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Biological evolution of a population is governed by the fitness landscape, which is a map from genotype
to fitness. However, a fitness landscape depends on the organism’s environment, and evolution in changing
environments is still poorly understood. We study a particular model of antibiotic resistance evolution in
bacteria where the antibiotic concentration is an environmental parameter and the fitness landscapes
incorporate trade-offs between adaptation to low and high antibiotic concentration. With evolutionary
dynamics that follow fitness gradients, the evolution of the system under slowly changing antibiotic
concentration resembles the athermal dynamics of disordered physical systems under external drives.
Exploiting this resemblance, we show that our model can be described as a system with interacting
hysteretic elements. As in the case of the driven disordered systems, adaptive evolution under antibiotic
concentration cycling is found to exhibit hysteresis loops and memory formation. We derive a number of
analytical results for quasistatic concentration changes. We also perform numerical simulations to study
how these effects are modified under driving protocols in which the concentration is changed in discrete
steps. Our approach provides a general framework for studying motifs of evolutionary dynamics in
biological systems in a changing environment.
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I. INTRODUCTION

The concept of the fitness landscape of a biological
species, introduced by Wright [1], is a useful tool for
understanding evolutionary processes. According to this
picture, evolving populations are driven uphill along fitness
gradients by natural selection. Mathematically, a fitness
landscape is a map which assigns fitness values to genetic
sequences. In recent decades, it has become feasible to
empirically determine fitness landscapes comprising sev-
eral mutations, and a wealth of new work has illuminated
various aspects of evolutionary dynamics on different
classes of fitness landscapes [2–10]. At the same time,
the availability of empirical data has renewed the interest in
studying fitness landscapes theoretically [11–16].
A less well-studied topic in this field is evolution in

changing environments. Fitness landscapes are a function
of environment, and can change in systematic ways as
environmental parameters change. Whereas the fitness
landscape provides information about G × G (gene-gene)

interactions, the introduction of the environmental para-
meter furnishes information about G ×G × E (where E
stands for environment) interactions, i.e., about how the
environment modifies the gene-gene interactions [17–20].
A few studies on microbial growth have measured or
interpolated fitness values as a function of environmental
parameters [21–23], but systematic theoretical work in this
field is still limited.
Understanding and predicting the effect of the envi-

ronment on fitness landscapes has important practical
applications. A pertinent example is the case of antibiotic
resistance in bacteria, where it has been shown that the
fitness landscape depends strongly on the antibiotic
concentration [21,22]. Uncontrolled variation in antibiotic
concentration, both in clinical settings and elsewhere
[24,25], is a cause for the rise in antibiotic resistance,
which is a major clinical challenge today. Figure 1 shows
an empirical example of the kind of processes we are
interested in. The fitness values of the genotypes (i.e.,
genetic sequences) in the figure were measured in
Ref. [21], and based on them one can predict transitions
between genotypes under concentration increase (black
and gray arrows) or decrease (red and orange arrows).
Note that this small system already exhibits some inter-
esting properties, such as a hysteresis loop under antibi-
otic concentration cycling and transient genotypes that are
not part of the loop.
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Our focus is primarily on antibiotic resistance evolution,
where the environmental dependence of the fitness land-
scape is governed by a trade-off between two phenotypes,
bacterial growth rate and resistance [23]. While we will
mostly use the language of antibiotic resistance evolution in
the following, the theory developed is more generally
applicable, as will become clear from the mathematical
model. Our work uses tools from statistical physics,
specifically the physics of disordered systems. Concepts
and methods from statistical physics have been used in the
theory of evolution for a long time [26,27]. Precise
quantitative analogies with evolutionary phenomena have
been found with equilibrium statistical physics [28], the
theory of random walks [29], spin glasses [30–32], and
many more. Most of these, however, focus on static fitness
landscapes.
Here we investigate evolution on rugged landscapes, i.e.,

landscapes with a large number of local fitness maxima,
that vary with changes in an external parameter. This
setting is naturally reminiscent of the physics of driven
disordered systems, particularly in the athermal quasistatic
regime [33], where thermal activation processes are absent
or negligible. The primary effect of the external forcing is
then to alter the set of stable equilibria or their locations. As
a result, under a time-varying external forcing such systems

remain in a given equilibrium until it becomes unstable, and
a fast relaxation process leads to a new equilibrium. Despite
the absence of thermal activation processes, the resulting
dynamics can nevertheless be rather complex, exhibiting
memory effects [34,35] as well as dynamic phase tran-
sitions, such as the jamming transition in granular materials
[36], or the yielding transition in amorphous solids [37].
In particular, we find that evolutionary genotypic change

has close parallels with systems such as cyclically sheared
amorphous solids [38,39], where a changing environmental
parameter is analogous to an external shear, and transitions
to new genotypes are similar to localized plastic events
inside the solid which can exhibit hysteresis. As was shown
recently [35,40,41], the athermal quasistatic conditions
permit a rigorous description of the dynamics of such
systems in terms of a directed state transition graph. Since
the transition graph represents the response of the system to
any possible deformation protocol, it provides a bird’s-eye
view of the possible dynamics [35,42,43].
The main goal of this paper is to show that the driven

disordered systems approach leads to new insights into
evolution in changing environments, such as the prevalence
of hysteresis, precise rules for the substitution of mutations
along fitness-increasing paths in the rare-mutation regime,
and the encoding of the evolutionary past in the genome.
We establish new quantitative results, such as the number of
fitness maxima across the entire permissible range of
environmental parameters, the mean number of mutations
that fix after an instability occurs, and the extent of
reversibility of the adaptive evolution. Finally, we extend
our results by going beyond the quasistatic limit, consid-
ering the adaptive response to discrete jumps in concen-
tration. We find that several of our results carry over to this
more realistic setting, but there are interesting differences
as well when large jumps in concentration are involved.
Our analysis is carried out on a model of antibiotic

resistance evolution. This model is based on empirical
observations on the generic properties of dose-response
curves obtained in the literature on drug resistance and
provides a principled way of describing the environment
dependence of fitness landscapes. This introduces a new
dimension into the traditional study of fitness landscapes,
which has mostly been concerned with a fixed environ-
ment. Exploiting the analogy with disordered systems, we
find that the transition graphs describing the evolution of
antibiotic resistance have a structure that bears strong
resemblance to the Preisach model [44] of hysteresis in
magnets, but in a generalized setting where the elementary
units of hysteresis interact with each other [43,45–48].
Lastly, we believe that the disordered systems viewpoint, in
particular the state transition graph approach, is a useful
addition to the mathematical repertoire of evolutionary
theory.
The paper is structured as follows. In Sec. II, we

introduce the mathematical model and the central concepts

FIG. 1. State transition graph of antibiotic resistance evolution.
The nodes depict genotypes composed of four mutations in the
antibiotic resistance enzyme TEM-50 β-lactamase. Genotypes are
represented as binary strings where a 1 denotes the presence and 0
the absence of a specific mutation. The growth rates of bacteria
expressing these mutant enzymes were reported in Ref. [21] for
the antibiotic piperacillin at three different concentrations (128,
256, and 512 μg=ml). Each node is a local fitness maximum at one
of these concentrations. Black and gray arrows connect nodes that
would be reached under adaptive evolutionwhen the concentration
is increased, and red and orange arrows represent the dynamics
under concentration decrease. For example, 0001 is a local
maximum at 256 μg=ml, but when the concentration is switched
to512 μg=ml, it is no longer a fitnessmaximum.Evolution through
a greedy adaptive walk (where every step is maximally fitness
increasing) leads to the new maximum 1101. The graph displays a
hysteresis loop 0101 → 0001 → 1101 → 1100 → 0101. The
green nodes are transient and cannot be reached under cyclic
concentration changes. Gray and orange arrows mark transitions
out of transient states.
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essential to its analysis. Section III contains the results and
is divided into seven subsections. Sections IIIA–IIIC
develop the formalism of state transition graphs and
construct the set of local fitness maxima. Here we also
derive several general results related to hysteresis and
memory formation under quasistatic environmental change
using this formalism. Section III D provides statistical
results regarding the number of local fitness maxima across
environments, while Sec. III E reports numerical results on
phenotypic reversibility, with statistical averages performed
over evolutionary trajectories with quasistatically changing
concentration. Section III F goes beyond the quasistatic
approximation by studying dynamics under discrete
changes in concentration. Section III G focuses on revers-
ibility at the genotypic level and compares and contrasts it
with phenotypic reversibility. Section IV summarizes the
main results and discusses future directions for research.

