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Gaussian boson sampling is a quantum computing concept based on drawing samples from a multimode
nonclassical Gaussian state using photon-number resolving detectors. It was initially posed as a near-term
approach to achieve quantum advantage, and several applications have been proposed since, including the
calculation of graph features. For the first time, we use a time-bin encoded interferometer to implement
Gaussian boson sampling experimentally and extract samples to enhance the search for dense subgraphs in
a graph. Our results indicate an improvement over classical methods for subgraphs of sizes three and four in
a graph containing ten nodes. In addition, we numerically explore the role of imperfections in the optical
circuit and on the performance of the algorithm.
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I. INTRODUCTION

Quantum computing promises to modify the current
computational paradigm [1,2] by providing a substantial
speedup in the computation of specific tasks that are
currently intractable. Two key milestones achieved so far
are (i) theoretically developing algorithms that show a
quantum speedup compared to the classical counterpart [3]
and (ii) experimentally implementing protocols that surpass
the capabilities of traditional computers [4,5]. Meeting
these two at a common ground to show a quantum
advantage in practical applications is a compelling next
step. Progress toward a fault-tolerant universal quantum
computer brings us closer to this goal, yet it is possible that
a shortcut is provided by simpler, limited-purpose com-
puters, perhaps without error correction [6].
In the optical domain, Gaussian boson sampling (GBS)

has emerged as a potential candidate in this regard [7,8].
GBS involves injecting a multimode nonclassical Gaussian
state into an interferometer and measuring the number of
photons at each output. The classical procedure to simulate
this sampling problem is not efficiently computable on a
classical computer [7,9]. Specifically, it requires the com-
putation of a mathematical function called the Hafnian,
which constitutes a #P-hard problem. Thus far, GBS has
found applications both as a subroutine in the bigger

quantum computer picture as a resource state generator
[10,11] and as a stand-alone device that can be used, for
instance, to calculate vibronic spectra of molecules or graph
features [12–14]. Concerning the two key aforementioned
milestones, a quantum advantage has been achieved by
means of a GBS experiment [5,15], but no practical
application has been demonstrated yet. However, in a
recent paper, Arrazola et al. [16] showed promising results
employing a fully reconfigurable small-scale eight-mode
GBS device for the calculation of molecular vibronic
spectra and graph similarity. A particular application of
GBS is the enhancement of algorithms to search for dense
subgraphs. This concept is integral to a broad class of
clustering problems with varied applications [13], for
example, analyzing social networks and discovering com-
munities residing within them [17,18].
A technical challenge of optical interferometers at the core

of GBS is to scale them up to a large number ofmodes, while
achieving low loss and reconfigurability. Traditionally, the
information carried by an optical state is encoded in its
polarization or spatial modes, implying the need for exten-
sive hardware requirementswhen employing a fewdozens of
photons. As shown by Reck et al. [19], the number of beam
splitters needed to implement an arbitrary m ×m unitary
matrix ismðm − 1Þ=2. In the context of quantum information
processingandGBS, thesehave been implemented invarious
forms, for instance, using bulk optics [20] and in integrated
platforms [21–23].Other nonuniversal approaches have been
achieved using bulk optics [24] and fiber architectures
[25,26], the largest to date being a bulk optics interferometer
with 144 input-output modes [15]. A recent proposal [27]
suggested using the temporal modes to encode the
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information as a means to scale up for boson sampling
experiments. This scheme is attractive for its scalability and
reconfigurability [20], while exhibiting comparable losses
[28,29] to the other reconfigurable platforms [23]. Further-
more, in this approach, the number of components is fixed
regardless of the size of the implemented unitary. In principle,
arbitrary scale can be achieved with minor hardware mod-
ifications. Alternative nonuniversal time-bin interferometers
have been proposed to achieve quantum supremacy via high-
dimensional GBS [30].
In this work, we (i) implement a 20-mode time-bin

interferometer to conduct a GBS experiment and (ii) exper-
imentally show how such a GBS device can enhance the
search for dense subgraphs. In particular,wedemonstrate this
for subgraphs of sizes three and four in a graph of ten nodes.
This constitutes the first experimental realization ofGBS in a
time-bin encoded manner and the first application of a GBS
machine to improve the search of dense subgraphs.
This paper is structured as follows. First, we introduce

the main concepts of Gaussian boson sampling, the time-
bin interferometer, and the use of GBS to search for dense
subgraphs in a graph. Then, we describe the experimental
work, which combines these three elements, and show the
results obtained. Finally, we perform numerical calcula-
tions to study the role of imperfections for the particular
application of finding dense subgraphs.

II. THEORY

A. Gaussian boson sampling

Figure 1(a) illustrates the concept of Gaussian boson
sampling. We consider an m-mode system with separable
Gaussian state inputs that undergoes a transformation char-
acterized by the transfermatrixΛ, followed by single-photon
detection. The input states jξii can be chosen from the
spectrum of Gaussian states, for instance, vacuum, squeezed
vacuum, or coherent states, amongothers. The interferometer
only consists of linear optical elements and loss, which are
Gaussian transformations [31]. Therefore, the state at the

output is alsoGaussian and can be completely described by a
2m × 2m covariance matrix Σ and a displacement vector α.
With no displacement, i.e., α ¼ 0, the probability tomeasure
a certain output pattern n ¼ ðn1; n2; n3;…; nmÞ is given
by [7]

PðnÞ ¼ Pð0ÞQ
ini!

