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In classical cosmological analysis of large-scale structure surveys with two-point functions, the
parameter measurement precision is limited by several key degeneracies within the cosmology and
astrophysics sectors. For cosmic shear, clustering amplitude σ8 and matter density Ωm roughly follow the
S8 ¼ σ8ðΩm=0.3Þ0.5 relation. In turn, S8 is highly correlated with the intrinsic galaxy alignment amplitude
AIA. For galaxy clustering, the bias bg is degenerate with both σ8 and Ωm, as well as the stochasticity rg.
Moreover, the redshift evolution of intrinsic alignment (IA) and bias can cause further parameter confusion.
A tomographic two-point probe combination can partially lift these degeneracies. In this work we
demonstrate that a deep-learning analysis of combined probes of weak gravitational lensing and galaxy
clustering, which we call DeepLSS, can effectively break these degeneracies and yield significantly more
precise constraints on σ8, Ωm, AIA, bg, rg, and IA redshift evolution parameter ηIA. In a simulated forecast
for a stage-III survey, we find that the most significant gains are in the IA sector: the precision of AIA is
increased by approximately 8 times and is almost perfectly decorrelated from S8. Galaxy bias bg is
improved by 1.5 times, stochasticity rg by 3 times, and the redshift evolution ηIA and ηb by 1.6 times.
Breaking these degeneracies leads to a significant gain in constraining power for σ8 andΩm, with the figure
of merit improved by 15 times. We give an intuitive explanation for the origin of this information gain using
sensitivity maps. These results indicate that the fully numerical, map-based forward-modeling approach to
cosmological inference with machine learning may play an important role in upcoming large-scale
structure surveys. We discuss perspectives and challenges in its practical deployment for a full survey
analysis.
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I. INTRODUCTION

Combined probes of large-scale structure (LSS) contain
information about the late-time evolution of the Universe
and thus are a unique laboratory for testing cosmological
models. The structure of the matter density field, observed
through weak gravitational lensing and galaxy clustering, is
used to constrain the present-day matter and dark energy
densities, Ωm and ΩΛ, as well as matter clustering strength
σ8 and the dark energy equation of state w, and other
parameters (see Refs. [1–3] for reviews).

In recent years, dedicated LSS observing programs, such
as the Dark Energy Survey (DES) [4], the Kilo Degree
Survey [5], and the Hyper-Suprime Cam Survey [6], mea-
sured cosmological parameters with less than 5% precision
[7–9]. Upcoming surveys, such as Euclid [10] and Vera
Rubin Observatory (LSST) [11] will provide orders-of-
magnitude richer datasets and enable subpercent measure-
ments of these parameters.
In a LSS analysis, cosmology is typically constrained

jointly with a large number of other parameters, correspond-
ing to both astrophysical uncertainties and measurement
systematics. These uncertainties can constitute a significant
part of the cosmology error budget. In particular, the key
degeneracies that limit our ability to constrain σ8 andΩm are
galaxy intrinsic alignments and galaxy bias [12,13].
Intrinsic alignments (IA) of galaxy shape and its large-

scale environment arise due to tidal fields acting on them
during their formation and evolution [12,14]. IA effects can
perfectly mimic weak gravitational lensing and thus cause a
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degeneracy between their amplitude AIA and S8 [15].
Galaxy biasing describes how galaxies trace the underlying
dark matter density field. Changes in biasing can have a
similar effect on clustering maps as changes in cosmology,
causing a sharp degeneracy between linear bias para-
meter bg and σ8 and Ωm [16]. Varying galaxy stochasticity
parameter rg can also mimic the effects of varying cosmo-
logy. These degeneracies are even stronger for models that
include redshift evolution of IA and biasing, or their higher-
order properties. Finally, for weak lensing (WL), the σ8 and
Ωm are itself degenerate, roughly following the S8 ¼
σ8ðΩm=0.3Þ0.5 relation.
The tomographic probe combination can alleviate these

degeneracies due to the use of joint information about
galaxy positions and shapes. For the scales considered,
two-point (2-pt) functions-based analyses (3 × 2) managed
to reduce these degeneracies, but did not remove them
completely [7,8,17,18]. Moreover, this type of analysis has
a very limited ability to constrain higher-order properties
and redshift evolution of IA and biasing. This can cause
further challenges for accurate cosmology measurement: it
is now known that the use of wrong IA or biasing models
can cause significant errors in inferred cosmology [15,19],
due to limited information on these effects that can be
extracted from the data. In that case, even the full Bayesian
marginalization of these unconstrained parameters can lead
to biases due to prior volume effects [20]. Addressing these
challenges is particularly important in the light of recent
hints of tensions between the S8 measurements between
LSS and the early Universe, as extrapolated from cosmic
microwave background measurements [7,8,21–24].
At intermediate and small scales, the late-time LSS

density field contains non-Gaussian information, which
can also be extracted from lensing and clustering data.
Recently, peak statistics [25] and deep learning [26,27]
have been demonstrated to achieve significant measure-
ment precision gain of σ8 and Ωm from weak lensing maps.
The convolutional neural network (CNN) results [26] and
the DES Y3 peaks analysis [25] hinted at the possibility of
delivering improved IA constraints compared to the power
spectrum. However, a map-level probe combination has not
been extensively explored to date.
In this paper, we propose a deep-learning analysis of

combined probes of weak lensing and galaxy clustering and
investigate its potential to break degeneracies between σ8,
Ωm, rg, AIA, bg, as well as their redshift evolution, para-
metrized by a simple power law with ηAIA

and ηbg . We use a
fully forward-modeling approach, where we train CNNs on
a stacked tomographic weak lensing convergence κg and
galaxy counts δg. This is similar to the 2D “counts-in-cells”
technique [28,29], where the galaxy catalogs are binned
into pixel or voxel “cells,” which are then analyzed directly
without using 2-pt functions.
We compare the results of the CNN analysis with the

equivalent tomographic power spectrum (PSD) analysis,

which uses data vectors similar to the 3 × 2method. We use
a stage-III simulated survey configuration with 900 deg2,
10 galaxies=arcmin2, and four broad redshift bins. The
analysis is limited to intermediate scales, corresponding to
smoothing FWHM of 8 Mpc/h for galaxy clustering and
4 Mpc/h for weak lensing. We also explore a small-scales
configuration with nonlinear bias, with smoothing at
4 Mpc/h for both probes. We report the forecasted cosmol-
ogy constraints expected from the CNN and PSD, and
describe the information gain for all parameters considered.
Finally, we investigate the sensitivity maps for CNNs to
gain more intuition about the origin of the information used
by CNN.
This paper is structured as follows. We describe the

simulated lensing and clustering data in Sec. II. The
measurement methods for deep learning and power spec-
trum are presented in Sec. III. We describe our results in
Sec. V. We investigate the origin of the information used by
our methods in Sec. VI and conclude in Sec. VII.

