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A two-dimensional electron system placed in a magnetic field develops Landau levels, where strong
Coulomb interactions lead to the appearance of many-body correlated ground states. Quantum numbers
similar to the electron spin enable the understanding and control of complex ground state order and
collective excitations. Owing to its spin, valley, and orbital degrees of freedom, Bernal-stacked bilayer
graphene offers a rich platform to pursue correlated phenomena in two dimensions. In this work, we
fabricate dual-gated Bernal-stacked bilayer graphene devices and demonstrate unprecedented fine control
over its valley isospin degrees of freedom using a perpendicular electric field. Higher sample quality
enables us to probe regimes obscured by disorder in previous studies. We present evidence for a new even-
denominator fractional quantum Hall state at filling factor ν ¼ 5=2. The 5=2 state is found to be
spontaneously valley polarized in the limit of vanishing valley Zeeman splitting, consistent with a
theoretical prediction made regarding the spin polarization of the Moore-Read state. In the vicinity of the
even-denominator fractional quantum Hall states, we observe the appearance of the predicted Levin-
Halperin daughter states of the Moore-Read Pfaffian wave function at ν ¼ 3=2 and 7=2 and of the anti-
Pfaffian at ν ¼ 5=2 and −1=2. These observations suggest the breaking of particle-hole symmetry in
bilayer graphene. We construct a comprehensive valley polarization phase diagram for the Jain sequence
fractional states surrounding filling factor 3=2. These results are well explained by a two-component
composite fermion model, further demonstrating the SU(2) nature of the valley isospin in bilayer graphene.
Our experiment paves the path for future efforts of manipulating the valley isospin in bilayer graphene to
engineer exotic topological orders and quantum information processes.
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I. INTRODUCTION

Electrons occupying a partially filled Landau level (LL)
experience strong Coulomb interactions that lead to a

plethora of correlated electronic states, generally known
as the fractional quantum Hall (FQH) effect. The FQH
effect hosts complex many-body wave functions, nontrivial
topology, and unconventional quantum exchange statistics
that are potentially useful for topological quantum comput-
ing [1–9]. In particular, even-denominator states occurring
at half fillings, such as the ν ¼ 5=2 state in GaAs [1,2,6],
have attracted ongoing attention since the 5=2 state is
postulated to be a pþ ip superconductor and harbors non-
Abelian excitations potentially useful in the construction of
a topological qubit [3,5,10]. Its fundamental novelty and
technological appeal have motivated many studies and the
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discoveries of even-denominator FQH states with poten-
tially similar origins in other 2D systems such as bilayer
graphene [11–13], ZnO [14], and WSe2 [15]. While
thermal conductance measurements have provided good
evidence on the non-Abelian nature of the 5=2 state [16], its
exchange statistics has not been explicitly verified in
interferometry studies. The particle-hole symmetry of the
even-denominator states is fundamental to its understand-
ing, as ground states of different symmetries belong to
different topological orders and harbor different edge
modes [2,17–22]. Furthermore, the Moore-Read wave
function of the 5=2 state must be a spin triplet and is in
fact expected to be spontaneously spin polarized in the limit
of zero Zeeman splitting [3,10,23,24]. Experimental studies
of these important issues remain ongoing [6].
The electron spin and spinlike degrees of freedom in

new materials and artificial structures play a fundamental
role in the formation of correlated phenomena through
exchange interactions and the symmetry requirement of a
many-body wave function [25–28]. Owing to its spin,
orbital, and valley isospin degrees of freedom, the E ¼ 0
octet of bilayer graphene (BLG) supports a rich variety
of spontaneously broken symmetries and correlations
[11,12,29–31]. In particular, a perpendicular electric dis-
placement field D generated through dual gating controls
the electrical valley Zeeman splitting Ev between states
occupying different valleys or layers, thus offering a
powerful experimental knob to control the character of
the LLs and the nature of the interactions they support. This
tuning is compatible with device scaling and is independent
of the magnetic field B, which controls the strength of the
Coulomb interactions. It is a distinct experimental control
of the BLG platform, which can be deployed to construct

and elucidate many-body phenomena in a correlated,
multicomponent 2D system.
In this work, we make ultra-high-quality BLG devices

that enable fine control of the valley Zeeman splitting Ev,
and we explore its profound impact in realizing FQH states
with different ground state orders and valley isospin (VIS)
polarizations. In the regime of low D field, an unprec-
edented even-denominator FQH state emerges at filling
factor 5=2 and is found to be spontaneously valley
polarized in the limit of vanishing Ev. We observe clear
Levin-Halperin daughter states of either the Moore-Read
Pfaffian or the anti-Pfaffian in the vicinity of ν ¼ 7=2, 3=2
(Pfaffian) and ν ¼ 5=2, −1=2 (anti-Pfaffian), with the
appearance of a Hall resistance plateau at ν ¼ 1þ 7=13.
These results suggest that the even-denominator FQH states
in BLG break particle-hole symmetry, and the broken
symmetry sensitively depends on the underlying inter-
actions. We construct a comprehensive experimental phase
diagram of the VIS polarization for odd-denominator FQH
states in the range 0 < ν < 2. These measurements truly
establish the valley isospin in BLG as a spinlike electronic
degree of freedom and pave the pathway to future efforts
exploiting its utility in controlling the ground state order
and topology of correlated electronic states.