HafðAnÞ; ð1Þ

wherePð0Þ is the probability of not detecting any photons at
the output and Haf is the Hafnian function. The Hafnian of a
matrix is computed as

HafðAÞ ¼
X

M∈σðnÞ

Y
ði;jÞ∈M

Ai;j; ð2Þ

where σðnÞ indicates the set of perfect matching permuta-
tions of n objects (see Appendix A for details). The matrixA
can be derived from the covariance matrix as

A ¼ XðI − Q−1Þ; ð3Þ

where

X ¼
�
0 I

I 0

�
; ð4aÞ

Q ¼ Σþ I=2; ð4bÞ

where I is the identity matrix of appropriate dimension. The
submatrix An is obtained by selecting ni times the ith and
(iþm)th rows and columns of A. Consequently, An is a
square matrix that grows with the total number of detected
photons N, with N ¼ P

i ni. The matrix A can be decom-
posed into a block matrix of the form

A ¼
�

B C

CT B�

�
; ð5Þ

where B is an m ×m symmetric matrix and C is an m ×m
Hermitian matrix.
In the particular case of having a pure Gaussian state

with no displacement at the output, A can be further
reduced to A ¼ B ⊕ B�, i.e., C ¼ 0, and the probability
to measure a detection pattern n becomes

PðnÞ ¼ Pð0ÞQ
ini!

jHafðBnÞj2; ð6Þ

where the submatrix Bn is obtained by selecting ni times
the ith rows and columns. Note that in this case, the matrix
Bn will be of size N × N and, due to the nature of the
Hafnian, N needs to be even. This agrees well with the fact
that if there is no loss present in the system, which would
add mixedness to the state, photons will always come in

(a) (b)

FIG. 1. (a) General GBS picture, where we have an m-mode
Gaussian state going into an interferometer described by the
transfer matrixΛ and then detected using single-photon detectors.
(b) Time-bin encoded architecture to implement GBS experi-
ments. The modes are defined by temporal bins, and the
interferometer is implemented by optical loops. One light source
generates the multimode input state, which is detected at the
output by one single-photon detector.
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pairs from the squeezed vacuum states and, therefore,
detecting an odd number of photons will not be possible.

B. Time-bin interferometer

Herewe introduce the concept of a time-bin interferometer
[27], motivate its usage, and explain how its structure relates
to the resulting mode transformation. A time-bin implemen-
tation of GBS is illustrated in Fig. 1(b). We can distinguish
three main parts that are interfaced by a common spatial
mode: the light source, the interferometer, and the detection.
The light source generates a train of pulses with

separation τp, which defines the time-bin modes and
contains the input states jξii. The fact that we only need
a single source to run the whole experiment, as opposed to
many sources [5,21] or demultiplexing techniques [22,24],
poses a significant simplification in terms of experimental
resources. In addition, enlarging the size of the problem is
straightforward, as it solely requires letting more pulses
into the interferometer.
A remarkably simple design for a time-bin interferom-

eter, which we implement below, consists of a single optical
loop with a time-independent coupling to the input-output
field. The round-trip time of the loop is matched to the
separation of consecutive pulses. An optical circuit model
of this scenario is shown in Fig. 2(a). Each pulsed mode in
the input, denoted by a numbered line, interacts sequen-
tially with a pulsed mode in the loop, denoted by the lineA.
The coupling between the loop and the input-output mode
is described by Bi, corresponding to a general two-mode
beam-splitting operation.
The transfer matrix elements for an ideal single-loop

interferometer are

Λi;j ¼

8>><
>>:

0 if j < i

cosðθÞ if j ¼ i

−sin2ðθÞ½cosðθÞ�ðj−i−1Þ if j > i;

ð7Þ

where i and j label the input and output modes, respec-
tively, and the amplitude transmittivity of the beam splitter

is given by cosðθÞ. The case j > i is understood intuitively
as consisting of j − i round-trips in the loop. The corre-
sponding element Λi;j, therefore, contains the product of
two reflection amplitudes, from coupling in and out of the
loop, with j − i − 1 transmission amplitudes. Note that the
magnitudes of the matrix elements decay exponentially
with the mode separation, which is a consequence of the
time-independent beam splitter. Furthermore, optical loss
arising in the beam splitting or loop propagation, which has
not been included here for simplicity, further increases
this decay.
While the simple static loop device implements a limited

class of interferometers specified by the beam splitter
angle θ, devices with additional loops and time-dependent
beam splitters are able to implement arbitrary transfer
matrices [27,28]. We now extend the single-loop model
to this general case. First, consider one pass by a loop with
time-dependent beam splittings, as depicted in Fig. 2(a), for
which the initial and final beam splitters are fully reflective,
effectively swapping the mode states. For an example of
input states on modes 1–5, where modes A and 6 are
initialized with vacuum states, the output states are returned
on modes 2–6. In Fig. 2(b), the auxiliary vacuum modes
are disregarded, and we show the effective circuit of the
resulting operation, where passing through the loop is seen
to enact a series of beam-splitting operations between
consecutive modes.
An arbitrary interferometer can be implemented by

