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We study the excitations that emerge upon doping the translationally invariant correlated insulating
states in magic-angle twisted bilayer graphene at various integer filling factors ν. We identify parameter
regimes where these are excitations associated with skyrmion textures in the spin or pseudospin degrees of
freedom, and explore both short-distance pairing effects and the formation of long-range ordered skyrmion
crystals. We perform a comprehensive analysis of the pseudospin skyrmions that emerge upon doping
insulators at even ν, delineating the regime in parameter space where these are the lowest-energy charged
excitations by means of self-consistent Hartree-Fock calculations on the interacting Bistritzer-MacDonald
model. We explicitly demonstrate the purely electron-mediated pairing of skyrmions, a key ingredient
behind a recent proposal of skyrmion superconductivity. Building upon this, we construct hopping models
to extract the effective masses of paired skyrmions, and discuss our findings and their implications for
skyrmion superconductivity in relation to experiments, focusing on the dome-shaped dependence of the
transition temperature on the twist angle. We also investigate the properties of spin skyrmions about the
quantized anomalous Hall insulator at ν ¼ þ3. In both cases, we demonstrate the formation of robust spin
or pseudospin skyrmion crystals upon doping to a finite density away from integer filling.
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I. INTRODUCTION

The experimental observation of an array of interaction-
driven electronic phases in magic-angle twisted bilayer
graphene (TBG) [1–4] has stimulated intense theoretical
efforts to formulate a unifying physical description of their
emergence from the interplay of topology, symmetry, and
correlations. One promising route to a solution has close
ties to the now-classic paradigm of strongly interacting
electrons in Landau levels (LLs). As shown in Ref. [5], this
so-called “strong-coupling” picture is rooted in the identi-
fication of an idealized limit with a Uð4Þ × Uð4Þ global
symmetry that operates within the subspace of the eight
central bands: The two U(4) symmetries rotate within
quartets of topological Chern bands with Chern numbers
C ¼ �1, respectively (see also Refs. [6–9]). Correlated
insulating phases arise as a result of symmetry breaking
within this (almost) degenerate subspace, in a manner
analogous to the formation of quantumHall ferromagnetism

in integrally filled LLs [10]. This perspective receives
support from the detection of a quantized anomalous Hall
insulator (QAHI) at ν ¼ þ3 [11–13] and various magnetic-
field stabilized Chern insulators at other fillings [4,14–19].
While a purely strong-coupling treatment does not com-
pletely resolve the experimental puzzles surroundingTBG, it
serves as a natural starting point for considering how various
physically realistic corrections influence the competition
between ordered states. In this manner, it can aid in the
identification of new and distinct broken-symmetry phases
that are not accessible in any obvious way from the weakly
interacting limit, but can be viewed as descending from
strong-coupling ferromagnetic orders in a natural, albeit
nontrivial, fashion as the system is tuned toward the
physically relevant intermediate-coupling regime [20,21].
The underlying topology of TBG not only influences the

selection of correlated states, but also leaves its fingerprint
on the nature of their excitations—suggesting a tantalizing
link between insulating behavior at integer filling and
superconducting behavior away from it [22–26]. In this
vein, neutral excitations of the QAHI have been predic-
ted to inherit striking characteristics from the symmetry-
breaking and topological properties of the parent insulator
[27–30]. Given the intimate connection to quantum Hall
ferromagnetism (QHFM), the strong-coupling insulators of
TBG can also be expected to host charged excitations in the
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form of spin or pseudospin textures known as skyrmions or
merons [22,31–38]. For example, under certain conditions,
additional charge carriers can enter the QAHI as skyrmions
rather than as single spin-flip quasiparticles. The situation
is richer at even integer fillings since the intricate structure
afforded by the approximate Uð4Þ × Uð4Þ symmetry and
the associated anisotropies is more apparent here. Besides
spin, the relevant textures now also have access to the valley
and sublattice degrees of freedom (additional “flavors”),
leading to the emergence of pseudospin skyrmions. The
importance of a detailed understanding of such topolo-
gical objects is underscored by a recent proposal [22] of
purely electronic superconductivity arising from bosonic
“paired skyrmions” [39,40] of charge 2e (see Fig. 1),
whose stabilization arises from the particular features of the
strong-coupling Hamiltonian. Such unconventional Cooper
pairs may be relevant for understanding the various super-
conducting domes in TBG [2–4,41–45], whose properties
and origins remain the subject of intense debate.
To date, however, the investigation of such flavor

textures has been limited to either analyses of the effective
nonlinear sigma model (NLSM) [22] or numerical studies
of a simplified model mimicking the gross features of the
central bands [23]. While such studies provide qualitative
insight, a systematic exploration of these charged textures
within a realistic microscopic model of TBG remains an
outstanding challenge. There is no guarantee that topo-
logical textures are relevant once unavoidable complica-
tions such as momentum space structure, finite kinetic
energy, and the presence of a moiré lattice are accounted
for. (A recent study of domain-wall textures in the
ν ¼ þ3 QAHI, where microscopic energetics significantly
alter properties of the topologically mandated electronic
boundary modes, suggests that it is indeed important to
consider such details [46].) This microscopic demonstration
is the lacuna which we address in this paper, by directly
probing the nature of (pseudo) spin skyrmions using
unbiased self-consistent Hartree-Fock (HF) calculations
within the interacting Bistritzer-MacDonald (BM) model
[47,48]. This requires us to consider completely unrestricted

Slater determinants, allowing for full breaking of moiré
translation symmetry. This is a challenging task even within
the constrainedvariational space of theHFmean-field ansatz,
but one that we pursue successfully below.
We have three main objectives in this work: first, to

provide a proof-of-principle demonstration of skyrmion
pairing in an appropriately chosen limit of a microscopic
model of TBG; second, to investigate whether such a
pairing can result in superconducting phenomenology
consistent with that seen in experiment (most notably,
the dome-shaped dependence of the superconducting
transition temperature Tc on the twist angle [41]); third,
to establish the regime in parameter space over which
pairing survives away from the idealized limit. We also
consider a subsidiary set of issues pertaining to the
emergence of skyrmions at other fillings, and their for-
mation of long-range ordered structures [49–51] when
doped into TBG at a finite density.
Within a HF treatment of the interacting BM model, we

find that pseudospin skyrmion pairing does indeed occur
about even integer filling and at sufficiently small chiral
ratio, and in qualitative agreement with the predictions of
the NLSM. Paired skyrmions are lower in energy than
particle excitations for small chiral ratio, with relatively
better energetics at charge neutrality than at jνj ¼ 2. For
chiral ratios approaching the realistic values, they become
energetically unfavorable and harder to stabilize within
mean-field theory. External perturbations such as strain and
substrate, as well as increased screening of interactions,
tend to also have the same effect. We devise an effective
skyrmion hopping model to estimate the effective masses,
and find that the corresponding superconducting critical
temperature Tc [52] can be larger than typical scales
observed experimentally. However, more detailed compari-
son of the twist-angle dependence is complicated by the
sensitivity of the results to how electron interactions are
incorporated (i.e., the “subtraction scheme,” to be explained
in Sec. II A). We critically discuss our findings in the
context of experiments, and conclude that, at least for some
of the samples, skyrmion pairing is unlikely to be

FIG. 1. Caricature of 1e skyrmions and paired 2e skyrmions at ν ¼ 0. Arrows depict the local orientation of pseudospins n�ðrÞ in the
two Chern sectors (C ¼ �1) as defined in Eq. (2) for skyrmions about the KIVC insulator at charge neutrality. Green shaded regions
show where the doped electric charge is localized. Blue arrows indicate the center of the skyrmions, and red arrows denote where
pseudospins are aligned along the z axis.

YVES H. KWAN et al. PHYS. REV. X 12, 031020 (2022)

031020-2



mechanism for superconductivity. For the QAHI at jνj ¼ 3,
we demonstrate the formation of spin skyrmions for doping
of single charges, and various spin texture lattices at larger
dopings.
The balance of this paper is organized as follows. After

reviewing the basics of the NLSM and strong-coupling
picture of TBG in Sec. II, we focus on the pseudospin
skyrmions about the spinless insulator at charge neutrality
(ν ¼ 0) in Sec. III. Via an effective skyrmion hoppingmodel,
we further estimate the dispersion and effective mass of
delocalized skyrmions. We also briefly address the situation
at jνj ¼ 2 in the spinful case. In Sec. IV, we discuss the pro-
perties of spin skyrmions and spin texture lattices at jνj ¼ 3
about the QAHI. We end with a discussion in Sec. V.

II. THEORETICAL CONSIDERATIONS

In this section, we review the key concepts that underpin
the existence and properties of skyrmions about the strong-
coupling insulators in TBG [5,8,53].

