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Monopole operators are studied in a large family of quantum critical points between Dirac spin liquids
and topological quantum spin liquids (QSLs): chiral and Z, QSLs. These quantum phase transitions are
described by conformal field theories (CFTs): quantum electrodynamics in 2 + 1 dimensions with 2N
flavors of two-component massless Dirac fermions and a four-fermion interaction term. For the transition to
a chiral spin liquid, it is the Gross-Neveu interaction (QED;-GN), while for the transitions to Z, QSLs, it is
a superconducting pairing term with general spin and valley structure (generalized QED;-Z,GN). Using
the state-operator correspondence, we obtain monopole scaling dimensions to subleading order in 1/N. For
monopoles with a minimal topological charge ¢ = 1/2, the scaling dimension is 2N x 0.26510 at leading
order, with the quantum correction being 0.118911(7) for the chiral spin liquid, and 0.102846(9) for the
simplest Z, case (the expression is also given for a general pairing term). Although these two anomalous
dimensions are nearly equal, the underlying quantum fluctuations possess distinct origins. The analogous
result in QEDj is also obtained, and we find a subleading contribution of —0.038138(5), which is slightly
different from the value —0.0383 first obtained in the literature. The scaling dimension of a QED;-GN
monopole with minimal charge is very close to the scaling dimensions of other operators predicted to be
equal by a conjectured duality between QED5-GN with 2N = 2 flavors and the CP! model. Additionally,
nonminimally charged monopoles with equal charges on both sides of the duality have similar scaling
dimensions. By studying the large-g asymptotics of the scaling dimensions in QED;, QED5-GN, and
QEDj;-Z,GN, we verify that the constant O(¢°) coefficient precisely matches the universal nonperturbative
prediction for CFTs with a global U(1) symmetry. Finally, we identify numerous open questions regarding

the fate of monopoles and their hierarchies at transitions to spin liquids and ordered phases.
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I. INTRODUCTION

Gauge theories play an important role in modern con-
densed matter physics, in part due to their ability to provide
a low-energy description of many quantum phases of
matter. Gauge fields emerge as collective excitations that
capture the highly entangled nature of certain strongly
correlated systems. This is notably apparent in the case of
frustrated two-dimensional magnets hosting quantum spin
liquids and deconfined quantum critical points (DQCPs).

In these lattice systems, the emergent gauge field is
compact, and, as a result, it has topological excitations
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created by topological disorder operators. For a U(1) gauge
field, these objects are called monopole or instanton
operators, and they play an essential role in many physical
systems. Crucially, monopole proliferation confines the
gauge field. This is the case in the pure U(1) gauge theory
[1,2]. In the presence of massless matter, however, monop-
oles are screened, and confinement can be avoided if
enough flavors of massless matter are present.

In particular, we first consider a transition from a U(1)
Dirac spin liquid (DSL), which is described by QED; with
2N flavors of massless two-component Dirac fermions.
Realizations of the U(1) DSL were formulated for the
kagome Heisenberg spin-1/2 magnet [3-8] and the J, — J,
spin-1/2 model on the triangular lattice [9-11] with
2N =4 flavors. Dirac spin-orbital liquid with effective
spin j = 3/2 and 2N = 8 flavors have also been formu-
lated for quantum magnets on honeycomb [12,13] and
triangular [14] lattices. For a large number of fermion
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flavors 2N, it has been shown through a 1/N expansion that
monopole operators are irrelevant [15], and thus the U(1)
DSL is stable in this limit. Taking into account next-to-
leading-order corrections [16], the critical number of
fermion flavors was estimated to be 2N, = 12, beyond
which minimally charged monopoles become irrelevant.
This result was confirmed by Monte Carlo computations
[17] and is consistent with conformal bootstrap bounds
[18,19]. The addition of disorder renders the model more
unstable [20].

