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Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light-
matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside
photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture
consisting of an array of compact superconducting resonators in which we have embedded two frequency-
tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling
regimes, in both the single- and double-excitation subspace. In addition,we demonstrate coherent interactions
between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the
implementation of SWAP and CZ two-qubit gates. The presented architecture holds promise for quantum
simulation with tunable-range interactions and photon transport experiments in the nonlinear regime.
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I. INTRODUCTION

Quantum emitters coupled to structured photonic envi-
ronments constitute both an emerging paradigm of quantum
optics [1,2] and a promising platform for quantum informa-
tion processing [3–6] and quantum simulation ofmany-body
physics [7–10]. One-dimensional photonic lattices modify
the electromagnetic environment, leading to the appearance
of finite bands andbandgaps in the energy spectrum.Amajor
phenomenon in these systems is the formation of atom-
photon bound states in the photonic band gaps [11–21].
These states originate from the dressing of the atom with a
photonic cloud that remains exponentially localized in its

vicinity, thus inhibiting a full atomic decay. In addition, when
multiple atoms are coupled to the same photonic lattice to
form atom-photon bound states, their interaction is mediated
by the overlap of their photonic wave functions. Since the
photonic localization length can be controlled by varying
either the frequency of the atomor the strength of its coupling
to the lattice, this architecture supports tunable-range inter-
actions, opening opportunities for quantum simulation of
exotic spin models [22–25] and quantum computing archi-
tectures with connectivity beyond the nearest neighbor [26].
Atom-photon bound states have been observed in differ-

ent systems, ranging from cold atoms coupled to photonic
crystal waveguides [27], to optical lattices [28,29], to
superconducting circuits [30,31]. A seminal experiment
in superconducting circuits [30] relied on a microwave
photonic crystal consisting of a coplanar waveguide with
periodically modulated impedance. In a photonic crystal,
the lattice periodicity must be of the same order as the
wavelength of the radiation in the band gap. At microwave
frequencies, this constraint results in a large footprint,
which limits the number of unit cells that can be accom-
modated on a chip to a dozen and hinders the integration of

*marco.scigliuzzo.physics@gmail.com
†simoneg@chalmers.se

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 12, 031036 (2022)

2160-3308=22=12(3)=031036(22) 031036-1 Published by the American Physical Society

https://orcid.org/0000-0001-5679-045X
https://orcid.org/0000-0002-5749-2224
https://orcid.org/0000-0002-6061-1255
https://orcid.org/0000-0003-3098-3266
https://orcid.org/0000-0001-5264-4025
https://orcid.org/0000-0002-3476-4485
https://orcid.org/0000-0002-1222-3506
https://orcid.org/0000-0002-7238-693X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.12.031036&domain=pdf&date_stamp=2022-09-12
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1103/PhysRevX.12.031036
https://doi.org/10.1103/PhysRevX.12.031036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


additional measurement and control circuitry. A new
avenue was opened by the introduction of superconducting
metamaterials with a deep subwavelength lattice constant,
consisting of a set of lumped-element resonators periodi-
cally loading a transmission line, or arranged in a linear
chain to form a coupled-cavity array [32–34]. In these
embodiments, the lattice footprint is drastically reduced
(nearly 2 orders of magnitude), and the photonic cloud is
more strongly confined. In addition, by staggering the
hopping amplitudes between neighboring resonators, lat-
tices with nontrivial topology have been realized, which
host topologically protected bound states [34].
Here, we introduce a novel circuit quantum electrody-

namics (QED) implementation of photonic lattices coupled
to quantum emitters, which employs arrays of Josephson-
junction resonators and transmon qubits. Compared to
previous work, our implementation features a reduced
footprint, an enhanced interaction strength, and a higher
extensibility. These benefits are obtained by increasing the
impedance of the resonators compared with previous
realizations, utilizing arrays of Josephson junctions as
compact inductors in the resonator array [35–37].
Thegeometryof our resonator array facilitates the arrange-

ment of time-domain and frequency control circuity for the
qubits. This capability enables the exploration of individual
atom-photon bound-state properties. We present spectros-
copy and time-domain measurements of a proof-of-principle
device comprising an array of 21 high impedance resonators
and two transmon qubits with dedicated measurement and
control circuitry. We characterize the mode structure of the
array and the emergence of atom-photon bound states. Using
time-domain measurements, we gain unique insight regard-
ing the structure of the atom-photonbound state by extracting
the mixing angle between atomic and photonic components
and by measuring the anharmonicity renormalization. We
also present original numerical results that highlight the
interplay between double-atomic and double-photonic exci-
tations in thedouble-excitationmanifold. Finally,we observe
fast, coherent population exchange between two atom-
photon bound states, and we report the cross-Kerr (ZZ)
interaction between two atom-photon bound states, which is
inaccessible with coherent driving spectroscopy.
Our results demonstrate that the presented architecture is

endowed with all essential building blocks to carry out
quantum simulation and quantum information processing
tasks, and to access nonlinear regimes of quantum optics.
The foreseen possibility to accommodate multiple emitters
with a limited increase in physical footprint looks particu-
larly promising for carrying out quantum simulations of
large many-body spin Hamiltonians [22].

II. RESULTS

A. Sample and experimental setup

We implement the structured photonic environment as a
transmission line made out of 21 high-impedance

microwave resonators forming a coupled-cavity array
(Fig. 1). Each resonator consists of an array of ten
Josephson junctions of total inductance Lr ¼ 8.87 nH
shunted by a capacitor Cr ¼ 91.3 fF, resulting in a bare
resonant frequency ωr ¼ 5.593 GHz and a characteristic
impedance Zr ¼ 312 Ω. Nearest-neighbor resonators are
capacitively coupled to form a linear chain, and each edge
resonator is coupled to a 50-Ω coplanar waveguide. The
artificial atoms (Q1 and Q2) are implemented as super-
conducting flux tunable transmons [38] capacitively
coupled to sites 10 and 12 of the array. Each transmon
is additionally coupled to a charge line (XY control), a flux
line (Z control), and a readout resonator. The device is
realized in aluminum on a silicon substrate with a standard
lithographic process [39]. The sample is wire bonded to a
copper sample holder thermally anchored to the mixing
chamber stage of a dilution refrigerator at 10 mK. A
summary of the relevant sample parameters and further
experimental details are presented in Appendix A.

B. Transmission spectroscopy of the array

1. Bare coupled cavity array

To characterize the bare coupled cavity array, we tune the
resonant frequencies of Q1 and Q2 far away from the
transmission band and measure the transmission coefficient
through the array (Fig. 2). At low driving powers (average
photon number in the array mode n ≈ 1), a structure of
N ¼ 21 modes forming a passband emerges in the trans-
mission spectrum, from the first mode at ω1=2π ¼
5.219 GHz to the last one at ω21=2π ¼ 6.215 GHz.
These modes present rather uniform spacing and linewidths
in the center of the band, while they concentrate and
become narrower in the linewidth at the band edges. These
features are captured by a tight-binding model for the array
with only three parameters: the single-cavity bare reso-
nance frequency ωr, the cavity-cavity nearest-neighbor
coupling J, and the coupling of the edge cavities to the
input and output transmission lines, κ (see Appendix B). In
the limit κ ≪ J, which applies here, the resonance frequen-
cies of the modes are given by

ωk ¼ ωr þ 2J cos

�
πk

N þ 1

�
k ¼ 1;…; N; ð1Þ

the linewidth of each being

κk ¼
2κ

N þ 1
sin2

�
k
2

�
: ð2Þ

Equation (1) predicts a passband ofwidth4J centered around
the bare cavity frequency ωr. From Eq. (1), 4J ≈ ω21 − ω1,
and we extract J=2π ¼ 249 MHz. Comparing it to previous
realizations of microwave coupled cavity arrays [33,34], we
achieve a larger value for J with a smaller coupling
capacitance, thanks to the higher impedance of the resonator
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(J ¼ 1
2
CJω