II. THEORY MODELING

We create a set of consistent tomographic maps of weak
lensing convergence κg and galaxy clustering δg. We use a
flat ΛCDM model for cosmology with fixed dark energy
equation of state w ¼ −1. We leave out the Ωb, ns, and H0

parameters, as they are practically impossible to constrain
with this data practically impossible to constrain with
this data; we do not expect significant differences
to the results if these parameters were marginalized out,
as in Ref. [25]. For intrinsic alignments, we employ the
nonlinear-linear alignment model [30–32]. The galaxy
number counts follow a biasing model, with optional
nonlinear terms. The redshift evolution of intrinsic align-
ments and galaxy biasing is also included in this model. We
do not include the redshift space distortions or magnifica-
tion contributions to clustering in this work, as it is
subdominant to other effects included. The full model

TABLE I. Summary of parameters used in the data models.
Parameters bg;2 and ηbg;2 are used only in the nonlinear galaxy
bias model. Parameters Ωm and σ8 are additionally restricted by
convex hull prior defined by the simulation grid.

Description Prior Fiducial

Ωm Matter density today [0.15, 0.45] 0.29
σ8 Clustering amplitude [0.5, 1.2] 0.71
AIA Intrinsic alignment amplitude ½−6; 6� 0.5
bg Linear galaxy bias [0.5, 2.5] 1.5
rg Galaxy stochasticity [0.4, 1] 0.7
ηAIA

IA redshift evolution ½−4; 6� 1.6
ηbg Linear bias evolution ½−3; 3� 0.5

bg;2 Nonlinear galaxy bias ½−3; 1� 0.5
ηbg;2 Nonlinear bias evolution ½−2; 2� 0.0
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has the parameters described below and summarized in
Table I.

(i) We vary cosmology parameters Ωm, σ8, with other
parameters fixed at Ωb ¼ 0.0493, H0 ¼ 67.36, and
ns ¼ 0.9649, which corresponds to the baseline
results (ΛCDM, TT, TE, EEþ lowEþ lensing) of
Planck 2018 [33].

(ii) Intrinsic alignment amplitude is controlled by AIA,
while its redshift dependence is controlled by
the power law ηAIA

[see Eq. (8) below]. We do
not include the luminosity or color dependence of
intrinsic alignments.

(iii) Galaxy density field is controlled by linear bias bg
and its redshift evolution ηbg , which is also a power
law parameter [Eq. (9)]. The galaxy stochasticity rg
captures the degree of correlation between the
galaxy and matter density field. We reduce the
correlation between these fields by adding uniform
noise to phases of the galaxy density field. In our
extended model, we also add nonlinear galaxy bias
bg;2 and its redshift evolution ηbg;2 .

We consider a stage-III-like survey configuration with
900 deg2 with 10 galaxies=arcmin2 distributed evenly
in 4 broad redshift bins. The redshift bins are shown in
Appendix A, and have the following mean redshifts:
hzi ¼ 0.31, 0.48, 0.75, 0.94. We use the same galaxy
selection for both lensing and clustering; we do not create a
separate “lens” sample, as is often done [16,34,35]. We also
do not include uncertainties in measurement systematic
biases, such as redshift errors, shear calibration, or selection
function uncertainty for clustering. These may play an
important role amplifying degeneracies in the parameter
measurements, especially in the redshift error and IA
sector. We leave the optimization of the lens sample
and the investigation of the systematics effects to
future work.

A. Multiprobe maps

We closely follow the method we introduced in Ref. [26]
for calculating convergence κg maps and create the corre-
sponding clustering δg maps using the same pencil-beam
simulations. The simulations in [26] consist of 57 unique
cosmologies spanning the Ωm–σ8 plane. In that work we
used the PkdGrav3 code [36] to run a total of 12 simulations
at each cosmology. Each simulation used 2563 particles in a
volume of 5003 Mpc3, and the initial conditions were
generated at redshift zinit ¼ 50, using the MUSIC code
[37]. All simulations were run with 500 time steps, writing
snapshots at the interval of Δz ¼ 0.1 from z ¼ 3.45 to z ¼
1.55 and Δz ¼ 0.05 down to redshift z ¼ 0. See [26] for
more details of these simulations.
The 2D map of these fieldsm2D is projected from the 3D

simulated overdensity δ3D using the Born approximation.
Maps are calculated using the UFALCON code [38], in a very

similar way as Refs. [25–27,39]. The 2D maps are
calculated using the following equation:

mpix
2D ≈

X
b

Wm

Z
Δzb

dz
EðzÞ δ3D

�
c
H0

DðzÞn̂pix; z
�
; ð1Þ

where Wm is the weight kernel corresponding to the
considered field, DðzÞ is the dimensionless comoving
distance, n̂pix is a unit vector pointing to the pixel’s center,
and EðzÞ is given by dD ¼ dz=EðzÞ. The sum runs over all
redshift shells and Δzb is the thickness of shell b.
The kernels corresponding to weak lensing WWL, intrin-

sic alignments WIA, and galaxy clustering WG are

WWL ¼ 3

2
Ωm

R
Δzb

dz
EðzÞ

R
zs
z dz0nðz0Þ DðzÞDðz;z0Þ

Dðz0Þ
1

aðzÞR
Δzb

dz
EðzÞ

R
zs
z0
dz0nðz0Þ ; ð2Þ

WIA ¼
R
Δzb dzFðzÞnðzÞR

Δzb
dz
EðzÞ

R
zs
z0
dz0nðz0Þ ; ð3Þ

WG ¼
R
Δzb dznðzÞR

Δzb
dz
EðzÞ

R
zs
z0
dz0nðz0Þ ; ð4Þ

where nðzÞ is the redshift distribution of galaxies in a given
bin, zs and z0 are the source and observer redshifts, res-
pectively, and FðzÞ is a cosmology and redshift-dependent
term:

FðzÞ ¼ −C1ρcrit
Ωm

DþðzÞ
; ð5Þ

where C1 ¼ 5 × 10−14 h−2 M⊙ Mpc3 is a normalization
constant, ρcrit is the critical density at z ¼ 0, and DþðzÞ is
the normalized linear growth factor, so that Dþð0Þ ¼ 1.
We use kernelsWWL,WIA, andWG with Eq. (1) to create

convergence maps of lensing κm, intrinsic alignment κIA,
and galaxy density contrast δm. Then, we subtract the mean
of the convergence fields and normalize the galaxy density
contrast:

κ ← κ − hκi; ð6Þ

δ ← ðδ − hδiÞ=hδi: ð7Þ

The redshift dependence of IA and biasing is calculated
for a given redshift bin niðzÞ by using a power law. A
similar method was previously used in Ref. [25]. We use a
simplified formulation of this model, where we calculate a
single effective scaling value per redshift bin i using the
niðzÞ only:

Ai
IA ¼ AIA

Z
z
dzniðzÞ

�
1þ z
1þ z0

�
ηAIA

; ð8Þ
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big ¼ bg

Z
z
dzniðzÞ

�
1þ z
1þ z0

�
ηbg
; ð9Þ

where z0 ¼ 0.7 is the fixed pivot redshift. This allows us to
remove the redshift dependence in the process of summing
the shell maps to create projected maps. By doing this, we
can precompute a set of field maps and apply the IA and
biasing variation on the fly during training and predictions
steps. We verified that this approximation gives similar
results to the full formulation. The exact implementation of
this dependence is not crucial in this work, as its main focus
is a constraining power forecast. To make the interpretation
of the values of ηbg parameter easier, we calculated the
values corresponding to uncertainty of current measure-
ments from the results in DES Y3 combined probes [7]. We
used the linear bias measurements (their Table V) and fitted
them with the η-evolution model in Eq. (9). The uncertainty
in these measurements translates to the uncertainty on bias
evolution σ½ηbg � ¼ 0.21.
To create the forward-modeled probe maps, we add the

noise to the pixels directly. The observed lensing map κg
and galaxy counts maps δg are

δg ¼ Poisson½n̄galð1þ bgδrmÞ�; ð10Þ

κg ¼ Normal

�
κWL þ AIAκIA;

σeffiffiffiffiffi
δg

p �
; ð11Þ

where n̄gal is the mean number of galaxies per map pixel,
and σe ¼ 0.4 is the galaxy shape noise, which does not

change across redshift bins as we assume the same number
of galaxies from each bin. We create an auxiliary map δrm to
be partially decorrelated from the density contrast δm, such
that the correlation coefficient is rg. This is calculated from
Fourier transform δ̃m, such that their phase angles ∠ are
related by

∠δ̃rm ¼ ∠δ̃m þ ð1 − rgÞ2=3 × Uniform½−π; π�; ð12Þ

which reduces to δrm ¼ δm for rg ¼ 1. We create this
relation empirically for the δm maps we considered. We
find that this relation gives Pearson’s correlation coeffici-
ent of pixel values roughly corr½δrm; δm� ¼ rg. This method
is described in more detail in Appendix B. While this
implementation may differ from others used in previous
work [13,28,40], it gives a full degree of variation and
should be sufficient for the purpose of this study.
For a model that includes nonlinear galaxy bias, the

galaxy counts map is calculated as

δg ¼ Poisson½n̄gal½1þ bgδrm þ bg;2ðδrmÞ2��; ð13Þ

where bg;2 controls the strength of nonlinear biasing and
follows the same redshift evolution of the other fields
[Eq. (9)], controlled by the parameter ηbg;2.
We use these maps consistently for both individual and

combined probe analyses; for the lensing maps, the noise
level is calculated using the actual galaxy density map in
each bin. While lensing-only inference does not aim to
constrain bg, rg, ηbg parameters, they are still used to make
the maps. Their values are always taken from the same

FIG. 1. Example maps for weak lensing convergence κm and galaxy clustering δm, before the addition of noise. The size of the maps is
5 × 5 deg. The maps were smoothed with the redshift bin-dependent Gaussian kernel, with FWHM corresponding to ∼4 Mpc=h at the
mean redshift of the bin for weak lensing and ∼8 Mpc=h for galaxy clustering (see Sec. II B).
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prior, shown in Table I. This way the lensing-only net-
works effectively marginalize over the uncertainty on these
parameters without aiming to constrain them.
As the Poisson random generator does not have graphics

processing unit (GPU) kernels available in TensorFlow, we
use the inverse Anscombe transform [41] to approximate it,
as described in Appendix F. We perform a number of
additional scalings on the map to ensure numerical stability
of the training for all parameters in the prior range; see
Appendix E.

B. Scale cuts and smoothing

In this work we do not attempt to model baryonic
effects, which can strongly modify the matter distribution
at small scales [42,43]. Similarly, the galaxy biasing on
small scales can significantly deviate from the linear bias
model [16]. To avoid using small scales, we smooth the
maps with a redshift-dependent kernel. Following choices
in Ref. [16], we use the smoothing scales of R ¼ 4 Mpc=h
for lensing, R ¼ 8 Mpc=h for clustering maps for the
linear bias model, and R ¼ 4 Mpc=h for the nonlinear
bias model. Including the pixel kernel, which is of
size d ¼ 4.68 arcmin, we calculate that the additional
Gaussian smoothing to apply is

R ¼ 4 Mpc=h ⇒ σ ¼ ½4.8; 3.5; 2.8; 2.5� arcmin;

R ¼ 8 Mpc=h ⇒ σ ¼ ½9.8; 7.4; 6.0; 5.6� arcmin

for four redshift bins used in our analysis. An example of
the maps is shown in Fig. 1.
In the original simulations from [26], the field size is

5 × 5 deg and 128 × 128 pixels. As we use larger scales in
this work, we down-sample the original maps to the size of
64 × 64, which results in pixel size of d ¼ 4.68 arcmin.
The standard deviation of this top hat kernel is σ ¼ 1.35. In
[26], the survey consisted of 20 fields, which were passed
to the networks as channels. We construct random simu-
lated surveys of 900 deg2 by using 36 fields. We employ,
however, a different method of including these fields: we
create a mosaic of size 6 × 6 fields. We add noise on the fly
at each realization during training and prediction. We avoid
repeating the same mosaic by placing each field randomly
within it, as well as performing a random flip. The
smoothing is done before creating the mosaic to avoid
blurring over sharp edges.

