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Quantum spin liquids (QSLs) as novel phases of matter with long-range entanglement and deconfined
quantum critical points (DQCPs) as descriptions for unconventional phase transitions between two ordered
states beyond the standard paradigm, such as the transition between antiferromagnetic (AFM) and valence-
bond solid (VBS) phases, are two representative emerging phenomena. These implications for under-
standing correlated materials and developing theoretical frameworks for many-body physics are of crucial
importance. Here, we show that a gapless QSL can naturally emerge from a DQCP. Via large-scale tensor
network simulations of a square-lattice spin-1=2 frustrated Heisenberg model, both QSL-state and DQCP-
type AFM-VBS transitions are observed. By tuning the coupling constants, the AFM-VBS transition
vanishes, and instead, a gapless QSL phase gradually develops in between. Remarkably, along the phase
boundaries of AFM-QSL and QSL-VBS transitions, we always observe the same correlation-length
exponents, ν ≈ 1.0, which is intrinsically different from the one of the DQCP-type transition, indicating
new types of universality classes. Our results explicitly demonstrate a new scenario for understanding the
emergence of gapless QSL from an underlying DQCP. The discovered QSL phase survives in a large region
of tuning parameters, and we expect its experimental realization in solid-state materials or quantum
simulators.
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I. INTRODUCTION

At low temperature, quantum fluctuations can melt
magnetic orders in condensed matter systems, leading to
the emergence of new phases of quantum matter and
unconventional quantum phase transitions. A prominent
example is the quantum spin liquid (QSL), which preserves
both spin rotation symmetry and lattice symmetry. QSL
states can exhibit collective phenomena such as emergent
gauge fields and fractional excitations, which are qualita-
tively different from an ordinary paramagnet [1]. In the past
several decades, QSL has attracted numerous attention

since it was proposed as the parent state of high-temper-
ature cuprate superconductors [2]. Nowadays, there are
ongoing efforts searching for QSL due to its exotic
topological properties.
Another well-known example is the zero-temperature

continuous phase transition between an antiferromagnetic
(AFM) state and a valence-bond solid (VBS) state, which
cannot be understood by the standard Landau-Ginzburg-
Wilson (LGW) paradigm. To describe such a continuous
phase transition between two ordered phases, a decon-
fined quantum critical point (DQCP) scenario was pro-
posed, where fractional excitations and an emergent gauge
field also naturally arise [3,4]. In the DQCP theory, the
fundamental degrees of freedom are fractionalized spinon
excitations with spin 1=2. The condensation of spinons
leads to the AFM phase while the confinement of spinons
leads to the VBS phase. Right at the critical point, the
deconfined spinons couple to the emergent Uð1Þ gauge
field, and enhanced symmetries have been observed
numerically [5–7].
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Previously, the DQCP-related physics has been exten-
sively studied in sign-problem-free models [5–24]. In most
cases, the obtained physical quantities exhibit unusual
scaling violations, and it is unclear whether the observed
phase transition betweenAFMandVBS states is continuous
or weakly first order. The reason for these perplexing
phenomena remains an enigma, and different scenarios
have been proposed for explanations [19,25–35].
According to Anderson, a QSL state can be regarded as a
resonating valence bond (RVB) state or the superposition of
different kinds of VBS patterns, and the translational
symmetry is restored by quantum fluctuations. In fact,
DQCP can also be regarded as a special kind of unstable
RVB state from which both VBS order and AFM order
are developed. While QSL and DQCP are mostly studied
separately, in very few cases they might be observed in the
same system, and thus it is a mystery whether the two
concepts have any intrinsic relation [35,36].
In this work, we present a specific example where both

gapless QSL and DQCP can be observed in a single
frustrated model. The gapless QSL gradually develops
from the DQCP by tuning parameters. To the best of our
knowledge, this is the first concrete example to explicitly
show the possible intrinsic relation between DQCP and
QSL. Such a relation can provide crucial insights into the
understanding of the underlying physics of DQCP and the
gapless QSL phase. In particular, we investigate a spin-1=2
square-lattice model, which contains first-, second-, and
third-nearest neighbor Heisenberg exchange interaction
couplings J1, J2, and J3, respectively, described by the
following Hamiltonian:

H ¼ J1
X

hi;ji
Si · Sj þ J2

X

⟪i;j⟫

Si · Sj þ J3
X

hhhi;jiii
Si · Sj: ð1Þ

We set J1 ¼ 1, and the couplings J2, J3 are tuning
parameters. This model gained much interest in the early
days after high-temperature superconductivity was discov-
ered. Although there are analytic and small-size numerical
results [37–48], its phase diagram is still far from clear,
especially for the region with strong quantum fluctuations.
By using the state-of-the-art tensor network method, both
DQCP and gapless QSL are observed around this region.
The phase diagram summarizing these results is shown in
Fig. 1. Remarkably, along the phase boundaries of AFM-
QSL and QSL-VBS transitions, we always observe the
same correlation-length exponents, ν ≈ 1.0. In contrast,
along the phase boundary of the AFM-VBS transition, we
observe that the correlation-length exponents are intrinsi-
cally close to the one from other DQCP studies based on
similar sizes, which is ν ≈ 0.8 [5]. These findings reveal the
deep relations between DQCP and QSL, and provide us
with invaluable guidance for understanding the gapless
QSL developed from an underlying DQCP as well as the
experimental realization of gapless QSL in square-
lattice-based materials or quantum simulators.

II. CONTINUOUS AFM-TO-VBS TRANSITION

We first consider the phase diagram of the J1-J2-J3
model in the region with a fixed significant ferromagnetic
J2 coupling, e.g., J2 ¼ −0.4, J2 ¼ −0.3, or J2 ¼ −0.25. In
this situation, J2 coupling will enhance the AFM order,
coordinating with the J1 coupling. With an increasing AFM
coupling J3, we observe a direct transition from the AFM to
the VBS phase. The (squared) AFM order parameter hM2

0i
is defined as the value of the structure factor SðkÞ ¼
ð1=L2ÞPijhSi · Sjieik·ði−jÞ at the wave vector k0 ¼ ðπ; πÞ,
i.e., hM2

0i ¼ ð1=L2ÞSðk0Þ. In Fig. 2(a), we present the
AFM order (squared) on different L × L systems up to
20 × 20. Finite-size scaling reveals the disappearance of the
AFM order at J3 ¼ Jc1 ≃ 0.55, for J2 ¼ −0.4.
Then, we measure the dimer order parameter (DOP)

to detect the possible spontaneous appearance of a VBS
order. The DOP on open boundary conditions is defined
as [36,49]

Dα ¼
1

Nb

X

i

ð−1ÞiαBα
i ; ð2Þ

where Bα
i ¼ Si · Siþeα is the bond operator between site i

and site iþ eα along the α direction with α ¼ x or y, and
Nb ¼ LðL − 1Þ is the corresponding total number of
counted bonds along the α direction. The horizontal
DOP hD2

xi based on the bond-bond correlations is pre-
sented in Fig. 2(c) with the largest size up to 20 × 20. One
can see that the DOP vanishes in the 2D limit at J3 ¼ 0.54

1

2 3

FIG. 1. Ground-state phase diagram of the J1-J2-J3 model,
including three phases: the AFM, VBS, and gapless QSL (red
region) phases. The blue dashed line denotes the unknown shape
of the QSL phase close to the tricritical point. Violet points on the
black dotted line in the QSL phase have the same decay power
for spin and dimer correlations. Error bars denote 1 standard
deviation.
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but acquires a nonzero extrapolated value at J3 ¼ 0.56
indicating a VBS order. As a double-check, boundary-
induced dimerizations hDi2 ¼ hDxi2 þ hDyi2 are also
shown in Fig. 2(d), which also suggests that VBS order
sets in just above J3 ¼ Jc2 ≃ 0.55. Our analysis then shows
that Jc2 ≃ Jc1, giving strong evidence for a direct AFM-
VBS transition point, located at J3 ≃ 0.55 for J2 ¼ −0.4.
As shown in Fig. 2(b), the AFM order parameter on each
size shows a smooth variation with respect to J3. Therefore,
based on our results, the AFM-VBS transition is very likely
to be continuous, though the possibility of a weak first-
order transition cannot be completely ruled out.

III. EMERGENT QSL PHASE

Next, we set J2 ¼ 0; i.e., we investigate the phase
diagram of the J1-J3 model. Through a finite-size scaling
analysis shown in Fig. 2(e), we can see that the AFM order
still survives at J3 ¼ 0.25 but vanishes at J3 ¼ 0.3 in the
thermodynamic limit. To determine the phase transition
point precisely and conveniently, a dimensionless quantity
ξm=L is computed, where ξm is the correlation length
defined as ξm ¼ ðL=2πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Sðπ; πÞ=Sðπ; π þ 2π=LÞ� − 1

p

[50], which clearly shows that the AFM phase transition
point is located at J3 ¼ Jc1 ≃ 0.28 in Fig. 2(f).