2
rZr). From electrostatic simulations, we estimate

the resonator impedance to be Zr ¼ 1=ωrCr ≈ 312 Ω. This
implies a sixfold gain on the capacitive coupling strength
compared with 50-Ω resonators.
Compared to the predictions of this simple model, the

measured traces present deviations in the frequency dis-
tribution of the modes, which we attribute to a 3% scatter in
the resistance of the fabricated Josephson junctions [40],
resulting in an estimated standard deviation of δωr=2π ¼
25 MHz in the frequencies of the bare (uncoupled) reso-
nators in the array. Importantly, thanks to the small ratio
δωr=J ¼ 1=10, this frequency disorder does not signifi-
cantly affect the properties of the atom-photon bound
states, as calculated by numerical diagonalization of the
system Hamiltonian for various realizations of the disorder

and directly verified in our experiments below. In addition,
we measure a nonzero transmission outside the photonic
passband and an alternating transmission background in
between resonant modes, which we ascribe to direct cross-
talk between the input and output ports of our sample box.
For a detailed treatment of these experimental imperfec-
tions, see Appendix C.
At higher powers, corresponding to n ∼ 102, each

individual mode exhibits the typical phenomenology of a
Kerr resonator, due to the nonlinearity inherited by the
arrays of Josephson junctions [41]. In our design, we
estimate the Kerr coefficient for a single mode to be
K=2π ¼ 100 kHz, much smaller than the mode linewidth.
In fact, the frequency shift produced by more than 100
photons is still smaller than a linewidth, as visible in
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FIG. 1. Two artificial atoms interacting with a coupled-cavity array. (a) Concept: qubit 1, Q1 (blue), and qubit 2, Q2 (red), are locally
coupled to an array of 21 cavities (green). Each atom can be independently controlled through an individual driving line (same color as
the atom) and its state measured via a dedicated readout resonator (yellow). Each qubit is dressed by a photon, giving rise to a
corresponding atom-photon bound state (see shaded cloud localized around each atom). (b) Energy diagram of dressed states as a
function of the bare qubit frequency ωq. For a fixed ωq, the bound state emerges as a discrete energy E separated from the photonic band
(green shaded region). The color scale of the bound state (from green to red) indicates whether the excitation is mostly photonic or
atomic in nature. (c) Micrograph of the sample and (d) simplified experimental setup: An array of 21 Josephson-junction (JJ) resonators
(green) is capacitively coupled at its edges to coplanar waveguides directly connected to the input (WGin) and output (WGout) of two
cryostat lines. The transmon qubits Q1 and Q2 are coupled to resonator (cavity) 10 and 12, respectively, and driven through dedicated
charge lines XY-Q1 and XY-Q2, respectively. Each qubit state is detected through 2 quarter-wavelength coplanar resonators (yellow)
inductively multiplexed on a transmission line measured through ROin and ROout. The qubit frequencies are tuned by injecting a
magnetic flux in the transmon SQUID loop with individual flux lines (Z-Q1 and Z-Q2). Details of the JJ resonator and Q2, the JJ array,
and the Q2 SQUID and flux line are shown in panels (c1)–(c3), respectively.
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Fig. 2(b). Importantly, this value can be determined by
design, by choosing the number of junctions in a single
resonator or the number of unit cells in the resonator array.
The extraction of this parameter and the relation between
the Kerr coefficient of individual resonators and that of the
array modes are discussed in Appendix A 3. In the
remainder of this work, we only consider the linear regime
of the coupled cavity array.

2. Dressed coupled cavity array and
atom-photon bound states

We characterize the interaction of each qubit with the
coupled cavity array by tuning its frequency across the
passband while keeping the other qubit detuned [Fig. 3(a)].
Here, we discuss the results for Q2; the results for Q1 are
comparable (see Appendix A 2).

The low-power transmission coefficient of the array is
affected by the presence of the qubit [Fig. 3(b)]. We observe
a minimum in transmission within the band in correspon-
dence with the bare qubit frequency [red dashed line in
Fig. 3(b)]. In fact, in the low excitation regime, the
incoming field is coherently scattered back [42]. This
effect is particularly visible when the bare qubit frequency
is resonant with one of the coupled-cavity array modes. In
Sec. II C, we show that an atom-cavity interaction strength
is approximately gi=2π ∼ 300 MHz, 5 times larger than the
frequency spacing of the modes, implying a multimode
interaction [43]. In particular, the absence of an avoided
crossing between a single mode and the artificial atom, and
the monotonic dispersive shift of a mode, indicate the
interaction of the artificial atom with multiple modes.
Moreover, each mode presents a definite standing-wave
spatial profile, which sets its effective interaction strength
with the artificial atom. For example, mode m ¼ 10,
indicated by the white arrow in Figs. 3(b) and 3(c), is
completely decoupled from the qubit due to a correspond-
ing node on the site of the artificial atom.
Comparing our system with a previous realization of

multimode strong coupling [44], the vanishing group
velocity vg at the band edges produces a nontrivial density
of photonic states, proportional to 1=vg [45]. As the atom
frequency approaches the band, it hybridizes with band-
edge photons having zero velocity [17,30]. This seeds an
evanescent field, exponentially localized around the atom
[shaded area around the atoms in Fig. 1(a)]. In Fig. 3(d), we
observe this additional photonlike mode outside the pass-
band, which asymptotically approaches the band edge
when the bare qubit frequency is moved towards the center
of the band.
To model the transmission spectra, we introduce the

Hamiltonian

H=ℏ ¼
XN
x¼1

ωra
†
xax þ

XN−1

x¼1

Jða†xaxþ1 þ a†xþ1axÞ

þ
X2
i¼1

ωqib
†
i bi þ

1

2
βib

†
i b

†
i bibi þ giða†xibi þ b†i axiÞ;

ð3Þ

where we introduce the photon annihilation operator ax for
the xth cavity, the transition frequencies ωqi of qubits Qi,
their anharmonicities βi, and finally their couplings with the
xith cavity, gi. We calculate the transmission coefficient in
the limit of linear response from input-output theory and find
a qualitative agreementwith ourmeasurements [Fig. 3(c); see
Appendix B 6 for details].
When the frequency of the qubit is tuned towards the

low-frequency edge of the band, the bound state at higher
frequency (upper bound state) completely loses its atomic
nature, becoming the mode at the high-frequency edge of
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FIG. 2. Single coherent tone spectroscopy of the coupled cavity
array. (a) Frequency landscape of the resonant modes of the
systems: Q1 (blue), Q2 (red) (tuned away from the band in this
measurement), readout resonators (yellow), and array modes
(green). (b) Transmitted amplitude, jS21j vs frequency, ω, for
different input powers, and Pin at room temperature. The traces
are vertically offset in steps of 1.1 and filled to their own baseline
for clarity.
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the band. Conversely, the mode at the low-frequency edge
starts to get dressed with an atomic component [lower
bound state, barely visible in Fig. 3(b)], as predicted by the
Hamiltonian (3) for a single qubit.
Their frequencies ωBSi (i ¼ 1, 2 for Q1 and Q2, respec-

tively) are given by the solutions of the equation

ωBSi − ωqi ¼
g2

ðωBSi − ωrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4J2

ðωBSi−ωrÞ2
q ; ð4Þ

with ωBSi − ωr > 2J (see Appendix B 3 for more details).
The upper bound state will be our main focus for the rest of
the paper, and we use its frequency as the independent
variable to describe our measurements. As pictorially
shown in Fig. 1(b), this state is highly localized and

atomlike in nature for atomic bare frequency deep in the
gap, while it is more photonlike and delocalized for atomic
frequency close to the passband. These features are directly
exploited for exciting the bound state: The finite overlap of
the photonic cloud with the resonators at the edges of the
array allows for the detection of this state in transmission
[see Figs. 3(b)–3(d)].
The decay rate of the bound state, extracted from the

linewidth of the transmission spectroscopy as a function
of the bound-state frequency, is of the order of
γ=2π ≈ 300 kHz, close to the decay rate of the array modes
[Fig. 3(e), orange dots], due to the large and delocalized
photonic component of the bound state [Fig. 3(e1)]. When
the bound state is far from the band, we extract its decay
rate from a measurement of its atomic component via the
readout resonators. In this case, the losses are much smaller
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FIG. 3. Single coherent tone spectroscopy as a function of Q2 frequency. (a) Frequency landscape: Q1 is tuned to its lowest frequency.
The Q2 frequency is tuned from its largest frequency at 6.6 GHz to 4.1 GHz. (b) Low-power coherent tone spectroscopy through the
resonator array as a function of the Q2 frequency (dashed red line). (c) Calculated transmission spectrum via input-output theory using
the single-excitation Hamiltonian Eq. (3). (d) Detail of the measurement in panel (a) showing how the atom-photon bound state
approaches the band and eventually becoming the last array modes. The dashed black line shows data fit via Eq. (4). (e) Total decay rate
of the bound state as a function of its frequency. The red data are obtained from the transmission spectroscopy, while the blue are from
the atom spectroscopy (see Sec. II C). The dashed black line represents the theoretically expected decay rate. Insets: calculated
distribution of the excitation over the array (green dots) and between the two qubits (blue and red, respectively) for two distinct bound-
state frequencies: ωBS2 ¼ 6.226 GHz (e1) and ωBS2 ¼ 6.510 GHz (e2).
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[Fig. 3(e)] due to the mainly atomic component [Fig. 3(e2)],
and we measure a decay rate γ=2π ≈ 50 kHz.