A. Interacting BM model

The starting point is the continuum BM model ĤBM

which generates the single-particle moiré bands of TBG in
the moiré Brillouin zone (MBZ) [47]. Details of the model
are relegated to Appendix A in the Supplemental Material
[54], but we mention here the important parameters which
will influence the skyrmions. The interlayer coupling is
parametrized through two sublattice-dependent hopping
constants wAA and wAB reflecting corrugation effects in the
superlattice. We fix wAB ¼ 110 meV but consider variable
wAA, thereby tuning the value of the chiral ratio
κ ≡ wAA=wAB. The estimated values for κ in the literature
range from 0.5 to 0.8 [55–57]. The kinetic bandwidth is
minimal when the twist angle θ is close to the magic angle,
which is weakly dependent on κ. While the physical
relevance of θ as a tuning parameter is obvious, it will
prove theoretically useful to vary wAA to control deviations
from the fully symmetric theory, to be described below.
(Note that it has been argued that the effective value of wAA
may be susceptible to renormalization toward the chiral
limit [58] κ ¼ 0 due to the effects of remote bands; thus,
tuning wAA may be viewed as phenomenologically model-
ing this downward renormalization [9].)
Sometimes, we also incorporate heterostrain [20,59,60]

with strength ϵ and a sublattice potential of strength Δ [61].
In the absence of such single-particle perturbations, the
point group isD6, which includes Ĉ2z, Ĉ3z, and M̂ (in-plane
rotation about the x axis). Accounting for both valley and
spin degrees of freedom, the BMmodel contains a Uð2ÞK ×
Uð2ÞK0 flavor symmetry which includes charge or valley
conservation and independent SU(2) spin rotations within
each valley. Naturally, a spinless time-reversal symmetry
(TRS) T̂ ¼ τxK̂ is also present, where K̂ is the complex
conjugation operator. Upon neglecting the weak relative

rotation of the Dirac cones in the two layers, there is also a
particle-hole symmetry (PHS) P̂ [62–64]. Throughout this
work, we focus solely on the central eight bands and project
out the remote bands which are separated by a large band
gap. (Although, see the preceding comments on their
possible role in adjusting wAA.)
Repulsive interactions are implemented by augmenting

the BM model with dual-gate screened density-density
Coulomb interactions VðqÞ ¼ ðe2=2ϵ0ϵrqÞ tanhqdsc, where
the relative permittivity ϵr ¼ 10 and the screening length
dsc ¼ 25 nm [5]. By neglecting subleading “intervalley
Hund’s couplings,” which scatter electrons between
valleys, we retain the global Uð2ÞK × Uð2ÞK0 symmetry.
Note that interactions may alter the one-body terms

somewhat, leading to a total effective single-particle
dispersion ĤSP [5,7,8,64–66]. The precise correction
depends on the choice of “subtraction scheme,”which arises
as follows (a more detailed exposition can be found in
Appendix A of Ref. [54]). Including only normal-ordered
interactions within the central-band subspace neglects con-
tributions from the remote bands. Furthermore, some inter-
actions are double counted because the hopping parameters
of graphene (e.g., from density-functional-theory calcula-
tions) are obtained self-consistently with filled valence
bands. A convenient parametrization to remedy this and
restore PHS is in terms of a reference density matrix P0.
There is no unique prescription for fixing P0, and we
consider three choices that have been used in the literature:
(i) the “average,” (ii) “charge neutrality” (CN), and (iii) “gra-
phene” schemes. This nomenclature is motivated by how P0

is constructed: (i)P0 ∝ I, (ii)P0 consists of the filled valence
BMbands, and (iii)P0 consists of the filled valence bands of
decoupled layers of graphene. Most of the initial discussion
on skyrmions is based on the average scheme, which leads to
no corrections when interactions are recast in the strong-
coupling form that highlights the strong-coupling hierarchy
of scales (see Sec. II B and Appendix A of Ref. [54]). The
other two schemes are analyzed in more detail in Sec. III D.

B. Strong-coupling hierarchy

Since the typical Coulomb scale exceeds the kinetic
bandwidth, the BM band basis may not be the most natural
one in which to understand interaction physics. A more
appropriate choice that reveals the underlying topological
character of the bands is furnished by the Chern basis
obtained by diagonalizing the sublattice operator σz [5].
Each band is predominantly polarized on one sublattice,
which allows us to label the central bands with sublattice σ,
valley τ, and spin s. Combining these into a single index α,
we can write the Bloch functions as jψαðkÞi ¼ eik·r̂juαðkÞi
with associated creation operators d̂†αðkÞ. Crucially, these
bands have Chern number C ¼ σzτz [Fig. 2(a)].
The link to QHFM is sharpened in the well-studied chiral

limit κ ¼ 0 [58,67], where the kinetic bandwidth becomes
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exactly zero at the magic angle and the Chern bands
become completely sublattice polarized. In addition, the
new chiral symmetry fσz; HBMg, in concert with Ĉ2zT̂ and
P̂, heavily constrains the form factors Λα;βðk; qÞ≡
huαðkÞjuβðkþ qÞi to be diagonal and to depend only on
the Chern number: This allows us to write Λα;βðk; qÞ ¼
ΛSðk; qÞδαβ with [5]

ΛSðk; qÞ ¼ FSðk; qÞeiϕSðk;qÞσzτz ; ð1Þ

where the superscript S denotes “symmetric.” In the chiral-
flat limit where the effective dispersion ĤSP is neglected,
Eq. (1) implies a huge Uð4ÞC¼1 × Uð4ÞC¼−1 symmetry, as
can be seen by checking the invariance of the density
operator ρ̂SðqÞ ¼ P

k d̂
†ðkÞΛSðk; qÞd̂ðkþ qÞ under inde-

pendent Chern-number-preserving rotations. Remarkably,
at ν¼ 0 one can prove the existence of exact Slater
determinant ground states, which simply involve uniformly
polarizing any four orthogonal directions within the Chern
quartets (“ferromagnets”) [5,8]. Hence, the chiral-flat limit
is also referred to as the isotropic limit.
The utility of the chiral-flat limit lies in the existence of a

hierarchy of scales which permits corrections to be treated
perturbatively within the manifold of strong-coupling
ferromagnets [5,8]. The energy scale of the full symmetry
group is US, and the main competing scales are the single-
particle inter-Chern tunneling (tS) and deviation from

chirality (UA), with intra-Chern dispersion (tA) being
subleading [see Fig. 2(d) and Appendix A in Ref. [54] ].
Focusing for simplicity on the spinless insulator at neutral-
ity such that the parent symmetry group is Uð2Þ × Uð2Þ, the
effects of the above perturbations can be captured via
anisotropies with positive strengths J and λ, respectively
(i.e., energy scales EJ ¼ AUCJ and Eλ ¼ AUCλ, where AUC
is the moiré unit cell area). It turns out that the states that get
energetically selected by these terms have total C ¼ 0.
Defining an intra-Chern Pauli triplet η ¼ ðσxτx; σxτy; τzÞ,
we can parametrize the strong-coupling ferromagnets
residing in the Chern-neutral sector with two Chern-filtered
pseudospins

n�ðkÞ≡ hΨjd̂†ðkÞη 1� σzτz
2

d̂ðkÞjΨi; ð2Þ

which are independent of k [Fig. 2(a)]. Inter-Chern tunnel-
ing generates superexchange inducing an antiferromagnetic
(AFM) coupling between the two pseudospins, while a
finite κ manifests as an AFM coupling in plane, and a FM
coupling out of plane. Both break the chiral-flat symmetry
to distinct U(2) subgroups. The resulting ground state with
nþ ¼ −n− [and hence, valley-Uð1ÞV degeneracy] is the
Kramers intervalley-coherent insulator (KIVC), so called
because it preserves a modified TRS T̂ 0 ¼ τyK̂. An
equivalent description of the spinless KIVC is via its
density matrix P ¼ 1

2
ð1þQÞ, where

(a)

(b) (c)

FIG. 2. Strong-coupling hierarchy and Chern pseudospins. (a) Schematic of Chern sectors with C ¼ �1. In the isotropic limit, there is
a Uð2Þ × Uð2Þ symmetry [Uð4Þ × Uð4Þ with spin]. At charge neutrality for a generalized ferromagnet with net C ¼ 0, one can define
pseudospins n�. The dominant corrections can be captured as anisotropies J, λ (wiggly lines) which couple the Chern sectors and
partially lift the symmetry. (b) NLSM parameters EJ ¼ JAUC (triangles), Eλ ¼ λAUC (crosses) as a function of twist angle θ, and
interlayer hopping parameter wAA, where AUC is the moiré unit cell area. The pseudospin stiffness ρPS ≃ 1.5 meV calculated in the
isotropic limit does not depend on wAA and subtraction scheme (see Appendix A in Ref. [54]), and is largely insensitive to θ. (c) Strong-
coupling energy scales US, UA, tS, tA as a function of θ and wAA. All quantities are calculated using the average subtraction scheme.
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QKIVC ¼ σyðτx cosϕIVC þ τy sinϕIVCÞ ð3Þ

is parametrized through the IVC angle ϕIVC.