II. DEVICE FABRICATION

Our dual-graphite-gated, h-BN encapsulated Hall bar
devices are made using dry van der Waals transfer and side
contact techniques largely following methods introduced
in the literature [11,12,32]. A different etching protocol is
used in our fabrication process, which led to higher-quality
electrical contacts compared to prior studies [11]. The details

FIG. 1. Valley isospin controlled fractional quantum Hall states in bilayer graphene. (a) Optical micrograph of device 002. The BLG
and the top graphite gate are etched into a Hall bar shape outlined in black. The bottom graphite gate is outlined in white. The thickness
of the top and bottom BN sheets is 28 nm and 23 nm, respectively. See Appendix A for fabrication details. (b) Wave functions of LLs
jξ; Ni. Here, ξ ¼ þ, − and N ¼ 0, 1 denote the valley and orbital indices. (c) False color map of Rxx (D, ν) at B ¼ 18 T
and T ¼ 20 mK. We label the parent LL of each region. D� transitions are marked by red dashed lines. The black dashed lines
mark the true D ¼ 0 locations. States occupying the j � 0i LLs exhibit the two-flux CF Jain sequence shown in Fig. 10 in
Appendix B. (d) Energy-level diagram that captures the qualitative features of panel (c). Even-denominator states at ν ¼ 3=2 and 7=2 are
reported in Refs. [11,12].
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of the fabrication are given in Appendix A. Figure 1(a)
shows an optical micrograph of device 002. The carrier
density n and displacement field D are, respectively,
given by n ¼ gBGðVBG − VBG0Þ þ gTGðVTG − VTG0Þ and
D ¼ ½gBGðVBG − VBG0Þ − gTGðVTG − VTG0Þ�e=2ε0, with
the gating efficiencies gBG ¼ 7.3 × 1011 V−1 cm−2 and
gTG ¼ 5.9 × 1011 V−1 cm−2 in device 002. Measurements
used to characterize the devices, as well as parameters of
devices 011 and 015, are also given in Appendix A.

III. RESULTS AND DISCUSSION

A. Even-denominator fractional quantum
Hall state at ν = 5=2

Figure 1(c) shows a false color map of the longitudinal
resistance Rxx (D, ν) in the filling factor range 1 < ν < 4 at
B ¼ 18 T. Integer and fractional quantumHall states appear
as dark lines. They occupy the j � 0i and j � 1i LLs of
the BLG, the wave functions of which are illustrated in
Fig. 1(b) [29]. Figure 1(d) gives an energy level diagram of
this regime. The valley Zeeman energy E�

v is defined as
E�
v ¼ �1=2 gvD, where �1=2 corresponds to the quantum

numbers of the two valley isospins and gv is the bare
valley g-factor. The valley Zeeman splitting Ev increases
with increasing D following Ev ¼ gvD, with gv ¼
1.43 K=ðmV=nmÞ. We obtain the value of gv from
Fig. 8 in Appendix B and Ref [30]. The j þ 0i and
j − 1i levels become degenerate at D¼D�, where
Ev¼E10 [11,12,29,30]. This level crossing leads to the
closing of gaps for states occupying these two LLs,
resulting in an Rxx increase in our measurements. We mark
theD� transitions in Fig. 1(c) using four red dashed lines. In
regimes of D > D�, we observe the same LL orbitals as in
previous studies, where two even-denominator FQH states
at ν ¼ 3=2 and 7=2 have been identified [11,12]. They also
occur in our devices [see Fig. 1(c)]. In this work, we focus
on the regime of D < D�, where disorder has obscured
previous studies [11,12].
In this small-D regime, states in the range of 2 < ν < 4

occupy the j � 1i LL levels. Remarkably, a strong Rxx
minimum develops at ν ¼ 5=2 in our devices. This Rxx
minimum occurs in multiple devices and is accompanied by
a well-quantized Rxy plateau as shown in Fig. 9(a) of
Appendix B. Thus, the state at ν ¼ 5=2 is an even-
denominator FQH state. Its appearance on the j � 1i LL
levels, while somewhat intuitive, is only observed now
thanks to the high quality of our devices. As the LL
diagram in Fig. 1(d) shows, the 5=2 state resembles its
counterpart in GaAs but with the spin index now replaced
by the VIS index in BLG. A Moore-Read wave function
requires the 5=2 state to be polarized in any spin and isospin
sectors while numerical simulations of a zero-thickness 2D
system further support its spontaneous polarization in
the limit of Ez ¼ 0 [10,23,24]. Numerous experiments

have examined the spin polarization of the 5=2 state in
GaAs [6,33–40]. While the state is generally thought
to be spin polarized in a sufficiently large magnetic field,
measurements conducted in the low-field range of B ≤ 1 T
have uncovered potential phase transitions [36,37]. In the
small-Ez regime, the interpretation of measurements is
complicated by the finite wave-function thickness in GaAs
and the changes of the interaction energies when the
magnetic field changes. In comparison, the electrical tuning
of Ev, together with the high quality and near-zero thick-
ness of BLG, presents a clean approach to probe the valley
isospin polarization in BLG, in advance of theoretical
calculations.
We measure the gap of the 5=2 stateΔ5=2 as a function of

the D field using thermally activated transport. Figure 2(a)

plots the D-field sweeps of R5=2
xx ðD̃Þ measured at different

temperatures, from which we obtain data points for RxxðTÞ
and plot them in an Arrhenius plot in Fig. 2(b). Fits to
RxxðTÞ ∼ expð−Δ=2kBTÞ yield the gaps Δ5=2ðD̃Þ at differ-
ent D fields. Figure 2(c) plots Δ5=2ðD̃Þ for both positive
and negative values in the range of jD̃j > 1–2 mV=nm,
where the effect of potential disorder can be neglected.
Here, D̃ ¼ Dþ 12.5 mV=nm adjusts for a small offset
in the applied D field. The bottom x axis of Fig. 2(c)
plots the normalized Ev=Ec, where Ec ¼ ðe2=4πϵϵ0lBÞ ¼
217