C. State preparation of a single
atom-photon bound state

1. Single-excitation subspace

In the limit in which the atom-photon bound state is
localized, and thereby not accessible by transmission spec-
troscopy of the array, we excite it by sending microwave
pulses to the qubit via its charge line and detect it by
performing dispersive qubit readout using the readout
resonators [see Fig. 1(c1) and pulse scheme in Fig. 4(a)].
A 90-ns Gaussian pulsewith frequencyωp and an amplitude
calibrated to beπ pulsewhenQ2 is at itsmaximumfrequency,
ωq2;m, is sent to the XY-Q2 control line (red). At the same
time, the frequency of Q2, ωq2, is set with a 140-ns square
pulse (with a 2-ns rise and 2-ns fall time) on themagnetic flux
control, Z − Q2 with varying amplitude Φq2 (gray line and
red shaded area). The frequency of Q1 is dynamically tuned
to its lowest value with a flux pulse of half-flux quantum
Φ0=2. After 50 ns, a 2 − μs square readout pulse sent to the
multiplexed resonators is used to read out the average qubit
population P2. The excitation spectrum of the bound state is
obtained by measuring P2 as a function of pulse frequency
and magnetic flux applied to Q2 [Fig. 4(b)]. When the pulse
on XY-Q2 is resonant with the bound-state transition
frequency, the qubit is efficiently excited. The bound-state
frequency strongly differs from the bare qubit frequency [red
dashed line in Fig. 4(b)] and asymptotically approaches the
band edge for qubit frequencies in the band [Fig. 4(c)]. In this
case, the bound-state frequency is also well described by
the continuum theory, as shown by the solid black line in
Fig. 4(b), representing the best fit of Eq. (4) to the data. We
notice that, keeping the pulse amplitude constant, the bound-
state population decreases as its frequency approaches the
band edge. Compared to the drive rate ΩR;0 for an isolated
qubit excited via its charge line by a pulse of given amplitude,
the bound state is subject to a reduced drive rate
ΩR ¼ ΩR;0 cosðθÞ, where θ is the mixing angle between
the atomic and photonic components. This relation allows
us to extract the mixing angle from the measurements in
Fig. 4(b), which we find to be in good agreement with our
theoretical prediction [Fig. 4(d)].

2. Double-excitation subspace

The physics of the bound states explored so far was
restricted to a single excitation. When higher-excitation
subspaces are considered, the nonlinear nature of the
transmon starts to play a role and leads to deviations from
the linear regime. To explore these nonlinear features, we
“climb up” to the two-excitation subspace using a sequence
of two pulses [Fig. 5(a)]. We first send a resonant π pulse to
excite the long-lived, single-excitation bound state. We
subsequently send another pulse of fixed amplitude and

varying frequency ωp2 to search for the first-to-second-
excited-state transition of the bound state. Finally, because
our readout pulses are optimized so that the ground state is
the most distinguishable one, we find it convenient to add a
third pulse identical to the first so that, if the second pulse
does not affect the bound state, then the system is brought
back to the ground state. Such a scheme allows us not only
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FIG. 4. Isolated bound state in single excitation subspace.
(a) Pulse scheme. A Gaussian pulse (red line) with frequency
ωp drives Q2, while Q1 is far detuned by the flux pulse (blue
shaded area). The readout pulse (in yellow) reads the population
in both qubits. On the side, Q1 and Q2 (blue and red dots,
respectively), the photonic band (green dots), and the readout
resonator (yellow dots) frequencies are depicted in relation to the
flux pulses. (b) Population of Q2 as a function of flux pulse
amplitude Φq2 and driving pulse frequency ωp. The black line
shows the fit of the bound-state frequency given in Eq. (4) as a
function of the expected bare Q2 frequency (red dashed line).
(c) Bound-state frequency extracted from panel (b). (d) Atomic
fraction of the excitation. The black line shows the expected value
[Eq. (B24)] using the parameters extracted from the fit in panels
(b) and (c).
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to perform a complete spectroscopy of the second excita-
tion subspace but also, compared to previous approaches
[31], to efficiently prepare the two excitation bound state.
In order to quantify the deviation from the linear case,

we define the dressed anharmonicity parameter as βdress ¼
ωð2Þ
BS2 − 2ωð1Þ

BS2, where the superscripts (1) and (2) stand for
the number of excitations. Experimentally, this quantity is
determined as thedifference in frequencybetween the second
and first pulses when the second transition is resonantly
excited. The measured βdress is always negative; its magni-
tude is maximum when the bound-state frequency is the
farthest from the band edge, and it monotonically decreases
towards zero as the bound-state frequency approaches the
band edge [Fig. 5(b), dots]. To theoretically capture the
measured nonlinearity, we describe the transmon as a non-
linear resonator with bare anharmonicity β=2π ¼
−257 MHz [see Eq. (3)]. This quantity is estimated by
performing the same measurement as in Fig. 5(a) for
ωq2=2π ¼ 3.329 GHz, well below the band and the readout
resonator frequency. We use the parameters J, ωr, and g1
extracted from the fit of the single excitation bound-
state spectroscopy to diagonalize the Hamiltonian in the

single- and double-excitation subspace (see Appendix B 5)
and to calculate the dressed anharmonicity, finding a good
agreement with the measured data [Fig. 5(b), solid line].
The observed anharmonicity for the bound state is

intermediate between that of a fully linear emitter, for
which no anharmonicity would be observed, and that of the
most nonlinear emitter, a genuine two-level atom
(β → −∞), plotted, for comparison, as a dashed line in
Fig. 5(b). A detailed numerical study, presented in
Appendix B 5, indicates that double-photonic, double-
atomic, and hybrid excitations are all present across the
frequency range considered. In addition, we find that the
localization length of the doubly excited bound state is also
renormalized according to the nonlinearity of the emitter, as
originally discussed in Ref. [17].

III. BOUND STATES INTERACTION

A. Two-atom bound states level splitting

To investigate the interaction between bound states, we
bring their frequencies close to each other, send an
excitation pulse to one of the qubits, and perform joint
readout of the two qubits [Fig. 6(a)]. Sweeping the
frequency of one qubit while keeping the other one fixed,
we observe characteristic avoided crossings in the excita-
tion spectrum, detected as peaks in the measured popula-
tions of both qubits as a function of the qubit and probe
frequencies [Figs. 6(b)–6(g)]. Interestingly, the excitation
pulse on Q2 excites a population fraction in both bound
states. In fact, when the two atom-photon bound states
resonantly interact, they hybridize, forming even (þ) and
odd (−) states (see Appendix B 4). In Figs. 6(b)–6(g), we
report the measurement results for three different frequen-
cies of Q1: when it is tuned well inside the band, ωq1=2π ≈
5.9 GHz [(b) and (e)]; at the band edge, ωq1=2π ≈ 6.2 GHz
[(c) and (f)]; and finally, at its largest bare frequency
possible, ωq1=2π ¼ 6.332 GHz [(d) and (g)].
Tuning the bound-state frequencies closer to the band

edge results in a larger avoided crossing, corresponding to a
larger interaction strength. It is important to notice that the
two qubits do not present a direct coupling; in fact, their
interaction derives from the mutual overlap of their
photonic clouds, which becomes progressively more
extended and populated closer to the band edge [see
Figs. 3(e1) and 3(e2), where we calculated the photonic
cloud distribution of the bound state depending on the
distance from the band edge].
When the frequencies of the interacting bound states

approach the band edge, we observe a vanishing population
of the (−) bound state, when its frequency crosses the band
edge [Figs. 6(b) and 6(e)]. This phenomenon, referred to as
“melting” of one bound state into the modes of the band
[17], only occurs in the presence of two interacting bound
states, (þ) and (−). The even state is characterized by a
bonding behavior, and its energy is raised compared to the
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one of the individual bound state, leading to an increased
localization of its photonic cloud. The odd state instead
presents an antibonding behavior, with its energy pushed
towards the band edge, making the state more extended.
This progressive delocalization leads to a disappearance of
this bound-state solution.
We define the bound-state interaction strength U ¼

½ωBSþðωqÞ − ωBS−ðωqÞ�=2 as half of the level splitting
when the bare qubit frequencies are on resonance,
ωq ¼ ωq1 ¼ ωq2, where the � stands for even and odd
dressed bound states, respectively. This quantity is dis-
played in Fig. 6(h) (red dots) as a function of the frequency
at the midpoint of the level splitting, ω̄BS ¼ ωBS− þ U=2,
which gives the approximate frequency of the individual
(single artificial atom) bound state. We measure the bound-
state interaction strength ranging from 27 to 52 MHz in a
frequency range of 250 MHz. This tunability is directly
related to the variation of the overlap between the photonic
clouds. Based on numerical simulation, we predict that the
interaction strength could be tuned by 2 orders of

magnitude through a straightforward optimization of the
device parameters (see Appendix C 2).
Figure 6(h) also shows that the coupling does not present

a monotonic behavior. In fact, it increases for bound states
approaching the band edge, but it exhibits a maximum
close to the melting condition. This behavior relies on our
definition of the BSs coupling and on the melting con-
dition. Indeed, when the odd bound state merges with the
continuum in the band, the splitting is measured between
the even bound state and the band edge.
Separately, we find that the expected interaction strength

calculated with the eigenvalue equation derived by the
system Hamiltonian Eq. (3) (see Appendix B 4 for more
details) systematically underestimates the measured cou-
pling strength [Fig. 6(h), dotted line]. As shown in
Appendix C 1, parasitic capacitances are responsible for
a non-negligible coupling between each qubit and their
next-nearest array sites. In particular, the bound-state
interaction is affected by a direct coupling between the
qubits and the cavity in between them (x ¼ 11). After
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including these additional couplings in the Hamiltonian, we
obtain a much better agreement with the data [Fig. 6(h),
solid line]. In contrast, this behavior cannot be explained by
adding just a direct qubit-qubit coupling to the model.