C. Nonlinear sigma model and pseudospin textures

To understand low-energy excitations and spatially non-
uniform configurations, it is useful to consider a continuum
NLSM description purely in terms of the pseudospins [22].
The energy functional, familiar from QHFM, is

E½nþ; n−� ¼
Z

d2r

�
ρPS
2

(ð∇nþÞ2 þ ð∇n−Þ2)

þ ðJ þ λÞnþ · n− − 2λnzþnz−

�

þ 1

2

Z
d2r0δρðrÞVðr − r0Þδρðr0Þ; ð4Þ

where ρPS is the pseudospin stiffness in the isotropic limit,
and δρ ¼ δρþ þ δρ− consists of the topological charge
(Pontryagin index) densities of the two Chern sectors

δρ�ðrÞ ¼ �eρtop;�ðrÞ ¼ � e
4π

n� · ∂xn� × ∂yn�: ð5Þ

The skyrmion number is given by

Ntop;� ¼
Z

d2rρtop;�ðrÞ; ð6Þ

where skyrmions and antiskyrmions have Ntop ¼ þ1 and
Ntop ¼ −1, respectively.
The NLSM parameters J, λ, ρPS are plotted in Fig. 2,

with explicit expressions supplied in Appendix A of
Ref. [54]. In the “average scheme” described there, the
superexchange J has a prominent minimum and nearly
vanishes around θ ≃ 1.08°, coincident with where the bare
BM bandwidth is smallest. λ is a monotonically increasing
function of wAA and is largely insensitive to θ. The
pseudospin stiffness ≃1.3 meV is a property of the max-
imally symmetric manifold and has a very weak depend-
ence on twist angle. While there are sizable regions where
λ > J, this ordering of scales occurs only for the average
scheme where J is directly tied to the bare BM scale, which
is substantially smaller than the bandwidth obtained via
STM measurements of the van Hove singularities in the
density of states [68–72]. Therefore, we are mostly inter-
ested in the case J ≳ λ, which is conducive to skyrmion
pairing as we explain below.
Consider first the isotropic limit J ¼ λ ¼ 0 where the

Chern sectors decouple. The ground state at ν ¼ 0 is
specified by free choices of uniform pseudospins n0�. An
additional charge enters as a 1e skyrmion (in one of the
Chern sectors) rather than a particlelike excitation if the
energy for a well-separated skyrmion-antiskrymion pair
ð8πρPSÞ exceeds the particle-hole gap ðΔPHÞ. We can use

the infinite-size Polyakov solution [31] which minimizes
the gradient energy because of the lack of any Zeeman-like
term, meaning that the texture prefers to expand to
minimize the Coulomb term.
Reintroducing dispersion leads to an effective AFM

coupling J, constraining the parent ground state n0þ ¼
−n0− which now belongs to an SO(3) manifold. A skyrmion
of radius Rs in, say, nþ now experiences a Zeeman penalty
∝ R2

s arising from misalignment with n0−. The skyrmion
becomes finite with a size determined from the competition
between J and the interaction term. (Note that in order to
avoid divergences with system size, the tails of the sky-
rmion profile must decay faster in space than the Polyakov
ansatz [22,32,73].) For large enough J, the skyrmion
shrinks and crosses over to an ordinary particlelike exci-
tation. Having instead a finite λ leads to similar conclu-
sions, except with a different residual SU(2) manifold.
Including both perturbations restricts the insulator to a
KIVC parametrized by a U(1) valley angle.
Adding instead a net charge of jQj ¼ 2e to the system

leads to substantially different conclusions. In the scenario
with nonzero J, the AFM interaction leads to the pairing of
a skyrmion in nþ with an antiskyrmion in n− (the total
charge is 2e, a crucial consequence of the opposite assign-
ment ofChern numbers). To see this, note that theAFM inter-
Chern coupling is completely satisfied if the two textures are
centered at the same position with exactly the same profile
such that npairðrÞ≡ nþðrÞ ¼ −n−ðrÞ. In this case, the
resulting “paired 2e skyrmion” dilates without limit to avoid
the Coulomb self-energy. Hence, an nþ skyrmion and an n−
antiskyrmion will bind for any positive value of J, even
though the underlying electron interaction is purely repul-
sive. A paired-skyrmion configuration preserves T̂ 0 sym-
metry, which is a useful numerical diagnostic.
In the presence of an additional λ term, the paired

skyrmion experiences an energy penalty ∝ R2
s from regions

where npairðrÞ is not lying in plane. This not only leads to a
finite size, but also elongates the texture somewhat to
reduce the area spent pointing out of plane. When λ is
comparable to J, the texture deforms to resemble the
topologically equivalent configuration of two paired 1e
merons separated by a finite distance. This can be under-
stood as the λ term shrinking the costly npairkẑ regions such
that they become the cores of the merons (see red arrows in
Fig. 1). If λ=J is sufficiently large, pairing is no longer
favorable.

D. Skyrmion superconductivity

We now assume that the microscopic parameters are
chosen such that charges enter as skyrmions rather than
particles. 1e skyrmions from opposite Chern sectors attract
to form paired skyrmions. Even if particle excitations are
slightly lower in energy, this typically occurs in a small
region of the MBZ centered at ΓM. Hence, above a critical
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doping, additional charges are expected to form sky-
rmions [22].
A nonzero superconducting Tc requires a finite boson

effective mass Mpair, which can be motivated within the
phenomenological picture of a pair of coupled quantum
Hall ferromagnets [22] in equal and opposite magnetic
fields. A single 1e skyrmion feels a net magnetic field
and hence has a flat-band dispersion. On the other hand,
the magnetic fields experienced by a paired skyrmion
cancel out. To understand the generation of an effective
mass in this case, imagine a paired skyrmion propagating
at some velocity v. The Lorentz forces in the two sectors
act to push the constituent 1e skyrmions in opposite
directions, which is counteracted by a restoring force
depending linearly on J and the separation (λ is assumed
small). By balancing the two, one can deduce that Mpair

is inversely proportional to J. Therefore, the paired
skyrmions condense with a finite superfluid stiffness
and associated Berezenskii-Kosterlitz-Thouless transition
temperature [52]

Tc ¼
νπℏ2

2kBAUCMpair
¼ νJAUC

2kB
: ð7Þ

We define a corresponding filling-independent energy
scale Ec ¼ kBTc=ν, which equals EJ=2 in this frame-
work. Above, ν should be taken to be the doping relative
to the integer filling of interest.
Note the sensitive dependence on the superexchange J,

which potentially provides a litmus test for the applicability
of this mechanism to realistic samples of TBG. Namely,
experiments observe a superconducting dome in Tc as a
function of the twist angle, which peaks around θ ¼ 1.08°
[41]. The value of J, and indeed the effective mass as
computed independently in Sec. III D, are also affected by θ
through the evolution of the bandwidth and character of the
BM bands. However, as we discuss later, the precise
relationship is subtle and differs based on the choice of
interaction. In particular, while the nature of the ordered
normal state at ν ¼ 0 is unambiguous, depending only on
the signs of J and λ, finer details such as skyrmion effective
masses are susceptible to the specifics of the subtraction
scheme (see Appendix A in Ref. [54]).

E. Numerical methods

Underpinning the discussion in the following sections
are explicit mean-field solutions jϕi for the (pseudo) spin
skyrmions constructed using unbiased self-consistent HF
calculations. Since such configurations break translation
symmetry and flavor rotation symmetries, the HF density
matrix takes the most general form

Pkτsσ;k0τ0s0σ0 ¼ hd̂†kτsσd̂k0τ0s0σ0 i: ð8Þ
The MBZ momenta k take discrete values due to the finite
system dimensions L1, L2 measured in units of the moiré

lattice vectors aM1 , a
M
2 . Throughout this work, we take L ¼

L1 ¼ L2 so that a nondegenerate moiré band can accom-
modate L2 electrons. The filling is fixed by the constraint
TrP ¼ ð4þ νÞL2 ¼ ð4þ ν0ÞL2 þ N, where ν0 is the
parent integer filling factor, and N represents the number
of additional doped electrons. We typically initialize the
calculations with random initial projectors and accelerate
convergence using the optimal damping algorithm [74].
Near ν ¼ 0, we neglect spin for simplicity and hence omit
the index s when calculating both skyrmion and particle
excitations.
For spin textures about the QAH state, the local order

parameter is simply the local spin density

SðrÞ ¼
X
ss0τI

hψ̂†
τsIðrÞsss0 ψ̂ τs0IðrÞi; ð9Þ

where s is a Pauli triplet in spin space, and I ¼
f1A; 1B; 2A; 2Bg labels the types of electrons living on
different layers or sublattices. Replacing s by the identity
gives the local charge density. The real-space fermion
creation operator is defined in terms of the Chern basis as

ψ̂†
τsIðrÞ ¼

X
kσ

hψτsσðkÞjr; Iid̂†τsσðkÞ: ð10Þ

For pseudospin textures, the natural extension is the
“diagonal” Chern-filtered pseudospin density

ndiagC ðrÞ ¼
X
I

hψ̂†
I ðrÞ

1þ Cτzσz
2

ηψ̂IðrÞi; ð11Þ

where spin is dropped, and η is the triplet of pseudospinor
Paulis defined above Eq. (2). The net global Chern
polarization is defined by the difference in fractional
occupation in each Chern sector. Above, the Chern
band-filtered real-space creation operator is

½ψ̂†
I ðrÞ�τσ ¼

X
k

hψτσðkÞjr; Iid̂†τσðkÞ; ð12Þ

where τσ labels the Chern band. However, the in-plane
components of Eq. (11) identically vanish in the chiral limit
κ ¼ 0, where the Chern basis becomes completely sub-
lattice polarized. For example, for the C ¼ þ1 Chern
sector, nþ;x and nþ;y should measure coherence between
theKA andK0B bands, but ½ψ̂†

I �KA ð½ψ̂†
I �K0BÞ is nonzero only

when I ¼ 1A; 2A ð1B; 2BÞ.
To remedy this, we occasionally consider an alternative

definition that includes off-diagonal terms in the layer or
sublattice degrees of freedom
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noffC ðrÞ ¼
X
II0

hψ̂†
I ðrÞ

1þ Cτzσz
2

ηψ̂I0 ðrÞi: ð13Þ

To address the question of the effective mass, we can
perform variational calculations in the space of states
obtained by translating a localized paired skyrmion jϕi by
all possible moiré lattice vectors. This defines an effective
skyrmion hopping model leading to delocalized “Bloch
skyrmions” and a Bloch dispersion, from which Mpair can
be extracted. Note that this way of calculating the paired-
skyrmion mass is completely different from the classical
calculation of Mpair used to obtain the second equality of
Eq. (7). The technical details of the skyrmion-plane-wave
calculations, including generalizations involving symmetry-
related skyrmions, are outlined in Appendix B of Ref. [54].

