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Montréal, Québec H3C 3J7, Canada

(Received 4 October 2021; revised 28 April 2022; accepted 20 May 2022; published 19 July 2022)

Monopole operators are studied in a large family of quantum critical points between Dirac spin liquids
and topological quantum spin liquids (QSLs): chiral and Z2 QSLs. These quantum phase transitions are
described by conformal field theories (CFTs): quantum electrodynamics in 2þ 1 dimensions with 2N
flavors of two-component massless Dirac fermions and a four-fermion interaction term. For the transition to
a chiral spin liquid, it is the Gross-Neveu interaction (QED3-GN), while for the transitions to Z2 QSLs, it is
a superconducting pairing term with general spin and valley structure (generalized QED3-Z2GN). Using
the state-operator correspondence, we obtain monopole scaling dimensions to subleading order in 1=N. For
monopoles with a minimal topological charge q ¼ 1=2, the scaling dimension is 2N × 0.26510 at leading
order, with the quantum correction being 0.118911(7) for the chiral spin liquid, and 0.102846(9) for the
simplest Z2 case (the expression is also given for a general pairing term). Although these two anomalous
dimensions are nearly equal, the underlying quantum fluctuations possess distinct origins. The analogous
result in QED3 is also obtained, and we find a subleading contribution of −0.038138ð5Þ, which is slightly
different from the value −0.0383 first obtained in the literature. The scaling dimension of a QED3-GN
monopole with minimal charge is very close to the scaling dimensions of other operators predicted to be
equal by a conjectured duality between QED3-GN with 2N ¼ 2 flavors and the CP1 model. Additionally,
nonminimally charged monopoles with equal charges on both sides of the duality have similar scaling
dimensions. By studying the large-q asymptotics of the scaling dimensions in QED3, QED3-GN, and
QED3-Z2GN, we verify that the constantOðq0Þ coefficient precisely matches the universal nonperturbative
prediction for CFTs with a global U(1) symmetry. Finally, we identify numerous open questions regarding
the fate of monopoles and their hierarchies at transitions to spin liquids and ordered phases.
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I. INTRODUCTION

Gauge theories play an important role in modern con-
densed matter physics, in part due to their ability to provide
a low-energy description of many quantum phases of
matter. Gauge fields emerge as collective excitations that
capture the highly entangled nature of certain strongly
correlated systems. This is notably apparent in the case of
frustrated two-dimensional magnets hosting quantum spin
liquids and deconfined quantum critical points (DQCPs).
In these lattice systems, the emergent gauge field is

compact, and, as a result, it has topological excitations

created by topological disorder operators. For a U(1) gauge
field, these objects are called monopole or instanton
operators, and they play an essential role in many physical
systems. Crucially, monopole proliferation confines the
gauge field. This is the case in the pure U(1) gauge theory
[1,2]. In the presence of massless matter, however, monop-
oles are screened, and confinement can be avoided if
enough flavors of massless matter are present.
In particular, we first consider a transition from a U(1)

Dirac spin liquid (DSL), which is described by QED3 with
2N flavors of massless two-component Dirac fermions.
Realizations of the U(1) DSL were formulated for the
kagome Heisenberg spin-1=2magnet [3–8] and the J1 − J2
spin-1=2 model on the triangular lattice [9–11] with
2N ¼ 4 flavors. Dirac spin-orbital liquid with effective
spin j ¼ 3=2 and 2N ¼ 8 flavors have also been formu-
lated for quantum magnets on honeycomb [12,13] and
triangular [14] lattices. For a large number of fermion
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flavors 2N, it has been shown through a 1=N expansion that
monopole operators are irrelevant [15], and thus the U(1)
DSL is stable in this limit. Taking into account next-to-
leading-order corrections [16], the critical number of
fermion flavors was estimated to be 2Nc ¼ 12, beyond
which minimally charged monopoles become irrelevant.
This result was confirmed by Monte Carlo computations
[17] and is consistent with conformal bootstrap bounds
[18,19]. The addition of disorder renders the model more
unstable [20].
Monopole operators also serve as order parameters in

neighboring phases. For instance, in the CP1 model, which
describes the transition between an antiferromagnetic
(AFM) phase and a valence-bond solid (VBS), there are
monopoles with lattice quantum numbers and their con-
densation results in VBS order [21–24]. It is in this model
where the scaling dimension of monopole operators were
first obtained [25]. Monopoles are also crucial in the U(1)
DSL, a parent state for many spin liquids. In this fermionic
theory, monopoles can carry different quantum numbers
due to the existence of fermion zero modes [26], which may
dress monopoles in various ways. Monopoles describe
various VBS and AFM orders, depending on which lattice
the U(1) DSL is formulated [27]. By tuning a flavor-
dependent Gross-Neveu (GN) interaction, a fermion mass
is generated and monopoles with specific quantum num-
bers condense [28]. In particular, the U(1) DSL on the
kagome lattice orders to an antiferromagnetic 120° coplanar
order as monopoles dressed with a magnetic spin polari-
zation condense [29,30]. This confinement-deconfinement
transition is described by the QED3–chiral Heisenberg GN
model (QED3-CHGN), and the scaling dimensions of
monopole operators at the quantum critical point (QCP)
are obtained in Ref. [31]. In this case, the activation of the
CHGN interaction breaks the flavor symmetry, resulting in
a hierarchy among monopoles where the scaling dimension
depends on the total magnetic spin of a monopole [32,33].
The quantum criticality of the DQCP and the U(1) DSL

with 2N ¼ 4 fermions were recently given a precise
relation. It was shown that they can be formulated as so-
called Stiefel liquids, which are related to nonlinear sigma
models in 2þ 1 dimensions with target manifolds
SOðnÞ=SOð4Þ, where n ¼ 5 and n ¼ 6 for the DQCP
and the U(1) DSL, respectively [34]. Higher values are
conjectured to realize non-Lagrangian critical systems, for
instance, realizing a phase between a noncoplanar magnet
and a VBS order when n ¼ 7.
In this work, we focus on transitions from the U(1) DSL

to two topological quantum spin liquids (QSLs): a chiral
spin liquid (CSL) as we mention above, and a general
type of Z2 QSL. The first transition is described by
QED3-GN [35,36], where the CSL results from the con-
densation of a symmetric fermion mass induced by the GN
interaction. This transition can be realized for the kagome
[37–40] and triangular [41–43] Heisenberg magnets with

2N ¼ 4 Dirac cones. The QCP for the noncompact
QED3-GN has been studied in Refs. [36,44–48]. Even
though a mass gap is condensed in the CSL, there is no
confinement-deconfinement transition taking place in the
compact theory. Despite removing the screening effect of
gapless modes, the symmetric condensed mass induces a
Chern-Simons term in the infrared limit which gaps the
monopoles and prevents their proliferation. The spinons in
the gapped CSL thus remain deconfined. The CSL is a
topologically ordered state that breaks time-reversal sym-
metry and has robust chiral edge modes.
In contrast, the nonchiral Z2 QSL is obtained when

the fermionic spinons undergo a pairing instability to a
gapped s-wave superconducting state. The U(1) gauge field
is gapped through the Higgs mechanism and gives place to
a discrete Z2 gauge field. In this case, fractionalization
remains intact. For the simplest case where the pairing
interaction is diagonal in flavor space, the corresponding
quantum phase transition was studied in Refs. [49,50].
Earlier studies [30,51] qualitatively described how a Z2

QSL can be obtained from a Dirac QSL through a
superconducting transition for the fermions, albeit without
a fluctuating scalar field (Cooper-pair field). In addi-
tion, Ref. [52] studied a similar model in the context
of superconducting criticality in topological insulators.
Interestingly, it turns out that, at leading order in 1=N,
the monopoles have the same scaling dimension at both
QCPs as in the U(1) DSL [31,50]. In this work, we obtain
the next-to-leading-order correction to monopole scaling
dimensions at those QCPs. Furthermore, we also consider a
more general class of Z2 QSLs where the pairing inter-
action is not the same for all spin and valley degrees of
freedom. We compute the anomalous dimension for the
general Z2 QSLs, and we also determine their band
structure and Chern number inside the spin-liquid phase.
This study is also motivated by the duality between

QED3-GN with 2N ¼ 2 fermion flavors and CPN−1 with
N ¼ 2 complex boson flavors conjectured in Ref. [53] and
further studied in Ref. [44]. This duality can be checked
by comparing the scaling of monopole operators with
various scaling dimensions that are predicted to be equal
according to this duality. The good agreement obtained in
the leading-order result [31] is further improved by the
scaling-dimension correction we obtain here for the
QED3-GN monopoles.
The paper is organized as follows. In the next section, we

present the QED3-GN model and show how the state-
operator correspondence is used to obtain monopole scal-
ing dimensions. In Sec. III, the leading-order computa-
tion presented in Ref. [31] is reviewed. In Sec. IV, 1=N
corrections to monopole scaling dimensions are computed.
We also verify that the scaling dimensions satisfy a
conjectured convexity property. In Sec. V, we compare
our results with the large-charge expansion obtained in
Ref. [54] for conformal field theories (CFTs). In Sec. VI,

DUPUIS, BOYACK, and WITCZAK-KREMPA PHYS. REV. X 12, 031012 (2022)

031012-2



we study the QED3-GN ⇔ CP1 duality [53]. In Sec. VII,
we study monopole scaling dimensions at the transition
to a Z2 QSL and obtain distinct values compared to the
CSL. In Sec. VIII, we briefly discuss other phase transitions
that could be studied with this formalism, including
the QED3-UðNÞ × UðNÞGN, QED3–chiral XY GN, and
QED3-CHGN QCPs. We conclude with a discussion of our
results and an outlook. In Appendix A, we review the phase
transition from the U(1) DSL to the CSL in the noncompact
model. In Appendices B and C, we give more details
regarding how the kernels appearing in Sec. IVare obtained
and simplified with gauge invariance. The expansion of
these kernels in terms of harmonics is detailed in
Appendices D and E. We give detailed simplifications of
the kernels used for the case of minimally charged
monopoles in Appendix F. In Appendix G, some remainder
coefficients used to analytically approximate sums over
angular momenta are shown. In Appendix H, we show how
some contributions of fermion zero modes neglected in the
main text vanish. In Appendix I, the fitting procedure used
to alleviate finite-size effects when computing monopole
anomalous dimensions are described. In Appendix J, we
list monopole anomalous dimensions in QED3, QED3-GN,
and QED3-Z2GN for topological charges up to q ¼ 13.

II. MONOPOLES AT TRANSITION BETWEEN
DIRAC AND CHIRAL SPIN LIQUIDS

The action of the QED3-GN model in Euclidean flat
spacetime is given by

S ¼
Z

d3r

�
−Ψ̄γμð∂μ − iAμÞΨ −

h2

2
ðΨ̄ΨÞ2

�
þ � � � ; ð2:1Þ

where Ψ is a 2N flavor spinor Ψ ¼ ðψ1;ψ2;…;ψ2NÞ⊺ with
each flavor ψ i being a two-component Dirac fermion. For
certain quantum magnets, where fermions emerge as
fractionalized quasiparticles, the 2N flavors are related to
two magnetic spin polarizations s ¼↑;↓ and N valley
nodes per spin, v ¼ 1;…; N. Typical quantum magnets
haveN ¼ 2 or 4 nodes, but here we keep N general and use
it as an expansion parameter. The adjoint spinor is given by
Ψ̄ ¼ Ψ†γ0, where the gamma matrices are defined in terms
of the Pauli matrices by γx;y ¼ σx;y, and γ0 ¼ σz. The
fermions are coupled to a compact U(1) gauge field Aμ and
have a GN self-interaction with coupling strength h. The
ellipsis denotes an irrelevant Maxwell term and the con-
tribution of monopole operators MqðxÞ that we discuss
further in what follows.
In 2þ 1 dimensions, U(1) gauge theories have an extra

global Utopð1Þ symmetry associated with the following
conserved current:

JμtopðxÞ ¼
1

2π
ϵμνρ∂νAρðxÞ; ð2:2Þ

where “top” stands for topological. The operators charged
under Utopð1Þ are called topological disorder operators or
instantons. In this (2þ 1)-dimensional context, we refer to
them as monopole operators. These operators create topo-
logical configurations of the gauge field Aq

μ with a
quantized flux

R
dnμϵμνρ∂νA

q
ρ ¼ 4πq, where the topologi-

cal charge is a half-integer q ∈ Z=2 as a result of the Dirac
quantization condition [55]. These kinds of configurations
are allowed in the compact formulation of the U(1) gauge
group, which gives the correct description for emergent
gauge theories in a condensed matter context. The monop-
ole operators themselves can be defined by the action of the
topological current on them:

JμtopðxÞM†
qð0Þ ∼ q

2π

xμ

jxj3 M
†
qð0Þ þ � � � ; ð2:3Þ

where the ellipsis denotes less singular terms in the
operator-product expansion (OPE) [15]. The resulting
factor in front of the monopole operator corresponds to
the magnetic field of a charge-q Dirac magnetic monopole.
The model in Eq. (2.1) describes a transition from a DSL

to a CSL. For a sufficiently strong coupling, a chiral order
develops due to the condensation of a fermion bilinear:
hΨ̄Ψi ≠ 0. This may be studied by introducing an auxiliary
pseudo-scalar boson ϕ. The effective action at the QCP
denoted by Sceff is

Sceff ¼ −2N ln detð=∂ − i=Aþ ϕÞ; ð2:4Þ

where ϕ is an auxiliary boson decoupling the GN inter-
action. More details are shown in Appendix A.
In the compact version of QED3-GN, monopole oper-

ators are also present at the QCP. The main goal of this
paper is to compute their scaling dimension ΔMq

, which
controls the scaling of the monopole two-point correlation
function:

hMqðxÞM†
qðyÞi ∼ 1

jx − yj2ΔMq
: ð2:5Þ

Since the QED3-GN model at the QCP is a CFT, the state-
operator correspondence can be used to obtain these scaling
dimensions [15]. This correspondence relies on a radial
quantization of the CFT and a conformal transformation
mapping the dilatation operator D̂ on R3 to a Hamiltonian
Ĥ on S2 × R. Denoting the usual radius on R3 as r ¼ eτ

(we work in natural units where the two-sphere radius is
R ¼ 1), the related Weyl transformation of the spacetime is
written as

ðds2ÞS2×R ¼ e−2τðds2ÞR3 ¼ dτ2 þ dθ2 þ sin2 θdϕ2: ð2:6Þ

The scaling dimension of an operator OðxÞ then corre-
sponds to the energy of some state ĤjOi ¼ ΔOjOi on this
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compactified spacetime. Specifically, the charge-q operator
with the smallest scaling dimension corresponds to the
ground state of the CFT on the compactified spacetime
S2 ×R, where the sphere S2 is pierced by 4πq flux. To
implement this flux, an external gauge field is coupled to
the fermions

Aq ¼ qð1 − cos θÞdϕ; ð2:7Þ

or Aq
ϕ ¼ ð1 − cos θÞ= sin θ in component notation. The

smallest scaling dimension of monopole operators in
topological sector q is then given by (see also Ref. [56])

Δq ¼ lim
β→∞

Fq ¼ − lim
β→∞

1

β
lnZ½Aq�; ð2:8Þ

where Fq is the free energy, and Z½Aq� is the partition
function formulated on S2 × S1β, i.e., the previous spacetime
but now with the “time” direction compactified to a
“thermal” circle S1β with radius β. This formulation allows
us to introduce the holonomy of the gauge field along this
circle written as

α ¼ iβ−1
Z
S1β

dτAτ: ð2:9Þ

The holonomy couples to the fermion number operatorR
d2r

ffiffiffiffiffiffiffiffiffi
gðrÞp

Ψ†Ψ ¼ N̂fermions and acts as a chemical poten-
tial [19,31]. The saddle-point equation of this holonomy
constrains the fermion number to vanish

0 ¼ 1

β

δ lnZ½Aq�
δα

����
SP

¼ hN̂fermionsi; ð2:10Þ

where “SP” stands for saddle point. The holonomy thus
serves as a Lagrange multiplier that ensures that a state with
hN̂fermionsi ¼ 0 is selected to correctly represent a gauge-
invariant monopole operator [31].
The scaling dimension is obtained using a large-N

expansion. We first note that the partition function can
be written as a path integral:

Z½Aq� ¼ e−βFq ¼
Z

DϕDAμ expð−Seff ½ϕ;Aμ;A
q
μ�Þ: ð2:11Þ

The effective action is now given by

Seff ½ϕ; Aμ;A
q
μ� ¼ −2N ln det ðDAþAq þ ϕÞ; ð2:12Þ

where DAþAq is the gauge-covariant derivative on a curved
spacetime including the external gauge field Aq

μ sourcing
the 4πq flux:

DAþAq ¼ eμbγ
bð∇μ − iAμ − iAq

μÞ: ð2:13Þ

The gamma matrices γb still correspond to the Pauli
matrices, as the spacetime index is normalized with a
tetrad eμb which encapsulates the information about the
metric gμνe

μ
be

ν
c ¼ δbc. The path integral defining the par-

tition function can be expanded around the saddle-point
values of the auxiliary and gauge bosons

ϕ ¼ hϕi þ σ; Aμ ¼ hAμi þ aμ; ð2:14Þ

which are defined by the following saddle-point conditions:

δFq

δϕ

����
ϕ¼hϕi;Aμ¼hAμi

¼ δFq

δAμ

����
ϕ¼hϕi;Aμ¼hAμi

¼ 0: ð2:15Þ

Taking the fluctuations to scale as 1=
ffiffiffiffiffiffiffi
2N

p
, the saddle-point

expansion of the partition function is thenZ
DϕDAe−Seff ¼ e−Seff jSP

Z
DσDae−S

ð2Þ
eff ; ð2:16Þ

where Sð2Þeff is the second variation of the action. Integrating
over the quadratic fluctuations, this gives us the 1=N
expansion of the free energy:

2NFð0Þ
q ¼ 1

β
Seff jSP; ð2:17Þ

Fð1Þ
q ¼ 1

β
×
1

2
ln det

�
δ2Seff

δðσ; aÞδðσ; aÞ
�����

SP
: ð2:18Þ

Using the relation in Eq. (2.8), which follows from the state-
operator correspondence, these first two terms of the free
energy give the scaling dimension at next-to-leading order in
1=N [the expansion is in terms of the total number of fermion

flavors 2N, such that Fq ¼ 2NFð0Þ
q þ Fð1Þ

q þOð1=NÞ].
Since the fermionic mass condensed in the ordered phase

is flavor symmetric hΨ̄Ψi, the global flavor symmetry
remains unbroken, and monopole operators are organized
as representations of SUð2NÞ. Just as for the various fermion
bilinears and monopole correlation functions in the U(1)
DSL [29,58,59], the monopole correlation functions at the
QCP between U(1) DSL and CSL related by this SUð2NÞ
symmetry share the same scaling dimension [60]. Depending
on the lattice, various magnetic and VBS correlation func-
tions will be described by minimally charged monopole
operators [27], but they all share the same scaling dimension
2N × 0.26510þ 0.118911ð7Þ þOðN−1Þ, where the lead-
ing order was found in Ref. [31], and the next-to-leading
order is one of the main results of this work shown in
Eq. (4.61). For typical quantum magnets, we have 2N ¼ 4
fermion flavors. The way that monopole scaling dimen-
sions control observable correlation functions could also be
compared at thisQCPanddeep in theU(1)DSLphase. In this
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latter case, scaling dimensions are those of monopoles
in QED3.