concatenating these programmable single-loop operations.
In particular, any interferometer withm input modes can be
achieved with m − 1 single-loop operations, according
to the decomposition by Reck et al. [19]. A convenient
approach for this is shown in Fig. 1(b), where two loops are
arranged to appear as a snowman. The larger lower loop is
connected to the input-output field by a time-dependent
switch s2, and this loop is sufficiently long to store the
entire train of pulses. For each round-trip in this storage
loop, the pulse train interacts with the smaller upper loop,
which processes the modes by the single-loop operation,
mediated by the time-dependent beam splitter s1. Alternate
loop configurations may be used to implement arbitrary
interferometers using other decompositions [32,33], which
might offer practical improvements in mitigating nonuni-
form loss incurred across different input-output pairs [29].
Lastly, we note that universality may still be achieved for
limited beam-splitting values [34,35], at the cost of addi-
tional round-trips and corresponding optical loss.
Finally, we have the detection system. This presents

another substantial improvement of this architecture over
other platforms. Because of the temporal encoding of the
information, we can potentially reduce the required number
of detectors to one, compared to the spatial encoding
depicted in Fig. 1(a) in which we need m. This feature
can become very relevant when scaling up to bigger
interferometers. The main practical consideration is the

(a) (b)

FIG. 2. (a) Optical circuit of a pass through the single loop, for
input modes 1–6, loop mode A, and beam splitter operations Bi.
(b) Effective circuit for input modes 1–5 where modes A and 6
are initially vacuum and B0 and B5 are fully reflective.
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reset time of the detectors being larger than the time-bin
spacing, which could skew the output statistics.

C. Finding dense subgraphs using a GBS device

Here we review the connection between GBS outcome
statistics and the identification of highly connected sub-
graphs, as introduced by Ref. [13]. To start, we note that
any graphmay be described by its adjacencymatrixΔ, where
thematrix elementΔij gives aweight associatedwith the edge
connecting node i to node j. For the case of an undirected
graph,Δ is a symmetric matrix; i.e.,Δij ¼ Δji. In Eq. (5), we
see that a pure Gaussian state with zero displacement may be
described by the symmetric matrix B. This establishes a
correspondence between the quantum state and an undirected
graph, in terms of its adjacency matrix. Moreover, Eq. (6)
shows that the probability of any particular GBS outcome
from this state is related to the Hafnian of a subgraph of B.
The connectivity of a graph can be expressed by its

density, defined as

d ¼ 2

P
Δij

nðn − 1Þ ; ð8Þ

where the sum runs over all edges of the graph and
n ¼ dimðΔÞ is the number of nodes in the graph. For an
unweighted graph, for which Δij ∈ 0; 1, the density cor-
responds to the ratio of

P
Δij to its maximum possible

value. A key step by Arrazola and Bromley [13] is to show
that HafðΔÞ, which is equal to the number of perfect
matchings in the graph, is a useful indicator of the graph
density, and therefore, the outcome statistics from GBS can
be used to identify dense subgraphs. In particular, they
show that search algorithms with access to GBS outcomes
outperform those based on uniform random searches. In our
work, this concept is applied to the broader case of
weighted graphs. In general, the GBS-enhanced search
constitutes an example of the advantage provided by
proportional sampling over random search in specific
optimization problems, as shown in Ref. [36]. For a further
discussion of these graph concepts, see Appendix A.
The recipe for employing a GBS device for this purpose

is given in Ref. [14] as follows.
(1) Decompose B, which describes the graph we want to

study, into a unitary matrix U and a vector λ using
the Takagi-Autonne decomposition. These will cor-
respond to the linear interferometer and squeezing
parameters at each of the input modes, respectively.

(2) Compile U into the appropriate beam splitter and
phase-shifting operations of the linear interferom-
eter. Program the interferometer accordingly.

(3) Rescale the squeezing parameters ri ¼ tanh−1ðcλiÞ
according to the constant c > 0 such that hni ¼P

m
i¼1ðcλiÞ2=(1 − ðcλiÞ2). In the case of an n-node

subgraph, this can be used to maximize the

probability of obtaining an n-fold coincidence
at the output. Note that this rescaling does not
change the n-fold relative probability distribution.
Program the squeezers accordingly.

After following this procedure the GBS device will gen-
erate a sample outcome n, with probability

PðnÞ ∝ cNQ
ini!

jHafðBnÞj2; ð9Þ

where N ¼ P
i ni is the total number of detected photons.

We can then feed these samples into a classical algorithm to
find dense subgraphs in a graph, for instance, as shown
in Ref. [13].
An unavoidable imperfection in optical systems is loss. In

experiments involving single-photon states, as is the case of
standard boson sampling, uniform loss in the interferometer
can be neglected by postselecting on the same number of
photons as we had at the input. So, in this scenario, loss will
ultimately affect our detection rates solely, but the probability
distribution at the output for some n-fold detection will
remain unaffected. The situation is rather different when
employing other types of input states, for instance, single-
mode squeezed vacuum (SMSV). In the case of GBS, it is
easy to see that if we have loss in the system, we will not
have a pure state anymore, and, therefore, C ≠ 0 and we
would be sampling from a different distribution. The impact
on how this imperfection affects our ability to use GBS to
find dense subgraphs in a graph is studied in Sec. V.