III. PSEUDOSPIN TEXTURES AT EVEN
INTEGER FILLING

A. 1e skyrmions

Figure 3(a) shows the charge density of a 1e skyrmion
relative to the translation-invariant ν ¼ 0 ground state.

The Chern couplings J and λ can be controlled by tuning
the effective one-body term and the chiral ratio, res-
pectively. Since the Hamiltonian obeys particle-hole sym-
metry, adding holes instead of electrons leads to analogous
results.
In the isotropic limit with J ¼ λ ¼ 0, the ground state

can be any member of the Uð2Þ × Uð2Þ manifold described
by independent choices of nþ, n−. (Strictly speaking, the
jCj ¼ 2 ferromagnets are also ground states, but these do
not allow for textures.) As verified numerically, the extra
charge enters as a delocalized skyrmion solely in one of the
Chern sectors, while the other sector remains unchanged.
Hence, its properties are qualitatively the same as for spin
skyrmions about the ν ¼ 3 QAH insulator (see Sec. IV).
Consistent with the absence of anisotropies, the skyrmion
expands as much as possible and is limited only by the
finite simulation cell. This explains the slow convergence in
Fig. 3(b) of the 1e-skyrmion energy E1e skyr (measured with
respect to the 1e-particle excitation E1e) with the linear
system dimension L, compared with other cases. Note that
both E1e skyr and E1e are many-body energies that are
computed self-consistently, and hence account for possible

(a)

(b) (c) (d)

FIG. 3. Properties of 1e skyrmions (spinless ν ¼ 0). (a) Charge density δρðrÞ of 1e skyrmions in the entire simulation cell relative to
the ν ¼ 0 ground state. Panels show different combinations of turning on or off dispersion and achirality, which determine J and λ.
Calculations performed on 18 × 18 systems at θ ¼ 1.05°. Textures manually translated to the center for clarity. (b) Relative energy
ΔE ¼ E1e skyr − E1e of 1e skyrmions (compared to particle excitations) as a function of the system size. Both E1e skyr and E1e are
computed self-consistently. Apart from the isotropic limit (black triangles), 1e skyrmions are not favored. (c)ΔE for different θ and wAA.
Dispersion is always included. System size is 11 × 11. Missing data points indicate parameters where HF is unable to find skyrmion
solutions. (d) Local alignment of Chern pseudospins corresponding to the rightmost panel of (a). All calculations use the average scheme
(see Appendix A in Ref. [54]).
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reorganizations of the original ν ¼ 0 insulator induced by
the added electron. Fitting to a power law ΔEðLÞ ¼
ΔEð∞Þ þ αL−γ , we obtain ΔEð∞Þ ¼ −4.1 meV, α ¼
18.3 meV, and γ ¼ 0.68. Note that the band gap at
ν ¼ 0 depends only weakly on L since there is a direct
gap at ΓM. Hence, in the NLSM picture, the L dependence
is expected to predominantly arise from the system size
constraint on Rs which controls the interaction contribution
to Eq. (4). Given that the gate screening length is compa-
rable to the moiré length dsc ≃ aM, one expects γ > 1 in the
continuum limit for Rs ≫ aM. The discrepancy suggests
that lattice corrections [the dotted patterns in Fig. 3(a)
denote the AA-stacking regions] and finite-size effects have
a quantitative impact here.
In the presence of anisotropies, the 1e skyrmions become

finite sized. For example, in the chiral-nonflat limit with
J ≠ 0, λ ¼ 0, the charge density is localized to within a few
moiré lengths, leading to faster energy convergence with
system size. This is consistent with the intuition from the
NSLM, and the energetics of the skyrmion becomes
significantly less favorable. The parent insulator is a
member of the SU(2) family containing the KIVC and
the valley Hall state (e.g., polarizing into KA and K0A
bands). The global net Chern polarization is less than 1=L2,
consistent with the fact that the superexchange tunnels
between opposite Chern sectors.
A similar story holds for the nonchiral-flat limit with

J ¼ 0, λ ≠ 0, except the ν ¼ 0 insulator now interpolates
between the KIVC and the valley-polarized state. This time,
the added skyrmion is perfectly Chern polarized.
Including both perturbations, which is the case for realistic

TBG, the symmetry reduces to the U(1) family of KIVC
insulators, and the Chern polarization of the skyrmion is
imperfect again. Figure 3(d) illustrates that the localized
violation of Chern antialignment occurs at the same position
as the charge-density modulation, confirming the skyrmionic
nature of the added charge. In Fig. 3(c), we chart the relative
energy of the skyrmions as a function of θ for different chiral
ratios. For the average scheme, the 1e skyrmions are actually
most costly near the magic angle where J is suppressed
[compare with Fig. 2(b)]. This is despite the fact that
artificially turning off J while keeping other parameters fixed
improves the skyrmion energy significantly [Fig. 3(b)]. On
the other hand, λ is largely constant as a function of θ. This
suggests that the continuum description in terms of a small
number of coupling parameters is not completely adequate.
The numerical results forΔE in any plot such as Fig. 3(c)

are generally expected to represent upper bounds for two
reasons. First, our calculations are performed on finite
system sizes L. In the thermodynamic limit L → ∞, the
skyrmions will have some ideal radius Rsð∞Þ set by the
intrinsic properties of the BM model and interaction
potential. Unless L ≫ Rsð∞Þ, the pseudospins in our
calculation will experience some degree of frustration from
the finite simulation cell, leading to an energy penalty.

In addition, a larger L introduces a greater number of basis
Bloch states which allows for smoother pseudospin rota-
tions. Second, the restriction to Slater determinants in HF
likely impacts skyrmions more than particlelike excitations.
As shown in Sec. III D, skyrmions can gain a small
delocalization energy by going beyond mean field and
restoring the translation symmetry.

B. 2e skyrmions

Figure 4(a) shows the textured configurations when two
electrons are added to the translation-invariant ν ¼ 0
ground state. As before, the Chern couplings J, λ can be
controlled through the effective one-body term and the
chiral ratio, respectively.
For J ¼ λ ¼ 0, the texture breaks moiré translation

symmetry completely, but the charge density appears to
spread throughout the system without a clear identification
of one or two well-defined objects. Interestingly, the
lowest-energy solution consists of both additional charges
entering the same Chern sector, meaning that from a
symmetry standpoint the situation will again be qualita-
tively similar to adding two charges to the QAH state. As
shown in Fig. 4(b), the pseudospin alignment (note that one
Chern sector has a constant pseudospin) rotates in a
complicated fashion without reconstructing a new super-
lattice periodicity. However, in analogy to the case of
SU(2)-invariant spin textures in Sec. IV, the inclusion of
more doped electrons can result in a so-called “double-
tetarton lattice” [51] with emergent periodicity if they all
Chern polarize. The resulting pseudospins form an ordered
pattern as shown in Figs. 12(a)–12(c).
In the chiral nonflat limit with J ≠ 0, λ ¼ 0, the charge

density consists of a single smooth modulation with
approximate circular symmetry. This is precisely an explicit
realization of a paired 2e skyrmion: a skyrmion and an
antiskyrmion with identical spatial profiles in the two
Chern sectors exactly overlapping. This binding is induced
by the superexchange J, as evidenced by the perfect
antialignment of Chern pseudospins (and hence, T̂ 0 sym-
metry). In the absence of other perturbations, the paired
skyrmions spread out and are limited only by the system
size, leading to slow convergence in Fig. 4(c). Hence, the
resulting physics controlling the texture is similar to that of
the 1e skyrmion in the isotropic limit.
In the nonchiral-flat limit with J ¼ 0, λ ≠ 0, one may

naively expect a similar paired skyrmion where the pseudo-
spins are locked instead as nþ;z ¼ n−;z and nþ;xy ¼ −n−;xy.
However, this does not work as it leads to an electrically
neutral object. The numerics reveal that both charges pre-
dominantly go into the same Chern sector. For small system
sizes, the state closely resembles the double-tetarton lattice
of the isotropic limit, which is reflected in the energetic
trends in Fig. 4(c) for small L. For larger sizes, the lattice
deforms such that the texture is better described by a nearby
pair of 1e skyrmions. While this may be considered pairing
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(actually, since ΔE > 0, it is a metastable bound state that is
unstable toward decaying into two particles), we reserve the
term paired skyrmion for the T̂ 0-symmetric cases where a
skyrmion and an antiskyrmion from opposite Chern sectors
bind. It is noteworthy that ΔE increases as a function of L,
bucking the trends of all other types of 1e and 2e skyrmions.
This occurs because for L≲ Rsð∞Þ, the constituent sky-
rmions are forced to strongly interact with each other in the
confined system area and may therefore form a delocalized
configuration with better energetics.
It is clear from Fig. 4(c) that reintroducing dispersion to

the achiral-flat limit is favorable to the textures, which are
once again paired skyrmions. The faster convergence of
the relative energy with L is a hint that these paired
skyrmions are now finite in size. This is clear from
Fig. 5(a), which illustrates that increasing the chiral ratio
not only reduces the skyrmion area, but also leads to an
elliptical shape. As we discuss in Sec. II C, this could be
anticipated from the NLSM analysis which predicts that the
λ term penalizes the pseudospins when they antialign out of
plane. This anisotropy is apparent in Figs. 5(b) and 5(c),
where nþ;zðrÞ has a much tighter profile than nþ;xyðrÞ.

