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Discrete time crystals represent a paradigmatic nonequilibrium phase of periodically driven matter.
Protecting its emergent spatiotemporal order necessitates a mechanism that hinders the spreading of
defects, such as localization of domain walls in disordered quantum spin chains. In this work, we establish
the effectiveness of a different mechanism arising in clean spin chains: the confinement of domain walls
into “mesonic” bound states. We consider translationally invariant quantum Ising chains periodically
kicked at arbitrary frequency, and we discuss two possible routes to domain-wall confinement: longitudinal
fields and interactions beyond nearest neighbors. We study the impact of confinement on the order-
parameter evolution by constructing domain-wall-conserving effective Hamiltonians and analyzing the
resulting dynamics of domain walls. On the one hand, we show that for arbitrary driving frequency, the
symmetry-breaking-induced confining potential gets effectively averaged out by the drive, leading to
deconfined dynamics. On the other hand, we rigorously prove that increasing the range R of spin-spin
interactions Ji;j beyond nearest neighbors enhances the order-parameter lifetime exponentially in R. Our
theory predictions are corroborated by a combination of exact and matrix-product-state simulations for
finite and infinite chains, respectively. The long-lived stability of spatiotemporal order identified in this
work does not rely on Floquet prethermalization nor on eigenstate order, but rather on the nonperturbative
origin of vacuum-decay processes. We point out the experimental relevance of this new mechanism for
stabilizing a long-lived time-crystalline response in Rydberg-dressed spin chains.
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I. INTRODUCTION

Because of the subtle role played by the temporal
dimension, spontaneous breaking of time-translational
symmetry has long escaped conclusive theoretical formu-
lations [1–3]. A meaningful characterization of an extended
many-body system as a time crystal requires robust sta-
tionary macroscopic oscillations, without a net exchange of
energy with external devices [2]. A leap forward has been
taken with the realization that certain nonequilibrium

setups [4–9] allow one to circumvent the obstacles posed
by thermal equilibrium [10,11]. Discrete time crystals
(DTCs) formed by interacting periodically driven quantum
spin systems currently represent the theoretical paradigm of
large-scale spatiotemporal ordering [2,12]. Signatures of
their stable and robust subharmonic response to the drive
have been experimentally observed with several state-of-
the-art experimental platforms [13–19].
A major challenge to realizing a DTC is the fact that the

external drive tends to repeatedly inject excitation energy into
the system, and the resulting heating generally deteriorates
large-scale spatiotemporal ordering. Protecting order against
melting necessitates a mechanism to keep the impact of
dynamically generated excitations under control and thus
prevent indefinite entropy growth. To date, many-body
localization (MBL) [20–23] represents the single robust
mechanism to stabilize a persistent subharmonic DTC
response: The strong quenched disorder of a MBL system
freezes the motion of local excitations, thereby stabilizing
long-range order throughout the many-body spectrum of
the system [24,25]. This infinite-time stability can be
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characterized as eigenstate order.On the other hand, the quest
for disorder-free DTCs calls for alternative mechanisms to
evade thermalization. The crucial observation that energy
absorption from the drive is asymptotically suppressed for
large driving frequencies [26,27] allowed Else et al. [7] to
formulate the notion of a prethermal DTC as a long-lived (as
opposed to permanently stable) dynamical phase exhibiting
broken time-translational symmetry. This phase relies on the
existence of an effective Hamiltonian governing the transient
dynamics in a suitable rotating frame, possessing an emer-
gent Abelian symmetry determined by the driving protocol,
and supporting a spontaneous breaking of this symmetry at
low enough effective temperature. This condition guarantees
that a relevant set of initial states will display quasistationary
macroscopic oscillations of the order parameter in the
original frame.
Necessary ingredients for prethermal DTC behavior are a

high-frequency drive and an interaction structure that
supports a thermal phase transition; in one dimension, this
requires fat-tailed long-range interactions [7]. A natural
question is whether one can realize a robust long-lived
DTC response by exploiting different mechanisms of
thermalization breakdown, such as quantum many-body
scarring [28–30], Hilbert-space fragmentation [31,32],
Stark [33–35], and other kinds of disorder-free quasi-
MBL [36–46]. Indeed, Refs. [30,35] already discussed
signatures of DTC behavior stabilized via related mecha-
nisms. A further possibility that recently attracted consid-
erable interest is provided by confinement of excitations, an
archetypal phenomenon of particle physics [47], which also
exists in low-dimensional condensed matter models [48–
52]. By now, there is mounting evidence and a convincing
understanding of robust nonthermal behavior in quantum
spin chains with confined excitations [53–62], intimately
related to characteristic phenomena of (lattice) gauge
theories [56,63].
In this paper, we explore the efficacy of confinement of

excitations to stabilize the DTC spatiotemporal order.
Motivated by the main limitations of the theory of pre-
thermal DTC, we perform our analysis at arbitrary driving
frequencies and do not require slowly decaying inter-
actions. Our main result is that an extremely long-lived
DTC response can be stabilized by domain-wall confine-
ment, without relying on a Floquet-prethermal long-range
ordered Gibbs ensemble. This occurrence is made possible
by the intrinsic slowness of the prethermal dynamics: The
meltdown of transient spatiotemporal ordering involves
nonlocal processes such as the dynamical generation of
unbound domain walls; the stronger the domain-wall
confinement, the longer such processes take.

II. OVERVIEW OF RESULTS

Here, we provide an overview of the content and results
of this paper, which is meant as guidance to the reader. Our
findings are summarized and illustrated in Figs. 1 and 2.

In Sec. III, we start by exactly solving for the order-
parameter dynamics of the integrable, periodically kicked,
transverse-field Ising chain. We establish a possibly long
but perturbative decay rate γ ∼ ϵ3 of DTC response, where ϵ
represents the deviation from a kicking protocol imple-
menting perfect spin flips. Furthermore, we identify the
physical mechanism leading to order-parameter meltdown
as the spreading of a small density ρ ∼ ϵ2 of dynamically
generated reversed spins, as the domain walls delimiting
them freely move at velocity v ∼ ϵ [Fig. 1(a)]. In passing,
we note that this result clarifies previous contradictory
findings on finite-size scaling of the DTC signal in this
model [68,69].
Building on this physical intuition, in Sec. IV, we

introduce domain-wall confinement via symmetry-
breaking longitudinal fields as a mechanism to prevent
the spreading of reversed domains. In the absence of perfect
flips, confinement individually stabilizes both the posi-
tively and negatively magnetized states. However, similarly
to what happens in MBL and high-frequency driven spin
chains [7,8], we show that symmetry-breaking terms are
averaged out by the drive, generating deconfined effective
dynamics despite domain walls being instantaneously
confined at all times. As a result, the order-parameter
decay rate is only weakly affected, retaining its perturbative
nature γ ∼ ϵ3 [Fig. 1(b)].
Finally, in Sec. V, we consider extending the range of

spin-spin interactions, Ji;j ≠ 0 for ji − jj ≤ R, as an alter-
native route to domain-wall binding, which does not suffer
from incompatibility with the (explicit or emergent) Z2

symmetry. The crucial feature that arises in these systems is
the coexistence in the spectrum of both “topologically
charged” excitations (kinks and antikinks) and “neutral”
confined bound states. During prethermal dynamics, con-
fined excitations only generate vacuum fluctuations, result-
ing in long-lived coherent oscillations of the order parameter.
Dynamical generation of unbound kinks and antikinks
triggers the vacuum decay and hence the decay of DTC
spatiotemporal order. We prove that this phenomenon is
heavily suppressed by the nonlocal nature of topological
excitations. In fact, we rigorously establish an exponential
enhancement of the order-parameter lifetime, i.e., γ ∼ ϵ2Rþ1,
under mild genericity assumptions on the couplings Ji;j
[Fig. 1(c)]. In otherwords, the fastest process leading toDTC
order melting occurs at a perturbative order that grows with
the interaction range R. Leveraging this result, we finally
conjecture that for algebraically decaying interactions
Ji;j ¼ J=ji − jjα, the decay rate is asymptotically suppressed

faster than any power of the perturbation, γ ∼ ϵAϵ
−1=ðα−2Þ

, in the
parameter rangeα > 2wherenoprethermal order is possible.
(As α approaches 2 from above, however, the lifetime 1=γ is
eventually superseded by the heating timescale; see below.)
We present numerical simulations that not only confirm our
theory predictions but even point to a much more robust and
extended stability than analytically understood.

COLLURA, DE LUCA, ROSSINI, and LEROSE PHYS. REV. X 12, 031037 (2022)

031037-2



0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

n

(–
1)

n  
m

(n
)

h R

(a) (b)Sec . III : a 3 Sec . IV : aeff
3 Sec . V : aR

2R+1

JJ

t =

JJ

t =

Space Space

T
im

e

T
im

e

t = 0 t = 0 t =

Space

T
im

e

t = 0

(c)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 0 10 20 30 40

!(–
1)

n  
m

(n
)

(–
1)

n  
m

(n
)

nn

FIG. 1. Illustrative summary of the results of this paper for the decay of the stroboscopic order parametermðnÞ ¼ hZjðnÞi ∼ ð−1Þne−γn at
integer times tn ¼ n in kicked Ising-type spin chains. (a) Top panel: standard transverse-field kicked Ising chain. The decay is driven by the
fractionalization of isolated spin flips, generated by small imperfections of magnitude ϵ in the kick, into pairs of unbound traveling domain
walls. The exact decay rate in Eq. (7) is interpreted as γ ∼ ρv, with ρ ∼ ϵ2 the density of spin flips and v ∼ ϵ the spreading velocity of domain
walls. Bottom panel: representative example [J ¼ 0.685, ϵ ¼ 0.2 in Eq. (6)]. (b) Top panel: tilt of the kick axis (green arrow in bottom-left
sketches). The resulting domain-wall confinement hinders the spreading of reversed domains. However, the periodic flips average out the
confining potential, resulting in deconfinement. Bottom panel: mild slowdown of the decay for increasing values of the longitudinal kick
component [h ¼ 0.2, 0.4, 0.6 in Eq. (25)]. (c) Top panel: couplings of rangeR > 1 beyond nearest neighbors. The resulting form of domain-
wall confinement is completely insensitive to periodic flips. We rigorously establish that, generically, the decay is only triggered by the
fractionalization of rare large reversed bubbles intopairs of unbounddomainwalls.This results in a qualitative suppressionof the decay rate as
γ ∼ ϵ2Rþ1. Bottom panel: strong enhancement of the order-parameter lifetime upon increasing the couplings’ range to a distanceR ¼ 2, 3, 4
[J2 ¼ 0.144, J3 ¼ 0.058, J4 ¼ 0.03 in Eq. (40)]. Note that very weak additional couplings J2;3;4 ≪ ϵ suffice to stabilize the response.
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FIG. 2. Sketch of the timescales involved in this work and beyond. (a) Finite interaction range R and arbitrary driving frequency
[Eq. (40)]. Here, we fix ϵ ≪ 1. The blue region denotes the extent of the DTC lifetime window upon increasing R; the blue upper
boundary is the timescale 1=γ ∼ ϵ−ð2Rþ1Þ proved in this work [Eq. (48)]. The heating region’s lower boundary represents the lower bound
Tpreth ≥ expðC=ϵ1=ð2Rþ1þδÞÞ on the heating timescale [Eq. (55)]. The crossing point R� ¼ R�ðϵÞ is pushed to ∞ (i.e., to the top-right
corner) as ϵ → 0. (b) Algebraically decaying interaction and high driving frequency [Eq. (63)]. Here, we take ϵ ≪ J and fix a small τ.
The blue region denotes the extent of the DTC lifetime window upon decreasing α. Left: For α > 2, the blue upper boundary is the
timescale 1=γ ∼ ϵ−Aϵ

−1=ðα−2Þ
argued in this work [Eq. (62)]. The heating region’s lower boundary represents the lower bound

Tpreth ≥ expðC=τÞ on the heating timescale, which is insensitive to the precise value of α > 1; see, e.g., Ref. [64]. The crossing
point α� ¼ α�ðϵ; τÞ is slowly pushed to ∞ (i.e., to the top-left corner) as ϵ → 0. Center: Prethermal DTC phase for 1 < α ≤ 2, as
established in Ref. [65]. Right: Mean-field DTC, established in Ref. [9] for infinite-range interactions α ¼ 0. For 0 < α ≤ 1, dynamics
preserve the mean-field character for a timescale that diverges with system size; see Refs. [66,67].
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The consequences of our findings are further discussed
in the conclusions in Sec. VI:

(i) The stabilization mechanism identified in this
work does not rely on Floquet-prethermal finite-
temperature order nor on eigenstate order. Rather, it
relies on the long-term metastability of “false vacua,”
familiar from high energy physics [70,71]: atypical
states with finite energy density that decay through
rare macroscopic tunneling phenomena. This idea
extends the theory of time crystals beyond previously
known mechanisms, circumventing some of their
limitations (cf. Fig. 2).

(ii) This work indicates a clear route to observing DTC
behavior in a class of quantum simulation platforms
of growing importance, namely, Rydberg-dressed
arrays of neutral atoms [72–74]. These systems are
characterized by a great degree of control on the
interaction range and strength. Compared to conven-
tional prethermal and MBL DTCs, the milder
requirements to observe confinement-stabilized
DTCs come at the price of reducing the set of initial
states exhibiting DTC response.

(iii) Finally, as a by-product on the theory side, our work
clarifies a long-standing issue, namely, the nature of
the apparent anomalous persistence of the order
parameter in the quench dynamics of quantum spin
chains with algebraically decaying interactions
Ji;j ¼ J=ji − jjα, α > 2, previously observed in
several numerical studies [60,75,76]. Our theory
establishes that a strong enhancement of the order-
parameter lifetime is to be generally expected in the
parameter regime 2 < α ≪ ∞, and it predicts its
functional form as a function of the quench magni-
tude. This has the important consequence, not recog-
nized before, that long-livednonequilibriumorder can
be sustained by systems in the “short-range” regime
α > 2, which cannot spontaneously form an ordered
state in thermal equilibrium. The meltdown of this
metastable order is ultimately triggered at long times
by the dynamical generation of deconfined topologi-
cal excitations (domain walls).

III. ORDER-PARAMETER DECAY IN THE
KICKED TRANSVERSE-FIELD ISING CHAIN

Our starting point is the standard Ising Hamiltonian

HJ ¼ −J
XL
j¼1

ZjZjþ1; ð1Þ

where J > 0 is the ferromagnetic coupling, Xj, Yj, Zj are
the local spin-1=2 Pauli matrices for the jth spin, and
periodic boundary conditions (jþ L≡ j) are assumed. The
Floquet dynamics is obtained by periodically intertwining
the evolution governed by HJ with kicks K ¼ Q

j Kj at

integer times tn ¼ n ¼ 1; 2;…. The resulting single-cycle
time-evolution (Floquet) operator reads

U ¼ KVJ; VJ ¼ eiJ
P

j
ZjZjþ1 : ð2Þ

To observe the simplest realization of time-crystalline
spatiotemporal order, the system is initially prepared in the
fully polarized state with positive magnetization along the ẑ
direction, namely, one of the two degenerate ground states
of HJ. This has a product-state form jþi≡ j � � � ↑↑↑ � � �i,
where j↑i (j↓i) denotes the eigenvector of the Pauli matrix
Z with eigenvalue þ1 (−1). The kick K is taken to rotate
each spin by an angle π around a transverse axis [77]:

K → Kπ=2 ¼ ei
π
2

P
j
Xj : ð3Þ

In this case, the time-evolved state after n kicks
jΦðnÞi ¼ Unjþi exhibits a sequence of perfect jumps
between jþi and the other ground state of HJ, namely,
j−i≡ j� � �↓↓↓ � � �i. The persistent nonvanishing value of
the order parameter

mðnÞ ¼ hΦðnÞjZjjΦðnÞi ð4Þ

in both space and time, being equal to ð−1Þn, gives rise to a
trivial example of amacroscopic subharmonic response. This
behavior, however, relies on a fine-tuning of the kick
strength, g ¼ π=2. The existence of a nonequilibrium phase
of matter exhibiting time-crystal behavior revolves around
the stability of this spatiotemporal order to arbitrary (suffi-
ciently weak) Floquet perturbations in the thermodynamic
limit L → ∞.