Monopole operators also serve as order parameters in
neighboring phases. For instance, in the CP! model, which
describes the transition between an antiferromagnetic
(AFM) phase and a valence-bond solid (VBS), there are
monopoles with lattice quantum numbers and their con-
densation results in VBS order [21-24]. It is in this model
where the scaling dimension of monopole operators were
first obtained [25]. Monopoles are also crucial in the U(1)
DSL, a parent state for many spin liquids. In this fermionic
theory, monopoles can carry different quantum numbers
due to the existence of fermion zero modes [26], which may
dress monopoles in various ways. Monopoles describe
various VBS and AFM orders, depending on which lattice
the U(l) DSL is formulated [27]. By tuning a flavor-
dependent Gross-Neveu (GN) interaction, a fermion mass
is generated and monopoles with specific quantum num-
bers condense [28]. In particular, the U(1) DSL on the
kagome lattice orders to an antiferromagnetic 120° coplanar
order as monopoles dressed with a magnetic spin polari-
zation condense [29,30]. This confinement-deconfinement
transition is described by the QED;—chiral Heisenberg GN
model (QED;-CHGN), and the scaling dimensions of
monopole operators at the quantum critical point (QCP)
are obtained in Ref. [31]. In this case, the activation of the
CHGN interaction breaks the flavor symmetry, resulting in
a hierarchy among monopoles where the scaling dimension
depends on the total magnetic spin of a monopole [32,33].

The quantum criticality of the DQCP and the U(1) DSL
with 2N =4 fermions were recently given a precise
relation. It was shown that they can be formulated as so-
called Stiefel liquids, which are related to nonlinear sigma
models in 2+ 1 dimensions with target manifolds
SO(n)/SO(4), where n =35 and n =6 for the DQCP
and the U(1) DSL, respectively [34]. Higher values are
conjectured to realize non-Lagrangian critical systems, for
instance, realizing a phase between a noncoplanar magnet
and a VBS order when n = 7.

In this work, we focus on transitions from the U(1) DSL
to two topological quantum spin liquids (QSLs): a chiral
spin liquid (CSL) as we mention above, and a general
type of Z, QSL. The first transition is described by
QED;-GN [35,36], where the CSL results from the con-
densation of a symmetric fermion mass induced by the GN
interaction. This transition can be realized for the kagome
[37-40] and triangular [41-43] Heisenberg magnets with

2N =4 Dirac cones. The QCP for the noncompact
QED;-GN has been studied in Refs. [36,44-48]. Even
though a mass gap is condensed in the CSL, there is no
confinement-deconfinement transition taking place in the
compact theory. Despite removing the screening effect of
gapless modes, the symmetric condensed mass induces a
Chern-Simons term in the infrared limit which gaps the
monopoles and prevents their proliferation. The spinons in
the gapped CSL thus remain deconfined. The CSL is a
topologically ordered state that breaks time-reversal sym-
metry and has robust chiral edge modes.

In contrast, the nonchiral Z, QSL is obtained when
the fermionic spinons undergo a pairing instability to a
gapped s-wave superconducting state. The U(1) gauge field
is gapped through the Higgs mechanism and gives place to
a discrete Z, gauge field. In this case, fractionalization
remains intact. For the simplest case where the pairing
interaction is diagonal in flavor space, the corresponding
quantum phase transition was studied in Refs. [49,50].
Earlier studies [30,51] qualitatively described how a Z,
QSL can be obtained from a Dirac QSL through a
superconducting transition for the fermions, albeit without
a fluctuating scalar field (Cooper-pair field). In addi-
tion, Ref. [52] studied a similar model in the context
of superconducting criticality in topological insulators.
Interestingly, it turns out that, at leading order in 1/N,
the monopoles have the same scaling dimension at both
QCPs as in the U(1) DSL [31,50]. In this work, we obtain
the next-to-leading-order correction to monopole scaling
dimensions at those QCPs. Furthermore, we also consider a
more general class of Z, QSLs where the pairing inter-
action is not the same for all spin and valley degrees of
freedom. We compute the anomalous dimension for the
general Z, QSLs, and we also determine their band
structure and Chern number inside the spin-liquid phase.

This study is also motivated by the duality between
QED;-GN with 2N = 2 fermion flavors and CPV~! with
N = 2 complex boson flavors conjectured in Ref. [53] and
further studied in Ref. [44]. This duality can be checked
by comparing the scaling of monopole operators with
various scaling dimensions that are predicted to be equal
according to this duality. The good agreement obtained in
the leading-order result [31] is further improved by the
scaling-dimension correction we obtain here for the
QED5-GN monopoles.