II. MODEL

We define a genotype σ as a binary string of length L,
i.e., σi ∈ f0; 1g, where i ¼ 1; 2;…; L denotes the sites
where mutations can occur, and σi ¼ 1 indicates the
presence of a mutation. An equivalent and useful way of
thinking about σ is as a set of mutations drawn from a total
of L possible mutations. The genotype without mutations,
commonly referred to as the wild type, is then the empty set,
whereas the all-mutant is the set with all the L mutations.
We will use the notation σ both as a string and as a set, and
clarifications on the notation will be provided wherever
necessary.
Our focus is on the trade-off-induced landscapes (TIL)

model introduced in Ref. [23], which is defined through
three key properties that are motivated by empirical
observations. (1) The fitness of each genotype σ is a
function of an environmental parameter x ≥ 0, the antibi-
otic drug concentration, and is described by a fitness curve
of the form

fσ ¼ rσwðx=mσÞ: ð1Þ

The fitness curve thus has the same shape for different
genotypes except for a rescaling of the axes by the
genotype-specific parameters rσ and mσ . This is a common
observation for various bacterial strains and antibiotics
[23,49,50]. We call rσ the null-fitness andmσ the resistance
of a genotype σ, following terminology used for bacterial
dose-response curves that represent the population growth
rate as a function of drug concentration [23,49,51]. We
choose units such that for the wild type σ ¼ 0, r0 ¼ 1, and
m0 ¼ 1, so that f0ðxÞ ¼ wðxÞ. Further, wðxÞ is a monotonic
decreasing function, reflecting the decreasing fitness of a
bacterial cell with increasing drug concentration. For
numerical purposes, we will choose the widely used Hill
function form: wðxÞ ¼ 1=ð1þ xnÞ, where n is called the
Hill exponent. Empirically obtained dose-response curves

are frequently fitted through Hill functions [51], and the
scaling property expressed in Eq. (1) shows up as a common
value of n shared by various mutants of the same strain
exposed to the same drug [49,50]. (2) Every mutation comes
with two parameters, ri and mi, and for any genotype, rσ ¼
exp½Pi σi ln ri� and mσ ¼ exp½Pi σi lnmi�. Thus, the
effects of individual mutations combine in a simple multi-
plicative manner. This is based on empirical observation that
phenotypes of null-fitness and resistance in fact exhibit
limited or no epistasis for several microbial species and
drugs [23,52,53]. (3) The mutations exhibit trade-off
between adaptation to low and high drug concentrations
[25,52,54]; i.e., ri < 1 and mi > 1. This means that every
mutation enhances the resistance, but this comes at the cost of
reduced null-fitness. The fitness curves of a specific reali-
zation of the TIL model with L ¼ 2 mutations are shown in
Fig. 2(a).
The problem of analyzing this model has two compo-

nents. First, one needs to understand the topography of the
fitness landscape, i.e., the set of local fitness maxima and
the paths that lead to the maxima, for a fixed x. The second
part involves questions about evolutionary dynamics
between maxima under changing drug concentrations.
The first part has been addressed in detail in Ref. [23],
and we describe some of the salient features of landscape
topography here. The landscape of the TIL model is highly
rugged (except at very low and very high x); i.e., the
number of fitness maxima is asymptotically exponential in
L [23]. To describe evolutionary dynamics at fixed x, it is
useful to introduce the notion of a fitness graph. The nodes
of the fitness graph are the genotypes, and edges connect
mutational neighbors, i.e., genotypes that differ by a single
mutation. The fitness graph is an acyclic oriented graph,
where the edges point toward increasing fitness [16,55].
The fitness graph depends on x: a fitness maximum for a
certain value of xmay not be a fitness maximum for another
[see Fig. 2(b) for an example]. Note that the fitness graphs
change only when the fitness curves of two mutational
neighbors intersect. Evolution is assumed to proceed
through adaptive walks; i.e., the entire population moves
along the edges of the fitness graph respecting their
orientation [30,56–59] (see Appendix A for further details).
While this is an idealization, adaptive walks have been
found useful in the analysis of microbial evolution experi-
ments [60–62].
Along the path taken by an adaptive walk, the fitness

increases monotonically, and such paths are therefore
(evolutionarily) accessible [2,11,63]. The adaptive walk
terminates once a local fitness maximum is reached. In
general, there are multiple accessible paths starting from a
genotype. A greedy adaptive walk is an adaptive walk in
which every step is maximally fitness increasing [56]. A
more realistic dynamics is obtained by assuming that the
probability of a transition σ → σ0 is proportional to 1 − e−2s

when s > 0 and 0 otherwise, where s≡ fσ0=fσ − 1 denotes
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the selection coefficient [57,58]. We have used this version
of the adaptive walk dynamics for all simulations, and the
greedy walk has been used in the discussion of some
topological properties of specific transition graphs.
We also make use of the notion of mutationally directed

(or simply directed) paths, which are paths in the fitness
graph along which the number of mutations relative to the
wild type increases or decreases monotonically. The
following interesting property about the TIL landscapes
at fixed x was established in Ref. [23]. It is worth
discussing, since we will use it to prove certain results
in the following sections.
Directed path accessibility.—Given a fixed concentra-

tion x, every (mutationally) directed path ending at a local
fitness maximum is accessible.
In other words, every local maximum σ is evolutionarily

accessible from the subsets (supersets) of σ by a sequential
gain (loss) of mutations; the mutations may be gained (or
lost) in any order. This property has remarkable conse-
quences. For example, the wild type is a subset of every
genotype, and therefore can access every fitness maximum
through all directed paths. Whenever the wild type is a
fitness maximum, it must be the only fitness maximum in
the landscape, since it can be accessed from all genotypes.
The same two properties also hold for the all-mutant. With
this background, we move on to the main focus of this
article, which is evolutionary dynamics under slow changes
in x. It is here that the relation with driven disordered
systems, in particular the Preisach model, will become
apparent.

III. RESULTS

A. Stable states

We consider an evolutionary dynamic where the system
is driven by changing the parameter x, and at each value of
x we wait long enough so that the system reaches a local
fitness maximum through an adaptive walk. An estimate of
the necessary waiting time in terms of population-genetic
parameters is provided in Appendix A. We call a genotype
a stable state if it is a local fitness maximum (LFM) at some
concentration x. As x changes, the fitness graph is altered
by flipping the direction of one edge every time the fitness
curves of two mutational neighbors intersect [see Figs. 2(a)
and 2(b)]. A stable genotype σ ceases to be a LFM once its
fitness curve intersects that of a mutational neighbor, and
the system transitions to a new stable state by moving along
the oriented edges of the new fitness graph.
Given a state σ, we define the two disjoint sets

Iþ½σ� ¼ fi∶σi ¼ 1g; I−½σ� ¼ fj∶σj ¼ 0g. For i ∈ Iþ½σ�,
we denote by σ−i the configuration obtained form σ by
setting σi ¼ 0. Likewise, for j ∈ I−½σ�, let σþj denote the
configuration obtained from σ by setting σj ¼ 1. Let xi be
the intersection point of the dose-response curves of the

(a)

(c)

(d)

(b)

FIG. 2. Trade-off-induced fitness landscapes (TIL) model.
(a) Fitness curves for four genotypes in a TIL model with two
sites (L ¼ 2), with parameters r1 ¼ 0.8, m1 ¼ 1.3 and r2 ¼ 0.5,
m2 ¼ 2. The shape of the curve is the Hill function wðxÞ ¼
1=ð1þ x4Þ [49,51]. The figure is divided into five regions A–E,
corresponding to different fitness graphs. A new fitness graph
occurs when the fitness curves of two mutational neighbors
intersect. The x values of the intersection points are marked by the
letters a–d. The elements x1; x2; x̄1; x̄2 of the ordering sequence
(see main text) are indicated by solid vertical lines. (b) Fitness
graphs in the regions A–E. Concentration x increases in the
downward direction. In each fitness graph, the local fitness
maxima (LFMs) are marked in red. Evolution in a fitness graph
follows the oriented edges until a fitness maximum is reached.
The curved gray arrows follow the evolution of the system under
quasistatic increase of x starting from the stable state 00 at x ¼ 0
until the all-mutant 11 is reached; the curved red arrows continue
the trajectory as the concentration is quasistatically decreased
until 00 is reached again. (c) Transition graph for the two-site
system is shown. This should be distinguished from the fitness
graphs in (b). The nodes of the transition graph are the stable
states which, in this simple case, comprise all genotypes. The
gray arrows are the U transitions, i.e., the transitions under
concentration increase, and the red arrows are the D transitions,
i.e., transitions under concentration decrease. The transition
graph can be read off from the sequence of fitness graphs in
(b). (d) The transition between states is shown schematically.
Each horizontal level is a genotype, and the vertical lines denote
transitions. The black lines correspond to genotypes reached
under U transitions (starting from 00 at x ¼ 0), while the line
traced out by the red dots indicates the genotypes reached under
D transitions (starting from 11 at large x). The hysteresis loop
pqrs is marked.

DAS, KRUG, and MUNGAN PHYS. REV. X 12, 031040 (2022)