A. Exact decay rate in the thermodynamic
limit and finite-size effects

The simplest perturbation to the above Floquet protocol
consists in performing imperfect spin flips, i.e.,

K → Kπ=2þϵ ¼ eið
π
2
þϵÞ

P
j
Xj ; ð5Þ

with ϵ ≠ 0. Since the perfect kick Kπ=2 ¼ iLP can be
factored out of K and is proportional to the global Z2-spin-
flip operator P ¼ Q

j Xj, the expectation value of the local
order parameter (4) over n periods can be expressed as

mðnÞ ¼ ð−1Þnhþj½KϵVJ�−nZj½KϵVJ�njþi; ð6Þ

where we used the properties PZjP ¼ −Zj and
½VJ; P� ¼ 0, while Kϵ ¼ expðiϵPj XjÞ. Equation (6)
expresses the fact that the absolute value of the magneti-
zation evolves as if it were governed by the Floquet
operator KϵVJ with kick strength equal to ϵ, where the
perfect kick has been completely gauged away by switch-
ing to a toggling frame of reference, leading to the
multiplicative factor with alternating sign ð−1Þn.
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The persistence of time-crystalline order is related to the
preservation of a finite absolute value of the local order
parameter jmðnÞj for large times n → ∞. This question has
been addressed in previous works investigating finite-size
chains. In particular, the analysis of Ref. [68] led to a
positive answer based on finite-size scaling of the order
parameter obtained by exact diagonalization (ED) of short
chains L≲ 20. This finding contradicts the generic expect-
ations of the absence of long-range order in excited states of
one-dimensional, clean, short-range interacting systems.
Here, by computing the exact dynamics of the magneti-

zation for an infinite chain using the integrability of the
model, as detailed in Appendix A, we establish that the
order parameter decays exponentially in time as
jmðnÞj ∼ e−γn. The rate γ is found to be

γ ¼ −
Z

π

0

dp
π

∂pϕp ln j cosðΔpÞj; ð7Þ

where the quasiparticle spectrum ϕp and the Bogoliubov
angle Δp resulting from the diagonalization of the
quadratic Floquet Hamiltonian are defined by the equations
cosðϕpÞ ¼ cosð2JÞ cosð2ϵÞ þ sinð2JÞ sinð2ϵÞ cosðpÞ and
cosðΔpÞ¼ cosðθpÞcosðpÞþ sinðθpÞcosð2ϵÞsinðpÞ, respec-
tively. The explicit expression of θp is given in Appendix A.
By Taylor expanding the exact result (7) for small perturba-
tions ϵ, we find that the rate γ scales as

γ ¼ 16

3π sin2ð2JÞ jϵj
3 þOðjϵj5Þ: ð8Þ

Figure 3 reports the exact evolution of mðnÞ for
increasing values of ϵ, for J ¼ 1 (colored data sets). In
all cases, the resulting decay rate excellently reproduces the

analytical result (7) (dashed black lines). As is evident in
Fig. 3(a), the decay remains quite slow even for moderate
values of ϵ. Furthermore, in Figs. 3(b)–3(d), we compare
the thermodynamic-limit evolution with that of finite chains
of length L ¼ 10 to L ¼ 30. The plot illustrates the
dramatic impact of finite-size effects. The apparent per-
sistence of the order parameter in finite systems has been
detected in previous works [68,69,78]. For the kicked Ising
chain [68,69], these strong finite-size effects can be
attributed to a large overlap of the initial state with the
magnetized ground state of the integrable Floquet
Hamiltonian, in agreement with the numerical findings
of Ref. [79] and similarly to the static case [80,81].

B. Physical interpretation of the order-parameter
decay as domain-wall spreading

The scaling in Eq. (8) with ϵ can be understood in
intuitive terms, considering that the system has exact
quasiparticles that behave as noninteracting fermions.
The dynamics in Eq. (6) is equivalent to a quench from
the ground state of the classical Ising Hamiltonian (1),
evolving with a kicked Ising chain deep in the ferromag-
netic phase jϵj ≪ J. In this case, the free fermions can be
interpreted as topologically protected excitations, i.e.,
domain walls (kinks and antikinks), interpolating between
the two degenerate magnetized ground states. To the lowest
order in the kick strength ϵ, the quench creates a small
density ρ ¼ Oðϵ2Þ of spin flips, whose constituent pair of
domain walls freely spread along the chain with maximum
velocity v ¼ OðjϵjÞ. The domain of reversed spins extend-
ing between a kink-antikink pair grows linearly in time
until one of them meets another domain wall initially
located far away. The decay rate of the order parameter can

(b)(a) (d)(c)

FIG. 3. (a) Evolution of the order parameter under the Floquet Ising dynamics in Eq. (6), with J ¼ 1 and different values of the kick
strength ϵ. Data have been obtained by analytically solving the dynamics of the model, as explained in Appendix A. (b)–(d) Absolute
value of the order parameter in logarithmic scale. Thick lines are the same data as in panel (a) and are for L ¼ ∞. Shaded lines are the
results of ED simulations for finite systems with different sizes L ¼ 10, 15, 20, 25, 30, from lighter to darker colors. Dashed black lines
denote the asymptotic exponential decay e−γn, with γ predicted by Eq. (7).
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be predicted in terms of this semiclassical picture [82].
We find

γ ∼ ρv ¼ Oðjϵj3Þ: ð9Þ

Indeed, the exact result in Eq. (7) obtained from the
asymptotic expansion of the determinant of a large block
Toeplitz matrix [83,84] precisely takes the form of a product
of quasiparticle group velocity j∂pϕpj at momentum jpj and
(for small ϵ) number sin2ðΔpÞ ≃ − ln j cos2ðΔpÞj of excited
quasiparticle pairs with momenta ðp;−pÞ in the initial state,
averaged over momenta. This substantiates the intuitive
interpretation above.
The exact result thus quantitatively confirms the intuitive

model of order-parameter meltdown by spreading domain-
wall pairs, illustrated in Fig. 1(a). More importantly, this
picture highlightswhatmakes time-crystalline order doomed
tomelt in one-dimensional systems: Preventing domain-wall
pairs from unbounded separation requires certain micro-
scopic mechanisms, such as Anderson (many-body) locali-
zation induced by quenched disorder. In the rest of this
article, we will investigate under which circumstances
domain-wall confinement can provide a robust stabilization
mechanism.

IV. DOMAIN-WALL CONFINEMENT
AND DECONFINEMENT IN THE KICKED

MIXED-FIELD ISING CHAIN

The previous section unambiguously illustrates how
domain-wall spreading underlies the time-crystal melting
in clean, locally interacting, spin chains. A celebrated
proposal to overcome this occurrence and protect long-range
order out of equilibrium hinges upon disorder-induced
localization: In such a case, domain walls behave like
particles moving in a random background, and spatial
localization can arise from destructive interference, as first
foreseen by Anderson [20], even in the presence of
many-body interactions [21–23]. This basic mechanism of
localization-protected order [24,25] has been proposed to
stabilize time-crystalline behavior for arbitrarily long times
[5,6]. Here, we explore a different mechanism to prevent
domain-wall spreading, namely, domain-wall confinement.
In this section, we briefly review the current under-

standing of this multifaceted phenomenon (Sec. IVA) and
extend it to driven systems, exemplified by the spin-chain
dynamics (2) subject to weak kicks K ≃ 1 about an
arbitrary tilted axis. Specifically, we use the tools of
many-body perturbation theory to reformulate the order-
parameter dynamics in terms of the motion of effective
domain walls (Sec. IV B) and demonstrate domain-wall
confinement (Sec. IV C). Finally, in Sec. IV D, we come
back to our main discrete time-crystal problem with kicks
close to perfect spin flips K ≃ iLP, and we understand the
order-parameter melting, illustrated in Fig. 1(b).

A. Confinement in quantum spin chains

For the benefit of readers who may not be familiar with
domain-wall confinement in quantum spin chains, in this
subsection we provide a brief overview.
Particle confinement is a nonperturbative phenomenon

arising in certain gauge theories, which consists in the
absence of colored asymptotic states: All stable excitations
of the theory above the ground state are colorless bound
states of elementary particles [85]. An intuitive picture of
this phenomenon is given by the formation of a gauge-field
string connecting a quark-antiquark pair, the energy cost of
which provides an effective confining potential that grows
linearly with the spatial separation between the two
particles. As a result, the quark and antiquark bind together
into composite neutral particles called mesons. When a
large physical separation between them is enforced, the
potential energy stored in the string becomes sufficient to
produce another pair of particles out of the vacuum, which
bind with the old particles to form two mesons, making the
observation of isolated quarks impossible.
An analogous confinement phenomenon naturally arises

for domainwalls in quantum spin chains. Itsmechanismwas
proposed byMcCoy andWu in 1978 [48] and later studied in
a variety of theoretical [49–52,86,87] and experimental [88–
90] works. The core ingredient here is a first-order quantum
phase transition, i.e., the explicit lifting of a spontaneously
broken discrete symmetry. In the ferromagnetic quantum
Ising chain (H ¼ −J

P
j ZjZjþ1 − g

P
j Xj, with jgj < J),

this can be simply realized by introducing a longitudinal
field −h

P
j Zj, which generates an energy penalty for the

reversedmagnetic domain separating a pair of domainwalls,
analogous to a string tension. The energetic cost for
separating the pair thus grows proportionally to the distance,
giving rise to a linear confining potential that fully sup-
presses the spreading at arbitrarily high energies, binding the
pair of “topologically charged” particles (kink and antikink)
into “topologically neutral” bound states, referred to as
mesons by analogy with particle physics. In certain quasi-
one-dimensional magnetic insulators, similar effective
longitudinal fields are provided at a mean-field level by
interchain interactions; the resulting tower of mesonic
excitations (spinon bound states) has been spectacularly
observed with inelastic neutron scattering [88–90].
Recently, it has been realized that confinement in

quantum spin chains and in (1þ 1)-dimensional lattice
gauge theories can be generically mapped onto each other
[56] via elimination or introduction of matter degrees of
freedom exploiting the local constraints posed by gauge
invariance [91,92]. This substantiates intuitive pictures of
the nonequilibrium dynamics of spin chains in terms of
prototypical phenomena in gauge theories, such as vacuum
decay [56,63,93,94], string dynamics [54–57], and string
inversions [91].
Dynamical signatures of domain-wall confinement have

recently been attracting growing interest, starting from
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Ref. [53]. The suppression of domain-wall spreading
stabilizes the order parameter even out of equilibrium.
This stabilization also applies to the dynamics starting from
the “false vacuum” magnetized against the longitudinal
field, which is a very atypical highly excited state without
domain walls [55,56]. The basic explanation of this
phenomenon is that domain-wall pairs excited on top of
the false vacuum are also confined into “antimesons.”
Furthermore, domain-wall pair production out of the false
vacuum is strongly suppressed, despite being energetically
allowed and entropically favorable, as it requires a locally
created virtual pair to tunnel across a high-energy barrier.
This effect, akin to the Schwinger mechanism in quantum
electrodynamics [95], results in an exponentially long
lifetime of the order parameter [56,63].

B. Effective domain-wall dynamics for weak kicks

Here we show that analogous considerations on domain-
wall confinement carry over to driven quantum Ising chains,
under the assumption that the periodic kicks are weak. We
consider the spin chain evolving with the Floquet operator in
Eq. (2), with the simplest Z2-symmetry-breaking periodic
kicks, i.e., a tilted rotation axis away from the x − y plane:

K → Kϵ;h ¼ ei
P

j
ðϵXjþhZjÞ: ð10Þ

We define ϵ̂ ¼ maxðϵ; hÞ to conveniently keep track of the
global magnitude of the kick. For clarity, we stress that, here,
we are considering a weak kickKϵ;h, with ϵ ≪ 1, in contrast
with the almost perfect spin flip Kπ=2þϵ [compare with
Eq. (5)], which is relevant for the stability of DTC.
The first problem that we encounter is related to the

breaking of integrability for h ≠ 0: Domain walls cease to
exist as exact quasiparticles throughout the many-body
Floquet spectrum, seemingly obscuring the physical inter-
pretation of the magnetization dynamics. However, we can
still make sense of an effective picture of domain-wall
dynamics for weak perturbations, using the rigorous theory
of prethermalization of Ref. [96]. Namely, one can con-
struct a sequence of time-periodic, quasilocal unitary
transformations feiϵ̂mSmgm¼1;…;p, designed to remove from
the time-dependent Hamiltonian all the terms that change
the total number of domain walls,

D1 ≡
X
j

Dj;jþ1; Dj;jþ1 ≡ 1 − ZjZjþ1

2
: ð11Þ

The resulting transformed Floquet operator

Up ¼ e−iϵ̂
pSp � � � e−iϵ̂S1Kϵ;hVJeiϵ̂S1 � � � eiϵ̂pSp ð12Þ

conserves D1 up to terms of order pþ1, i.e.,
½Up;D1� ¼ Oðϵ̂pþ1Þ. The perturbative series generated by
this construction represents a nontrivial generalization of the
well-known Schrieffer-Wolff transformation for static

Hamiltonians [97–100]. The generators fSmg take the form
of sums of local operators, whose number and support size
grow proportionally to the perturbative order m.
The construction of the transformation eiS≤p≡eiϵ̂S1 ���eiϵ̂pSp

for arbitrarily large p aims at asymptotically producing an
exactly domain-wall-conserving Floquet operator. However,
the resulting perturbative series is expected to have divergent
(asymptotic) character, in general, similarly to the static case
[100], suggesting a late-time breakdown of the conservation
of D1 and an eventual heating to infinite temperature.
Nevertheless, the transformed picture still contains extremely
useful information on the transient dynamics. The analysis of
Ref. [96] shows that, when J is strongly incommensuratewith
the driving frequency 2π [101], the breakdown of D1

conservation—and hence heating—must be extremely slow.
In fact, the optimal (with respect to suitable operator norms)
truncationorder depends on themagnitude of theperturbation
as p� ∼ C=ϵ̂3þδ, where δ > 0 is arbitrary and C ¼ CðδÞ is a
constant. The very fact thatp� scales upwith the smallness of
ϵ̂ itself yields a nonperturbatively small truncation error. In
turn, this translates into a quasiexponentially long time
window [96,102],

Tpreth ≥
1

ϵ̂
exp

�
c

ϵ̂1=ð3þδÞ

�
; ð13Þ

within which—for the purpose of computing the dynamics of
local observables—the nonequilibrium evolution of an initial
state jψ0i can be approximated as

Unjψ0i ≃ eiS≤p� ðU0
p� Þne−iS≤p� jψ0i; ð14Þ

where U0
p� is the approximate Floquet operator obtained

from Up� by truncating terms beyond the order ϵ̂p
�
. By

construction, U0
p� exactly conserves the number of domain

walls, ½U0
p� ; D1� ¼ 0.

The physical consequenceof this analysis is that the “bare”
(i.e., unperturbed) domain-wall occupation number Dj;jþ1

on the bond ðj; jþ 1Þ acquires a perturbative quasilocal
“dressing” e−iS≤p�Dj;jþ1e

iS≤p� for small perturbations. The
density of such dressed domainwalls remains approximately
conserved at least for the long timescale Tpreth in Eq. (13).
Note, however, that this heating timescale only represents a
rigorous lower bound, and it is not expected to be tight, in
general. In the integrable limit h ¼ 0, the underlying
algebraic structure of the model produces cancellations to
all orders, which make this perturbative series convergent,
leading to exact dressed domain-wall quasiparticles. In this
case, heating is completely suppressed beyond the above
timescale Tpreth. As soon as h ≠ 0, instead, these emergent
domain walls are expected to eventually decay after Tpreth

(see also Refs. [54,103]). In any case, as long as we deal with
dynamical phenomena occurring in the long Floquet-
prethermal time window 0 ≤ t ≤ Tpreth, we can switch to
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the effective picture, where states and observables are
transformed via the unitary operator eiS≤p� , and work therein
with the effective domain-wall-conserving Floquet operator
U0

p� , according to Eq. (14).
From the above discussion, we can analyze the evolution

of the order parameter by switching to the transformed
picture,

mðnÞ ¼ hψ0jU−nZjUnjψ0i ≃ hψ 0
0jðU0

p� Þ−nZ0
jðU0

p� Þnjψ 0
0i;
ð15Þ

where jψ 0
0i ¼ e−iS≤p� jψ0i, Z0

j ¼ e−iS≤p�Zje
iS≤p� , and the

approximation, due to truncating Up� to U0
p� , holds up

to the long timescale in Eq. (13). In this transformed
picture, the number D1 of domain walls is an exact
quantum number, and the Hilbert space fractures into
separate blocks labeled by D1.
The perturbative construction introduced in Ref. [96] to

prove the theorem leading to Eq. (13) is hardly manageable
for explicit low-order computations. In practice, we have
found it more convenient to resort to a combination of the
replica resummation of the Baker-Campbell-Hausdorff
(BCH) expansion of Ref. [104] and a standard static
Schrieffer-Wolff transformation (see, e.g., Ref. [100]). In
both approaches, the existence of a well-defined expansion
requires incommensurability of the coupling J with 2π.
This condition is necessary to ensure that the domain-wall
number uniquely labels the unperturbed sectors of the
Floquet operator and thus remains a good quantum number
throughout the perturbative construction. We remark that
while the scheme of Ref. [96] generally produces a time-
dependent effective Hamiltonian, the combined BCH
resummation and Schrieffer-Wolff transformation produce
a static effective Hamiltonian, with presumably similar
convergence properties.
In Appendix B, we use the latter approach to derive the

expression of S and U0 to lowest order p ¼ 1, reported
here:

U0
1 ¼ eþi

P
j
JZjZjþ1þϵðP↑

j−1XjP
↓
jþ1

þP↓
j−1XjP

↑
jþ1

ÞþhZj ; ð16Þ

S≤1 ¼ −
ϵ

2

X
j

P↑
j−1½Xj − cotð2JÞYj�P↑

jþ1

þ P↓
j−1½Xj þ cotð2JÞYj�P↓

jþ1: ð17Þ

In Eqs. (16) and (17), the operators P↑;↓
j represent local

projection operators onto the “up” and “down” states along z
of spin j. The off-diagonal processes in U0

1 are given by the
terms proportional to ϵ, which describe nearest-neighbor
hopping of domain walls to the left or to the right. Processes
that create or annihilate pairs of domain walls have been
removed from the evolution operatorU1 through the unitary
transformationeiS≤1 ; in this formulation, these processes only

show up in the expression of the transformed initial
state jψ 0

0i ¼ e−iS≤1 jψ0i.
The general structure of the expansion and further

details are discussed in Appendix B. Higher-order terms
generate further small corrections in the effective Floquet
Hamiltonian. In particular, at order p, one has terms
in U0

p that correspond to at most p displacements of one
domain wall or more adjacent domain walls to a neigh-
boring bond. For example, at second order, one has
diagonal terms, plus nearest-neighbor hopping terms
analogous to those in U0

1, plus new terms proportional to

P↑
j−1ðSþj Sþjþ1 þ S−j S

−
jþ1ÞP↓

jþ2 (next-nearest-neighbor hop-

ping), P↓
j−1ðSþj S−jþ1þS−j S

þ
jþ1ÞP↓

jþ2 (pair nearest-neighbor
hopping), and analogous flipped combinations. These
additional terms do not modify the conclusions below.
Likewise, the higher-order Schrieffer-Wolff generator S≤p
flips at most p neighboring spins.