The paper is organized as follows. In the next section, we
present the QED;-GN model and show how the state-
operator correspondence is used to obtain monopole scal-
ing dimensions. In Sec. III, the leading-order computa-
tion presented in Ref. [31] is reviewed. In Sec. IV, 1/N
corrections to monopole scaling dimensions are computed.
We also verify that the scaling dimensions satisfy a
conjectured convexity property. In Sec. V, we compare
our results with the large-charge expansion obtained in
Ref. [54] for conformal field theories (CFTs). In Sec. VI,
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we study the QED;-GN < CP! duality [53]. In Sec. VII,
we study monopole scaling dimensions at the transition
to a Z, QSL and obtain distinct values compared to the
CSL. In Sec. VIII, we briefly discuss other phase transitions
that could be studied with this formalism, including
the QED;-U(N) x U(N)GN, QEDs;—chiral XY GN, and
QED;-CHGN QCPs. We conclude with a discussion of our
results and an outlook. In Appendix A, we review the phase
transition from the U(1) DSL to the CSL in the noncompact
model. In Appendices B and C, we give more details
regarding how the kernels appearing in Sec. IV are obtained
and simplified with gauge invariance. The expansion of
these kernels in terms of harmonics is detailed in
Appendices D and E. We give detailed simplifications of
the kernels used for the case of minimally charged
monopoles in Appendix F. In Appendix G, some remainder
coefficients used to analytically approximate sums over
angular momenta are shown. In Appendix H, we show how
some contributions of fermion zero modes neglected in the
main text vanish. In Appendix I, the fitting procedure used
to alleviate finite-size effects when computing monopole
anomalous dimensions are described. In Appendix J, we
list monopole anomalous dimensions in QED5, QED;-GN,
and QED3-Z,GN for topological charges up to ¢ = 13.

II. MONOPOLES AT TRANSITION BETWEEN
DIRAC AND CHIRAL SPIN LIQUIDS

The action of the QED;-GN model in Euclidean flat
spacetime is given by

S:/d%{—‘i’y"(aﬂ—iAM)‘P—h;(‘i"P)Z +ee, (2.1)

where W is a 2N flavor spinor ¥ = (1, s, ..., poy)T With
each flavor y; being a two-component Dirac fermion. For
certain quantum magnets, where fermions emerge as
fractionalized quasiparticles, the 2N flavors are related to
two magnetic spin polarizations s =1, and N valley
nodes per spin, v =1, ..., N. Typical quantum magnets
have N = 2 or 4 nodes, but here we keep N general and use
it as an expansion parameter. The adjoint spinor is given by
¥ = ¥y, where the gamma matrices are defined in terms
of the Pauli matrices by y,, =o0,,, and yy =0, The
fermions are coupled to a compact U(1) gauge field A, and
have a GN self-interaction with coupling strength /. The
ellipsis denotes an irrelevant Maxwell term and the con-
tribution of monopole operators M, (x) that we discuss
further in what follows.

In 2 + 1 dimensions, U(1) gauge theories have an extra
global U,,(1) symmetry associated with the following
conserved current:

1
Jiop(x) = o e"r0,A,(x), (2.2)

where “top” stands for topological. The operators charged
under Uy,,(1) are called topological disorder operators or
instantons. In this (2 + 1)-dimensional context, we refer to
them as monopole operators. These operators create topo-
logical configurations of the gauge field A} with a
quantized flux [ dnﬂef‘”f’(),,A;f = 4nq, where the topologi-
cal charge is a half-integer ¢ € Z/2 as a result of the Dirac
quantization condition [55]. These kinds of configurations
are allowed in the compact formulation of the U(1) gauge
group, which gives the correct description for emergent
gauge theories in a condensed matter context. The monop-
ole operators themselves can be defined by the action of the
topological current on them:

q X
~ — — 0 uuu’
2l MO+

Jiop(x) M (0) (2.3)

where the ellipsis denotes less singular terms in the
operator-product expansion (OPE) [15]. The resulting
factor in front of the monopole operator corresponds to
the magnetic field of a charge-g Dirac magnetic monopole.

The model in Eq. (2.1) describes a transition from a DSL
to a CSL. For a sufficiently strong coupling, a chiral order
develops due to the condensation of a fermion bilinear:
(P¥) # 0. This may be studied by introducing an auxiliary
pseudo-scalar boson ¢. The effective action at the QCP
denoted by S is

S = —2N1Indet(d — iA + ¢), (2.4)
where ¢ is an auxiliary boson decoupling the GN inter-
action. More details are shown in Appendix A.