We then measure dimer order parameters to detect
possible VBS order. The horizontal DOP hD2

xi is presented
in Fig. 2(c) with the largest size up to 24 × 24. One can see
that the DOP in the 2D limit is close to zero at J3 ¼ 0.38
but appears at J3 ¼ 0.40 with an obvious nonzero extrapo-
lated value characterizing a VBS order. In addition, the
boundary-induced dimerizations hDxi2 and hDyi2 shown
in Fig. 2(d) also suggest the absence of VBS order for
J3 ≲ 0.38. Note that the extrapolated values of hD2

xi and
hDxi2 are 0.0004(4) and 0.0004(3) at J2 ¼ 0.38; 0.0027(5)
and 0.0031(4) at J3 ¼ 0.40; 0.0069(6) and 0.0067(4) at
J3 ¼ 0.45, respectively, very consistent with each other in
all three cases (for all L × L sizes presented here, the x
and y directions are isotropic with hDxi2 ¼ hDyi2). These
results demonstrate the reliability of our calculations.
Therefore, by excluding spin and dimer orders, a QSL
phase is suggested for 0.28≲ J3 ≲ 0.38. We note that a
recent study using other methods suggests a QSL phase for
0.3≲ J3 ≲ 0.375 [51], which is very close to our results.
Now, we turn to the J2 > 0 case, in which J1, J2, and J3

couplings compete with each other. To complete the full
phase diagram of the J1-J2-J3 model, we compute the
relevant order parameters along two vertical lines, J2 ¼ 0.2
and J2 ¼ 0.4, varying J3 (see Appendix B 3), as well as
along a horizontal line J3 ¼ 0.1 varying J2. Through a
finite-size scaling analysis of the order parameters, we
locate the QSL phase in the regions 0.13≲ J3 ≲ 0.24 along
the line J2 ¼ 0.2, 0.015≲ J3 ≲ 0.09 along the line
J2 ¼ 0.4, and 0.26≲ J2 ≲ 0.38 along the line J3 ¼ 0.1,
sandwiched by the AFM and VBS phases.
To confirm the existence of a potential QSL phase, we

further compare the finite-size projected entangled pair
state (PEPS) results with infinite PEPS (iPEPS) results at
two typical points ðJ2; J3Þ ¼ ð0; 0.35Þ and (0.2, 0.2), which
we find to be inside the QSL phase from our finite PEPS
calculations. At these two points, the thermodynamic-
limit ground-state energies from finite-size scaling are
−0.56995ð9Þ and −0.53982ð9Þ, in very good agreement
with the corresponding iPEPS ground-state energies
−0.56956ð2Þ and −0.53966ð2Þ. Furthermore, by measur-
ing order parameters, the iPEPS results also support the
idea that the two points are in the QSL phase. More details
can be seen in Appendix C. Thus, our results strongly
indicate a QSL phase in the J1-J2-J3 model in an extended
region of the two-dimensional tuning parameter space
ðJ2; J3Þ. Finite-size effects have been effectively reduced
by a detailed comparison of systems of increasing size up to
24 × 24, backed up by supplementary iPEPS computations
directly in the thermodynamic limit.
Finally, we focus on the strip between the vertical line

J2 ¼ −0.3, hosting a direct AFM-VBS transition at J3 ≃
0.49 and another vertical line J2 ¼ 0 with a wide QSL
phase for 0.28≲ J3 ≲ 0.38. By analyzing order parameters,
at fixed J2 ¼ −0.25, a direct AFM-VBS transition occurs at
J3 ≃ 0.45, and at fixed J2 ¼ −0.2, the QSL potentially
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FIG. 2. Scaling analysis of (squared) order parameters of the
J1-J2-J3 model at J2 ¼ −0.4 (a)–(d) and at J2 ¼ 0 (e)–(h). (a,e)
Finite-size scaling of AFM order parameters. (b) J3 dependence
of AFM orders on different sizes. (c,g) Horizontal dimer order
parameters hD2

xi based on bond-bond correlations. (d) Boundary-
induced dimer order parameters hDi2. (f) Dimensionless quantity
ξm=L. (h) Boundary-induced dimer order parameters along both
the x direction (hDxi2, square symbols) and the y direction
(hDyi2, diamond symbols). All extrapolations with respect to 1=L
are performed through second-order polynomial fits. Error bars
denote 1 standard deviation of the sampled mean values.
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appears in a small region 0.41≲ J3 ≲ 0.43 and evidently
expands to a relatively large region 0.35≲ J3 ≲ 0.41 at
fixed J2 ¼ −0.1 (see Appendix B 3). This reveals how the
QSL can gradually emerge by increasing the J2 coupling
from the DQCP, which describes the continuous transition
line between the AFM and VBS phases.

IV. CRITICAL EXPONENTS

To extract critical exponents for the quantum phase
transitions between QSL and AFM/VBS phases, we
analyze the scaling of physical quantities according to
the standard scaling formula with a possible subleading
correction [5,50]:

AðJ3; LÞ ¼ Lκð1þ aL−ωÞF½L1=νðJ3 − JcÞ=Jc�; ð3Þ

where A ¼ ξm, hM2
0i, or hD2

xi, and κ ¼ 1 for ξm, −ðzþ η�sÞ
for hM2

0i, and −ðzþ η�dÞ for hD2
xi, in which η�s and η�d are

corresponding spin and dimer correlation function expo-
nents and z is the dynamic exponent at the transition.
Factors a and ω are tuning parameters of the subleading
term. Here, J3 is the tuning parameter with a fixed J2.
We first consider the quantities scaling for the AFM-

VBS transition with fixed J2 ¼ −0.4. The transition point
is estimated at J3 ≃ 0.55 from a finite-size scaling analysis
of order parameters as mentioned previously, and it is
actually also supported by the crossing of the dimension-
less quantity ξm=L. To achieve a good data collapse for
these quantities, we find a subleading correction is neces-
sary. As seen in the inset of Fig. 3(a), the spin correlation
length ξm at different sizes and couplings can be scaled
using ν ¼ 0.82ð5Þ and Jc ¼ 0.55ð1Þ. Next, we keep ν
and Jc fixed to extract spin and dimer correlation func-
tion exponents, which leads to zþ η�s ¼ 1.33ð6Þ and
zþ η�d ¼ 1.36ð5Þ. In these cases, a subleading term has
been used with fixed ω ¼ 1.5 and different a for ξm, hM2

0i,

and hD2
xi, respectively. Note that the obtained critical

exponents including ν, zþ η�s , and zþ η�d are close to
those from the J-Q model based on the similar sys-
tem sizes.
Now, we consider the critical exponents for the AFM-

QSL transition at Jc1 and the QSL-VBS transition at Jc2. In
this case, we find that a single correlation-length exponent ν
can scale the physical quantities very well at the two
transition points, as shown in Figs. 3(b) and 3(c) for the
data collapse of the J1 − J3 model, i.e., at fixed J2 ¼ 0. We
also choose other fixed values including J2 ¼ −0.1, 0.2,
and 0.4 with the tuning parameter J3, as well as fixed
J3 ¼ 0.1 with the tuning parameter J2, to extract critical
exponents at their transition points, and they have the same
behavior. In these cases, a good data collapse can be
obtained without subleading correction terms. The critical
exponents are listed in Table I.
From Table I, we can see that, for all cases of the AFM-

QSL and QSL-VBS transitions at a fixed J2 or J3, the
corresponding spin and dimer correlation exponents zþ η�s
and zþ η�d are consistent for each kind of transition.
Roughly, zþ η�s1 ∼ 1.2 and zþ η�d1 ∼ 1.9 for the AFM-
QSL transition, and zþ η�s2 ∼ 1.6 and zþ η�d2 ∼ 1.5 for
the QSL-VBS transition. The correlation exponents for
the J1 − J2 model (i.e., for fixed J3 ¼ 0) show slight
differences, probably caused by a very large correlation
length. In this case, the density matrix renormalization
group (DMRG) results have not yet converged well even
with as many as M ¼ 14000 SU(2) kept states [equivalent
to about 56000 U(1) states] on 12 × 28 strips [36], unlike
the J1 − J2 − J3 model for which M ¼ 10000 works very
well for two typical points ðJ2; J3Þ ¼ ð0; 0.35Þ and (0.2,
0.2) that are also in the QSL phase (see Appendix B 1).
Most importantly, all of these cases support the same
correlation-length exponent, i.e., ν ≈ 1.0. In particular,
ν ≈ 1 is apparently different from that of the AFM-
VBS transition obtained in the J −Q model or in the
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FIG. 3. Scaling of physical quantities including order parameters and correlation lengths. (a) At the AFM-VBS transition point with a
fixed J2 ¼ −0.4, using ν ¼ 0.82, Jc ¼ 0.55, zþ η�s ¼ 1.33, zþ η�d ¼ 1.36, and ω ¼ 1.5. Prefactors a are 11.5, 3.8, 11.3 for the quantity
ξm, hM2

0i, and hD2
xi, correspondingly. (b) At the AFM-QSL transition point with a fixed J2 ¼ 0, using ν ¼ 1.02, Jc ¼ 0.278,

zþ η�s ¼ 1.21, and zþ η�d ¼ 1.89. (c) At the QSL-VBS transition point with a fixed J2 ¼ 0, using ν ¼ 1.02, Jc ¼ 0.38, zþ η�s ¼ 1.69,
and zþ η�d ¼ 1.40. For AMF-QSL and QSL-VBS transitions, subleading corrections are not used. Black dashed lines are quadratic
curves using the corresponding critical exponents.
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J1 − J2 − J3 model with similar system sizes. These
features strongly suggest new universality classes for the
AFM-QSL and QSL-VBS transitions.