C. Domain-wall confinement
and order-parameter dynamics

Armed with the rigorously established picture of effective
domain-wall dynamics for weak kicks, we now discuss
domain-wall confinement and its implications for the evo-
lution of the order parameter. Here, as in the previous
subsection, we discuss the Floquet dynamics generated
by weak kicks U ¼ Kϵ;hVJ. In the next subsection, we
return to studying the robustness of the DTC signal with
U ¼ Kπ=2Kϵ;hVJ.
Equation (15) describes the evolution of the magneti-

zation in the transformed domain-wall picture. The trans-
formed initial state jþ0i consists of a low density of order ϵ2

of flipped spins,

hþjeiS≤1Dj;jþ1e−iS≤1 jþi ¼ ϵ2

2 sin2 2J
þOðϵ̂3Þ; ð18Þ

as, to lowest order, this state is obtained by rotating the
spins in jþi by an angle ϵ= sinð2JÞ around a transverse axis
(note that each spin flip carries two domain walls).
Furthermore, since Z0

j ¼ Zj þOðϵÞ, for the purpose of
understanding the nature of the evolution of mðnÞ (i.e.,
persistent or decaying), we can drop the correction to Zj.
Since the initial state is composed of dilute tight pairs of

domainwalls,we can enlighten the resulting order-parameter
dynamics by studying the two-body problem. The intuitive
picture of the evolution of mðnÞ in terms of the motion of
domain-wall pairs becomes asymptotically exact in such a
low-density limit. The nature of this evolution (persistent or
decaying order) depends on the effective Floquet operatorU0
governing the motion of domain walls. Equation (16)
describes domain walls of “mass” 2J, hopping to neighbor-
ing lattice bonds with amplitude ϵ, and experiencing a
confining potential VðrÞ ¼ 2hr, which ties them to a
neighbor at a distance r.
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The two-body problem is obtained by projecting the
effective HamiltonianH1, defined by the exponent of U0

1 in
Eq. (16), onto the sector spanned by two-particle basis
states jj1; j2i, where the integers j1 < j2 label the positions
of two domain walls along the chain. The resulting two-
body Hamiltonian is

H2-body¼
X
j1<j2

Vðj2− j1Þjj1;j2ihj1;j2j

− ϵ
X
j1<j2

ðjj1þ1;j2iþ jj1;j2þ1iÞhj1;j2jþH:c:;

ð19Þ

where the hard-core constraint jj1 ¼ j2i≡ 0 is understood.
The second term represents nearest-neighbor hops of the
domain walls, whereas the first one acts as a linear
confining potential VðrÞ ¼ 2hr as a function of the dis-
tance r ¼ j2 − j1 > 0. While for h ¼ 0 one has a con-
tinuum of unbound traveling domain walls, as soon as
h ≠ 0 the spectrum changes nonperturbatively to an infinite
discrete tower of bound states.
Because of the translational invariance of the initial state

jþ0i, domain-wall pairs are only generated with vanishing
center-of-mass momentum K ¼ 0. The relative coordinate
wave function ψðrÞ satisfies a Wannier-Stark equation with
a hard-wall boundary condition ψð0Þ ¼ 0, yielding
[56,105] the exact mesonic masses

El ¼ 2hνlð2ϵ=hÞ≡−2h× fl-th zero of x↦ J xð2ϵ=hÞg;
ð20Þ

l ¼ 1; 2;…, and wave functions

ψlðrÞ ¼ J r−νlð2ϵ=hÞ; ð21Þ

where J is the standard Bessel function [106]. For ϵ → 0,
one finds the energy levels El ¼ 2hl, corresponding to a

domain ofl reversed spins,ψlðrÞ ¼ δl;r. Figure 4(a) reports
a sketch of the low-energy spectrum of the Floquet
Hamiltonian in this limit. For finite ϵ=h, the eigenfunctions
can still be adiabatically labeled by the integer l. Panel
(b) reports a selection ofmesonic eigenfunctionsψlðrÞ in the
center-of-mass frame, for ϵ=h ¼ 1.5. Boundary effects are
visible for small l≲ 2ϵ=h, whereas for larger l, the wave-
functions become essentially Wannier-Stark localized orbi-
tals, i.e., rigidly shifted copies of each other.
We can formulate a more intuitive analysis of the two-

body dynamics, which will turn out to be fruitful later to
analyze the time-crystalline behavior. To this aim, we
introduce the canonically conjugated operators Q, P
defined by

Q ¼
X
r

rjrihrj; eiP ¼
X
r

jrþ 1ihrj; ð22Þ

which correspond to the position and the momentum in the
center-of-mass frame, i.e., the distance between the two
domain walls and their relative momentum; one can verify
that ½Q;P� ¼ i [107]. Using these variables, the center-of-
mass frame Hamiltonian becomes

Hcm ¼ 2hQ − 4ϵ cosP; ð23Þ

where the domain is Q > 0 and a hard-wall boundary
condition at Q ¼ 0 is understood. Classical trajectories are
bounded in the Q direction and are translationally invariant
away from the boundary Q ¼ 0. Indeed, the Heisenberg
evolution equations can be integrated exactly in the bulk
Q ≫ 2ϵ=h (i.e., neglecting the boundary condition), which
gives

QðtÞ¼Qð0Þþ 2ϵ
h ½sin2htsinPð0Þþð1−cos2htÞcosPð0Þ�;

PðtÞ¼Pð0Þþ2ht:

ð24Þ

(a) (b)
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FIG. 4. (a) Sketch of the low-energy spectrum of the Floquet operator in Eq. (16) for ϵ → 0. The vertical axis represents the relative
eigenphase ΔE with respect to the polarized state jþi. (b) Selection of mesonic eigenfunctions of the two-body problem, cf. Eq. (21),
for ϵ=h ¼ 1.5.
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Equation (24) indicates that the relative momentum P
revolves freely around the Brillouin zone, whereas the
relative coordinate Q performs stable Bloch oscillations,
remaining localized near the corresponding initial condi-
tion. In physical terms, the mutual confining potential
creates an effective Wannier-Stark ladder, which pins the
distance between the two domain walls.
As anticipated above, the solution of the two-body

problem sheds light on the many-body dynamics. Each
of the dilute spin flips in the initial state jþ0i overlaps
significantly with the lightest mesonic wave functions
[108]. The total magnetization thus exhibits a persistent
oscillatory behavior, characterized by multiple frequencies
associated with the “masses” of the mesonic bound states.
As long as the typical separation between distinct initial
domain-wall pairs—the inverse ≃ϵ−2 of the density in
Eq. (18)—exceeds, by far, the size ≃1þ ϵ=h of the excited
bound states, the evolution of the magnetization mðnÞ can
be described as resulting from the coherent superposition of
independent small-amplitude meson oscillations, similarly
to the undriven case discussed in Ref. [53]. We note that
inelastic meson scattering is expected to trigger asymptotic
thermalization; however, the inelastic cross section drops
rapidly for small ϵ [109], making the transient out-of-
equilibrium state extremely long lived [110,111].
Analogous considerations can be made for the dynamics

starting from the false vacuum state j−i (or, equivalently,
taking h ↦ −h). Two consecutive domain walls are subject
to an anticonfining potential, decreasing linearly with their
separation. Because of the lattice effects, however, the
domain walls cannot accelerate arbitrarily towards large
distances, as their hopping kinetic energy is bounded. Thus,
they form a tower of bound states, formally analogous to
the true ground-state excitations (21) discussed above. The
dynamics of the order parameter thus follows a similar
pattern, exhibiting a stable antimagnetization with small-
amplitude multiple-frequency oscillations superimposed
due to antimesons.
The ultimate decay of the antimagnetization due to

resonant domain-wall pair production is expected to occur
at very long times, as the high energy cost 4J of creating
two domain walls has to be compensated by a gain 2hr
associated with a large ground-state bubble of size r
extending between them. To realize this, the two locally
created virtual domain walls have to tunnel through a
distance r� ≃ 2J=h, which suggests a nonperturbative life-
time. The more rigorous estimation of Ref. [96] leads to the
quasiexponentially long time in Eq. (13). This phenomenon
is closely related to the Schwinger mechanism in quantum
electrodynamics, as explained in Ref. [56].
The confinement scenario for the periodically kicked

mixed-field Ising chain has been verified numerically, sim-
ulating the Floquet dynamics induced by Z2-symmetry-
breaking periodic kicks Kϵ;h by means of the infinite
time-evolving block decimation (iTEBD) algorithm [112].

Figure 5 reports the behavior of the order parameter as a
function of the number of n kicks. In fact, either starting from
the vacuum jþi [panel (a)] or from the false vacuum j−i
[panel (b)], a small value of the longitudinal component h is
sufficient to induce a nonperturbative change in the order-
parameter dynamics: Domain walls get confined into (anti)
mesons, thus hindering the melting of the order parameter,
which remains finite for exponentially long times (solid
colored lines).

D. Deconfinement by driving and DTC lifetime

In the last section, we established that domain-wall
confinement induced by a Z2-symmetry-breaking kick
component stabilizes both the magnetization when quench-
ing from the true vacuum and the antimagnetization when
quenching from the false vacuum (cf. Fig. 5). We now
return to our main problem of time-crystalline order and
discuss how generic (non-Z2-symmetric) kick imperfec-
tions impact the order-parameter lifetime determined in
Sec. III.
We consider kicks K in Eq. (2) of the form of imperfect

spin flips:

K → Kπ=2Kϵ;h ¼ iLPei
P

j
ðϵXjþhZjÞ: ð25Þ

(a)

(b)

FIG. 5. Floquet dynamics of the order parameter induced by the
kick Kϵ;h, with ϵ ¼ 0.2 and different values of h, in an infinite
chain L ¼ ∞, obtained through iTEBD simulations. The system
is initially prepared either (a) in the “vacuum” jþi or (b) in the
“false vacuum” j−i. The order-parameter meltdown for h ¼ 0
(dashed black lines) gets strongly suppressed by the presence of a
small h ≠ 0 (solid lines).
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To make progress, generalizing the approach of Sec. III, we
switch to the toggling frame, i.e., rewrite the two-cycle
Floquet operator reabsorbing the perfect kick:

U2 ¼ ðKπ=2Kϵ;hVJÞðKπ=2Kϵ;hVJÞ
≡ ð−ÞLðKϵ;−hVJÞðKϵ;hVJÞ ð26Þ

where, as in Eq. (6), we have exploited the fact that
ð−iÞLKπ=2 ¼ P flips the Z axis, leaving the Z2-symmetric
interactions VJ invariant. Here, however, the toggling
frame makes the symmetry-breaking longitudinal compo-
nent h of the kick periodically flip in sign. The dynamics
can thus be seen as generated by strong interactions and
weak kicks only (without perfect flips), alternating the sign
of the longitudinal component of the kick at each period.
The theory of Ref. [96] discussed above for U straight-

forwardly applies to U2 as well: It guarantees the existence
of a close-to-identity time-periodic unitary transformation
eiS̄≤p such that, in the transformed frame, the two-cycle
Floquet dynamics described by Eq. (26) approximately
conserves the number of domain walls over a long
prethermal timescale analogous to Eq. (13). In the previous
section, we have discussed the transformation eiS≤p for
U ¼ Kϵ;hVJ [see Eqs. (12) and (14)]. Unfortunately, there
is generally no simple relation between eiS≤p and eiS̄≤p
because the generators S≤p and the effective Floquet
operator U0

p depend on both ϵ and h. In particular, h
and −h produce generally different operators S≤p. This fact
prevents us from straightforwardly combining the two
transformations for Kϵ;hVJ and Kϵ;−hVJ into a single
one for U2.
However, the lowest-order result in Eq. (17) shows that

S≤1 is actually independent of h. This simplification allows
us to directly combine the two transformations into a single
one for U2 right away: Substituting into Eq. (26), we find
that the resulting lowest-order transformation eiS̄≤1 coin-
cides with eiS≤1 in Eq. (17):

U2 ≃ ð−ÞLeiS≤1U0
1ð−hÞU0

1ðhÞe−iS≤1
≡ ð−ÞLeiS̄≤1ðU2Þ01e−iS̄≤1 ð27Þ

where U0
1ðhÞ is expressed in Eq. (16). In contrast with

U0
1ð�hÞ, ðU2Þ01 is not expressed as the exponential of a

time-independent local Hamiltonian, but it results from two
time steps where the longitudinal field switches between h
and −h. On the other hand, the occurrence that the lowest-
order transformation S̄≤1 ¼ S≤1 is time independent here
relies on the special form (25) chosen for the kick
perturbation, which makes the present derivation especially
simple.
Thus, our problem amounts to studying the driven

dynamics of a dilute gas of domain-wall pairs. To the
level of approximation considered above, domain walls are

subject to the unitary dynamics expressed by Eq. (16)
where, crucially, the confining string tension h regularly
flips in sign at integer times, as dictated by Eq. (27).
Generalizing the analysis of Sec. IV C, the nature of the
evolution of the order parameter—and hence the fate of
time-crystal behavior in the presence of confinement—will
be essentially determined by the solution of the two-body
problem.
Solving the two-body dynamics amounts to composing

the evolution map in Eq. (24) with þh and −h. Even
though domain walls are completely bound into mesons or
antimesons within each individual period, we demonstrate
that the periodic switching between the two leads to
deconfinement and thus the meltdown of the system
magnetization. The exact two-cycle Floquet map restricted
to the two-body space in the bulk (i.e., for Q ≫ 2ϵ=h) is
equivalent to the composition of two maps given by
Eq. (24) for t ¼ 1, with þh and −h, respectively. The
result of this composition is

Qð2tþ 2Þ ¼ Qð2tÞ þ 4 ϵ
h ½cosPð2tÞ − cosðPð2tÞ þ hÞ�;

Pð2tþ 2Þ ¼ Pð2tÞ:
ð28Þ

This two-cycle map is equivalent to one generated by an
effective static Hamiltonian,

Qð2tþ 2Þ ¼ eþi2H̄cmQð2tÞe−i2H̄cm ;

Pð2tþ 2Þ ¼ eþi2H̄cmPð2tÞe−i2H̄cm ;
ð29Þ

which reads

H̄cm ¼ 2ϵ

h
½sinP − sinðPþ hÞ�; ð30Þ

as can be readily verified.
Remarkably, H̄cm is a pure-hopping Hamiltonian, with-

out interaction potentials. Its eigenstates are no longer
bound states localized around a finite value of Q but rather
deconfined plane waves with a definite momentum P. The
periodic switching between þh and −h averages out the
Z2-breaking confining potential and effectively restores
the symmetry, similarly to what happens in high-frequency
driven discrete time crystals [7].
A semiclassical description of the effective domain-wall

dynamics is portrayed in Fig. 1(b), where we highlight
how the periodic switching of the sign of the confining
potential h leads to an effective ballistic spreading of the
reversed bubble delimited by two domain walls, with a
renormalized maximum effective velocity veff ¼ veffðϵ; hÞ.
From Eq. (30), we find the approximate dispersion relation
v̄ðkÞ ¼ ð2ϵ=hÞ½sin k − sinðkþ hÞ�, whence
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veffðϵ; hÞ
veffðϵ; 0Þ

¼ 1 −Oðh2Þ: ð31Þ

As we neglected all terms in H2-body beyond the first order
in ϵ and h [cf. Eq. (19)], we cannot expect the correction to
be quantitatively accurate. However, numerical simulations
shown in Figs. 6 and 7 clearly indicate a relative reduction
of the decay rate γ of the order parameter by a factor

γðϵ; hÞ
γðϵ; 0Þ ≃ 1 −

h2

2
; ð32Þ

which is compatible with a relative decrease of order h2 for
both the density ρ of spin flips in the initial state and the
spreading velocity, according to the formula γ ∼ ρveff .
The bottom line of this analysis is that the symmetry-

breaking perturbation, leading to confinement of excitations
in the static case, enhances the lifetime of time-crystalline
behavior, although only by parametrically decreasing the
prefactor a ¼ aðJ; hÞ of the perturbative decay law γ ∼ aϵ3.
The above arguments can be easily modified to account for
generic symmetry-breaking perturbations of the perfect
kick. Thus, such perturbations do not qualitatively modify
the picture of the order-parameter meltdown found in the
integrable case in Eq. (8). Although we derived this result in

the lowest perturbative order, we expect that the Z2

symmetry is restored to all orders, similarly towhat happens
in MBL and high-frequency driven prethermal DTCs [7,8].
Our simulations of Fig. 6 show no signature of slowdown of
the computed exponential decay, clearly confirming the
expectation.
We finally remark that, similarly to the integrable case,

the order-parameter dynamics is strongly affected by the
finite size of the chain: Our ED data for L ¼ 10 to L ¼ 30,
shown in Fig. 6 (shaded lines), display a deceptive
persistence of the order parameter, as previously observed
in different contexts [113], whereas it eventually decays to
zero for systems in the thermodynamic limit (thick straight
lines). Note that both operators K and V can be exactly
applied to the many-body wave function, which allows us
to efficiently simulate dynamics of 30 spins with a
reasonable amount of resources.