III. EXPERIMENT

Our implementation of time-bin encoded GBS is depicted
in Fig. 3. A mode-locked Ti:sapphire laser produces 100-fs
pulses at a repetition rate of 80 MHz. A Pockels cell-based
pulse picker acts as a shutter to create isolated pulse
sequences that correspond to individual trials. The off time
between trials ensures the initialization of the loop to
vacuum. We use a half-wave plate (HWP) and polarizing
beam splitter (PBS) combination to control the energy of the
pulses sent to the setup.Apair of angle-tunedbandpass filters
shape the spectrum of the incoming pump pulses appropri-
ately to obtain degenerate and factorable emission via
spontaneous parametric down-conversion (SPDC) from a
type-II periodically poled potassium titanyl phosphate
(PPKTP) waveguide [37–39]. The two orthogonally polar-
ized fields of the approximate two-mode squeezed vacuum
(TMSV) state generated in the nonlinear process are split
using a Wollaston prism and coupled into polarization-
maintaining (PM) single-mode fiber. Rotating the polariza-
tion of one of the fields and using a fiber-based PM 50∶50
beam splitter, we recombine the two fields to generate
approximate SMSV states. In this case, the two output fields
do not exhibit any correlation and we can block one of them
and use the other for the time-bin interferometer, preserving
its purity. We send one of the outputs to the single-loop

S. SEMPERE-LLAGOSTERA et al. PHYS. REV. X 12, 031045 (2022)

031045-4



interferometer,which consists of an evanescent-field variable
fiber coupler and a fiber-based loop. The length of the loop
is matched to the repetition rate of the laser by using a
free-space optical delay with a motorized stage, as shown in
Fig. 3(c). Fine control of the loop length, which determines
the phase, is achieved by using a mirror mounted on a
piezoelectric actuator. Finally, the output state from the loop
interferometer is analyzed using pseudo-photon-number
resolving techniques via a spatially multiplexed detector.
The pulse-picking system, shown in Fig. 3(b), sets the

clock-time of the experiment and uses a repetition rate of
200 kHz. The pulse configuration of the Pockels cell lets
ten pulses of vacuum, ten occupied pulses, and then ten
more pulses of vacuum. We are interested in those last
20 time bins, comprising a total time of 250 ns. This means
that we are restricting ourselves to an effective duty cycle of
5% of the available pulses. See Appendix B for further
details on this setup.
The two fields from the SPDC are coupled into single-

mode fibers with an efficiency of ηc ¼ 40%, without
including detection efficiencies. The main limitation here
is the mode mismatch between the fiber and the waveguide
modes, estimated to be between 60% and 70%. We can
identify two main sources of loss in the interferometer: the
variable fiber beam splitter (VFBS), with a throughput
of ηf ¼ 90% and the loss in the free-space optical delay
line (ODL), with an efficiency of ηo ¼ 80%. Finally, the
detection efficiency of the superconducting nanowire
single-photon detectors is maximized by using fiber polari-
zation controllers to be on average ηd ¼ 80%.
The purity of the output state, see Appendix C, is 98%.

Therefore, it can be well approximated by a TMSV state,
which can be expressed in the Fock basis as

jTMSVi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p X
n¼0

λnjn; ni; ð10Þ

where λ ¼ eiθ tanhðrÞ, and r and θ are the squeezing and
phase parameters, respectively. In the ideal case, interfering
the idler and signal modes in a beam splitter gives a SMSV
state in each output arm, namely,

jSMSVi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðrÞp X∞

n¼0

ffiffiffiffiffiffiffiffiffiffiffið2nÞ!p
2nn!

½−eiθ tanhðrÞ�nj2ni;

ð11Þ

where the squeezing in each arm is the same as that of
the TMSV. The quality of the SMSV will be limited
by the interference visibility between the two modes from
the TMSV source. To assess this, we perform a Hong-Ou-
Mandel measurement between the two fields. From a
measurement of the marginal spectrum for each field, see
Appendix C, we observe a slight mismatch in central
wavelengths and bandwidth, leading to some distinguish-
ability. The discrepancy in the bandwidth between the two
fields originates from the group velocities in PPKTP not
being symmetric with respect to that of the pump [37].
The Hong-Ou-Mandel measurement reveals a visibility of
95.3(2)%, indicating good indistinguishability. Control of
the pulse energy sent to the nonlinear waveguide allows us
to vary the squeezing of the SMSV states. We employ three
different squeezing values in the experiment, namely,
λ ¼ f0.22; 0.31; 0.43g.
The single-loop interferometer achieves a sequence of

beam-splitting operations between consecutive time bins,
as in Fig. 2(a) without the SWAP operations. The main
motivation behind the use of a single-loop structure, despite
its simplicity, is the ability to apply a transformation
involving a large number of modes. Figure 4(a) shows
an estimation of the transfer matrix applied by the single-
loop interferometer for ϕ ¼ 0, where ϕ is the phase of the
loop. Because of the nature of the single loop, this is an
upper-diagonal matrix since it is not possible to inject a
photon at time bin i and detect it at output j for i > j. By
varying the reflectivity of the VFBS, we can change the
transformation matrix to some extent. In this case, this was
arbitrarily set to T ¼ 50%. Likewise, Fig. 4(b) shows the
modeled A matrix where, as shown, the C matrix is
nonzero, denoting the mixedness of the Gaussian state.
The piezoelectric actuator allows us to change ϕ and
perform active phase locking; see Appendix D for details.
Setting ϕ ¼ 0 makes both the unitary matrix U and A to be
real-valued matrices.
We employ a spatially multiplexed array of eight super-

conducting nanowire single-photon detectors to be able
to perform pseudo-photon-number resolving detection.
Because of the reset time of the detectors, 60 ns, being
greater than the spacing between time bins, 12.5 ns, this