V. CORRELATION FUNCTIONS
IN THE QSL PHASE

To understand the physical nature of the QSL phase, we
measure spin-spin and dimer-dimer correlation functions
along the central row on a 12 × 28 strip where both x and y
directions are open. Specifically, we first look at spin
correlations at different J3 with fixed J2 ¼ 0, as shown in
Fig. 4(a). In the AFM phase, spin correlations at J3 ¼ 0
and 0.25 decay very slowly and tend to saturate at long
distances. In the VBS phase, spin correlations at J3 ¼ 0.45
and 0.5 have a clear exponential decay behavior, though
some oscillations appear due to the mixture of short-range
spiral orders, which will be discussed elsewhere. Compared
with these two cases, the spin correlations at J3 ¼ 0.35,
which are in the QSL phase, exhibit a long tail, indicating a

likely power-law decay behavior. Similarly, for the given
J2 ¼ 0.2, which has a QSL phase in the region 0.13≲
J3 ≲ 0.24, spin correlations at J3 ¼ 0.1, 0.2, and 0.3 show
three different kinds of decay behavior, corresponding to
the AFM, QSL, and VBS phases, shown in Fig. 4(b).
Focusing on the two typical points in the QSL phase,
ðJ2; J3Þ ¼ ð0; 0.35Þ and (0.2,0.2), we make detailed com-
parisons with the results from the DMRG method based
on a 12 × 28 strip. The PEPS energy, spin, and dimer
correlation functions all agree excellently with those of the
converged DMRG results; see Appendix B 1.
To provide more evidence to show the decay behavior of

correlations in the QSL phase, taking ðJ2; J3Þ ¼ ð0; 0.35Þ
as an example, we consider how they change on different
system sizes. In Fig. 4(c), we present the spin correlations
on different Ly from 4 to 20. By fixing Lx ¼ 28, we expect
that their behavior would approach the real 2D one when
increasing Ly. Increasing Ly from 10 to 20, we can see that
the long-distance correlations increase significantly, tend-
ing to a power-law decay behavior, and the power exponent
is αs ≃ 1.91ð2Þ from Ly ¼ 20 correlations.
Then, we detect the dimer behavior by using the

characteristic decay length of the local horizontal dimer
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FIG. 4. Decay behavior of correlations. We show spin corre-
lation functions of the J1-J2-J3 model with a fixed J2 ¼ 0 (a) and
a fixed J2 ¼ 0.2 (b), on a 12 × 28 strip along the central row at
different J3. (c) Fixing Lx ¼ 28, the variation of spin correlations
on strip Ly × Lx with Ly increasing from 4 to 20 at a typical point
ðJ2; J3Þ ¼ ð0; 0.35Þ in the QSL phase. The green dashed line
denotes the power-law fit y ¼ cr−αs for Ly ¼ 20. (d) At
ðJ2; J3Þ ¼ ð0; 0.35Þ, the log-linear plot of hDOP obtained on
different Ly × 28 with respect to the distance from the left edge
along the central line. Corresponding decay lengths for different
Ly are extracted from exponential fits (shown as straight dashed
lines). The inset shows a clear linear growth of the hDOP decay
length for the gapless RVB spin-liquid state (blue) and the QSL
state at ðJ2; J3Þ ¼ ð0; 0.35Þ (red), with Ly increasing with slopes
0.301(4) and 0.219(2), respectively. Error bars denote 1 standard
deviation of the sampled mean values.

TABLE I. Critical exponents of the J1-J2-J3 model at the
AFM-QSL and QSL-VBS transition points using fixed J2 or J3,
or at the AFM-VBS transition using fixed J2 ¼ −0.25, −0.3, and
−0.4. Note that J3 ¼ 0 results are taken from Ref. [36]. Results of
the J-Q model up to 32 × 32 [5] are listed for comparison.
Numbers in brackets are 1 standard deviation. Errors of the
critical point Jc are estimated from finite-size scaling analysis of
order parameters or fitting correlation lengths. Values of ν
for QSL-related transitions are an average of several values
from fitting order parameters at the transition points (see
Appendix B 4). Spin and dimer exponents zþ η� are obtained
by data collapse using the listed values of ν and Jc.

Model Type zþ η�s zþ η�d ν Jc

J −Q AFM-VBS 1.26(3) 1.26(3) 0.78(3)
J2 ¼ −0.4 AFM-VBS 1.33(6) 1.36(5) 0.82(5) 0.55(1)
J2 ¼ −0.3 AFM-VBS 1.35(3) 1.32(4) 0.86(6) 0.49(1)
J2 ¼ −0.25 AFM-VBS 1.31(3) 1.34(3) 0.89(5) 0.45(1)

J2 ¼ −0.1 AFM-QSL 1.31(1) 1.83(1) 1.03(6) 0.351(7)
J2 ¼ −0.1 QSL-VBS 1.60(1) 1.53(1) 1.03(6) 0.41(1)

J2 ¼ 0 AFM-QSL 1.21(1) 1.89(2) 1.02(5) 0.278(5)
J2 ¼ 0 QSL-VBS 1.69(2) 1.40(2) 1.02(5) 0.38(1)

J2 ¼ 0.2 AFM-QSL 1.18(1) 1.95(1) 1.01(4) 0.132(6)
J2 ¼ 0.2 QSL-VBS 1.63(3) 1.45(3) 1.01(4) 0.24(1)

J2 ¼ 0.4 AFM-QSL 1.31(1) 1.88(1) 1.04(3) 0.015(5)
J2 ¼ 0.4 QSL-VBS 1.63(1) 1.51(2) 1.04(3) 0.09(1)

J3 ¼ 0.1 AFM-QSL 1.17(2) 1.93(1) 1.00(7) 0.261(5)
J3 ¼ 0.1 QSL-VBS 1.60(1) 1.54(1) 1.00(7) 0.38(1)

J3 ¼ 0 AFM-QSL 1.38(3) 1.72(4) 0.99(6) 0.45(1)
J3 ¼ 0 QSL-VBS 1.96(4) 1.26(3) 0.99(6) 0.56(1)
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order parameter (hDOP) for a given Ly. The hDOP is
defined as the difference ΔB between nearest strong and
weak horizontal bond energies,

ΔBðrÞ ¼ jBx
r − Bx

rþex j: ð4Þ

The hDOP decays exponentially from the left system
boundary, and the corresponding decay length ξhDOP can
be extracted, shown in Fig. 4(d) at ðJ2; J3Þ ¼ ð0; 0.35Þ. We
find that the decay length ξhDOP grows linearly with
increasing system size Ly, consistent with a power-law
decay behavior of the dimer-dimer correlation functions in
the QSL phase. Actually, the same behavior of ξhDOP has
already been observed in a short-range RVB state, whose
dimer correlations decay in a power law, as well as in the
gapless QSL phase in the J1 − J2 model (J3 ¼ 0) [36]. Note
that here Lx ¼ 28 is long enough to extract the correct ξhDOP
for Ly ranging from 4 to 12, while for larger Ly, a relatively
large Lx is necessary to minimize finite-size effects on ξhDOP,
which has also been observed in the calculations of the
RVB state [36]. In summary, these results suggest that the
discovered QSL is gapless with power-law decay behaviors
of both spin and dimer correlations.