E. Enhancement of DTC lifetime
at dynamical freezing points

The theoretical analysis above assumed the Ising cou-
pling J ¼ Oð1Þ to be the dominant scale in the Floquet
operator, and the transverse and longitudinal fields ϵ, h ≪ 1
to be weak perturbations to the perfect spin flip. In this
subsection, building on the recent Refs. [114–116], we
point out that the DTC lifetime can be strongly enhanced if
the kick perturbation is tuned to particular large [Oð1Þ]
angles, referred to as dynamical freezing points. The
argument goes as follows.
First, we rewrite our kicking protocol in Eq. (25) in the

equivalent form considered in Ref. [116]. The two-cycle
Floquet operator U2 ¼ PKVPKV can be turned into the
form PK̃VPK̃V with a modified kick

FIG. 7. Scaling of the decay rate γ ¼ γðϵ; hÞ of the order
parameter (cf. Fig. 6) as a function of the longitudinal kick
component h for different fixed values of ϵ. Rates have been
rescaled by γ0 ¼ γðϵ; h ¼ 0Þ. The dashed line is the result of the
fit γ=γ0 ¼ 1 − ch2 for the relative correction, where c ≃ 1=2. The
inset shows the same data in the log-log scale.

(a) (b)

(c) (d)

FIG. 6. Log-linear plots of the order-parameter time evolution
under the Floquet dynamics induced by Kπ=2Kϵ;hVJ for ϵ ¼ 0.1
and different values of h. Thick lines are the iTEBD data, which
are compared with ED results for a finite system with different
sizes L ¼ 10, 15, 20, 25, 30 (shaded lines, from lighter to darker).
Dashed black lines are the results for h ¼ 0, and they are plotted
for comparison.
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K ¼ ei
P

j
ðϵXjþhZjÞ ⇝ K̃ ¼ ei

P
j
ϵ̃Xjei

P
j
h̃ Zj ð33Þ

using the Euler angle decomposition of the former rotation.
In fact, there exist angles α, β, γ, functions of ϵ and h, such
that

eiðϵXþhZÞ ¼ eiαZeiβXeiγZ ð34Þ

[to lighten the notation, we suppress
P

jð…Þj in all
exponents in the rest of this subsection]. Thus, we can
rewrite

U2 ¼ PeiαZeiβXeiγZeiJZZPeiαZeiβXeiγZeiJZZ

¼ e−iαZeiβXe−iγZeiJZZeiαZeiβXeiγZeiJZZ

¼ e−iαZeiβXeiðα−γÞZeiJZZeiβXeiγZeiJZZ ð35Þ

and finally perform a unitary change of frame,

eiαZU2e−iαZ ¼ eiβXeiðα−γÞZeiJZZeiβXe−iðα−γÞZeiJZZ ð36Þ

to obtain our claim above, upon posing ϵ̃≡ β and
h̃≡ α − γ. Note that the initial state and the magnetization
observable are unaffected by the last unitary transformation
eiαZ, so the two Floquet operators are fully equivalent.
Thus, we consider the equivalent form of the Floquet
operator with the modified kick in Eq. (33).
The key observation of Ref. [115]—exploited in

Ref. [116] in the context of DTC response in NMR
experiments—is that certain, suitably chosen, longitudinal
driving amplitudes proportional to the driving frequency
may cause an averaging effect on the noncommuting
transverse field perturbation, such that in the rotating frame
comoving with the strong drive, the perturbation is heavily
suppressed. This idea is implemented in our scheme
similarly to what was done in Ref. [116]: We rewrite
our two-cycle Floquet operator as

U2 ¼ eiϵ̃Xeih̃ZeiJZZeiϵ̃Xe−ih̃ZeiJZZ

¼ eiϵ̃XeiJZZeiϵ̃½cosð2h̃ÞXþsinð2h̃ÞY�eiJZZ: ð37Þ

As in Refs. [115,116], here we consider the regime where J
and ϵ̃ are small, so we can apply a standard high-frequency
expansion to the transformed Floquet operator U2. In our
case, this expansion is equivalent to the plain BCH
expansion. To lowest order, we obtain

U2 ≃ eiϵ̃½1þcosð2h̃Þ�Xþiϵ̃ sinð2h̃ÞYþi2JZZ: ð38Þ

The lowest-order dynamics are solvable by mapping to free
fermions, similarly to our treatment in Sec. III: Rotating
around the Z axis by a suitable angle, we realize that the
exponent in Eq. (38) describes a standard quantum Ising
chain with coupling 2J and a transverse field generally

proportional to ϵ̃. Thus, excitations are domain-wall-like
for small enough ϵ̃. As we proved in Sec. III, the
magnetization of this driven spin chain will decay expo-
nentially with a rate γ ∼ ϵ̃3. Nevertheless, we may cancel
the perturbation to lowest order by setting h̃ ¼ πðkþ 1=2Þ
with k integer: At these dynamical freezing points, the two-
cycle Floquet operator reads

U2 ¼ eiϵ̃XeiJZZe−iϵ̃XeiJZZ ≃ ei2JZZ ð39Þ

where the last equality holds to lowest order. As is evident,
in this case, the decay rate of the magnetization becomes of
higher order. Furthermore, unlike the general case, for these
specific choices of h̃, the exact Floquet dynamics is
solvable to all orders in J; ϵ̃, as is evident from the first
equality above: All four unitaries are mapped to quadratic
fermions by the same Jordan-Wigner transformation.
Computing the exact dispersion relation of the fermionic
quasiparticles, we have verified that the excitations’ band-
width grows proportionally to ϵ̃2 for small ϵ̃=J—in other
words, there is no accidental cancellation of Oðϵ̃2Þ
corrections.
The argument above shows that our Floquet model, with

the longitudinal field set to one of the dynamical freezing
points h̃ ¼ πðkþ 1=2Þ, becomes an exactly solvable
Floquet model, Eq. (39) above, similar to the one we
considered in Sec. III but with the strength of the pertur-
bation ϵ̃ being replaced by ϵ̃2 due to a smart choice of the
driving protocol. Applying our analysis of Sec. III, we
conclude that the magnetization decays exponentially in
this model, with a strongly suppressed rate γ ∼ ðϵ̃2Þ3 ¼ ϵ̃6.
We note that this lifetime is (much) longer than that found
in the XXZ-type spin chain considered in Ref. [116].
Lastly, we remark that if h̃ is slightly detuned from a
dynamical freezing point, the Floquet dynamics may still
be analyzed using the theory developed in the previous
subsections, showing that the expected decay rate remains
qualitatively unaltered (γ ∼ ϵ̃6).

V. STABILIZATION OF DTC RESPONSE BY
INTERACTIONS BEYOND NEAREST NEIGHBORS

A weaker version of domain-wall confinement also
arises in the ordered phase of spin chains with an
interaction range extended over multiple sites, even in
the absence of explicit symmetry-breaking fields. The basic
mechanism was identified in Ref. [60]: The separation of
two domain walls involves an increase of the configura-
tional energy due to an increase in the number of frustrated
bonds between pairs of spins beyond the nearest neighbors.
As discussed in Refs. [60,61] and experimentally verified
in Ref. [62], this gives rise to an effective attractive
potential vðrÞ between two domain walls. The resulting
physics is thus reminiscent of that generated by a longi-
tudinal field. Here, however, the interaction tail tunes the
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shape and depth of the effective potential well, which, for
the kind of interactions relevant to this work, grows
sublinearly at large distances.
Below, we show that this general domain-wall binding

mechanism also arises in the Floquet context. Crucially, as
it does not rely on explicitly breaking the symmetry, it does
not suffer from time-averaging effects demonstrated in
Sec. IV, opening the door to a true enhancement of the time-
crystal order lifetime, as pictorially illustrated in Fig. 1(c).
As a core result of this section, we establish that an increase
of the interaction range R (i.e., Ji;j ≠ 0 only if ji − jj ≤ R)
leads to an exponential enhancement of the order-parameter
lifetime, γ ∼ aϵ2Rþ1. We further discuss the practical
conditions for observing this confinement-stabilized
DTC behavior and the implications for experiments with
Rydberg-dressed interacting atomic chains, recently real-
ized in the lab [72,74]. Based on this result, we finally argue
that long-range algebraically decaying interactions with a
generic exponent α (not necessarily smaller than 2) stabilize
the order parameter over timescales longer than any inverse
power of the kick perturbation ϵ.
This section is organized as follows. In Sec. VA, we

generalize the derivation of an effective domain-wall-
conserving Floquet Hamiltonian of Sec. IV B to a chain
with arbitrary Ising couplings Ji;j beyond nearest neigh-
bors. Hence, in Sec. V B, we study the two-body problem,
which is richer than the corresponding one studied in
Sec. IV C due to the coexistence of bound states and
deconfined continuum, and we determine the conditions for
domain-wall binding and their implications for the evolu-
tion of the order parameter. Building on the intuition from
the two-body problem, in Sec. V C, we switch to a more
scrupulous analysis and prove that, in the asymptotic
regime of weak kick perturbation ϵ, the order-parameter
decay rate gets heavily suppressed as γ ∼ aϵ2Rþ1. This and
related theory predictions are numerically verified in
Sec. V D. Finally, in Sec. V E, we discuss the limit of
long-range interactions and argue that the decay becomes
nonperturbatively small.

A. Effective domain-wall dynamics for weak kicks

We generalize Eq. (2) by considering a kicked Ising
chain with arbitrary longer-range couplings, defined by the
Floquet operator

U ¼ KVJ; VJ ¼ ei
P

L
j¼1

P
R
r¼1

JrZjZjþr ð40Þ

with periodic boundary conditions. We have denoted by
J≡ ðJ1; J2;…; JRÞ the array of coupling strengths at
increasing distances, with π=2 > J1 ≥ J2 ≥ … ≥ JR > 0,
and we implicitly assumed R < L=2. We consider the range
R fixed and independent of the system size L (the long-
range limit R ∝ L will be discussed in Sec. V E). For
simplicity, we take the kick K as in Eq. (5), i.e.,

K → Kπ=2þϵ ¼ eiðπ=2þϵÞ
P

j
Xj ¼ iLPeiϵ

P
j
Xj : ð41Þ

As shown in Sec. IV, an explicit symmetry-breaking
component h of the kick is not expected to qualitatively
enhance the time-crystal lifetime. Thus, to lighten our
arguments, we discard it. We later numerically verify that,
indeed, those terms do not impact the lifetime of the DTC
response. Note that, despite h ¼ 0, the couplings beyond
nearest neighbors break integrability. As in Eq. (6), trans-
forming to the toggling frame gives

mðnÞ ¼ ð−1Þnhþj½KϵVJ�−nZj½KϵVJ�njþi; ð42Þ

so we focus on weak kicks Kϵ close to the identity.
Along the lines of the first part of this paper, we want to

build intuition on the evolution of the order parameter in
terms of the dynamics of domain walls. The construction of
the effective domain-wall-conserving Floquet Hamiltonian
of Sec. IV B can be straightforwardly generalized to the
present case of the Floquet operator U ¼ KϵVJ with inter-
actions beyond nearest neighbors. To this aim, we first work
in the regime of weak confinement J2;…; JR ≪ J1. As the
dominant scale J1 in the problem couples to the number of
domain walls D1 [defined in Eq. (11)], we can set up a
perturbation theory similar to that of Sec. IV B, where we
had h ≪ J.
The derivation closely parallels that of Sec. IV B, based

on the general theory of Ref. [96]. In this case, the
perturbative parameter is ϵ̂ ¼ maxðϵ; J2;…; JRÞ. The rig-
orous bounds of Ref. [96] ensure that the density of
perturbatively dressed domain walls remains accurately
conserved over the long prethermal timescale in Eq. (13),
where the numerical constant c is adjusted to account for
the longer range R of the perturbation operator.
Similarly to the case discussed in Sec. IV B, for low-

order explicit computations, it is more practical to follow a
different scheme from Ref. [96] and aim for a static,
effective, Floquet Hamiltonian HF by combining the two
exponentials of the product KϵVJ using the replica resum-
mation of the BCH expansion [104], order by order in the
kick imperfection ϵ, and hence perform a conventional
static Schrieffer-Wolff transformation on HF, order by
order in ϵ̂. Here, the presence of arbitrary Ising couplings
requires a nontrivial generalization of the calculation in
Ref. [104]. The structure of the resulting expansion is
worked out in Appendix B.
The lowest-order result reported here is a simple gen-

eralization of Eqs. (16) and (17):

HF
1;1 ¼ −

X
j;r≥2

JrZjZjþr − ϵðP↑
j−1XjP

↓
jþ1 þ P↓

j−1XjP
↑
jþ1Þ;

ð43Þ
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S≤1 ¼ −
ϵ

2

X
j

P↑
j−1½Xj − cotð2J1ÞYj�P↑

jþ1

þ P↓
j−1½Xj þ cotð2J1ÞYj�P↓

jþ1: ð44Þ

Because of the arbitrary range of the perturbation, the
appearance of higher-order terms in the effective
Hamiltonian and in the Schrieffer-Wolff generator is more
cumbersome than that discussed in Sec. IV B. Appendix B
presents the general hierarchical structure of the expansion
and explicitly reports the second-order result, for illustra-
tion. Terms of order p in HF contain at most p spin-flip
operators S�j ≡ 1

2
ðXj � iYjÞ separated by a distance of at

most R; i.e., they contain strings of the form Sμ1j1 � � � S
μq
jq
,

with μ1;…; μq ¼ �, q ≤ p, and j1 < … < jq, with
jnþ1 − jn ≤ R for all n. Such a product of spin-flip
operators (which we occasionally refer to as a quasilocal
“cluster”) is multiplied by complicated products of diago-
nal Zj operators—with coefficients depending on the
couplings fJrg—located no more than R sites away from
the cluster. Finally, projectors P↑

j ; P
↓
j applied to spins

adjacent to the position of the spin-flip operators ensure
that the spin flips only move domain walls without creating
or annihilating them. Likewise, the Schrieffer-Wolff gen-
erator at order p contains clusters of at most p spin-flip
operators, with the same locality properties as discussed
above.