(a)

(b) (c)

FIG. 3. (a) Main experiment setup. PP, pulse picker; BP1,
bandpass filters at 775 nm;PBS, polarizing beamsplitter (Wollaston
prism); BP2, bandpass filters at 1550 nm; FBS, fiber beam splitter;
VFBS, variable FBS; ODL, optical delay line; and LP, long pass
filter. (b) Detailed schematic of the pulse-picking system, indicated
as PP in (a). GT, Glan-Taylor polarizer; PC, Pockels cell; QWP,
quarter-wave plate;HWP, half-wave plate. (c)Detailed schematic of
the free-space optical delay in the single-loop interferometer,
indicated as ODL in (a). PZT, piezoelectric actuator.

EXPERIMENTALLY FINDING DENSE SUBGRAPHS USING A … PHYS. REV. X 12, 031045 (2022)

031045-5



type of spatially multiplexed detection is necessary to be
able to resolve detections in consecutive time bins. This
will impact the output detection probability. As an example,
take the output state [1, 2] (one detection in the first time
bin, and another in the second time bin). This event will be
less likely than [1, 10] (second detection in the tenth time
bin) since there is a greater chance of the detector being
unresponsive due to the detector dead time. In our case,
employing a high number of detectors allows us to neglect
this effect.

IV. RESULTS

We begin by analyzing the measured photon statistics
using a theoretical model of the experiment. Then, we use
samples produced by the experimental device to demon-
strate an enhancement in the search of dense subgraphs
compared to using uniform random samples.

A. GBS output statistics

We model our experiment using the STRAWBERRYFIELDS

PYTHON package [40]. For this, we use the losses described
above, which are measured independently or given by the
manufacturer, and assume perfect SMSV input states.
The difference between the experiment and theoretical
distributions can be computed using the total variation
distance (TVD),

Dðp; qÞ ¼ 1

2

X
i

jpi − qij; ð12Þ

where p and q are the two probability distributions we are
comparing. This distance gives a measure of how close
the probability distributions are, ranging from 0 to 1 for
identical to completely nonoverlapping distributions,
respectively. To calculate the probabilities from the model,
we use Eq. (1).
We minimize the distance for the twofold detections to

infer the value of the squeezing at the input. After this, for
the λ ¼ 0.31 case, we obtain a distance between the model
and the experiment, DðPtheor; PexptÞ, of 0.0758(3) and
0.081(1), for the twofold and threefold coincidences,
respectively, indicating the model does a good job in
describing the experiment. Figure 5 shows a plot with
the [Fig. 5(a)] twofold and [Fig. 5(b)] threefold probabil-
ities obtained from the experiment and given by the model.
We observe a periodic pattern depicting several exponential
decays, which is characteristic of the single-loop trans-
formation, as described by Eq. (7). In both cases, we see
good agreement between the theory and the experiment.
The detection rates of threefold and fourfold detections are
300 and 10 Hz, respectively. Note that the experiment rate
is 200 kHz with a duty cycle of 5%, limited by the Pockels

(a)

(c)

(b)

FIG. 4. (a) Transformation matrix corresponding to the single
loop. (b) A of the output state. We can clearly see that the state
corresponds to a nonpure Gaussian state, i.e., C ≠ 0. (c) Left:
graph defined by the symmetric part of A (top left-hand block
matrix) as the adjacency matrix. The blue dots indicate the fully
positive subgraph shown on the right. Right: fully positive
subgraph given by nodes 1–10. The color bar indicates the
weights of the edges.

(a)

(b)

FIG. 5. Probability distribution for the twofold (a) and three-
fold (b) detections with an input squeezing of λ ¼ 0.31. Green
bars show the theory values and orange bars the experimental
data. The x-axis detection labels are sorted in ascending order
from left to right, i.e., f½1; 1�; ½1; 2�;…; ½19; 20�; ½20; 20�g and
f½1; 1; 1�; ½1; 1; 2�;…; ½19; 20; 20�; ½20; 20; 20�g, respectively.
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cell. By overcoming these limitations, these rates could be
increased by a factor of 20 for the same level of squeezing.

B. Finding dense subgraphs

As mentioned earlier, in a GBS experiment the graph we
want to investigate is encoded in the symmetric part of A,
i.e., the B matrix. For the purpose of identifying dense
subgraphs, we require the adjacency matrix of the graph to
be non-negative or nonpositive, such that the Hafnian is
correlated with the density. For this, we focus on a
subgraph of the graph defined by B for the λ ¼ 0.31 case
that solely contains positive weights. We choose the sub-
graph containing nodes 1–10, which corresponds to time
bins 1–10. Figure 4(c) shows both the complete graph,
given by B (left), and the fully positive subgraph defined by
nodes 1–10 (right). Since we are interested in k-node
subgraphs, we filter the obtained samples to only select
nondegenerate k-fold detections. In this particular case, due
to the nature of the interferometer, this has a substantial
impact on the detection rates. After this postselection, we
are left with 107, 312, and 1802 nondegenerate fourfold
samples for λ ¼ f0.22; 0.31; 0.43g with integration times
of 8, 3, and 3 h, respectively.
The use of GBS samples to identify dense subgraphs is