VI. DISCUSSION

In summary, by applying the state-of-the-art tensor
network method, we study the phase diagram of the
spin-1=2 J1-J2-J3 square-lattice AFM model. For negative
and large J2, we find strong evidence for a direct,
continuous, AFM-VBS Landau-forbidden transition line.
Along this critical line, exponents are close to those
obtained in the J −Q model [5,12] or in classical cubic-
lattice dimer models [7,11], suggesting the same univer-
sality class described by DQCP. In particular, spin and
dimer correlations decay with similar exponents, indicating
an emergent SO(5) symmetry that rotates the AFM and the
VBS order parameters into each other [6,7]. Whether this
symmetry is exact or approximate needs further investiga-
tion. Surprisingly, we also found that the AFM-VBS
transition line ends at—what could be—a tricritical point,
from which a gapless QSL arises and forms an extended
critical phase, separating the AFM and VBS phases.
Remarkably, both AFM-QSL and QSL-VBS phase tran-
sitions have the same correlation-length exponents ν ≈ 1.0,
indicating new types of universality classes.
We stress that the gapless QSL found here is very

different from the gapless U(1) deconfined phase obtained
by the compact quantum electrodynamics with fermionic
matter on square lattices, including correlation behaviors
and critical exponents [52,53]. A recent SU(2) gauge theory
[54] based on a fermionic parton construction [55] pro-
posed a gapless Z2 spin liquid as a candidate for such
an intermediate phase. However, variational Monte Carlo
(VMC) simulations of the corresponding Gutzwiller-
projected ansatz [56] found constant correlation-function

exponents zþ ηs ∼ zþ ηd ∼ 2, in contrast to our findings
(see Appendix B 3) showing smaller, varying exponents.
Moreover, the SU(2) gauge theory further predicts a weak
breaking of SO(5) symmetry for the AFM-QSL phase
transition, which is very different from our results in Fig. 1,
where the line with zþ ηs ¼ zþ ηd ∼ 1.55 [consistent with
the potential SO(5) symmetry] is rather far away from the
AFM-QSL phase boundary. In addition, we also note that a
tricritical point does not naturally emerge from such a
gauge theory, which first resorts to a first-order transition to
connect the AFM-VBS critical line to the QSL phase, and
we have detected no sign of first-order behavior in our
simulations.
As both QSL and DQCP are associated with gauge

fluctuations and fractionalized spinon excitations, the
underlying field theory for QSL may have a close relation
to the DQCP theory [3,4]. The possibility of a emergent
topological theta term from the DQCP is a very promising
future direction [36]. Experimentally, the large region of
QSL can be sought for based on square-lattice materials,
and quantum simulators are also a promising platform to
realize the novel phase diagram discovered here [57–59].
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APPENDIX A: TENSOR NETWORK METHODS

Tensor network states provide a powerful and efficient
representation to encode low-energy physics based on their
local entanglement structure, whose representation accu-
racy is systematically controlled by the bond dimension D
of the tensors [60]. As a numerical approach, tensor
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network states are very suitable to simulate frustrated
magnets, where quantum Monte Carlo methods fail. The
tensor network state methods we used include the finite-
size PEPS, the iPEPS, and the DMRG methods. The
DMRG is a well-established method to simulate 1D and
quasi-1D systems, and here, SU(2) spin rotation sym-
metries are incorporated to improve the accuracy [61].
For the finite PEPS algorithm, we use open boundary

conditions and each tensor is independent. The finite PEPS
ansatz allows us to simulate uniform and nonuniform
phases with incommensurate short-range or long-range
spiral orders. In our calculations, the finite PEPS works
in the scheme of variational Monte Carlo sampling, and
the summation of physical freedoms is replaced by the
Monte Carlo sampling [62–65]. The physical quantities are
evaluated by important sampling according to the weights
of given spin configurations, which can be effectively
obtained by contracting single-layer tensor networks.
When optimizing the PEPS, we first perform the simple
update imaginary-time evolution method for initializations
[66] and then use the stochastic gradient method for
accurate optimization to obtain the ground states [62,63].
With the obtained ground states, physical quantities—
including energies, correlations functions, and order
parameters—are computed via Monte Carlo sampling.
More details can be found in Ref. [63]. Unless otherwise
specified, we useD ¼ 8 for finite PEPS calculations, which
is good enough to obtain convergent results (see
Appendix B). When computing spin and dimer correlations
on the central line of the lattice, we use about 60 00 000
Monte Carlo sweeps, which can have a standard deviation
of the mean about 1 × 10−4 or smaller for each value at
different distances. When computing order parameters that
contain all kinds of correlations, we usually use 1 00 000
Monte Carlo sweeps, which produce 1 standard deviation
of the mean about 2 × 10−4 on a 20 × 20 square lattice, and
it takes about 3 days using 500 Intel(R) Xeon(R) E5-2690
v3 CPU cores for such a calculation after the optimization
process. This work took about 10 million CPU hours.
The iPEPS method is widely used to directly simulate

infinite two-dimensional systems, which have translation
invariance. The iPEPS used here only has a single unique
tensor, which can describe the antiferromagnetic phase and
the uniform paramagnetic phase. The largest bond dimen-
sion we used is D ¼ 8, and the thermodynamic properties
can be evaluated with appropriate extrapolations with
respect to the bond dimension or the corresponding
correlation length.

APPENDIX B: FINITE PEPS RESULTS

1. Comparison with DMRG

We compare finite PEPS results with those from the
DMRG method with SU(2) spin rotation symmetry. Based
on the J1 − J2 model, it has been shown that finite PEPS

results agree very well with the convergent DMRG results
in our previous work [36,63]. For the J1 − J3 model
discussed here, the squared AFM order hM2

0i at J3=J1 ¼
0.3 calculated by PEPS is 0.09 865 on the 6 × 6 lattice and
0.06 568 on the 8 × 8 lattice on open boundary conditions,
also in excellent agreement with those calculated
by DMRG on the same systems, which are 0.09 886 and
0.06 588, correspondingly. Now, we consider larger sizes
on the J1 − J2 − J3 model. Figures 5(a) and 5(c) depict the
spin correlations at the two points ðJ2; J3Þ ¼ ð0; 0.35Þ and
(0.2,0.2) in the QSL phase. DMRG results with different
numbers of SU(2) kept state are presented up to M ¼
10000 [equivalent to about 40 000 U(1) states]. The
corresponding ground-state energies for different M are
listed with each legend showing that DMRG and PEPS
energies are highly consistent. When increasing M, the
DMRG spin correlations gradually increase until conver-
gence, which is also in excellent agreement with PEPS
results. The connected dimer-dimer correlations along the x
direction in the QSL phase, defined as

CdðrÞ ¼ hBx
0B

x
ri − hBx

0ihBx
ri; ðB1Þ

are also computed, as shown in Figs. 5(d). We can see that
the PEPS and DMRG dimer-dimer correlations also agree
very well. Note that such agreements are consistent with
our previous results for the pure J1 − J2 model, i.e., J3 ¼ 0.
In the pure J1 − J2 model, DMRG needs a very large bond
dimension M to converge spin correlations, at least up to
M ¼ 12000 at J2=J1 ¼ 0.5 and more than M ¼ 14000
[equivalent to about 56 000 U(1) states] at J2=J1 ¼ 0.55,
but a D ¼ 8 PEPS can produce convergent results quite
well compared to the D ¼ 10 PEPS results [36]. However,
for the two points ðJ2; J3Þ ¼ ð0; 0.35Þ and (0.2, 0.2) we

(a) (b)

(c) (d)

FIG. 5. Correlation functions of the J1-J2-J3 model on a
12 × 28 strip along the central line. (a,b) Spin and dimer
correlations at ðJ2; J3Þ ¼ ð0; 0.35Þ and (c,d) those at ðJ2; J3Þ ¼
ð0.2; 0.2Þ. Red dashed lines denote power-law fits y ¼ cr−α for
the correlation values with r ≤ 7, and corresponding exponents
αs (αd) for the spin (dimer) are presented.
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discuss here, DMRG with M ¼ 10000 already obtains
well-converged correlations, indicating that the results
already converge at D ¼ 8 PEPS.

2. Convergence of finite PEPS with bond dimension

To check the D-convergence behavior, we consider the
spin and dimer correlations based on large sizes, including
16 × 28 and 20 × 28 sites, using D ¼ 4, 6, 8, and 10. We
choose the point ðJ2; J3Þ ¼ ð0; 0.35Þ, which is critical and
belongs to the most challenging for accurate simulations.
For each case, we use the simple update imaginary-time
evolution method for initialization; we then use the
stochastic gradient method for further optimization.
From Fig. 6, we can see that, after increasing D ¼ 4 to
D ¼ 8, the energy, spin, and dimer correlations all have
significant improvement. However, after increasing D ¼ 8
to D ¼ 10, the improvement is very small, indicating that
the results already converge at D ¼ 8. Since the size
20 × 28 is among the largest ones in the finite-size
simulations and ðJ2; J3Þ ¼ ð0; 0.35Þ is critical, the above
results suggest that atD ¼ 8, the presented results for other
finite sizes at different values of J2 and J3 can also
converge. Actually, in our previous studies, we have
demonstrated that at D ¼ 8, the results can converge well
for the Heisenberg model up to 32 × 32 sites and the
frustrated J1 − J2 model up to 24 × 24 sites [36,63]. Unless
otherwise specified, D ¼ 8 is used for finite PEPS
calculations.