III. REVIEW OF N =∞ THEORY

First, we review the computation of monopole scaling
dimensions in QED3-GN at leading order in 1=N [31]. At
this order, the free energy is given by the effective action in
Eq. (2.12) at its saddle point corresponding to a global
minimum

Fð0Þ
q ¼ −

1

β
ln det ðD−iαdτþAq þ hϕiÞ; ð3:1Þ

where the trace over the 2N flavors is taken and cancels a
prefactor of ð2NÞ−1. The expectation value of the pseudo-
scalar field is taken to be homogeneous. The gauge field is
also constant at the saddle point, with a possible non-
vanishing holonomy α on the thermal circle described in
Eq. (2.9). The determinant operator is diagonalized by
introducing monopole harmonics Yq;l;mðn̂Þ, which are a
generalization of spherical harmonics for a space with a
charge at the center [61,62]. For a fixed charge q, these
functions form a complete basis. One important difference
with these harmonics is that their angular momentum is
now bounded below by this charge q. Using these functions
to build appropriate eigenspinors, the eigenvalues of this
determinant operator on S2 × S1β in Eq. (3.1) are shown to
be [15,31]

−i×

8<:ωn− iαþ iεq; l¼ q;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωn− iαÞ2þ ε2l

q
; l¼ qþ1;qþ2;…;

ð3:2Þ

where, for simplicity, we suppose q > 0 throughout.
Here, ωn ¼ 2πβ−1ðnþ 1=2Þ for n ∈ Z are the fermionic
Matsubara frequencies, and εl are the energies of the
modes for the quantized theory on S2 ×R:

εl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − q2 þ hϕi2

q
: ð3:3Þ

More details on the diagonalization are presented in
Appendix D 2. Note that the energies are dimensionless,
as we work in units where the radius of the sphere is 1. Each
mode has the usual degeneracy that comes from the
azimuthal symmetry dl ¼ 2l. The free energy at leading
order then becomes

Fð0Þ
q ¼ −

1

β

X∞
n¼−∞

�
dq ln ½ωn − iαþ ihϕi�

þ
X∞

l¼qþ1

dl ln ½ðωn − iαÞ2 þ ε2l�
�
: ð3:4Þ

The saddle-point equation for the holonomy given in
Eq. (2.15) yields the condition

−dq tanh
�
β

2
ðα− hϕiÞ

	
−

X∞
l¼qþ1

2dl sinhðβαÞ
coshðβεlÞþ coshðβαÞ¼ 0;

ð3:5Þ

which is solved for α ¼ hϕi in the β → ∞ limit. With this
result, the second gap equation at leading order in β is
given by

2hϕi
X∞

l¼qþ1

dlε−1l ¼ 0; ð3:6Þ

whose only solution is hϕi ¼ 0. Therefore, the saddle-point
values of both fields vanish.
Inserting this result into Eq. (3.4), the monopole scaling

dimension at leading order in 1=N is obtained from
Eq. (2.8) [63]

Δq ¼ 2N
X∞

l¼qþ1

dlEq;l þOðN0Þ; ð3:7Þ

where the energies at the saddle point are defined as

Eq;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − q2

q
: ð3:8Þ

This is simply the leading-order scaling dimension of
QED3 [15] (which must still be regularized). For example,
the scaling dimension of the monopole with minimal
charge is Δq¼1=2 ¼ 2N × 0.265þOðN0Þ. Here, a supple-
mentary GN interaction is considered, but it does not come
into play at this level of the expansion since hϕi ¼ 0. Thus,
monopoles in QED3 and QED3-GN have the same scaling
dimensions at leading order in 1=N:

Δð0Þ
q;QED3

¼ Δð0Þ
q;QED3-GN

: ð3:9Þ

IV. 1=N CORRECTIONS

A. Setup

1. Real-space kernels

We now turn to the next-to-leading-order term in the
free-energy expansion in Eq. (2.18). The free-energy
correction is related to the second variation of the action by

exp ð−βFð1Þ
q Þ ¼

Z
DσDa exp

�
−
ð2NÞ
2

Z
r;r0



σðrÞ aμðrÞ

�
×

�Dqðr; r0Þ Hq
μ0 ðr; r0Þ

Hq
μðr0; rÞ Kq

μμ0 ðr; r0Þ

	�
σðr0Þ
aμ0 ðr0Þ

	�
;

ð4:1Þ
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where
R
r≡

R
d3r

ffiffiffiffiffiffiffiffiffi
gðrÞp

, and we define the following
kernels:

Dqðr; r0Þ ¼ 1

2N
δ2Seff

δσðrÞδσðr0Þ
����
SP
; ð4:2Þ

Kq
μμ0 ðr; r0Þ ¼

1

2N
δ2Seff

δaμðrÞδaμ0 ðr0Þ

����
SP

; ð4:3Þ

Hq
μ0 ðr; r0Þ ¼

1

2N
δ2Seff

δσðrÞδaμ0 ðr0Þ

����
SP

; ð4:4Þ

where Seff is defined in Eq. (2.12). The remaining scalar-
gauge kernel [although σðrÞ is really a pseudo-scalar, we
refer to it as a “scalar” when labeling related kernels for
simplicity] with mixed aμðrÞ and σðr0Þ partial derivatives is
obtained by exchanging coordinates r, r0 in Hq

μ0 ðr; r0Þ,
which has mixed σðrÞ and aμ0 ðr0Þ partial derivatives; thus,
we write Hq

μðr0; rÞ in Eq. (4.1). In terms of the fermions in
the original system, the kernels are given by

Dqðr; r0Þ ¼ hψ̄ðrÞψðrÞψ̄ðr0Þψðr0ÞijSP; ð4:5Þ

Kq
μμ0 ðr; r0Þ ¼ −hJμðrÞJμ0 ðr0ÞijSP; ð4:6Þ

Hq
μ0 ðr; r0Þ ¼ −ihψ̄ðrÞψðrÞJμ0 ðr0ÞijSP; ð4:7Þ

where ψ is a single fermion flavor, and the current is

JμðrÞ ¼ ψ̄ðrÞγμψðrÞ: ð4:8Þ

This can be reexpressed in terms of the fermionic Green’s
function Gqðr; r0Þ ¼ hψðrÞψ̄ðr0ÞijSP and its Hermitian con-

jugate G†
qðr; r0Þ ¼ hψðr0Þψ̄ðrÞijSP. The Wick expansion of

the kernels yields

Dqðr; r0Þ ¼ tr½Gqðr; r0ÞG†
qðr; r0Þ�; ð4:9Þ

Kq
μμ0 ðr; r0Þ ¼ −tr½γμGqðr; r0Þγμ0G†

qðr; r0Þ�; ð4:10Þ

Hq
μ0 ðr; r0Þ ¼ −itr½Gqðr; r0Þγμ0G†

qðr; r0Þ�; ð4:11Þ

where the cyclicity of the trace is used. The remaining
prefactor 2N in Eq. (4.1) is canceled as the fluctuation
fields are rescaled σ; aμ → σ=

ffiffiffiffiffiffiffi
2N

p
; aμ=

ffiffiffiffiffiffiffi
2N

p
to control the

expansion. The free-energy correction is then obtained by
integrating the field fluctuations in Eq. (4.1). It is conven-

ient to subtract the q ¼ 0 correction Fð1Þ
0 ¼ 0 [64]; there-

fore, we write the general correction as

Fð1Þ
q ¼ 1

2
ln

�
det0 Mq

det0 M0

	
; ð4:12Þ

where we define the matrix kernel

Mqðr; r0Þ ¼
�Dqðr; r0Þ Hq

μ0 ðr; r0Þ
Hq

μðr0; rÞ Kq
μμ0 ðr; r0Þ

	
: ð4:13Þ

2. Fourier transform

To compute the determinant operator, the kernels are
expanded in terms of harmonics. For the gauge-gauge
kernels, the vector spherical harmonics are introduced:

aTμ;lmðn̂Þ ¼ δ0μYlmðn̂Þ; ð4:14Þ

aEμ;lmðn̂Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ∇μYlmðn̂Þ; ð4:15Þ

aμ;Blm ðn̂Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ϵ0μνffiffiffiffiffiffiffiffiffi
gðrÞp ∇νYlmðn̂Þ: ð4:16Þ

As suggested by the notation, the B mode has zero
divergence ∇ · a⃗Blmðn̂Þ ¼ 0, and the E mode has zero
curl ∇×a⃗Elmðn̂Þ ¼ 0. It is also useful to introduce four-
dimensional eigenfunctions,

YD
lmðn̂Þ¼

�
Ylmðn̂Þ

0μ

	
; YX

lmðn̂Þ¼
�

0

aμ;Xlm ðn̂Þ
	
; ð4:17Þ

where X ∈ fT; E; Bg. In this basis, the matrix kernel
Mqðr; r0Þ can be expanded as

Mqðr; r0Þ ¼
Z

∞

−∞

dω
2π

X∞
l¼0

Xl
m¼−l

e−iωðτ−τ0Þ

×

0BBBBB@
YD
lmðn̂Þ

Y T
lmðn̂Þ

YE
lmðn̂Þ

YB
lmðn̂Þ

1CCCCCA
⊺

Mq
lðωÞ

0BBBBB@
YD
lmðn̂0Þ†

Y T
lmðn̂0Þ†

YE
lmðn̂0Þ†

YB
lmðn̂0Þ†

1CCCCCA; ð4:18Þ

where we directly work on S2 ×R (i.e., taking the limit
β → ∞ now) and where

Mq
lðωÞ ¼

0BBBBB@
Dq

l Hq;T
l Hq;E

l Hq;B
l

−Hq;T�
l Kq;TT

l Kq;TE
l Kq;TB

l

−Hq;E�
l Kq;TE�

l Kq;EE
l Kq;EB

l

−Hq;B�
l Kq;TB�

l Kq;EB�
l Kq;BB

l

1CCCCCA: ð4:19Þ

All of the arguments of the functions appearing in the matrix
areω. Note that the scalar-gauge kernel is imaginary; hence,
the reason for the signs in the first column of thematrix. This
last point is shown explicitly in Appendix B.
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This kernel can be simplified by using CT invariance.
The auxiliary boson ϕ, a pseudo-scalar, and the E, T modes
of the gauge field are antisymmetric under CT , while the B
modes are symmetric under CT . This implies that the
following kernels vanish (this result is also checked
explicitly with the same method giving the values of
nonvanishing kernels):

Kq;TB
l ðωÞ ¼ Kq;EB

l ðωÞ ¼ Hq;B
l ðωÞ ¼ 0: ð4:20Þ

The U(1) gauge invariance also enables the kernel to be
simplified. Using the conservation of the U(1) current,
∇μJμðrÞ ¼ 0, in Eqs. (4.6) and (4.7), it follows that

Kq;TE
l ðωÞ ¼ iωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Kq;TT
l ðωÞ; ð4:21Þ

Kq;EE
l ðωÞ ¼ ω2

lðlþ 1ÞK
q;TT
l ðωÞ; ð4:22Þ

Hq;E
l ðωÞ ¼ iωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp Hq;T
l ðωÞ: ð4:23Þ

It should also be noted that among vector spherical
harmonics, only aTμ;lmðn̂Þ is defined for l ¼ 0. In this

case, the only remaining gauge-gauge kernel is Kq;TT
0 ðωÞ,

and it vanishes by gauge invariance. The computations to
obtain these gauge-invariance conditions are shown in
Appendix C. Using all of these simplifications, the monop-
ole scaling-dimension correction is given by

Δð1Þ
q;QED3-GN

¼ 1

2

Z
ω

�
ln

�
Dq

0ðωÞ
D0

0ðωÞ
	
þ
X∞
l¼1

ð2lþ 1Þ ln
�Kq;B

l ðωÞ(Dq
lðωÞKq;E

l ðωÞ þ ð1þ ω2

lðlþ1ÞÞjHq;T
l ðωÞj2)

K0;B
l ðωÞD0

lðωÞK0;E
l ðωÞ

��
; ð4:24Þ

where
R
ω≡

R
∞
−∞ dω=ð2πÞ, and we define

Kq;E
l ðωÞ≡ Kq;TT

l ðωÞ þ Kq;EE
l ðωÞ; ð4:25Þ

Kq;B
l ðωÞ≡ Kq;BB

l ðωÞ: ð4:26Þ

Note that H0;T
l ðωÞ ¼ 0, and thus it does not appear in the

denominator.
By turning off the GN interaction in Eq. (4.24), the

scalar-scalar kernel Dq
lðωÞ and the scalar-gauge kernel

Hq;T
l ðωÞ do not contribute, and the monopole scaling-

dimension correction in QED3 [16] is recovered:

Δð1Þ
q;QED3

¼ 1

2

Z
ω

X∞
l¼1

ð2lþ 1Þ ln
�
Kq;B

l ðωÞKq;E
l ðωÞ

K0;B
l ðωÞK0;E

l ðωÞ

�
: ð4:27Þ

One can alternatively deactivate the gauge field, keeping
only the scalar-scalar kernels, and obtain the pure GN
model. Despite the absence of a gauge field in this model,
one can still introduce an external gauge field with the 4πq
flux, define a correlation function on this background
configuration, and obtain the related critical exponent.
This was notably achieved for the OðNÞ model in
Ref. [66]. In a forthcoming publication, we shall also
explore this avenue in the pure-GN model.
The relevant kernel Fourier coefficients to compute the

monopole scaling dimensions in Eqs. (4.24) and (4.27) are
found by inverting Eq. (4.18):

Dq
lðωÞ¼

4π

2lþ1

Z
r
eiωτDqðr;0Þ

X
m

Y�
lmðn̂ÞYlmðẑÞ;

ð4:28Þ

Hq;T
l ðωÞ¼ 4π

2lþ1

Z
r
eiωτHq

0ðr;0Þ
X
m

Y�
lmðn̂ÞYlmðẑÞ; ð4:29Þ

Kq;E
l ðωÞ ¼ 4π

2lþ 1

Z
r
eiωτ

�
Kq

00ðr; 0Þ
X
m

Y�
lmðn̂ÞYlmðẑÞ

þ Kq
aa0 ðr; 0Þ

X
m

aa;E�lm ðn̂Þaa0;Elm ðẑÞ
�
; ð4:30Þ

Kq;B
l ðωÞ ¼ 4π

2lþ 1

Z
r
eiωτKq

aa0 ðr; 0Þ
X
m

aa;B�lm ðn̂Þaa0;Blm ðẑÞ;

ð4:31Þ
where the second coordinates are fixed to τ0 ¼ 0 and n̂0 ¼ ẑ
without loss of generality, and normalized coordinates a, a0
are introduced.

B. Anomalous dimensions

The anomalous dimensions of monopole operators
(4.24) and (4.27) are computed in this section. To do so,
the kernel coefficients in Eqs. (4.28), (4.29), (4.30), and
(4.31) must be obtained. These coefficients are built with
real-space kernels (4.9)–(4.11) that depend on the fer-
mionic Green’s function at the saddle point. The Green’s
function is defined by the action of the Dirac operator on it:

iDS2×R
Aq ðrÞGqðr; r0Þ ¼ −δðr − r0Þ: ð4:32Þ
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1. q = 0 kernels

We first compute the expressions in the denominator of
the scaling-dimension corrections (4.24) and (4.27), that is,
the q ¼ 0 kernel coefficients. The eigenkernel in the scalar-
scalar kernel (4.28) is just the sum of spherical harmonics,
which is given by the addition theorem

X
m

Y�
lmðn̂ÞYlmðn̂0Þ ¼

2lþ 1

4π
Plðcos γÞ; ð4:33Þ

where

cos γ ≡ n̂ · n̂0 ¼ cos θ cos θ0 þ sin θ sin θ0 cos ðϕ − ϕ0Þ:
ð4:34Þ

When working with n̂0 ¼ ẑ, this function cos γ is replaced
by

x≡ cos θ: ð4:35Þ

For the sums on vector spherical harmonics appearing in
the gauge-gauge kernels (4.30) and (4.31), a similar result
is obtained in spherical coordinates a ¼ θ̂; ϕ̂; τ̂ in Eqs. (E4)
and (E5) in Appendix E and is formulated with the same
Legendre polynomial and its first and second derivatives.
This reproduces a result from Ref. [67].
The real-space kernel for q ¼ 0 is also needed. In this

case, the Green’s function takes a simple form which is
simply the conformally transformed 3D flat-space Green’s
function [16]:

G0ðτ − τ0; n̂; n̂0Þ ¼ i
4πX3

γ⃗ · ðe1
2
ðτ−τ0Þn̂ − e−

1
2
ðτ−τ0Þn̂0Þ; ð4:36Þ

where

X ≡ ½2 coshðτ − τ0Þ − 2 cos γ�1=2: ð4:37Þ

The real-space kernels can then be obtained in normalized
spherical coordinates. Inserting this Green’s function along
with the eigenkernels in Eqs. (4.28), (4.30), and (4.31), the
resulting q ¼ 0 kernel coefficients are (setting τ0 ¼ 0)

D0
lðωÞ ¼

1

8π2

Z
r
eiωτPlðxÞ

1

X4
; ð4:38Þ

K0;E
l ðωÞ ¼ −

1

32π2

Z
r
eiωτPlðxÞ

�
−∇2

S2 þ
1

lðlþ 1Þ∇
2
S2∂

2
τ

	
×

1

X2
; ð4:39Þ

K0;B
l ðωÞ ¼ −

1

16π2lðlþ 1Þ
Z
r
eiωτPlðxÞ∇2

S2
1

X4
; ð4:40Þ

where integration by parts is used to eliminate the deriv-
atives of PlðxÞ. The differential operators acting on
eiωτPlðxÞ can be replaced with the corresponding eigen-
values ∇2

S2 → −lðlþ 1Þ and ∂
2
τ → −ω2 with further inte-

gration by parts. The remaining expressions contain Fourier
transforms of the form

R
r e

iωτPlðxÞXp, which are obtained
in the Appendix of Ref. [67]. Using these results, the q ¼ 0
kernel coefficients are simplified to

D0
lðωÞ ¼ −ðl2 þ ω2ÞDl−1ðωÞ; ð4:41Þ

K0;E
l ðωÞ ¼ −

1

2
½lðlþ 1Þ þ ω2�DlðωÞ; ð4:42Þ

K0;B
l ðωÞ ¼ −

1

2
ðl2 þ ω2ÞDl−1ðωÞ; ð4:43Þ

where

DlðωÞ ¼
���� Γð1þlþiω

2
Þ

4Γð2þlþiω
2

Þ

����2: ð4:44Þ

Note that we reproduce the gauge-gauge coefficients
K0;E

l ðωÞ and K0;B
l ðωÞ given in Ref. [16] by using the

methods of Ref. [67].

