þ�
sinðp · ½η2−η1Þ�

1
CA;

ðF5Þ
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with η1 ¼ ½1
2
; ð ffiffiffi

3
p

=2Þ�, η2 ¼ ½1
2
;−ð ffiffiffi

3
p

=2Þ�, and η3 ¼ ð1; 0Þ.
The corresponding energies are given by Ev

�;p ¼
Ev
0 � jhðpÞj.
For high temperatures, when the density of visons

increases, our approach is not valid any more. The statistics
of the visons becomes important and vison-vison and
vison-Majorana [70] interactions can no longer be ignored.
There will also be skew scattering of visons and Majorana
fermions. Furthermore, the Majorana zero modes start to
split when visons approach each other.

APPENDIX G: COMPARISON OF VISON-PAIR
AND SINGLE-VISON GAP

Vison hopping reduces the vison gap and thus is one of
several mechanisms which can lead to an instability of the
Kitaev spin liquid. Here it is important to consider also a
second instability mechanism arising from quasibound
states of two visons. Formally, such pairs embedded in
the Majorana continuum are always unstable and have a
finite lifetime. The tunneling of such vison pairs and their
energy was investigated in an instructive recent study by
Zhang and co-workers [35,36]. Note that vison pairs carry a
net flux of zero, and thus their properties are very different
compared to the single visons studied by us. Furthermore,
we also compare the result of the two analytical studies to
several numerical studies.
In Fig. 9 we show our prediction for the vison gap as a

function of three different perturbations (Γ, h, and J) as
solid lines for both the ferromagnetic (K < 0) and anti-
ferromagnetic (K > 0) Kitaev model. Furthermore, we
show the corresponding predictions of Zhang et al. [35]

for a vison pair as a dashed line. The analytical treatment
breaks down when the vison gap closes, but one can use the
results to extract trends and leading instabilities.
We first discuss the ferromagnetic Kitaev model,

believed to be relevant for materials like α-RuCl3
[55,56,58]. When perturbed by a Γ term, our results suggest
that the leading instability arises from the closing of the
single-vison gap; see Fig. 9(a). Linear order perturbation
theory obtains a closing of the gap at values roughly
consistent with exact diagonalization (ED) results [30,71]
and a tensor network calculation [72]. Note, however, that a
recent infinte density matrix renormalization group study
[73] predicts an increased stability of the spin liquid phase.
The situation is very different when one considers per-

turbations by a magnetic field h shown in Fig. 9(b). Already
for rather small fields, vison pairs have a lower energy
compared to single visons, suggesting that the condensation
of vison pairs (or more complicated objects) is a prime
candidate for the instability. The predicted location of the
transition is again roughly consistent with ED studies.
For a perturbation by J, we do not predict any vison

motion to linear order in J, but there is a trivial change of
the vison gap when one absorbs part of the Heisenberg
coupling in the Kitaev coupling, K → K þ J. Here linear
order perturbation theory suggests again that vison pairs
become gapless first. In this case, however, the ED
calculation predicts that the spin liquid is unstable for very
small values of J. Therefore most likely other types of
excitations or more complex bound states [35] may drive
the transition.
In the antiferromagnetic case, K > 0, shown in the lower

panel of Fig. 10(d)–10(f), our theory makes no direct

FIG. 10. Vison gap as a function of Γ, h, and J (solid lines in left, middle, right column) for ferromagnetic (upper panels) and
antiferromagnetic (lower panels). In (e) the vison gap is calculated using the Eq. (17), which results in a scaling of the form Ev ∝ h2.5.
The dashed line shows the corresponding gap of a vison pair obtained from Zhang et al. [35]. The thick points show numerical
predictions for phase boundaries obtained from the exact diagonalization studies of Ref. [30] (ED1), Ref. [71] (ED2), and Ref. [74]
(ED3), from a tensor-network-based approach [72] and from an infinte density matrix renormalization group study [73].
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prediction for Γ and J perturbations as there is no vison
hopping to linear order. For the h perturbation, we find that
the single-vison gap closes at a similar critical field as the
vison pair. Although the bare vison pair gap closes at a large
field value, well beyond the perturbative limit, Ref. [35]
also reported a smaller critical field ≈0.5K where a
transition to a different spin liquid phase happens due to
the interplay of hybridization of the vison pairs and
Majorna fermions and their dynamics. Compared to the
ferromagnetic case, the ED results show that the system is
much more stable with respect to perturbations by Γ and h,
roughly consistent with the absence of single-vison tunnel-
ing linear in Γ or h in this case. The high sensitivity of the
spin liquid toward tiny values of J, Fig. 10(f), is, most
likely, connected to the tunneling of vison pairs [35].
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