III. DEEP LEARNING AND POWER SPECTRA

We analyze the maps using two approaches: a convolu-
tional neural network and a power spectrum. The CNN
maps from pixel maps to summary statistics correspond-
ing to the model parameters. In this work, we use a
residual network architecture [44]. CNNs pass the input
maps through convolutional layers, which create a large

set of feature maps by convolving the input with a set of
learnable filters. This process is repeated from layer to
layer, with feature maps being produced at lower reso-
lution each time. They are followed by residual layers,
which operate on feature maps created from a residual
between input and output of the previous layer, keeping the
resolution constant. Finally, the feature maps are flattened
and passed to the output layer, which gives informative
summary statistics. For a general introduction to deep
learning, see Ref. [45].
For the PSD, we also use the summary statistics

compression. We calculate all auto- and cross-spectra from
the maps, and then employ a simple neural network (NN)
to compress these PSD vectors into summary statistics. We
use this approach for operational reasons, as it removes the
necessity of creating a dedicated likelihood analysis for
PSDs only. A similar approach was used in Ref. [27]. The
PSD NNs can be trained simultaneously with the CNN,
with minimal time overhead. Both CNN and PSD NNs give
then the same form of summary output that can be used in a
likelihood analysis the same way.
We create a separate network for combined probes

(CP CNN), which takes a stack of 4 κg and 4 δg maps,
as well as separate networks for lensing (KG CNN) and
clustering (DG CNN). It starts with 4 convolutional layers,
which create 128 feature maps, reducing the dimensionality
of the mosaic images from 384 × 384 to 24 × 24. It is
followed by 10 residual layers, and kernel size of 5 with
stride of 2, and the Relu activation function. The final
residual layer is flattened and fully connected to the output,
which contains the summaries and their covariances. That
gives a network with ∼10–12 million trainable parameters,
depending on the model.
As the equivalent NN for the PSD case, we also create

separate networks for combined probes (CP PSD NN),
lensing (KG PSD NN), and clustering (DG PSD NN).
The power spectra were calculated using FFT and aver-
aged in 20l bins in the range of l ∈ ½36; 4536�. The bins
are spaced in logarithmic way, with the minimum interval
of δl ¼ 36, which is the resolution of the FFT given the
pixel sizes used. We first concatenate the auto- and cross-
spectra from the maps, which gives 36 and 10 spectra for
combined and individual probes, respectively. We do not
cut the scales, as the smoothing already removes most
small-scale power. Then we pass the PSDs through 2
fully connected layers with 1024 hidden units, also with
the Relu activation. Finally, the output layer predicts the
summaries and their covariances, as for the CNN. This
gives ∼12–1.8 million trainable parameters, depending on
the output size. For the PSD NNs, we test a number of
architectures and model sizes. We find that they all give
very similar results and that choice does not change in
comparison with the CNNs. This test is described in
Appendix D. Further details of the implementation of
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these networks can be found in the public DeepLSS code
repository.
The training spanned the Ωm and σ8 parameters fixed at

the 57 simulation points, and the values for the remaining
parameters were drawn from a flat prior using the first 16m
samples from the Sobol sequence, with parameter ranges
shown in Table I. We employ a similar training strategy as
[26], both for CNNs and PSD NNs. We use the negative
log-likelihood loss function:

L ¼ lnðjΣpjÞ þ ðθp − θtÞ⊤Σ−1
p ðθp − θtÞ; ð14Þ

where θt is the true parameter vector, θp is the summary
vector, and Σp is the predicted covariance matrix. Note
that Σp is not used later for inference; it is simply just a
part of the likelihood loss formulation. We found that the
likelihood is not well described by a single Gaussian, and
decided to create the likelihood empirically, using a more
complicated model, described in Sec. IV. We train the
networks using stochastic gradient descent with the ADAM

optimizer [46] with batch size of 32 mosaic maps and
learning rates of 0.000 05 and 0.0025 for CNNs and PSD
NNs, respectively. We additionally applied gradient clip-
ping using the method of Ref. [47], using 50% percentile.
The training took 885000 batches and the loss did not
improve over the last 200000 batches, which indicates
reasonable convergence. The networks were created in
TensorFlow [48] and trained on NVIDIA A100-SXM4–
40 GB GPUs.
To avoid overfitting the training set, we calculate the loss

for the test set, which is not used during training. The test
set consisted of ≈8% of the full simulation set. We did not
notice significant differences between the training and
testing loss at any point in the training process. This
indicates that the networks have a good generalization
ability and do not overfit the training set. The reason for this
is the on-the-fly addition of noise, which is a very efficient
regularizer.

IV. LIKELIHOOD ANALYSIS

The CNN and PSD NN networks output a number
of summary statistics, which are then interpreted in a
Bayesian framework. The final posterior distribution fol-
lows the Bayes rule pðθtjθpÞ ∝ pðθpjθtÞpðθtÞ, where θp is
the network output summary statistic and θt is the true
parameter value, pðθpjθtÞ is the likelihood, and pðθtÞ is
the prior.
We estimate the conditional probability distribution

pðθpjθtÞ in the following way. We run a prediction for a
set of 7 615 200 samples from pðθpjθtÞ, with 228 000
unique parameter combinations. The prediction set was

created using the same parameter sampling scheme as the
training set. We then create a model of pðθpjθtÞ using a
mixture density network (MDN), which uses a mixture of
Gaussians at each θt; it predicts the relative weights wjðθtÞ
of components, their means μjðθtÞ and covariances ΨjðθtÞ,
where j ¼ 1;…; K, where K is the number of Gaussians in
the mixture model. We train this model using stochastic
gradient descent and monitor its validation loss to prevent
overfitting; see Appendix C for details. We confirmed that
this network predicts the right means and variances for our
choice of K ¼ 4, for all θt, in Appendix C.
The final constraints are calculated using the Markov

chain Monte Carlo method using the EMCEE algorithm [49].
We use flat priors on parameters, with ranges shown in
Table I, and obtain a chain with 128k samples (1.28m for
plotted chains). As theΩm and σ8 parameters were sampled
on a grid, we use the convex hull of this grid as the prior for
this parameter combination.

V. RESULTS

We calculate constraints for CNNs and PSDs for the
fiducial true parameter set θfidt given in Table I. We create a
mock observation θobsp for CNNs and PSDs by taking the
most likely prediction for θfidt . Figure 2 shows the com-
parison of the constraints for the combined probes analysis,
with CNN result in pink and PSD in blue. The regions
correspond to 68% and 95% confidence intervals.
The CNN yields more precise measurement than the