B. Time-resolved excitation exchange

After establishing a static interaction between the bound
states, we now exploit it in a dynamic setting to realize an
excitation swap between two bound states [Fig. 7(a)]. When
both qubits are at their largest frequencies, we excite the
bound state of Q2 with a π pulse, and we tune it in resonance
with the bound state of Q1 by applying a flux pulse on each
individual flux line. After an interaction time τ, we bring the
two qubits back to their initial frequencies and we read out
the populations P1 and P2, in Q1 and Q2, respectively.
Figures 7(b) and 7(c) show P1 and P2 as a function of the

bound-state interaction time τ and Q2 frequency ωq2, while
the Q1 bound-state frequency is kept at ωq1 ¼ ωq1;m in
panels (b) and (c), and ωq1=2π ¼ 6.15 GHz in panels (d)–
(g). These are the same parameters chosen for measuring the
avoided crossing in Figs. 6(d) and 6(g). The population of the
two qubits as a function of the interaction time, restricted to
resonant bound states, is presented in Figs. 7(f) and 7(g).
These data, corresponding to a slice of the chevron pattern
[dashed blue and red lines in Figs. 7(b)–7(e)], can be fitted to
a dumped sinusoidal function (solid red and blue lines), from
whichwe extract a complete swap time of 18 ns. This value is
in good agreement with the measured interaction strength.
The excitation swap between the two bound states is

realized by nonadiabatically tuning the two bare bound
states in resonance. The adiabatic threshold for this process
is related to the interaction strength [46], with a relative
time scale of about 1=U, that corresponds to 5 ns in our
implementation. The flux pulse we implement has a rise
(and fall) time of traise ¼ 1 ns; thus, we fulfill this con-
straint. Nevertheless, the two bound states interact during
the rise time, and we take this into account with a time shift
of the measured data in Fig. 7(f).
The chevron pattern of the populations P1 and P2

measured for the bare frequencyωq1=2π ≈ 6.02 GHz shown
in Figs. 7(d) and 7(e) highlights a faster excitation swap of
13 ns, as expected from the larger interaction strength closer
to the band edge. Focusing only on the resonant case [see
Fig. 7(g)], we notice that after the pulse protocol, we observe
a total population of onlyP1 þ P2 ∼ 0.7. The population loss
originates from the weakly adiabatic regime in which we
operate, i.e., traise ≳ 1=Δω̄BS

∼ 0.5 ns, where Δω̄BS
is the gap

between the average individual bound-state frequency ω̄BS
and the band edge (see Sec. III A).
When the bare qubit frequency is tuned in the band faster

than the latter adiabaticity threshold, the bare qubit state is
not an eigenstate of the system. In this case, part of the
atomic population redistributes among the resonators
according to the projection of the bare qubit state on the

bound state. In this process, a fraction of the atomic
population is converted into itinerant photons and released
into the waveguide. In particular, the released population is
at most Preleased ≃ sin2ðθÞ, with θ being the mixing angle θ
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defined in Sec. II C. In fact, where the bound states are
mainly qubitlike, the total population P1 þ P2 ∼ 0.95 [see
Fig. 7(f)], while a larger photonic dressing preserves a
smaller fraction of population, P1 þ P2 ∼ 0.7, as shown in
Fig. 7(g). This last value could be improved by slowing
down the protocol but still keeping traise ≲ 1=U in order to
induce the excitation swap in the first place.
The lifetime of the interaction is determined by the

lifetime of the average individual bound state [dashed black
lines in Fig. 7(f) and 7(g)], which we extract from the fit to
be 1.2 μs and 950 ns, respectively.

C. Two-atom bound states ZZ interaction

When the two atom-photon bound states are close in
frequency to the band edge, but detuned from each other,
exciting one of them results in a shift in the transition
frequency of the other. This ZZ (or cross-Kerr) interaction
originates from dispersive and resonant interactions
between energy levels in the double-excitation manifold.
The interaction mechanism relies on the overlap of a
photonic cloud with finite localization, as it happens in
the single-excitation subspace.
We investigate the ZZ interaction with the pulse scheme

displayed in Fig. 8(a). After setting the bare qubit frequen-
cies with a flux pulse on each flux line, we excite the Q1

bound state with a π pulse. We apply a second pulse to Q2

with frequency ωp2 and finally read out the state of the

qubits. When the pulse on Q2 is such that ωp2 ¼ ωð2Þ
BS2, the

bound state of Q2 is excited. We repeat the same pulse
sequence by tuning the bare frequency of Q1, mapping the

transition frequencies ωð2Þ
BS2 as a function of ωq1.

Figure 8(b) shows the ZZ interaction between two
excited bound states for the bound state of Q2 tuned at
the constant frequency ωBS=2=2π ¼ 6.653 GHz, while the
frequency of the Q1 bound state is tuned from the band
edge toward its largest frequency 6.55 GHz. Following the
level jϕ11i in the right panel of Fig. 8(c), we notice that this
level crosses jϕ02i relative to the two-excitation bound state
of Q2. In Fig. 8(b), at lower frequencies, we measure a
residual ZZ interaction up to 49 MHz. The dashed line
shows the calculated ZZ interaction numerically evaluated
with the complete Hamiltonian Eq. (C1).
Note that in Ref. [31] the avoided crossing between jϕ02i

and jϕ11i was inferred using high-power coherent spec-
troscopy. With this approach, second-order transitions may
induce a Stark shift in the measured frequencies, while the
measurement of the ZZ interaction with a pulse scheme is
directly relevant for gate implementation.
Figure 8(c) shows the energy structure of bare qubits (left

panel) and the same energy levels for bound states as a
function of the bare frequency of Q1. The color scale
highlights the population of the two atoms going from blue
for Q1 to red for Q2, where yellow instead stands for
excitation equally distributed on the two. Figure 8(c) is a

simplified version of the complete energy structure of our
system. In fact, the three photonic bands that originate from
the coupled cavity array are not included in the figure (see
Appendix B 5 for more details).

IV. DISCUSSION AND CONCLUSION

In summary, we introduced a new implementation of a
finite-band waveguide made out of an array of high-
impedance resonators to which we coupled two artificial
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atoms. We measured the transmission spectrum of the
coupled resonator array, highlighting the underlying multi-
mode interactions with the artificial atom, and we observed
the formation of the atom-photon bound states in the band
gap.We demonstrated full control in accessing and preparing
the atom-photon bound states in both the single- and double-
excitation subspace. We characterized the resonant interac-
tion between two bound states in the static and dynamic
regimes, measuring an effective coupling strength up to
52 MHz and an excitation swap time down to 13 ns. Finally,
we investigated the ZZ interaction between two detuned
bound states, reaching a value up to 49 MHz. As shown in
simulations, we expect a straightforward optimization of the
device parameters to significantly improve our ability to
control as well as suppress these interactions.
Compared to previous implementations of superconduct-

ing qubits coupled to gapped waveguides, our approach
based on high-impedance resonators makes it possible to
reach atom-cavity coupling strengths of a few hundred
MHz while maintaining the resonators’ footprint compa-
rable to the one of the artificial atoms. Small footprints and
strong interactions translate to a higher extensibility of our
platform, with the foreseen possibility of adding more
qubits as well as anchoring points to move towards two-
dimensional lattices [47].
The tunable-range interactions between atom-photon

bound states available in this platform find application to
the quantum simulation of spin models [22]. At the same
time, the possibility to implement fast and high-contrast
SWAP and CZ gates using the array as a quantum bus could
be further investigated in the context of quantum comput-
ing. From the perspective of quantum optics, this platform
is amenable to studies of correlated nonlinear photon
transport [14,48,49] and quantum nonlinear optics proto-
cols [15]. By varying the coupling strength between
neighboring sites, it is possible to engineer the band
structure of the array and to endow it with nontrivial
topological properties [34]. The intrinsic nonlinearity of the
array, whose strength can be adjusted by design, could be
utilized to implement recent theory proposals describing
exotic light-matter interaction effects [50–52]. Finally, from
the viewpoint of the fabrication, suspended junction arrays
[53] may reduce their stray capacitance to ground.
Additionally, from a material perspective, replacing
Josephson-junction arrays with high-kinetic inductance
superinductors [54–57] may lead to a more robust fab-
rication process and reduced disorder in the array.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Experimental setup