031040-4



wild type σ ¼ 0 and the genotype with a single mutation at
site i, i.e., 0þi. Hence, xi is the solution of the equation

wðxÞ ¼ riwðx=miÞ: ð2Þ

By a suitable choice of the functionwðxÞ this solution can be
guaranteed to be unique (see Ref. [23] and Appendix B). It
then follows that for σ and i ∈ I−½σ�, the fitness curves of σ
and σþi intersect atmσxi. Likewise, for j ∈ Iþ½σ�, the fitness
curves of σ and σ−j intersect atmσ x̄j, wherewe have defined
x̄j ¼ ðxj=mjÞ. We now see that a necessary and sufficient
condition for a genotype σ to be a stable state is that

max
j∈Iþ½σ�

x̄j < min
i∈I−½σ�

xi: ð3Þ

If this holds, let the index l (u) correspond to the site
where the maximum (minimum) on the left-hand (right-
hand) side of the inequality is attained. The stability range
of σ is then ðmσ x̄l; mσxuÞ. When starting from a genotype
σ that is a LFM at x, the sites l and u are the first sites that
undergo a mutation when decreasing, respectively increas-
ing the concentration. We refer to sites l and u as the
least-stable sites.
At this point, we introduce a fruitful analogy with the

standard Preisach model, which is composed of a set of
noninteracting two-level systems referred to as hysterons
[44,64]. The mutation variable σi ∈ f0; 1g is analogous to
the ith hysteron, and its states 0 and 1 correspond to the up
and down states of the hysteron. The parameter x plays the
role of an external magnetic field H that drives the system.
In the Preisach model, each hysteron has an upper and
lower threshold hþi and h−i , respectively. The ith hysteron
remains in state 0 as long as H < hþi , and transits to 1
otherwise. Likewise, for H > h−i it remains in state 1,
transitioning to 0 when this condition does not hold.
Imposing for each hysteron that h−i < hþi implies that in
the range ðh−i ; hþi Þ hysteron i can be in either of its two
states. The particular state chosen is history dependent,
giving thereby rise to hysteresis. Thus a necessary and
sufficient condition for a hysteron configuration σ to be
attainable at some magnetic field H is that

max
j∈Iþ½σ�

h−j < min
i∈I−½σ�

hþi ; ð4Þ

which is identical to the TIL stability condition, Eq. (3). We
thus define the Preisach analog of the TIL model as
composed of L hysterons, where the upper and lower
thresholds of the ith hysteron are hþi ¼ xi and h−i ¼ x̄i,
respectively. Note that since mi > 1, we have x̄i < xi, so
that the conditions Eqs. (3) and (4) are in fact equivalent,
and we arrive at our first key result: The stable states of the
TIL model and its Preisach analog are identical.
One immediate result following from the Preisach-TIL

equivalence is the following proximity property of stable

states which holds for both models: if σ is a stable state, and
l and u are its least-stable sites, then the genotypes σþu and
σ−l must be stable states as well. The proof follows by
noting that if σ is stable and hence the inequality Eq. (3)
holds, then by virtue of x̄i < xi, this inequality must also
hold for σþu and σ−l. The proof of the proximity property
is given in Appendix B.
For the Preisach model the proximity property implies

the no-avalanche condition [64]: when H ¼ hþu , we have a
transition from σ to σþu, such that (i) σþu is a stable state by
peak proximity, and moreover, (ii) σþu is a LFM at the field
H ¼ hþu that triggered the transition and hence no further
state changes occur. An analogous result holds when
H ¼ h−l . However, while the proximity property (i) holds
for the TIL model as well, the additional dependence onmσ
of the stability range ðmσ x̄l; mσxuÞ of σ implies that (ii) will
not hold in general. As we show next, this leads to
significant differences in the dynamical properties of the
two models. In particular, the TIL dynamics generically
includes avalanches.

B. Dynamics and the transition graph

In this section, we discuss dynamics under quasistati-
cally changing x. While this assumption is not realistic in
clinical applications, it is amenable to analytical treatment
and provides a stepping stone toward more realistic pro-
tocols, which we consider in Sec. III F. Crucial aspects of
the dynamics under quasistatically changing x can be
described by transitions among stable states, such that
the concentration is changed just enough so that the state
ceases to be a LFM. We call such transitions under
concentration increase a U transition, and that under
concentration decrease a D transition. Then the dynamics
can be described by a transition graph [see Fig. 2(c) for an
example], where the nodes are the stable states, and each
node has outgoing U and D edges corresponding to
increasing and decreasing concentrations, respectively.
This must be distinguished from a fitness graph, which
is defined at a fixed concentration, and where the directed
edges connecting mutational neighbors indicate the direc-
tion along which the fitness increases.
While the TIL model and its Preisach analog share the

same set of stable states, the dynamical properties are, in
general, different. To illustrate this, in Fig. 3 we show a
particular realization of the TIL model with L ¼ 5 along
with its Preisach analog. In the Preisach model, each
transition comprises a single switching of the least-stable
hysteron, which leads to a new stable state. In the TIL
model, a change at a single site need not lead to a stable
state. For example, the U transition 15 → 27 in the TIL
model in Fig. 3 involves changes at the third and fifth sites.
To understand why, first notice that under concentration

changes in the U direction, the first change in a stable state
σ [which must satisfy Eq. (3)] is a flip 0 → 1 at the site u
which has the smallest xi among sites with σi ¼ 0. This flip
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occurs at x ¼ mσxu. By the proximity property of the TIL
model, the new state σþu is also stable, satisfying Eq. (3).
However, in order for σþu to be a LFM at x ¼ mσxu, we
must require that its lower stability threshold is less than or
equal to x. This threshold is mσþu x̄j ¼ mσmux̄j, where j ∈
Iþ½σþu� and x̄j > x̄k for all k ≠ j with k ∈ Iþ½σþu�.
Therefore the new state is a fitness maximum if and only
if muðx̄j=xuÞ ¼ ðx̄j=x̄uÞ ≤ 1, in which case the dynamics
terminates at σþu. When the condition is violated, addi-
tional secondary mutations occur until a fitness maximum
is reached. In the terminology of driven disordered systems,
this corresponds to the occurrence of an avalanche. While
many detailed properties of the secondary mutations
depend on system parameters, certain features are general
and in particular do not depend on the choice of wðxÞ. In the
following we mention some of these.
In the Preisach model, exactly L U transitions are

required to get from the wild type to the all-mutant, and
exactly LD transitions to go from the all-mutant to the wild
type, as is seen in Fig. 3. In the TIL model, due to the
existence of secondary mutations, these numbers are
generally different. The TIL model in Fig. 3 requires 6U
transitions to go from the wild type to the all-mutant, and
6D transitions in the reverse direction, even though L ¼ 5.
One important consequence of the secondary mutations is
that the number of mutations does not always increase
monotonically underU or decrease monotonically underD.
The first secondary mutation is always of a complementary
kind to the initial mutation, where the changes 0 → 1 and
1 → 0 are defined to be of complementary kind to each

other (see Appendix B for a proof). Further mutations may
also continue to be complementary to the initial mutation,
leading to a (temporary) decrease in the number of
mutations under U or an increase under D, as shown in
a typical trajectory for L ¼ 20 mutations in Fig. 6(a). This
seems counterintuitive, but arises from the state-dependent
prefactor mσ in the stability thresholds of stable states.
Moreover, when secondary mutations are present, the

state σ0 to which a transition occurs from a state σ need not
be unique, due to the possible presence of multiple adaptive
paths. In the TIL graph of Fig. 3, the state 15 can transition
either to the state 27 or the state 23 under concentration
increase. It can also be shown, using the property of direct
path accessibility, that secondary mutations cannot cause a
transition to a subset or superset of σ (see Appendix B); i.e.,
both the initial and the final state must contain at least one
mutation not contained in the other. Another related
consequence of the secondary mutations is that σ may
transition to the same state σ0 under U and D transitions.
For example, the state 5 in the TIL graph in Fig. 3
transitions to the state 3 under both U and D transitions.
This also appears counterintuitive from a biological stand-
point, but it can occur when the stability range of σ is
contained in that of σ0.
To understand the transition graph of the TIL model in a

more systematic way, we adopt a strategy that has been
fruitful for the Preisach model [64]. We construct a symbolic
sequence p that specifies the total order among all the
elements offxigL1 , fx̄jgL1 . First,without loss of generality,we
order our indices i such that x1 < x2 < � � � < xL. Next, it is

(a) (b)

FIG. 3. Transition graph of a realization of the TIL model (a) and its Preisach analog (b) with L ¼ 5 sites. The symbolic ordering
sequence of this realization is given in Eq. (5). Each genotype is assigned an integer label, placed within the nodes, by interpreting the
genotype string as a binary code where the leftmost digit is the least significant. The gray arrows are U transitions and red arrows are D
transitions. The yellow nodes are the genotypes that cannot be reached starting from the wild type. When multiple outgoing arrows are
present from a state, the solid ones correspond to greedy walks, whereas the dashed lines represent fitness-increasing walks but with one
or more steps that are not maximally fitness increasing.
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useful to define the permutation ρ of ð1; 2;…; LÞ that orders
the x̄i among themselves from largest to smallest, so that
x̄ρ1 > x̄ρ2 > � � � > x̄ρL . Since x̄i < xi for each i, what
remains is the specification of the ordering relation between
x̄i and xj for j ≠ i. Given the sets fxigL1 , fx̄jgL1 and the
ordering prescribed byρ, we can describe the total ordering in
terms of a symbolic sequencep of elements ī and i bymaking
the correspondence ī ↔ x̄i and i ↔ xi, so that the sequence
specifies the increasing order of xi and x̄i. Since x̄i < xi and
the permutation ρ have to be respected, the sequence has to be
such that the following hold: for each i, ī is to the left of i; the
subsequence of sites without overbars is 1; 2;…; L; the
subsequence of sites with overbars is ρL; ρL−1;…; ρ1. As an
example, consider the TILmodel in Fig. 3, which hasL ¼ 5,
ρ ¼ ð43521Þ and the ordering

x̄1 < x̄2 < x1 < x̄5 < x̄3 < x2 < x̄4 < x3 < x4 < x5:

The corresponding symbolic ordering sequence p is then

p ¼ 1̄ 2̄ 1 5̄ 3̄ 2 4̄ 3 4 5 : ð5Þ

Because of the Preisach-TIL correspondence, whether a
genotype or Preisach state is stable or not, and what the
least-stable sites of a stable state are, can be read off from p,
since the condition in Eq. (3) is easy to check by inspecting
p (details are given in Appendix B). In the case of the
Preisach model this implies that p completely determines
the transition graph [64]. While this is not the case for the
TIL model, the sequence p nevertheless contains consid-
erable information about the TIL transition graph. In
particular, this representation provides a precise condition
for the existence of secondary mutations (see Appendix B):
Secondary mutations are absent from all transitions in the
TIL model if and only if the ordering sequence is of the
form

p ¼ 1̄ 1 2̄ 2 … L̄ L : ð6Þ

In the absence of secondary mutations, the transition graph
of the TIL model becomes identical to that of its Preisach
analog. The transition graph in this case has a simple chain
structure (see Fig. 4), and the number of stable states is
Lþ 1, which is the lowest possible in a TIL (or Preisach)
model. Note that despite identical transition graphs in this
case, some dynamical differences are still present. Each
Preisach element is hysteretic, and therefore forward and
reverse transitions between two states do not occur at the
same concentration; in the TIL model satisfying Eq. (6),
however, they occur at the same concentration, namely the
one at which the dose-response curves of the two genotypes
intersect.