PSD for all parameters considered. The strongest con-
straining power gain is for the intrinsic alignment amplitude
AIA, which is of the order of 8 times. CNN measurement
effectively breaks the degeneracy between the IA and other
parameters. We explore this further in the following para-
graphs. Another significant gain comes from breaking the
degeneracy between stochasticity rg and σ8 and bg, with rg
improved by 4 times. The measurement of galaxy bias bg
and its evolution ηbg is also decorrelated, with respective
improvements of 1.5 times and 1.2 times. Moreover, for
CNN, the cosmology parameters Ωm and σ8 are also
significantly less dependent on the bias evolution, with
constraints improved by 1.6 times and 1.3 times, respec-
tively. The redshift evolution of intrinsic alignments is
weakly constrained, compared to no constraint by PSD.
Overall, breaking of these degeneracies contributes to a
very substantial improvement of the Ωm–σ8 figure of merit
(FOM): the FOM is 15 times higher for the deep learning
analysis.
Figure 3 shows the equivalent comparison for individual

probes: weak lensing and galaxy clustering. For weak
lensing, the CNNs are able to break the σ8–Ωm “banana”
degeneracy, as previously shown by [26]. There also is an
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improvement for the AIA parameter, as also found in [26]. It
is, however, significantly smaller than for the combined
probes analysis. Moreover, the IA redshift evolution ηAIA

is
unconstrained for both CNNs and PSDs. This suggests that
the ηAIA

information from combined probes come purely
from a better understanding of the κg and δg maps jointly,
since the clustering maps are independent of this IA.
The constraints from galaxy clustering are also signifi-

cantly improved. The measurement of stochasticity bene-
fits the most from using CNNs, with 4 times better

precision. Again, the CNNs break the degeneracy between
bg and its evolution ηbg , which in turn helps with con-
straining σ8 and Ωm. Generally, these parameters are
improved by a factor of around 1.3 times to 1.8 times,
which is also a significant information gain. The degen-
eracy between σ8 and bg is slightly reduced, with a
precision gain on the level of 1.6 times.
The comparison for all parameters and probes is shown

in Table II. The gain value was calculated using 200 mock
observations selected at random from all the predictions for

FIG. 2. Constraints for combined probes with deep learning (pink), compared to power spectra (blue), for the main model with linear
galaxy bias. The black dots mark the true value of parameters used here, from the fiducial model summarized in Table I. The mock
observation used here was taken as the most likely model prediction for the fiducial model.
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the fiducial parameter set θfidt . The value cited is the median
of the ratios of parameter standard deviations.
We further investigate the powerful IA constraints

obtained by the CNN. Figure 4 shows the uncertainty on
S8 versus AIA. For the PSD, there is a clear degeneracy
between these parameters of both lensing and combined
probes. For lensing, the degeneracy is still present also for
the CNN. It is, however, efficiently broken by CNNs for the
probe combination, yielding a 2.3 times improvement in S8,
on average.

We present the results for the nonlinear galaxy biasing
model analysis in Fig. 5. For the sake of clarity, we limit the
panels to Ωm, bg, the nonlinear bias strength bg;2, as well as
its evolution ηbg;2 . For the PSD, a clear degeneracy appears
between the linear and nonlinear galaxy bias parameters, bg
and bg;2, as well as between the bg;2 and its redshift
evolution ηbg;2 . We also notice that the PSD constraints
on linear galaxy bias evolution ηbg are much worse than
for the linear bias case, despite using smaller smoothing
scales. Deep learning is able to break these degeneracies

FIG. 3. Constraints for weak lensing (left) and galaxy clustering (right), with deep learning (pink) and power spectra (blue), for the
main model with linear galaxy bias. As in Fig. 2, the black dots show the true parameters.

TABLE II. Measurement precision gain using with DeepLSS over the power spectrum analysis. Results for galaxy
clustering and combined probes are given for two redshift-dependent smoothing scales of galaxy position maps,
with FWHM of 8 and 4 Mpc/h for “large scales” and “small scales,” respectively. Weak lensing maps were always
smoothed with 4 Mpc/h kernel. The difference is expressed as SDðθPSDÞ=SDðθCNNÞ, where value of 1× means no
precision gain. It was calculated as a median of 200 noisy mock observations taken at the fiducial cosmology.

Galaxy clustering Combined probes

Weak lensing Large scales Small scales Large scales Small scales

Ωm 1.7× 1.5× 1.3× 1.6× 1.5×
σ8 2.1× 1.6× 1.2× 1.3× 1.2×
S8 3.0× 0.9× 1.3× 2.3× 1.5×
FOM Ωm–σ8 11.0× 1.7× 6.2× 14.9× 13.2×
AIA 3.9× � � � � � � 8.3× 8.1×
bg � � � 1.6× 1.5× 1.5× 1.4×
rg � � � 4.4× 4.3× 3.6× 4.8×
ηAIA

1.0× � � � � � � 1.4× 1.6×
ηbg � � � 1.3× 1.7× 1.2× 1.7×
bg;2 � � � � � � 2.6× � � � 2.7×
ηbg;2 � � � � � � 1.4× � � � 1.7×
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and constrain the bg and bg;2 with 1.4 times and 2.7
times precision increase, respectively. The clustering-only
analysis of the nonlinear model gives similar gains, as
shown in Table II.

VI. WHERE IS THE ADDITIONAL INFORMATION
COMING FROM?

Given the significant improvement in constraining
power for the CNNs, it is important to gain an intuitive
understanding about where the additional information is
coming from. Firstly, the nonlinear part of the matter
density field contains significant information, even at
intermediate scales [25,27]. Multiple approaches have been
designed to extract it from the lensing convergence field
[39,50,51], most recently tomographic shear peak statistics.
Secondly, the full forward analysis on map level enables us
to include the phase information of the field; the 2-pt
functions are effectively discarding it.
But this may not be the only mechanism employed by

the CNNs to increase constraining power. To investigate
this further, we look at sensitivity maps. For a trained
network, one can create such maps by calculating gradients

of the network output with respect to the image pixels. In
our configuration, where the network outputs are summa-
ries that correspond directly to a given parameter, such a
map is easy to create and interpret. Given a set of input
maps m and output summaries θp, the sensitivity map s is
defined as s ¼ ∂θp=∂m. Changes in the regions of the map
with highest gradient absolute value will have the most
impact on the final prediction, while regions with sensi-
tivity close to zero have almost no impact. However, as all
pixels are considered, it does not directly indicate what the
value of the predicted parameter will be. Intuitively, one
may also interpret these maps as a weight function, which
shows which parts of the map are used by the network, and
which are ignored. This is a first-order analysis; i.e., it
ignores the correlations between pixels and only focuses on
the leading term. An approach similar to this has been
introduced for lensing maps in Ref. [52], and more broadly
in the field of machine learning called interpretabil-
ity [53,54].
We focus on the AIA and σ8 parameter constraints, as

these display the strongest gain and the most benefit from
the combined probes analysis. Figure 6 shows input maps
and the corresponding sensitivity maps. For the purpose of
this figure, additional Gaussian smoothing was applied to
the κg maps to suppress the noise and make them easier to
read. For AIA, we show the maps for redshift bin 1, which
contain the largest sensitivity signal. We notice that there is
a large overdensity in the middle of the δ1g map, as well as in
the upper left-hand and right-hand corners. The sensitivity
to the κ1g is focused on precisely these regions, while the rest
of the map is practically ignored. This makes intuitive
sense: the IA signal is expected to be present in the
convergence maps at the positions of overdensities. For
σ8, the sensitivity is the strongest for κ2g and δ4g. The mean
redshifts of these bins are hz2i ≈ 0.5 and hz4i ≈ 1, which is
exactly the configuration that leads to the strongest lensing
signal. The κg sensitivity map seems to be focused at
positions of peaks, additionally matching their sizes. The δg
sensitivity is also focused on position of peaks; it seems that
the CNNs detect overdensities in the κg map and look for
corresponding signal in the δg map.
The fact that the network only takes information from