ffiffiffiffiffiffiffiffiffi

B½T�p

K is the Coulomb energy scale in BLG using
ϵ ¼ 3 for the dielectric constant of h-BN. The gap Δ5=2ðD̃Þ
saturates at 0.3 and 0.35 K, respectively, at large positive
and negative D fields and extrapolates to a finite value of
approximately 0.2 K at D̃ ¼ 0 from both sides. The trend
Δ5=2ðD̃Þ exhibits, together with a sizable gap at Ev ¼ 0,
provides strong experimental evidence for a spontane-
ously valley-polarized 5=2 state. As we demonstrate in
Fig. 4, the valley isospin in BLG indeed behaves as an
SU(2) spin. The spontaneous valley polarization of the
5=2 state is consistent with numerical simulations per-
formed for the real electron spin of the Moore-Read
state [23,24]. Prior work in BLG finds that the even-
denominator state at ν ¼ 3=2 is spin polarized at 17 T
[11]. Given the similar Zeeman splitting in both cases, we
expect the 5=2 state examined here to also be spin
polarized, thus satisfying the triplet requirement of the
Moore-Read wave function in any spin or isospin [3].
Figure 2(d) shows the behavior of R5=2

xx ðD̃Þ and
Δ5=2ðD̃Þclose to D̃ ¼ 0, where the valley polarization of
the 5=2 state is expected to switch abruptly in samples free
of disorder. Instead, we observe a percolation transition
from the j þ 1i LL to the j − 1i LL with a full width of
approximately δD ∼ 0.7 mV=nm or δEv ∼ 1 K. This tran-
sition is signaled by two approximately T-independent
crossover points atDc ∼�0.35 mV=nm in Fig. 2(d), where
Δ5=2 apparently drops to zero. We emphasize that the T
dependence of Rxx close to D̃ ¼ 0 is not related to the
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physics of the 5=2 state but rather reflects the general
conduction behavior of a percolation network; the
increased bulk conduction in the presence of mixed valley
domains leads to Rxx ∼ σ−1xx , hence, an opposite dR=dT
near D̃ ¼ 0. The low disorder of our devices allows us to
probe the intrinsic behavior of the 5=2 state down to the
small valley Zeeman splitting of Ev=Ec ∼ 10−3, where the
5=2 state remains valley polarized.

B. Particle-hole symmetry of the even-denominator
fractional quantum Hall states

The particle-hole (p-h) symmetry of a half-filled LL is
another open question of keen interest to the quantum Hall
community [2,16–22,41–45]. The Moore-Read Pfaffian
and its p-h conjugate, the anti-Pfaffian, explicitly break
the p-h symmetry. Their energy difference is small, and

each state has gained support in numerical calculations
performed in GaAs [17,18,41–43]. Theory also suggests
the possibility of a third ground state, known as the p-h
Pfaffian, which preserves the p-h symmetry and can be
stabilized when both disorder and LL mixing are included
[44,45]. The different Majorana neutral modes of the three
distinct topological orders allow them to be differentiated in
thermal conductance and noise measurements, and recent
experimental results have favored the p-h Pfaffian [16,22].
However, the situation is far from being settled. In the
hierarchical theory, quasiparticles and quasiholes away
from the half-filled N ¼ 1 LL condense into incompress-
ible fractional quantum Hall states known as the Levin-
Halperin states [46]. The first daughter states of the Pfaffian
occur at partial fillings ν̃ ¼ 7=13 and 8=17, while the first
daughter states of the anti-Pfaffian occur at ν̃ ¼ 6=13 and
9=17 [46]. Transport studies in GaAs have revealed the

FIG. 2. The gap of the 5=2 state. (a) R5=2
xx ðD̃Þ sweeps at selected temperatures as labeled in the plot. Here, both gates are swept

simultaneously to stay on the ν ¼ 5=2 minimum. Data points are read from smoothed traces, an example of which is shown for the
77-mK trace (violet dashed line). (b) T-dependent Rxx obtained from traces in panel (a) and plotted on an Arrhenius plot for selected D
fields as labeled. Solid lines are fits to expð−Δ5=2=2kBTÞ, from which we extractΔ5=2: Upper and lower bounds of Δ5=2 from the fits are
shown as error bars in panel (c). Here, we obtain D̃ ¼ Dþ 12.5 mV=nm using the black dashed line crossing ν ¼ 5=2 in Fig. 1(c). (c) D̃
dependence of Δ5=2: Dashed lines extrapolate to 0.2 K at D̃ ¼ 0. Note that Δ5=2 is larger on the negativeD side due to weaker screening
from the top graphite gate, which is farther away. (d) Upper panel: T dependence of Rxx at very small D̃. As the insets illustrate, the
sample is comprised of domains of opposite valley polarizations near D̃ ¼ 0, and the dominance of bulk conduction leads to Rxx ∼ 1=σxx
and a negative dR=dT. The transition to edge conduction at large D̃ produces roughly T-independent crossover points at Dc ∼
�0.3 mV=nm labeled by the arrows. The lower panel of (d) plots the extracted Δ5=2. Note that Δ5=2 drops precipitously towards zero at
Dc. Similar percolation transitions accompany other valley polarization transitions that occur at both integer and fractional fillings in our
samples, such as shown in Figs. 4 and 12.
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appearance of a clear FQH state at ν̃ ¼ 6=13, suggesting
an anti-Pfaffian ground state [21]. The understanding
and reconciling of these measurements remain ongoing.
BLG exhibits multiple even-denominator FQH states
including the new 5=2 state. Using the Levin-Halperin
states as indicators, our transport studies point to the
Pfaffian order at ν ¼ 3=2, 7=2 and the anti-Pfaffian order
at ν ¼ 5=2, −1=2.
The p-h asymmetry appears to be most prominent at