2. Anomalous dimensions for q = 1=2

For the minimal magnetic charge, the eigenkernels in
Eqs. (4.28)–(4.31) are formulated using the same expres-
sions (4.33), (E4), and (E5) as in the last section. In
particular, the gauge-gauge kernels are worked out in
normalized spherical coordinates. As for the real-space
kernels (4.9)–(4.11), they depend on the q ¼ 1=2 fermionic
Green’s function defined through Eq. (4.32). The spectral
decomposition of the Green’s function in terms of spinors
with monopole harmonics components is shown in
Appendix D 2. A generalized addition theorem for monop-

ole harmonics involving the Jacobi polynomials Pð0;2qÞ
l ðxÞ

is then needed. Specifically, after taking the sum over the
azimuthal quantum number, the Green’s function for
general q is given by (see also Ref. [16]; there is a sign
error in the first term of the Green’s function in Ref. [16]
that we correct here, but this sign does not affect the
conclusions in Ref. [16])

Gqðτ; n̂; τ0; n̂0Þ

¼ i
2
e−i2qΘ

X∞
l¼q

e−Eq;ljτ−τ0j
�
−

Eq;l

1 − x
Qq;lðxÞðn̂ − n̂0Þ · γ⃗

þ sgnðτ − τ0Þ
�
qQq;lðxÞI þQ0

q;lðxÞðn̂þ n̂0Þ · γ⃗

þ i
q

1þ x
Qq;lðxÞðn̂ × n̂0Þ · γ⃗

��
; ð4:45Þ
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where the energies Eq;l are defined in Eq. (3.8) and where

Qq;lðxÞ ¼
ð1þ xÞq
ð4πÞ2q

�
Pð0;2qÞ
l−q ðxÞ − Pð0;2qÞ

l−1−qðxÞ; l > q;

1; l ¼ q:

ð4:46Þ

The phase e−i2qΘ comes from the generalized addition
theorem and is defined in Eq. (D17), but it is not involved
in the computation since it is always canceled by the
opposite phase of the Green’s function Hermitian conju-
gate. The Green’s function can be inserted into Eqs. (4.9)–
(4.11) to obtain the real-space kernels, which, along with
the eigenkernels (4.33), (E4), and (E5), are inserted into
Eqs. (4.28)–(4.31) to compute the four kernel coefficients.
Defining Kq;D

l ðωÞ≡Dq
lðωÞ and Kq;T

l ðωÞ≡Hq;T
l ðωÞ, the

kernel coefficients Kq;Z
l ðωÞ with Z ∈ fD; T; E; Bg are

given by

Kq;Z
l ðωÞ ¼

X
l0;l00

4πAZðEq;l0 þ Eq;l00 Þ
ω2 þ ðEq;l0 þ Eq;l00 Þ2

�
IZ
1

2
þ Eq;l0Eq;l00IZ

2

�

≡ X∞
l0;l00

kq;Zl;l0;l00 ðωÞ; ð4:47Þ

where the prefactors are given by

AZ ¼ −
�
1; i;

1

lðlþ 1Þ ;
1

lðlþ 1Þ
�
; Z ∈ fD;T;E;Bg;

ð4:48Þ

the integrals for scalar-scalar and scalar-gauge kernels are

ID
1 ¼ −2

Z
dxPl

�
q2

1

1þ x
Qq;l0Qq;l00

þ ð1þ xÞQ0
q;l0Q0

q;l00

�
; ð4:49Þ

ID
2 ¼ −

Z
dx

1

1 − x
PlQq;l0Qq;l00 ; ð4:50Þ

IT
1 ¼ −2q

Z
dxP0

lQq;l0Qq;l00 ; ð4:51Þ

IT
2 ¼ 0; ð4:52Þ

and the integrals for the gauge-gauge kernels are given by
[here, we define the integrals as in Ref. [16] but with an
extra factor ð2lþ 1Þ=ð4πÞ since we use Legendre poly-
nomial PlðxÞ; we find an overall sign in Eq. (4.47) for the
gauge-gauge kernels, which does not change the end result
for QED3]

IE
1 ¼ 2

Z
dx

��
2lðlþ 1ÞPl þ ð1 − xÞP0

l

1þ x

�
q2Qq;l0Qq;l00

− ð1 − x2ÞP0
lQ

0
q;l0Q0

q;l00

�
; ð4:53Þ

IE
2 ¼ −

Z
dx

�
1þ x
1 − x

	
P0
lQq;l0Qq;l00 ; ð4:54Þ

IB
1 ¼ 2

Z
dxf½P0

l − ð1 − xÞP00
l�½q2Qq;l0Qq;l00

− ð1þ xÞ2Q0
q;l0Q0

q;l00 �g; ð4:55Þ

IB
2 ¼

Z
dx½P0

l þ ð1þ xÞP00
l�Qq;l0Qq;l00 : ð4:56Þ

These integrals can be performed exactly; see Appendix F
for more details. In the end, these quantities depend only on
the angular momenta: IZ

1 ðl;l0;l00Þ and IZ
2 ðl;l0;l00Þ. For

l0 ¼ l00 ¼ q, this computation requiresmore care since both
energies vanish, and the integral over time leading to the
prefactor in Eq. (4.47) instead yields a Dirac delta function
δðωÞ. However, for l0 ¼ l00 ¼ q ¼ 1=2, the term in the
brackets simply vanishes. When only one of l0 and l00 have
their minimal value q ¼ 1=2, there is a nonvanishing
contribution to the anomalous dimension. In this case, only
IZ
1 contributes, since the prefactor in front of I

Z
2 in Eq. (4.47)

vanishes. For q ¼ 1=2, the contribution of zero modes in
Eq. (4.47) vanisheswithl ¼ ω ¼ 0, otherwise, it is given by

2
X∞

l0¼3=2

k1=2;Zl;l0;1=2ðωÞ ¼
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

ω2 þ lðlþ 1Þ × f1;−i; 0; 1g:

ð4:57Þ

The remaining contribution consists of a sum on non-
zero modes l0;l00 ≥ 3=2. The summand depends on
IZ
1 ðl;l0;l00Þ and IZ

2 ðl;l0;l00Þ, which are formed of three
J symbols in l;l0, and l00 [see Eqs. (F6)–(F8)]. Thus, one of
the sums, say, on l00, can be viewed as finite. Then, after
taking the sum on l00, the remaining summand tends to a
constant for large l0,

lim
l0→∞

X∞
l00¼3=2

k1=2;Zl;l0;l00 ðωÞ ¼ αZ ¼ 1

4π
× f2; 0; 1; 1g: ð4:58Þ

Thus, for kernels with a nonzero asymptotic constant, the
sum on l0 will be divergent. This is regularized with a
zeta function regularization

P∞
l¼a l

−p ¼ ζðp; aÞ, here
specifically ζð0; 3=2Þ ¼ −1,
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−αZ þ
X∞

l0¼3=2

�
−αZ þ

X∞
l00¼3=2

k1=2;Zl;l0;l00 ðωÞ
�
: ð4:59Þ

The sum above is then finite and is computed numerically
up to a cutoffl0

c. The remainder is approximatedwith a large-
l0 expansion of the summand −αZ þP

l00 k
1=2;Z
l;l0;l00 ðωÞ ¼P

k
p¼2 c

1=2;Z
l;p ðωÞðl0Þ−p þOð1=l0ðkþ1ÞÞ. Each power in the

expansion is summed analytically from l0 ¼ l0
c þ 1 to

l0 ¼ ∞ with a zeta function. The coefficients c1=2;Zl;p ðωÞ
are found by doing the expansion for a few fixed values of l
and deducing the general dependence on l. It turns out that
only even powers of 1=l0 have nonvanishing coefficients
c1=2;Zl;p ðωÞ. We obtain the expansion up to k ¼ 18. With this
remainder, we find that a cutoff l0

c ¼ 300þ 1=2 is suffi-
ciently large to achieve the desired precision goals. The first
few terms of the remainders for general q are shown in
Appendix G.
After performing the sums in Eqs. (4.57) and (4.59), the

kernel coefficients in Eq. (4.47) are computed and inserted
into Eq. (4.24) [or Eq. (4.27) for the case of QED3]. The
kernel coefficients in the denominator of the logarithm of
the monopole anomalous dimension are obtained analyti-
cally in Eqs. (4.41)–(4.43). The remaining sum on l and
integral on ω are computed up to a relativistic cutoff [16]

lðlþ 1Þ þ ω2 ≤ LðLþ 1Þ: ð4:60Þ

We obtain the anomalous dimension with a cutoff up to
Lmax ¼ 65. A function of 1=L is then fitted to extract the
value of the anomalous dimension as the full sum and
integration are taken with L → ∞. Figure 1 shows a quartic
function fittedwith the data fromL ∈ ½Lmax − 10; Lmax�. The
anomalous dimension of a charge q ¼ 1=2 monopole in

QED3-GN extracted from this fit isΔð1Þ
1=2;QED3-GN

¼ 0.11890,

whereas in QED3 it is given byΔ
ð1Þ
1=2;QED3

¼ −0.03814. This
reproduces the result in Ref. [16] up to a difference of
order 10−4.
While we extrapolate the result for L → ∞with a quartic

fit based on a cutoff of Lmax ¼ 65, varying the maximal
relativistic cutoff can change the last digit in the result

quoted above. For instance, Δð1Þ
1=2;QED3

jLmax¼50 ¼ −0.03815.
In Appendix I, we show how we compute anomalous
dimensions for various Lmax and use the trend as Lmax → ∞
to estimate the anomalous dimensions and their errors. The
error we quote in what follows reflects the uncertainties
related to the extrapolations and not the precision of our
computation, which yields relatively negligible errors.
Using this method, the anomalous dimension of q ¼ 1=2

monopoles at next-to-leading order in the 1=N expansion in
QED3-GN is given by

Δð1Þ
1=2;QED3-GN

¼ 0.118911ð7Þ: ð4:61Þ
The scaling dimension of q ¼ 1=2 monopole opera-
tors in QED3-GN is then given by 2N × 0.26510þ
0.118911ð7Þ þOðN−1Þ. In QED3, the correction we find is

Δð1Þ
1=2;QED3

¼ −0.038138ð5Þ: ð4:62Þ
With this estimated uncertainty of our result, it is clearer
that there is a small discrepancy when comparing our result
with the correction −0.0383 computed in Ref. [16]. Trying
to replicate the method in Ref. [16], we use a cubic fit with
data L ∈ ½5; 45� and obtain −0.03823, which is closer
to −0.0383.

3. Anomalous dimensions for general q

For larger topological charge q, many of the results used
from Appendix F are not easily generalized. In the previous

(a) (b)

FIG. 1. Anomalous dimension of the q ¼ 1=2 monopole Δð1Þ
1=2 [Eqs. (4.24) and (4.27)] as a function of the relativistic cutoff L

[Eq. (4.60)] in (a) QED3 and (b) QED3-GN. The points are obtained by numerically computing Eqs. (4.24) and (4.27), and the solid line
is a quartic fit in 1=L with the points L ∈ ½55; 65�.
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section, the computations involved three different Jacobi
polynomials that appear after taking the sum over an
appropriate azimuthal quantum number. Here instead,
the real-space kernels and the eigenkernels will be written
explicitly as sums of monopole spherical harmonics,
respectively, with finite charge q and vanishing charge.
This follows the alternative and more algorithmic method
presented in Ref. [65].
For the real-space kernels, the required formulation

already appears as an intermediate step in Appendix D 2
when obtaining the Green’s function in Eq. (4.45).
The Green’s function is a 2 × 2 matrix acting on
particle-hole space with components given by the product
of two monopole harmonics [Eqs. (D14) and (D15)].
Consequently, the real-space kernels are formulated as
products of four monopole harmonics. As for the eigen-
kernels appearing in Dq

lðωÞ, Hq;T
l ðωÞ, they are already

expressed as the product of two spherical harmonics
[Eqs. (4.28) and (4.29)]. Only the gauge-gauge kernels
then need a reformulation. In this case, a different basis
Uμ

l;mðn̂Þ; Vμ
l;mðn̂Þ;Wμ

l;mðn̂Þ for the vector spherical har-
monics can be introduced. These are eigenfunctions with
respective total spin j ¼ l − 1;l, and lþ 1 [16]. Most
importantly, the components of these harmonics are
simply given by spherical harmonics (see Appendix E 2).
We discuss the relation with the previous basis shortly.
Before doing so, we note that, in this new formulation,

the kernel coefficients are expressed as the integral of a
product of four monopole harmonics and two spherical
harmonics. To be more precise, half of these functions are
conjugate harmonics, but they can all be expressed as
harmonics with the following relation:

Y�
q;l;mðn̂Þ ¼ ð−1ÞqþmY−q;l;−mðn̂Þ: ð4:63Þ

Just as in Sec. IV B, the primed coordinates can be fixed as
τ0 ¼ 0 and n̂0 ¼ ẑ without loss of generality. As a result,
half of the six harmonics are eliminated

Yq;l;mðẑÞ ¼ δq;−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
: ð4:64Þ

This removes every sum on azimuthal quantum numbers,
which greatly simplifies the computation. There remains an
integral over three harmonicsZ

dn̂Yq;l;mðn̂ÞYq0;l0;m0 ðn̂ÞYq00;l00;m00 ðn̂Þ

¼ ð−1Þlþl0þl00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r
×

�
l l0 l00

q q0 q00

	�
l l0 l00

m m0 m00

	
: ð4:65Þ

The explicit expressions for the kernel coefficients involve
the sum of many such integrals and are not reproduced here.
Returning to the change of basis, the U, V, W vector

spherical harmonics in the j ¼ l sector can be related to the
harmonics previously introduced in Eqs. (4.14)–(4.16) by

0BB@
Uμ

lþ1;mðn̂Þ
Wμ

l−1;mðn̂Þ
Vμ
l;mðn̂Þ

1CCA ¼

0BBB@
−

ffiffiffiffiffiffiffiffi
lþ1
2lþ1

q ffiffiffiffiffiffiffiffi
l

2lþ1

q
0ffiffiffiffiffiffiffiffi

l
2lþ1

q ffiffiffiffiffiffiffiffi
lþ1
2lþ1

q
0

0 0 i

1CCCA
0BB@

aT;μlmðn̂Þ
aE;μlm ðn̂Þ
aB;μlm ðn̂Þ

1CCA

≡R

0BB@
aT;μlmðn̂Þ
aE;μlm ðn̂Þ
aB;μlm ðn̂Þ

1CCA: ð4:66Þ

The Fourier coefficients can also be transformed in this
basis:

R

0BB@
Kq;TT

l ðωÞ Kq;TE
l ðωÞ 0

Kq;TE�
l ðωÞ Kq;EE

l ðωÞ 0

0 0 Kq;BB
l ðωÞ

1CCAR−1

¼

0BB@
Kq;UU

l ðωÞ Kq;UW
l ðωÞ 0

Kq;UW�
l ðωÞ Kq;WW

l ðωÞ 0

0 0 Kq;VV
l ðωÞ

1CCA: ð4:67Þ

The matrix of eigenkernels keeps the same structure
thanks to the block-diagonal form of the transformation
matrix R. This is expected, as we can also argue that the
kernels Kq;UV

l ðωÞ ¼ Kq;WV
l ðωÞ ¼ 0 vanish because of CT

invariance, as we do for Kq;TB
l ðωÞ ¼ Kq;EB

l ðωÞ ¼ 0. The
relevant relations are then

Kq;VV
l ðωÞ ¼ Kq;B

l ðωÞ; ð4:68Þ

Kq;UU
l ðωÞ þ Kq;WW

l ðωÞ ¼ Kq;E
l ðωÞ: ð4:69Þ

The first relation is found by comparing the bottom-right
components in Eq. (4.67) and using the definition of
Kq;B

l ðωÞ (4.26), whereas the second relation is found by
taking the trace of Eq. (4.67), using the first result in
Eq. (4.68) and the definition of Kq;E

l ðωÞ [Eq. (4.25)]. The
kernels Kq;E

l ðωÞ and Kq;B
l ðωÞ can then be replaced in the

scaling-dimension corrections (4.24) and (4.27) by their
formulation in the new basis.
For general charge, the regularization of the kernels

presented in Eqs. (4.58) and (4.59) is still valid: The
regulator terms −1=ð2πÞ and −1=ð4πÞ can be used,
respectively, for the scalar-scalar and gauge-gauge kernels,
while the scalar-gauge kernel does not require regulariza-
tion. The contribution of the zero modes using this method
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is also very straightforward and algorithmic. However,
there seems to be additional contributions coming from the
combination of zero modes in both Green’s functions,
l0 ¼ l00 ¼ q. As discussed previously, this contribution is
proportional to a Dirac delta function δðωÞ instead of the
energy prefactor in Eq. (4.47). This contribution vanishes
once integrated over ω (see Appendix H). Numerical sums
on l0 are obtained up to l0

c ¼ 200þ q (we use a smaller
cutoff for the general charge q, which is still sufficient for
the precision needed and less computationally intensive),
and the remainder is computed analytically with an
expansion up to 1=l018. In this case, the coefficients of
the expansion also depend on the charge q and are found by
fixing l and q for a few values.