specific regions of the map seems quite simple, but has
profound consequences, especially for the AIA constraint.
While the power spectrum analysis also takes advantage
of the κg × δg cross-correlation, it does not employ such
weighting. There, the total cross-correlation signal is an
average of regions that are important with regions that
are not informative at all. This leads to the dilution of the
signal, as the rest of the field contributes only random noise.
This in turn lowers the signal-to-noise ratio on the measured
parameter and consequently makes the constraints less
precise. This can explain the 8 times information gain for
AIA, as it draws information mostly from the lowest redshift
bin. For that bin, the maps are usually sparsely populated

FIG. 4. Constraints on S8, intrinsic alignments AIA, and IA
evolution ηAIA

, for the combined probes (left) and lensing only
(right), using the linear galaxy bias model.

FIG. 5. Galaxy bias constraints for the nonlinear bias model for
combined probes. Deep-learning results are shown in pink, while
power spectra are shown in blue. To give some intuition about the
meaning of the ηbg parameter, we calculated its uncertainty using
bias measurements from DES Y3 [7] and obtained σ½ηbg � ¼ 0.21.
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by overdensities; as seen in the bottom left-hand panel of
Fig. 6, the dilution of the signal is the most significant. The
CNNs automatically select the important regions and ignore
the rest, which avoids signal dilution by unimportant regions.
While this interpretation is qualitative and subjective, it

can already shed some initial light on the origin of the
information used by CNNs. The impact of non-Gaussian
information, access to phases of the map, and optimal map
weighting, could all be quantitatively investigated further.
However, we leave it to the dedicated future work.

VII. CONCLUSIONS

We present a novel approach to analysis of large-scale
structure data by using full forward modeling on map
level and its interpretation with deep learning. In a method
dubbed DeepLSS, we create a combined probes analysis of
weak lensing convergence κg and galaxy clustering maps
δg. We focus on improving the constraints on theΩm and σ8
parameters through breaking their degeneracies with intrin-
sic galaxy alignments and galaxy biasing, specifically,
between S8 and intrinsic alignment amplitude AIA, linear
bias bg and matter density Ωm, and linear bg and nonlinear
bias bg;2. Internal degeneracies between these parameters
and their redshift evolution cause further increase in mar-
ginalized parameter uncertainty.
We create consistent sets of simulations of galaxy

clustering and weak lensing within the space of two
models: (i) large smoothing and linear bias and (ii) small

smoothing and nonlinear bias. These models have 7 and 9
free parameters, respectively.
As the most common way to analyze combined probes of

LSS is to use 2-pt functions, we focus on a fair comparison
between the deep-learning and the power spectrum meth-
ods. We create a set of residual convolutional neural
networks on the individual probes κg and δg, and the probe
combination κg þ δg. We pass the sets of tomographic maps
to the networks as channels: 4 for individual probes and 8
for probe combination. The networks are trained using
likelihood loss between outputs θp and the true input
parameters θt. This way, the network creates informative
output summaries corresponding to the model parameters.
We interpret these summaries by performing conditional
density estimation on the likelihood pðθpjθtÞ. The con-
straints are obtained using Bayesian analysis with a Markov
chain Monte Carlo sampler.
We report a remarkable ability of deep learning to break

degeneracies between theLSS parameters and cosmology, as
compared to the power spectrum method. The most signifi-
cant gain is for intrinsic galaxy alignments,where theS8–AIA
correlation is effectively broken and the AIA constraint
improves by a factor of 8 times. Galaxy stochasticity
constraints improve by a factor of 3 times. The improvement
in the galaxy biasing sector is around 1.3 times. For the
nonlinear model, the CNN effectively breaks the degeneracy
between the linear andnonlinear bias parameters,bg andbg;2.
We also observe a significant gain in the constraining power
of the redshift evolutionof intrinsic alignments ηAIA

,where the

FIG. 6. Sensitivity analysis for the AIA (left-hand panels) and σ8 (right-hand panels). We show the κm and δg maps on the left, and the
corresponding sensitivity maps on the right. To suppress the noise, the lensing maps are additionally smoothed using a Gaussian kernel
with σ ¼ 1 pixel. Regions with higher absolute sensitivity contribute more to the decision of the network about the predicted value of
AIA and σ8. Note the correspondence between the galaxy overdensity map and the lensing sensitivity map for bin 1; the areas of large
overdensities are weighted higher in the κm map.
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gain is 1.4 times. Similarly, for z evolution of galaxy biasing,
the CNN achieves 1.2 times improvement for ηbg together
with 1.7 times improvement in ηbg;2 . Overall, breaking these
degeneracies leads to a very significant gain in constraints
along the σ8 and Ωm degeneracy, with the figure of merit
improved by 15 times.
We investigate the source of the information gained in

the CNN analysis by looking at sensitivity maps. These
maps show which regions of the input κg and δg maps have
the most impact on the network’s prediction. We focus on
the sensitivity to AIA and σ8, which gain the most from the
DeepLSS analysis. We notice that, for the AIA parameter,
the network draws most information from κg maps in the
regions corresponding to high overdensities in the δg maps,
while other pixels are heavily down-weighted. This picture
suggests the following intuitive explanation. The highly-
weighted regions are exactly where the IA signal comes
from: galaxy shape alignment around overdense regions at
the same redshift. Ignoring the rest of the map decreases the
dilution of the signal by the noise coming from uninform-
ative regions. The PSD method, on the other hand, does not
perform such weighting and considers all pixels in the field
equally, which leads to increased impact of the noise from
regions that have no signal. As high density regions in low
redshift maps are rare, the gain of the networks due to this
effect becomes very significant. This interpretation, how-
ever, is probably not the full story: the PSD also ignores the
phases of the maps, as well as all non-Gaussian informa-
tion. Further work would be needed to gain more insight
about the relative importance of these effects.
Previous works that apply deep learning to weak lensing

mass maps predicted around 1.3–1.5 times precision gain for
stage-III surveys. In thiswork,we find somewhat larger gains
for weak lensing alone, and significantly larger gains for the
probe combination. We note that the results of this and
previous work are not directly comparable: here, we used a
more complicated intrinsic alignmentmodel, which included
redshift evolution. We found that evolving IAs have a large
impact on PSD results from lensing only. However, com-
pared to previous work, the main difference is the combi-
nation of lensing and clustering, which enables CNNs to
break the degeneracies between S8 and intrinsic alignment.
This work serves as a demonstration of the constraining