ν ¼ 3=2, as shown in Fig. 3(a) for device 015 and Fig. 11(a)
for device 002. We see clear Rxx minima at ν̃ ¼ 7=13 and
8=17, together with a Hall plateau at Rxy ¼ 0.65 h=e2

corresponding to the 20=13 filling. Strong Rxx minima at
these fractional fillings are also found in device 002 and
shown in Fig. 11(a). In the literature, a peak at 7=13was also
found in the capacitance measurements of Ref. [12]. In
contrast, the newly observed 5=2 state appears to follow the
anti-Pfaffian order, as suggested by the appearance of Rxx
minima at ν̃ ¼ 6=13 and 9=17, as labeled in Fig. 3(b).
Figures 3(b) and 3(e) show their appearance in both devices

015 and 002. The Rxx minima, though shallow, appear at
the same fractions over a wide range of the D field and
are robust in thermal cycling. It is useful to compare their
weak but robust appearance with other accidental and
irreproducible minima in Rxx, a number of which can be
seen in Figs. 3(c)–3(e). Following the same reproducibility
criteria, we identify the ν ¼ 7=2 state to be Pfaffian
[Fig. 3(c)] and the ν ¼ −1=2 state to be anti-Pfaffian
[Fig. 3(d)]. In the vicinity of all four even-denominator
states, we find the daughter states of either the Pfaffian or
the anti-Pfaffian, but not both, and the daughter states
always appear in tandem on both sides of the half-filling.
In addition, we see a weak but robust appearance of the
ν̃ ¼ 6=13 state near ν ¼ −5=2 [Fig. 11(b)], suggesting
that the −5=2 state is likely anti-Pfaffian also. Table I
summarizes the broken p-h symmetries of five even-
denominator states in BLG. Subtle differences of the
interaction at different filling factors play a clear role
in the resulting asymmetry, and calculations capable of
explaining all of them self-consistently will shed

FIG. 3. Particle-hole asymmetry at half-filled N ¼ 1 LLs in BLG. Panels (a)–(e) plot Rxx as a function of the partial filling
ν̃ ¼ ν − ½ν� near ν ¼ 3=2 (a), 5=2 (b), 7=2 (c), −1=2 (d), and 5=2 (e), respectively. Panel (a) also plots Rxy measured concomitantly.
Panels (a) and (b) are from device 015, and (c)–(e) are from device 002. The data are obtained at fixed D fields as labeled, and
B ¼ 18 T unless otherwise noted. Here, T ¼ 20 mK. In panel (a), Rxy plateaus are observed at ν̃ ¼ 2=5, 1=2, 7=13, and 3=5 and
quantized to the correct values given by their full filling factors. Weak but reproducible Rxx minima occur at ν̃ ¼ 8=17; 3=7, and 4=7.
In panels (a)—(e), dashed lines mark fractional fillings calculated from the positions of 1=3 and 2=3. Only reproducible minima are
marked. Blue lines mark ν̃ ¼ 8=17 and 7=13, and magenta lines mark ν̃ ¼ 6=13 and 9=17. Their differences, though small, are
discernable in our data. Additional data on ν ¼ 3=2 and −5=2 from device 002 are given in Fig. 11 of Appendix B.
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much theoretical light on this fundamental question.
Finally, we briefly note the appearance of unconventional
FQH states at ν̃ ¼ 2=5, 3=5, 3=7, and 4=7 in Fig. 3(a),
especially the well-developed 2=5 and 3=5 states
exhibiting quantized Rxy plateaus. These observations
offer the future possibility of exploring the proposed
non-Abelian orders and topological phase transitions in
BLG [4,47].

C. Valley isospin polarization transitions of
odd-denominator fractional quantum Hall states

The understanding and control of the spin or isospin
configuration of a FQH state is a fundamental and key step

towards the generation of parafermions [2,7,26,48,49].
The ease of tuningEv and ν continuously in a single device
enables us to systematically study the ground state VIS
polarization of FQH states. Figures 4(a) and 4(b) show
maps of RxxðD; νÞ near D ¼ 0 for 4=3 < ν < 5=3 and
1=3 < ν < 2=3, respectively. In Fig. 4(a), we observe
numerous gap closing points reminiscent of spin or
pseudospin transitions observed in other 2D systems
[2,26,48,49]. Similar gap closing points, also in the
vicinity of D�, were observed in Ref. 12 and interpreted
using an effective single-particle-like model [12].
Here, we examine our data in the theoretical framework
of two-flux composite fermions (CFs) with SU(2)
spins or isospins. In this model, the fractional filling ν
near 3=2 maps to ν� filled CF Λ levels through
ν ¼ 2 − ν�=ð2ν� � 1Þ. As illustrated in Fig. 4(c), VIS
(partial) polarization transitions occur when Λ levels of
opposite valley indices cross one another. This condition
corresponds to Ev ¼ ½1 − ν�; 3 − ν�;…; ν� − 1�ℏω�

c , for a
total number of ν� transitions for the ν�th Λ level. Here,
ω�
c ¼ ðeBeff=m�

3=2Þ is the cyclotron frequency of CFs,
Beff ¼ 3ðB − B3=2Þ, and m�

3=2 is the effective polarization

FIG. 4. Valley isospin polarization of Jain FQH states. (a,b) False color maps of Rxx (D, ν) similar to Fig. 1(c) in the filling factor
ranges of 4=3 < ν < 5=3 (a) and 1=3 < ν < 2=3 (b). The map in panel (a) expands upon the low-D region between the red dashed lines
in Fig. 1(c). The top axis in panel (a) labels the corresponding CF Λ level filling factor ν�. The side panel of panel (a) plots a line cut
through ν ¼ 4=3. The red circles mark D̃ ≥ 0 VIS transitions for ν ¼ 4=3, 7=5, 10=7, and 13=9. Data taken at B ¼ 18 T and
T ¼ 20 mK. No transitions are observed in 1=3 < ν < 2=3. (c) Free CF Λ level fan diagram including valley isospin. The blue and red
dashed lines represent Λ levels of the “þ” and “−” valley polarizations, respectively, and ðn−; nþÞ labels the filling factor of each valley.
Here, ν� ¼ n− þ nþ. The slope of the red dashed lines is obtained through a fit to Ev ¼ ðν� − 1Þℏω�

c. This fit yields m�
3=2 ¼ 2.6me,

which determines the rest of the diagram. Open circles correspond to transitions marked by the same symbol in panel (a). A similar
analysis is performed for states with ν > 3=2 and yields a smaller m�

3=2 ¼ 1.9me. See Fig. 13 in Appendix B for the fits in both regimes.

(d) Normalized critical valley Zeeman energy αcrit for FQH states on both sides of ν ¼ 3=2 at fixed magnetic fields as labeled in the plot.
The solid violet lines plot calculations from Ref. [50] divided by 4.

TABLE I. Ground state wave function symmetry of the even-
denominator states in BLG.

ν 3=2 5=2 7=2 −1=2 −5=2
P-H symmetry Pf aPf Pf aPf aPf*(likely)
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mass at ν ¼ 3=2 [2]. With a single fitting parameter
m�

3=2 ¼ 2.6me, where me is the free electron mass in
vacuum, we can capture all eight transitions marked
by red circles in Fig. 4(a). In stark contrast to
4=3 < ν < 5=3, no valley polarization transitions are
observed for states in 1=3 < ν < 2=3 in magnetic
fields ranging from 14 T to 31 T, suggesting all two-flux
CFs in the last LL are spontaneously valley polarized.
Following a similar argument, we surmise that the
even-denominator FQH states at ν ¼ 7=2 and −1=2 may
also be spontaneously valley polarized [Fig. 1(c) and
Refs. [11,12] ], though measurements performed in
Fig. 2 for ν ¼ 5=2 are required to confirm this hypothesis.
The different behaviors of the FQH states in the two
regimes connected by ν to 2 − ν transformation point to a
strong LL mixing effect [2].
Extending similar measurements and analysis to higher

magnetic fields (18–31 T), we plot in Fig. 4(d) the
normalized critical valley Zeeman energy αcrit ¼ Ev=Ec
corresponding to the onset of full valley polarization
(see Fig. 12 in Appendix B for raw data). Here, Ec ¼
ðe2=4πϵϵ0lBÞ ¼ 217

ffiffiffiffiffiffiffiffiffi

B½T�p

K is the Coulomb energy scale
in BLG using ϵ ¼ 3 for the dielectric constant of h-BN.
Results from different magnetic fields collapse quite
well, suggesting an approximate

ffiffiffiffi

B
p

scaling of m�
3=2.

The tentlike solid lines in Fig. 4(d) represent exact
diagonalization calculations performed for spin polariza-
tion transitions in a zero-thickness 2D system [50], which
is applicable to any SU(2) isospins. The qualitative
agreement between our data and theory supports the
SU(2) character of the VIS in BLG. Quantitatively,
our results of αcrit are more symmetric around 3=2
and are approximately 4–5 times smaller than theory.
Extrapolation to 3=2 yields m�

3=2 ∼ 0.50me

ffiffiffiffi

B
p

, in com-

parison to the theoretical value of 0.13me

ffiffiffiffi

B
p

in graphene
[50]. Measurements on device 011 yield nearly identical
transitions (Fig. 14), indicating that the underlying phys-
ics is insensitive to sample details. We attribute the small
αcrit to the effect of LL mixing, the inclusion of which is
necessary to accurately capture the energetics of corre-
lated phenomena in BLG [51].

IV. CONCLUSION

In summary, we report the observation of an even-
denominator FQH state at filling factor 5=2 in Bernal-
stacked bilayer graphene. The state remains polarized in
the limit of vanishing valley isospin splitting, offering
indirect support to a spontaneously spin-polarized
Moore-Read state. The even-denominator states are
particle-hole asymmetric, with the asymmetry consistent
with a Pfaffian order at filling factors 3=2 and 7=2 and the
anti-Pfaffian order at 5=2 and −1=2. The valley isospin

behaves like an SU(2) spin with excellent experimental
maneuverability. We demonstrate the control of the
ground state valley polarization of a large family of
FQH states and envision the manipulation of valley
isospin to be a powerful tool in elucidating other
correlated electronic phenomena and constructing quan-
tum information devices.

ACKNOWLEDGMENTS

K. H., H. F., and J. Z. are supported by the National
Science Foundation through Grants No. NSF-DMR-
1904986 and No. NSF-DMR-1708972 and by the
Kaufman New Initiative Research Grant No. KA2018-
98553 of the Pittsburgh Foundation. H. F. acknowledges
support from the Penn State Eberly Research Fellowship.
D. R. H. and N. A. acknowledge support from the NSF
CAREER program (DMR-1654107) and the Penn State 2D
Crystal Consortium-Materials Innovation Platform (2DCC-
MIP) under NSF Cooperative Agreements DMR-1539916
and DMR-2039351. FIB/SEM and TEM measurements
were performed in the Materials Characterization
Laboratory of the Materials Research Institute at the
Pennsylvania State University. X. L. acknowledges the
support of Beijing Natural Science Foundation
(Grant No. JQ18002) and the National Key Research
and Development Program of China (Grant
No. 2017YFA0303301). K.W. and T. T. acknowledge
support from JSPS KAKENHI (Grants No. 19H05790,
No. 20H00354, and No. 21H05233). Work performed at
the National High Magnetic Field Laboratory was sup-
ported by the NSF through Grant No. NSF-DMR-1644779
and the State of Florida. We thank Jainendra Jain, Ajit C.
Balram, William Faugno, Zlatko Papic, Bertrand Halperin,
Allan H. McDonald, and Gabor Csathy for helpful dis-
cussions. We thank Dr. Elizabeth Green and Wenkai Zheng
for assisting in measurements performed during the
COVID-19 pandemic.