C. Hysteresis, reversibility, and memory

The reversibility of evolution under a reversal of envi-
ronmental conditions is an important question in evolu-
tionary biology [65–67]. In the specific case of antibiotic
resistance evolution, to what extent resistance is reversed in
a drug-free environment is a question of considerable
clinical importance [68–70]. One should note that different
notions of reversion are used here. One common definition
refers to a sudden (rather than slow) change in environment
to a new state, followed by a switch back to the original
state [68,71,72]. In the context of our model, we consider
first reversion under quasistatic environmental changes,
which would appear to be most conducive for approx-
imately reversible behavior. The phenomenon of reversion
is naturally linked to the notion of hysteresis under a slow
and continuous change of an external field, and indeed the
Preisach model was originally proposed as a simplified,
tractable model of hysteresis in magnetic materials [44,64].
We then turn in Sec. III F to the possibility of reversion
under jumplike concentration changes.
The TIL model also exhibits hysteresis and irreversibility.

The highest degree of reversibility is exhibited by systems
with chainlike transition graphs, such as in Fig. 2(c) or Fig. 4,
where each transition σ → σ0 is accompanied by the tran-
sition σ0 → σ in the reverse direction, and there are no states
with multiple outgoing edges in either direction. This means
that under a reversal of the direction of concentration change,
the same genotypes occur in reversed sequence. However,
the transitions σ → σ0 and σ0 → σ need not occur at the same
concentration. For example, in Fig. 2(d), the transition
10 → 01 occurs at the point x ¼ c during concentration
increase, but 01 → 10 occurs at x ¼ b during concentration
decrease. On the other hand, for systems of the type shown in
Fig. 4, the forward and reverse transitions occur at the same
concentration. However, such perfect reversibility is not
typical of TILmodels. The degree of reversibility depends on
parameter choices. Figure 5 shows a realization of the TIL
model with L ¼ 5 loci and a high degree of irreversibility,
i.e., forward transitionswith no corresponding reverse transi-
tions, such as the D transition 16 → 1 or the U transition
15 → 23.
Based on the observation of the systems described in

Figs. 2 and 4, we need to distinguish between two kinds of
hysteresis loops. We say that two states σ and σ0 form a
concentration loop if one can go from σ to σ0 under
quasistatic concentration increase and from σ0 to σ under
concentration decrease, and there is some range of x over

FIG. 4. TIL transition graph with L ¼ 4 and no secondary
mutations. The ordering sequence is of the form given in Eq. (6).
The transition graph is unique for this ordering sequence, and it is
identical to the graph for the Preisach analog.
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which the forward and reverse trajectories do not share the
same genotype. The system in Fig. 2 exhibits a concen-
tration loop, as shown by the rectangle with corners marked
by the points p, q, r, and s in Fig. 2(d). We say that σ and σ0
form a graph loop ðσ; σ0Þ if one can go from σ to σ0 underU
transitions and from σ to σ0 underD transitions, and if there
is at least one genotype contained in either the forward or
reversed sequence of states that is not contained in the
other. A graph loop between two states implies a concen-
tration loop, but a concentration loop does not imply a
graph loop. For example, the case shown in Fig. 2 has a
concentration loop, but does not have a graph loop, as can
be seen in Fig. 2(c). An example of a graph loop in the TIL
model in Fig. 3(a) is the one formed by the sequence of U
transitions from 1 to 23 and the D transitions leading from
23 back to 1. A necessary condition for the existence of
graph loops in the TIL model is the presence of secondary
mutations; for otherwise, every transition must be among

mutational neighbors, and such that the upper stability
threshold of one coincides with the lower stability threshold
of the other, causing the transitions to be reversible.
Hysteresis is also linked to the notion of memory

[34,35]. A genotype encountered along a trajectory not
only contains information about the concentration, but also
about the history of environmental change. At the simplest
level, it may contain information about whether one is on
the U or D boundary of a loop. For example, in the region
between x ¼ b and x ¼ c in Fig. 2(d), the state 10 indicates
that the concentration has been increasing, while 01
indicates that it was decreasing. But there is more infor-
mation available than this, in general. The subloops seen in
the TIL graphs in Figs. 3 and 5 contain (partial) information
about extreme values of x reached in previous rounds of
concentration cycling. For example, in the graph shown in
Fig. 5, if the dynamics started with the wild type at x ¼ 0
and reached the genotype 19 at some point, one infers that
the last transition happened by increasing the concentration
to above the stability threshold of 17, but we also see from
the transition graph that on some previous upward path the
concentration must have exceeded the upper stability
threshold of 15, followed by some sequence of transitions
that brought it to the lower stability threshold of 16 for the
first time since this happened.
In this context, it is important to mention the phenome-

non of return-point memory (RPM) [40,73] possessed by
certain systems. In our setting of adaptive evolution, RPM
implies that genotypes at which the direction of the
concentration change has been reversed can be returned
to with a subsequent reversal and hence remembered. The
RPM property is universally present in the Preisach model
[34,40,64]. In the context of state transition graphs, one
talks about the loop-RPM property, which ensures that
the system cannot escape any loop between two states σ
and σ0 without passing through one of these states (see
Refs. [40,64] for a detailed exposition). The RPM property
implies the loop-RPM property, and is therefore possessed
by the Preisach model and can be checked for the Preisach
graph in Fig. 3.
Return-point memory is a mechanism by which a

memory of local extremes of the driving parameter can
be retained. For example, in the TIL model in Fig. 3(a) and
under greedy dynamics, starting with the wild type at
x ¼ 0, and increasing the concentration until state 15 is
reached, any decrease of concentration followed by a
subsequent increase will eventually lead again to state
15. However, if the concentration continues to increase, so
that state 23 is reached, then a concentration decrease to say
19 followed by an increasewill not lead to 15 anymore. Thus
thememory of 15 as thegenotype at a local extreme event has
been erased and replaced by 23. While we have found many
realizations of the TIL model that possess the loop-RPM
property under greedy transitions, such as the transition
graphs shown in Figs. 3 and 5, it is not universally present.

FIG. 5. TIL transition graph with L ¼ 5 and nested hysteresis
loops. This graph was generated from a system with trade-off
among all pairs of mutations, i.e., requiring that ri <rj⇔mi >mj

for all i, j, and considering only transitions under greedy adaptive
walks. The nesting of graph loops implies that genotypes can
partially encode past changes of concentration. For example,
starting from the wild type 0 at concentration x ¼ 0, the genotype
19 can be realized only by increasing first the concentration
enough in order to reach at least 23, followed by a decrease
leading to at least 17 (but not further than 16) and a final increase
of concentration.
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Additionally, the existence of alternative fitness-increasing
transitions, such as the ones shown in Fig. 3 by the dashed
lines, can cause a loss of this kind of memory. To see this,
consider the loop formed by the greedyU transitions leading
from state 7 to 23 and the greedyD transitions going from 23
to state 7. On the downward trajectory from 23, it is possible
to escape the loop without going first through 7 by making
the transition 19 → 11.

D. Expected number of stable states

While many properties of the TIL model depend only on
the ordering sequences ρ and p, for a more detailed study of
the concentration-dependent evolutionary dynamics the
fitness values of the model need to be explicitly assigned.
In the standard Preisach model, one usually considers the
thresholds to be independent random variables. Similarly
for the TIL model, we assume that ri and mi follow a joint
probability distribution with density Pðr;mÞ and the
ordered pairs ðri; miÞ for i ¼ 1; 2;…L are independently
and identically distributed. Their joint probability density is
then given by Qðfðri; miÞgÞ ¼

Q
L
j¼1 Pðrj; mjÞ.

Since xi and x̄i are functions of ri and mi only, the pairs
ðxi; x̄iÞ for i ¼ 1; 2;…L are independently and identically
distributed as well. Let the (marginal) cumulative distri-
bution function of xi be FxðxiÞ and that of x̄i be Fx̄ðx̄iÞ, and
let Px̄ðzÞ ¼ F0̄

xðzÞ denote the probability density function
of x̄i. The probability that a genotype is a fitness maximum
is the probability that Eq. (3) holds. The calculation of this
probability is facilitated by the fact that Iþ½σ� and I−½σ� are
disjoint sets. One can show that in the limit of large L the
average number of stable states hNssi is given by

hNssi ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

ðL − 1ÞjG00ðz0Þj

s
eGðz0ÞðL−1Þ; ð7Þ

where the average is taken with respect to Qðfri; migÞ,
GðzÞ ¼ ln½1þ Fx̄ðzÞ − FxðzÞ�, and the global maximum of
this function is at z0. Thus the mean number of stable states
is asymptotically exponential in L, showing the highly
rugged nature of these landscapes [see Appendix C for the
derivation of Eq. (7)].