B. Domain-wall binding

Similarly to Sec. IV C, we now analyze the dynamics of
the order parameter in terms of the motion of conserved
domain walls in the Schrieffer-Wolff-transformed picture.
The initial state in the transformed picture jþ0i ¼ e−iS≤p� jþi
can be viewed as a dilute gas of quasilocal clusters of p ¼
1; 2;…; p� flipped spins, the respective density being sup-
pressed as ϵ2p. To lowest orderp ¼ 1, these are isolated spin
flips, i.e., adjacent pairs of domain walls. Thus, to this order
of approximation, the evolution of the order parameter can be
understood starting from the two-body problem.
Let us begin with qualitative considerations. Interactions

beyond the nearest neighbors lead to the presence of a
discrete set of bound states, coexisting with a continuum of
unbound domain walls for larger energy. Furthermore,
interactions between distant spins also favor the formation
of more structured “molecular” bound states out of larger
clusters of domain walls. The rich nonequilibrium dynam-
ics of the system, including the anomalously slow decay of
the order parameter, results from the coexistence of
topological and nontopological excitations in the spectrum
(i.e., unbound domain walls and bound pairs), which we
now quantitatively analyze.
The effective domain-wall-conserving Floquet

Hamiltonian (43) projected onto the two-particle sector

gives the following first-quantized two-body problem,
analogous to Eq. (19):

H2-body¼
X
j1<j2

vJðj2− j1Þjj1;j2ihj1;j2j

− ϵ
X
j1<j2

ðjj1þ1;j2iþ jj1;j2þ1iÞhj1;j2jþH:c:;

ð45Þ

where

vJðrÞ ¼
�
4
P

r
d¼1 dJd þ 4r

P
R
d¼rþ1 Jd if r < R

4
P

R
d¼1 dJd ≡ vJð∞Þ if r ≥ R:

ð46Þ

The two-body potential vJðrÞ grows as a function of the
distance up to r ¼ R and then flattens out. Thus, the
potential well hosts a finite number of bound states, which
grows to R − 1 upon decreasing ϵ → 0. In field-theoretical
language, this discrete set of energy levels forms the mass
spectrum of nontopological particles. Above this, a con-
tinuum of scattering states appears, built out of two
unbound domain walls; in field-theoretical language, the
spectrum contains stable topologically charged particles,
i.e., kinks and antikinks. The topological nature of these
excitations stems from the fact that they can be locally
created or destroyed in globally neutral pairs only, not
individually.
The bound (nontopological) and unbound (topological)

excitations can be distinguished by being labeled by
a real-space or momentum-space quantum number. To
understand this, let us transform to the center-of-mass
frame Ψðj1; j2Þ ¼ eiKðj1þj2Þψðj2 − j1Þ and set K ¼ 0 due
to translational invariance of the nonequilibrium initial state
(cf. Sec. IV C). The reduced wave function ψ satisfies the
Schrödinger equation

vJðrÞψðrÞ − 2ϵ½ψðrþ 1Þ þ ψðr − 1Þ� ¼ EψðrÞ ð47Þ

in the domain r > 0, subject to the boundary condition
ψð0Þ≡ 0. This equation defines the center-of-mass frame
Hamiltonian Hcm. For ϵ → 0, the eigenfunctions in the
center-of-mass frame ψlðrÞ ¼ δl;r correspond to contigu-
ous reversed domains of l spins, with eigenvalues
El¼vJðlÞ. In this limit, the discrete label l¼1;…;R−1
thus has the physical meaning of distance between the two
domain walls. Because of the discreteness of the spectrum,
this labeling can be adiabatically continued to finite ϵ,
where eigenfunctions feature quantum fluctuations of the
physical distance. On the other hand, the degenerate levels
ER ¼ ERþ1 ¼ … ¼ vJð∞Þ split into a continuous band
Ek ¼ vJð∞Þ − 4ϵ cos k, with eigenfunctions labeled by the
relative momentum k of the two domain walls. The binding
potential vJ only affects these eigenfunctions via the
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relative scattering phase eiδk between incoming and out-
going waves. We can estimate the stability range of the
most excited [(l ¼ R − 1)th] bound state by the condition
that the continuum band Ek does not overlap the discrete
energy level ER−1. This yields the range ϵ≲ JR; for larger ϵ,
the bound state hybridizes with the unbound continuum.
Energy levels and eigenfunctions are further renormalized
by higher-order processes of order ϵ̂2; ϵ̂3;… to be added to
H2-body, not included in Eq. (45). These additional terms
consist of diagonal terms and longer hops of domain walls
by at most 2; 3;… lattice sites, respectively. For small
enough ϵ, the resulting quantitative corrections do not alter
the qualitative structure of the spectrum discussed here.
Figure 8(a) reports a sketch of the eigenstates of the

Floquet Hamiltonian for ϵ → 0. Unlike in Fig. 4, both
discrete “mesonic” bound states and unbound “domain-
wall-like” states appear. The latter are highlighted by blue
lines in the pictorial sketch, and their energy levels are
marked by thick blue bars, indicating that they form
continuous bands of width proportional to ϵ. Panel
(b) reports a selection of eigenfunctions of the two-body
problem (47) in the center-of-mass frame, for algebraically
decaying coupling Jr ¼ 1=rα truncated to the range
r ≤ R ¼ 10, α ¼ 3, and ϵ ¼ 0.1139. In this case, because
of small couplings beyond the nearest neighbors and
comparatively large hopping ϵ, the number of bound states
(red curves) is only 3. As ϵ → 0, it grows to R − 1 ¼ 9.
Higher excited eigenstates are unbound plane waves (blue
curves).
The two-body problem already gives us important hints

on the nonequilibrium evolution of the order parameter. As
a matter of fact, confined domain walls only produce a
weak oscillatory behavior of mðnÞ with frequencies related
to the excitation energies (masses) of the bound states.
Within the prethermal time window 0 ≤ t ≤ Tpreth in

Eq. (13), the order-parameter decay is only ascribed to
the dynamical production of unbound domain walls. As
discussed above, domain-wall-like excitations exist as
higher energy excitations. While in thermal equilibrium
such domain-wall excitations are finitely populated, imper-
fect kicks Kϵ will only excite the domain-wall continuum
very weakly, precisely with amplitude ϵR, as generating
unbound domain walls requires flipping a contiguous
domain of at least R spins. This key insight suggests that
the destruction of long-range order in the Floquet-prether-
mal Gibbs ensemble e−βH

F
=Z is a very slow process,

leaving much room for nonequilibrium time-crystalline
behavior.

C. Exponential suppression of the
order-parameter decay rate

Generalizing the reasoning of Sec. III B, the solution of
the two-body problem suggests that the decay rate is
severely suppressed: The density of critical domains in
the initial state is of order ρ ∼ ðϵRÞ2, and the spreading
velocity of their constituents domain walls is v ∼ jϵj,
leading to the estimate

γ ∼ ρv ¼ Oðϵ2Rþ1Þ: ð48Þ

For R ¼ 1, domain walls are the only stable excitations in
the spectrum, and we recover the exact result γ ∼ ϵ3 of
Sec. III A. For R > 1, the appearance of bound states is
expected to significantly slow down the order-parameter
decay.
The argument based on the two-body problem is,

however, too naive, as it completely neglects all multibody
processes and interactions between confined domain walls.
In fact, adjacent domain walls attract each other via the

(a) (b)Energy

Continuum

FIG. 8. (a) Sketch of the eigenstates of the Floquet Hamiltonian HF for ϵ → 0. The vertical axis represents the excitation energy ΔE
above the Floquet ground state. (b) Selection of eigenstates of the two-body problem (47) in the center-of-mass frame, for Jr ¼ 1=rα for
r ≤ R ¼ 10, α ¼ 3, and ϵ ¼ 0.1139.
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two-body potential vJðrÞ, and mesonic bound states them-
selves are subject to an effective attraction when their
distance is less than R [117]. Such attractive forces can be
thought of as residual interactions between bound states of
elementary particles, physically analogous to nuclear forces
that keep protons and neutrons together (i.e., bound states
of quarks) or to molecular forces that keep atoms together
(i.e., bound states of electrons and nuclei). The meson-
meson attractive potential can be defined as

wJ;l1;l2ðrÞ ¼ EJðl1; r;l2Þ − vJðl1Þ − vJðl2Þ < 0; ð49Þ

where EJðl1; r;l2Þ is the configurational energy of two
reversed domains of length l1 and l2, separated by r spins
in between. One finds

wJ;l1;l2ðrÞ ¼ −4
X
1≤i≤r1

X
l1þrþ1≤j≤l1þrþl2

Jji−jj

¼ −4
Xminðl1þl2þr−1;RÞ

s¼rþ1

nsJs; ð50Þ

with ns ≡minðs − r;l1;l2; rþ l1 þ l2 − sÞ. Considering
fixed l1 and l2, this two-body potential wJ;l1;l2ðrÞ grows
monotonically as a function of the distance r, from
wðr ¼ 1Þ < 0 to wðr ≥ RÞ≡ 0. For instance, two isolated
spin flips (l1 ¼ l2 ¼ 1) experience an attractive potential
proportional to the bare coupling, wJ;1;1ðrÞ ¼ −4Jr.
It is easy to imagine a process where a cluster of a few

flipped spins or small domains, initially distant from each
other, agglomerate more tightly, making the gained recip-
rocal meson-meson interaction energy available to pro-
gressively enlarge a domain and finally release a domain
wall from the attraction of the rest of the cluster at distance
greater than R, such that it can freely travel away and melt
the order parameter. In Fig. 9, we sketch such an example,

where a finite (R-independent) cluster of initial spin flips
possesses sufficient energy to release a traveling domain
wall. It is a priori conceivable that such processes could
trigger a comparatively fast decay of the order parameter at
low perturbative order. Remarkably, however, it is possible
to rigorously exclude such a scenario and prove that the
fastest decay process occurs at order R.
To establish this result, we need to modify the perturba-

tive Schrieffer-Wolff transformation of Sec. IV B to explic-
itly account for the fact that all couplings J1;…; JR
are large compared to ϵ when the asymptotic regime
ϵ → 0 is considered. The unperturbed Floquet operator

VJ ¼ ei
P

j;r
JrZjZjþr defines highly degenerate sectors of the

many-body Hilbert space, identified by the energy levels

Eðn1;…; nRÞ ¼ EGS þ 2
X
r

nrJr; ð51Þ

where EGS ¼ −L
P

r Jr is the unperturbed ground-state
energy of the fully polarized state jþi, and the non-negative
integer nr ∈ N is the total number of frustrated bonds at
distance r. Under the assumption of strong incommensu-
rability of the couplings fJrg in Eq. (B14)—necessary to
derive a well-defined static Floquet Hamiltonian, as shown
in Appendix B 1—each degenerate sector is in one-to-one
correspondence with the set fnrg. For ϵ → 0, transitions
between such sectors are energetically suppressed and can
be adiabatically eliminated. In other words, we can dress
the effective Hamiltonian within each sector, order by order
in ϵ, to account for all resonant processes occurring via
virtual transitions between different sectors. The strong
incommensurability condition on the couplings guarantees
that each such transition is accompanied by a finite energy
denominator. The construction can thus be formally carried
out to all orders in ϵ [96].
Let us illustrate how this procedure works within our

time-independent approach. Starting from the Floquet
operator U ¼ KϵVJ, we combine the two exponentials into
a Floquet Hamiltonian HF

p by generalizing the replica
calculation of Ref. [104] as detailed in Appendix B 1.
Hence, we seek a modified Schrieffer-Wolff unitary trans-
formation eiϵ

mSm , iteratively for m ¼ 1;…; p, which elim-
inates from HF

p all terms of order ϵm that violate the
conservation of any of the operators,

Dr ¼
X
j

1 − ZjZjþr

2
; ð52Þ

r ¼ 1;…; R, respectively, coupled to Jr in the unperturbed
Floquet Hamiltonian. These operators are thus approximate
conservation laws, meaning that their eigenvalues fnrg are
good quantum numbers to label the eigenstates of the
resulting truncated Schrieffer-Wolff-transformed Floquet
Hamiltonian HF

R;p:

p < R

1 2 p

Bubble of size R
1 2 p−1

FIG. 9. Quasilocal cluster of a few (p < R) spin flips (top
configuration), which could agglomerate tightly and convert the
accumulated extra interaction energy into the formation of a
reversed bubble of size R (bottom configuration), thus releasing a
free domain wall while conserving the total number of domain
walls. While energetically allowed, such a process can be shown
to be necessarily off-resonant under generic incommensurability
assumptions on the couplings fJrg (see main text).
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HF
p ¼ eiS≤pHF

R;pe
−iS≤p þOðϵpþ1Þ; ð53Þ

½HF
R;p; Dr� ¼ 0 for all r ¼ 1;…; R; ð54Þ

where eiS≤p ≡ eiϵS1 � � � eiϵpSp . We remark that this scheme
should be distinguished from the perturbation theory of
Sec. VA, aimed at the conservation of the quantityD1 only
for the effective Floquet HamiltonianHF

1;p; on the contrary,
the effective Floquet Hamiltonian HF

R;p obtained here
conserves all quantities Dr, r ¼ 1;…; R. To emphasize
this distinction, here we use a calligraphic notation for the
generator S of the perturbative scheme in powers of the
kick ϵ to avoid confusion with the previous generator S of
the perturbative scheme in powers of ϵ̂.
As usual in the many-body context (cf. Sec. IV B), the

proliferation of possible processes, as well as the decrease
of energy denominators at high perturbative orders, is
expected to lead to a divergent (asymptotic) character of
the series, corresponding to a mutual hybridization of the
many-body energy bands arising from the splitting of the
highly degenerate unperturbed levels. However, the per-
turbative series provides valuable information on the slow-
ness of the dynamical delocalization in Hilbert space. The
timescale Tpreth over which the approximate conserved
quantities fD0

r ≡ e−iS≤p�Dre
iS≤p� gRr¼1 appreciably depart

from their initial value can be estimated by finding the
optimal truncation order p� of the series [118]. Within the
time-dependent construction of Ref. [96], p� is found to
depend on the magnitude of the perturbation as
Cϵ−1=ð2Rþ1þδÞ, where δ > 0 is arbitrary and C ¼ CðδÞ is
a constant. This result leads to a stretched exponential
lower bound on the prethermal timescale, which general-
izes Eq. (13):

Tpreth ≥
1

ϵ
exp

�
c

ϵ1=ð2Rþ1þδÞ

�
: ð55Þ

Within the long Floquet-prethermal window 0 ≤ t ≤ Tpreth,
the dynamics is guaranteed to take place within the Hilbert
space sectors defined by the set of eigenvalues nr of the
dressed operators D0

r, i.e., the (dressed) total numbers of
frustrated bonds at distance r. Since the time-independent
approach followed here (replica resummation þ standard
static Schrieffer-Wolff) basically produces the same set of
conserved quantities as the time-dependent scheme of
Ref. [96], it is natural to assume that this alternative scheme
yields similar nonperturbatively long heating timescales
(see also the relative discussion in Refs. [96,104]).
Since HF

R;p� conserves all operators fDrg, an initial
configuration can only evolve within the corresponding
resonant subspace with a fixed number of frustrated bonds
nr at distance r. The effective Hamiltonian HF

R;p� is thus
much more constrained than HF

1;p� in Eq. (43). The trans-

formed-picture initial state e−iS≤p� jþi is a low-density

superposition of isolated quasilocal clusters of flipped
spins. At pth order in ϵ, these clusters may comprise at
most p flipped spins.
We are now in a position to clearly formulate our

question on the order-parameter evolution: Can an initial
cluster of p < R flipped spins evolving via HF

R;p� reso-
nantly excite unbound domain walls? Under the single
assumption that the array ðJ1;…; JR; 2πÞ is strongly
incommensurate [as specified by Eq. (B14) in
Appendix B 1], we prove that such a configuration with
p < R is never resonant in energy with order-melting
configurations, i.e., configurations possessing a contiguous
domain of R reversed spins.
Referring to the illustration in Fig. 10, the claim is that the

top and bottom configurations are necessarily separated by
an energy mismatch. By the incommensurability condition,
the existence of this energy mismatch is equivalent to the
occurrence that nr ≠ nLr þ nRr for some 1 ≤ r ≤ R (note that
the process in Fig. 9 is a particular case of Fig. 10).
The proof follows from the lemma below.
Lemma: A domain-wall-like configuration has nr ≥ r.
To show this, we consider a domain-wall-like configu-

ration, with all spins pointing up (down) for j ≤ jL and
down (up) for j > jR (where jR ≥ jL). We focus on the r
sublattices fiþ jrjj ∈ Zg, labeled by i ¼ 1;…; R. Each
sublattice exhibits a domain-wall-like configuration, and
hence, it has at least one frustrated nearest-neighbor bond.
Each such bond maps to a bond at distance r in the original
lattice. Thus, the original configuration has at least r
frustrated bonds at distance r. ▪
Using this lemma, it is easy to prove the main claim:

Considering, again, Fig. 10, the bottom configuration is
energetically equivalent to two isolated domain-wall-like
configurations, defined by the content of the regions denoted
L and R, as the reversed bubble in between can be made
infinitely large without frustrating any further bonds. By the
lemma, nLr ≥ r and nRr ≥ r. In particular, nLR þ nRR ≥ 2R. On
the other hand, the top configuration in Fig. 10 has p flipped

Bubble of size R

p < R

RL

Flipped spins

FIG. 10. Candidate low-order process leading to the meltdown
of the order parameter. In the main text, we prove that the energy
resonance between the two configurations is not possible under
a generic assumption of strong incommensurability of the
couplings.
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spins, each of which can frustrate at most two bonds at
distance r, for all r. In particular,nR ≤ 2p. Hence, clearly, the
resonance condition nR ¼ nLR þ nRR is impossible to satisfy
when p < R, which concludes the proof. ▪
The result proved here implies that processes involving

at least R spin flips are responsible for the order-parameter
decay. In particular, we already identified above the fastest
such process, arising from terms

∝ ϵR
X
j

P↑
−Rþ1 � � �P↑

j S
−
jþ1 � � � S−jþRP

↑
jþRþ1 � � �P↑

jþ2R ð56Þ

in S≤p� [recall S�j ≡ 1
2
ðXj � iYjÞ]. These terms give rise to

isolated domains of R contiguous reversed spins, with
density proportional to ϵ2R, appearing in the transformed-
picture initial state jþ0i ¼ eiS≤p� jþi at order R. The two
domain walls separated by R sites are free to hop away
from each other with amplitude ϵ, thus spreading the
reversed domain and melting the system magnetization
at a rate γ ∼ ϵ2Rþ1, cf. Eq. (48). Figure 2(a) reports a sketch
of the timeline derived here; we reiterate that the heating
timescale is only a lower bound, and it might be nontight, in
general.
We finally observe that tuning the longitudinal kick

component to a dynamical freezing point as outlined in
Sec. IV E, the decay rate of the order parameter may be
further strongly suppressed, as the magnitude ϵ of the
perturbation gets effectively replaced by ϵ2. Our theory
shows that this results in a decay rate γ ∼ ϵ4Rþ2. As
interactions beyond the nearest neighbors are quite generic
in experiments, our results indicate that, upon tuning the
driving parameters to a dynamical freezing point, DTC
response might appear perpetually stabilized for all prac-
tical purposes.