In the compact version of QED;-GN, monopole oper-
ators are also present at the QCP. The main goal of this
paper is to compute their scaling dimension A M, which
controls the scaling of the monopole two-point correlation
function:

1
e =y

(M () M(y)) (2.5)

Since the QED;-GN model at the QCP is a CFT, the state-
operator correspondence can be used to obtain these scaling
dimensions [15]. This correspondence relies on a radial
quantization of the CFT and a conformal transformation
mapping the dilatation operator D on R to a Hamiltonian
H on $? x R. Denoting the usual radius on R? as r = e”
(we work in natural units where the two-sphere radius is
R = 1), the related Weyl transformation of the spacetime is
written as

(ds?)gyp = €7 (ds?)gs = dr* + d6 + sin® 0d¢*.  (2.6)

The scaling dimension of an operator O(x) then corre-
sponds to the energy of some state #|O) = Ap|O) on this
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compactified spacetime. Specifically, the charge-¢g operator
with the smallest scaling dimension corresponds to the
ground state of the CFT on the compactified spacetime
$? x R, where the sphere S? is pierced by 4zq flux. To
implement this flux, an external gauge field is coupled to
the fermions

A? = g(1 — cos0)dgp, (2.7)
or A = (1 —cos@)/sin@ in component notation. The

smallest scaling dimension of monopole operators in
topological sector g is then given by (see also Ref. [56])

A, = limF, = —lim éan[A‘l], (2.8)

p—co p—oo
where F, is the free energy, and Z[A7] is the partition
function formulated on §? x S}),, i.e., the previous spacetime
but now with the “time” direction compactified to a
“thermal” circle S}, with radius . This formulation allows

us to introduce the holonomy of the gauge field along this
circle written as

a=ip"' | drA,.
5

(2.9)

The holonomy couples to the fermion number operator

[ @r\/g(r)¥"™¥ = Nirmions and acts as a chemical poten-
tial [19,31]. The saddle-point equation of this holonomy
constrains the fermion number to vanish

o_ 18InZ[AY A

—_— = 2.10
B ba s ( )

_< fcrmions>’

where “SP” stands for saddle point. The holonomy thus
serves as a Lagrange multiplier that ensures that a state with
<Nfermions> = 0 is selected to correctly represent a gauge-
invariant monopole operator [31].

The scaling dimension is obtained using a large-N
expansion. We first note that the partition function can
be written as a path integral:

Z[A9) = e~PFq :/D(bDAﬂ exp (—See[¢. A, All). (2.11)

The effective action is now given by

Setlp, A, Al] = —2N Indet (D a0 + @), (2.12)
where D4 4 is the gauge-covariant derivative on a curved
spacetime including the external gauge field A} sourcing
the 4zq flux:

Dyiao =ey?(V, —iA, —iA}). (2.13)

The gamma matrices y” still correspond to the Pauli
matrices, as the spacetime index is normalized with a
tetrad ¢} which encapsulates the information about the
metric gﬂbe’geﬁ = Op.. The path integral defining the par-
tition function can be expanded around the saddle-point
values of the auxiliary and gauge bosons

¢ = <¢> +o, Aﬂ = <A/4> +a,, (214)

which are defined by the following saddle-point conditions:

5F,
o

_ 6F‘I
p=) A=) Ay

—0. (215
¢:<¢> ’A#:<AM>

Taking the fluctuations to scale as 1/+/2N, the saddle-point
expansion of the partition function is then

(2)

/ DpDAe=Se = eSerlse / DoDaeSst,  (2.16)

where ng) is the second variation of the action. Integrating

over the quadratic fluctuations, this gives us the 1/N
expansion of the free energy:

1

2NF510) = _Seff|SP’ (2-17)
p
FO L Ly e[ O S (2.18)
T2 5(c,a)d(c,a)] |sp’ ‘

Using the relation in Eq. (2.8), which follows from the state-
operator correspondence, these first two terms of the free
energy give the scaling dimension at next-to-leading order in
1/N [the expansion is in terms of the total number of fermion
flavors 2N, such that F, = 2NF\ + F") + O(1/N)].
Since the fermionic mass condensed in the ordered phase
is flavor symmetric (P¥), the global flavor symmetry
remains unbroken, and monopole operators are organized
as representations of SU(2N). Just as for the various fermion
bilinears and monopole correlation functions in the U(1)
DSL [29,58,59], the monopole correlation functions at the
QCP between U(1) DSL and CSL related by this SU(2N)
symmetry share the same scaling dimension [60]. Depending
on the lattice, various magnetic and VBS correlation func-
tions will be described by minimally charged monopole
operators [27], but they all share the same scaling dimension
2N x 0.26510 + 0.118911(7) + O(N~'), where the lead-
ing order was found in Ref. [31], and the next-to-leading
order is one of the main results of this work shown in
Eq. (4.61). For typical quantum magnets, we have 2N = 4
fermion flavors. The way that monopole scaling dimen-
sions control observable correlation functions could also be
compared at this QCP and deep in the U(1) DSL phase. In this
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latter case, scaling dimensions are those of monopoles
in QED3