E. Reversibility in the main hysteresis loop

An important dynamical question is understanding the
evolutionary sequence of genotypes as the concentration is
cycled between very low and very high values. We numeri-
cally generate trajectories starting from the wild type at
x ¼ 0 and increasing x until the all-mutant is reached, and
then decreasing x until the wild type is reached again. At
each x, the system is evolved through the adaptive walk
(based on selection coefficients, as discussed in Sec. II)
until a LFM is reached. We call the trajectory composed of
the sequences of LFMs the main hysteresis loop, and the

upward and downward parts of it the U and D boundary,
respectively. The mean number of mutations in the geno-
type under quasistatic change in x on both the U and D
boundaries is shown in Fig. 6(a), which clearly shows
hysteresis. The inset shows a comparison with the Preisach
model. Recall that in the TIL model the range of concen-
trations over which a genotype σ is a local maximum has an
overall scale factor mσ. Therefore, in order to facilitate
comparison of the data for the TIL model and its Preisach
analog, we have rescaled the concentration axis for the
former by hmðxÞi, the average scale factormσ of the states σ
that are stable at concentration x. From the inset of Fig. 6(a)
we see that for the Preisachmodel the curve for the number of
mutations on the U boundary lies below the corresponding
curve for the D boundary. This effect can be understood
qualitatively as follows. The intersection points along the U
boundary are governed by the distribution of xi, and those
along theD boundary by the distribution of x̄i ¼ xi=mi < xi.
As a result, the ith mutation is acquired at a larger x along the
U boundary compared to where it is lost on theD boundary.
More generally, for any randomly chosen pair of mutations i
and j, xj tends to be higher than x̄i since all themi’s are larger
than 1. The consequence is that the intersections along theU
boundary tend to occur at larger values of x compared to the
D boundary, making the curve for the number of mutations
along the U boundary lower. Essentially the same effect is
visible for the TIL model when the x values are rescaled by
the value of hmðxÞi on the boundaries. When the rescaling is
not done, theU boundary becomeshigher, as seen in themain
part of Fig. 6(a). The clue to understanding this comes from
Fig. 6(b), which shows that the average resistance level
hmðxÞi at given x is lower for the U boundary. Since the
intersection points have the prefactor mσ in the TIL model,
this effect tends to make the intersection points along the U
boundary occur at lower values of x. For our system, this
effect is apparently strong enough to shift the curve of the
number of mutations along theU boundary above that of the
D boundary.
Generally, the changes of resistance level and mutation

number have a complex mutual dependence, and these can
vary between systems depending on the dose-response curve
and the parameter distribution. However, certain asymptotic
features that hold generically for stable states can be
computed to leading order. For example, as shown in
Appendix C, the mean number of mutations in a state that
is stable at x scales asymptotically as ≃ðln xÞ=b, where the
parameterb ¼ hlnmi, andm is the resistance of an individual
mutation. This is indicated by the brown dashed line in
Fig. 6(a). At the same level of approximation, the mean level
of resistance satisfies the relation lnhmðxÞi ≃ ln x, which
is shown as a dashed brown line in Fig. 6(b). The inset of
Fig. 6(b) displays the fitness as a function of x, which is seen
to decline at a much lower rate than that of thewild type, as a
consequence of the increasing level of resistance. Detailed
derivations of these results are given in Appendix C.
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F. Beyond the quasistatic approximation

For many applications, a more realistic driving protocol
is one where x is changed discontinuously. Experiments on
antibiotic resistance evolution often consider protocols
where the concentration is changed stepwise by a constant
factor [74,75]. To simulate this scenario, we numerically
implemented a driving protocol where concentration is

sequentially increased in discrete steps from very low to
very high values and then reversed. Both the increase and
decrease occur by a factor of hmiα in each step, and several
values of α were used. The limit α → 0 corresponds to
quasistatic driving. The results for the mean number of
mutations along the U and D boundaries are plotted in
Fig. 7(a). The hysteresis loops are thinner, implying a

(a) (b)

FIG. 7. Average properties of evolutionary trajectories along the main loop under finite driving rates α. (a) Simulation results for the
mean number of mutations along the main hysteresis loops have been plotted for different values of the jump sizes in concentration. The
concentration has been changed in discrete steps by factor of hmiα. The quasistatic case corresponds to the limit α → 0. The inset shows
an enlarged version for clarity. (b) The length of adaptive walks has been plotted as a function of concentration for various values of α.
Adaptive walk lengths exceeding one step imply that secondary mutations have occurred.
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higher phenotypic reversibility. When the concentration
changes by a finite amount, the subsequent adaptive walk
can move stochastically along multiple paths involving
larger numbers of mutations [see Fig. 7(b)]. One therefore
expects the system to reach a final distribution of pheno-
types that depends less strongly on the starting point,
consistent with higher reversibility on the phenotypic level
(but not necessarily on the genotypic level, as we will see in
the next section).

G. Genotypic reversibility

Figure 8(a) shows simulation results with quasistatically
changing x for themean number of secondarymutations as a
function of the number of background mutations (i.e., the
number of mutations in the genotype from which the
transition originates) along the main hysteresis loop. For
largeL, the number of secondary mutations depends weakly
on the number of background mutations (unless the latter is
close to 0 or L). Moreover, as L increases linearly, the gaps
between the curves decrease, indicating a possible asymp-
totic convergence toward a limiting shape (although this
couldnot beverified conclusively). The number of secondary
mutations is seen to be small, implying that adaptivewalks at
fixed x are short for quasistatic changes in x.
As was shown above, secondary mutations are also the

source of genotypic irreversibility under quasistatic drive in
the TIL model. We now describe a measure of genotypic
irreversibility, adapted from a distance measure for evolu-
tionary paths introduced in Ref. [76]. Let σ be the genotype
at x on the U boundary of the main loop. Then dUðxÞ is
defined as the minimum of the Hamming distance between
σ and the genotypes on the D boundary (for any concen-
tration). The quantity dDðxÞ can be defined in an analogous

way. The quantity hdUðxÞi is plotted in Fig. 8(b). The
distance measures vanish at very low and high concen-
trations, which is expected since the wild type and all-
mutant are on both theU andD boundaries of the loop. The
maximum value is reached close to the concentration at
which the estimated mean number of mutations is L=2, as
shown by the vertical dotted line. The level of reversibility
is quite high for quasistatic driving, consistent with the low
number of secondary mutations seen in Fig. 8(a). The
quantity hdDðxÞi shows very similar behavior (not shown).
We have also quantified the genotypic irreversibility

for finite α using the measure hdUðxÞi, which is shown in
Fig. 8(b). For large α, the genotypic reversibility is lower, in
contrast to the phenotypic reversibility in Fig. 7(a). Thewalk
lengths increasewith increasing α, as shown in Fig. 7(b). The
longer walks lead to higher genotypic divergence, even
though the phenotypic properties of the LFMs that are
accessed are very similar, as demonstrated in Fig. 7(a).
Thus, even when there is substantial hysteresis at the
genotypic level, one may still observe very similar levels
of drug resistance evolving along the U and D boundaries.
For small α, we see from Fig. 8(b) that the maximum of hdUi
is slightly lower than in the quasistatic limit.While the origin
of this effect is not entirely clear, it is likely related to the fact
that a small jump in concentration helps the system move
beyond the quasistatic boundary and explore a slightly larger
genotypic space. The trajectories would then be attracted
preferentially toward a small number of nearby localmaxima
of high fitness, leading to these states evolving frequently
along both the U andD boundaries. As α increases, a larger
number of maxima become accessible through the adaptive
walk, leading to a larger dispersion and reduced recurrence of
the final state.
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FIG. 8. Results on secondary mutations and genotypic reversibility. Simulations were conducted along the main hysteresis loop, and
the mutation parameters were generated randomly as described in the main text and Appendix C. (a) The mean number of secondary
mutations in an evolutionary transition under quasistatic driving as a function of the number of mutations in the originating background
genotype. We used 105 realizations for averaging. Black symbols correspond to the U boundary and red to the D boundary. (b) Mean
path irreversibility hdUðxÞi is shown for various values of the driving rate α. Averages were performed over 104 realizations. The dashed
black line corresponds to the quasistatic limit α → 0.
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IV. SUMMARY AND DISCUSSION