The authors declare no competing financial interest.

APPENDIX A: DEVICE FABRICATION AND
CHARACTERIZATION

1. Device fabrication

We fabricated our devices using the processes
described below. The top/bottom h-BN sheet thickness
is 28 nm=23 nm, 24 nm=27 nm, 35 nm=35 nm, and
25 nm=25 nm, respectively, for devices 002, 011, 012,
and 015. We performed transport measurements on devices
002, 011, and 015 and microscopy studies on device 012.
Figure 5(a) shows a scanning electron microscopy (SEM)
image of device 012. Figures 5(b) and 5(c) show cross-
sectional scanning transmission electron microscopy
(STEM) or TEM images of two slabs lifted from the
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two locations marked in Fig. 5(a) using a focused ion beam
(FIB). The sample preparation and microscopy measure-
ments follow that of Ref. [32]. TEM studies were per-
formed using an FEI Titan3 G2 operating at 200 kVand an

FEI Talos F200X operating at 80 kV. SEM imaging and
FIB TEM sample preparation were performed on a Thermo
Scientific Scios 2 DualBeam analytical FIB-SEM using ion
beam voltages ranging from 30 kV down to 5 kV for
lamella thinning.
To make a device we first build a h-BN/graphene/h-BN/

bottom graphite gate stack and transfer it to SiO2=Si
substrate using a dry transfer method [28,30]. This process
is followed by annealing in an Ar=O2 atmosphere at 450 °C
for 3 hours to remove polymer residue from the transfer.
We then exfoliate a graphite sheet (3–4 nm thick) on a
PPC (polypropylene carbonate) stamp and transfer it to
the stack. This will be the top gate. Figure 6(a) shows a
schematic of the finished stack.
A sequence of e-beam lithography and reactive ion etch

(RIE) steps illustrated in Figs. 6(b)–6(f) is used to shape the
stack into the Hall bar structure shown in Fig. 1(a). We first
etch the top graphite sheet into an area that is slightly larger
than the bottom graphite gate to expose the h-BN/BLG area
reserved for making contacts later [Fig. 6(b)]. We then
use e-beam lithography to define the Hall bar structure
[Fig. 6(c)] and three sequential etching steps to pattern the
top gate/h-BN/BLG stack. The three steps are illustrated in
Figs. 6(d)–6(f). The CHF3=O2 etching step in Fig. 6(d) was
done unintentionally for device 002 and repeated in devices
011, 012, and 015. In this step, the top graphite gate
protects the h-BN/BLG underneath from being etched, and
the etching time is not long enough to fully remove the top
h-BN sheet in areas outside the top graphite sheet. Device
703 was made without this step, and we compare their
performances in Fig. 7. We then use O2 plasma to shape
the top graphite gate [Fig. 6(e)] followed by a CHF3=O2

plasma to etch the h-BN/BLG stack into the Hall bar
structure [Fig. 6(f)]. Table II shows the parameters used for
the two types of plasma. Etching times for device 002 are
shown in Fig. 6 and adjusted for other devices.

FIG. 6. The etching steps used in the fabrication of device 002.
(a) Illustration of the finished graphite/h-BN/BLG/h-BN/graphite
five-layer stack. (b) Illustration of the shape of the top graphite
sheet after the O2 etch. It extends over the bottom graphite gate
(white dashed lines) by about 200 nm on the left and right sides.
(c) Etching mask used in the next three etching steps on panel (b).
(d) CHF3=O2 etch defining the shape of the terminals outside the
top graphite sheet. The h-BN/BLG underneath the top graphite
sheet remains intact. The entire BLG sheet is not exposed in this
step. (e) O2 etch, which defines the shape of the top graphite gate.
(f) Finished Hall bar device.

FIG. 5. Microscopy studies. (a) SEM image of device 012. The bottom graphite gate and the bottom h-BN sheet are outlined in cyan
and magenta dashed lines, respectively. The orange dashed line outlines the Hall bar profile of the top h-BN/BLG stack. (b) High-
resolution bright-field STEM image of the cross section cut through the white dashed line in panel (a). (c) Conventional TEM image of
the cross section cut through the black dashed line in panel (a), showing the Au=Cr side contact. The etching profiles resemble those of
previous studies.
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Finally, we pattern and deposit one-dimensional Au=Cr
side contacts using e-beam lithography and physical vapor
deposition. The substrate is cooled to 5 °C and rotated
during the deposition. The deposition rate and thickness
for each metal are as follows: Cr: 0.5 Å=s, 5 nm and
Au: 1.5 Å=s, 45 nm.