D. Numerical simulations for R > 1

The above theoretical analysis is supported by extensive
numerical simulations that we performed for R ¼ 2
(namely, for the Ising chain with next-to-nearest-neighbor
interactions). In our numerics, the couplings have been
fixed as J1 ¼ 1=ζðαÞ and J2 ¼ ð1=2Þα=ζðαÞ, where
ζðxÞ ¼ P∞

r¼1 1=r
x denotes the Riemann zeta function.

We fix either α ¼ 2.25 or 3 (thus larger than 2), to be
consistent with the next section concerning long-range
systems. This choice is largely arbitrary at this level; we
anticipate that it allows a direct comparison with the data
presented in the next section. Note that the incommensu-
rability of the couplings fJrg would be guaranteed for
irrational α’s, but we take rational values to further test the
robustness of our analytical predictions.
We find that the Floquet evolution of the absolute value

of the order parameter is always compatible with the
theoretically expected exponential decay for all kick
imperfections ϵ ≠ 0. To validate our theory prediction on

the suppression of the decay rate γ compared to the
deconfined case of nearest-neighbor interactions, we per-
form thermodynamic-limit iTEBD simulations for a
sequence of small values of ϵ. Results are reported in
panels (a) and (b) of Fig. 11. Note that the curvature of the
exponential decay is hardly visible on the accessible
timescale for such small values of ϵ; however, γ can be
accurately extracted. The resulting scaling of γ vs ϵ is
reported in panel (c), which clearly shows how the
numerical data points follow the theory prediction (dashed
black lines). The nearest-neighbor analytical result, given
by Eq. (7) and valid for R ¼ 1, is also reported for
comparison (dotted black line). We finally report in panel
(c) additional results in the presence of a sizable longi-
tudinal kick component h ¼ 0.4. As expected from our
analysis of Sec. IV, the decay rate is essentially unaltered.
In Fig. 12, we compare the thermodynamic data with the

finite-size ED results. (Note that for small ϵ, the entangle-
ment entropy growth is slow enough to push iTEBD
simulations to unusually large numbers of driving periods
[119].) Also in this case, the absolute value of the order
parameter does not decay to zero, for L < ∞. However,

(a)

(b) (c)

FIG. 11. (a,b) Log-linear plot of the order-parameter time
evolution under the Floquet dynamics in the quantum Ising
chain with next-to-nearest-neighbor interactions, obtained by
means of iTEBD simulations. We set J1 ¼ 1=ζðαÞ and
J2 ¼ ð1=2Þα=ζðαÞ, with α ¼ 2.25 (a) and 3 (b). Dashed black
lines are exponential fits. (c) Scaling of the decay rate γ as a
function of the kick strength ϵ, where symbols correspond to the
data extracted from panels (a) and (b). The agreement with the
predicted ϵ5 law is perfect. The third data set shows the result for
the same parameters as panel (b), with the addition of a
longitudinal component h ¼ 0.4 in the kick. As is evident, the
decay rate is essentially unaltered.
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both iTEBD data and finite-size results show the same
frequency of oscillations.
The frequencies of such oscillations can be extracted

from the Fourier power spectrum of the time series for
jmðnÞj (Fig. 13). We observe that the data for L ¼ ∞ and
for L < ∞ are compatible, and manifest the same main
peaks symmetrical around ω ¼ π [panel (a)]. (Note that the
finite-size spectrum shows some spurious frequencies due

to time-recurrence effects.) Further confirmation of the
validity of our perturbative analysis is provided by the
scaling of the position of the main peak, which approaches
the “classical” value of the single spin-flip excitation 4J1 þ
4J2 for ϵ → 0 [panel (b)].

E. Long-range limit

The results of the previous subsection demonstrate that the
order-parameter decay rate is suppressed as γ ∼ aRϵ2Rþ1, as
ϵ → 0. In this last subsection, we discuss the long-range limit
R → ∞. In particular, we focus on the experimentally
relevant case of algebraically decaying interactions
Jr ¼ J=rα. This model is relevant to the dynamics of
effective qubits in quantum simulators based on trapped
ions (tunable 0 < α < 3) [120,121] and Rydberg atoms
(α ¼ 6) [122,123]. In these setups, nontrivial quantum
dynamics are generated by additional magnetic fields acting
on the spins, whose spatiotemporal variations can be
efficiently controlled in the experiment. Thus, hereafter
we interpret J ¼ fJ1;…; JRg as a finite-range truncation
of the parent sequence of couplings fJr ¼ J=rαg∞r¼1. [Note
that for a generic (irrational) value of α, these truncated
sequences are expected to satisfy the strong incommensu-
rability condition in Eq. (B14).] Within this perspective, it is
interesting to shift our viewpoint to the functional depend-
ency of the rate γ on R.
Extracting the scaling of the prefactor aR would involve

keeping track of the magnitude of the subset of processes of
order ϵR which trigger the order-parameter decay in our
combined replica þ Schrieffer-Wolff transformations. This
is, in principle, straightforward but practically unfeasible
because of the rapid growth of the complexity of high-
order perturbative computations. However, as a crude
conservative estimate, we can bound aR from above by
the total magnitude of all terms of order ϵR. This type of
bounds are worked out in the related analysis of Ref. [96],
as well as in many previous works on rigorous pretherm-
alization theory [7,26,27,100,124], to obtain estimates of
the thermalization timescales, like Eq. (55). The ubiquitous
scenario resulting from these works is that the total
magnitude (measured by a relevant operator norm) of all
terms perturbatively generated at order p first decreases
exponentially with p, before plateauing at p ¼ p� and
finally diverging rapidly. In the case of interest here,
Ref. [96] finds p� ∼ ϵ−1=ð2Rþ1þδÞ. Since any finite range
R is largely superseded by p� for small enough perturbation
ϵ, the exponential suppression ϵ2Rþ1 dominates over the
prefactor aR, and the decrease of γ upon increasing R is
effectively exponential.
However, taking the limit R → ∞ is subtle, as it does not

commute with the asymptotic perturbative limit ϵ → 0:
Heuristically setting R ¼ ∞, the heating bound in Eq. (55)
trivializes. Taken literally, this occurrence suggests that a
fast violation of the effective conservation laws of fD0

rg has
to be expected for the long-range interacting system, which

FIG. 12. Same as in Fig. 11(a), for ϵ ¼ 0.11390625. The
iTEBD data (thick dark line) are compared with ED for a finite
system with different sizes L ¼ 10, 15, 20, 25, 30 (shaded red
lines, from lighter to darker).

(a) (b)

FIG. 13. (a) Discrete Fourier transform of the time series (up to
800 kicks) in Fig. 11 for representative values of the kick strength
ϵ (solid lines). Dashed lines are the analogous data obtained via
ED for L ¼ 28 and longer time series (up to 2000 kicks).
(b) Position of the main peak (at ω > π) as a function of ϵ,
which is expected to match the “classical” single spin-flip
excitation value for ϵ → 0 (see main text for details).
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could, in principle, lead to a fast order-parameter melt-
down. In particular, this would preclude any meaningful
extrapolation of the results of the previous section to long-
range interactions.
Numerical simulations, however, suggest the opposite

behavior: We find that increasing the truncation radius
R of long-range interactions Jr ¼ J=rα to the maximum
R ¼ L=2, for arbitrary α, leads to a dramatic increase of the
order-parameter lifetime, as clearly visible from the data
shown in Fig. 14 for α ¼ 2.25 [panels (a) and (b)] and α ¼ 3

[panels (c) and (d)]. In these simulations,wehave chosenKac
rescaled interactions, i.e., J ¼ 1=ζðαÞ (cf. Fig. 11), so that
results for different α can be fairly compared. The reported
data point at a robust stabilization of the DTC signal, well
beyond our analytical theory of Sec. V C: In fact, one can see
that the kick strengths taken there, ϵ ¼ 0.114 and 0.171,
correspond to quite-big rotations of the spins at each kick, by
angles of approximately 13° and 20°, respectively. These
perturbations are actually much larger than the considered
couplings beyond nearest neighbors. In spite of this, the
order-parameter decay is extremely suppressedupon increas-
ing R, and it is hardly visible in the long-range limit;
moreover, this occurrence is not a finite-size effect.
To resolve this apparent contradiction, we observe that

the bound (55) on prethermalization is unnecessarily

pretentious for our purposes: It expresses the expected
timescale of quasiconservation of a large number of
operators fD0

rgRr¼1, uniformly in the many-body spectrum.
As we take R ¼ L=2, energy levels become infinitely dense
in the thermodynamic limit away from the band edges,
thanks to the strong incommensurability condition, which
prevents them from being degenerate. In fact, the preser-
vation of an extensive number of commuting operators
fD0

rgL=2r¼1 would make the system effectively many-body
localized, contrary to conventional delocalization scenarios
for translationally invariant models [37,42]. The slow
dynamics of highly excited states resulting from this
long-range limit is thus nonstandard, and the actual heating
timescales (or thermalization timescales for time-indepen-
dent systems) are presently unclear, even for static
(undriven) systems [60,61,75,76].
On the other hand, the evolution of the order parameter

relevant to this work takes place in a particular corner of the
many-body Hilbert space, corresponding to the low-energy
sector of an approximate Floquet Hamiltonian. While the
perturbative series might be severely divergent at low
orders in the long-range limit when measured by uniform
operator norms, the same bounds are far too loose when the
construction is restricted to a low-energy sector with dilute
excitations, relevant for the purpose of this work [125].

(a) (b)

(c) (d)

FIG. 14. Order-parameter decay for increasing interaction range R of the Ising couplings, from nearest-neighbor (R ¼ 1) to long-range
(R ¼ ∞) interactions, as indicated in the legends. Data are from ED simulations for chains of length L ¼ 20, 25, 30 (shaded lines from
lighter to darker). The various panels represent different values of the decay exponent α and of the kick strength ϵ. Note that a strong
stabilization of the DTC response occurs even for Jr>1 ≪ ϵ, i.e., well beyond the strict perimeter of our analytical theory.
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In other words, while low-order perturbative transitions
from highly excited configurations with extensively many
frustrated bonds are very likely to hit resonances, this
becomes extremely unlikely when the initial state is the
polarized state jþi considered in this work since quasilocal
clusters of flipped spins generated by the weak kicks are far
away from each other and hence can hardly cooperate to
produce resonant transitions. This argument suggests that
the lower bound on the timescale Tpreth in Eq. (55) is far too
conservative for the dynamics originating from the state
jþi, for arbitrary R. A tighter bound would be needed to
correctly account for the decrease of the density of states at
low energy. In the same regime, a long-lasting suppression
of heating has to be expected in the limit of long-range
interactions R → ∞, as well. We reiterate that, even for
finite-range interactions, our numerical simulations indi-
cate a stability well beyond the analytical theory presented
above—cf. Figs. 1 and 14. Along the lines of the discussion
above, our intuition is that while plenty of resonances are
bound to occur when the range is long, in the dilute quench
dynamical setup of our work, many of these resonances are
inconsequential, as the only “dangerous” processes for the
order-parameter meltdown are those that cause an inner
rearrangement of a cluster of domain walls involving the
relocation of the leftmost (or rightmost) of them to distanceR
from the next one. It is likely that such specific resonances
form a much smaller set that is further dynamically
obstructed compared to the naive expectation from brute-
force norm bounds.
Setting up a generalized Schrieffer-Wolff perturbative

scheme aimed at estimating the timescales involved in the
intricate slow dynamics of the long-range interacting chain
appears as a formidable problem, which we leave to future
investigations. Here, building on the insight of Sec. V C
and above, we formulate the conjecture that the timescale
of the fastest process leading to the order-parameter decay
can be estimated in terms of the initial density of bubbles of
reversed spins, whose walls are free to spread away from
each other. Remarkably, such a plausible scenario leads to a
decay rate γ beyond perturbation theory, i.e., smaller than
any power of ϵ.
As suggested in the discussion above, even though the

elimination of domain-wall-nonconserving processes is
formally valid throughout the entire many-body spectrum
only for α ≫ 1, in the low-energy sector, one can naively
perform several perturbative steps to preserve D1 (and a
few other operators Dr, as well) for arbitrary α. Thus, we
reconsider the two-body problem of Eq. (45) and set
Jr ¼ J=rα and R ¼ ∞. We obtain

H2-body¼
X
j1<j2

vαðj2− j1Þjj1;j2ihj1;j2j

þ ϵ
X
j1<j2

ðjj1þ1;j2iþ jj1;j2þ1iÞhj1;j2jþH:c:;

ð57Þ

where

vαðrÞ ¼ 4
Xr
d¼1

dJ=dα þ 4r
X∞
d¼rþ1

J=dα: ð58Þ

The potential grows from vαðr ¼ 1Þ ¼ 4JζðαÞ to
vαðr ¼ ∞Þ ¼ 4Jζðα − 1Þ (for α > 2) or ∞ (for α ≤ 2).
The asymptotic behavior at large r is

vαðrÞ ∼
r→∞

4J ×

8>><
>>:

r2−α
ð2−αÞðα−1Þ for α < 2

log r for α ¼ 2

ζðα − 1Þ − r−ðα−2Þ
ðα−2Þðα−1Þ for α > 2.