We have investigated a class of models of bacterial
evolution under changing drug concentrations, and shown
that their dynamics are closely related to those of driven
disordered systems, exhibiting dynamical phenomena such
as hysteresis and memory formation. As in the case of
driven disordered systems, a state transition graph captures
the dynamics of adaptive evolution in a changing environ-
ment. As a result, questions about evolution can be cast as
questions about the graph topology. We have shown that in
such models partial information about the changing envi-
ronment is stored in evolving genotypes. Although our
analysis has focused on the relatively simple TIL model, we
should emphasize that the memory effects described here
are generic features of disordered systems.
Specifically, we have found that the transitions between

genotypes in a homogeneous population exhibit a number
of generic properties which we have described in detail. In
particular, adaptive walks are found to be short, i.e., they
involve a small number of mutations, when a slow change
in the drug concentration renders a LFM unstable. In this
regime, the dynamics are not qualitatively altered by the
precise nature of the adaptive walk. Moreover, the systems
generically exhibit hysteresis loops, i.e., a lack of revers-
ibility when the direction of concentration change is
reversed. Conceptually, our work highlights the distinction
between genotypic and phenotypic hysteresis. Genotypic
reversibility is found to be low for concentration changes
with large jumps. However, the degree of phenotypic
reversibility is found to be rather high under driving
protocols involving both small and large jumps in the
environmental parameter. Thus, the phenotypes are similar
along both the upward and downward boundaries of drug
concentration cycling. We have obtained asymptotic scal-
ing approximations to phenotypes such as the number of
mutations and the fitness and resistance levels as a function
of drug concentration. These are relatively robust to
modifications in the driving protocol, making them easily
accessible to empirical testing.
Under slow concentration changes, we find that the

genotypic hysteresis loops in several instances of our model
exhibit perfect or near-perfect return-point memory, i.e., the
capability to return to a previously visited genotype at
which the direction of concentration change was reversed.
Although not universally present, existence of RPM is
relevant to applications such as the emergence of antibiotic
resistance, since it implies that drug concentration cycling
can lead to reversal of resistance. The degree of revers-
ibility, including the presence of RPM, is affected by the
distribution of the effects of mutations on the null-fitness
and resistance phenotypes. However, empirical knowledge
regarding the distribution of these mutational effects is still
limited. Moreover, our model assumes as an approximation
that the mutations combine nonepistatically, which rules
out phenomena such as the occurrence of compensatory

mutations that reduce the cost of resistance. Further work is
needed to understand how various aspects of reversibility
and memory are affected by these factors.
From a broader perspective, our work introduces a

systematic approach to understanding how the information
about a changing environment is encoded in the genotypes
of a population. A possible direction for future research is
the development of algorithms that infer features of the
environmental history from the knowledge of evolved
genomes using the state transition graph. Conversely, our
approach can be used to design treatment protocols that are
optimized to avoid or slow down the evolution of drug
resistance by controlling the drug concentration or by
cycling different antibiotics [77,78].
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APPENDIX A: ADAPTIVE WALKS AND
CHANGING ENVIRONMENT

Adaptive walks describe the evolutionary dynamics in a
limiting regime of strong selection and weak mutation
[57,79]. Here strong selection implies that only beneficial
mutations can fix, and weak mutation implies that no more
than two genotypes are present in the population at any
time. The timescale over which new beneficial mutations
arise is tmut ¼ 1=ðNμÞ, whereN is the population size and μ
is the mutation rate per genome per generation. The
timescale for fixation of a beneficial mutation is tfix ¼
s−1 lnðN2sÞ [80], where s > 0 is the selection coefficient of
the beneficial mutation. The weak mutation condition
requires that tfix ≪ tmut, which implies

Nμ lnðN2sÞ ≪ 1: ðA1Þ

In addition, we use the strong selection condition, where
the fixation probability 1 − e−2s for beneficial mutations is
derived from the well-known Kimura formula [81] in the
limit

Ns ≫ 1: ðA2Þ

In our work, we have studied protocols in which we hold the
concentration fixed for a waiting time twait until a LFM is
reached. Since this involves several evolutionary steps,
a necessary condition on the waiting time is twait ≫ tfix.
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This condition is approximately satisfied in experimental
evolution protocols where the drug concentration is
increased by a constant factor whenever the bacterial cell
density has recovered a predetermined level, signaling that a
new fitness maximum has been reached; see Ref. [75] for a
recent example. The adaptivewalk approximation requires in
addition the condition Eq. (A1), which was not the case in
Ref. [75], but could be achieved by working at smaller
population sizes.

APPENDIX B: TIL-PREISACH EQUIVALENCE

We derive first some results for the TIL model which will
be used in the following sections. These results are general
in the sense that they do not depend on the shape of the
dose-response function wðxÞ as long as it satisfies the
following properties.
(W1) wðxÞ is a continuous, strictly decreasing function

for x ≥ 0.
(W2) For all pairs of permissible values ðr;mÞ such that

r < 1 and m > 1, the curves wðxÞ and rwðx=mÞ
intersect at precisely one point.

As noted in Ref. [23], these conditions are satisfied for a
large class of dose-response functions considered in the
literature, including the exponential and half-Gaussian
functions. When considering statistical results, we will
specialize to the n ¼ 2 Hill-type dose-response function
wðxÞ ¼ 1=ð1þ x2Þ. In this case, in order for (W2) to be
satisfied, the permissible pairs ðr;mÞ have to satisfy also
m2r > 1.
As given in the main text, the stability condition of a state

of the TIL model is

max
j∈Iþ½σ�

x̄j < min
i∈I−½σ�

xi: ðB1Þ

In the following, we shall assume that we are given a stable
genotype σ such that

x−½σ� ¼ mσ x̄l and xþ½σ� ¼ mσxu ðB2Þ

hold with x−½σ� < xþ½σ�, implying that the stability con-
dition Eq. (B1) is satisfied, and the sites l and u are those at
which the maximum (minimum) of the terms on the left-
and right-hand side of the inequality are attained. We say
that sites l and u are the least stable sites in the sense that
the first mutation will occur there under concentration
decreases or increases, respectively. The stability range of σ
is then given as ðx−½σ�; xþ½σ�Þ.
By setting h−i ¼ x̄i and hþi ¼ xi, the condition (B1)

becomes the stability condition for hysteron configuration
σ of the Preisach model, as derived in the main text. The
stability range ðh−½σ�; hþ½σ�Þ is then given by

h−½σ� ¼ x̄l and hþ½σ� ¼ xu; ðB3Þ

which formally can be obtained from the stability range of
its corresponding TIL state, Eq. (B2), by setting mσ ¼ 1.
Thus while a TIL model and its Preisach analog have
identical sets of stable states, the stability ranges of the two
are different in general.

1. Proximity property of stable states

Given a stable TIL-Preisach state σ, we let again l and u
denote its least-stable sites. The following result holds for
the stability ranges h�½σ� of the Preisach model:

h−½σ� ≤ h−½σþu� < hþ½σ� < hþ½σþu�; ðB4Þ

h−½σ−l� < h−½σ� < hþ½σ−l� ≤ hþ½σ�: ðB5Þ

Note that these inequalities establish in particular that
h−½σþu� < hþ½σþu� and h−½σ−l� < hþ½σ−l�, so that σþu

and σ−l are stable Preisach states as well. But by the TIL-
Preisach equivalence they must be stable TIL states, too.
This can also be seen by noting that the corresponding
stability ranges are obtained from those of its Preisach
analog by multiplication by mσþu (mσ−l ). This is the
proximity property of the stable states for the TIL model
and its Preisach equivalent.
We only prove the inequalities in Eq. (B4); the proof of

Eq. (B5) is similar. First, note that Iþ½σ� is a proper subset
of Iþ½σþu�, and likewise I−½σþu� is a proper subset of I−½σ�.
Since each of the two sets fh�i gNi¼1 is assumed to have
distinct elements, it follows that

min
j∈I−½σþu�

hþj > min
j∈I−½σ�

hþj : ðB6Þ

Thus hþ½σþu� > hþ½σ� and the rightmost inequality of
Eq. (B4) has been proven. Next, consider h−½σþu� and
particularly its least-stable element k under field decreases.
Recall that we denoted the corresponding element for σ as
l. Therefore, either (i) k ¼ l or (ii) k ¼ u. In the former
case, it must have been that h−u < h−l , and therefore
h−½σþu� ¼ h−½σ� ¼ h−l . In the latter case, the opposite must
be true; i.e., h−u > h−l , and therefore h

−½σþu� ¼ h−u > h−½σ�.
Combining these two cases, it follows that h−½σþu� ≥
h−½σ�, thereby establishing the leftmost inequality of
Eq. (B4). However, since by definition h−u < hþu , in both
cases it must be that h−½σþu� < hþ½σ� ¼ hþu , thereby
establishing the middle inequality of Eq. (B4).

2. Construction of stable states from
the symbolic order sequence p

Here we provide an explicit construction of the set of
stable states of the TIL model (and its Preisach equivalent)
from the symbolic order sequence p, which represents the
ordering of the 2L concentrations x̄i and xj. Denoting the
set of stable states associated with p as Sp, this set can be
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partitioned into the subset of states Sp;u whose least-stable
site under concentration increases is u, with u ¼ 1; 2;…; L
(this subdivision leaves out the all-mutant σ ¼ 1, which is
always stable, and we assign it to the singleton set Sp;Lþ1).
To illustrate the construction of Sp;u, consider the order

sequence (5) of the example given in the main text:

x1 < x2 < x1 < x5 < x3 < x2 < x4 < x3 < x4 < x5;

⇔

p ¼ 1̄ 2̄ 1 5̄ 3̄ 2 4̄ 3 4 5 : ðB7Þ

Let us construct Sp;2, the set of stable states with least-
stable site u ¼ 2. All stable states must satisfy the inequal-
ity (B1), and in particular the right-hand side of it must be
equal to x2. This can only be the case if σ2 ¼ 0 and σ1 ¼ 1;
i.e., the site 1 must belong to Iþ½σ�. In terms of the order
sequence p, this condition is equivalent to requiring that
any element iwithout an overbar which is located to the left
of element u must be assigned as σi ¼ 1.
Likewise, in order to ensure that the left-hand side of the

inequality (B1) is strictly less than its right-hand side, we
require that any site jwith an overbar to the right of element
u must have σj ¼ 0. In our example this requires that
σ4 ¼ 0. Any site k left undetermined by these two con-
ditions can be assigned as σk ¼ 0 or 1. In the above
example these conditions leave the sites k ¼ 3 and 5
undetermined so that Sp;2 has four elements given by
Sp;2 ¼ fð10000Þ; ð10100Þ; ð10001Þ; ð10101Þg. Repeating
the construction for all values of u, the reader may verify
that Sp has 14 states in total. These are the states shown
in Fig. 3.
In the following we will make repeated use of two results

whose validity is a direct consequence of the construction of
stable states given above. (i) Given a symbolic ordering
sequencep and using Eq. (B1), the set of all stable genotypes
σ can be inferred from it, andhence the possible pairs of least-
stable sites ðl; uÞ associatedwith these. (ii) Given any pair of
sites l and u such that x̄l < xu, there exists a symbolic
ordering sequence p such that Eq. (B2) holds and thus l and
u are the least-stable sites for some stable state σ. Whenever
we assume that Eq. (B2) holds, this will imply that either we
are given a specific order sequence p and that with respect to
p the state σ is stablewith ðl; uÞ being the pair of least-stable
sites, or alternatively, we are given ðl; uÞ and consider the set
of order sequences p and stable states σ compatible with this
choice of least-stable sites. The particular point of view will
be clear from the context.