3. Gapless QSL region

We consider the J1-J2-J3 model with a fixed J2 > 0.
Here, we take J2 ¼ 0.2 and J2 ¼ 0.4 as examples. We first
focus on the J2 ¼ 0.2 case. AFM and VBS order para-
meters, as well as the correlation length ξm of the spin

structure factor, are shown in Figs. 7(a)–7(d). From
Fig. 7(a), one can find that the AFM order vanishes
between J3 ¼ 0.1 and J3 ¼ 0.15; in fact, the behavior of
ξm=L shows that the AFM-QSL transition point is esti-
mated at J3 ≃ 0.13. Meanwhile, from a finite-size scaling
analysis, the VBS order starts to appear at J3 ≃ 0.24, as
presented in Fig. 7(c). Thus, given J2 ¼ 0.2, in the region

(a) (b)

(c) (d)

FIG. 6. Convergence of finite PEPS calculations with respect to
bond dimension D at ðJ2; J3Þ ¼ ð0; 0.35Þ. (a,b) Spin correlation
functions of the J1-J2-J3 model on 16 × 28 and 20 × 28 strips
along the central line. (c,d) Corresponding dimer-dimer correla-
tions. Energies using different D are listed in the legend.

0 0.04 0.08 0.12 0.16
0.00

0.05

0.10

0.15

M
2 0 

0 0.04 0.08 0.12 0.16
1/L

0.00

0.04

0.08

D
2 x 

0 0.04 0.08 0.12 0.16
1/L

0.00

0.05

0.10

0.15

M
2 0 

0 0.04 0.08 0.12 0.16
1/L

0.00

0.02

0.04

x 

(a)(b)

(d) (c)

(e)

(g)

(f)

(h)

J2=0.2

J2=0.2 J2=0.4

J2=0.4

FIG. 7. (a)–(d) Order parameters and phase diagrams for
J2 ¼ 0.2 and (e)–(h) J2 ¼ 0.4. (a,c) AFM and VBS order
parameters at J2 ¼ 0.2, respectively, with the same legend
symbols. (b) Dimensionless quantity ξm=L at J2 ¼ 0.2 for
different system sizes. (d) Phase diagram at J2 ¼ 0.2, including
AFM, (gapless) QSL, and VBS phases. (e)-(h) Corresponding
diagrams at J2 ¼ 0.4. All extrapolations are quadratic fits.
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0.132 (a) and the QSL-VBS transition point Jc2 ¼ 0.24 (b) along
J2 ¼ 0.2with ν ¼ 1.01. Scaling at the AFM-QSL transition point
J0c1 ¼ 0.015 (c) and the QSL-VBS transition point J0c2 ¼ 0.09
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0.13≲ J3 ≲ 0.24, it is a QSL phase. A similar analysis is
applied to J2 ¼ 0.4, and a QSL phase in the region 0.015≲
J3 ≲ 0.09 is also discovered, as shown in Figs. 7(e)–7(h).
Note that the dimer structure factor on open boundary
systems is not well defined [36,49], so in this context, we
cannot use the dimer correlation lengths based on dimer
structure factors to locate the onset of VBS orders. The data
collapse for extracting critical exponents is shown in Fig. 8.
Similarly, we can also explore the phase diagram by

sweeping J2 with a fixed J3.We use J3 ¼ 0.1 as an example.
As shown in Fig. 9, we compute the spin and dimer order
parameters at different J2 ranging from J2 ¼ 0.2 to 0.4. In
Figs. 9(a) and 9(b), one can clearly see that the AFM order
vanishes at J2 ≃ 0.26, and the VBS order begins to appear
for J2 > 0.38. Thus, for the region 0.26≲ J2 ≲ 0.38, it is a
QSL phase. Here, we note that ðJ2; J3Þ ¼ ð0.38; 0.1Þ is
located at the QSL-VBS phase boundary, compatible with
previous calculations along the vertical line J2 ¼ 0.4, where
ðJ2; J3Þ ¼ ð0.4; 0.1Þ is in the VBS phase.
We also consider ferromagnetic J2 couplings. Using

J2 ¼ −0.1, a QSL in the region 0.35≲ J3=J1 ≲ 0.41 is
suggested, sandwiched by the AFM phase and the VBS
phase, shown in Fig. 10. With a stronger J2 ¼ −0.2,
the QSL phase further shrinks to a very narrow region
0.41≲ J3=J1 ≲ 0.43. Further enhancing J2 ¼ −0.25
(J2 ¼ −0.3), a continuous AFM-VBS transition is sug-
gested at J3 ≃ 0.45 (J3 ≃ 0.49), with the QSL phase
disappearing. The scaling analyses are shown in Figs. 11
and 12. Actually, for the three cases with fixed J2 ¼ −0.2,
−0.25, and −0.3 and for regions of J3 close to the tricritical
point, we compute the VBS order parameters with two
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Finite-size scaling of spin (a) and dimer (b) order parameters
through second-order extrapolations. The inset of panel (a) shows
the crossing of the dimensionless quantity ξm=L. Data collapse of
spin and dimer orders at the AFM-QSL transition point Jc1 ¼
0.351 (c) and the QSL-VBS transition point Jc2 ¼ 0.41 (d), with
ν ¼ 1.03.
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and boundary-induced dimer order parameters hDi2 ¼ hDxi2 þ
hDyi2 with cubic fits for L ¼ 6–20. The inset of panel (a) shows
the crossing of the dimensionless quantity ξm=L, and the inset of
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(c,d) Data collapse at the AFM-QSL and QSL-VBS transition
points Jc1 ¼ 0.41 and Jc2 ¼ 0.43, respectively. At AFM-QSL
transitions Jc1¼0.41, the quantities can collapse using zþ η�s1 ¼
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sitions Jc2 ¼ 0.43, the quantities can be collapsed using
zþ η�s2 ¼ 1.42ð3Þ, zþ η�d2 ¼ 1.74ð5Þ, and ν ¼ 0.95ð8Þ.
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definitions hDi2 ¼ hDxi2 þ hDyi2 and hDxi2, and we care-
fully check the finite-size scaling versus 1=L using differ-
ent fitting functions and different sizes. The onset of VBS
order is estimated at J3 ¼ 0.43ð1Þ, J3 ¼ 0.45ð1Þ, and
J3 ¼ 0.49ð1Þ, respectively.
In the gapless QSL region, we can extract the spin and

dimer decay powers zþ ηs;d according to a scaling
A ∝ L−ðzþηÞ. As seen in Fig. 13, for a fixed J2 or J3, the
extracted spin (dimer) power decreases (increases) with
increasing J3 or J2. Such a characteristic is not supportable
for a gapless Z2 QSL, which has a constant decay power in
the whole QSL region, according to the VMC simulations
of the corresponding Gutwiller-projected ansatz [56].
An interesting feature for the cases in Fig. 13 is that

zþ ηs and zþ ηd always have a crossing at a value around
1.55. A reasonable speculation is that an SO(5) symmetry
emerges at these crossing points. Thus, we guess that there
exists a line for different ðJ2; J3Þ in the whole QSL region,
on which it has SO(5) symmetry. Note that in the
calculations at J2 ¼ −0.2, where the QSL region is very
narrow 0.41≲ J3 ≲ 0.43, very close to the tricritical point,
crossing of the spin and dimer decay power in the QSL
phase does not occur (see the values in the caption of
Fig. 11), which might be caused by finite-size effects.

4. Extracting critical exponents

Accurately determining critical exponents in a numerical
way is very challenging for unconventional 2D phase
transitions, which often can only be realized in unbiased
simulations like quantum Monte Carlo computations
[6,8,19], and the accuracy depends on system sizes and
sampling errors. In our tensor network results, the precision
of physical quantities may also have some influence, but we
still try to evaluate the reasonability of critical exponents,
especially focusing on the correlation-length exponent ν1 at
the AFM-QSL transition and ν2 at the QSL-VBS transition,
which we claim to be the same. The physical quantities
from different sizes and different couplings are collectively
fitted for collapse, according to the formula [5,50]

AðJ3; LÞ ¼ Lκð1þ aL−ωÞF½L1=νðJ3 − JcÞ=Jc�; ðB2Þ

where A ¼ ξm, hM2
0i, or hD2

xi, and κ ¼ 1 for ξm, −ðzþ η�sÞ
for hM2

0i, and −ðzþ η�dÞ for hD2
xi. Factors a and ω are

tuning parameters of the subleading term. Note that F½� is a
polynomial function, and here, a second-order expansion
is used, considering our largest system size is 24 × 24
(a third-order fitting is also tested and has a negligible
third-order coefficient). Usually, the subleading term is not
included for fitting of the AFM-QSL and QSL-VBS
transitions. The transition point Jc can be estimated from
the scaling analysis of order parameters or the spin
correlation length, which is mostly used as a fixed value
for fitting critical exponents.
We take the J1 − J3 model, i.e., J2 ¼ 0, as an example.