The anomalous dimension Δð1Þ
q for each charge is

computed with a relativistic cutoff Lmax ¼ 35þ bq⌉, where
bq⌉≡ RoundðqÞ. Here, the convention is that half-integers
are rounded to even numbers, e.g., b1=2⌉ ¼ 0 and
b3=2⌉ ¼ 2. The value of Lmax is modulated with the charge
q to ensure that a regime with a tail-like behavior, as
observed in Fig. 1, is attained for larger charges. For the
three minimal charges, we use a larger relativistic cutoff:
We use Lmax ¼ 65 for q ¼ 1=2 (as in the last section) and
Lmax ¼ 46, 47 for q ¼ 1; 3=2 [68]. We find that the results
are robust as Lmax is increased and more precise (see
Appendix I). The results for L ∈ ½Lmax − 6; Lmax� are used
to fit a quartic function in 1=L to extrapolate the anomalous

dimensions Δð1Þ
q as L → ∞. The fits obtained for q ¼ 5=2

monopoles in QED3 and QED3-GN are shown in Fig. 2 and

yield scaling-dimension corrections Δð1Þ
5=2;QED3

¼ −1.0359

and Δð1Þ
5=2;QED3-GN

¼ 0.6253 as L → ∞.
As before, the uncertainty in the scaling dimension is

estimated by varying Lmax and estimating the anomalous
dimension as Lmax → ∞. More details are shown in
Appendix I. The resulting scaling dimensions up to

q ¼ 7=2 obtained in this way are shown in Table I.
Comparing the QED3 monopoles’ anomalous dimensions
with the results in Ref. [65], discrepancies of order 10−4 to
10−3 are again observed for higher charges.
The q ¼ 1=2 results obtained in Sec. IV B 2 are success-

fully reproduced with the more general method. Monopole
scaling dimensions up to q ¼ 13 are shown in Appendix J.
The next-to-leading-order term in 1=N decreases the

scaling dimension of monopoles in QED3, whereas it
increases for QED3-GN. That is, quantum corrections help
stabilize the QED3-GN model and destabilize QED3. To
understand the difference between both cases, it is useful to
write the scaling dimension as

Δð1Þ
q;QED3-GN

¼ Δð1Þ
q;QED3

þ Δð1Þ
q;GN þ 1

2

Z
ω

X∞
l¼1

ð2lþ 1Þ

× ln

�
1þ

ð1þ ω2

lðlþ1ÞÞjHq;T
l ðωÞj2

Dq
lðωÞKq;E

l ðωÞ

�
; ð4:70Þ

(b)(a)

FIG. 2. Anomalous dimension of the q ¼ 5=2 monopole Δð1Þ
5=2 [Eqs. (4.24) and (4.27)] as a function of the relativistic cutoff L

[Eq. (4.60)] in (a) QED3 and (b) QED3-GN. The points are obtained by numerically computing Eqs. (4.24) and (4.27), and the solid line
is a quartic fit in 1=L with the points L ∈ ½Lmax − 6; Lmax�, here [31,37].

TABLE I. Leading order and next-to-leading order in 1=N
contributions to monopole scaling dimensions in QED3,
QED3-GN, and QED3-Z2GN models. The latter model is dis-
cussed in Sec. VII. The leading-order result is the same in all
models. The scaling dimension in a given model is Δq ¼
2NΔð0Þ

q þ Δð1Þ
q þOðN−1Þ.

q Δð0Þ
q Δð1Þ

q;QED3
Δð1Þ

q;QED3-GN
Δð1Þ

q;QED3−Z2GN

1=2 0.26510 −0.038138ð5Þ 0.118911(7) 0.102846(9)
1 0.67315 −0.19340ð3Þ 0.23561(4) 0.18663(4)
3=2 1.18643 −0.42109ð4Þ 0.35808(6) 0.26528(7)
2 1.78690 −0.70482ð9Þ 0.4879(2) 0.3426(2)
5=2 2.46345 −1.0358ð2Þ 0.6254(2) 0.4202(3)
3 3.20837 −1.4082ð2Þ 0.7705(3) 0.4989(3)
7=2 4.01591 −1.8181ð2Þ 0.9229(3) 0.5789(4)
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where Δð1Þ
q;GN ¼ 1

2

R
ω

P∞
l¼0 ð2lþ 1Þ log ½Dq

lðωÞ=D0
lðωÞ� is

the contribution in the QED3-GN anomalous dimension
(4.24) coming exclusively from the pseudo-scalar field
(it is also the expression for the anomalous dimension
of monopoles in a pure GN model, hence, the label).

Computing Δð1Þ
q;GN in the same way as we do for Δð1Þ

q;QED3-GN

andΔð1Þ
q;QED3

, we find this contribution is positive Δð1Þ
q;GN > 0

and more important than the contribution coming exclu-

sively from gauge fields jΔð1Þ
q;GNj > jΔð1Þ

q;QED3
j. As for the

remaining scalar-gauge contribution in the second line of
Eq. (4.70), it is also positive. To see this, we must show that
the second term in the logarithm is positive. The numerator
is explicitly positive. As for the denominator, we note that

Δð1Þ
q;GN is real, meaning thatDq

lðωÞ and theD0
lðωÞmust have

the same sign. The latter q ¼ 0 kernel is negative, as seen
from Eqs. (4.41) and (4.44), meaning that Dq

lðωÞ < 0. The
same goes for Kq;E

l ðωÞ; thus, the denominator is positive
Dq

lðωÞKq;E
l ðωÞ > 0. The scalar-gauge kernel thus gives a

positive contribution to the anomalous dimension in
QED3-GN. It then must be that the QED3-GN monopole

anomalous dimension is positive, Δð1Þ
q;QED3-GN

> 0, given
what is known about each contribution on the right-hand
side (rhs) of Eq. (4.70). It would be desirable to understand
heuristically why quantum fluctuations render monopoles
less relevant at the QCP compared to deep in the Dirac
spin liquid.
In the CPN−1 model, similar relations between the

different contributions to the monopole anomalous dimen-
sion are found. A positive contribution coming only from
the auxiliary boson was found numerically in Ref. [66]; the
correction from the mixed scalar-gauge kernel can be
deduced as positive [67,69], and the total anomalous
dimension of monopoles in CPN−1 numerically found in
Ref. [69] is also positive.

4. Convexity conjecture

It was recently conjectured that CFT operators charged
under a global U(1) symmetry respect the following
convexity relation:

Δ(ðn1 þ n2Þn0) ≥ Δðn1n0Þ þ Δðn2n0Þ ð4:71Þ

for some positive integer n0 of order 1 [70]. We test this
conjecture using the monopole operators that are charged
under Uð1Þtop. Here, n0, n1, n2 are integers, where in our
notation Δð2qÞ≡ Δq. Using the scaling dimensions we
obtain in Table Vand extrapolating to finite N, we find this
relation is respected for the monopoles under consideration
in QED3, QED3-GN (and also for the case QED3‐Z2GN
presented later on) for any 2N ∈ Zþ starting from n0 ¼ 1,
i.e., the minimal possible value.

V. LARGE-CHARGE UNIVERSALITY

In CFTs with a global U(1) symmetry, the related charge
q can be used as an expansion parameter by using effective-
field-theory methods. It was shown that the lowest scaling
dimension among charge-q operators has the following
expansion at q ≫ 1 [54]:

Δq ¼ c3=2q3=2 þ c1=2q1=2 þ γUð1Þ þ…; ð5:1Þ

where the ellipsis denotes negative half-integer and integer
powers of q [71]. While c3=2 and c1=2 depend on the
specific QFT considered, the Oðq0Þ coefficient is universal
(theory independent) [54,72]:

γUð1Þ ¼ −0.0937… ð5:2Þ

This coefficient is obtained by computing the Casimir
energy of the U(1) Goldstone mode. The Goldstone
mode appears in the state-operator correspondence
where the charged-operator insertion is mapped to a
state where the saddle-point configuration breaks the
U(1) symmetry.
This analysis applies to monopole operators in theories

with the global Utopð1Þ symmetry group. Given the
universality of the coefficient γ, no term at Oðq0Þ should
be present at leading order in the 1=N expansion (here, the
parameter N is used to designate either N complex boson
flavors or 2N fermion flavors), since the leading-order term
is proportional to N and thus nonuniversal. This large-q
behavior was indeed observed in QED3, and Oð2Þ- and
Oð3Þ-QED3-GN models (these models are also known as
QED3–chiral XY GN and QED3–chiral Heisenberg GN
models, respectively) [31,33] as well as in the CPN−1

model [67,73] [while Ref. [67] discusses only the Oðq3=2Þ
term of the large-q expansion, it is straightforward to use
their analytical results to verify that no OðNq0Þ term is
present]. Since QED3 and QED3-GN monopoles have the
same leading-order scaling dimensions, as we discuss in
Sec. III, the absence of an OðNq0Þ term also applies to
QED3-GN monopoles.

Using the monopole anomalous dimensions Δð1Þ
q , the

Oðq0Þ coefficient γ can be computed. This was done for

the CPN−1 model in Ref. [73], where Δð1Þ
q was obtained for

100 charges q ¼ 1=2; 1;…; 50, and the expected expan-
sion (5.1) is fitted numerically to extract γ. A similar
computation is performed here for monopoles in the
QED3-GN and QED3 models. We fit all monopole
anomalous dimensions in QED3-GN and QED3 shown
in Table V by using the fitting function in Eq. (5.1) with
powers down to q−1 [71]. The fits and the anomalous
dimensions are shown in Fig. 3; note that the errors in the
values of the anomalous dimension are smaller than the
dots in the figure. Including more powers in the fitting
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function would yield significantly larger errors in the
estimation of γ.
The value of γ obtained for each theory is consistent with

the expected universal value (5.2)

γQED3
¼ 1.02ð4Þ × γUð1Þ; ð5:3Þ

γQED3-GN ¼ 1.01ð6Þ × γUð1Þ: ð5:4Þ

This is a nice consistency check of the anomalous scaling
dimensions obtained in the last section.
The universal coefficient of the scaling dimension of

U(1)-charged operators in Eq. (5.1) can also be formulated
with the following sum rule [54]:

q2Δq −
�
q2

2
þ q

4
þ 3

16

	
Δq−1 −

�
q2

2
−
q
4
þ 3

16

	
Δqþ1

¼ −
3

8
γUð1Þ þOðq−1=2Þ ¼ 0.0351… ð5:5Þ

The rhs results from a cancellation of order Oðq3=2Þ and
Oðq1=2Þ terms on the lhs. In comparison, the error on the lhs
coming from the triplet Δq−1;Δq;Δqþ1 is comparatively
large, even more so as the coefficients in front of the scaling
dimensions, which are of order q2, become larger with
increasing q. The resulting errors are too important to
obtain a reliable fit of the large-q behavior of this sum rule.
Nevertheless, we observe good qualitative agreement for
the scaling dimensions shown in Table V.

VI. CFT DUALITY: QED3-GN AND CP1 MODELS

Another interesting application of our results concerns
the duality between the QED3-GN model with 2N ¼ 2

two-component Dirac fermion flavors and the CPN−1

model with N ¼ 2 complex boson flavors [53]. Crucially,
the duality between these models implies an emergent
SO(5) symmetry. The following SO(5) multiplet in the
QED3-GNj2N¼2 model

ðReðψ†
1
fMf

1=2Þ;−Imðψ†
1
fMf

1=2Þ;
Reðψ†

2
fMf

1=2Þ; Imðψ†
2
fMf

1=2Þ;ϕÞ ð6:1Þ

is dual to the following multiplet in the CP1 model:

(2ReðMb
1=2Þ; 2ImðMb

1=2Þ; z†σ1z; z†σ2z; z†σ3z): ð6:2Þ

Here, fMf
1=2 are the QED3-GNj2N¼2 minimally charged

monopoles which must be dressed with an additional zero
mode ψ†

1 or ψ
†
2 on top of a Dirac sea in order to be gauge

invariant. These monopoles form an SU(2) doublet
Mf

1=2 ¼ ðMf
1=2;↑;M

f
1=2;↓Þ⊺. On the CP1 side, z is an

SU(2) doublet z ¼ ðz1; z2Þ⊺, where each flavor is a complex
boson and Mb

1=2 is the minimally charged monopole. The
SO(5) symmetry means that all scaling dimensions within a
multiplet should be equal, while operators identified by the
duality should also have the same scaling dimension.
Putting this together, this means that all the operators
above should have the same scaling dimension. A decent
agreement was already observed in Ref. [31], but the
scaling dimension of QED3-GN monopoles were obtained
only at leading order in 1=N, with ΔMf

1=2
¼ 0.53. Updating

the comparison with the next-to-leading-order correction,
we find ΔMf

1=2
¼ 0.65, which gives an even better agree-

ment. For instance, the scaling dimension of the q ¼ 1=2
monopole on theCP1 side obtained at next-to-leading order
in 1=N is given by ΔMb

1=2
¼ 0.63 [67,69]. In contrast, if we

extrapolate the large-N QED3 result to 2N ¼ 2, we obtain a
scaling dimension of 0.49, which is further from the CP1

result, as expected since the two CFTs are not related by
duality. The scaling dimensions of the other operators in the
duality also show good agreement coming from both
analytical and numerical studies, as shown in Table II.
In the same way, monopoles with the second smallest

charge q ¼ 1 were argued to be part of the symmetric
traceless 14 representation of SO(5) [44,74]. The various
relevant scaling dimensions obtained with analytical meth-
ods are also compared in Table III. Again, there is very
good agreement between the scaling dimension of monop-
ole operators, with ΔMf

1
¼ 1.58 and ΔMb

1
¼ 1.50. The

agreement is weaker with other operators, but by taking
into account the Padé and Padé-Borel resummations, the
duality prediction seems quite reasonable. The scaling
dimension related to auxiliary bosons Δϕ2 and Δλ obtained
using the large N have greater discrepancy with Δ ∼ 1, but

FIG. 3. Anomalous dimensions of monopoles in QED3-GN and
QED3 fitted with the large-q expansion (5.1). The points are the
scaling-dimension corrections obtained with a quartic fit in 1=L.
The solid and dashed lines are the fitting functions for QED3-GN
and QED3, respectively, with a minimal power of q−1.
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these expansions are not very well controlled. However, the
same can be said about the monopole operator on the
bosonic side. Overall, the duality for the 14 representation
of SO(5) is not as convincing as it is for the 5, but it is
still reasonable for the perturbative results. The scaling
dimension of the Lagrange field obtained using the func-
tional renormalization group also agrees reasonably well
Δλ ¼ 1.21 [75].
The situation becomes more puzzling when the critical

exponents in Table III are compared to numerical lattice

results. The apparent consistency observed in the analytical
results (at least for operators that do not need resummation)
does not hold for the numerical lattice results. Specifically,
we compare the analytical results to the correlation length
exponent ν obtained in many numerical studies of the CP1

model. This exponent is related to the Lagrange field
scaling dimension as Δλ ¼ 3 − 1=ν. Its value varies greatly
among many numerical works. Earlier results indicate that
Δλ ∈ ½1.34; 1.67� [76,77,83,84], which seems compatible
with other scaling dimensions in Table III. However,
unusual scaling behavior and the “drifting” of ν with
increasing lattice size [80] motivated further studies, and
lower scaling dimensions have been found. The wide range
of values obtained are shown in Table IV. Notably, a scaling
dimension going down to Δλ ¼ 0.80ð1Þ by considering the
presence of a second length scale [85].
The varying results among different lattice studies are

also interpreted as a hint for a weakly first-order transi-
tion. This possibility has been discussed [74,87] in a field
theory context where the dual models QED3-GNj2N¼2 and
CPN−1jN¼2 are possibly complex CFTs emerging from the
collision of fixed points as the number of matter flavors is
lowered below a critical level. On the other hand, our
analysis shows there is still consistency among scaling
dimensions on both sides of the duality. This may imply
that the duality can still give valuable information, even if
the CFT is nonunitary.
A similar tension between the results from field theory

and lattice models was observed in Ref. [88] where the
QED3j2N¼2 model was studied using conformal bootstrap.
The duality to the easy-plane CP1 model conjectured in
Ref. [53] implies a self-duality and an emergent Oð4Þ
symmetry on both sides. While the conformal bootstrap
study of QED3j2N¼2 is consistent with the self-duality and
the emergent symmetry, it contradicts the results from the
lattice study of the easy-plane CP1 model [89].
An interesting approach to understand these discrepan-

cies could be that of pseudo-criticality, that is a weakly
first-order transition with a generically long correlation
length. In Ref. [90], a Wess-Zumino-Witten model in 2þ ϵ

TABLE III. Operators in the SOð5Þ symmetric traceless 14
multiplets and their scaling dimensions predicted to be equal
according to the duality between the QED3-GNj2N¼2 and CP1

models. The scaling dimensions presented are obtained analyti-
cally with the large-N expansion. Padé and Padé-Borel ½0=1�
resummations are shown in parentheses (apart from Ref. [47],
resummations are not obtained in the references cited). The
symbol “×” indicates unphysical results, i.e., negative scaling
dimensions. The operator λ is the Lagrange multiplier field on the
CP1 side. Results for monopole operators are obtained using
state-operator correspondence at order N0, while other results are
obtained at order N−1. The resummed value for Δψ̄σψ is obtained
in Ref. [47] and is the same for Δðz�σzÞðz�σzÞ⊺ at this order.

O ΔO (ΔPadé
O ;ΔPadé-Borel

O ) Ref.