3. Properties of secondary mutations

a. Secondary mutation must be complementary

We first derive some simple inequalities for the TIL
model. The two properties given below follow immediately
from assumptions (W1) and (W2) made above for wðxÞ:

x < xi ⇔ wðxÞ > riw

�
x
mi

�
; ðB8Þ

x > xi ⇔ wðxÞ < riw

�
x
mi

�
: ðB9Þ

Now, let σ be a stable state, such that Eq. (B2) holds.
Then, we can show from the previous results that for all
i ∈ I−½σ�nfug,

fσþu;þiðxþ½σ�Þ
fσþuðxþ½σ�Þ < 1; ðB10Þ

and for all j ∈ Iþ½σ�nflg,

fσ−l;−jðx−½σ�Þ
fσ−lðx−½σ�Þ

< 1: ðB11Þ

The last two inequalities together assert that first secondary
mutations which are in the same direction as the primary
mutation are fitness decreasing. Thus, either the first
mutation leads to a LFM, and hence there will be no
further mutations, or the first secondary mutation must be
complementary to the original mutation.

b. Locations of complementary secondary mutations

Let σ be a stable state such that Eq. (B2) holds. Then for
i ∈ Iþ½σ�,

x̄i > x̄u ⇔
fσþu;−iðxþ½σ�Þ
fσþuðxþ½σ�Þ > 1: ðB12Þ

Therefore, subsequent to an initial mutation under con-
centration increase at site u, fitness-increasing comple-
mentary mutation sites are those sites i ∈ Iþ½σ� for which
the symbol ī is located to the right of ū in the order
sequence p. Note, in particular, that the initial mutation site
u itself cannot also be the site for a subsequent secondary
mutation, as this would have implied that σ has a higher
fitness than σþu at the triggering concentration.
Likewise, for j ∈ I−½σ�,

xj < xl ⇔
fσ−l;þjðx−½σ�Þ
fσ−lðx−½σ�Þ

> 1: ðB13Þ

Any secondary mutation following an initial mutation
under concentration decrease at site l must be a site
j ∈ I−½σ� located to the left of l in the symbolic order
sequence p. The statements Eqs. (B12) and (B13) are
proven by repeated application of Eqs. (B8) and (B9) and
the properties of ordering sequences p that are compatible
with the assumption Eq. (B2).
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c. Secondary mutations cannot cause
transitions to a subset or superset

Assume the contrary. Then, according to the property of
directed path accessibility, a path must exist where the first
secondary mutation is in the same direction as the original
mutation. But this is not possible according to the previous
result.

d. Conditions for the absence of secondary mutations

Consider a realization of the TIL model with L sites and
let σ be a stable state satisfying Eq. (B2). Assume that we
are given a symbolic ordering sequence p compatible with
Eq. (B2). For any site u ¼ 1; 2;…L, we will be interested
in the interval of elements of p that is bounded to the left by
ū and to the right by u. Denote by Iu the set of sites j that
appear in this interval without overbars. Likewise, let Īu be
the set of sites that appear in this interval with overbars. Our
definition is such that neither of the two sets of sites Iu and
Īu contain u.
Consider now transitions out of σ under concentration

increases. By assumption, under a concentration increase to
(a value slightly above) xþ½σ�, the site u will mutate first,
σu ¼ 0 → 1, leading to σþu, and as a result, the upper limit
of the stability range of σþu increases to xþ½σþu� > xþ½σ�.
In order to assert the stability of σþu at the concentration
xþ½σ� which triggered the mutation at u, we must require
that

x−½σþu� ≤ xþ½σ�: ðB14Þ

If this condition is not satisfied, then x�½σþu� > xþ½σ�, and
at least one secondary mutation occurs. We thus need to
find conditions under which Eq. (B14) holds.
Now in terms of the ordering sequence p, the site l̄must

be located to the left of u, as must be the site ū. Moreover,
since l and u have to be distinct, l̄ is either to the left or
right of ū. In the former case we have x̄l < x̄u, and hence,

x−½σþu� ¼ mσþu x̄u ¼ mσxu ¼ xþ½σ�: ðB15Þ

Since Eq. (B14) is satisfied, genotype σþu is a local fitness
maximum at this concentration and there will therefore be
no secondary mutations. Suppose next that x̄l > x̄u. In this
case,

x−½σþu� ¼ mσþu x̄l ¼ mσ
x̄l
x̄u

xu > xþ½σ�: ðB16Þ

Therefore there will be at least one complementary sec-
ondary mutation at some site i ∈ Iþ½σ�. Condition
Eq. (B12) asserts that in order for such a mutation to be
fitness increasing, i must be such that x̄i > x̄u. Using
Eq. (B1), it follows that the stability condition of σ, as given
by Eq. (B2), implies that x̄i < xu, so that the secondary

mutation site must be contained in the set Īu. Note in
particular that the site l itself satisfies these conditions and
hence is a possible candidate for the first secondary
mutation.
Combining all of the above results, under increasing

concentration, a secondary mutation will occur, if and only
if the set Īu is nonempty, and the state σ is such that for
some j ∈ Īu we have σj ¼ 1. Conversely, a secondary
mutation will not occur if and only if one of the following
two conditions holds.

(U1) The set Īu is empty.
(U2) The set Īu is nonempty, and the state σ is such that

for each j ∈ Īk we have σj ¼ 0.

In a similar manner, one can show that under decreasing
concentration a secondary mutation will not occur, if and
only if one of the following two conditions holds.

(D1) The set Il is empty.
(D2) The set Il is nonempty, and the state σ is such that

for each j ∈ Il we have σj ¼ 1.

Observe now that in order for secondary mutations to be
absent from all transitions in a TIL model, the sets Ik and
Īk have to be empty for each k ¼ 1; 2;…; L, since
otherwise there will exist stable states for which conditions
(U2) or (D2) can be made not to hold. The only ordering
sequence for which both of these sets are empty for each k
is the sequence

p ¼ 1̄ 1 2̄ 2 … L̄ L :

APPENDIX C: STATISTICAL RESULTS

Herein, we derive the statistical results discussed in the
main body of the paper.

1. Probability density function used in the numerics

We assume that the dose-response curve is of Hill type
with n ¼ 2. In order to satisfy the requirement (W2) for the
dose-response function, the parameters ðrj; mjÞ must be
chosen such that m2

jrj > 1 for each j ¼ 1; 2;…; L. We
further assume that the pairs ðrj; mjÞ are independently and
identically distributed, so that their joint density is given
by Qðfri; migÞ ¼

Q
L
j¼1 Pðrj;mjÞ. We write Pðrj; mjÞ ¼

P1ðrjÞP2ðmjjrjÞ. We chose

P1ðrÞ ¼
ffiffiffi
2

π

r
e−ðln rÞ2=2

r
ðC1Þ

P2ðmjrÞ ¼ N
e−ðlnmÞ2=2

m
Θ
�
m −

1ffiffiffi
r

p
�
; ðC2Þ
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where Θð·Þ is the Heaviside step function and N is the
appropriate normalization constant. This choice is for ease of
implementation. A similar model was used in Ref. [23].

2. Asymptotic number of stable states

Consider a genotype σ with n mutations; i.e.,
P

i σi ¼ n.
The number of such genotypes is ðLnÞ and such a σ is a stable
state if Eq. (B1) holds. Since xi and x̄i are independent for
distinct sites, the probability density that the left-hand side
of Eq. (B1) is less than z and the right-hand side is greater
than z is ðd=dzÞFL−n

x̄ ðzÞ½1 − FxðzÞ�n. Then the mean
number of stable states is

hNssi ¼
XL
n¼0

�
L

n

�Z
dz

�
d
dz

FL−n
x̄ ðzÞ

�
½1 − FxðzÞ�n

¼ L
Z

dz½1 − FxðzÞ þ Fx̄ðzÞ�L−1F0̄
xðzÞ; ðC3Þ

from which the result in the main text follows using a
saddle point approximation for L large.