At mean-field level, the orientation of the nz lobes is very
soft, with distinct HF solutions differing by ≲10μeV.
The energetic trends of the 2e skyrmions as a function of

θ and wAA are shown in Fig. 4(d). Note that specific to the
average scheme, λ significantly exceeds J for a finite region
of θ around the flat-band point. Consequently, in the range
of approximately 1.05° to approximately 1.13°, the best
textured solution has finite Chern polarization and breaks
T̂ 0, and hence, is not a paired skyrmion.
Strain and substrate alignment represent two single-

particle perturbations that are deleterious to the paired
skyrmions, making them less energetically favorable and
harder to find within HF. Strain significantly increases the
kinetic bandwidth and is known to substantially degrade
the gap of the KIVC at charge neutrality, eventually leading
to a symmetric semimetal [60]. As shown in Fig. 6(a), strain
of strength ϵ≲ 0.1% is enough induce a positive relative
energyΔE for paired skyrmions. This should be interpreted
in the context of STM studies which typically measure
strains of 0.1%–0.7% [68,69,71]. A staggered sublattice
potential Δσz breaks Ĉ2z and acts as a constant easy-axis
Zeeman field with opposite direction in the two Chern

(a)

(b) (c) (d)

FIG. 4. Properties of 2e skyrmions (spinless ν ¼ 0). (a) Charge density δρðrÞ of 2e skyrmions in the entire simulation cell relative to
the ν ¼ 0 ground state. Panels show different combinations of turning on or off dispersion and achirality, which determine J and λ.
Calculations performed on 16 × 16 systems at θ ¼ 1.05°. Textures manually translated to the center for clarity. (b) Local alignment of
Chern pseudospins corresponding to the leftmost panel of (a). The system cell is duplicated three times for presentation. (c) Relative
energyΔE ¼ E2e skyr − E2e of 2e skyrmions (compared to adding two particle excitations) as a function of the system size. Both E2e skyr

and E2e are computed self-consistently; ΔE < 0 indicates that the 2e skyrmion is favored. (d) ΔE for different θ and wAA. Dispersion is
always included. Note that most of the solutions (indicated with crosses rather than squares) for 1.05° < θ < 1.13° are not T̂ 0-symmetric
paired skyrmions. System size is 11 × 11. All calculations use the average scheme (see Appendix A in Ref. [54]).
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sectors, which deters smooth rotations in pseudospin space
[Fig. 6(b)]. For Δ beyond a fraction of a meV, HF fails to
stabilize paired skyrmions at all. In fact, if the coupling is
strong enough, the mean-field ground state becomes a
valley Hall state with no intervalley coherence [20]. On the

other hand, increasing the strength of interactions tends to
favor the paired skyrmions. This can be achieved by
increasing the gate screening distance dsc [Fig. 6(c)] or
reducing the relative permittivity ϵr [Fig. 6(d)].

C. Skyrmion composites and crystallization

By going beyond one or two particles, we can generate
(metastable) higher skyrmion composites and skyrmion
crystals. Figure 7(a) shows a typical configuration obtained
by adding three electrons on top of ν ¼ 0, resulting in a 1e
skyrmion (in the C ¼ þ1 sector) and a paired 2e skyrmion
that position themselves apart due to Coulomb repulsion.
This identification can be straightforwardly made by
looking at the pseudospin orientation. On the other hand,
adding four electrons can lead to a T̂ 0-symmetric clump of
two paired skyrmions which arrange their nz lobes in order
to minimize the gradient cost [Fig. 7(b)]. For larger
numbers of particles, the random initialization of the
self-consistent HF loop tends to drive the system into local
minima with complicated translation-symmetry-breaking
patterns [Fig. 7(f)]. Such states are often well characterized
by clumps or “trains” of paired skyrmions with suitably
arranged pseudospin lobes punctuated by 1e skyrmions
within the gaps. The prevalence of such motifs, even for
large wAA where particle-hole excitations are favorable,
points to the robustness of skyrmions as well-defined
localized excitations far away from the perturbative
strong-coupling regime.
For intermediate dopings, the skyrmions can lose their

individual identities and order into textured crystals. This
is already shown in the isotropic limit for two added par-
ticles in Figs. 4(a) and 4(b), but it can occur even with
anisotropies if the interskyrmion spacing becomes compa-
rable with Rsð∞Þ. For six extra particles, we can find a
meron crystal where the lobes of the paired skyrmions
lie on the honeycomb sites [Fig. 7(c), compare with
Fig. 12(d)]. Figures 7(d) and 7(e) are examples of double-
tetarton lattices with different emergent supercells.

D. Effective mass of paired skyrmions

A key prediction of the NLSM analysis is that paired
skyrmions have a finite dispersion [22], which is crucial for
generating a finite BKT energy scale Ec for superconduc-
tivity. In the NLSM framework, this generation of a finite
mass is nontrivial, arising from the interplay between the
superexchange J and the contrasting magnetic fields. An
important question is how this picture holds up in theperiodic
moiré setting, where magnetic fields and flat bands are
replaced by inhomogeneous Berry curvatures and interac-
tion-renormalized dispersions.We address these issues using
the effective hopping model described in Appendix B of
Ref. [54], paying close attention to the dependence on the
twist angle θ and subtraction scheme (the role of the
subtraction is explained in Sec. II A and Appendix A of

(a) (b)

(c) (d)

FIG. 6. Paired skyrmions and perturbations (spinless ν ¼ 0).
Dependence of the relative energy of the paired skyrmion ΔE ¼
E2e skyr − E2e as a function of the (a) strain ratio ϵ, (b) substrate
coupling Δ, (c) gate screening distance dsc, and (d) relative
permittivity ϵr. System size is 13 × 13 with the graphene scheme.
Qualitatively similar results are obtained for the other schemes.

(a)

(b) (c)

FIG. 5. Paired 2e skyrmions (spinless ν ¼ 0). (a) Charge
density δρðrÞ of paired skyrmions for different wAA. (b),(c) Local
pseudospin orientation in one Chern sector corresponding to the
first and third panels of (a). Note the increasing degree of
anisotropy and confinement for increasing chiral ratio. System
size is 16 × 16 with the average scheme.
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Ref. [54]). Because ofmoiré translation invariance under T̂R,
our method is in essence a variational calculation of “Bloch
skyrmions” jψqi ¼ ð1=LÞPR e

iq·RT̂Rjϕi based on a start-
ing localized skyrmion jϕiwith an ideal pseudospin structure
at the mean-field level. The required inputs are the matrix
elements hϕjT̂Rjϕi; hϕjĤT̂Rjϕi of jϕi and its translated
images.
In Figs. 8(a) and8(b),we show the resulting band structure

of 1e skyrmions and paired skyrmions, measured relative to
the energy of the starting texture. The 1e skyrmion is
characterized by a sharp peak at ΓM and shallow minima
near the zone boundaries (the positions of these featuresmay
change for larger wAA, but the overall structure remains the
same). Usually, a large number of overlaps and matrix
elements beyond nearest neighbors needs to be computed
to converge for a fixed set of parameters.
On the other hand, the paired skyrmions are robustly

associated with a broad energy minimum at ΓM and peaks
at the zone corners. Typically, only matrix elements for
distances≲2aM need to be computed to accurately describe
the properties of the full hopping model. The skyrmion
mass Mpair, and hence, the BKT energy scale Ec, can be
estimated by fitting a parabola to the band minimum. This
typically leads to Tc of order 1 K. Figure 8(c) plots the
convergence of Ec with system size L, which implies that

the finite-size calculations here will typically underestimate
the L → ∞ results. As can be verified by checking nearest-
neighbor overlaps, there is no “orthogonality catastrophe”
for moiré translations—the spatially inhomogeneous part
of a paired skyrmion is finite in size, and most regions of
the HF state remain translation invariant.
Having established the basic properties of the hopping

model for paired skyrmions, we now turn to details of the
dependence of Ec on various parameters. The main
motivation is to touch base with experiments which have
observed a Tc dome as a function of the twist angle [41].
However, as we note in Sec. III B, there is a large window
of θ centered at the magic angle where paired skyrmions
cannot be found in the average scheme. The utility of this
scheme is that J can be easily toggled by artificially turning
off the kinetic Hamiltonian, but the drawback is that J
therefore becomes substantially smaller than λ when the
BM bands are flat, leading to a different type of 2e
skyrmion. To address this issue, we consider now two
alternative schemes which are not fine-tuned to have a
vanishing superexchange.
Figure 8(d) charts the relative energy of the paired

skyrmion as a function of θ and wAA for the CN scheme.
In contrast to Fig. 4(d), the paired skyrmions are energeti-
cally favored in an energy window centered on the magic

(a) (b) (c)

(d) (e) (f)