demonstrated with a classical random search algorithm,
as in Ref. [13]. In the random search algorithm, we draw
n samples, each containing k nodes, calculate the density
corresponding to each sample, and select the one with the
maximum density. We vary the number of samples n drawn
and, for each of these values, repeat the procedure 400 times
and calculate the mean to remove statistical fluctuations.
Figure 6 shows the mean density obtained as a function

of the number of samples drawn for subgraphs of size three
[Fig. 6(a)] and size four [Fig. 6(b)]. We see that in both
cases the GBS-enhanced protocols perform better than the
uniform sampling case, this improvement being more
prominent in the four-node subgraph case. To compare
the performance of the algorithm for the different input
seeds, we consider the number of samples needed, on
average, to find a graph whose density is 95% of the
maximum, and the mean density achieved for a given
number of samples. The results are summarized in Table I
and give a quantitative value of the speedup provided by the
GBS device.
The ideal curve corresponds to the loss-free system. In

this case, the samples are drawn directly from the distri-
bution given by jHafðBnÞj2. For the threefold case, where
the Hafnian would be null due to the number of detections
being odd, we use the fourfold distribution and remove one
detection at random. As observed, the performance of the
algorithm using these samples is the best and is consid-
erably better than the uniform sampling case. Then,
imperfections in the experimental setup mean that we do
not sample anymore from B [Eq. (6)] but need to use A
[Eq. (2)], as C ≠ 0. Crucially, we find that despite

significant optical loss the performance of the algorithm
when using experimental samples still notably surpasses
that of the uniform sampling case. Interestingly, we also
notice that when increasing the squeezing the speed at

(a)

(b)

FIG. 6. (a) Mean density of the three-node subgraph as a
function of the number of samples drawn. The inset shows the
probability distribution for the nondegenerate output states of the
experimental samples (orange filling) and the theoretical model
(green edge). (b) Mean density of the four-node subgraph as a
function of the number of samples drawn. The purple line
indicates a uniform random search, the blue, orange, and green
lines use samples obtained from the GBS experiment for different
values of the squeezing as indicated in the legend, and the brown
line indicates samples obtained when sampling from the distri-
bution obtained from jHafðBnÞj2. The dashed line indicates the
density of the densest subgraph. The search speed decreases
when increasing the squeezing. This effect is further studied
in Sec. V.

TABLE I. Subgraph search performance for different sources of
random search seeds. The metrics shown are the number of
samples needed to obtain a mean density of 95% and the density
achieved when using 50 samples.

n Seed Samples at 95% density Density for 50 samples

3 Ideal 34(1) 0.020(0)
3 λ ¼ 0.22 92(3) 0.0186(1)
3 λ ¼ 0.31 99(3) 0.0182(1)
3 λ ¼ 0.43 117(4) 0.0180(2)
3 Uniform 178(5) 0.0167(2)

4 Ideal 14(1) 0.0164(0)
4 λ ¼ 0.22 62(3) 0.0153(0)
4 λ ¼ 0.31 98(3) 0.0143(1)
4 λ ¼ 0.43 143(5) 0.0140(1)
4 Uniform >260 0.0130(1)
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which the curve approaches the maximum mean density
decreases. Table I quantitatively illustrates this observation.
This effect is studied in more detail in Sec. V.

V. LOSS AND SQUEEZING TRADE-OFF

In this section, we study how imperfections affect GBS
outputs and, consequently, impact the performance of the
classical algorithm to find dense subgraphs. In essence,
these imperfections will change the probability distribution
we are drawing our samples from, but how this modifies the
performance of the algorithm for this task is not clear. Here,
we focus on the most prominent imperfection in typical
GBS experiments: uniform channel loss, for example, due
to source-interferometer coupling or detector inefficiencies.
We acknowledge that other errors such as deviations from
the expected unitary or mode-dependent losses are also
possible, but we leave these for future work.
To study the role of imperfections we use the following

procedure.
(1) Construct the problem graph by generating two

unweighted Erdos-Renyi graphs, a small one with
high edge probability and a larger one with low edge
probability. Connect the nodes of the smaller graph
to the nodes of the larger one at random [13].

(2) Perform a Takagi-Autonne decomposition to obtain
the squeezing and interferometer parameters that
encode this graph in a GBS device. Rescale the
squeezing values to change the mean photon number
per mode at the output.

(3) Add identical optical loss to each mode of GBS
device model.

(4) Using the graph and samples from the GBS model, a
subgraph search is conducted as in the experiment
sections above.

Here, we present results for a graph consisting of 26 nodes,
where a six-node graph with edge probability 0.875 is

joined to a 20-node graph with edge probability 0.3. For the
random search algorithm, we repeat the search for 1000
iterations to precisely determine the mean performance.
First, we investigate how loss modifies the normalized

probability distribution for a given n-fold detection. To
evaluate this, we use the TVD, introduced in Eq. (12). In
other types of experiments, where we have a well-defined
number of input photons, e.g., boson sampling, these
probability distributions remain independent of loss.
Figure 7(a) shows the TVD with respect to the lossless
case and the average number of runs needed to obtain a
sixfold sample, i.e., 1=pð6Þwhere pð6Þ is the probability to
obtain a collision-free sixfold detection at the output, as a
function of the loss for several mean photon numbers per
mode, i.e., hni ¼ 1=m