Mf
1

1.58 (1.63,1.75) This work

Mb
1

1.50 ð×; 0.24Þ [69]
ψ̄σψ 1.19 (1.42,1.51) [47,74]
ðz†σzÞðz†σzÞ⊺ 1.19 (1.42,1.51) [74]
ϕ2 4.43 ð×; 1.02Þ [47,74]
λ × (0.90,1.11) [81,82]

TABLE IV. Numerical determination of the correlation length
exponent ν and the related scaling dimension Δλ ¼ 3 − 1=ν in
lattice studies describing the CP1 side.

ν Δλ Ref.

0.78(3) 1.72(5) [76]
0.68(4) 1.52(9) [77]n
0.67ð1Þ
0.69ð2Þ

1.51ð3Þ
1.55ð5Þ

[84]

0.62(2) 1.39(5) [83]
0.54(5) 1.13(17) [79]
[0.51,0.69] [1.04, 1.55] [86]
0.468(6) 0.87(3) [80]
0.455(2) 0.80(1) [85]

TABLE II. Operators in the SOð5Þ 5 multiplets [Eqs. (6.1) and
(6.2)] and their scaling dimensions. “VBS” and “Néel” make
reference to operators whose scaling dimensions are obtained
numerically on lattices. The results for monopole operators are
obtained by using the state-operator correspondence at next-to-
leading order in 1=N. The scaling dimension of the auxiliary
boson ϕ in QED3-GN is obtained at order 1=N using the mean of
Padé and Padé-Borel ½0=1� resummations (nonresummed scaling
dimensions are unphysical). The scaling dimension of the
fermionic monopole operator can also be resummed to
(0.59,0.68), but not in the bosonic case. The operator z†σz
designates any of the boson bilinears, i.e., flavor spin-1 in the
bosonic side. It is obtained at order 1=N2 in Ref. [74] and using
functional renormalization group in Ref. [75].

O ΔO Ref.

Mf
1=2

0.65 This work

Mb
1=2 0.63 [69]

ϕ (0.59, 0.64) [47]
z†σz 0.64 [74]

0.61 [75]
VBS, Néel [0.60, 0.68] [76–80]
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dimensions, with target space S3þϵ, with global symmetry
SOð4þ ϵÞ has been shown to exhibit this behavior and is
consistent with numerical results in the literature. A crucial
point was that the physical dimension d ¼ 3 is close to the
critical dimension d ¼ 2.77 where fixed points collide.
Pseudo-criticality was also found in a loop model describ-
ing the easy-plane Néel-VBS transition [91].

A. Higher charge

The duality can be tested further by comparing monop-
oles on both sides of the duality. First, the relation between
minimally charged monopoles is further discussed. This
relation is simpler to see with the appropriate submodels.
A duality between QED3j2N¼2 and easy-plane CP1 is
formulated by including additional external gauge fields
Bμ; B0

μ and Chern-Simons terms [53,92]

jDbþBz1j2 þ jDbþB0z2j2 − jz1j4 − jz2j4

−
1

2π
bdðBþ B0Þ − 1

2π
BdB0 −

1

2π
B0dB ð6:3Þ

⇔ ψ̄1iDa−Bψ1 þ ψ̄2iDaþBψ2 þ
1

2π
adB0

þ 1

4π
ðBdB − B0dB0Þ; ð6:4Þ

where bμ and aμ are the dynamical gauge fields in bosonic
and fermionic models, respectively. By inspecting the
charges under the external gauge fields ðqB; qB0 Þ, we can
identify the following bosonic operators:

ð2Mb
1=2; 2z

�
1z2Þ ⇔ (ðψ†

1
fMf

1=2Þ†;ψ†
2
fMf

1=2): ð6:5Þ

Here, the first and second components on both sides have
charges (1,1) and ð1;−1Þ under Bμ and B0

μ. While an SU(2)
doublet structure is manifest on the rhs with the fermion
zero modes, it is less clear on the lhs and may be seen as a
nontrivial corollary of the duality. This may, however, be
motivated by the self-duality in the easy-plane CP1 model.
The VBS order in the original modelMb

1=2 is mapped to the
XY order in terms of the dual bosons w�

1w2. Conversely,
monopoles in the dual side are mapped to z�1z2 in the
original model.
These relations between operators translate back to

the QED3-GNj2N¼2 ⇔ CP1 duality. In particular, it is
useful to focus on the dual relation between the CP1

monopole 2Mf
1=2 and the corresponding dual monopole in

QED3-GNj2N¼2, ðψ†
1
fMf

1=2Þ†. For convenience, we define

the following monopole operatorMf
1=2ðxÞ≡ 2ðψ†

1
fMf

1=2Þ†.
Our starting point is then the conjectured dual relation
between minimally charged monopoles in QED3-GNj2N¼2

ðMf
1=2Þ and in CP1 ðMb

1=2Þ models

Mf
1=2ðxÞ ⇔ Mb

1=2ðxÞ: ð6:6Þ

Using this relation and the OPE

O1ðxÞO2ðyÞ ¼
X
n

cnðx − yÞOnðyÞ; ð6:7Þ

the scaling dimensions of higher-charge monopoles can
also be compared. The OPE of two q ¼ 1=2 monopole
operators yields the expansion over q ¼ 1 operators

lim
y→x

M1=2ðxÞM1=2ðyÞ ¼ lim
y→x

cðx− yÞM1ðxÞþ � � � ; ð6:8Þ

where the ellipsis stands for other primary operators
with larger scaling dimensions. By definition, M1ðxÞ
has the smallest scaling dimension in the q ¼ 1 topological
sector. We can then identify the scaling dimension of
q ¼ 1 monopole operators on both sides of the duality
Δf

q¼1 ¼ Δb
q¼1. This is expected, as these monopoles are

conjectured to be components dual SOð5Þ symmetric
traceless 14 multiplet [44,74]. Using the same logic for
higher-charge monopoles, we find more generally that

Δf
q ¼ Δb

q: ð6:9Þ

Comparing our results for QED3-GNj2N¼2 monopoles in
Table I to CP1 monopoles in Ref. [73], we obtain good
agreement for higher charges, as shown in Fig. 4. For larger
charges, the relative difference tends to 10%. This is a great
improvement compared to the results obtained with only
the leading-order scaling dimensions: The behavior is

FIG. 4. Relative difference between the scaling dimensions of
monopoles in QED3-GNj2N¼2 and CP1 models as a function of
the topological charge. The computation is done with next-to-
leading-order results in both models. The solid line is a fit
f0 þ f−1q−1 þ f−3=2q−3=2, where the asymptote for large charge
is approximately a 10% relative difference. The powers used in
the fitting function are deduced from Eq. (5.1).
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similar, and the asymptotic relative difference for large q is
76% instead.

VII. TRANSITION TO Z2 SPIN LIQUIDS

In this section, we consider quantum critical transitions
to Z2 spin liquids. The pairing of the spinons gaps out the
gauge field through the Higgs mechanism. We begin with
the most symmetric pairing interaction, and we then discuss
the more general case where the pairing further breaks the
flavor symmetry.

A. Symmetric Z2 spin liquid

The transition out of the U(1) DSL to a Z2 spin liquid
can also be studied with a gauged Gross-Neveu model
[30,49–51]. The Lagrangian describing this transition is
written in Euclidean flat spacetime as

Lψ ¼
X2N
i¼1

−ψ̄ ið=∂ − iAq − i=AÞψ i

þ
X2N
i¼1

ðϕ�ψT
i iγ2ψ i þ H:c:Þ; ð7:1Þ

where ϕ is a complex scalar that decouples a quartic
superconducting pairing term for the fermions. The inter-
action term included preserves Lorentz invariance. As ϕ
describes Cooper pairs, it transforms as ψ̄ iiγ2ψ̄T

i under U(1)
gauge transformations. The Yukawa interaction term in the
above equation is thus gauge invariant. In the Z2 QSL, ϕ
acquires an expectation value, which Higgses the gauge
field, leading to a gapped s-wave superconducting state for
the Dirac fermions.
We recall that the Dirac conjugate is defined by

ψ̄ i ¼ ψ†
i γ0, and Aq

μ is the external gauge field that sources
the flux of 4πq. The gauge-covariant derivative for the
external gauge field Aq

μ on a curved spacetime is defined in
Eq. (2.13). We now introduce the Nambu spinor defined as

ϒi ¼
�

ψ i

iγ2ψ̄T
i

	
¼

�
ψ i

Cψ̄T
i

	
: ð7:2Þ

In addition, we define C ¼ diagðC;CÞ, where C ¼ iγ2.
The C operator obeys C2 ¼ −1, CT ¼ C−1 ¼ −C, and
CγμC ¼ γTμ . The transpose of the Nambu spinor is given by
ϒT

i ¼ ðψT
i ; ψ̄ iCTÞ ¼ ðψT

i ;−ψ̄ iCÞ. Thus, the fermionic
action can be expressed as

Sϒ ¼ 1

2

Z
r;r0

ϒT
i ðrÞCG−1ðr; r0Þϒiðr0Þ; ð7:3Þ

where the (inverse) Nambu Green’s function is

G−1ðr; r0Þ ¼
�

2ϕ�ðrÞ −D−ðAþAqÞ
−DAþAq

2ϕðrÞ
	
δðr − r0Þ: ð7:4Þ

As in Sec. IV, the fields ϕ and A are expanded about
their saddle-point values as ϕ ¼ hϕi þ σ=

ffiffiffiffiffiffiffi
2N

p
, A ¼

hAi þ a=
ffiffiffiffiffiffiffi
2N

p
, where the fluctuations are suppressed by

1=
ffiffiffiffiffiffiffi
2N

p
. At the QCP, the saddle-point values are hϕi ¼

hAi ¼ 0 [50]. Thus, in terms of the saddle point and
fluctuation fields, the inverse Green’s function is

G−1ðr; r0Þ ¼ G−1
0 ðr; r0Þ þ 1ffiffiffiffiffiffiffi

2N
p XσðrÞδðr − r0Þ

þ 1ffiffiffiffiffiffiffi
2N

p XaðrÞδðr − r0Þ: ð7:5Þ

Here, G−1
0 is the bare inverse Green’s function determined

from the gauge-covariant derivative term involving Aq
μ in

Eq. (7.4), and Xσ and Xa are given by

Xσ ¼ 2

�
σ� 0

0 σ

	
; Xa ¼

�
0 −=a
=a 0

	
: ð7:6Þ

Integrating out the fermions then gives the effective
action as

R
Dϒ expð−SϒÞ≡ expð−SeffÞ, where Seff ¼

− 1
2
ð2NÞTr logG−1. We let Tr denote a “trace” over all

relevant degrees of freedom, whereas tr denotes a trace over
spinor components. To compute the effective action, we
express the fermionic action as a quadratic form in the
fluctuation fields and perform a Gaussian functional integral
over a and σ. The linear terms in a and σ vanish due to the
saddle-point conditions forA andϕ. Thus, to quadratic order,
the effective action becomes

Seff ¼ Seff jSP þ
1

4
TrG0XaG0Xa þ

1

4
TrG0XaG0Xσ

þ 1

4
TrG0XσG0Xa þ

1

4
TrG0XσG0Xσ: ð7:7Þ

The fluctuations are O(1=ð2NÞ); thus, they cancel the
prefactor 2N. The second and third terms involve both the
gauge field and the scalar field. By taking the trace over
the Nambu matrix structure, these terms are found to
vanish. Indeed, these terms must vanish from gauge
invariance. Hence, only the gauge-gauge and scalar-scalar
kernels contribute, which is in contrast to the QED3-GN
case where mixing between the two sectors exists. After
performing the trace over the Nambu indices, the scalar-
scalar kernel is

1

4
TrG0ðr0; rÞXσðrÞG0ðr; r0ÞXσðr0Þ

¼ 2

Z
r;r0

σ�ðrÞDðr; r0Þσðr0Þ; ð7:8Þ
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where the scalar kernel is the same as in Eq. (4.9).
Similarly, the gauge-gauge kernel is the same as in QED3:

1

4
TrG0ðr0; rÞXaðrÞG0ðr; r0ÞXaðr0Þ

¼ 1

2

Z
r;r0

aμðrÞKμνðr; r0Þaνðr0Þ; ð7:9Þ

where the gauge-gauge kernel is the same as in Eq. (4.10).
Combining these two results, we find that the fluctuation
action (obtained after integrating out σ and a) is just the
sum of twice the pure GN and the QED3 results. The
anomalous dimension for the minimal charge q ¼ 1=2 is
thus deduced to be

Δð1Þ
QED3-Z2GN

¼ Δð1Þ
QED3

þ 2Δð1Þ
GN ¼ 0.102846ð9Þ: ð7:10Þ

The value and the error are estimated in the same way as
described in Sec. IVandAppendix I by finding an expression
similar to Eq. (4.24) for the QED3-Z2GN case. The result is
surprisingly close to the QED3-GN case, although the
quantum fluctuations possess a different structure at the
two transitions. In Table I, we give the answer for higher q. It
can be seen that the values of the anomalous dimensions for
q > 1=2 for the CSL and Z2 QSL are not as close as in the
case of the minimal charge. By using the anomalous
dimensions up to q ¼ 13 shown in Appendix J, one can
again confirm the value of the universal coefficient for CFTs
with a U(1) global symmetry as described in Sec. V: In this
case, we find γQED3-Z2GN ¼ 0.98ð7Þ × γUð1Þ.

B. More general Z2 spin liquids

Let us now consider a more general (superconducting)
pairing interaction given by

Lint ¼
X2N
i¼1

ϕ�
Iψ

T
i CM

I
ijψ j þ H:c: ð7:11Þ

Here, C is the same as in the previous subsection—an
antisymmetric and unitary matrix with indices denoting the
Dirac indices of the spinor ψ. The additional term in the
interaction MI represents a “flavor” matrix, which is
symmetric and has indices in the valley and spin spaces.
We consider some simple concrete examples of M later in
this section. The index I, which is implicitly summed over,
corresponds to the number of charged scalar fields, i.e., the
competing pairing channels. In the previous section, I ¼ 1
and M corresponds to the identity operator.
The analysis for this more general pairing interaction

follows the same lines as before. The Nambu spinor is the
same as in Eq. (7.2); however, the inverse Green’s function
now becomes

G−1ðr;r0Þ ¼
�
2ϕ�

I ðrÞMI −D−ðAþAqÞ

−DAþAq
2ϕIðrÞMI

	
δðr− r0Þ: ð7:12Þ

Here we suppose that M is Hermitian. The inverse Green’s
function can be expanded again using the large-N formal-
ism, and the effective action can be similarly expressed as
in Eq. (7.7). The terms involving both the gauge field and
the scalar field again vanish due to gauge invariance, and
the gauge-gauge term is the same as in Eq. (7.9). The
scalar-scalar kernel is now

1

4
TrG0ðr0; rÞXϕðrÞG0ðr; r0ÞXϕðr0Þ

¼ 2
X
I;J

Z
r;r0

ϕ�
I ðrÞDðr; r0ÞϕIðr0Þtr½ðMIÞ2�δIJ; ð7:13Þ

where we assume that the different channels labeled by I
are orthogonal: trðMIMJÞ ¼ 0 if I ≠ J. Then, the anoma-
lous dimension is

Δð1Þ
QED3-Z2GN0 ¼ Δð1Þ

QED3
þ 2Δð1Þ

GN

P
Itr½ðMIÞ2�
2N

: ð7:14Þ

In the previous section, MI is the identity operator and so
tr½ðMIÞ2� ¼ 2N, which leads to the previous result for the
anomalous dimension in Eq. (7.10). As another example,
consider the case where the pairing interaction is of the
form ϕxψ

TCσxψ þ ϕzψ
TCσzψ ; note that we cannot use σy

since it is not symmetric. In this case,
P

I tr½ðMIÞ2� ¼ 4N,
and so the anomalous dimension of the second term in
Eq. (7.14) is now 4 times the pure-GN result.
Note that the superconducting pairing generally reduces

the flavor (spin and valley) global symmetry. Therefore,
monopole operators with different flavor quantum numbers
are expected to have different scaling dimensions, resulting
in a hierarchy of monopoles [33]. As our present formalism
selects only the monopole with the smallest scaling
dimension, a constraint on the flavor quantum numbers
would be needed to describe other monopoles. Moreover,
since the pairing field cannot have an expectation value for
gauge-invariant monopoles, it is expected that next-to-
leading corrections are necessary to observe this hierarchy.
Generalizing Ref. [33] to quantify this effect would be an
interesting avenue to explore.
To understand these more general Z2 spin liquids, we

analyze the pairing Hamiltonian in further detail. In
particular, here we focus on the Bogoliubov–de Gennes
(BdG) Hamiltonian for the mean-field description of
Eq. (7.11). In the preceding section, we formulate the
theory in terms of a Euclidean Lagrangian description.
Since the Hamiltonian H is the time component of an
energy-momentum tensor, it is necessarily a non-Lorentz-
invariant entity. Thus, here we use Minkowski spacetime to
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perform the analysis, which enables standard field theory
methods to determine H from L.
We define H ¼ π _ψ − L, where π is the canonical

momentum conjugate to ψ . From Eqs. (7.1) (without the
gauge field) and (7.11), we construct the following
Hamiltonian:

H ¼ −ðiψ†
i γ

0γ · ∇ψ i þ ϕ�
Iψ

T
i CM

I
ijψ j þ H:c:Þ: ð7:15Þ

Our choice of gamma matrices is given by γμ ¼
ðτz; iτx; iτyÞ; this definition is consistent with the
Clifford algebra with a mostly minus metric. Here,
C ¼ iτy. We define the Nambu spinor χðkÞ by

χiðkÞ ¼
�

ψ iðkÞ
Cψ�

i ð−kÞ

	
: ð7:16Þ

In terms of the Nambu spinor χðkÞ, the Hamiltonian has the
following form in momentum space:

H ¼ 1

2

Z
k
χ†i ðkÞ

�
δijγ

0γ · k −2ϕij

−2ϕ�
ij −δijγ0γ · k

	
χjðkÞ; ð7:17Þ

where ϕ�
ij ¼ ϕ�

IM
I
ij. In general, the Hamiltonian can be

expressed as H ¼ 1
2

R
k χ

†
i ðkÞHðkÞχjðkÞ, where HðkÞ is the

BdG matrix. In the simplest case, we have 2N ¼ 2; that is,
there are 2 spin degrees of freedom, and the BdG
Hamiltonian is 8 × 8. In the previous section, we consider
the case where the pairing matrix is the identityMI ¼ Δσ0,
where Δ is the finite value of the pairing term in the Z2 spin
liquid phase.
Here we contemplate some simple examples of pairing

matrices, namely, MI ¼ Δσx or MI ¼ Δσz. For these
classes of spin liquids, the BdG matrix is of the form

HðkÞ ¼ σ0 ⊗
�
1 0

0 −1

	
⊗ ð−τykx þ τxkyÞ

þ σl ⊗
�

0 −2Δ
−2Δ� 0

	
⊗ τ0: ð7:18Þ

Here, σl ¼ σ0; σx, or σz. The various matrices appearing
above correspond to the spin indices, Nambu indices,
and finally the Dirac indices, respectively. For the sim-
ple case where σl ¼ σ0, the eigenvalues are given by
EðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4jΔj2

p
, with a fourfold degeneracy.