2. Device characterization

Contacts in our devices reside outside the top and bottom
graphite gates and are doped by the Si backgate. We apply
VSi ¼ 60 V to ensure good performance in a large mag-
netic field. While STEM images in Figs. 5(b) and 5(c) do
not reveal visible topographic differences compared to

previously reported devices [32], electrical contacts in
our devices appear to perform better compared to Rxx
traces shown in the literature, as indicated by less noisy,
non-negative values when Rxx vanishes at integer and
fractional fillings [11,52]. More robust contacts may have
facilitated the observations of the even-denominator state
at ν ¼ 5=2 and the valley polarization transitions of the
fractional quantum Hall states, which are absent in previous
transport studies [11,12]. A second distinguishing feature
devices 002 and 011 exhibit is the very narrow valley
polarization transition peak at D ¼ 0, which is a strong
indicator of higher sample quality. Figure 7(d) compares
RxxðDÞ traces taken at the ν ¼ 2=3 minimum in devices
002, 011, and 703. Both 002 and 011 are fabricated with the
CHF3=O2 etching step highlighted in red in Fig. 6 while
703 is fabricated without this step. The full width at half
maximum of the D ¼ 0 peak δD is, respectively, 0.38,
0.24, and 1.43 mV=nm in devices 002, 011, and 703.
While it remains unclear to us how the extra etching step
reduces δD, a small disorder broadening of the valley
Zeeman splitting is crucial to the observations reported in
this work.
We use the top and bottom graphite gates to tune the

carrier density n and the perpendicular electric

FIG. 7. Device characterization. (a) Rxx as a function of VBG at fixed VTG’s as indicated in the plot. Tracking the peaks allows us to
determine the gating relation of VBG and VTG, which is plotted in panel (b). The global minimum occurs atD ¼ 0, which corresponds to
VBG0 ¼ 0.137 V and VTG0 ¼ −0.155 V. (c) Hall resistance RxyðnÞ at B ¼ 0.05 T, T ¼ 50 mK, andD ¼ 0 mV=nm. The shaded region
gives an estimated disorder-induced density broadening of δn ¼ 7 × 109 cm−2. (a)–(c) Device 002. (d) Rxx (D) sweeps obtained at the
ν ¼ 2=3minimum in three devices as labeled in the plot. The FWHM δD ¼ 0.38, 0.24, and 1.43 mV=nm, respectively, for devices 002,
011, and 703. Traces are shifted horizontally to overlap the peaks at D ¼ 0.

TABLE II. Parameters used in the RIE processes.

Gas
Pressure
(mTorr)

Temperature
(°C)

RF forward
power (W)

Flow
(sccm)

O2 20 25 14 25
CHF3 þ O2 75 25 40 CHF3: 40

O2: 4
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displacement fieldD following established practices [28,30].
Figure 7(a) plots the longitudinal resistanceRxx as a function
of the bottom gate voltage VBG at fixed top gate voltage VTG
in device 002. Tracking the charge neutrality points (CNP)
(Rxx peaks) yields the gating relation VBG ¼ −0.81 ×
VTG þ 0.012 as well as (VBG0,VTG0) corresponding to the
D ¼ 0 point marked in Fig. 7(b).
Figure 7(c) plots the Hall resistance Rxy vs n at B ¼

0.05 T in device 002, from which we estimate a disorder-
induced density broadening of δn ¼ 7 × 109 cm−2. Note
that δn is typical of our dual-graphite-gated devices and
comparable to what is reported in the literature [11,12]. In
Fig. 8, we show that device 002 exhibits a bulk disorder
energy scale of about 10 K, similar to other high-quality
BLG devices reported in the literature [52]. However,
transport in the quantum Hall regime is carried by edge
states and as a result sensitively depends upon disorder
close to the sample edges. Our devices that were fabricated
using the process illustrated in Fig. 6 show unprecedented
quality in this measurement, as indicated by the narrow
peaks that devices 002 and 011 exhibit at the FQH state
ν ¼ 2=3 in Fig. 7(d).

APPENDIX B: SUPPORTING MEASUREMENTS
ON DEVICE 002

1. Measurement of the bare valley
Zeeman g-factor gv

We define the valley Zeeman energy E�
v ¼ �1=2gvD,

where � corresponds to the two valley indices and gv is
the bare valley g-factor. The valley Zeeman splitting
between the “þ” and the “−” levels is Ev ¼ gvD. For
the N ¼ 0 orbital, Ev ¼ U, where U is the potential
difference between the top and bottom graphene layers.

FIG. 8. The D-field dependence of the band gap in BLG.
(a) Charge neutrality point resistance RCNP as a function of D at
different temperatures. (b) T-dependent RCNP obtained from
traces in panel (a) and plotted on an Arrhenius plot for selected
D fields as labeled. Solid lines are fits to expð−Δ=2kBTÞ, from
which we extract Δ. (c) Extracted ΔðDÞ for both positive and
negative D fields. We fit data above 20 mV=nm with a line
corresponding to ΔðDÞ ¼ 1.43D − 16 ½K� (green dashed line).
Disorder leads to the reduction of Δ, which manifests as a
negative offset of 16 K. The formation of electron-hole puddles at
the CNP gives rise to a finite energy scale of 5 K at D ¼ 0. Both
point to bulk disorder on the scale of about 10 K, similar to other
state-of-the-art BLG devices. (d) Data from device 002 here and
23L in Ref. [30]. The red line corresponds to the fit obtained in
panel (c).

FIG. 9. The Rxx and Rxy vs filling factor ν near 5=2. (a) Deep Rxx minimum and a quantized Rxy plateau observed in device 015.
(b) Signatures of the 5=2 state still present at B ¼ 9 T and T ¼ 40 mK in device 002.
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Note that UðDÞ increases linearly with the applied D
field and equates the band gap in bilayer graphene ΔðDÞ at
zero magnetic field when D is not too large [53].
We measure ΔðDÞ at B ¼ 0 to determine the bare valley
Zeeman g-factor gv using ΔðDÞ ¼ gvD. Figures 8(a)–8(c)
show our measurements and analysis of ΔðDÞ, following
approaches described in the supplementary information
of Ref. [30] and extending the data of Ref. [30] to the small-
D regime. Our analyses yield gv ¼ 1.43 K=mVnm−1, in
excellent agreement with previous results [30].