The complete experimental setup is shown in Fig. 9. The
sample is wire bonded in a nonmagnetic oxygen-free
copper sample box (see Appendix C 3), mounted to the
mixing chamber stage of a dilution refrigerator operating at
10 mK and shielded by additional copper and μ-metal cans.
Two additional shields (in order, copper and μ-metal) are
placed around the sample in a light-tight fashion. The
signal to the Q1 and Q2 charge lines (XY-Q1 and XY-Q2,
respectively), to the waveguide (WGin), and to readout
resonators (ROin) is delivered by highly attenuated coaxial
lines (nominal total attenuation of −60 dB). The flux lines
(Z-Q1 and Z-Q2) do not have any attenuation at the last two
stages (total nominal attenuation −33 dB), but they are
equipped with a 4-GHz low-pass filter for reducing flux
noise from higher stages. The transmitted signals (through
the couple cavity array and through the readout feedline) are
amplified with a high electron mobility transistor (HEMT)
amplifier at 3 K, further amplified at room temperature.
The microwave control for Q1 (blue area) and Q2 (red

area) is achieved by up-converting the inphase (I) and the
quadrature (Q) components of a low-frequency pulse
generated by an arbitrary waveform generator (AWG),
while the flux control is obtained by injecting current
generated directly by two AWG channels. The qubit
readout pulse is up- and down-converted with the same
local oscillator (LO) (yellow area). Finally, the waveguide
coherent spectroscopy is set up with a vector network
analyzer (VNA) (green area).

2. State preparation of Q1

Using the same pulse scheme as the one shown in
Fig. 10(a) applied on Q1, we measure its population as a
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function of the bare qubit frequency (dashed white line)
and driving pulse frequency ωp. The result, reported in
Fig. 10(a), shows the Q1 largest frequency, ωq1;m ¼
6.332 GHz, smaller than Q2 but compatible with the
fabrication yields. The fit of the bound-state frequency
given by Eq. (4) is in good agreement with the data (solid
black line). The plot of the extracted ωBS;1 as a function of
the bare qubit frequency is shown in Fig. 10(b), and the
atomic population fraction is reported in Fig. 10(c), where
the solid line is the calculated value with the parameters
extracted from the fit.

3. Photon number estimation

We calibrate the photon number in the array modes using
the mode Kerr nonlinearity inherited by the Josephson-
junction array resonators. The self-Kerr coefficient of the
bare resonator scales with the inverse square of the number

of junctions, Kr ¼ e2=ð2 × 102 × CrÞ ¼ 2π × 2.1 MHz.
Moreover, the nonlinearity is further diluted in each mode
as with an effective Kerr, K ¼ Kr=N ¼ 2π × 100 kHz; in
fact, two excitations in one mode, in the momentum space,
are spatially distributed to all the resonators of the array
[58]. We can experimentally confirm this estimation by
investigating the power response of the array modes.
Figure 11 shows the phase and magnitude of a coherent

microwave tone in the range of mode number 8 at
5.552 GHz. Adapting the treatment in Ref. [59] to a
transmission configuration and assuming a total input
attenuation at the sample equal to 70 dB, we can globally
fit the data to

S21 ¼
κ

κtot

1

1=2þ iδþ iξñ
; ðA1Þ
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FIG. 9. Complete wiring diagram and room-temperature setup.
The coherent tone to the waveguide is generated and measured
with a vector network analyzer (VNA). The Q1 and Q2 driving
(blue and red, respectively) are made by analog up-conversion of
the pulse generated by an arbitrary waveform generator (AWG).
The flux lines are controlled by two AWG channels. Finally, the
qubit readout (yellow) is controlled by the up- and down-
conversion of a pulsed generated by an AWG and logged by
an analog-to-digital converter (ADC).
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FIG. 10. State preparation of the isolated Q1. (a) Population of
Q1 as a function of flux pulse amplitude Φq1 and driving pulse
frequency ωp. The black line shows the fit of the bound-state
energy given in Eq. (4) to the measured data. The white dashed
line shows the bare Q1 frequency calculated with the parameters
extracted from the fit. (b) Bound-state frequency extracted from
panel (a) as a function of the bare Q1 frequency. (c) Atomic
fraction of the excitation, extracted from the relative population
measured in the qubit. The black line shows the expected value of
the mixing angles as predicted from the ideal case theory given in
Eq. (B24) using the parameters extracted from the fit in
(a) and (b).
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where κ is the external coupling rate, κtot is the total loss
rate, δ ¼ ðω − ω0Þ=κtot is the relative detuning, ξ ¼
ðPin=ℏωÞκK=κ3tot is the (adimensional) input power, K is
the mode Kerr, and finally ñ is given by the solution of the
algebraic equation

1 ¼ ðδ2 þ 1=4Þñ − 2δξñ2 þ ξ3ñ3: ðA2Þ

The global fit (solid black lines) reproduces the data well.

4. System parameters

The complete list of the system parameters measured in
our sample is shown in Table I.

APPENDIX B: THEORETICAL MODEL

1. Circuit model

The ideal circuit model of the system is sketched in
Fig. 12 and shows N LC resonators, with capacitance Cr
and inductance Lr, capacitively coupled in series via a

TABLE I. Complete list of the system parameters.

Parameter Value

Resonators
Resonator capacitance, Cr 91.3 fF
Resonator inductance, Lr 8.87 nH
Resonator frequency, ωr=2π 5.593 GHz
Resonator impedance, Zr 312 Ω
Nonradiative decay γr=2π 300 kHz
Resonator self-Kerr, Kr=2π 2.1 MHz

Coupled resonators array
Passband center, ω0

r=2π 5.717 GHz
Nearest-neighbor coupling, J=2π 249 MHz
Next-nearest-neighbor coupling, Jð2Þ=2π 38 MHz
Edges coupling κ=2π 12 MHz
Modes self-Kerr, K=2π 0.1 MHz
Lattice constant, d 200 μm
Band edge group index, ng;e Divergent
Band center group index, ng;c 975

Qubits
Q1 maximum frequency ωq1;m=2π 6.322 GHz
Q2 maximum frequency ωq2;m=2π 6.606 GHz
Q1 anharmonicity β1=2π −266 MHz
Q2 anharmonicity β2=2π −257 MHz
Q1-array coupling g1=2π 338 MHz
Q2-array coupling g2=2π 311 MHz
Nonradiative decay γq1;2=2π ≈50 kHz

Readout resonators
RO-Q1 frequency ωro1=2π 4.280 GHz
RO-Q2 frequency ωro2=2π 4.412 GHz
RO-Q1 coupling h1=2π 98� 1 MHz
RO-Q2 coupling h2=2π 89� 1 MHz
Nonradiative decay γc=2π ≈50 kHz

C C CC CC CC

CC

CC C CC

CC
Φ Φ Φ Φ Φ

Φ Φ

FIG. 12. Circuit model for N ¼ 21 capacitively coupled LC
resonators (in green). The resonators at the edges of the array are
capacitively coupled to a 50-Ω transmission line. Two transmon
qubits are coupled at sites x ¼ 10 (blue) and x ¼ 12 (red).
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FIG. 11. Single coherent tone spectroscopy of a single mode.
(a) Magnitude and (b) phase of the transmission of the mode of
the coupled-cavity array at 5.552 GHz as a function of power. The
self-Kerr from the JJ array resonator is inherited by the modes.
The coherent tone addresses only one cavity mode, so the global
fit of a Kerr nonlinear resonator (solid line) is used to extract the
self-Kerr K and the photon number n of the array mode. The
shade areas indicate the deviation from zero transmission
(deviation from the zero phase).
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capacitance CJ. Two sites of the array, x1 ¼ 10 and
x2 ¼ 12, are coupled to two transmon qubits, represented
by a Cooper pair box with capacitance Cq and Josephson
energy EJ, via the coupling Cgi.
To start, we consider the bare coupled cavity array

waveguide, whose unit cell has a lattice constant
d ¼ 200 μm. For probing frequency ω that respects the
homogeneity condition d < λg=4 for the electromagnetic
waves, we can treat the coupled-cavity array as a composite
right-left-handed transmission line.
Defining the lattice unit impedance ZlðωÞ ¼ 1=iωCJ and

admittance YlðωÞ ¼ ðiωCr þ 1=iωLrÞ, we can follow
standard procedures [60] to obtain the dispersion relation:

cosðkdÞ ¼ 1þ 1

2
YlZl: ðB1Þ

This equation can be recast in terms of the resonator
frequency, ωr ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
C̄rLr

p
, with C̄r ¼ Cr þ 2CJ, in the

limit of CJ ≪ C̄r, and it reads

ω ¼ ωr þ CJZrω
2
r cosðkdÞ; ðB2Þ

where Zr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr=C̄r

p
is the characteristic impedance of the

resonator. From the dispersion relation Eq. (B1), we
calculate the group velocity at the center of the band,
ω ¼ ωr,

vgðωrÞ ¼ CJZrω
2
rd; ðB3Þ

which gives us a left-handed dispersion with negative phase
velocity [60]. Finally, we observe that the characteristic
impedance of the transmission line is equal to