The AFM-QSL transition occurs at Jc1 ¼ J3 ≃ 0.28. It can
also be given from a collective fit of Jc1 and ν1, which gives
the critical point Jc1 ¼ 0.278ð5Þ and the correlation-length
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J2 ¼ −0.25 with cubic fits for L ¼ 6–20. The inset of panel
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xi with quadratic fits for L ¼ 8–20. The inset of
panel (a) shows the data collapse at the AFM-VBS transition
point using Jc ¼ 0.45, ν ¼ 0.89, zþ η�s ¼ 1.31 with subleading
factors a ¼ 2.2 and ω ¼ 1.9, and zþ η�d ¼ 1.34 with subleading
factors a ¼ 9.5 and ω ¼ 0.9. (c,d) AFM and dimer order
parameters hDi2 at J2 ¼ −0.3 with cubic fits for L ¼ 6–20.
The inset of panel (d) shows hD2

xi with quadratic fits for
L ¼ 8–20. The inset of panel (c) shows the data collapse at
the AFM-VBS transition point using Jc ¼ 0.49, ν ¼ 0.86,
zþ η�s ¼ 1.35 with subleading factors a ¼ 3 and ω ¼ 1.5, and
zþ η�d ¼ 1.32 with subleading factors a ¼ 12 and ω ¼ 1.5.
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FIG. 13. Exponent zþ ηs;d for the spin (red) and dimer (blue) at different couplings at fixed J2 or J3, in the QSL phase, computed from
order parameter A according to the scaling A ∝ L−ðzþηÞ.
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exponent 1.01(9). Using a fixed Jc1 ¼ 0.278, we can
evaluate the correlation-length exponent ν1 independently
from AFM and VBS order parameters, respectively, by a
collective fit of ν and zþ η�. Fitting AFM order gives
ν1;s ¼ 1.10ð3Þ and zþ η�s1 ¼ 1.17ð2Þ, and fitting VBS
order gives ν1;d ¼ 0.98ð6Þ and zþ η�d1 ¼ 1.87ð5Þ. The
three fits produce consistent ν1. At the QSL-VBS tran-
sition, the critical point is located at Jc2 ¼ 0.38ð1Þ accord-
ing to the finite-size scaling of VBS order parameters. In
this case, we cannot use a similar correlation length defined
based on the dimer structure factor to locate the transition
point since the dimer structure factor on open boundary
systems is not well defined [36,49]. However, we can still
check ν2 from the fitting of AFM and VBS order param-
eters by using a fixed Jc2 ¼ 0.38. The AFM order fit gives
ν2;s ¼ 1.05ð4Þ and zþ η�s2 ¼ 1.67ð3Þ, and the VBS order
fit gives ν2;d ¼ 0.96ð5Þ and zþ η�d2 ¼ 1.44ð2Þ. The two fits
also give consistent ν2 (assuming other Jc2 like Jc2 ¼ 0.37
for fitting gives almost the same ν2). Note the obtained ν1 at
the AFM-QSL transition point and ν2 at the QSL-VBS
transition point indicate ν1 ≈ ν2 ≈ 1.0.
Similar analyses are applied to other cases for a fixed J2

or a fixed J3. By scaling AFM and VBS order parameters
with fixed critical points, collective fits of two parameters ν
and zþ η� can give ν1;s, ν1;d, ν2;s, and ν2;d, respectively,
associated with their corresponding zþ η�s1, zþ η�d1,
zþ η�s2, and zþ η�d2, as listed in Table II. Remarkably,
the obtained ν all agree well, close to 1.0, indicating the
same correlation-length exponent ν at the AFM-QSL and
QSL-VBS transitions. Meanwhile, the fitted spin and dimer

critical exponents using different fixed J2 or J3 are con-
sistent, respectively, at the AFM-QSL and QSL-VBS tran-
sition points. Their rough estimated values are zþ η�s1 ∼ 1.2,
zþ η�d1 ∼ 1.9, zþ η�s2 ∼ 1.6, and zþ η�d2 ∼ 1.5, as shown in
the last row of Table II. In order to clearly show a single
correlation-length exponent ν can scale all the physical
quantities well for each case, we use the averaged value ν̄
over ν1;s, ν1;d, ν2;s, and ν2;d as a fixed parameter to fit zþ η�.
The scaled quantities using ν̄ for data collapse are shown in
the figures in Appendix B 3, and the fitted values zþ η� are
listed in Table I in the main text. They are also listed in
Table III for a convenient comparison with Table II, which
shows small differences in the two tables. This indicates that
a single ν close to 1.0 indeed works well at the AFM-QSL
and QSL-VBS transitions.
Finally, let us discuss the χ2 (per degree of freedom) of

the fittings, which quantifies the goodness of a fit. Usually,
χ2 ∼ 1.0 or smaller means a satisfactory fit. In our optimal
fittings, for some cases we indeed have χ2 ∼ 1.0, including
the fits at the AFM-VBS transition using J2 ¼ −0.4. But
there are some fits with χ2 ∼ 3.0, which is relatively too large
for the number of degrees of freedom of the fit. As we know,
χ2 depends on the sampling errors and the data window to fit
[50]. For our tensor network results, the obtained physical
quantities have slight unavoidable deviations from their
exact values due to imperfect optimizations, which also
leads to extra influence on the values of χ2. This is different
from unbiased quantum Monte Carlo simulations where
there are no wave-function optimization problems. However,
our fits can still give reasonable and correct information to
understand the unconventional quantum phase transition, as
evidenced by a series of rather smooth curves formed by the
scaled quantities with similar critical exponents, at different
fixed J2 or J3 (as is shown in the previous figures in
Appendix B 3), which is just the requirement of the well-
behaved universal scaling functions.

APPENDIX C: iPEPS RESULTS

1. Scaling analysis

For iPEPS, resorting to translation symmetry, a single
tensor with Uð1Þ and C4v symmetries can be used to

TABLE III. Critical exponents obtained by using a single
correlation-length exponent ν̄ at the AFM-QSL and QSL-VBS
transition points. In each fit, zþ η� is a free parameter, and ν̄ is
fixed. Errors are from fittings.

zþ η�s1 zþ η�d1 zþ η�s2 zþ η�d2 ν̄

J2 ¼ −0.1 1.31(2) 1.83(1) 1.60(1) 1.53(1) 1.03
J2 ¼ 0 1.21(1) 1.89(2) 1.69(2) 1.40(2) 1.02
J2 ¼ 0.2 1.18(1) 1.95(1) 1.63(3) 1.45(3) 1.01
J2 ¼ 0.4 1.31(1) 1.88(1) 1.63(1) 1.51(2) 1.04
J3 ¼ 0.1 1.17(2) 1.93(1) 1.60(1) 1.54(1) 1.00

TABLE II. Critical exponents obtained by a collective fitting of
ν and zþ η� using a fixed critical point. In each fit, ν and zþ η�
are free parameters. Fitting AFM order parameters gives ν1;s and
zþ η�s1 at the AFM-QSL critical point, and it gives ν2;s and zþ
η�s2 at the QSL-VBS critical point. Fitting VBS order parameters
gives ν1;d and zþ η�d1 at the AFM-QSL critical point, and it gives
ν2;s and zþ η�d2 at the QSL-VBS critical point. Errors are from
fittings. The last column ν̄ is an average over ν1;s, ν1;d, ν2;s, and
ν2;d. The last row represents the averaged values of zþ η over
different J2 or J3.