FIG. 7. Skyrmion composites and crystallization (spinless ν ¼ 0). Charge density δρ, inter-Chern pseudospin alignment nþ · n−, and
pseudospin orientation nþ for different numbers of electrons above charge neutrality ν ¼ 0 in the spinless model. Emergent supercells
for the double-tetarton lattice are highlighted in gray. All pseudospin densities are diagonal in microscopic layer or sublattice. System
size is 16 × 16 with the average scheme.
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angle. Again, ΔE has an inverted relation compared to J,
which is plotted with dotted lines in the right panel. Note
that paired skyrmions can be found up to wAA ¼ 60 meV
for L ¼ 11, which should improve with increasing system
size. Looking at the hopping model results, Ec appears to
qualitatively follow the same trends as J for the whole
range of twist angles investigated, suggesting that the
physical intuition from the NLSM maintains some level
of validity in the lattice case. Notably, the CN scheme
suggests that a skyrmion superconductor would have a Tc
dome around the magic angle.
The graphene scheme in Fig. 8(e) paints a somewhat

different picture—Ec monotonically increases in concert
with J for decreasing twist angle. For smaller angles, the
applicability of this calculation will be cut off by the fact that
the parent insulator is no longer the ground state. Similarly,
the paired skyrmions, at least for small chiral ratios, become
less favorable compared to particle excitations. Hence, there
are still possibilities for the hopping model results in the
graphene scheme to be consistent with a Tc dome.
The stability of paired skyrmions in theCN, graphene, and

average schemes is summarized in Fig. 9. Energetically
favorable skyrmions can be found up to wAA ≃ 50 meV for
the right twist angles in the CN and graphene schemes (this is

likely an underestimate when accounting for skyrmion
delocalization and finite system size). Beyond this, meta-
stable solutions are obtained for chiral ratios as large as
wAA ≃ 65 meV. Closer to realistic values ofwAA ≃ 80 meV,
we find that HF is not able to converge to any paired-
skyrmion states. In the average scheme, the paired skyrmions
are energetically unfavorable close to the magic angle.
It is notable that different subtraction schemes lead to

radically different behaviors in Ec. Indeed, we believe that
this is one of the few cases where such a choice impacts a
physical quantity in a qualitative way. Many theoretical
studies focus primarily on the type of symmetry-breaking
order [5,6,8,20,65,66,75–84]—all the schemes studied here
lead to the KIVC, which requires only that J; λ > 0. On the
other hand, we are interested in the θ dependence of Ec,
which depends sensitively on the value of J itself.
The origin of this discrepancy can be understood by

examining the effective dispersion ĤSP in more detail. As
explained in Appendix A of Ref. [54], its matrix elements
take the form

hSPðkÞ¼hBMðkÞþ 1

2A

X
q

VqΛqðkÞQ0ðkþqÞTΛ†
qðkÞ: ð14Þ

(a)

(d) (e)

(b) (c)

FIG. 8. Effective mass of paired skyrmions (spinless ν ¼ 0). (a),(b) Dispersion of 1e skyrmion and paired skyrmion, respectively, in
the MBZ, obtained using an effective hopping model. Energy is measured relative to the localized HF solution. Black dot indicates ΓM.
For the paired skyrmion, we also show its band structure along a cut in the MBZ. Red line indicates the extraction of the effective mass.
System size is 14 × 14 with the average scheme. (c) Convergence of the superconducting BKT scale Ec ¼ ðπℏ2=2AUCMpairÞ for the
paired skyrmion with system size, in the average scheme. The effective massMpair is fitted to the minimum of the skyrmion dispersion.
Inset shows log-log plot. (d) Left: paired-skyrmion energy ΔE ¼ E2e skyr − E2e relative to particle excitation as function of θ for
different wAA in the CN scheme. System size is 11 × 11. Right: Ec (solid) extracted from the skyrmion dispersion compared with the
superexchange scale EJ=2 (dotted) computed directly from the properties of Ĥ. (e) Same as (d) except using a graphene scheme.
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J depends quadratically on the overall magnitude of hSP. In
the expression above, P0 ¼ 1

2
ð1þQ0Þ is the reference

projector of the particular scheme. For the average scheme,
Q0 ¼ 0 so that the only single-particle contributions (when
the interaction terms are recast in strong-coupling form)
arise from the kinetic piece hBM which gets heavily
suppressed at the magic angle.
P0 for the CN scheme is constructed by occupying the

valence bands of the BM Hamiltonian, while P0 for the
graphene scheme is built by filling the decoupledDirac cones
of each layer to the charge neutrality point and projecting to
the central bands. An important clue is that both schemes
qualitatively agree for θ above the magic angle. We focus on
the states in the vicinity of the Dirac points for simplicity. For
large angles, the Dirac cones of TBG are simply renormal-
ized versions of those in decoupled graphene. In particular,
we can calculate the behavior of the relative sublattice phase
ω ¼ argðu1A=u1BÞ for the valence-band Bloch function as
we traverse a small circle around a Dirac point. From a fixed
starting point,ωwill wind by 2π with some initial offset that
agrees for both TBG and decoupled layers. As θ is reduced,
the BM bands distort until we reach the magic-angle regime
where the Dirac velocity vanishes and the bandwidth
becomes tiny. Continuing past this point, the valence and
conduction bands of TBG actually swap roles [85], which is
reflected in an additional π offset in ω.
The crucial insight is that the filling of the CN projector

tracks this band reversal, while the graphene projector is

oblivious to this physics. Note that the second term of
Eq. (14) represents the subtraction of the exchange gain for
the filled bands of P0. For the CN scheme, this is a positive
contribution for the valence band of the BM model, which
counteracts the negative contribution from the BM kinetic
term itself. Therefore, the two parts of Eq. (14) tend to
cancel each other out, leading to a dome at the magic angle
when hBMðkÞ becomes suppressed. For the graphene
scheme, this destructive interference occurs above the
magic angle. However, when the BM bands swap roles,
the graphene projector does not follow, and hence, the two
parts add constructively for smaller θ.
We reserve judgment on the matter of which scheme is

most appropriate for capturing the physics in experimental
TBG. Each choice has its own merits and justifications. The
average scheme is the simplest and puts the strong-coupling
hierarchy front and center. The graphene scheme aims to
prevent additional renormalizations of the Dirac cones that
have already been accounted for in the input value for the
bare Dirac velocity. The CN scheme provides a base point
(i.e., charge neutrality of the BM model) at which the BM
kinetic energy is precisely the mean-field band structure.
However, it is known to lead to incommensurate Kekulé
spiral (IKS) order at extremely small strains for nonzero
integer ν [20]. The microscopically correct answer is likely
complicated and may differ based on the twist angle itself.
Since paired skyrmions also break TRS and all point

group symmetries, a natural extension of the effective mass
calculation is to include symmetry-related partners of the
starting HF solution jϕi in a “hybridization þ hopping”
model (see Appendix B in Ref. [54] for details). By
restoring the symmetries, this would shed light on the
internal structure of the quantum skyrmion, including the
angular momentum of pairing. However, we find that an
orthogonality catastrophe prevents feasibility of this
method. Partners that are constructed from symmetries
that do not leave the ν ¼ 0KIVC invariant, such as T̂ , have
effectively vanishing overlaps with jϕi. This is not surpris-
ing, since these operators have a nontrivial action on the
pseudospins even in the bulk of jϕi away from the localized
paired skyrmion. However, partners related by certain
symmetries of the KIVC, such as Ĉ3, also have suppressed
matrix elements and overlap with jϕi, leading to splittings
≲10−6 meV. Fundamentally, the reason is that the sky-
rmion texture is really a many-body pseudospin rotation of
the parent insulator involving many particles, as evidenced
by Figs. 5(b) and 5(c). Hence, the Hamiltonian, which
involves only few-body terms, cannot effectively couple the
different partners.
Before closing this subsection, we remark on the quali-

tative agreement shown in Figs. 8(d) and 8(e) between our
effective hopping model and the NLSM, which is surpris-
ing given the stark differences in the two approaches.
The NLSM utilizes a semiclassical continuum picture that
involves relative deformations in the two Chern sectors, and

(a)

(c)

(b)

FIG. 9. Stability of paired skyrmions (spinless ν ¼ 0). (a) Phase
diagram in the θ vs wAA plane showing where paired skyrmions
are energetically favorable (blue) or unfavorable (orange) com-
pared to two particlelike excitations about the spinless ν ¼ 0
insulator. Gray indicates regions where HF fails to find a
metastable paired-skyrmion solution. System size is 14 × 14
with the CN scheme. (b),(c) Same as (a) but with the graphene
and average scheme.
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is insensitive to effects arising from the spatially modulated
moiré potential. On the other hand, our variational Bloch
skyrmions maintain perfect pseudospin antialignment even
for nonzero q, owing to the T̂ 0 symmetry of the mean-field
solution jϕi. The effective hopping model operates in
the tunneling regime, and highlights the discrete transla-
tion symmetry. It is possible that introducing deformations
to the input localized skyrmion will improve the energetics
and further renormalize the effective mass. Given the
spatially extended and many-body nature of the pseu-
dospin texturing, it is natural to expect that skyrmions
possess many soft deformation directions. One can con-
sider the following generalization of our calculation that
would account for this. The Bloch skyrmions jψqi ¼
ð1=LÞPR e

iq·RT̂Rjϕqi are still constructed as plane-wave
superpositions of a Slater determinant. However, the
energetic optimization is performed on the final Bloch
skyrmion energy (expressions for the relevant matrix
elements are provided in Appendix B of Ref. [54]).
Hence, the intermediate localized state jϕqi is generally
q dependent and not a self-consistent mean-field solution.
This procedure is significantly more challenging to carry
out since there is no self-consistency property to exploit,
and jϕqi generally involves a many-body reconstruction of
the starting insulator. An alternative route is to introduce
additional (higher-energy) states into the effective hopping
model to allow for further variational freedom. For exam-
ple, one could add skyrmion solutions centered at different
locations in the unit cell to better sample the effective
“skyrmion moiré potential.” In the absence of such a
computation, we believe that the effective hopping model
currently provides the most microscopically concrete esti-
mate of the effective mass. This is especially true in the
physically relevant regime of intermediate chiral ratios κ,
where the semiclassical intuition leveraged in the NLSM
approach loses its justification due to factors like the
increased band dispersion and Berry curvature modulation,
and reduced skyrmion size. The fact that the diametrically
opposite approaches agree so well is a good indication that
the main features of the effective mass have been captured.
The true physics presumably lies somewhere between the
two limits.