ZðωÞ ¼
ffiffiffiffiffi
Zl

Yl

s
≈

ffiffiffiffiffiffi
Lr

CJ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − ðωωr
Þ2

s
: ðB4Þ

After having characterized the waveguide properties, we
can take into consideration the full circuit model including
the qubits. The Lagrangian of the circuit can be written in
terms of the resonator and qubit fluxes, Φx and Φqi,
respectively [61], and reads

L ¼ 1

2
_ΦTC _Φ − V; ðB5Þ

where _ΦT ¼ ð _Φq1; _Φq2; _Φ1;…; _ΦNÞ and

V ¼
X
x

Φ2
x

2Lx
−
X2
i¼1

EJ cos

�
Φqi

Φ0

�
ðB6Þ

is the potential energy term, with Φ0 ¼ h=ð2eÞ being the
flux quantum. The first term of Eq. (B5) is the kinetic term
that is governed by the capacitance matrix

C ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

C̄q1 0 0 0 … −Cg1 0 0 … 0

0 C̄q2 0 0 0 0 −Cg2 0

0 0 C̄r −CJ 0 0 0 0

0 0 −CJ C̄r
. .
.

0 0 0 0

..

. . .
. . .

. ..
.

−Cg1 0 0 0 C̄r −CJ 0 0

0 0 0 0 −CJ C̄r −CJ 0

0 −Cg2 0 0 0 −CJ C̄r
. .
.

0

..

. . .
. . .

.
−CJ

0 0 0 0 … 0 0 0 −CJ C̄r

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

; ðB7Þ

where C̄qi ¼ Cqi þ Cgi. The Hamiltonian of the system is
obtained from the Lagrangian (B5) via the usual Legendre
transformation [61] H ¼ QT _Φ − L, where we introduced
the conjugate charge variables Q ¼ ∂L=∂ _Φ ¼ C _Φ, with
QT ¼ ðQq1; Qq2; Q1;…; QNÞ. In the matrix notation, the
Hamiltonian reads

H ¼ 1

2
QTC−1Qþ V; ðB8Þ

where now the coupling between the charges is governed
by the inverse of the capacitance matrix C−1. In order to
quantize the Hamiltonian Eq. (B8), we first express the
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charge and the flux of the resonators in terms of the
annihilation and creation operators:

Qx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏC̄rωr=2

q
ða† þ aÞ;

Φx ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2C̄rωrÞ

q
ða† − aÞ: ðB9Þ

In this way, the canonical commutation relations ½ΦxQx0 � ¼
iℏδx;x0 are satisfied.
The qubits can be described by nonlinear resonators with

a Kerr nonlinearity βi and annihilation (creation) operators
b (b†). The qubit frequency is given by the frequency
difference between the two lowest energy states, j0i and
j1i, of the transmon, and it is a function of the flux on the
qubit, i.e., ωqi ¼ ωqiðΦqiÞ. The transition between the first
two transmon levels is determined by the dipole moment
Dqi ¼ h1jQqij0i, and it defines the qubit-cavity couplings

gi ¼ Dqi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄rωr=ð2C̄2

gÞ
q

, where ð1=C̄giÞ ¼ ðCgi=C̄qiC̄rÞ.
Finally, with ð1=C̄JÞ ¼ ðCJ=C̄2

rÞ, by defining the cavity-
cavity hopping J ¼ C̄rωr=ð2C̄JÞ, we obtain the system
Hamiltonian given in Eq. (3). Note that in this derivation,
we neglected direct parasitic capacitive couplings and
disorder in the circuit elements, and we made some
simplifications on the inverse capacitance matrix. We
discuss the effect of these approximations in detail in
Appendix C.

2. Bare coupled-cavity array
in the tight-binding picture

Here, we rediscuss the bare array of coupled resonators
starting from the standard tight-binding model with uni-
form nearest-neighbor couplings

HCCA ¼ ωr

XN
x¼1

a†xax þ J
XN−1

x¼1

ða†xþ1ax þ H:c:Þ ðB10Þ

with ladder operators ax fulfilling the usual bosonic
commutation rules, ½ax; a†x0 � ¼ δx;x0 . It is worth stressing
that here N must be finite and the array subject to open
boundary conditions, in contrast to most treatments in the
literature of bound states, which focus on the thermody-
namic limit and periodic boundary conditions.
The array’s free Hamiltonian (B10) is diagonalized as

(see, e.g., Ref. [62])

HCCA ¼
X
k

ωka
†
kak; ðB11Þ

with the normal modes ak given by

ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r XN
x¼1

sin ðkxÞax ðB12Þ

and the normal frequencies ωk by

ωk ¼ ωr þ 2J cos k; ðB13Þ

with

k ¼ mπ

N þ 1
ðm ¼ 1; 2;…; NÞ: ðB14Þ

Note that the discrete spectrum (B13) obtained by a tight-
binding array with open boundary conditions coincides
with the one obtained by the circuit model in Eq. (B2).

3. One-atom bound states

Consider the case that only one atom is effectively
coupled to the coupled-cavity array (the other being far
detuned from the photonic band). Then, the total
Hamiltonian Eq. (3), in terms of normal modes (B12)
and in a frame rotating at frequency ωr, reads (we omitted
the label i in this case)

H ¼ 2J
X
k

cos ka†kak þ δb†b ðB15Þ

þg

ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r X
k

sinðkxqÞða†kbþ akb†Þ; ðB16Þ

where δ ¼ ωq − ωr is the detuning of the qubit from the bare
frequency of each resonator and xq the cavity to which the
atom is directly coupled. Note the sine-shaped atom-mode
interaction strength (colored coupling), stemming from the
open boundary conditions to which the array is subject [63].
As shown next, such a colored coupling could generally lead
to results slightly different from the usual white coupling
under periodic boundary conditions [16–18,63].
Within the single-excitation subspace defined by n ¼ 1,

an atom-photon bound state jϕi can be worked out as an
eigenstate of the total Hamiltonian whose corresponding
energy lies outside the photonic band, that is, such that
Hjϕi ¼ ℏωjϕi with jωj > 2J. Expanding jϕi in the basis
fb†jg; 0i; fa†kjg; 0igg as

jϕi ¼
�
cqb† þ

X
k

uka
†
k

�
jg; 0i ðB17Þ

and then inserting this into the Schrödinger equation, we
find that the frequency ω must fulfill the equation

ℏðω − δÞ ¼ ΣðωÞ; ðB18Þ

where the self-energy ΣðωÞ is given by
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ΣðωÞ=ℏ ¼ 2g2

N þ 1

X
k

sin2 ðk
2
xqÞ

ω − 2J cos k
2

¼ g2

2J
1 − e−2

xq
λ − e−2

Nþ1−xq
λ þ e−2

Nþ1
λ

sinh½1λ ð1 − e−2
Nþ1
λ Þ� ðB19Þ

with

λðωÞ ¼
�
arccosh

jωj
2J

�
−1
: ðB20Þ

The solutions of Eq. (B18) with jωj > 2J correspond to the
atom-photon bound states. In the standard case of periodic
boundary conditions, two bound states—one with energy
above and one below the band—always exist [17,18]. In
our case, however, the presence of array edges may affect
the existence of bound states. By substituting in the
eigenvalue Eq. (B18) the limiting values of the self-energy
ΣðωÞ for ω → �2J, the condition for the existence of
bound states is obtained as

g2 >
JðN þ 1Þð2J ∓ δÞ
xqðN þ 1 − xqÞ

; ðB21Þ

where − (þ) indicates a solution with energy above (below)
the band. In our experimental setup, g ∼ J, N ¼ 21, and
xq ¼ 10, 12 so that Eq. (B21) is always satisfied and the
self-energy is well approximated by performing the
thermodynamic limit

ΣðωÞ=ℏ ≃
g2

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4J2

ω2

q : ðB22Þ

In practice, this means that the atom in our setup is
sufficiently far from the edges and that the number of
resonators is large enough that the bound state can be
calculated as if the array were infinitely long (in line with
standard treatments).
Following Ref. [17], the bound state corresponding to a

solution ωBS can thus be worked out in the form

jϕi ¼ ½cos θb† þ ð−1Þs sin θα†�jg; 0i; ðB23Þ

where θ is given by

cos θ ¼
�
1þ g2

ω2
BSð1 − 4J2

ω2
BS
Þ32
�−1

2

; ðB24Þ

while

α ¼
X
x

sjx−xqje−
jx−xq j
λ�ffiffiffiffiffiffiffiffiffiffiffiffiffi

coth 1
λ�

q ax ðB25Þ

defines a bosonic ladder operator. Here, λ ¼ λðωBSÞ as
given by Eq. (B20), while s ¼ sgnðωBSÞ so that s ¼ þ1
when ωBS lies above the band and s ¼ −1 when it
falls below.
The mixing angle θ measures the degree of hybridiza-

tion: The dressed state is fully atomic for θ ¼ 0 and fully
photonic for θ ¼ π=2. Equation (B25) fully defines the
(normalized) photonic component, showing that the spatial
mode is exponentially localized around the atom’s position
xq. Accordingly, the parameter λ represents the localization
length of the photonic cloud surrounding the atom.