2. FQH states occupying the N = 0 and 1
Landau levels

Figure 9 shows concomitant measurements of Rxy and
Rxx near ν ¼ 5=2 in two devices. Device 015 exhibits a
well-quantized plateau in Rxy at 18 T while device 002
exhibits a developing Rxy plateau down to 9 T, both
confirming the 5=2 state to be a FQH state. Figure 10
shows examples of FQH states occupying the N ¼ 0 LL.
They are well described by two-flux composite fermions.
Figure 11 provides additional evidence to support the
breaking of the particle-hole symmetry near even-denom-
inator FQH states ν ¼ 3=2 and −5=2 in bilayer graphene.
The Levin-Halperin states manifest as Rxx minima at the
expected filling factors. They are robust in thermal
cycling and appear reproducibly at the same filling
factors in different D fields [Fig. 11(a)] and B fields

[Fig. 11(b)]. We are able to resolve the small differences
between the two sets of filling factors, e.g., between 6=13
and 8=17, here and in the data shown in Fig. 3 of the
main text.

FIG. 10. FQH states on the N ¼ 0 LL. (a) Same false color map of Rxx (D, ν) as in Fig. 1(c) in the main text. (b) Trace of Rxx (ν) for
2 < ν < 3 following the white dashed line in panel (a). (c) Trace of Rxx (ν) for 1 < ν < 2 following the orange dashed line in panel (a).
The two-flux composite fermion FQH states corresponding to ν̃ ¼ ν − ½ν� ¼ p=ð2p� 1Þ, where p is an integer, are labeled in panels (b)
and (c) and provide an excellent description of the data. Here, B ¼ 18 T, T ¼ 20 mK.

FIG. 11. Additional data from device 002 showing the particle-
hole asymmetry near the even-denominator FQH states in bilayer
graphene. (a) Rxx (ν) at selected D fields in the vicinity of ν ¼
3=2 showing the appearance of Levin-Halperin states at ν̃ ¼ 8=17
and 7=13. (b) Rxx (ν) at different B and D fields in the vicinity of
ν ¼ −5=2. The appearance of the weak but reproducible ν̃ ¼
6=13 state suggests an anti-Pfaffian state, although the ν̃ ¼ 9=17
is missing. Here, T ¼ 20 mK.
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3. Valley isospin polarization transitions
of the FQH states near ν = 3=2

Figure 12 shows the measured RxxðDÞ traces from
which we extract the data points plotted in Fig. 4(d) of
the main text. In Fig. 13, we plot transitions to a fully VIS
polarized ground state at B ¼ 18 T for filling factors 4=3,
7=5, 10=7, and 13=9 (open red triangles) and 5=3, 8=5,
11=7, and 14=9 (open black squares). The data points
are read from Fig. 4(a) of the main text and fit to the free
CF model

Ecrit
v ¼ ðν� − 1ÞðℏeBeff=m�

3=2Þ; ðB1Þ
from which we obtain effective polarization mass of
m�

3=2 ¼ 2.6me and 1.9me, respectively, using data from
the regimes of ν < 3=2 and ν > 3=2.

APPENDIX C: DATA FROM DEVICE 011

This section presents measurements from device 011.
Device 011 was fabricated using the processes described in
Appendix A and has top and bottom h-BN sheets with
similar thickness to that of device 002. Figure 14 compares
the valley isospin polarization transitions in devices 002

FIG. 12. Valley isospin polarization transitions of the FQH states near ν ¼ 3=2. (a)–(d) Traces taken at different B fields as labeled and
at different fractions using the color scheme labeled in panel (d). Here, T ¼ 350 mK. VIS transitions manifest as resistance peaks. The
middle peaks of the red trace and the green trace mark the true D ¼ 0 locations. We interpolate or extrapolate them linearly to find the
D ¼ 0 locations for the black and the blue traces. Data points in Fig. 4(d) correspond to readings of positive D’s from device 002.

FIG. 13. Effective polarization mass of the CFs at ν ¼ 3=2.
(a) Ecrit

v vs (ν� − 1) for ν ¼ 4=3, 7=5, 10=7, 13=9 (ν� ¼ 2, 3, 4, 5,
respectively, black symbols) and for ν ¼ 5=3, 8=5, 11=7, 14=9
(ν� ¼ 1, 2, 3, 4, respectively, red symbols). The solid lines are fits
to Eq. (B1). The slopes yield m�

3=2 ¼ 2.6me for ν < 3=2 and
m�

3=2 ¼ 1.9me for ν > 3=2.

FIG. 14. Comparison of VIS polarization transitions in devices
002 (black traces) and 011 (red traces) at ν ¼ 4=3 [panel (a)] and
7=5 [panel (b)]. Here, B ¼ 18 T and T ¼ 20 mK. Device 011
exhibits very narrow VIS transitions shortly after the device was
fabricated [see Fig. 7(d)]. Its quality degraded over many months
of storage before measurements shown here were taken. Traces
plotted here are three-terminal measurements, so the contact
resistance is included. Nonetheless, nearly identical VIS polari-
zation transitions are found in these two devices, indicating that
the underlying physics is insensitive to sample details and
relatively robust against disorder.
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and 011 at two fractional states. The transitions occur at
nearly identical D fields, indicating that the underlying
physics is governed by the intrinsic LL structure of bilayer
graphene and is insensitive to sample-specific details.
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