power of the DeepLSS method, and the exact gains are
specific to the analysis configuration used here. Our theory
and data models, while simpler than for a typical survey
analysis, are highly realistic and contain most of the needed
degrees of freedom. This suggests that the gains presented
here should also be recovered by a LSS analysis with more
precise theory and data modeling.
More development on the forward-modeling side is

needed before practical deployment of this method.
Firstly, the galaxy biasing prescriptions could be compared
to the more advanced modeling using halo occupation
distributions, subhalo abundance matching models, or using

rapid halo and subhalo simulations with PINOCCHIO [55,56],
and others [57–60]. Secondly, the baryonic effects [61]
should be included in the forward model, similarly to
Ref. [27]. Finally, given the large constraining power gain
for intrinsic alignments, it may be feasible to constrain much
more complex models with AI, such as tidal alignment tidal
torque [14], or color-dependent IAs [62]. Conversely, one
may imagine using the clustering maps with even larger
smoothing scales for simple AI models. This would reduce
the dependence of the forward model on details of galaxy
clusteringmodeling, nonlinear effects, and systematics,while
sill providing a large improvement on AIA. Such large-scale-
only model would be much easier to implement in practice.
A careful study of the impact of survey systematic effects,

such as galaxy selection function uncertainty, redshift
measurement errors, and shear calibration, should be per-
formed before the practical application of DeepLSS. Their
requirements may prove to be different for the AI analysis
compared to the 2-pt analysis. For shear peak statistics, the
DES Y3 analysis [25] revisited the shear calibration require-
ments; similar strategies can be used here. Conversely, the
fidelity of the simulatedmaps to the observedmaps should be
assessed. For deep learning, intrinsic alignmentmodel biases
can have potentially much larger impact than for the 2-pt
functions, which is already significant [15,19]. These biases
will need to be carefully studied tomake sure that the analysis
is robust to the modeling choices.
The machine-learning methods used in this work were

very simple and we did not optimize them for better
information gain. We did, however, optimize the architec-
tures of the networks interpreting the PSD vectors. It is
therefore conceivable that the gain fromCNNs can be further
increased by using larger models and better optimization
techniques available now in the field of machine learning.
In the near future, large light cone simulation grids will

become more available. Along with the growth in process-
ing capacities of hardware, the full forward model will
become more practical and reproducible. Given that the
advantage of this analysis is substantial and able to break
degeneracies in the model, it is therefore possible that a
map-level probe combination using deep learning may play
an important role in future large-scale structure surveys.

The code is made publicly available at Ref. [63]. The
data will be made public as a part of larger data release of
CosmoGrid at Ref. [64]. In the meantime, the data can be
made available upon request.
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APPENDIX A: REDSHIFT BINS

In this work we use a generic stage-III simulated survey
with four redshift bins. These bins have the mean redshifts
of hzi ¼ 0.31, 0.48, 0.75, 0.94. The shape of the bins is
shown in Fig. 7. The last bin is particularly wide, as is the
case for photometric surveys; the uncertainty on the red-
shift for distant galaxies is high, which causes the bin to be
broader.

APPENDIX B: MAPS OF GALAXY CLUSTERING
WITH STOCHASTICITY

Galaxy stochasticity describes the degree of correlation
between the galaxy density contrast δg and the underlying
dark matter density field δm. The parameter r is the
correlation coefficient between these fields, so that
r ¼ hδgδmi=hδmδmi. To create maps with varying degrees

of correlation, we add random uniform noise to phases of
the δm field, as described in Eq. (12). This equation uses a
proxy parameter rs, which is part of the model. We find the
factor ð1 − rsÞ2=3 empirically; we calculate the cross-
correlations hδgδmi=hδmδmi and find that this expression
brings the relation rs=r ≈ 1, with deviations of 10%–20%.
Figure 8 shows this correlation as a function of the
parameter rs, for four redshift bins. Each line is an average
cross-correlation from 36 different 5 × 5 deg maps. The
function in Eq. (12) could probably be improved, but it is
sufficient for the purpose of this paper.

APPENDIX C: LIKELIHOOD MODELING

As introduced in Sec. IV, we model the likelihood of the
predicted summary θp given true parameter value θt using a
mixture density network. This network takes in values of θt
and outputs the parameter of a Gaussian mixture model:
means of components μj, their covariance matrices Ψj, and
their relative weights wj. This is a simple network with 3
layers and 256 hidden units each, and a Relu activation.
The loss is the negative log-likelihood of the samples

L ¼ − logN ½θpjμ1;…;KðθtÞ;Ψ1;…;KðθtÞ; w1;…;KðθtÞ�;

where N is the normal distribution probability density
function. We use K ¼ 4 G in our model. As described in
Sec. IV, we use a training set of 7 615 200 samples from
pðθpjθtÞ, for each CNN and PSD network. We train these
networks using the ADAM optimizer [46] with the initial
learning rate of 0.001. We leave 25% of the training set as
the validation set. Before passing them the neural networks,
we rescale θt using the robust scaler and θp with minmax
scaler [65] in the range ½10−5; 1 − 10−5�, followed by a
normal percentile function. These invertible transforma-
tions make it easier for the Gaussian mixture model to
model this data. We use early stopping and pick the model
with the best validation loss.
To validate the precision of the likelihood model, we

perform the following test. First, we create a validation
set of θvalp at fixed θvalt , which contains 5700 parameter
combinations. For each θvalt , we sample new predictions
θvals from the MDN model. We compare these predictions
with the corresponding summaries in the training set θvalp .
For each θt, we calculate the significance of the difference
of means of these samples Δμ, as shown in Eq. (C1). We
also compare the scatter in the summaries in the samples
predicted by the CNNs or PSDs and the MDN density
estimator. To do this, we calculate the standard deviations
for each parameter in the summary vector, and compare
their fractional differences Δσ, shown in Eq. (C2):

Δμ ¼ ðmeanθvals − θvalp Þ=ðSDθvalp Þ; ðC1Þ

FIG. 7. Redshift bins used in this work.