ν1;s ν1;d ν2;s ν2;d ν̄

J2 ¼ −0.1 0.96(6) 1.01(7) 1.09(5) 1.04(1) 1.03(6)
J2 ¼ 0 1.10(3) 0.98(6) 1.05(4) 0.96(5) 1.02(5)
J2 ¼ 0.2 1.04(3) 0.94(4) 1.14(6) 0.93(3) 1.01(4)
J2 ¼ 0.4 1.09(4) 0.96(3) 1.11(2) 0.99(4) 1.04(3)
J3 ¼ 0.1 1.06(9) 1.03(4) 0.96(6) 0.95(8) 1.00(7)

zþ η�s1 zþ η�d1 zþ η�s2 zþ η�d2
J2 ¼ −0.1 1.28(2) 1.82(1) 1.61(1) 1.53(2)
J2 ¼ 0 1.17(2) 1.87(5) 1.67(3) 1.44(2)
J2 ¼ 0.2 1.17(2) 1.99(2) 1.65(2) 1.49(2)
J2 ¼ 0.4 1.28(1) 1.87(1) 1.62(1) 1.49(1)
J3 ¼ 0.1 1.18(2) 1.93(2) 1.62(2) 1.52(2)
Average 1.22(2) 1.90(2) 1.63(2) 1.49(2)
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describe the AFM and QSL phases [67]. With different
bond dimension D of iPEPS, one can extract the corre-
sponding correlation length and then use the finite-D
scaling or the so-called finite correlation-length scaling
(FCLS) to obtain the extrapolated physical quantities. Such
an approach has been demonstrated to work well on the
Heisenberg model (reviewed later). Next, we consider two
typical points ðJ2; J3Þ ¼ ð0; 0.35Þ and (0.2,0.2) for com-
parison. In that case, we show that the simple finite
correlation-length scaling has to be extended, including
simultaneous 1=D corrections.
The wave function is completely parametrized by a

single, real, rank-5 tensor a, with physical index s for spin-
1=2 degrees of freedom and four auxiliary indices u, l, d, r
of bond dimension D corresponding to the four directions
up, left, right, and down of the square lattice. The tensor a is
given by a linear combination a ¼ P

i λiti of elementary
tensors t, which are distinct representatives of the fully
symmetric (A1) irrep of the C4v point group. The t tensors
also obey Uð1Þ charge conservation, i.e., certain assign-
ment of charges u⃗ to the physical index s and v⃗ to each of
the four auxiliary indices, for some fixed N. For each
considered bond dimension, we choose charges ½u⃗; v⃗� ¼
½u↑; u↓; v0;…; vD−1�, listed in Table IV, based on the
analysis of optimal states from the unrestricted simulations
of the Néel phase of the J1 − J2 model [67]. The only
variational parameters of this ansatz are the coefficients λ⃗
associated with the family of elementary tensors t.
Observables are evaluated by the corner transfer matrix

technique. The optimization of energy per site eðλ⃗Þ is
carried out using the L-BFGS optimizer, which is a
gradient-based quasi-Newton method. The gradients of
the energy with respect to the parameters λ⃗ are evaluated
by reverse-mode automatic differentiation, which differ-
entiates the entire corner transfer matrix procedure,
the construction of the reduced density matrices, and
finally, the evaluation of spin-spin interactions S · S for
nearest-neighbor, next-nearest neighbor, and next-next-
nearest-neighbor terms. The antiferromagnetic order is
incorporated into this translationally invariant wave func-
tion by rotation of the physical space on each sublattice-B

site: S · S → S · S̃ with S̃α ¼ −σySαðσyÞT . We typically
perform gradient optimization until the difference in the
energy between two consecutive gradient steps becomes
smaller than 10−8. The entire implementation of the ansatz
and its optimization are available as part of the open-source
library peps-torch [68].

a. AFM Heisenberg point ðJ2;J3Þ= ð0;0Þ
The AFM Heisenberg model, realized at the point

ðJ2; J3Þ ¼ ð0; 0Þ, provides a solid benchmark for extrapo-
lation techniques of finite-ðD; χÞ iPEPS data (note, here,
that χ is the cutoff bond dimension of the contracted tensor
network). The recently developed finite correlation-length
scaling [69,70] coupled with gradient optimization con-
siderably improved upon initial thermodynamic estimates
of order parameter m2 based on the plain 1=D scaling. The
finite-χ estimate of the correlation length ξ can be readily
extracted from the leading part of the spectrum of the
transfer matrix as ξ ¼ −1= log jΛ1=Λ0j, where Λ0 and Λ1

are the leading and subleading eigenvalues, respectively. In
most recent variation of FCLS [71], each ðD; χÞ optimi-
zation was treated as an individual data point. For suffi-
ciently large correlation lengths, the data for the order
parameter are expected to obey simple scaling hypothesis
ansatz:

m2 ¼ m2
0 þ a=ξþOð1=ξ2Þ; ðC1Þ

inspired by the established finite-size corrections of the
nonlinear Oð3Þ sigma model.
Using the above scaling hypothesis, we analyze the data

from iPEPS simulations for D ¼ ð5; 6; 7; 8Þ and select χ
from 17 up to 200 forD ¼ ð5; 6; 7Þ and up to 147 forD ¼ 8,
restricting to states with correlation lengths 1=ξ < 0.3. This
results in an estimate m2ð1=ξ → 0Þ ¼ 0.0949ð2Þ, which is
very close to the best QMC estimate m2

QMC ¼ 0.09451ð2Þ.
Here, we improve upon this estimate by recognizing that the
way magnetization scales with ξ might possess a slight D
dependence that vanishes for D ≫ 1. The extended scaling
hypothesis reads

m2 ¼ m2
0 þ a=ξþ b=ðDξÞ þOð1=ξ2Þ: ðC2Þ

Fitting this surface to the same data via a nonlinear least-
squares fit leads to m2ð1=D → 0; 1=ξ → 0Þ ¼ 0.0947ð2Þ,
which is in better agreement with QMC. We show the fixed-
D cuts of the resulting surface (C2) and the comparison of
different thermodynamic estimates in Fig. 14.

b. J1 − J3 model at ðJ2;J3Þ= ð0;0.35Þ
The optimizations at this highly frustrated point

become considerably more demanding. In particular, for
bond dimensions D ¼ ð6; 7; 8Þ, we observe that the neces-
sary environment dimension for regular behavior of

TABLE IV. The Uð1Þ charges for the Néel phase taking N ¼ 1.
Charges for D ¼ 8 are a prediction. The last column shows the
number of elementary tensors ti.

D ½u↑; u↓; v0; v1;…; vD−1� Number of tensors

2 ½1;−1; 0; 2� 2
3 ½1;−1; 0; 2; 0� 12
4 ½1;−1; 0; 2;−2; 0� 25
5 ½1;−1; 0; 2;−2; 0; 2� 52
6 ½1;−1; 0; 2;−2; 0; 2;−2� 93
7 ½1;−1; 0; 2;−2; 0; 2;−2; 2� 165
8 ½1;−1; 0; 2;−2; 0; 2;−2; 0; 2� 294
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optimizations is roughly χ=D2 ≳ 2. For bond dimensions
D ¼ ð6; 7; 8Þ, we perform optimizations reaching environ-
ment dimensions χ up to 252, 196, and 160, respectively.
The technical limitations are set by the memory require-
ments of the intermediate steps in the construction of all
RDMs needed to compute observables.
The resulting fixed-ðD; χÞ iPEPS data at D ¼ ð5; 6; 7; 8Þ

for magnetization (energy) can no longer be described
by the simple scaling ansatz m2 ¼ m2

0 þ a=ξþOð1=ξ2Þ
[e ¼ e0 þ c=ξ3 þOð1=ξ4Þ], at least in the regime acces-
sible by our simulations. In contrast to the AFM
Heisenberg point, where the optimized ansatz reaches
correlation lengths as large as 1=ξ ≈ 0.125, at ðJ2; J3Þ ¼
ð0; 0.35Þ the largest correlation lengths attained are only
1=ξ ≈ 0.3. We believe this is a manifestation of frustration,
where an equally good description of systems on patches
of characteristic size ξ requires increasingly larger D and
χ compared to the unfrustrated case. In order to extract
thermodynamic estimates for magnetization and energy
from our iPEPS data, we thus adopt an empirical approach
following the idea behind an improved fit of magnetization
at the AFM Heisenberg point. We postulate the following
scaling hypotheses for magnetization and energy of an
optimal iPEPS ansatz as functions of both correlation
length and bond dimension D,

m2 ¼ m2
0 þ

m2
1

D
þm2

2

D2
þ a

ξ
þ b
Dξ

þOð1=ξ2Þ; ðC3Þ

e ¼ e0 þ
e1
D

þ e2
D2

þ c
ξ3

þ d
ðDξ3Þ þOð1=ξ4Þ: ðC4Þ

The functional form of these surfaces is motivated by the
evidence that a simple FCLS hypothesis for the Néel

phase (C1) works appreciably well even close to the
paramagnetic phase [67]. Moreover, for sufficiently large
bond dimensions, the finite-D effects should become
irrelevant, and the simple scaling hypothesis is recovered.
We fit these surfaces to the iPEPS data for magnetiza-
tion and energy at D ¼ ð5; 6; 7; 8Þ and show the finite-D
cuts of the resulting surfaces in Figs. 15(a) and 16(a),
respectively.
Our thermodynamic estimate for magnetization is

m2ð1=D → 0; 1=ξ → 0Þ ¼ −0.004ð4Þ, which is compat-
ible with the QSL phase at ðJ2;J3Þ¼ð0;0.35Þ. Similarly,
the energy per site is estimated as eð1=D → 0; 1=ξ → 0Þ ¼
−0.56956ð2Þ. The coefficients of the fitted surfaces are
listed in Table V.
Let us remark that while the limit 1=D; 1=ξ → 0 is

unambiguous, the limit of surfaces in Eqs. (C3) and (C4)
with only 1=ξ → 0 for small finite D might be unphysical
since the optimal iPEPS instead realize finite correlation
lengths even for environment dimensions χ → ∞.
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FIG. 14. FCLS of magnetization for the AFM Heisenberg
model. Dashed lines represent fixed D cuts of the surface
m2 ¼ m2