P
ihnii, where m is the number of

modes. We observe that as the loss increases, the deviation
from the lossless case becomes more pronounced, particu-
larly for those cases in which the squeezing was high. In the
low squeezing limit, the probability of generating instances
where more photons are generated than detected, i.e., losing
photons, is minimal, leading to a vanishing TVD.
Considering the number of GBS runs required for a

sixfold detection event, runs/sample from hereon, we see
that the choice of squeezing presents a trade-off between
TVD and detection rates. We proceed to study how this
compromise manifests in the search for dense subgraphs
and if, at some point, allowing more runs/samples can lead
to a substantial decrease in the TVD that is beneficial to this
problem. An alternative to reducing the squeezing may be
error mitigation [41]. This procedure involves either
changing the experimental loss parameter to interpolate
the measurements or performing classical postprocessing
of the data. Practically, these techniques may prove
challenging when studying larger systems.
The mean density obtained with n samples using a

random search algorithm for several values of input loss
and squeezing parameters, indicated by the corresponding

(a) (b) (c)

FIG. 7. (a) TVD and runs/samples as a function of the input loss for several mean photon numbers per mode at the output. (b) Density
as a function of the number of samples used in the random search algorithm for several mean photon numbers indicated in the legend of
(a). The different colors correspond to different input losses in the system while the black curve shows the performance of the algorithm
when using uniform random samples. (c) Number of samples (solid lines) and runs (dashed lines) needed to achieve a certain mean
density, defined by the black dashed line in (b), as a function of the input loss for several mean photon numbers. The shaded areas
correspond to one standard deviation of the mean. The black line indicates the density achieved by the algorithm when using samples
drawn directly from the adjacency matrix of the graph and the red line corresponds to uniform drawn samples. The shaded areas
correspond to one standard deviation of the mean.
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line colors and styles, respectively, is shown in Fig. 6(b). As
observed, for a constant value of the loss, the performance
of the algorithm diminishes with increasing values of
squeezing, in good agreement with the experimental
observations. Figure 7(c) shows the point where the mean
density achieved by each of the curves in Fig. 7(b) crosses
the dashed line, i.e., achieves a mean value of 75%, as a
function of loss for different mean photon numbers. The
speed at which the algorithm reaches a certain value for the
mean density degrades as a function of the input loss for
high squeezing values, but it remains unaffected when the
squeezing is small. Note that in all cases, the GBS device
still outperforms the uniform sampling approach indicated
by the solid gray line. The dashed lines indicate the number
of experimental runs needed to achieve the required
number of samples needed to obtain a mean density. As
shown, because the number of runs/sample increases
exponentially with the mean photon number hni, in the
regime we have studied, increasing the squeezing reduces
the number of runs needed, in general. Because of the
statistical noise of the algorithm, it is hard to extract
conclusions for regimes where the variations between
average photon numbers are small. Despite the success
of our lossy experiment, these results indicate that for large-
scale dense subgraph searches, where high squeezing
values are required, further consideration of the impact
of loss is likely needed. In some instances, it might even be
advantageous to decrease the squeezing to reduce the TVD,
despite the corresponding sacrifice in detection rates.

VI. CONCLUSIONS

We have demonstrated that measurements from a real-
istic GBS device can enhance the search for dense sub-
graphs over uniform random sampling techniques. To do
so, we demonstrate GBS in a time-bin implementation with
a single source of SMSV. We study up to four-photon
detection events over 20 modes, showing that a single-loop
interferometer can readily scale to tens of modes for this
application. Then, we map the output Gaussian state to a
graph and choose a subset of detection outcomes corre-
sponding to a positive subgraph. We show that any specific
outcome occurs with a probability dependent on the density
of its subgraph and, therefore, demonstrate that GBS can
enhance a search algorithm, e.g., random search, for the
identification of dense subgraphs of a graph.
We repeat this procedure for three different squeezing

parameters, observing a degradation of the algorithm’s
performance with increasing squeezing. To understand this,
we numerically studied the role of input loss in a GBS
experiment and found that the TVD with respect to the
lossless case increases when using a higher squeezing. We
then investigated the impact of this in the search for the
dense subgraphs problem and showed that there exists a
trade-off between squeezing and algorithm speed for high

values of input loss. This is in good agreement with the
experimental observations.
This work constitutes the first experimental demonstra-

tion of the implementation of GBS in a time-bin encoded
architecture and of how a GBS device can be employed to
speed up the search of dense subgraphs. We hope this work
can motivate other research groups to scale up this
application to the regime where using a GBS device gives
a quantum advantage. In this sense, in-depth consideration
of what the consequences of imperfections are in near-term
applications using GBS devices is needed.
Time-bin encoded GBS, in a fiber-based interferometer,

offers many practical advantages for achieving quantum
speedups in certain application areas. Our work should
encourage further theoretical studies of computational
problems which map onto this architecture. It will stimulate
the engineering of integrated fiber-based squeezed light
sources [42] as well as low-loss switching, which is
essential for performing arbitrary operations on time-bin
encoded states.
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Note added.—Recently, a closely related paper was pub-
lished [43]. This work exemplifies the great potential of
time-bin encoded architectures to scale up GBS experi-
ments to a regime where they are no longer classically
simulable. Our work provides a route to extend this
approach to obtain a quantum advantage in a relevant
application, such as the search for dense subgraphs, under
realistic experimental conditions.