FIG. 8. Stochasticity parameter rg used in the model and the
corresponding cross-correlation between the galaxy density
contrast δg and the underlying dark matter density field δm.
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Δσ ¼ ðSDθvals − SDθvalp Þ=ðSDθvalp Þ: ðC2Þ

We then plot the distribution of Δμ from all 5700 parameter
sets and all 6 models, as shown in the upper panel of Fig. 9.
To make this histogram, we use fractional differences for all
parameters inside the θ vector. The MDN is unbiased and
much smaller than the uncertainty of the summary, on the
level of <0.3σ. The fact that the MDN is unbiased and with
low scatter indicates that it estimates the conditional density
of pðθpjθtÞ sufficiently well. We plot the histogram ofΔσ in
the bottom panels of Fig. 9. The fractional difference
distribution is, again, centered around zero, with differences
on the level of 0.1σ The MDN modeling for κg is slightly
worse than for other probes, most likely due to its com-
paratively worse overall constraining power, with posterior
probability mass often hitting the prior boundaries. Given
that both the central values of the summaries from the MDN
model and their uncertainty are unbiased and with relatively
low scatter, we consider this method to be sufficiency precise
for the purpose of this paper.
Finally, we test if a more complicated mixture model

would be needed. We run the fiducial combined probes
analysis with number of Gaussians increased to K ¼ 8 and
the number of neural network hidden units to 512.We find no

fundamental differences in the results, which suggests that
there is no need to use a largermodel.More advanced density
estimation methods can be used for this step, such as
Refs. [66–68]; we leave these improvements to future work.

APPENDIX D: NEURAL NETWORKS FOR PSD

In this work we calculate constraints from power spectra
by compressing the PSD vectors into summaries using a
simple neural network. This requires choosing an archi-
tecture and training of the PSD NN networks. These
choices can affect the size of the final constraint. For
example, a NN with a small number of neurons would not
be able to capture all variation in the PSD vectors in the
training set. A sufficiently large network would, however,
be able to extract almost all the information from PSDs, as
long as the number of network outputs is greater than or
equal to the number of model parameters [69].
In order to have a fair comparison between the PSD and

CNN results, we make sure that the PSD NN extract close to
full information from the PSD vectors. For a single case of
CP PSDNN,we perform a convergence test: we increase the
number of trainable parameters in the networks to see if this
makes a difference. We also test different network architec-
tures to make sure that the results are not significantly
affected by this choice. To test this, we create 5 alternatives to
the main model described in Sec. III. We use three different
architectures, and for each of them we try a standard and an
extra-large (XL) version. The architectures are as follows.
(1) Classic NN (as in main model) with flattened PSD

vector connected to 2 dense hidden layers with 1024
units, which then map to the outputs. Relu activation
was used. The total number of trainable parameters
was 1 823 779. The XL version had 3 hidden layers
and 2 873 379 parameters.

(2) Locally connected convolutional neural net, which
treated the PSD vectors as 1D channels. The channels
were passed through locally connected, 1D convolu-
tional layers [70]. This architecture has 128 filters
with size of 3 and separated by stride of 2, for each part
of the PSD vector. Here the filters are shared across
channels. We use two such layers, followed by 4
residual layers, which are then fully connected to the
output. The total number of trainable parameters was
734 883. The XL version had 256 filters, 8 residual
layers, and 4 224 291 parameters.

(3) Separable convolutional neural net [71], which also
used PSD vectors as 1D channels. This architecture
uses a depthwise 1D convolution that acts separately
on channels, followed by a pointwise convolution
that mixes channels. We used 2 such layers, each
with 128 filters, with kernel size of 3 and a stride of
2. They were followed by 4 residual layers, which
are later flattened and fully connected to the output.
This network has 438 415 trainable parameters. The

FIG. 9. Verification of the accuracy of the conditional density
estimation of the likelihood pðθpjθtÞ of predicted summary θp
given true parameter value θt, modeled using a mixture density
network (MDN). The upper panels show histograms of Δμ:
fractional differences between the summaries predicted by the
CNN and PSD NN models θp and samples θs from the estimated
density pðθpjθtÞ, compared to the standard deviation of θp [see
Eq. (C1)]. The shaded regions correspond to <0.3σ, which is the
level of error that will not have significant impact on the results.
The lower panels show the fractional difference Δσ between
standard deviations of θp and θs, as defined in Eq. (C2), with
shaded regions corresponding to <0.2σ. The histograms consist
of 5700 parameter combinations from the prior space defined in
Table I, concatenating all model parameters.
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XL version had 256 filters and 8 residual layers,
which totaled to 3 270 799 parameters.

We train these networks for 885k steps with batch size of
32 and learning rate of 0.0025. The loss function progress
during training is shown in Fig. 10. The alternative net-
works are shown in gray, while the main CP PSD NN are
shown in blue. For comparison, the main deep-learning
result, CP CNN, is shown in pink. We notice that the loss
has not decreased much for the last 100k steps, which
indicates that all networks are almost perfectly converged.
There is some small variation in the values of the loss
function at the end of training among the PSD networks.
Importantly, the XL networks do not achieve significantly
lower loss at the end of training than the main CP PSD NN.
All the PSD networks, however, have much higher final
loss than the deep-learning method CP CNN. This suggests
that training the PSD networks for longer, or using larger
models, would not improve the loss function significantly.
We conclude that the main PSD NN used in this work
effectively captures almost all the information contained in
the PSD vectors, and can be used in fair comparison with
the deep-learning method. This test was performed only for
the combined probes, which is the most complex case; the
conclusions of this test should also hold if repeated for the
individual probes.

APPENDIX E: DATA TRANSFORMATIONS

To ensure that the results are numerically stable, we
apply a number of transformations to the maps before
passing them to the neural networks. All these operations
are lossless and identical for both CNN and PSD. We bring
the dynamic range of the maps close to the range between
−1 and 1, which generally helps to improve the training:

We scale the κg map by a factor of ð0.0052 þ σ2pixÞ−0.5,
where σpix is the standard deviation of shape noise in a
pixel. For δg, we use the transformation δg ← δg=N

pix
g − 1,

where Npix
g is the average number of galaxies in a pixel

calculated. We also make sure that the number of galaxies
in the δg map is always ≥0 to prevent negative Poisson λ
parameters, that can very rarely occur. We do this by
rescaling the density contrast δm such that the lowest pixel
value is −1, but the total number of galaxies is preserved.
To do this, we first clip δm to the value of −1 and create
δclipm , and the final map is δm ← δclipm

P
δm=ð

P
δclipm Þ. We

also transform the output parameters θ by using S8 instead
of σ8, and multiplying the AIA by a factor of 0.1. This
operation is reversed at prediction step.

APPENDIX F: APPROXIMATE POISSON NOISE

As currently there is no Poisson noise generator available
on GPU in TensorFlow, we use the inverse Anscombe
transform [41] to approximate it. We sample random
Poisson number z with mean λ using this equation:

z ∼ Normal
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z ← round½max½z; 0��: ðF3Þ

We verify that this approximation is very close to Poisson
and should be sufficiently precise for the purpose of
this work.
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