E. Spinful KIVC at jνj= 2
We now reintroduce spin and turn to filling factors near

jνj ¼ 2 where the mean-field ground state is also a KIVC
insulator (we show only the results for ν ¼ þ2, but the
situation at ν ¼ −2 can be inferred from PHS). A repre-
sentative member of the spin-degenerate manifold of states
arising from the approximate SUð2ÞK × SUð2ÞK0 symmetry
consists of fully filling the spin-↑ flat bands while form-
ing a spinless KIVC in the (minority) spin-↓ subspace.
We concentrate on pseudospin skyrmions by enforcing
collinear spins.

Paired skyrmions can be constructed as before by
treating the majority spin bands as spectator bands and
performing nontrivial pseudospin rotations in the half-filled
minority spin bands, but there are complications compared
with the spinless neutrality case. First, the NLSM para-
meters J, λ reflect the relevant energy scales at the
neutrality point of the strong-coupling Hamiltonian.
However, the starting insulator now contains additional
majority carriers, which impacts the effective energetics of
the minority subspace. Second, this additional interaction
renormalization enters in a particle-hole asymmetric way.
Generally, the bands away from neutrality have a signifi-
cantly enhanced bandwidth with a prominent extremum at
ΓM [86,87] [Fig. 10(a)], which disfavors skyrmions
because they are built from momentum states throughout
the MBZ. Third, the edge of the majority spin bands can lie
inside the minority band gap which reduces the gap to
particle-hole excitations. On the other hand, a pseudospin
skyrmion cannot be formed by adding holes to a com-
pletely filled spin sector.
These considerations are reflected in the HF calculations

in Fig. 10(b) at ν ¼ þ2, showing that paired 2e skyrmions
on the electron-doped side are more expensive than the
paired 2h skyrmions on the hole-doped side. Overall, the
relative energies ΔE are less favorable than the results at
charge neutrality.

IV. SPIN TEXTURES AT jνj= 3
The physical intuition and considerations behind

skyrmions in Sec. III can also be applied to odd-integer
fillings. In this section, we briefly discuss textures near
ν ¼ þ3 that arise from doping the Chern, spin, and valley-
polarized QAHI (the results at ν ¼ −3 can be found from
particle-hole symmetry about neutrality). The situation here
is significantly simpler because of the SUð2ÞS spin-rotation
symmetry that holds independent of the presence of dis-
persion or deviation from the chiral limit. Furthermore, the

(a) (b)

FIG. 10. Paired skyrmions (spinful ν ¼ þ2). (a) Hartree-Fock
dispersion of spin-polarized KIVC insulator at ν ¼ þ2. Red
(black) indicates minority (majority) spin carrier. System size is
24 × 24 with θ ¼ 1.06°. (b) Relative energy ΔE ¼ E2eðhÞ skyr −
E2eðhÞ of T̂ 0-symmetric paired 2e and 2h skyrmions about
ν ¼ þ2. Note the sharp minimum of unfilled band at ΓM. System
size is 11 × 11 with the CN scheme.
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starting insulator is easy axis in valley space. The low-
energy charged topological excitations are then expected
to be spin skyrmions [36,37,51] in the partially filled
Chern sector without any texturing in the fully filled
Chern sector.
In Fig. 11, we compute the properties of 1h and 1e

skyrmions by relaxing the spin collinearity constraint in our
HF calculations. In a similar fashion to isotropic 1e
skyrmions in Fig. 3(a), the change in charge density is
roughly circularly symmetric with moiré-periodic modu-
lations on the AA-stacking regions. The local spin ori-
entation is consistent with the hallmark features of an
SU(2)-symmetric skyrmion. Indeed, the calculation of the
topological density ρtop (in spin space) confirms the topo-
logical origin of the excitation. Unlike in QHFM, there is
no explicit Zeeman field, meaning that the skyrmion
expands to fill the available system size to minimize the
Coulomb energy. This is reflected in the slow convergence
of ΔE with L. There is a clear asymmetry between adding
holes and electrons because the interaction-renormalized
band structure [86–91] at finite integer fillings strongly
breaks particle-hole symmetry [see Fig. 10(a)].

Just as in Sec. III C, doping additional charges leads to
the formation of various skyrmion crystals. The unit cell of
the double-tetarton lattice [51] contains two charges with
an intricate spin pattern illustrated in Figs. 12(a) and 12(c).
An alternative configuration is the meron crystal whose
unit cell is associated with a charge of 3e [Fig. 12(d)].
Computations on system sizes and dopings where both
options can be stabilized are required to numerically
determine the energetically preferred lattice. It has also
been proposed that applying a Zeeman field will enrich the
possible set of phases [51].

V. DISCUSSION

In closing, we consider various generalizations and
extensions of the work presented above, comment on the
possibility of experimentally observing skyrmion physics,
and critically assess the implications of our work for the
proposed skyrmion-driven mechanism for superconductiv-
ity in TBG.

A. More general skyrmions

In this work, motivated by our focus on particular aspects
of physics in TBG, we impose restrictions on the directions

(a)

(d)

(b) (c)

FIG. 12. Spin skyrmion crystallization about QAH (spinful
ν ¼ þ3). (a),(b) Charge density when adding two and six holes,
respectively. Gray parallelogram indicates the supercell. (c) In the
double-tetarton lattices of (a),(b), the spins at particular positions
(anti) align along the corners of a tetrahedron in spin space.
(d) Charge and z component of local spin orientation when
adding three holes, leading to a meron lattice. System size is
12 × 12 with the graphene scheme.

(a)

(d)

(b) (c)

FIG. 11. Spin skyrmions about QAH (spinful ν ¼ þ3).
(a) Charge density of a single hole about the ν ¼ þ3 QAH
state. (b) Topological density ρtop computed from the spatial spin
configuration of (a). (c) Energy of single-electron and hole
skyrmions ΔE ¼ E1eðhÞskyr − E1eðhÞ (relative to a particlelike
electron or hole excitation) as a function of system size L.
(d) Local spin orientation SðrÞ=jSðrÞj corresponding to the
skyrmion in (a). The spins are rotated so that the state has a
net polarization along z. System size is 16 × 16with the graphene
scheme.
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in flavor space that the skyrmions are allowed to rotate in.
The strong-coupling insulators at different integer ν are all
Chern ferromagnets, and starting from the fully symmetric
limit, one can consider more general skyrmions where the
only constraint is that locally the state is polarized within
the Chern sectors. For instance, starting from the jνj ¼ þ3
QAHI, it is possible to form a texture in both spin and
pseudospin to create an “entangled” skyrmion, akin to what
happens at jνj ¼ 1 in the zeroth LL of monolayer graphene
[92]. With the full Hamiltonian, pseudospin rotations will
be gapped since the QAHI is easy axis, while spin rotations
remain low energy due to the SUð2ÞS symmetry.
These considerations can be generalized to any integer

filling. Starting from a generalized ferromagnetic insulator
with ν̃C filled bands in Chern sector C, the local flavor
configuration is parametrized by two matrix spinors fCðrÞ
living in Grassmannian projective spaces [93]

fCðrÞ ∈
SUð4Þ

SUðν̃CÞ × SUð4 − ν̃CÞ × Uð1Þ ; ð15Þ

where ν̃þ þ ν̃− ¼ ν. The factors in the normal subgroup
represent unitary rotations in within the filled bands,
unfilled bands, and the phase difference between the filled
and unfilled bands, respectively. The presence of four
flavors and two spinors leads to a large manifold of
skyrmions. From the discussion in Sec. II B, the leading
corrections from the Uð4Þ × Uð4Þ limit will be anistropic
couplings between the spinors, while additional single-
particle perturbations such as substrate coupling may
manifest as anisotropic fields. The relevant space of
textures will be dictated by the energetics at a given filling.
The ground state in the spinful model at charge neutrality

is the spin-unpolarized KIVC [5]

QKIVC ¼ σyðτþV þ τ−V†Þ; ð16Þ

where V ¼ eiϕeiðφ=2Þm·s and τ� ¼ 1
2
ðτx � iτyÞ. This repre-

sents two copies of the spinless version in Eq. (3) with spin
projections �m and IVC phases ϕ� ðφ=2Þ (the relative
phase φ is set by intervalley Hund’s terms). Equivalently,
we have four Chern pseudospins nC;s where s indicates the
projection of the spin along m. Consider doping two
electrons. Forming a paired skyrmion in one of the spin
sectors in the usual way can be understood using the
analysis of Sec. III. Attempting to rotate in spin space will
either lead to Pauli blocking or the loss of antiferromagnetic
exchange J, which justifies our restriction to pseudospin
textures in Sec. III. Similar conclusions can be reached for
the spin-polarized KIVC insulator at jνj ¼ 2, though we
cannot rule out the majority spin being nontrivially
involved if it is the closest filled band to the chemical
potential.