These eigenvalues are the same as in the Fu-Kane model
at half filling [93]. Indeed, in the Fu-Kane model the
Hamiltonian is a 4 × 4matrix with spin and Nambu indices.
Here we have two copies of this model Hamiltonian for
each species of spin. In the case where σl ¼ σx or σz, we
also have the same dispersion. In general, this dispersion
describes a gapped Z2 spin liquid. The QCP in the present
model is generally thought to be well defined at modest

values of N; we can incorporate N copies of the valley
degrees of freedom and obtain the same (copies) of the
eigenvalues.
For the case where we have two competing channels

MI ¼ Δxσx þ Δzσz, the dispersion is given by E�;�ðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2Δxj2 þ j2Δzj2 � 4jΔxΔ�

z − Δ�
xΔzj

p
with twofold

degeneracy. In the case where either Δx or Δz is equal to
zero, we recover the previous result for the eigenvalues.
Interestingly, for the specific case where jΔxj ¼ jΔzj and
argðΔxÞ − argðΔzÞ ¼ �π=2 (mod π), there are gapless
Dirac cones �k. For such pairings, we thus have a gapless
Z2 spin liquid with massless relativistic fermions, and a
gapped Z2 gauge field.
This last case can be reformulated as a pairing term

given by MI ¼ jΔjd⃗ · σyσ⃗ with d⃗ ¼ eiφð1; 0;�iÞ. This
expression is similar to the time-reversal-breaking triplet
state defined with d⃗ ¼ ð1; i; 0Þ, notably used to describe
an LaNiC2 compound [94], as well as a potential order
parameter in twisted bilayer graphene [95]. This situa-
tion occurs when the general condensates Δ0;Δz in
MI ¼ Δ0σ0 þ Δzσz are aligned in the complex plane,
argðΔ0Þ − argðΔzÞ ∈ f0; πg.
An important quantity for gapped systems is the Chern

number [96], which corresponds to the flux of the Berry
curvature in the Brillouin zone (BZ). In the presence of a
gap, the Chern number is an integer and describes a
topological property of the system. A nonzero Chern
number indicates broken time-reversal symmetry; however,
the converse is not always true. For a 2D system, it is
defined by

C ¼ 1

2π

Z
d2kBðkÞ: ð7:19Þ

Here, B is the Berry curvature defined by BðkÞ ¼
i(∇k × AðkÞÞz, where A¼P

nhunðkÞj∇kunðkÞi with unðkÞ
a normalized eigenstate of the Hamiltonian, and the sum
running over the occupied bands. Here we are considering a
continuum theory where the band structure has a power-law
dependence on momentum. In a lattice calculation, where
the band structure is defined in the first BZ and involves
trigonometric functions, the Chern number is well defined.
To incorporate such physics, we extend the continuum
model to a simple lattice dispersion where we replace kx, ky
with sinðkxÞ; sinðkyÞ. This procedure does necessarily add
additional Dirac points in the BZ. For the points in
parameter space where there is a gap, we find that the
Chern number is well defined, and at all such points
we obtain C ¼ 0. This is expected when the system has
time-reversal symmetry, which happens when both con-
densates Δx and Δz are imaginary. Other points that break
time-reversal symmetry are connected without gap closing
and thus are also expected to have a vanishing Chern
number.
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VIII. OTHER PHASE TRANSITIONS

The QED3-UðNÞ × UðNÞ GN, QED3–chiral XY GN,
and QED3-CHGN transitions are also described with GN
models, where the fermionic quartic interaction is, respec-
tively, decoupled with Nb ¼ 1, 2, 3 real auxiliary bosons

Sc ¼ S0 ¼
Z

d3x½−Ψ̄ðDAþAq þ ϕIμIÞΨ� þ…; ð8:1Þ

where the sum over 1 ≤ I ≤ Nb is implicit, and μI are Pauli
matrices acting on a two-dimensional flavor subspace
where

ϕIμI ¼

8>><>>:
ϕzμz;

ϕxμx þ ϕyμy;

ϕ⃗ · μ⃗:

ð8:2Þ

As mentioned previously, the QED3-CHGN model
describes the transition from a U(1) DSL to an AFM on
the kagome lattice. In the case of this interaction, the Pauli
matrices μ⃗ act on magnetic spin subspace. As for the chiral
XY interaction, taking μx, μy to act on a valley subspace,
this describes the transition to a VBS order parameter.
These transitions were observed for Monte Carlo simu-
lations on a square lattice where by tuning gauge-field
fluctuations, the U(1) DSL is driven to either an AFM or
VBS order, depending on the number of fermion flavors
[97,98]. A theoretical study that elucidated the field theory
for the transition to an AFM was performed in Ref. [99]
(see also Refs. [28,31] for earlier studies of this model),
while the field theory for the transition to the VBS was
outlined in Refs. [100–102]. In this work, we use the
appellation QED3-GN to designate the model with Uð2NÞ
symmetry, following the convention of Refs. [47,53],
notably. The Pauli matrix in this case acts on valley
subspace. However, the label is also used in the literature
to refer to the UðNÞ × UðNÞ symmetric model; see
Ref. [45], for instance. Both variations of QED3 were
considered in Refs. [48,74].
As shown in Ref. [31], the auxiliary boson in these cases

has a nonvanishing expectation value: hjϕji ≠ 0 in the
monopole background on S2 ×R. This is also true for other
choices of Pauli matrices, not only the specific one
prescribed before to describe specific universality classes.
For instance, the μ⃗ considered for the QED3-CHGN
universality class could also act on valley subspace, in
which case the order parameter is odd under time reversal.
There is still a nonvanishing expectation value of the
auxiliary boson. Consequently, the Green’s function in
Eq. (4.45) must be modified to include a nonzero mass for
the fermions. Using the addition theorems for spinor
monopole harmonics needed to compute the zero-mass
Green’s function should be sufficient for this adaptation.
Real-space kernels like in Eqs. (4.9)–(4.11) would also

include Pauli matrices for traces on the magnetic spin
subspace, with the number of kernels to compute increasing
accordingly with the number of auxiliary bosons Nb.

IX. CONCLUSION

We obtain the scaling dimension of monopole opera-
tors at the QCP between a U(1) DSL and two types of
topological spin liquids, namely, the CSL and a general
class of Z2 QSLs, at next-to-leading order in a 1=N
expansion. The most relevant monopole operator in the
CSL case has a minimal charge q ¼ 1=2 and a scaling
dimension Δ1=2;QED3-GN ¼ 2N × 0.26510þ 0.118911ð7Þ,
while the analog scaling dimension in the case of the
simplest Z2 QSL is Δ1=2;QED3-Z2GN ¼ 2N × 0.26510þ
0.102846ð9Þ. For the other general Z2 spin liquids, where
the spin and valley flavor interaction is included, we
obtain a general expression for the anomalous dimension.
Since the spin and valley interaction reduces the size of
the flavor group, an interesting question is what type of
hierarchy the monopoles will have and how can one
observe this in the monopole scaling dimensions. We also
rederive the QED3 monopole scaling dimensions and find
small discrepancies, e.g., the q ¼ 1=2 anomalous dimen-
sion is −0.038138ð5Þ instead of −0.0383 and so on for
other charges up to q ¼ 5=2 [16,65]. This also leads to
corrections to the anomalous dimensions of certain monop-
ole operators in QCD3 with non-Abelian gauge groups,
such as UðNcÞ, where the QED3 anomalous dimension
makes its appearance [65].
With these anomalous dimensions, we obtain a fit in

the topological charge q and compare the Oðq0Þ coef-
ficient with the universal value obtained in a large-
charge expansion for operators charged under a global
U(1) symmetry [54]. We obtain the expected value γ ¼
−0.0937 in QED3, QED3-GN, and QED3-Z2GN. We also
revisit the conjectured duality between QED3-GNj2N¼2

and in CP1 models [53]. Notably, the q ¼ 1=2 monopole
scaling dimensions in QED3-GNj2N¼2 agree very well
with the scaling dimensions of other operators that are
predicted to be equal under the duality. Specifically, the
anomalous dimension obtained in this work greatly
improves this agreement. We also argue that all monop-
oles with equal charges should have the same scaling
dimensions in the QED3-GNj2N¼2 and CP1 models.
Using next-to-leading-order results for both models, we
obtain an agreement that is better for a minimally charged
monopole, with a relative difference of 3%. As the
topological charge increases, this difference increases
and eventually saturates at 10% for q → ∞.
It would be interesting to study monopole operators

in the other gauged GN models that we briefly discuss,
notably the model describing the transition to an AFM
[31–33]. Another interesting aspect to consider that is
not included in this work is the case of monopole
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operators in the pure-GN model. It is a straightforward
adaptation to write out the monopole anomalous dimen-
sions in this case and use the results of this work to
obtain them. Although there is no Uð1Þtop due to the
absence of a gauge field in this model, these objects
still have useful applications. This notably motivated
the study of monopoles in the bosonic OðNÞ model
[66,103]. A study of the GN global monopoles and
some of their applications will appear in a forthcom-
ing work.
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APPENDIX A: LARGE-N NONCOMPACT
QUANTUM PHASE TRANSITION

An auxiliary boson ϕ can be introduced to decouple the
GN term in the action in Eq. (2.1) through a Hubbard-
Stratonovich transformation

S ¼
Z

d3x

�
−Ψ̄ð∂ − i=Aþ ϕÞΨþ N

h2
ϕ2

�
; ðA1Þ

where the coupling constant h2 is rescaled with N, the
number of valley nodes. The fermion part of the action is
now quadratic and can be integrated

Seff ¼ N

�
− ln det ð∂ − i=Aþ ϕÞ þ

Z
d3x

1

h2
ϕ2

�
; ðA2Þ

where the valley subspace is traced out. The saddle-point
equation for the gauge field is

0 ¼ δSeff
δAμ

����
hϕi;hAμi

¼ iN
Z

d3p
ð2πÞ3 tr

�
γμ

−ip − ih=Ai þ ϕ

�

¼ iN
Z

d3p
ð2πÞ3 tr

�
γμγν

ðpþ hAiÞ2 þ hϕi2
	
hAνi

¼ 2iN
Z

d3p
ð2πÞ3

hAμi
ðpþ hAiÞ2 þ hϕi2 ; ðA3Þ

which is solved for a vanishing gauge field haμi ¼ 0, as
required by gauge invariance. Taking a homogeneous

ansatz for the pseudo-scalar field, the remaining gap
equation is given by

0 ¼ δSeff
δϕ

����
hϕi;hAμi¼0

¼ 2Nhϕi
�
1

h2
−
Z

d3p
ð2πÞ3

1

p2 þ hϕi2
�
:

ðA4Þ

At the QCP, where hϕi ¼ 0, the critical coupling is defined
through

1

h2c
¼

Z
d3p
ð2πÞ3

1

p2
¼ 0; ðA5Þ

where this result is obtained through zeta regularization of
the integral. In this scheme, only the determinant operator
remains in the effective action (A2); i.e., we obtain
Eq. (2.4).

APPENDIX B: SCALAR-GAUGE KERNEL

We noted earlier that Mq
lðωÞ is non-Hermitian. Here we

elaborate on this point in more detail. First, we note that
Hq

μ0 ðr; r0Þ is imaginary. Conjugating the expression in
Eq. (4.11), we obtain

Hq
μ0 ðr; r0Þ ¼ −itr½Gqðr; r0Þγμ0G†

qðr; r0Þ�; ðB1Þ

½Hq
μ0 ðr; r0Þ�� ¼ itr½G�

qðr; r0Þγ�μ0G⊺
qðr; r0Þ�

¼ itr½Gqðr; r0Þγ†μ0G†
qðr; r0Þ�; ðB2Þ

where we use that the trace of a matrix is equal to the
trace of the transposed matrix. Here, the gamma
matrices are simply the Pauli matrices, thus, γ†μ0 ¼ γμ0 .
As a result, there is an extra sign in the conjugation of
Hq

μ0 ðr; r0Þ:

½Hq
μ0 ðr; r0Þ�� ¼ −Hq

μ0 ðr; r0Þ: ðB3Þ

Hence, the kernel is imaginary.
Next, we make a relevant observation for the kernel

Fourier coefficient. The decomposition of Hq
τ0 ðr; r0Þ by

definition (4.18) and (4.19) is

Hq
τ0 ðr; r0Þ ¼

Z
ω

X
l

Hq;T
l ðωÞe−iωðτ−τ0ÞPlðn̂ · n̂0Þ; ðB4Þ

where we use the addition theorem in Eq. (4.33). As for the
other scalar-gauge kernel Hq

τ ðr0; rÞ, it can be defined in the
same way, but with a different coefficient, say, H̃q;T

l ðωÞ.
This is then related to Hq;T

l ðωÞ by exchanging coordinates
in the expression above

ANOMALOUS DIMENSIONS OF MONOPOLE OPERATORS AT THE … PHYS. REV. X 12, 031012 (2022)

031012-21



Hq
τ ðr; r0Þ ¼

Z
ω

X
l

Hq;T
l ðωÞe−iωðτ0−τÞPlðn̂ · n̂0Þ

¼
Z
ω

X
l

Hq;T
l ð−ωÞe−iωðτ0−τÞPlðn̂ · n̂0Þ: ðB5Þ

Thus, H̃q;T
l ðωÞ ¼ Hq;T

l ð−ωÞ. Since Hq
τ0 ðr; r0Þ is imaginary,

we have that Hq;T
l ð−ωÞ ¼ −½Hq;T

l ðωÞ��, meaning that

H̃q;T
l ðωÞ ¼ −½Hq;T

l ðωÞ��: ðB6Þ

This explains the signs in the first column of Eq. (4.19).

APPENDIX C: GAUGE INVARIANCE

Using conservation of the U(1) current ∇μJμðrÞ ¼ 0 in
Eqs. (4.6) and (4.7), one can show the gauge invariance of
the kernels

∇μKμμ0 ðr;r0Þ¼ 0; ∇μ0Kμμ0 ðr;r0Þ¼0; ∇μ0Hμ0 ðr;r0Þ¼0:

ðC1Þ

We reexpress these conditions in the Fourier-transformed
space. To do so, we take the divergence of the various
eigenvectors of the gauge field

∇μe−iωτaTμ;lmðn̂Þ ¼ ∇μ

�
1

−iω
Ylmðn̂Þ∇μe−iωτ

	
¼ 1

−iω
Ylmðn̂Þ∇μ∇μe−iωt

¼ −iωe−iωτYlmðn̂Þ; ðC2Þ

∇μe−iωτaEμ;lmðn̂Þ ¼ ∇μ

�
e−iωτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ∇μYlmðn̂Þ

	
¼ e−iωτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ∇μ∇μYlmðn̂Þ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
e−iωτYlmðn̂Þ; ðC3Þ

∇μe−iωτaBμ;lmðn̂Þ ¼ ∇μ

�
e−iωτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ϵ0μνffiffiffiffiffiffiffiffiffi

gðrÞp ∇νYlmðn̂Þ
	

¼ 0e−iωτYlmðn̂Þ; ðC4Þ

which implies the following relation:

∇μ


aTμ;lmðn̂Þ aEμ;lmðn̂Þ aBμ;lmðn̂Þ

�
¼



−iω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

0

�
e−iωτYlmðn̂Þ: ðC5Þ

Taking the divergence of the kernels, we obtain

∇μKμμ0 ðr; r0Þ ¼
Z
ω

X∞
l¼0

Xl
m¼−l

e−iωðτ−τ0ÞYlmðn̂Þ

×


−iω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

0

�

×

0BB@
Kq;TT

l ðωÞ Kq;TE
l ðωÞ Kq;TB

l ðωÞ
Kq;TE�

l ðωÞ Kq;EE
l ðωÞ Kq;EB

l ðωÞ
Kq;TB�

l ðωÞ Kq;EB�
l ðωÞ Kq;BB

l ðωÞ

1CCA

×

0BB@
aT†μ;lmðn̂0Þ
aE†μ;lmðn̂0Þ
aB†μ;lmðn̂0Þ

1CCA; ðC6Þ

∇μHμðr; r0Þ ¼
Z
ω

X∞
l¼0

Xl
m¼−l

e−iωðτ−τ0ÞYlmðn̂ÞY�
lmðn̂0Þ

×


−iω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

0

�0BB@
−Hq;T�

l ðωÞ
−Hq;E�

l ðωÞ
−Hq;T�

l ðωÞ

1CCA;

ðC7Þ

where
R
ω≡

R
dω=ð2πÞ. Requiring gauge invariance and

setting these divergences to 0, we obtain the following
relations:

−iωKq;TT
l ðωÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Kq;TE�

l ðωÞ ¼ 0; ðC8Þ

−iωKq;TE
l ðωÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Kq;EE

l ðωÞ ¼ 0; ðC9Þ

−iωKq;TB
l ðωÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Kq;EB

l ðωÞ ¼ 0; ðC10Þ

iωHq;T�
l ðωÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Hq;E�

l ðωÞ ¼ 0: ðC11Þ

1. Verifications

Let us check one important relation following from
gauge invariance:

Kq;EE
l ðωÞ ¼ ω2

lðlþ 1ÞK
q;TT
l ðωÞ: ðC12Þ

This is easily verified for q ¼ 0 where closed forms of the
kernels are easily obtained as we discuss in Sec. IV B 1.
This is a bit more involved when q ≠ 0. We have
expressions where the dependence on ω is easily isolated,
taking the following form:

Kq;ZZ
l ðωÞ ¼

Z
dx

X
l0;l00

Eq;l0 þ Eq;l00

ω2 þ ðEq;l0 þ Eq;l00 Þ2
k̃q;ZZl;l0;l00 ðxÞ;

Z ∈ fT; Eg: ðC13Þ
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On the rhs of the gauge-invariance condition in Eq. (C12),
we may reexpress the ω-dependent function as

ω2

ω2þðEq;l0 þEq;l00 Þ2
¼ 1−

ðEq;l0 þEq;l00 Þ2
ω2þðEq;l0 þEq;l00 Þ2

: ðC14Þ

Upon integration over ω, the first term is a simple
divergence that can be regularized away. In the presence
of test function fðωÞ, this contribution is

R
dωfðωÞ × 1,

and it again vanishes provided the test function is con-
vergent with no poles. The gauge-invariance condition in
Eq. (C12) can then be written by simply comparing the
finite partsZ

dx
X
l0;l00

Eq;l0 þ Eq;l00

ω2 þ ðEq;l0 þ Eq;l00 Þ2
k̃q;EEl;l0;l00 ðxÞ

¼
Z

dx
X
l0;l00

�
−
ðEq;l0 þ Eq;l00 Þ2

lðlþ 1Þ
�

×
Eq;l0 þ Eq;l00

ω2 þ ðEq;l0 þ Eq;l00 Þ2
k̃q;TTl;l0;l00 ðxÞ: ðC15Þ

This last relation following from gauge invariance is
verified for q ¼ 1=2. Note that gauge invariance also
implies that

k1=2;TT
0;l0;l00 ðxÞ ¼ 0; ðC16Þ

which is also verified by direct computation.