4. Two-atom bound states

Let us now study the case of bound states in the single-
excitation sector when two atoms are coupled to resonators
x1 and x2, respectively. The total Hamiltonian is the natural
generalization of Eq. (B15), and it now features the
detuning of each qubit δi ¼ ωqi − ωr and the correspond-
ing coupling strength gi with i ¼ 1, 2.
In this case, an effective interaction between bound states

arises when the photonic clouds of the individual bound
states overlap. This interaction changes the bound-state
energies, which are now given by the real solutions with
jωj > 2J of the transcendental equation [17]

ðω − δ1 − Σ1Þðω − δ2 − Σ2Þ ¼ Σ1Σ2e−2
jx1−x2 j

λ : ðB26Þ

Here, Σi is the self-energy of the ith qubit (in the absence of
the other qubit) as given by Eq. (B22) for g ¼ gi.
Equation (B26) admits up to four real solutions (and as

many bound states). Based on the performed measurements
in our experiment, we focus on the case of bound-state
energies above the band. Then, the pair of bound states with
energies ω� are given by

jϕ�i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jξj2
p ½D†

�ðx1Þ � ξD†
�ðx2Þ�jg1; g2; 0i; ðB27Þ

where we defined the dressed ladder operators

D�ðxiÞ ¼ cosðθ�Þbi þ sinðθ�Þ
1

N �

X
x

e−
jx−xi j
λ� ax ðB28Þ

and the mixing angle

cos θ� ¼
�
1þ g1g2N 2

�
4J2 sinh2 1

λ�

�−1
2

; ðB29Þ

with

N � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth

1

λ�

�
1� e−

jx1−x2 j
λ�

�
� jx1 − x2je−

jx1−x2 j
λ�

s
:
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The parameter ξ ¼ ξðω�Þ gives the amount of the hybridi-
zation between the two atoms and reads

ξðω�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
Σ1Σ2

p
e−

jx1−x2 j
λ

ω� − δ2 − Σ2

: ðB30Þ

In the regime of equal coupling g1 ¼ g2 (quite close to our
experimental realization) and in correspondence with the
avoided crossing, δ1 ¼ δ2, the two bound states get
completely hybridized, ξðω�Þ ¼ 1, and the labels þð−Þ
signify the bound states with even (odd) symmetry with
respect to the atoms’ midpoint.
Under certain conditions, the interaction can push the

odd-parity bound-state frequency into the propagating band
(in which case, the state no longer exists). Similarly to
Eq. (B21), an existence condition for this antisymmetric
state can be worked out by taking the limit ω → 2Jþ in
Eq. (B26), which yields (for g1 ¼ g2 ¼ g)

g2 >
Jð4J − δ1 − δ2Þ

jx1 − x2j
: ðB31Þ

The melting of this bound state into the photonic band
reported in Fig. 6 indeed occurs for parameters such that
Eq. (B31) is not satisfied.
The interaction between one-atom bound states can also

cause a (coherent) excitation transfer between the two
atoms described by an effective spin Hamiltonian (the field
is adiabatically eliminated). This occurs in the dispersive
regimewhere the qubits are far detuned from the band edge,
i.e., ωqi − ωr − 2J ≫ gi, and cos θ� ≈ 1 such that the
bound states are mostly atomic. The effective spin
Hamiltonian then reads [22,64]

Heff=ℏ ¼ g1g2
δe

X2
ij¼1

e−
jxi−xj j

λ b†i bj; ðB32Þ

where we assume that the atoms are tuned on resonance
with one another, i.e., ωq1 ¼ ωq2 ¼ ωq, and set δe ¼ ωq −
ωr − 2J (detuning from the band edge). This Hamiltonian
captures the excitation exchange dynamics between the
qubits in Fig. 7. The coherence time is just given by the
single-atom bound-state decay into the waveguide and into
the other dissipation channels as discussed in the main text.

5. Two-photon bound states

We next study the energy of two-excitation bound states.
In the ideal case β → −∞ (ideal two-level atom case), two-
photon bound states are known to occur, entailing strong
nonlinear effects [17,18]. Yet, even for finite β, the non-
linear energy spacing of levels above the first two can still
affect two-excitation bound states, causing measurable
deviations from the fully linear case β ¼ 0 (as discussed
in the main text). To show this in more detail, we first note
that any state in the two-excitation sector can be written as

jϕð2Þi ¼
�

1ffiffiffi
2

p
X2
i;j¼1

cijb
†
i b

†
j þ

X2
i¼1

X
x

ciðxÞb†i a†x

þ 1ffiffiffi
2

p
X
x;y

uðx; yÞa†xa†y
�
jg; 0i: ðB33Þ

Here, cij is the probability amplitude of having one
excitation on transmon i and one on transmon j (including
the case i ¼ j), while ciðxÞ is the probability amplitude
corresponding to one excitation on the ith transmon and
another one in the waveguide. Finally, uðx; yÞ ¼ uðy; xÞ is
the symmetric wave function of the two-photon bound-
state component. By plugging Eq. (B33) into the
Schrödinger equation generated by Hamiltonian Eq. (3),
we numerically solve the resulting set of coupled equations.
In the following, we separately address the one- and two-

atom cases.

a. One atom

Figure 13(a) shows the upper part of the two-excitation
spectrum, ω > 2ωr, as a function of the atom frequency.
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FIG. 13. (a) Sketch of the two-excitation spectrum (upper part)
for a single qubit as a function of the qubit frequency. The bound
states in the case of a linear resonator (black solid line) and an
ideal two-level qubit (black dashed lines) are also shown for
comparison (see main text for more details). (b) Excitation
distribution of the two-photon bound state as a function of the
single-excitation bound-state frequency. Specifically, we
plot the probability of finding one or two excitations on the
transmon, respectively given by Pq ¼

P
N
x¼1 jc2ðxÞj2 and Pqq ¼

jc22j2, along with the two-photon population Pph ¼P
N
x¼1

P
N
y¼1 juðx; yÞj2. (c,d) Spatial profile of the normalized

two-photon wave function for the frequencies highlighted by the
dashed vertical line in panel (b). The considered parameters are
those corresponding to Q2 (see Table I), with ωr=2π ¼ 5.7 GHz,
J=2π ¼ 249 MHz, g2=2π ¼ 311 MHz, and β2=2π ¼ −257 MHz
for the transmon qubit.
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The full spectrum (of which only the upper part is shown)
features a band of two-photon unbound states defined by
ω ∈ ½2ðωr − 2JÞ; 2ðωr þ 2JÞ� plus a pair of sidebands

ω ∈ ½ωð1Þ
BS − 2J;ωð1Þ

BS þ 2J�, where ωð1Þ
BS is the energy of

the single-excitation bound states. Additionally, there exists
a pair of two-photon bound states (see Sec. II C 2) with

discrete energies ωð2Þ
BS such that jωð2Þ

BS − ωrj > 4J (one
above and one below the continuous bands). For compari-
son, we also plot the bound-state energies in the limiting
cases of a linear resonator (black solid line) and a two-level
atom (black dashed line). In Fig. 5 of the main text, we
defined the dressed-state anharmonicity as the difference in
the bound-state energy between the linear and nonlinear
cases. While Fig. 13(a) shows the occurrence of a two-
excitation bound state, it is natural to wonder how hybrid-
ized such a state is, and additionally, if it features a
significant two-photon component (or alternatively, if it
is mostly populated by the excitation of the second transmon
level). To clarify this point, in Fig. 13(b), we plot the
population distribution of the two-excitation bound state,
which clearly shows the photon dressed nature of the bound
state in the considered parameter regime. Notably, the two-
photon wave function exhibits a different localization length
depending on the qubit frequency, in this respect similarly to
the single-excitation case [see Figs. 13(c) and 13(d)].

b. Two atoms

As discussed in the main text, the two-excitation
spectrum in the case of two atoms becomes quite involved,
as shown in Fig. 14. Besides the two-photon unbound states
with energies ω ∈ ½2ðωr − 2JÞ; 2ðωr þ 2JÞ� (green box),
two sidebands occur (above the main band) with energies

ω ∈ ½ωð1Þ
þ − 2J;ωð1Þ

þ þ 2J� and ω ∈ ½ωð1Þ
− − 2J;ωð1Þ

− þ 2J�,
where the � sign refers to the two-atom single-excitation
bound state discussed in Appendix B 4. Above the bands,
there appear three bound states stemming from the hybridi-
zation of the bare qubit states j20i; j02i, and j11i. Once
coupled to the array, the transmons get highly hybridized
both with one another and with the array field, resulting in
the dressed states jϕ20i; jϕ02i, and jϕ11i (the labels reflect
the resemblance of each dressed state to the bare state of
corresponding indices away from the avoided crossings). In
particular, the color scale used in Fig. 14 reflects the
population distribution among the two qubits, ranging from
blue (excitation on Q1) to red (Q2).