ð59Þ

Let us now discuss the result in Eq. (59). For α ≤ 2, the
binding potential is confining at large distances. Hence, the
hierarchy of domain-wall bound states exhausts the exci-
tation spectrum [60]. The infinite energetic cost of isolated
domain walls for α ≤ 2 underlies the persistence of long-
range order at finite temperature [126,127], circumventing
the standard Landau argument against the existence of
thermal phase transitions in one dimension. Indeed, at a
prethermal level, the effective Floquet Hamiltonian result-
ing from the resummation of the BCH expansion supports
long-range order at finite temperature for small but finite ϵ.
On the other hand, the two-body potential is bounded at
large distances for α > 2. In this case, freely traveling
domain-wall states appear, similarly to finite-range sys-
tems. Because of their nonlocal nature, isolated domain-
wall-like excitations cannot be locally created or destroyed;
thus, they give rise to topologically protected quasipar-
ticles, which form a continuum in the excitation spectrum
above a discrete sequence of nontopological bound states.
Unlike the case R < ∞, however, the potential only flattens
out asymptotically for r → ∞. Consequently, the number
N α of such bound states critically depends on the hopping
amplitude ϵ. The finite statistical weight of domain-wall-
like quasiparticles in thermal equilibrium is what prevents
long-range order at finite temperature for α > 2.
Figure 15 reports an illustration of the two-body spec-

trum, obtained within a semiclassical approximation
(which becomes quantitatively accurate in the continuum
limit, i.e., for highly excited states). Here, we set α ¼ 3 and
ϵ ¼ 0.1139. Quantized trajectories undergo a transition
between spatially localized (red) and delocalized (blue),
representing a discrete sequence of nontopological con-
fined bound states below a continuum of topological
unbound domain walls. For this choice of parameters,
N αðϵÞ ¼ 4; however, this number grows as ϵ → 0. A clear
signature of these bound states is further given by the
presence of pronounced peaks in the power spectrum of the
absolute value of the order-parameter time series. In
Fig. 16, we show the Fourier transform of finite-size
data for α ¼ 2.25. In the long-range limit (R ¼ ∞) the
two main peaks correspond to the lower-energy bound

COLLURA, DE LUCA, ROSSINI, and LEROSE PHYS. REV. X 12, 031037 (2022)

031037-22



states, namely, the single and the double spin-flip
excitation. In the classical limit (ϵ → 0), their energies
are given, respectively, by ω1¼4

PL=2
r¼1r

−α=ζðαÞ and

ω2 ¼ ω1 þ 4
PL=2

r¼2 r
−α=ζðαÞ. On the contrary, the main

signature in the order-parameter evolution of the presence
of unbound domain walls in the spectrum is the (very slow)
overall decay of the signal in Fig. 14.
Generalizing our argument of Sec. V B, the number of

bound states N α can be estimated starting from the
observation that isolated domain walls can freely hop to
neighboring sites with amplitude ϵ, which gives the
dispersion law Ek ¼ 1

2
vαð∞Þ − 2ϵ cos k. The unperturbed

bound-state wave functions for ϵ → 0, ψlðrÞ ¼ δl;r,
l ∈ N, are precluded from hybridizing with the domain-
wall continuum when their unperturbed energy El ¼ vαðlÞ
is below the “ionization threshold” vαð∞Þ − 4ϵ. The
equation

vαðlÞ ¼ vαð∞Þ − 4ϵ ð60Þ

thus identifies the highest stable bound state l≡N α.
Using the asymptotic expansion in Eq. (59), we obtain

N α ∼ ðcαϵ=JÞ−1=ðα−2Þ ð61Þ

where cα ¼ 4ðα − 2Þðα − 1Þ.
This result expresses how the number of bound states

diverges as ϵ → 0 for all α > 2. Accordingly, the physical
size of a critical reversed bubble triggering the order-
parameter meltdown grows unbounded in the asymptotic
regime of weak perturbation. In other words, our conjecture
that the formation of a critical bubble is the fastest process
leading to the decay of the order parameter suggests that
this decay has a nonperturbative origin in the long-range
interacting spin chain,

γ ∼ ϵ2N αþ1 ∼ ϵAϵ
−1=ðα−2Þ

; ð62Þ

where we have defined A≡ 2ðcα=JÞ−1=ðα−2Þ.
We note that as α approaches 2 from above, the lifetime

γ−1 from Eq. (62) diverges. The lack of an appropriate
heating bound in this regime (as discussed above) prevents
us from estimating the location of a presumable crossover
region α ≈ α� ≥ 2 between a vacuum-decay driven (α≳ α�)
and a heating-driven (α≲ α�) order-parameter decay. In
any case, we reiterate that the order-parameter lifetime is
expected to be nonperturbatively long for all α’s.
An explicit comparison between the various timescales

can be drawn in the high-frequency driving limit of our
Floquet model, i.e., by taking

U ¼ iLPeiτ
P

j
ϵXjeiτ

P
j

P
∞
r¼1

ðJ=rαÞZjZjþr ð63Þ

with τ small. In this case, rigorous bounds on the heating
timescale are available for all values of α. We refer to
Fig. 2(b) for a comprehensive illustration. For 1 < α ≤ ∞,
an exponential lower bound Tpreth ≥ expðC=τÞ applies
uniformly in α [64] (assuming Kac rescaling of J as
above). Within this long time window, heating is prevented
by the quasiconservation of an effective Hamiltonian
emerging in the toggling frame, of the form

HF ¼−
X
j

�X∞
r¼1

J
ZjZjþr

rα
þ ϵXj

�
þ τð…Þþ τ2ð…Þþ…

ð64Þ

(a) (b)

FIG. 16. (a) Discrete Fourier transform of the order-parameter
time series for ϵ ¼ 0.015, α ¼ 2.25, and different interaction
ranges R. Data have been obtained via ED with L ¼ 28 and time
series up to 2000 kicks. (b) Positions of the first two peaks (at
ω > π) as a function of ϵ in the long-range case R ¼ ∞, which
are expected to match the “classical” single or double spin-flip
excitation value, for ϵ ¼ 0 (see main text for details).

FIG. 15. Semiclassical energy eigenstates of the two-body
problem in Eq. (57) with α ¼ 3 and ϵ ¼ 0.1139, represented
by classical trajectories in phase space ðQ;PÞ ∈ ½0;∞Þ × ½0; 2πÞ
governed by the Hamiltonian H2−bodyðQ;PÞ¼vαðQÞ−4ϵcosP,
encircling an area equal to a multiple of Planck’s constant
h ¼ 2πℏ (Bohr-Sommerfeld quantization rule). Here, we take
ℏ ¼ 1, so h≡ 2π. The continuous function vαðQÞ has been taken
as in Eq. (59). For this choice of parameters, the center-of-mass
potential well hosts four bound states, marked by red trajectories,
bounded in Q. All higher excited eigenstates (blue trajectories)
are unbound plane waves, and they form a continuum labeled by
the asymptotic momentum P for Q → ∞.
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For α > 2, this Floquet Hamiltonian governs the evolution
of local observables [65]. The arguments of this section
apply to the dynamics generated by HF, leading to the long
lifetime 1=γ of the confinement-stabilized DTC order
parameter in Eq. (62). Knowledge of the heating timescale
allows us to keep track of a presumable crossover value
α� ¼ α�ðϵ; τÞ > 2 between this and the vacuum-decay
timescale. Upon decreasing ϵ → 0, the value of α� is
pushed to ∞; conversely, as τ → 0, it is pushed towards 2.
(We reiterate that the heating timescale is only a lower
bound and might be nontight, in general.) For 1 < α ≤ 2,
the Floquet Hamiltonian supports long-range order at finite
temperature. Thus, the mechanism of Floquet prethermal-
ization suffices to stabilize DTC order. Its lifetime is only
limited by heating processes [7,65]. Finally, for 0 ≤ α ≤ 1,
dynamics starting from a fully polarized initial state (such
as our jþi) is governed by an emergent semiclassical
description over a timescale that diverges with system
size [66,67], and the underlying asymptotic “decoupling”
between the few collective degrees of freedom coupled to
the drive and the extensive set of microscopic degrees of
freedom prevents the system from absorbing energy and
heating up [128,129]. Because of this nontrivial mecha-
nism, the emergent DTC behavior has mean-field character
in this regime [9,130].
To summarize, while the Floquet-prethermalized state

features a nonvanishing density of traveling domain walls
precluding large-scale spatiotemporal order, the dynamical
production of these excitations by kick imperfections goes
through extremely slow vacuum-decay processes, delaying
the Floquet prethermalization itself, ultimately paving the
way for a long window of genuinely nonequilibrium time-
crystalline behavior compatible with numerical simula-
tions. Our argument that the fastest order-melting process
is the fractionalization of a critical-size reversed bubble into
a deconfined kink-antikink pair leads to the nonperturba-
tively long lifetime in Eq. (62).

VI. CONCLUSIONS

In this paper, we have established a framework to
understand and compute the order-parameter evolution in
periodically driven quantum spin chains, hinging upon the
effective dynamics of emergent domain-wall excitations.
Within this framework, we have analyzed the impact of
domain-wall confinement on the order-parameter decay
and established that a slight increase of the interaction
range can result in a dramatic extension of the lifetime of
DTC response, despite the absence of a long-range-ordered
Floquet-prethermal states. The results of this paper delimit
and characterize the theory of time crystals for disorder-
free, finite-range, interacting, quantum spin chains driven at
arbitrary frequencies, extending the current state of the art.
Observing confinement-stabilized DTC response does

not require disorder, high-frequency drives or fat-tailed
interactions, which may not be easily accessible in many

experimental setups. A naturally suited platform for imple-
mentation of the physics discussed here is given by
Rydberg-dressed spin chains [72–74]. The tunable-range
Ising interactions realized in these systems, described in our
notations as

Jr ¼
J

1þ ðr=rcÞ6
; ð65Þ

have an almost flat core for r≲ rc and cross over to a quick
decay in the intermediate range r ≈ rc. The value of the
effective range rc can be efficiently tuned in the experi-
ment, making this setup ideal to observe the confinement-
stabilized DTC response identified in this work. Indeed,
necessary ingredients such as preparation of fully polarized
states, application of global pulses, long coherence times,
and monitoring of the collective magnetization have
already been demonstrated in these experiments.
An important remark, however, is that the set of initial

states that give rise to such a response is more limited than
for the prethermal DTC. The flexibility in perturbing the
initial state by arbitrary local operations is set by the same
parameter scale ϵ that controls the duration of the signal.
This is, in a sense, reminiscent of DTC behavior associated
with quantum many-body scars [30,131]. More generally,
this work provides further evidence that increasing the
range of interactions may generate nonthermal behavior in
certain regimes [60,61,66,67,132–135] and may help
realize genuinely nonequilibrium phases [65,128].
The results reported here clarify some confusion on the

role of the system size in clean, short-range, interacting
“time crystals,” consistent with the numerical analysis of
Ref. [79]. Furthermore, a crucial by-product result of this
work is the clarification of the nature of the apparent
anomalous persistence of the order parameter observed in
several numerical investigations of long-range quantum
Ising chains with α≳ 2 after a global quench of the
transverse field from a ferromagnetic ground state
[60,75,76]. Because of the pronounced finite-size effects
and severe slowdown of the dynamics in this regime, purely
numerical calculations face significant challenges. The
theory developed in this paper for the more general
Floquet setting (Sec. V) applies equally well to these
quench dynamics (of course, incommensurability of the
couplings with 2π need not be assumed in this case). This
work provides solid analytical evidence that a strong
enhancement of the order-parameter lifetime is to be
generally expected in the parameter regime 2 < α ≪ ∞
and predicts its functional form as a function of the quench
magnitude. This has the important consequence, seemingly
not recognized before, that a long-lived nonequilibrium
order can be sustained by systems that cannot exhibit long-
range order in equilibrium, via the suppression of the
dynamical creation of deconfined topological excitations
(domain walls), ultimately responsible for melting the
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metastable nonequilibrium order. This occurrence is related
to familiar macroscopic tunneling phenomena in high-
energy physics, such as the Schwinger mechanism [70]
and Coleman’s false vacuum decay [71], where atypical
excited states may only decay (and hence thermalize)
through slow nonperturbative processes.
On a technical level, a few points remain open and are

left to future work, including a more rigorous derivation of
Eq. (62) and a better understanding of the role of reso-
nances in the unperturbed spectrum.
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APPENDIX A: EXACT KICKED DYNAMICS
IN THE INTEGRABLE ISING CHAIN

We start by analyzing the high-frequency regime
J; ϵ ≪ 1, which allows us to approximate

KϵVJ ≃ eiJ
P

j
½ZjZjþ1þðϵ=JÞXj�; ðA1Þ

using the BCH formula truncated to the lowest order. The
resulting stroboscopic dynamics is equivalent to that of a
static transverse-field Ising Hamiltonian after a quench of
the field from 0 to ϵ=J. Exact calculations of the large-
distance behavior of the two-point function in the thermo-
dynamic limit have shown that the order parameter relaxes
to zero exponentially at late times (here, jϵ=Jj < 1) [84],

jmðnÞj ≃
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵ=JÞ2

p
2

�1=2
e−n=τI ; ðA2Þ

with τ−1I ¼ J½ð4=3πÞjϵ=Jj3 þOðjϵ=Jj5Þ�, confirming the
fact that the relaxation time can be very long, depending
on the specific driving parameters. Even though the
formula (A2) is not expected to be accurate away from
the high-frequency regime [i.e., for arbitrary J ¼ Oð1Þ], we
still expect the real relaxation time to scale as jϵj−3
for jϵj ≪ 1.
Next, we proceed by analytically solving the dynamics

induced by the Floquet operator KϵVJ. To this aim, we
exploit the fact that both Kϵ and VJ are Gaussian operators

in terms of the spinless fermions cð†Þj , introduced by the
following Jordan-Wigner transformation:

Zj ¼
Yj−1
i¼1

ð1 − 2c†i ciÞðcj þ c†jÞ; Xj ¼ 1 − 2c†jcj; ðA3Þ

where fci; c†jg ¼ δij and fci; cjg ¼ 0. In terms of such
fermions, the evolution operators read

Kϵ ¼ eiϵ
P

j
ðcjc†j−c†j cjÞ; VJ ¼ eiJ

P
j
ðc†j−cjÞðc†jþ1

þcjþ1Þ;

ðA4Þ

whose product can be diagonalized by first going to the
Fourier space cj ¼ ð1= ffiffiffiffi

L
p ÞPp e

−ipjηp, where the sum
runs over momenta that are quantized depending on the
specific sector, namely, p ¼ 2πn=Lþ ðπ=LÞð1þ PÞ=2
with n ¼ −L=2;…; L=2 − 1. In terms of positive
momenta, both operators can be recast in the following
forms:

Kϵ ¼
Y
p>0

eη
†
pKηp ; VJ ¼

Y
p>0

eη
†
pVηp ; ðA5Þ

where we defined the row vector η†p ≡ ðη†p; η−pÞ and the
2 × 2 matrices

K ¼ −2iϵZ; V ¼ 2iJ½cosðpÞZ − sinðpÞY�: ðA6Þ

For different momenta, the operators entering Eq. (A5)
commute between each other; therefore, we only need to
combine, for each p > 0, two local Gaussian operators by
exploiting the identity [136]

eη
†
pKηpeη

†
pVηp ¼ eη

†
pHηp ; eH ¼ eKeV : ðA7Þ

The exponent in the product of the two exponentials can be
parametrized as an SU(2) rotation, such that one has

H ¼ iϕpr̂p · σ; ðA8Þ

where σ ¼ fX; Y; Zg is the vector of the Pauli matrices, and
ϕp and r̂p are defined below [cf. Eqs. (A15) and (A17)].
The matrix H is then diagonalized by the following unitary
transformation:

Up ¼ e−iϵZe−iθpX=2; ðA9Þ

with θp defined below in Eqs. (A19). The orthonormal
eigenvectors in Up can be used to construct the following
fermionic operators:
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ξ†p ≡ ðξ†p; ξ−pÞ ¼ η†pUp; ðA10Þ

in terms of which the Floquet operator is diagonal and reads

KϵVJ ¼ ei
P

p>0
ϕpξ

†
pZξp : ðA11Þ

The dynamics induced by the Floquet operator in
Eq. (A11) can be understood as a quench originating from
the vacuum state in the P ¼ þ1 sector. In practice, we may
solve the dynamics by connecting the prequench and
postquench diagonal fermions. The initial diagonal fer-
mions ξ0p are those that diagonalize the Ising Hamiltonian in
Eq. (1), and they are related to the model-independent
momentum-space fermions ηp via the Bogoliubov trans-
formation ξ0p ¼ eipX=2ηp. The prequench and postquench
diagonal fermions are thus related by the unitary trans-
formation ξp ¼ eiθpX=2eiϵZe−ipX=2ξ0p.
To use the asymptotic prediction of the order-parameter

decay in Ref. [84], we need to reshape the aforementioned
unitary transformation connecting prequench and post-
quench diagonal fermions into e−iαpZeiΔpX=2eiα

0
pZ so that

we can absorb the irrelevant phases into a redefinition of
new diagonal fermions ξ̃p ≡ eiαpZξp and ξ̃0p ≡ eiα

0
pZξ0p.

These finally identify a single Bogoliubov rotation with
angle Δp, such that

cosðΔpÞ¼ cosðθpÞcosðpÞþ sinðθpÞcosð2ϵÞsinðpÞ: ðA12Þ

The Floquet dynamics therefore induces an unavoidable
exponential decay of the magnetization, with the exact
decay rate given by

γ ¼ −
Z

π

0

dp
π

∂pϕp ln j cosðΔpÞj: ðA13Þ

A Taylor expansion of Eq. (A13) for small values of ϵ
produces the asymptotics in Eq. (8).