APPENDIX D: GREEN’S FUNCTION

1. Eigenvalues of determinant operator

In a general basis, the gauge-covariant derivative acting
on a spin-1=2 spinor on spacetime M will take the form

DAq ¼ eμbγ
b½∂μ −Ωμ − iAq

μ�; ðD1Þ

where Ωμ is the spin connection transporting the fermion
fields on spacetime M. On a flat spacetime M ¼ R3, there
are also spin connections in spherical coordinates that can
be eliminated with a unitary transformation [104]. In this
case, the covariant derivative ∇μ¼r;θ;ϕ can be traded for a
normal derivative ∂μ¼r;θ;ϕ,

DR3

Aq ¼ ðeR3Þμbγb½∂μ − iAq
μ�: ðD2Þ

Proceeding with the Weyl transformation ψ → e−τψ , gμν →
e−2τ discussed in Eq. (2.6), the Dirac operator on S2 ×R is
given by [15]

DS2×R
Aq ¼ ðeS2×RÞμbγb

�
∂μ −

1

R
δτμ − iAq

μ

�
: ðD3Þ

To diagonalize this operator, we introduce spinor
monopole harmonics

S�q;l0;m0 ¼
� �α�Yq;l0;m0

α∓Yq;l0;m0þ1

	
;

α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 þ 1=2� ðm0 þ 1=2Þ

2l0 þ 1

r
: ðD4Þ

These spinors diagonalize the following generalized total
spin and angular momentum operators J2q; Jzq; L2

q. In
particular, the spinor monopole harmonics S�q;l;m have a
total spin j ¼ l� 1=2. In the j ¼ l − 1=2 basis, the Dirac
operator mixes the two types of spinors and simply
becomes a matrix with c-number entries [15]:� iDAqe−iωτSþq;l−1;m
iDAqe−iωτS−q;l;m

�
¼ Nq;lðωþ iMq;lÞ

� e−iωτSþq;l−1;m
e−iωτS−q;l;m

�
;

ðD5Þ

where

Nq;l ¼ −
1

l
ðqτz þEq;lτxÞ; Mq;l ¼

Eq;l

l
ðEq;lτz − qτxÞ;

Eq;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − q2

q
: ðD6Þ

Here, the τi are the Pauli matrices acting in the j ¼ l − 1=2
basis; i.e., they mix the components Sþq;l−1;m and S−q;l;m. For
l ¼ q (we suppose a positive magnetic charge q > 0), only
S−q;q;m exists and corresponds to a zero mode of the Dirac
operator. By diagonalizing this matrix, we retrieve the
eigenvalues used in Sec. III.

2. Green’s function

The Green’s function can be obtained with the spectral
decomposition

Gqðr; r0Þ ¼ −
X
λ

ψλðrÞψ†
λðr0Þ

Eλ
; ðD7Þ

where ψλðrÞ are eigenspinors of the Dirac operator
iDAqψλ¼Eλψλ forming a complete basis

P
λ ψλðrÞψ†

λðr0Þ ¼
δðr − r0Þ. With this formulation, the Green’s function
respects its defining equation of motion (4.32). We can
simply keep working in the spinor monopole harmonics
basis instead of further diagonalizing. The spectral decom-
position of the Green’s function in this basis is then

Gqðr; r0Þ ¼ −ψ̃ λðrÞðẼ−1Þλλ0 ψ̃†
λ0 ðr0Þ: ðD8Þ
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The eigenvalue matrix is block diagonal, separating each
j ¼ l − 1=2 sector. To obtain a Green’s function which
has two particle-hole indices but which is a scalar with
respect to the þ=− structure described above, we take
the left eigenspinor as a row vector in the þ=− space
½e−iωτSþq;l−1;mðn̂Þ; e−iωτS−q;l;mðn̂Þ�. The action of the Dirac
operator on the left eigenspinor is then given by

� iDAqðe−iωτSþq;l−1;mÞ
iDAqðe−iωτS−q;l;mÞ

�T

¼
�
Nq;lðωþ iMq;lÞ

� e−iωτSþq;l−1;m
e−iωτS−q;l;m

�	
T

¼ ½e−iωτSþq;l−1;m e−iωτS−q;l;m�½Nq;lðω − iMq;lÞ�; ðD9Þ

whereweuse thatNT
q;l¼Nq;l;MT

q;l¼Mq;l, andMq;lNq;l ¼
−Nq;lMq;l. We can read the eigenvalue matrix from this
relation and write the Green’s function as [105]

Gqðr; r0Þ ¼ −
Z

dω
2π

X∞
l¼q

Xl−1
m¼−l

½Sþq;l−1;mðn̂Þ S−q;l;mðn̂Þ�

×
e−iωðτ−τ0Þ

Nq;lðω − iMq;lÞ
� (Sþq;l−1;mðn̂0Þ)†

(S−q;l;mðn̂0Þ)†
�
: ðD10Þ

We can note that N−1
q;l ¼ Nq;l, as this matrix squares

to identity N2
q;l ¼ l−2ðq2 þ E2

q;lÞτ0 ¼ τ0. Also, by not-
ing that jωþ iMq;lj2 ¼ ðω2 þ E2

q;lÞτ0, it follows that
ðω−iMq;lÞ−1¼ðω2þE2

q;lÞ−1ðωþiMq;lÞ. Then, the inverse
matrix in the spectral decomposition becomes

ðω− iMq;lÞ−1N−1
q;l ¼

1

ω2 þE2
q;l

ðωþ iMq;lÞNq;l

¼ 1

ω2 þE2
q;l

ðωNq;l þEq;lτyÞ; ðD11Þ

where we use that Mq;lNq;l ¼ −iEq;lτy. The spectral
decomposition of the Green’s function then becomes

Gqðr; r0Þ ¼ −
Z

∞

−∞

dω
2π

X∞
l¼q

Xl−1
m¼−l

½Sþq;l−1;m S−q;l;m�

×
e−iωðτ−τ0Þ

ω2 þ E2
q;l

ðωNq;l þ Eq;lτyÞ
" ðSþq;l−1;mÞ†

ðS−q;l;mÞ†

#
:

ðD12Þ

The contour integral on ω is obtained with the residue
theorem

Z
∞

−∞

dω
2π

e−iωðτ−τ0Þ

ω2 þ E2
q;l

�
ω

1

¼ −isgnðτ − τ0Þ e−Eq;ljτ−τ0j

−2iEq;lsgnðτ − τ0Þ
�−iEq;lsgnðτ − τ0Þ
1

¼ 1

2
e−Eq;ljτ−τ0j

�−isgnðτ − τ0Þ
E−1
q;l

: ðD13Þ

The spectral decomposition after the ω integration becomes

Gqðr;r0Þ ¼
i
2

X∞
l¼q

e−Eq;ljτ−τ0j
Xl−1
m¼−l

½Sþq;l−1;m S−q;l;m�

×
�
sgnðτ− τ0ÞNq;lþ

�
0 1

−1 0

	�"ðSþq;l−1;mÞ†
ðS−q;l;mÞ†

#
:

ðD14Þ

By inserting Eq. (D4), we obtain a 2 × 2 matrix whose
components are pairs of monopole harmonics

Gqðr; r0Þ ¼ ð2 × 2matrixÞττ0

∝
X∞
l0¼q

Xl0
m0¼−l0þ1

Yq;l0þδl0;m0þδm0 ðn̂Þ

× Y�
q;l0þδ̃l0;m0þδ̃m0 ðn̂0Þ; ðD15Þ

where �
δl0; δ̃l0; ∈ f−1; 0g;
δm0; δ̃m0; ∈ f0; 1g: ðD16Þ

This formulation is used in Sec. IV B 3.
For the minimal-charge case, the Green’s function can be

further simplified by taking the sum on the azimutal
quantum number [16], which yields Eq. (4.45) in the main
text [the difference that we note [105] concerning what
inverse matrix is used in Eq. (D10) implies an extra sign in
the first line of the Green’s function]. The phase appearing
in Eq. (4.45) is given by [16]

e−iΘ cos
γ

2
¼ cos

θ

2
cos

θ0

2
þ sin

θ

2
sin

θ0

2
e−iðϕ−ϕ0Þ: ðD17Þ

APPENDIX E: EIGENKERNELS

1. First basis

We work in spherical normalized coordinates

½ea¼θ̂;ϕ̂;τ̂
μ¼x;y;z � ¼

0B@cosθcosϕ −sinθsinϕ sinθcosϕ

cosθsinϕ sinθcosϕ sinθ sinϕ

−sinθ 0 cosθ

1CA: ðE1Þ
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Using the definitions of the vector spherical harmonics
(4.14), the eigenkernels in Eqs. (4.30) and (4.31) can be
written asX
m

aa;E�lm ðn̂Þaa0;Elm ðn̂0Þ

¼ 1

lðlþ 1Þ∇a∇a0

�X
m

Y�
lmðn̂ÞYlmðn̂0Þ

	
; ðE2Þ

X
m

aa;B�lm ðn̂Þaa0;Blm ðn̂0Þ

¼ 1

lðlþ 1Þ
ϵabϵa

0b0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞgðr0Þp ∇b∇b0

�X
m

Y�
lmðn̂ÞYlmðn̂0Þ

	
:

ðE3Þ

Using the addition formula in Eq. (4.33), we obtain the
results in Ref. [67],X
m

aa;E�lm ðn̂Þaa0;Elm ðẑÞ

¼ 2lþ 1

4π

1

lðlþ 1Þ
�
−ð1 − x2ÞP00

lðxÞ þ xP0
lðxÞ 0

0 P0
lðxÞ

	
×

�
cosϕ sinϕ

− sinϕ cosϕ

	
; ðE4Þ

X
m

aa;B�lm ðn̂Þaa0;Blm ðẑÞ

¼ 2lþ 1

4π

1

lðlþ 1Þ
�
P0
lðxÞ 0

0 −ð1 − x2ÞP00
lðxÞ þ xP0

lðxÞ

	
×

�
cosϕ sinϕ

− sinϕ cosϕ

	
: ðE5Þ

This may be further simplified by using the differential
equation for Legendre polynomials

P00
lðxÞ ¼

1

1 − x2
½2xP0

lðxÞ − lðlþ 1ÞPlðxÞ�: ðE6Þ

2. Second basis

By working in helical coordinates,

ra¼þ;z;− ¼ 1ffiffiffi
2

p ð−xþ iy;
ffiffiffi
2

p
z; xþ iyÞ; ðE7Þ

the vector spherical harmonics Ua
lmðn̂Þ; Va

lmðn̂Þ;Wa
lmðn̂Þ

introduced in Sec. IV B 3 take the following form:

Ua
lmðn̂Þ ¼

0BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−mþ1Þðl−mþ2Þ
ð2lþ2Þð2lþ3Þ

q
Ylþ1;m−1ðn̂Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−mþ1Þðlþmþ1Þ

ðlþ1Þð2lþ3Þ
q

Ylþ1;mðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ1Þðlþmþ2Þ

ð2lþ2Þð2lþ3Þ
q

Ylþ1;mþ1ðn̂Þ

1CCCCCA; ðE8Þ

Va
lmðn̂Þ ¼

0BBBBB@
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−mþ1ÞðlþmÞ

2lðlþ1Þ
q

Yl;m−1ðn̂Þ
mffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þ
p Yl:mðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl−mÞðlþmþ1Þ
2lðlþ1Þ

q
Yl;mþ1ðn̂Þ

1CCCCCA; ðE9Þ

Wa
lmðn̂Þ ¼

0BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþm−1ÞðlþmÞ

2lð2l−1Þ
q

Yl−1;m−1ðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−mÞðlþmÞ

lð2l−1Þ
q

Yl−1;mðn̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl−m−1Þðl−mÞ

2lð2l−1Þ
q

Yl−1;mþ1ðn̂Þ

1CCCCCA: ðE10Þ

Using a transformation matrix

½eμ¼x;y;z
a¼þ;z;−� ¼

0B@−1=
ffiffiffi
2

p
0 1=

ffiffiffi
2

p

−i=
ffiffiffi
2

p
0 −i=

ffiffiffi
2

p

0 1 0

1CA; ðE11Þ

these harmonics can be rotated to Cartesian coordinates

eμaZa
l;mðn̂Þ; Z ¼ U;V;W; ðE12Þ

which corresponds to the harmonics used in the main text.

3. Kernel coefficients for general q

As we turn to compute kernel coefficients,

½Kq
lðωÞ�XZ ¼ 1

2lþ 1

X
m

Z
d3rd3r0

ffiffiffiffiffiffiffiffiffi
gðrÞ

p ffiffiffiffiffiffiffiffiffiffi
gðr0Þ

p
Xμ�
l;mðn̂Þ

×Kq
μμ0 ðr; r0ÞZμ0

l;mðn̂0Þeiωðτ−τ
0Þ; ðE13Þ

with X; Z ∈ fU;V;Wg, the real-space kernels can also be
worked out in Cartesian coordinates

Kq
μμ0 ðr; r0Þ ¼ −tr½γμGqðr; r0Þγμ0G†

qðr; r0Þ�;
γμ; γμ0 ¼ ðσx; σy; σzÞ: ðE14Þ

In the limit r0 → 0, where half of the harmonics can be
eliminated [see Eq. (4.64)], the various functions at play in
our computation can be rewritten as [see Eq. (4.63)]

Gqðr; 0Þ ¼ ð2 × 2matrixÞττ0
∝
X
l0

Yq;l0þδl0;−qþδm0 ðn̂Þ; ðE15Þ
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Kq
μμ0 ðr; 0Þ ¼ ð3 × 3matrixÞμμ0

∝
X
l0;l00

Yq;l0þδl0;−qþδm0 ðn̂ÞY−q;l00þδl00;qþδm00 ðn̂Þ;

ðE16Þ

Zμ�
l;mðn̂ÞZμ0

l;mðẑÞ ¼ ð3 × 3matrixÞμμ0

∝ Y0;lþδlZ;δmðn̂Þ; ðE17Þ

where

δl0;l00 ∈ f−1; 0g; ðE18Þ

δm0; δm00 ∈ f−1; 0; 1g; ðE19Þ

δlZ ¼ f−1; 0; 1g; Z ∈ fW;V;Ug; ðE20Þ

δm ∈ f−2;−1; 0; 1;−2g: ðE21Þ

As claimed in the main text, the kernel coefficients take the
formZ

d3r
ffiffiffiffiffiffiffiffiffi
gðrÞ

p
Kq

μμ0 ðr; 0ÞZμ�
l;mðn̂ÞZμ0

l;mðẑÞ

∼
X
l0;l00

Z
dn̂Yq;l0þδl0;−qþδm0 ðn̂ÞY−q;l00þδl00;qþδm00 ðn̂Þ

× Y0;lþδlZ;δmðn̂Þ: ðE22Þ

APPENDIX F: RESULTS FOR THE Q= 1=2
COMPUTATIONS

We review specific results that concern the q ¼ 1=2
computation in Sec. IV B 2. Using the differential equation
defining a Legendre polynomial

P00
lðxÞ −

1

1 − x2
½2xP0

lðxÞ − lðlþ 1ÞPlðxÞ� ¼ 0 ðF1Þ

and the equivalent relation for Q00
q;lðxÞ [16]

Q00
q;lðxÞ þ

1

1þ x
Q0

q;lðxÞ þ
1

1− x2

�
l2 −

2q2

1þ x

�
Qq;lðxÞ ¼ 0;

ðF2Þ

the integrals appearing in the q ¼ 1=2 computation in
Sec. IV B 2 can be reformulated in the form

Z
dx½al;l0;l00 ðxÞPlðxÞ þ bl;l0;l00 ðxÞP0

lðxÞ�Qq;l0 ðxÞQq;l00 ðxÞ:

ðF3Þ

Specifically, for q ¼ 1=2, we obtain

ID
1 ¼ J0

�
lðlþ 1Þ − l02 − l002 þ 1

2

�
− J1 − J2;

ID
2 ¼ −J0;

IT
1 ¼ −ðJ1 − J2Þ;

IE
1 ¼ ðJ1 − J2Þ

�
lðlþ 1Þ − l02 − l002 þ 1

2

�
;

IE
2 ¼ −J1 − J2;

IB
1 ¼ lðlþ 1Þ½lðlþ 1ÞJ0 − 2J2�

− ½J1 − J2 þ lðlþ 1ÞJ0�
�
l02 þ l002 −

1

2

�
;

IB
2 ¼ J1 þ J2 − lðlþ 1ÞJ0; ðF4Þ

where

J0ðl;l0;l00Þ ¼
Z

1

−1
dx

1

1 − x
PlðxÞQ1=2;l0 ðxÞQ1=2;l00 ðxÞ;

J1ðl;l0;l00Þ ¼
Z

1

−1
dx

1

1 − x
P0
lðxÞQ1=2;l0 ðxÞQ1=2;l00 ðxÞ;

J2ðl;l0;l00Þ ¼
Z

1

−1
dx

x
1 − x

P0
lðxÞQ1=2;l0 ðxÞQ1=2;l00 ðxÞ:

ðF5Þ

The result for these integrals was obtained in Ref. [16]
[our definitions for the Ji have an extra factor 4π=ð2lþ 1Þ
since we define them with PlðxÞ and not FlðxÞ ¼
ð2lþ 1ÞPlðxÞ=ð4πÞ as in Ref. [16]]

J0ðl;l1 þ 1=2;l2 þ 1=2Þ ¼ −
ðl1 þ 1=2Þðl2 þ 1=2Þ

�
l l1 l2

0 0 0

	�
lþ 1 l1 l2

0 1 −1

	
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þp ; ðF6Þ
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J1ðl;l1 þ 1=2;l2 þ 1=2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðl1 þ 1=2Þðl2 þ 1=2Þ

�
l l1 l2

0 0 0

	
8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þp

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðlþ 3Þ
p �

lþ 1 l1 l2

−2 1 1

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p �
lþ 1 l1 l2

0 1 −1

	�
; ðF7Þ

J2ðl;l1 þ 1=2;l2 þ 1=2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp ðl1 þ 1=2Þðl2 þ 1=2Þ

�
l l1 l2

0 0 0

	
8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðl1 þ 1Þl2ðl2 þ 1Þp

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

p �
lþ 1 l1 l2

−2 1 1

	
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p �
lþ 1 l1 l2

0 1 −1

	�
; ðF8Þ

where l0 ¼ l1 þ 1=2 and l00 ¼ l2 þ 1=2.