APPENDIX A: PERFECT MATCHINGS
AND GRAPH DENSITY

To review graph concepts used in our work, let us
consider an example containing six nodes, depicted in
Fig. 8. Edges of this graph, shown as lines connecting the
nodes, can be described by the adjacency matrix,

Δ ¼

0
BBBBBBBBB@

0 1 1 1 1 0

1 0 1 0 0 1

1 1 0 1 1 0

1 0 1 0 1 1

1 0 1 1 0 1

0 1 0 1 1 0

1
CCCCCCCCCA

; ðA1Þ
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where the matrix element Δij denotes the strength of the
connection from node i to node j. In our work, we consider
graphs that are undirected, so that Δji ¼ Δij, and without
loops, so that Δii ¼ 0. Moreover, for simplicity in this
example, the strength of each edge is 1 or 0, so that each
pair of nodes can be thought of as either connected or
unconnected. The corresponding graph is said to be
unweighted.
A perfect matching in a graph is a way that the nodes are

grouped into connected pairs. Two examples of perfect
matching for Δ are depicted in Fig. 8. A closely related
concept is the set of perfect matching permutations. This
concerns all of the ways in which n objects may be grouped
into n=2 pairs. Note that the Hafnian function HafðΔÞ,
defined in Eq. (2), includes a sum over the set of perfect
matching permutations, for which each term consists of the
selected elements of Δ multiplied together. By inspecting
this definition, we see that the Hafnian of an unweighted
graph is equal to the number of distinct perfect matchings it
contains.
The density of a graph quantifies its connectivity. For an

unweighted graph, the density is defined as the fraction of
all possible connections that are present. The key insight
developed in Refs. [13,44] is that the number of perfect
matchings of an unweighted graph, equal to the Halfnian of
its adjacent matrix, is indicative of its density. Furthermore,
this relationship of the Hafnian and density is readily
extended to weighted graphs.
Finally, let us consider the density of subgraphs. In our

example, a four-node subgraph can be formed by removing
any two nodes from the original graph. Equivalently, these
subgraphs can described as four-dimensional submatrices
of Δ. The task at the center of our work is to find subgraphs
with large density. For the example in Fig. 8, careful
inspection finds the densest four-node subgraph contains
nodes (1,3,4,5). To ease this search, one could first calculate
the Hafnian of every four-dimensional submatrix of Δ as an
indication of the subgraph densities. For much larger graphs,
however, this direct calculation becomes impracticable.

APPENDIX B: PULSE PICKER

As shown in Fig. 3(b), as the beam enters the pulse-
picking system, it first passes through a Glan-Taylor (GT)

polarizer with its polarization axis aligned to the input light.
A half-wave plate is then used to rotate the polarization of
the beam to 45° with respect to the optic axis of the Pockels
cell. The Pockels cell consists of an X-cut 20-mm ruby-
dium-tantalate phospate (RTP) crystal with an aperture of
3 mm and Vπ ¼ 1 kV. Its high-voltage driver is triggered
by a digital delay generator at a repetition rate of 200 kHz.
A quarter-wave plate (QWP) compensates for the natural
birefrigence of the RTP crystal followed by a second GT
polarizer. The system is arranged in a double-pass con-
figuration to further increase the extinction ratio, which we
observe to be 1∶105. The overall transmission through the
system is 70%. Figure 9(c) shows a histogram of the counts
after the pulse picker. For the data acquisition, we gate
the time tagger system to only record time tags in the
[0, 250] ns region, reducing the required analysis time
substantially.

APPENDIX C: SOURCE CHARACTERIZATION

The joint spectral intensity of the signal and idler fields
generated by SPDC, shown in Fig. 9(a), is measured with
time-of-flight spectrometers that employ dispersion-
compensating fibers followed by single-photon detectors.
Assuming a uniform joint spectral phase, this measurement

(c)

(b)(a)

(d)

FIG. 9. (a) Joint spectral intensity of the source, with the
number of counts indicated by color. (b) Hong-Ou-Mandel
interference with a visibility of 95.3(2)%. The error bars, due
to Poissonian counting statistics, are barely visible. (c) Timing
histogram of counts at the unused output port of the FBS,
demonstrating pulse picking. (d) Twofold coincidences after the
interferometer for a freely running (orange) and locked (blue)
loop phase. The black line in the histogram indicates fluctuations
due to Poissonian statistics.

FIG. 8. An example of a six-node unweighted graph, described
by the adjacency matrix in Eq. (A1). Two of the perfect matchings
in the graph are shown with highlighted edges.
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indicates an effective mode number of 1.02. To assess the
degree to which the marginal signal and idler spectra are
identical, we study Hong-Ou-Mandel interference by
measuring coincident photons at the output of the beam
splitter (FBS) in Fig. 3 when working in the low-squeezing
regime. We obtain a visibility of 95.3(2)%, defined
as ðCmax − CminÞ=Cmax.

APPENDIX D: PHASE LOCKING

The round-trip phase of the interferometer loop is
adjusted using piezoelectric control of a mirror position.
We employ a piezoeletric stack with a no-load maximum
displacement of 12 μm glued to a 1=2-inch mirror.
A control signal is derived from the rate at which two
coincident photons are observed at the output of the
interferometer. The corresponding detection events are
integrated for 150 ms and used for proportional-integral-
derivative control of a piezoelectric signal in the range
of 0 to 7 V. Figure 4(d) compares the coincidence detection
events when the loop runs freely and when it is locked.
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