3. Asymptotic approximation for number of mutations

The fitness f of a genotype σ can be expressed as

ln f ¼
X
i

σi ln ri − lnð1þ x2e−2
P

i
σi lnmiÞ: ðC4Þ

The number of mutations in the genotype is n ¼ P
i σi. A

simple heuristic that produces good approximations for the
mean of various quantities at large L is as follows: we
consider the fitness of a genotype to be a function of x and n
only, and replace the parameters associated with the
mutations by suitable averages. Thus, we write Eq. (C4) as

ln fðnÞ ≃ −na − lnð1þ x2e−2nbÞ; ðC5Þ

where a ¼ −hln ri and b ¼ hlnmi. For any given x, one
can now maximize Eq. (C5) with respect to n, yielding an
approximation to the mean mutation number at x for stable
maxima. Taking the derivative of the above with respect to
n and setting it to zero produces the equation:

2bx2e−2nb

1þ x2e−2nb
¼ a:

The solution to this is

n ¼ ln x
b

þ 1

2b
ln
�
2b
a

− 1

�
: ðC6Þ

For large x and therefore large n, the leading order is

n ≃
ln x
b

: ðC7Þ

This estimate works well when L is large and
1 ≪ ½lnðxÞ=hlnmi� ≪ L.
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2819 (2019).

[41] M. Mungan and T. A. Witten, Cyclic Annealing as an
Iterated Random Map, Phys. Rev. E 99, 052132 (2019).

[42] I. Regev, I. Attia, K. Dahmen, S. Sastry, and M. Mungan,
Topology of the Energy Landscape of Sheared Amorphous
Solids and the Irreversibility Transition, Phys. Rev. E 103,
062614 (2021).

[43] N. C. Keim and J. D. Paulsen, Multiperiodic Orbits from
Interacting Soft Spots in Cyclically Sheared Amorphous
Solids, Sci. Adv. 7, eabg7685 (2021).

[44] F. Preisach, Über die Magnetische Nachwirkung, Z. Phys.
94, 277 (1935).

[45] O. Hovorka and G. Friedman, Onset of Reptations and
Critical Hysteretic Behavior in Disordered Systems,
J. Magn. Magn. Mater. 290, 449 (2005).

[46] C. W. Lindeman and S. R. Nagel, Multiple Memory
Formation in Glassy Landscapes, Sci. Adv. 7, eabg7133
(2021).

[47] M. van Hecke, Profusion of Transition Pathways for
Interacting Hysterons, Phys. Rev. E 104, 054608 (2021).

[48] H. Bense and M. van Hecke, Complex Pathways and
Memory in Compressed Corrugated Sheets, Proc. Natl.
Acad. Sci. U.S.A. 118, e2111436118 (2021).

[49] G. Chevereau, M. Dravecká, T. Batur, A. Guvenek, D. H.
Ayhan, E. Toprak, and T. Bollenbach, Quantifying the
Determinants of Evolutionary Dynamics Leading to Drug
Resistance, PLOS Biol. 13, e1002299 (2015).

[50] M. Lukačišinová, B. Fernando, and T. Bollenbach, Highly
Parallel Lab Evolution Reveals that Epistasis Can Curb the
Evolution of Antibiotic Resistance, Nat. Commun. 11, 3105
(2020).

[51] R. R. Regoes, C. Wiuff, R. M. Zappala, K. N. Garner, F.
Baquero, and B. R. Levin, Pharmacodynamic Functions: A
Multiparameter Approach to the Design of Antibiotic
Treatment Regimens, Antimicrob. Agents Chemother. 48,
3670 (2004).

[52] L. L. Marcusson, N. Frimodt-Møller, and D. Hughes, Inter-
play in the Selection of Fluoroquinolone Resistance and
Bacterial Fitness, PLoS Pathogens 5, e1000541 (2009).

DRIVEN DISORDERED SYSTEMS APPROACH TO BIOLOGICAL … PHYS. REV. X 12, 031040 (2022)

031040-17

https://doi.org/10.7554/eLife.28629
https://doi.org/10.1088/1478-3975/abde8d
https://doi.org/10.1209/0295-5075/122/58002
https://doi.org/10.1209/0295-5075/122/58002
https://doi.org/10.1534/genetics.117.300519
https://doi.org/10.1038/s41467-021-23943-x
https://doi.org/10.1038/s41467-021-23943-x
https://doi.org/10.1093/molbev/msv146
https://doi.org/10.1371/journal.pcbi.1004710
https://doi.org/10.1371/journal.pcbi.1004710
https://doi.org/10.7554/eLife.55155
https://doi.org/10.1016/j.scitotenv.2004.01.015
https://doi.org/10.1016/j.scitotenv.2004.01.015
https://doi.org/10.1038/nrmicro3270
https://doi.org/10.1038/nrmicro3270
https://doi.org/10.1073/pnas.0501865102
https://doi.org/10.1073/pnas.0501865102
https://doi.org/10.1007/s10955-018-1979-z
https://doi.org/10.1088/0305-4470/26/23/001
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/PhysRevLett.123.178002
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1088/1361-6633/aadc3c
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1103/PhysRevE.88.062401
https://doi.org/10.1103/PhysRevE.88.020301
https://doi.org/10.1103/PhysRevE.88.020301
https://doi.org/10.1007/s00023-019-00807-1
https://doi.org/10.1007/s00023-019-00807-1
https://doi.org/10.1007/s00023-019-00807-1
https://doi.org/10.1103/PhysRevE.99.052132
https://doi.org/10.1103/PhysRevE.103.062614
https://doi.org/10.1103/PhysRevE.103.062614
https://doi.org/10.1126/sciadv.abg7685
https://doi.org/10.1007/BF01349418
https://doi.org/10.1007/BF01349418
https://doi.org/10.1016/j.jmmm.2004.11.505
https://doi.org/10.1126/sciadv.abg7133
https://doi.org/10.1126/sciadv.abg7133
https://doi.org/10.1103/PhysRevE.104.054608
https://doi.org/10.1073/pnas.2111436118
https://doi.org/10.1073/pnas.2111436118
https://doi.org/10.1371/journal.pbio.1002299
https://doi.org/10.1038/s41467-020-16932-z
https://doi.org/10.1038/s41467-020-16932-z
https://doi.org/10.1128/AAC.48.10.3670-3676.2004
https://doi.org/10.1128/AAC.48.10.3670-3676.2004
https://doi.org/10.1371/journal.ppat.1000541


[53] M. Knopp and D. I. Andersson, Predictable Phenotypes of
Antibiotic Resistance Mutations, mBio 9, e00770 (2018).

[54] A. H. Melnyk, A. Wong, and R. Kassen, The Fitness Costs
of Antibiotic Resistance Mutations, Evolut. Appl. 8, 273
(2015).

[55] K. Crona, D. Greene, and M. Barlow, The Peaks and
Geometry of Fitness Landscapes, J. Theor. Biol. 317, 1
(2013).

[56] S. Kauffman and S. Levin, Towards a General Theory of
Adaptive Walks on Rugged Landscapes, J. Theor. Biol. 128,
11 (1987).

[57] H. A. Orr, The Population Genetics of Adaptation: The
Adaptation of DNA Sequences, Evolution 56, 1317 (2002).

[58] S. Seetharaman and K. Jain, Adaptive Walks and Distribu-
tion of Beneficial Fitness Effects, Evolution 68, 965 (2014).

[59] A. Agarwala and D. S. Fisher, Adaptive Walks on High-
Dimensional Fitness Landscapes and Seascapes with
Distance-Dependent Statistics, Theor. Popul. Biol. 130,
13 (2019).

[60] D. R. Rokyta, P. Joyce, S. B. Caudle, and H. A. Wichman,
An Empirical Test of the Mutational Landscape Model of
Adaptation Using a Single-Stranded DNA Virus, Nat.
Genet. 37, 441 (2005).

[61] D. R. Rokyta, Z. Abdo, and H. A.Wichman, The Genetics of
Adaptation for Eight Microvirid Bacteriophages, J. Mol.
Evol. 69, 229 (2009).

[62] S. E. Schoustra, T. Bataillon, D. R. Gifford, and R. Kassen,
The Properties of Adaptive Walks in Evolving Populations
of Fungus, PLOS Biol. 7, e1000250 (2009).

[63] D. M. Weinreich, R. A. Watson, and L. Chao, Perspective:
Sign Epistasis and Genetic Constraint on Evolutionary
Trajectories, Evolution 59, 1165 (2005).

[64] M.M. Terzi and M. Mungan, State Transition Graph of the
Preisach Model and the Role of Return-Point Memory,
Phys. Rev. E 102, 012122 (2020).

[65] H. Teotónio and M. R. Rose, Perspective: Reverse Evolu-
tion, Evolution 55, 653 (2001).

[66] J. T. Bridgham, E. A. Ortlund, and J. W. Thornton, An
Epistatic Ratchet Constrains the Direction of Glucocorti-
coid Receptor Evolution, Nature (London) 461, 515 (2009).

[67] M. Kaltenbach, C. J. Jackson, E. C. Campbell, F. Hollfelder,
and N. Tokuriki, Reverse Evolution Leads to Genotypic
Incompatibility Despite Functional and Active Site Con-
vergence, eLife 4, e06492 (2015).

[68] D. I. Andersson and D. Hughes, Antibiotic Resistance and
Its Cost: Is It Possible to Reverse Resistance?, Nat. Rev.
Microbiol. 8, 260 (2010).

[69] R. C. Allen, J. Engelstädter, S. Bonhoeffer, B. A.
McDonald, and A. R. Hall, Reversing Resistance: Different
Routes and Common Themes across Pathogens, Proc. R.
Soc. B 284, 20171619 (2017).

[70] P. Durão, R. Balbontín, and I. Gordo, Evolutionary
Mechanisms Shaping the Maintenance of Antibiotic
Resistance, Trends Microbiol. 26, 677 (2018).

[71] A. Dunai, R. Spohn, Z. Farkas, V. Lázár, Á. Györkei, G.
Apjok, G. Boross, B. Szappanos, G. Grézal, A. Faragó
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