0 þ a=ξþ b=ðDξÞ. The inset shows a comparison of
the QMC estimate with estimates from the original scaling
hypothesis and its extended form. Symbols are individual iPEPS
simulations with D ¼ ð5; 6; 7; 8Þ and selected χ from 17 up to
200 for D ¼ ð5; 6; 7Þ and up to 147 for D ¼ 8.
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FIG. 15. Scaling of magnetization at ðJ2; J3Þ ¼ ð0; 0.35Þ (a)
and (0.2,0.2) (b). The colored dashed lines are fixed-D cuts
(colored dashed lines) of the surface m2ð1=D; 1=ξÞ obtained by a
least-squares fit to Eq. (C3) (D ¼ 4 is excluded from the fit). The
colored symbols are iPEPS data for D ¼ ð4; 5; 6; 7; 8Þ with
environment dimensions χ up to 63, 151, 252, 196, and 160,
respectively. In panel (b), an additional data point ðD; χÞ ¼
ð5; 300Þ is included. The inset shows the dashed m2ð1=DÞ curve
obtained in the limit 1=ξ → 0. The individual black points show a
hypothetical value of m2 reached in the limit of 1=ξ → 0 for
D ¼ ð4; 5; 6; 7; 8Þ (see text).
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c. Point ðJ2;J3Þ= ð0.2;0.2Þ
The final point subjected to iPEPS analysis is the highly

frustrated point ðJ2; J3Þ ¼ ð0.2; 0.2Þwhere both next-nearest
neighbor and next-next-nearest-neighbor coupling play a role.
As in the case of ðJ2; J3Þ ¼ ð0; 0.35Þ, we find that for bond
dimensions D ¼ ð6; 7; 8Þ, well-behaved optimizations
require environment dimensions of at least χ=D2 ≳ 2.
The surface fits, as shown in Figs. 15(b) and 16(b), lead
to thermodynamic estimates for magnetizationm2ð1=D →
0; 1=ξ → 0Þ ¼ 0.000ð6Þ, compatible with the SL phase at
ðJ2; J3Þ ¼ ð0.2; 0.2Þ, and the energy per site eð1=D → 0;
1=ξ → 0Þ ¼ −0.53966ð2Þ. The coefficients of the fitted
surfaces are listed in Table V. The error on them2 estimate
remains large and is mainly due to the limited range of
correlation lengths we could reach for the computationally
accessible bond and environment dimensions D, χ.

2. Comparison with finite PEPS results

Finally, we give a detailed comparison of the iPEPS
and finite PEPS results within the QSL phase. As shown

in Fig. 17, the PEPS energy (per site) computed on open
L × L clusters shows finite-size effects significantly
larger than the finite-ξ effects of the iPEPS data—as
seen, e.g., from a simple comparison of the energy scales
used in Figs. 16 and 17. This is due to the fact that the
leading correction of the iPEPS energy goes as 1=ξ3 while
the leading finite PEPS correction goes as 1=L. However,
the finite PEPS energy follows a very precise quadratic
scaling in the inverse bulk size 1=L̃, for a given choice of
central bulk L̃ × L̃, enabling very precise fits and an
accurate extrapolation to the thermodynamic limit. We
observe a very good agreement between the iPEPS
and PEPS extrapolated energies with up to 4 significant
digits.
We have also compared the iPEPS connected spin-spin

and dimer-dimer correlations to the ones obtained on
finite strips. The generic connected spin-spin correlation
function is ð−1ÞrhSi · Siþri −m2

0 for magnetic and non-
magnetic phases, where m0 is the thermodynamic limit
AFM order, which would give precise decay behavior of
spin correlations when the system size L is sufficiently
large. In the QSL phase, the thermodynamic limit AFM
order is 0, and the connected spin-spin correlation is
ð−1ÞrhSi · Siþri for finite size calculations. For iPEPS, the
finite D (D ¼ 8 here) shows a residual staggered mag-
netization m0, and the connected spin-spin correlation
function is ð−1ÞrhSi · Siþri −m2

0, which could provide a
systematically improved description for the decay behav-
ior of the QSL phase and would be exact in the limit

TABLE V. Least-squares fits of scaling hypotheses for mag-
netization and energy, defined in Eqs. (C3) and (C4) for the
ðJ2; J3Þ points we study. For each coefficient, the top number is
the estimated value and the bottom number is the error on the
estimate based on the covariance matrix obtained from the
Jacobian of the least-squares cost function. The coefficient m2

1

(e1) is bound to be positive.

ðJ2; J3Þ m2
0 m2

1 m2
2 a b

(0,0) 0.09 467 � � � � � � 0.03 642 −0.01678
0.00 021 � � � � � � 0.00 192 0.00 789

(0,0.35) −0.00396 0.00 004 0.24 876 0.05 077 −0.14044
0.00 391 0.03 279 0.16 913 0.02 061 0.11 525

(0.2,0.2) 0.00 028 0 0.32 416 0.05 955 −0.23147
0.00 576 0.04 222 0.13 837 0.02 129 0.12 325

e0 e1 e2 c d

(0,0.35) −0.569561 0 0.00 968 0.00 104 0.00 691
0.0 00 024 0.0 00 307 0.00 212 0.00 198 0.01 079

(0.2,0.2) −0.539656 0.0 00 168 0.00 525 0.00 115 0.00 273
0.0 00 021 0.00 0037 0.00 083 0.00 053 0.00 325
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FIG. 16. Scaling of energy at ðJ2; J3Þ ¼ ð0; 0.35Þ (a) and
(0.2,0.2) (b). The colored dashed lines are fixed-D cuts (colored
dashed lines) of the surface eð1=D; 1=ξÞ obtained by a least-
squares fit to Eq. (C4). The colored symbols are iPEPS data for
D ¼ ð5; 6; 7; 8Þ with environment dimensions χ up to 151, 252,
196, and 160, respectively. In panel (b), an additional data point
ðD; χÞ ¼ ð5; 300Þ is included. The inset shows the dashed
eð1=DÞ curve obtained in the limit 1=ξ → 0. The individual
black points show a hypothetical value of e reached in the limit of
1=ξ → 0 for D ¼ ð5; 6; 7; 8Þ (see text).
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D → ∞ with a vanishing magnetic order. The finite PEPS
and iPEPS spin-spin correlations are compared in
Figs. 18(a), 18(c), and 18(e), showing good agreement
and likely algebraic decays with similar exponents.
We have also performed a similar comparison for the
(staggered) dimer-dimer correlation function defined
in Eq. (B1). Figures 18(b),18(d), and 18(f) show the
absolute value jCdðrÞj vs r and again reveal good agree-
ment between finite PEPS and iPEPS data, with similar
algebraic decays. We point out that the likely algebraic
decays of spin and dimer correlation functions at
ðJ2; J3Þ ¼ ð−0.4; 0.55Þ support that this point is critical,
as suggested in Sec. II of the main text. However, we note
that the correlations shown here are still subject to small
finite L or finite D corrections. We observe that for
increasing L=D, the correlations decay less rapidly, so the
exponents extracted here (see values on the plots) can be
considered as upper bounds of the true exponents (see
Fig. 13 for more accurate values obtained from order
parameter scaling).
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FIG. 18. Comparison between finite PEPS and iPEPS corre-
lations at D ¼ 8 (optimized as χopt ¼ 160 and evaluated at
χ ¼ 400), plotted on a semilog scale. In the case of the finite
PEPS correlations, a 20 × 28 strip is used at ðJ2; J3Þ ¼ ð0; 0.35Þ
and a 12 × 28 strip at ðJ2; J3Þ ¼ ð0.2; 0.2Þ and ðJ2; J3Þ ¼
ð−0.4; 0.55Þ. Dashed lines are power-law fits using data up to
intermediate distances r ≤ 7.
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