B. Disorder

The effects of disorder on skyrmions have been treated
previously in the quantum Hall context [94–98]. A strong
and smooth disorder potential can drive the system into a
spin glass. We note that all the strong-coupling insulators of
interest in this work violate TRS, and hence, ordinary
impurities cannot directly couple to the symmetry-breaking
order as a random field. Isolated charged impurities are
expected to pin individual skyrmions as well as spin texture
lattices, which may aid in their detection as we discuss in
the following subsection. TBG can also harbor more subtle
forms of disorder. For the QAHI, modulations in the
magnitude and sign of the sublattice coupling Δ can lead
to the enforced nucleation of domain walls, including ones
which separate regions with opposite Chern number [46].
These would interrupt the propagation and crystallization
of spin skyrmions. Twist-angle inhomogeneity [99], which
is pervasive in experimental samples [68–71,100], is
notoriously difficult to model, and its theoretical impact
on the correlated insulators at integer fillings is still
beyond quantitative characterization. For sufficiently
long-wavelength fluctuations, the properties of the sky-
rmions (e.g., the effective masses) are likely to depend on
the local twist angle.

C. Detecting skyrmions

The presence of spin textures about the QAHI at ν ¼ þ3
could be detected by measuring the degradation of mag-
netization for small dopings, e.g., through NMR measure-
ments [101], nitrogen-vacancy center magnetometry, or
using a superconducting quantum-interference device [13].
Individual spin skyrmions involve a large number of spin
flips, and the spin texture lattices of Fig. 12 are close to
completely spin unpolarized. However, there is an orbital
contribution from the spontaneous Chern polarization
which is likely larger [13]. A more direct probe would
be spin-resolved STM near impurity sites that could pin a
localized skyrmion.
Measuring pseudospin textures at even integer filling is

trickier since experimental techniques are not able to
directly couple to the valley degree of freedom. IVC
generally leads to

ffiffiffi
3

p
×

ffiffiffi
3

p
spatial order at the microscopic

graphene scale, but the T̂ 0 symmetry of the KIVC insulator
means that it does not exhibit a Kekulé density distortion
(KD) [102,103]. Paired skyrmions preserve T̂ 0 and hence
do not give rise to KD [103]. They may still leave a dipole-
shaped fingerprint in sublattice polarization within regions
where the state is locally in the valley Hall configuration,
i.e., pseudospins antialigned and pointing along the z axis
[Fig. 5(c)], but this is likely a faint signature since away
from the chiral limit the Chern basis is only partially
sublattice polarized. On the other hand, 1e skyrmions are
tightly localized within a few moiré lengths and give rise to
a spatially varying KD when pinned by charged impurities.
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KD has been observed in the related context of QHFM
within the lowest LL of monolayer graphene [104–106],
including the imaging of an individual valley skyrmion
[105]. We caution that KD in TBG has also been predicted
for IKS order in the presence of a small amount of
strain [20,103].

D. Skyrmion superconductivity

We finally turn to the implications of our work for
skyrmion superconductivity. First, note that two important
factors controlling the feasibility of this proposed mecha-
nism are the stability of paired skyrmions (i.e., relative
energy ΔE compared to particle excitations) and their
effective masses. In general, we can conclude that paired
skyrmions are especially favored close to the strongly
interacting isotropic limit. The realistic value of wAA lies in
the range 55–90 meV (i.e., κ ≃ 0.5–0.8), and we find only
paired skyrmions in the lower range of these values (Fig. 9).
We note that a mechanism has been proposed that might
drive a downward renormalization of the chiral ratio κ [9].
We note also that large skyrmions, which are relatively
classical and relevant for small wAA, are likely to be well
captured in our mean-field treatment. However, for larger
wAA, the paired skyrmions become smaller and quantization
effects are more important, and fluctuations can be more
significant. In this regime, the mean-field result is really
only an upper bound on the skyrmion energy, which could
be lowered by fluctuations, which are not expected to
substantially affect the single-particle excitations.
Enhancing interactions by suppressing screening, either

through increasing the gate distance dsc or decreasing the
permittivity ϵr, also favors skyrmions (Fig. 6). However,
this observation makes the superconducting domes that
persist in Refs. [42–45] upon reducing the interaction
strength difficult to reconcile with a topological mecha-
nism. In these experiments, the insulators at integer ν, from
which the skyrmions would be seeded, disappear with
increasing screening. The superconducting region can also
straddle the integers where the BKT transition temperature
from Eq. (7) seemingly vanishes. Substrate coupling
rapidly destroys pseudospin skyrmions, consistent with
the absence of superconductivity in aligned samples [11,12].
This topological mechanism would not be effective in other
moiré platforms that lack Ĉ2z symmetry [22,107–110]. Strain
takes the system away from the strong-coupling regime and
similarly disfavors skyrmions: For instance, the parent
insulator has been predicted to give way to a symmetric
semimetal at charge neutrality or an IKS at nonzero integer
fillings [20,60]. Hence, the general expectation from our
work and from these experimental observations is that
skyrmion superconductivity is most likely to emerge in
“pristine” samples with minimal screening.
The question of effective masses [and hence, Tc via

(Eq. (7)] is more subtle. We demonstrate that the depend-
ence of the BKT transition scale Ec on θ is rather sensitive

to precise details of how electron interactions are incorpo-
rated. Without further external inputs, e.g., from detailed
ab initio studies or spectroscopic probes of the band
structure over a range of twist angles, it is difficult to
make quantitative contact with experiments such as
Ref. [41] which show a dome in Tc near the magic angle.
Any comparison would also inevitably be complicated by
the presence of confounding variables such as twist-angle
disorder [100] which are difficult to fully characterize, let
alone control. However, what we can reliably distill from
our numerical study is that paired skyrmions can in
principle emerge with a sufficient mass to support an
estimate of Tc ≲ 5 K that is comparable to experimentally
observed values. Both the CN and graphene schemes are
able to support a nonvanishing superfluid velocity at the
magic angle, and the fragility of the parent-correlated
insulators to deviations of θ will tend to also reduce the
strength of skyrmion superconductivity away from this
regime.
The discussion above focuses primarily on a “BEC-like”

limit of skyrmion superconductivity, where the binding is
present already in the dilute limit; this is the regime
primarily accessed in this work. An intriguing alternative
possibility is a more BCS-like picture, where skyrmions,
while unstable at low density, nevertheless become favored
and paired at finite density. We note that Ref. [23], which
studies skyrmion superconductivity in the Landau level
limit, found superconductivity in the doped case, even in
the absence of a pairing gap at zero doping.
Another potential challenge to the applicability of the

skyrmion mechanism to TBG lies in the fact that super-
conductivity is most frequently observed near ν ¼ −2 on
the side away from charge neutrality. On the other hand, our
numerics show that paired skyrmions are relatively harder
to stabilize at jνj ¼ 2 compared to ν ¼ 0 [Fig. 10(b)].
Furthermore, the skyrmions are more disfavored when
doping in the direction away from charge neutrality.
This latter observation can be explained by the increased
dispersion due to the interaction renormalization from the
extra filled bands [Fig. 10(a)], and has been argued to be
consistent with the asymmetry of the Landau fans [86].
We cannot rule out a scenario where skyrmion super-

conductivity is operative in only a subset of samples, for
instance, the device studied in Ref. [4] which is nominally
nonaligned with hexagonal boron nitride and exhibits a
remarkably large number of correlated insulators and
superconducting domes, including near neutrality.
Another moiré material where the skyrmion mechanism
may be a plausible explanation of superconductivity is
mirror-symmetric magic-angle twisted trilayer graphene
(TTG), which is closely related to TBG but has a somewhat
larger value for the magic angle [111]. Interestingly, the
superconductor in TTG is observed to have a very short
coherence length [112], and an associated pseudogap
regime [113]. Partly because of this, Refs. [112,113]
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suggested that part of the TTG superconducting dome is in
the BEC regime. Skyrmion pairing is a natural way to get
preformed charge-2e bosons, and is at least known to give
rise to superconductivity in the chiral limit of TBG [23]. It
is therefore worthwhile to investigate whether this mecha-
nism can explain at least a subset of the experimental
observations in TTG.
In summary, our work provides clear evidence that the

formation and pairing of skyrmions can indeed occur in
microscopically faithful treatments of TBG, thereby illus-
trating that a purely electronic “topological” Cooper pairing
mechanism can operate away from the exactly solvable
limit without leveraging any approximate sigma-model
description. However, despite this in-principle demonstra-
tion of the feasibility of a novel pairing mechanism, we
cannot on the basis of present evidence definitively
attribute superconductivity in TBG to this mechanism.
This is highlighted by the difficulty in reconciling the
deleterious effect of variations in strain and interaction
strength and deviation from the chiral limit on the stability
of skyrmions with the apparent robustness of supercon-
ductivity to such effects. Despite this, the uncertainty of
various microscopic parameters and the mean-field nature
of our study leave open a real possibility that a skyrmionic
mechanism may ultimately survive these challenges.
Further work, especially involving numerical approaches
that can capture fluctuations beyond the mean-field level, is
clearly warranted, as is the exploration of new regimes and
systems where skyrmion pairing may be more favored and
the identification of new probes that can directly interrogate
the nature of the pairing “glue” in TBG.
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Charged Spin-Texture Excitations and the Hartree-Fock
Approximation in the Quantum Hall Effect, Phys. Rev. B
50, 11018 (1994).

[35] M. Abolfath, J. J. Palacios, H. A. Fertig, S. M. Girvin, and
A. H. MacDonald, Critical Comparison of Classical Field
Theory and Microscopic Wave Functions for Skyrmions in
Quantum Hall Ferromagnets, Phys. Rev. B 56, 6795
(1997).

[36] S. Chatterjee, N. Bultinck, and M. P. Zaletel, Symmetry
Breaking and Skyrmionic Transport in Twisted Bilayer
Graphene, Phys. Rev. B 101, 165141 (2020).

[37] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T.
Senthil, Nearly Flat Chern Bands in Moiré Superlattices,
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