1. Exact Floquet operator

The Floquet operator for the integrable kicked Ising
model has been constructed from the matrices K and V
defined in Eq. (A6), so the product of the two exponentials
reads

eKeV ¼
"
e−2iϵ½cosð2JÞ þ i sinð2JÞ cosðpÞ� −e−2iϵ sinð2JÞ sinðpÞ

e2iϵ sinð2JÞ sinðpÞ e2iϵ½cosð2JÞ − i sinð2JÞ cosðpÞ�

#
: ðA14Þ

This is a unitary matrix with det½eKeV � ¼ 1 and eigen-
values feiϕp ; e−iϕpg such that tr½eKeV � ¼ 2 cosðϕpÞ, with

cosðϕpÞ ¼ cosð2JÞ cosð2ϵÞ þ sinð2JÞ sinð2ϵÞ cosðpÞ:
ðA15Þ

The matrix in Eq. (A14) can thus be parametrized as an
SU(2) rotation

eKeV ¼ eiϕpr̂p·σ ¼ cosðϕpÞ þ i sinðϕpÞr̂p · σ; ðA16Þ

where we introduced the unit vector
r̂p ¼ tr½eKeUσ�=½2i sinðϕpÞ�, whose components are

r̂p ¼ 1

sinðϕpÞ

2
64 sinð2JÞ sinð2ϵÞ sinðpÞ

− sinð2JÞ cosð2ϵÞ sinðpÞ
sinð2JÞ cosð2ϵÞ cosðpÞ− cosð2JÞ sinð2ϵÞ

3
75:

ðA17Þ

We can parametrize r̂p with the angles fθp; ξpg such
that (notice this is not the standard polar-azimuth
parametrization)

r̂p ¼

2
64

sinðθpÞ sinðξpÞ
− sinðθpÞ cosðξpÞ

cosðθpÞ

3
75: ðA18Þ

Comparing the definition in Eq. (A18) with the results
in Eq. (A17), we may easily identify ξp ¼ 2ϵ (for
−π=2 < 2ϵ < π=2) independent of the momentum, and

sinðθpÞ ¼
sinð2JÞ sinðpÞ

sinðϕpÞ
; ðA19aÞ

cosðθpÞ ¼
sinð2JÞ cosð2ϵÞ cosðpÞ − cosð2JÞ sinð2ϵÞ

sinðϕpÞ
;

ðA19bÞ
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so that the effective Hamiltonian H ¼ iϕpr̂p · σ takes the
form

H ¼ iϕp

�
cosðθpÞ i sinðθpÞe−2iϵ

−i sinðθpÞe2iϵ − cosðθpÞ

�
ðA20Þ

and is diagonalized by the unitary transformation

Up ¼
�
cosðθp=2Þe−iϵ −i sinðθp=2Þe−iϵ
−i sinðθp=2Þeiϵ cosðθp=2Þeiϵ

�
; ðA21Þ

which can be rewritten as the product of two SU(2) rotations

Up ¼ e−iϵZe−iθpX=2: ðA22Þ

Let us notice that, for ϵ ¼ 0, the transformation in Eq. (A22)
reduces to a single rotation around x̂ with angle θp ¼ p,
inducing the usual Bogoliubov transformation diagonalizing
the Ising Hamiltonian in Eq. (1).

2. Order-parameter dynamics

The free-fermion techniques outlined above allow the
computation of the discrete time evolution of the two-point
function hZ0ðnÞZlðnÞi, starting from a Z2-symmetric state.
Here, we assume to work in the P ¼ þ1 sector, thus
preparing the initial state to be j0þi≡ ðjþi þ j−iÞ= ffiffiffi

2
p

,
namely, the vacuum of the ξ0p fermions. From the large-
distance behavior of the two-point function, we have
jmðnÞj2 ¼ liml→∞hZ0ðnÞZlðnÞi.
The order-parameter correlation function can be com-

puted using the Majorana fermions

a2j ¼ iðc†j − cjÞ; a2j−1 ¼ c†j þ cj; ðA23Þ

which are Hermitian operators satisfying fai;ajg¼2δij.
Indeed, the expectation value of the two-point function
involves the evaluation of the Pfaffian of a skew-
symmetric real matrix, namely, hZ0ðnÞZlðnÞi ¼ pf½MðnÞ�,
where MijðnÞ ¼ −ihaiðnÞajðnÞi þ iδij, with
fi; jg ∈ f0; 1;…; 2l − 1g. Actually, since we only need
the modulus of the two-point function, we may just compute
the determinant since det½MðnÞ� ¼ pf½MðnÞ�2.
Therefore, the building block is the fermionic two-point

function, whose time evolution can be computed by re-
writing the Majorana operators in Eq. (A23) in terms of the
new diagonal operators in Eq. (A10), whose time evolution
is a trivial phase factor. In particular, by using the fact that,
in the thermodynamic limit,

aj ¼
Z

π

−π

dp
2π

e−ipjAηp; A ¼
�
1 1

−i i

�
; ðA24Þ

where a†j ≡ ða2j−1; a2jÞ, we easily obtain, after n periods,

hajðnÞa†l ðnÞi ¼
Z

π

−π

dp
2π

e−ipðj−lÞWpðnÞhηpη†piW†
pðnÞ;

ðA25Þ

where WpðnÞ ¼ AUpeinϕpZU†
p, and the initial correla-

tion function is easily computed as
hηpη†pi ¼ e−ipX=2hξ0pξ0†p ieipX=2, with hξ0pξ0†p i ¼ ð1þ ZÞ=2.

APPENDIX B: DERIVATION OF THE
EFFECTIVE FLOQUET HAMILTONIAN

In this section, we present the explicit construction of
the Floquet Hamiltonian, which conserves, at any order, the
number of domain wallsD1 in Eq. (11). As explained in the
main text, we follow a different procedure from Ref. [96],
which allows us to obtain explicit low-order formulas more
easily. For the sake of generality, we consider a kicked Ising
chain with variable-range interactions as in Eq. (40) and a
mixed-field kick as in Eq. (10). For convenience, we para-
metrize ϵ ¼ η cos θ, h ¼ η sin θ in Eq. (B1). Here, it is useful
to introduce the associated Hamiltonians

HK ¼−
X
j

ðcosθXjþsinθZjÞ; H0¼−
X
j

XR
r¼1

JrZjZjþr:

ðB1Þ

The procedure is based on two steps:
(1) Using the replica resummation of Ref. [104], we

combine the kick generator K ¼ e−iηHK with the
interactions VJ ¼ e−iH0 into an approximate Floquet
Hamiltonian,

KVJ ≃ e−iH
F
: ðB2Þ

(2) We apply a static Schrieffer-Wolff transformation to
HF to cancel, order by order, all the terms that do not
commute with D1.

The two procedures are detailed in the next two subsections,
respectively.

1. Replica resummation for the kicked
variable-range and mixed-field Ising chain

To keep the calculation as general as possible, we
actually consider a generic two-body interactions in the
ẑ direction
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H0 ¼ −
X
i<j

Ji;jZiZj: ðB3Þ

The translationally invariant case in Eq. (B2) can be readily
recovered at the end by setting Ji;j ¼ Jr¼j−i.
The approach of Ref. [104] allows us to obtain HF

defined in Eq. (B2) perturbatively in small η:

HF ¼ H0 þ ηH1 þ η2H2 þ…: ðB4Þ

While this series is expected to be generically divergent,
signaling the nonexistence of a physically meaningful
conserved energy, truncations of the series have a crucial
physical meaning as approximate conserved energy for
long times (see Ref. [104] and the discussion in the
main text).
The pth coefficient Hp of the replica expansion, p ≥ 1,

is obtained by writing the logarithm

HF ¼ i log e−iηHKe−iH0 ðB5Þ

as a limit log x ¼ limn→0ð1=nÞðxn − 1Þ, hence taking the
pth derivative with respect to η at η ¼ 0 before analytically
continuing the result for noninteger n and taking the replica
limit n → 0,

Hp ¼ ilim
n→0

1

n
1

p!
∂
p

∂ηp

����
η¼0

ðe−iηHKe−iH0Þ � � � ðe−iηHKe−iH0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

:

ðB6Þ

The building block for explicit computations is the
operator

H̃m ¼ eimH0HKe−imH0 : ðB7Þ

In the model under consideration, one obtains

H̃m ¼ − cos θ
X
j

½cosð2mζjÞXj

− sinð2mζjÞYj� − sin θ
X
j

Zj; ðB8Þ

where ζj ¼
P

ið≠jÞ Ji;jZi is the effective field acting on spin
j. The first term of the replica expansion is then computed
as

H1 ¼ lim
n→0

1

n

Xn−1
m¼0

H̃m

¼ − cos θ
X
j

ðζj cot ζjXj þ ζjYjÞ − sin θ
X
j

Zj: ðB9Þ

We see that first-order terms contain at most one local spin-
flip operator (Xj or Yj). Compared to the bare kick
generator, such spin-flip terms are “decorated” by diagonal
operators. The range of these decorations is inherited from
that of the interaction couplings Ji;j inH0. In particular, the
amplitude of a local spin-flip process is only influenced by
the configuration of the spins in a neighborhood of radius
R. In the case of the conventional quantum Ising chain
(R ¼ 1), Eq. (B9) reduces to the expression first obtained in
Ref. [104]. Equation (B9) constitutes a generalization to
Ising chains with arbitrary couplings. In the high-frequency
limit Ji;j → 0, we correctly retrieve the standard BCH
expression at lowest order, H1 ≡HK . Importantly, diver-
gences appear in the replica coefficients of particular
off-diagonal (“resonant”) transitions. Thus, we need an
incommensurability assumption on the nonvanishing inter-
action couplings, as discussed below.
The complexity of the computation increases rapidly

with the perturbative order. To illuminate the general
structure of the replica series expansion, it is instructive
to report here the result for p ¼ 2. The second term is
computed as [104]

H2 ¼
i
2
lim
n→0

1

n

X
0≤m1<m2<n

½H̃m2
; H̃m1

�: ðB10Þ

The calculation gives

H2 ¼ þcos2θ
X
j

λjZj þ cos2θ
X
j1;j2

ðμXXj1;j2Xj1Xj2 þ μYYj1;j2Yj1Yj2 þ μXYj1;j2Xj1Yj2 þ μYXj1;j2Yj1Xj2Þ

þ cos θ sin θ
X
j

ðνXj Xj þ νYj YjÞ: ðB11Þ

The coefficients λ, μ, ν are diagonal operators obtained via the following analytical replica limits:
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λj ¼ lim
n→0

1

n

X
0≤m1<m2<n

−
1

2
sin½2ðm1 −m2Þζj�;

μXXj1;j2 ¼ lim
n→0

1

n

X
0≤m1<m2<n

sinð2m2ζj2Þ sinð2m1ζ
0
j1;j2

Þ sinð2m1Jj1;j2Þ − ½m1 ↔ m2�;

μYYj1;j2 ¼ lim
n→0

1

n

X
0≤m1<m2<n

cosð2m2ζj2Þ cosð2m1ζ
0
j1;j2

Þ sinð2m1Jj1;j2Þ − ½m1 ↔ m2�;

μXYj1;j2 ¼ lim
n→0

1

n

X
0≤m1<m2<n

cosð2m2ζj2Þ sinð2m1ζ
0
j1;j2

Þ sinð2m1Jj1;j2Þ − ½m1 ↔ m2�;

μYXj1;j2 ¼ lim
n→0

1

n

X
0≤m1<m2<n

sinð2m2ζj2Þ cosð2m1ζ
0
j1;j2

Þ sinð2m1Jj1;j2Þ − ½m1 ↔ m2�;

νXj ¼ lim
n→0

1

n

X
0≤m1<m2<n

sinð2m1ζjÞ − sinð2m2ζjÞ;

νYj ¼ lim
n→0

1

n

X
0≤m1<m2<n

cosð2m1ζjÞ − cosð2m2ζjÞ: ðB12Þ

In these equations, ζ0j1;j2≡
P

ið≠j1;j2ÞJi;j1Zi¼ζj1−Jj1;j2Zj2 .
The evaluation of the replica limits in Eq. (B12) can be
easily performed with the help of algebraic manipulators
such as WOLFRAM MATHEMATICA. In particular, finite
replica limits exist in all cases, and μYXj1;j2 ≡ 0. A crucial
property is that

μαβj1;j2 ¼ OðJj1;j2Þ as Jj1;j2 → 0 ðB13Þ

for all α, β ¼ X, Y. This implies that for interactions with
finite range R, pairs of spin flips in H2 can only occur at
maximum distance R. Furthermore, for long-range inter-
actions, large-distance pairs are suppressed as rapidly as the
interaction tail. We note that, compared to the first-order
term, a larger (finite) set of resonances appear at secondorder.
The second-order processes described by Eq. (B11)

include diagonal terms (∝ ϵ2, first line), single local spin
flips (∝ hϵ, third line), and pairs of spin flips (∝ ϵ2, second
line). As in the first order term (B9), spin-flip operators (Xj,
Yj, Xj1Xj2 , Xj1Yj2 , Yj1Yj2) are decorated by diagonal
operators determined by the configuration of spins in a
neighborhood of radius R from the location of the flips.
Furthermore, double spin flips come in quasilocal pairs;
i.e., spins are flipped at most R sites away from each other.
Higher-order terms in the replica expansion have

increasingly complex coefficients but crucially exhibit a
hierarchical structure in terms of the maximum number and
the quasilocality of off-diagonal spin-flip processes. This
property follows from expressing the pth order term as p
nested commutators of the building block H̃m before taking
the replica limit [104]. In particular, terms of order ϵp in the
Floquet Hamiltonian feature a quasilocal product of at most
p spin-flip local operators (X or Y), each one located at

most R sites away from the next, dressed by diagonal
coefficients involving operators Z and couplings Jr.
As already noted above, these coefficients may have

poles when particular integer combinations of the cou-
plings

P
r drJr, dr ∈ Z, equal a multiple of 2π. Such

divergences stem from a corresponding sequence of per-
turbative transitions generated by the kick Kϵ hitting a
resonance in the unperturbed spectrum of VJ. These
resonances make the perturbative series ill defined. To
resolve this issue, we must assume a condition of strong
incommensurability of the couplings, such that integer
combinations of fJrg and 2π remain sufficiently removed
from zero unless correspondingly large integers are chosen.
More precisely, we assume the following Diophantine
condition: There exist x, τ > 0, such that for all nonzero
integer arrays n≡ ðn0; n1;…; nRÞ ∈ ZRþ1,

����XR
r¼1

nrJr − 2πn0

���� > x
jjnjjτ ; ðB14Þ

where jjnjj≡maxðn0; n1;…; nRÞ. It is not hard to show
that almost all choices of the couplings Jr satisfy this strong
incommensurability condition for some x > 0 when τ > R
(see, e.g., the aforementioned Ref. [96]). This condition
guarantees that the resummation of the BCH series is
formally well defined to all orders in ϵ and that the
coefficients do not grow too wildly with the perturba-
tive order.

2. Derivation of the domain-wall-conserving
effective Hamiltonian

In this subsection, we apply the Schrieffer-Wolff trans-
formation to the Floquet Hamiltonian in Eq. (B2) to obtain
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a new operator that conserves the number of domain walls
D1. For simplicity, we focus on the short-range case R ¼ 1,
and we restrict ourselves to the first order. In this case, the
effective fields reduce to ζj ¼ JðZjþ1 þ Zj−1Þ, and the
Floquet Hamiltonian up to first order takes the form
(cf. Ref. [104])

H≤1 ¼ −J
X
j

ZjZjþ1 þ ηH1 ðB15Þ

where

H1 ¼ − cos θ

��
J cot 2J þ 1

2

�X
j

Xj

þ
�
J cot 2J −

1

2

�X
j

Zj−1XjZjþ1

þ J
X
j

ðZj−1 þ Zjþ1ÞYj

�
− sin θ

X
j

Zj: ðB16Þ

Note that for J ≪ 1, one has J cot 2J ≃ 1=2; hence, we
retrieve the Trotter limit of the BCH formula, with
HF ∼H0 þ ηHK .
Hence, we split the first-order term H1 into two

orthogonal components, a domain-wall-conserving and a
domain-wall-nonconserving part:

H1 ¼ Dþ V; ðB17Þ

with ½D;
P

j ZjZjþ1� ¼ 0 and V purely off-diagonal
between sectors with different numbers of domain walls.
Explicitly, we have

D ¼ − cos θ
X
j

P↑
j−1XjP

↓
jþ1 þ P↓

j−1XjP
↑
jþ1 − sin θ

X
j

Zj;

ðB18Þ

V ¼ − cos θ

�
2J cot 2J

X
j

P↑
j−1XjP

↑
jþ1 þ P↓

j−1XjP
↓
jþ1

þ 2J
X
j

P↑
j−1YjP

↑
jþ1 − P↓

j−1YjP
↓
jþ1

�
: ðB19Þ

Now, we fix S1 in such a way to exactly cancel V in the
transformed Floquet operator, i.e.,

H0
≤1 ¼ e−iηS1H≤1eiηS1 ¼ J

X
j

ZjZjþ1 þ ηD

þ ηðV − iJ½S1;
X
j

ZjZjþ1�Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼0

!

þOðη2Þ: ðB20Þ

This condition for S1 is solved by

S1 ¼
cos θ
2

X
j

P↑
j−1½Xj − cotð2JÞYj�P↑

jþ1

þ P↓
j−1½Xj þ cotð2JÞYj�P↓

jþ1; ðB21Þ

which corresponds to Eq. (17) in the main text. With such
a choice, one recovers the Floquet operator U0

1 ¼ e−iH
0
≤1 in

Eq. (16).
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