APPENDIX G: REMAINDER COEFFICIENTS

When computing kernel coefficients in Secs. IV B 2 and IV B 3, we deal with regularized sums as

X∞
l0¼qþ1

�
−αZ þ

X∞
l00¼qþ1

kq;Zl;l0;l00 ðωÞ
�
; ðG1Þ

which is the general-q version of the sum in Eq. (4.59). As in the main text, Z ∈ fD; T; E; Bg. Setting a numerical cutoff
l0
c ¼ 200þ q, the remainder of the sum is obtained analytically, as we discuss in Sec. IV B 2,

X∞
l0¼l0cþ1

�
−αZ þ

X∞
l00¼qþ1

kq;Zl;l0;l00 ðωÞ
�
¼

X∞
l0¼l0cþ1

�Xk
p¼2

cq;Zl;pðωÞðl0Þ−p
�
¼

Xk
p¼2

cq;Zl;pðωÞζðp;l0
c þ 1Þ: ðG2Þ

In our computations, we obtain the remainders down to order ðl0Þ−18. To obtain the coefficients, the expansion in 1=l0 must
be carried out, which in turn requires fixing l and q. The resulting expansion then yields the analytic dependence on ω,
while the dependence on l and q is found by fitting many coefficients with specific values of l and q. The coefficients we
find cq;Zl;pðωÞ are polynomials of ω2, lðlþ 1Þ≡ l2, q2 (the scalar-gauge kernel Z ¼ T has an extra factor of q),

D∶ −
�
ζð2;l0

c þ 1Þ
16π

ðl2 − 4q2 þ 2ω2Þ þ ζð4;l0
c þ 1Þ

256π
½7l2

2 þ l2ð24q2 þ 8ω2 − 2Þ − 8ð−6q2ω2 þ 6q4 þ ω4Þ�
	

þ ζð6;l0
c þ 1Þ

1024π

�
13l3

2 þ 2l2
2½35q2 − 3ðω2 þ 3Þ� þ 4l2½5q2ð4ω2 þ 3Þ þ 30q4 − 9ω4 − 2ω2 þ 1�

þ 8ð30q4ω2 − 10q2ω4 − 20q6 þ ω6Þ
	
þ…; ðG3Þ

T∶ −
�
ζð4;l0

c þ 1Þ
16π

ql2 þ
ζð6;l0

c þ 1Þ
128π

ql2ð6l2 þ 20q2 − 9ω2 − 8Þ
	
þ…; ðG4Þ

E∶ −
�
ζð2;l0

c þ 1Þ
32π

ðl2 − 4q2 þ 2ω2Þ þ ζð4;l0
c þ 1Þ

256π
½2l2

2 þ l2ð12q2 þ ω2 − 2Þ þ 8q2ð3ω2 − 4Þ − 24q4 − 2ω2ð2ω2 þ 3Þ�

þ ζð6;l0
c þ 1Þ

4096π

�
11l3

2 þ 4l2
2½20q2 − 3ðω2 þ 2Þ� þ 4l2½2q2ð5ω2 − 78Þ þ 60q4 − 8ω4 − 6ω2 þ 3�

− 16½q4ð80 − 30ω2Þ þ q2ð10ω4 − 21ω2 − 88Þ þ 20q6 − ω2ðω4 þ 5ω2 þ 5Þ�
	�

þ…; ðG5Þ
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B∶ −
�
ζð2;l0

c þ 1Þ
32π

ðl2 − 4q2 þ 2ω2Þ þ ζð4;l0
c þ 1Þ

256π
½5l2

2 þ l2ð12q2 þ 7ω2 − 4Þ þ 8q2ð3ω2 − 4Þ − 24q4 − 2ω2ð2ω2 þ 3Þ�

þ ζð6;l0
c þ 1Þ

4096π

�
41l3

2 þ 4l2
2½50q2 − 3ðω2 þ 8Þ� þ 4l2½q2ð70ω2 − 208Þ þ 60q4 − 28ω4 − 14ω2 þ 17�

− 16½q4ð80− 30ω2Þ þ q2ð10ω4 − 21ω2 − 88Þ þ 20q6 −ω2ðω4 þ 5ω2 þ 5Þ�
	�

þ… ðG6Þ

This dependence on ω2 and lðlþ 1Þwas also observed for
global monopoles in the context of the OðNÞ model [66].

APPENDIX H: ONLY ZERO-MODE
CONTRIBUTION IN THE KERNELS

The contribution of the zero modes in the Green’s
function (D14) is

Gq;0ðr; r0Þ ¼
i
2

Xq−1
m¼−q

½ 0 S−q;q;m �
�
sgnðτ − τ0Þ

�−1 0

0 1

		

×

�
0

ðS−q;q;mÞ†
�
: ðH1Þ

We focus on the contribution of this function to kernel
coefficients. For instance, for the scalar-scalar kernel
coefficient (4.28), we have

Dq
lðωÞ ¼

4π

2lþ 1

Z
r
eiωτtr½Gq;0ðr; r0ÞG†

q;0ðr; r0Þ�

×
X
m

Y�
lmðn̂ÞYlmðn̂0Þ þ…; ðH2Þ

where the ellipses indicates terms including nonzero-mode
contributions that have already been incorporated in the
main text computations. This “zero-zero-mode contri-
bution” has no fermion energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − q2

p
→ 0, and the

Green’s function can be factorized as

Gq;0ðr; 0Þ ¼ sgnðτÞG̃q;0ðn̂; 0Þ: ðH3Þ

The zero-zero-mode contribution to the kernel coefficient
then simplifies to

4π

2lþ 1
× 2πδðωÞ

Z
dn̂tr½G̃q;0ðn̂; 0ÞG̃†

q;0ðn̂; 0Þ�

×
X
m

Y�
lmðn̂ÞYlmðn̂0Þ: ðH4Þ

Let us then write the kernel as

Dq
lðωÞ ¼ Cq

lδðωÞ þ regular terms: ðH5Þ

Hence, looking only at the scalar-scalar kernel, the con-
tribution around ω ¼ 0 is [the contribution of the q ¼ 0

kernel in the denominator does not matter since it can be
isolated and it vanishes limϵ→0

R
ϵ
−ϵðdω=2πÞ lnD0

lðωÞ → 0],

1

2

Z
ϵ

−ϵ

dω
2π

�X∞
l¼0

ð2lþ 1Þ ln ½Dq
lðωÞ�

	

¼ 1

2

Z
ϵ

−ϵ

dω
2π

�X∞
l¼0

ð2lþ 1Þ ln ½Cq
lδðωÞ þ reg�

	

¼ 1

2

Z
ϵ

−ϵ

dω
2π

�X∞
l¼0

ð2lþ 1Þ ln
�
1þ Cq

lδðωÞ
reg

�	
¼ 1

2
J

Z
ϵ

−ϵ

dω
2π

�X∞
l¼0

ð2lþ 1Þ ln ½1þ δðωÞ�
	
; ðH6Þ

where we change the variable, and J is the resulting
Jacobian. We also use limϵ→0

R
ϵ
−ϵðdω=2πÞ ln reg → 0. It

turns out that the remaining term also vanishesZ
ϵ

−ϵ

dω
2π

ln ½1þ δðωÞ� ¼ 0; ðH7Þ

as we show in what follows.
The logarithm in Eq. (H7) can be rewritten as an integralZ

dω ln ½1þ δðωÞ� ¼
Z

dω
Z

1

0

dt
δðωÞ

1þ tδðωÞ : ðH8Þ

We then exchange the order of integration and obtain a
vanishing integralZ

dω ln½1þ δðωÞ� ¼
Z

1

0

dt
Z

dω

�
δðωÞ × 1

1þ tδðωÞ
�

¼
Z

1

0

dt
1

1þ tδð0Þ

¼
Z

1

0

dt

�
1; t ¼ 0

0; t ≠ 0
¼ 0: ðH9Þ

1. Generalization

The kernel coefficients with the zero-zero-mode contri-
bution explicitly included can be written as

Dq
lðωÞ ¼ CDδðωÞ þ regD; ðH10Þ
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Hq;T
l ðωÞ ¼ CHTδðωÞ þ regFT; ðH11Þ

Kq;E
l ðωÞ ¼ CKEδðωÞ þ regKE; ðH12Þ

Kq;B
l ðωÞ ¼ 0þ regKB: ðH13Þ

In fact, it turns out that CD ¼ −iCHT ¼ −CKE, but this is
not necessary for the argument that follows. Again, let us
consider the calculation of the scaling dimension in
QED3-GN near ω ¼ 0. Once again, we can ignore the
denominator:

1

2

Z
ϵ

−ϵ

dω
2π

�
½lnDq

0ðωÞ�

þ
X∞
l¼1

ð2lþ 1Þ ln
�
Kq;B

l ðωÞ(Dq
lðωÞKq;E

l ðωÞ

þ
�
1þ ω2

lðlþ 1Þ
	
jFq;T

l ðωÞj2)
��

: ðH14Þ

The Kq;B
l ðωÞ is also regular and can be removed. Also,

we already showed that
R
ϵ
−ϵðdω=2πÞ lnDq

lðωÞ ¼ 0, and
we can use this to eliminate the l ¼ 0 contribution. We are
left with

1

2

Z
ϵ

−ϵ

dω
2π

�X∞
l¼1

ð2lþ 1Þ ln
�
Dq

lðωÞKq;E
l ðωÞ

þ
�
1þ ω2

lðlþ 1Þ
	
jFq;T

l ðωÞj2
�	

: ðH15Þ

Let us now consider the argument of the logarithm

Dq
lðωÞKq;E

l ðωÞþ
�
1þ ω2

lðlþ1Þ
	
jFq;T

l ðωÞj2

¼ ½CDregKEþCDregKEþ2ℜðCFTreg�FTÞ�δðωÞ
þ ½CDCKEþjCFT j2�δðωÞ2

þ
�
regDregKEþ

�
1þ ω2

lðlþ1Þ
	
jregFT j2

�
≡aδðωÞ2þbδðωÞþc¼ a½δðωÞ−f1�½δðωÞ−f2�: ðH16Þ

Then, the scaling-dimension correction near ω ¼ 0 can be
written as

1

2

X∞
l¼1

ð2lþ 1Þ
Z

ϵ

−ϵ

dω
2π

ðln½δðωÞ − f1� þ ln½δðωÞ − f2�Þ

¼ 0þ 0: ðH17Þ

APPENDIX I: FITTING PROCEDURE
FOR ANOMALOUS DIMENSIONS

The method used to determine the monopole anomalous
dimensions and estimate the errors is described here for the
QED3 and QED3-GN models. To estimate the error, we vary
the maximal cutoffLmax [see Eq. (4.60)] of the dataset used to
extrapolate the anomalous dimension toL → ∞ (the cutoffl0

c
we use has a negligible contribution to the uncertainty, thanks
to the very precise expansion, up to 1=l018, of the remainder).

(i) Compute the anomalous dimension up to the cutoff
Lmax (for instance, this is Lmax ¼ 65 for q ¼ 1=2).

(ii) Extrapolate the behavior as L → ∞ with a fitP
k
i¼0 ci;k;Lmax

L−i with polynomial order k ¼ 4 (for
q ¼ 1=2, we use L ∈ ½Lmax − 10; Lmax�).

(iii) Repeat step 2 with smaller values of Lmax, computing
the scaling dimension four more times. For instance,
with q ¼ 1=2, we repeat with Lmax ∈ ½61; 65�.

(iv) Extrapolate the behavior as Lmax → ∞ with a linear
fit in 1=Lmax, c̃0 þ c̃1=Lmax, using the five anoma-
lous dimensions obtained. The fit and the anomalous
dimensions are shown in Fig. 5 for the case q ¼ 1=2.
Additional points down to Lmax ¼ 45 are also
displayed in Fig. 5 to discuss the behavior later on.

(v) Compare the anomalous dimension obtained with
the maximal value of Lmax that we note in what
follows as L�

max (for q ¼ 1=2, L�
max ¼ 65) and the

extrapolated value at Lmax → ∞ and estimate the
anomalous dimension as

Δð1Þ
q ¼ 1

2
ðΔð1Þ

q jLmax¼L�
max

þ Δð1Þ
q jLmax→∞Þ

� 1

2
ðΔð1Þ

q jLmax¼L�
max

− Δð1Þ
q jLmax→∞Þ: ðI1Þ

This result with the error bar is shown in Fig. 5 for
the case q ¼ 1=2 and is given by

Δð1Þ
1=2;QED3

¼ −0.038138ð5Þ;
Δð1Þ

1=2;QED3-GN
¼ 0.118911ð7Þ: ðI2Þ

We emphasize that the data used for the extrapolation in step 4
are themselves the result of the extrapolation in step 2 (and step
3). The extrapolated value at Lmax → ∞ is therefore used as a
guiding value. If we take a dataset with smaller values ofLmax,
the fitted linewill simplyovershoot theone currently presented
in Fig. 5. The anomalous dimension in Eq. (I1) will havemore
extreme values and thus a greater error.
To further characterize the effect that the size of Lmax has

on the anomalous dimensions, we also consider the cases
q ¼ 1; 3=2 and q ¼ 25=2 where we use a cutoff Lmax ¼
45þ bq⌉ (although we do obtain q ¼ 25=2 anomalous
dimensions for the largest cutoff, the corresponding values
and errors presented in Table V are obtained with cutoff
Lmax ¼ 35þ bq⌉Þ. For those charges obtained with a
larger cutoff, we can restrain our dataset and obtain the
anomalous dimensions with Lmax ¼ 35þ bq⌉. The results
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(a) (b)

FIG. 5. Fitting procedure of anomalous dimensions of the q ¼ 1=2 monopole Δð1Þ
1=2 in (a) QED3 and (b) QED3-GN. The points are

obtained with fits
P

k
i¼0 ci;k;Lmax

L−i with L ∈ ½Lmax − 5; Lmax�. The solid line is a linear fit in 1=Lmax with Lmax ∈[61, 65]. The point with
the error bar corresponds to the anomalous dimension computed with Eq. (I1) and shown in Eq. (I2).

(a) (b)

FIG. 6. Normalized anomalous dimensions in (a) QED3 and (b) QED3-GN. There are two sets of scaling dimensions obtained for
Lmax ∈ ½31þ bq⌉; 35þ bq⌉� (L ≤ 35þ bq⌉) and Lmax ∈ ½41þ bq⌉; 45þ bq⌉� (L ≤ 45þ bq⌉). The anomalous dimensions are

normalized as Δð1Þ
q =Δð1Þ

q jL≤35þbq⌉.

(a) (b)

FIG. 7. Fitting procedure for anomalous dimensions of the q ¼ 5=2 monopole Δð1Þ
5=2 in (a) QED3 and (b) QED3-GN. The points are

obtained with fits
P

k
i¼0 ci;k;Lmax

L−i with L ∈ ½Lmax − δk; Lmax�with δk ¼ f5; 10; 14g for k ¼ f4; 5; 6g. Each set of five points is obtained
by varying Lmax ∈[33, 37]. Solid, dashed, and dot-dashed lines are linear fits in 1=Lmax of the k ¼ 4, 5, 6 results.
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with Lmax ¼ 45þ bq⌉ are slightly more precise and very
similar to those with Lmax ¼ 35þ bq⌉. As shown in Fig. 6,
the drift of the anomalous dimension as Lmax is increased is
very small relative to the estimated errors, which indicates
the stability of our method.
The same procedure is also used for different fitting

functions
P

k
i¼0 ci;k;Lmax

L−i with higher polynomial order
k ¼ 5, 6, as shown in Fig. 7. We find a similar behavior and
more precise results. However, these fits demand a larger
dataset. For larger q (and therefore, larger maximal cutoff
since the cutoff increases with ⌈q⌉), a similar behavior
remains. However, the size of the datasets needs to be
increased. This is also observed forq ¼ 1=2when comparing
relativistic cutoffsLmax of different sizes. It may indicate that
errors are overfitted for smaller datasetswith higher-order fits,
as the effect is less important for k ¼ 4.We used the quartic fit
for all of the anomalous dimensions quoted in this work.

APPENDIX J: MONOPOLE SCALING
DIMENSIONS FOR 1=2 ≤ Q ≤ 13

In this appendix, we provide leading-order and next-to-
leading order contributions to the scaling dimensions for
values of q up to 13.
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