6. Array transmission

We calculate the transmission through the array by
applying the input-output theory relation to the
Heisenberg equation [65]. The intracavity field ax for
the xth resonator and bm for the mth qubit, with a driving
field ainðtÞ ¼ aine−iωt applied on resonator x ¼ 1, obey the
differential equations

_axðtÞ ¼ i½H; axðtÞ� −
1

2
κaxðtÞ þ

ffiffiffiffi
κr

p
δx1ain; ðB34Þ

_bmðtÞ ¼ i½H; biðtÞ� −
1

2
γbmðtÞ; ðB35Þ

where κ ¼ δx1κr þ δx21κr þ κnr is the sum of radiative (in the
case of the edge cavities) and nonradiative decay rates for the
resonators, γ is the decay rate for the qubits, and H is the
Hamiltonian in Eq. (3). In the steady state, axðtÞ ¼ e−iωtax,
and the equations for the resonator and qubit fields become

0 ¼
�
Δr −

i
2
κ

�
ax þ Jðaxþ1 þ ax−1Þ

þ δxmgbm þ i
ffiffiffiffi
κr

p
δx1ain; ðB36Þ

0 ¼
�
Δm þ i

2
γ

�
bm þ δxmgax; ðB37Þ

wherewe defined the tuningΔr ¼ωr−ω andΔm¼ωqi−ω.
Solving the algebraic system and applying the input-output
relation haouti þ haini ¼ ffiffiffiffiffiffi

κnr
p haxi, we calculate the trans-

mission coefficient from cavity 1 to 21.

APPENDIX C: EXPERIMENTAL
IMPERFECTIONS

1. Parasitic capacitance

As observed in themain text, the frequency distribution of
the coupled-cavity array modes and the bound-state inter-
action strength cannot be quantitatively reproduced by
neglecting capacitive couplings beyond the nearest neighbor.
Solving Poisson’s equation with a finite element method

solver (Comsol Multiphysics, electrostatic package), we

5.7 6.7
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     Bound+unbound
       Q2 sideband

FIG. 14. Sketch of the two-excitation spectrum (upper part) as a
function of the Q1 frequency in the case of two qubits. We set the
frequency of Q2 to ωq2=2π ¼ 6.45 GHz with the remaining
parameters fixed to ωr=2π ¼ 5.7 GHz, J=2π ¼ 249 MHz,
g2=2π ¼ 311 MHz, g1=2π ¼ 338 MHz, β2=2π ¼ −257 MHz,
and β1=2π ¼ −266 MHz. In this way, the bound states corre-
spond to the one shown in Fig. 8.
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estimate a parasitic capacitance between next-nearest-neigh-
bor resonatorsCð2Þ

J ≈ 0.52 fF and theone between qubits and

resonator Cð2Þ
g ≈ 0.73 fF. Adding this contribution to the

capacitance matrix C, with the definitions ð1=C̄ð2Þ
J Þ ¼

ðCð2Þ
J =C̄2

rÞ and ð1=C̄ð2Þ
gi Þ ¼ ðCð2Þ

gi =C̄rCqiÞ þ ðCr=C̄qiC̄JÞ, it
is finally possible to write the Hamiltonian:

H=ℏ ¼
XN
x¼1

ωra
†
xax þ

XN−1

x¼1

Jða†xaxþ1 þ a†xþ1axÞ

þ Jð2Þ
XN−2

x¼1

ða†xþ2ax þ H:c:Þ

þ
X2
i¼1

ωqib
†
i ai þ

1

2
βib

†
i b

†
i bibi þ giða†xibi þ b†i axiÞ

þ
X2
i¼1

gð2Þi ða†xiþ1bi þ b†i axiþ1 þ a†xi−1bi þ b†i axi−1Þ;

ðC1Þ

where we introduced the next-nearest-neighbor couplings

gð2Þi ¼ Dqi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄rωr=½2ðC̄ð2Þ

gi Þ2�
q

and Jð2Þ ¼ ωrC̄r=ð2C̄ð2Þ
J Þ.

2. Interaction strength optimization

In Fig. 15, we report the interaction strength of different
designs based on the values of the device studied in this
work. In particular, we calculate the expected bound-state
interaction for the same parameters of the current sample,
but we increase the free sites between the coupling points of
the qubits. In the new configuration, the qubits are coupled
to cavities 9 and 13, instead of 10 and 12. The same
calculation is repeated, but we reduce the qubit-cavity

coupling to 50 MHz. With the latter configuration, we
expect an on-off ratio of 1000 within a detuning range
of 1 GHz.

3. Electromagnetic cross-talk

Four features of the transmission spectrum across the
coupled-cavity array cannot be quantitatively explained by
the ideal case. The transmitted signal reported in Fig. 16(c)
(compare with Fig. 2 plotted with a linear scale) highlights
the nonvanishing transmission outside the band, the “pair-
ing” effect of modes, the transmission minima within the
band, and finally the asymmetric mode distribution. These
nonidealities are due to the non-negligible cross-talk between
the input and output ports of the sample box and the next-
nearest-neighbor interaction discussed in Appendix C 1.
Figure 1(a) reports a micrograph of the sample bonded to

its sample holder. The bond wires connecting the sample
box ports to the signal launcher on chip are approximately
1.5 mm long. We model their electromagnetic cross-talk as
two power dividers, the first of which separates the
incoming signal Sin into a part that reaches the second
power divider after an electrical delay eiθ and a part through
the coupled-cavity array, εSin. In our model, the two signals
are then recombined by the second power divider.
The solid line in Fig. 16(c) shows the prediction for our

model with the fitting parameters ε ¼ 0.22 and θ ¼ 0.34π.
In comparison with a pure tight-binding model represented
by the dashed black line, we can reproduce the main
features of the transmission spectrum. Unfortunately, the
mode distribution is still not completely described by the
model. We attribute this behavior to fabrication imperfec-
tion, mainly on the smallest resonator feature represented
by the junctions in the resonators. The design of the JJ
resonator intrinsically mitigates the possible variance by a
factor of

ffiffiffiffiffi
10

p
. Moreover, although the individual modes are

affected by this imperfection, the collective behavior of the
coupled-cavity array as a waveguide is still close to ideal
because of the large resonator-resonator coupling J.
Wewould like to stress that the cross-talk affects only the

measured transmitted field and not the intrinsic mode
structure.

4. Magnetic cross-talk

The flux lines Z-Q1 and Z-Q2 have a linear magnetic
cross-talk that has been calibrated and compensated. The
flux reported here is therefore the net flux in each SQUID
loop and not the one produced by the aforementioned
flux lines.
The relation between the flux in each SQUID, Φq1 and

Φq2, and the room-temperature voltages applied to the
coaxial cable, V1 and V2, respectively, is expressed by

�Φ1

Φ2

�
¼

�
L11 L12

L21 L22

��
V1

V2

�
þ
�Φoff

1

Φoff
2

�
; ðC2Þ
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FIG. 15. Interaction strength between two bound states. The
four lines represent the calculated coupling between two bound
states, for qubits coupled to different array sites(xi) and with
different qubit-cavity coupling strengths g.
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where we introduced the inductance matrix for the flux
lines Lfl. From the measurement of the periodicity of the
readout resonator of each qubit at different fluxes, we can
extract the coefficients of the inductance matrix and the flux
offset in each SQUID loop.
In order to decouple the two flux lines, we can redefine

the voltages in each of them as

�
V1

V2

�
¼

�
L11 L12

L21 L22

�−1�Φ1 −Φoff
1

Φ2 −Φoff
2

�
: ðC3Þ

For our sample, we measure an offset Φoff
1 =Φ0 ¼ 0.091

and Φoff
2 =Φ0 ¼ 0.084, while the relative magnetic cross-

talk for Q1 is L12=L11 ¼ 0.041 and for Q2 it is
L21=L22 ¼ 0.063.
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