III. REVIEW OF N =c0o THEORY

First, we review the computation of monopole scaling
dimensions in QED3-GN at leading order in 1/N [31]. At
this order, the free energy is given by the effective action in
Eq. (2.12) at its saddle point corresponding to a global
minimum

1
FE]O) = —Bln det (D—iadf+A’1 + <¢>)a (31)

where the trace over the 2N flavors is taken and cancels a
prefactor of (2N)~!. The expectation value of the pseudo-
scalar field is taken to be homogeneous. The gauge field is
also constant at the saddle point, with a possible non-
vanishing holonomy « on the thermal circle described in
Eq. (2.9). The determinant operator is diagonalized by
introducing monopole harmonics Y, s, (7), which are a
generalization of spherical harmonics for a space with a
charge at the center [61,62]. For a fixed charge ¢, these
functions form a complete basis. One important difference
with these harmonics is that their angular momentum is
now bounded below by this charge g. Using these functions
to build appropriate eigenspinors, the eigenvalues of this
determinant operator on S? x S}), in Eq. (3.1) are shown to

be [15,31]

w, —ia+ig,, £=q,
—iX (3.2)
+ (a)n—ia)z—i—eg, C=q+1,q+2,...,

where, for simplicity, we suppose ¢ > 0 throughout.
Here, w, = 2z~ (n+ 1/2) for n € Z are the fermionic
Matsubara frequencies, and ¢, are the energies of the
modes for the quantized theory on $? x R:

€r =1/ 22— q* + (p)*.

More details on the diagonalization are presented in
Appendix D 2. Note that the energies are dimensionless,
as we work in units where the radius of the sphere is 1. Each
mode has the usual degeneracy that comes from the
azimuthal symmetry d, = 2¢. The free energy at leading
order then becomes

FY :—% i

n=—oo

(3.3)

{a,ml0,ia-+ (91

+ i d,In[(w, — ia)? +e§]}. (3.4)

=q+1

The saddle-point equation for the holonomy given in
Eq. (2.15) yields the condition

5 o0 2d,sinh (fa)
—d, tanh (5 (a— <¢>)> - K;] cosh (e,) +cosh (Ba)

(3.5)

which is solved for @ = (¢) in the f — oo limit. With this
result, the second gap equation at leading order in £ is
given by

2(p) Y deez' =0,

‘=q+1

(3.6)

whose only solution is (¢) = 0. Therefore, the saddle-point
values of both fields vanish.

Inserting this result into Eq. (3.4), the monopole scaling
dimension at leading order in 1/N is obtained from
Eq. (2.8) [63]

A, =2N > dE,, + O(N°),
=q+1

(3.7)

where the energies at the saddle point are defined as

qu = \/fz—qz.

This is simply the leading-order scaling dimension of
QED; [15] (which must still be regularized). For example,
the scaling dimension of the monopole with minimal
charge is A,_/» = 2N x 0.265 + O(N°). Here, a supple-
mentary GN interaction is considered, but it does not come
into play at this level of the expansion since {(¢) = 0. Thus,
monopoles in QED; and QED;-GN have the same scaling
dimensions at leading order in 1/N:

(3.8)

(0)

0
A(qx))EDg = Ay QED,-GN- (3.9)

IV. 1/N CORRECTIONS
A. Setup

1. Real-space kernels

We now turn to the next-to-leading-order term in the
free-energy expansion in Eq. (2.18). The free-energy
correction is related to the second variation of the action by

exp (—ﬂFEII)) = /DaDaexp {—(2—?,)/”[(0'0) a”(r))

(oo o) )]

(4.1)
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where [ = [d®r\/g(r), and we define the following
kernels:

1 &S
Di(r.r) = — et | 4.2
(2 7) = 3N 560160 (7) |5 (42)
1 5
Kq /(}’, r/) — A Seff/ ) (43)
w1 AN s (00 ) s
1 2
Hi(r,r) = L S Seff, , (4.4)
# 2N 8o (r)dat (r')|sp

where S is defined in Eq. (2.12). The remaining scalar-
gauge kernel [although o(r) is really a pseudo-scalar, we
refer to it as a “scalar” when labeling related kernels for
simplicity] with mixed a,(r) and o(#’') partial derivatives is
obtained by exchanging coordinates r, ¥ in HZ,(r, ),
which has mixed ¢(r) and a,,(#') partial derivatives; thus,
we write H (7, r) in Eq. (4.1). In terms of the fermions in
the original system, the kernels are given by

Di(r.r') = (w(ry(r)w(r (). (4.5)
Koy (r 1) = =(1,(r)d,0 () |sp- (4.6)
Hy (r.r') = i@ (r)y(r)d0 (7)) |sp- (4.7)

where y is a single fermion flavor, and the current is

Ju(r) = w(r)rup(r). (4.8)

This can be reexpressed in terms of the fermionic Green’s

function G, (r, ") = (w(r)w(r'))|sp and its Hermitian con-

jugate Gy (r, ') = (w(r )7 (r))|sp. The Wick expansion of
the kernels yields

Di(r, 1) = tr[G,(r, r')G,I](r, ], (4.9)
KZ”,(r, r') = —trly,G,(r, r’)yﬂ/G:;(r, ], (4.10)
HZ,(r, r) = —itr[Gq(r, r’)yﬂng(r, ], (4.11)

where the cyclicity of the trace is used. The remaining
prefactor 2N in Eq. (4.1) is canceled as the fluctuation
fields are rescaled o, a, — o/ \/W » ay / \/2_N to control the
expansion. The free-energy correction is then obtained by
integrating the field fluctuations in Eq. (4.1). It is conven-

ient to subtract the ¢ = 0 correction F (()l) = 0 [64]; there-
fore, we write the general correction as

1. [det M4

_— 4.12
det’ M° (4.12)

where we define the matrix kernel

/ D(r,r) HZ,(r, )
Mi(r,r) = (Hz(r’,r) KZﬂ,(r, r’))' (4.13)

2. Fourier transform

To compute the determinant operator, the kernels are
expanded in terms of harmonics. For the gauge-gauge
kernels, the vector spherical harmonics are introduced:

a/f.fm(ﬁ') = 62Y)f’m (ﬁ)’ (414)
0, () = V¥ (h). (4.15)
. (¢ +1)
Ouv
o L V.. (416)

") = T )

As suggested by the notation, the B mode has zero
divergence V-a% (i) =0, and the E mode has zero
curl Vxaf (2) =0. It is also useful to introduce four-
dimensional eigenfunctions,

v, = (") v ( ) D)

o~ ay, (7

where X € {T,E,B}. In this basis, the matrix kernel
M4(r,r') can be expanded as

© m=—¢
v2,(A) )" Y2, (7))
Y () |, P ()
X v H(o) £ oant | (4.18)
Vm(") me(”)
Y5, (1) Y2, ()

where we directly work on $? x R (i.e., taking the limit
f — oo now) and where

p¢  HY  HYF HYP
q.T* q, 1T q,TE q.TB

M (o) = “He Ko ke ke (4.19)
4 _HZ,E* K;,TE* K?EE K;,EB
q.Bx q,TBx* q,EBx q.BB
_Hf Kf Kf Kf

All of the arguments of the functions appearing in the matrix
are w. Note that the scalar-gauge kernel is imaginary; hence,
the reason for the signs in the first column of the matrix. This
last point is shown explicitly in Appendix B.
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This kernel can be simplified by using C7 invariance.
The auxiliary boson ¢, a pseudo-scalar, and the E, T modes
of the gauge field are antisymmetric under C7, while the B
modes are symmetric under C7. This implies that the
following kernels vanish (this result is also checked
explicitly with the same method giving the values of
nonvanishing kernels):

K2 (w) = K& (w) = H (0) = 0. (4.20)
The U(1) gauge invariance also enables the kernel to be
simplified. Using the conservation of the U(1) current,
V,J#(r) = 0, in Egs. (4.6) and (4.7), it follows that

[10) Kq’TT(a)),

K4 () = ——
(@) ce+1) ¢

(4.21)

w? T
K ) = KT, (422
HE () = —2 _HeT(w).,  (423)

VEE+1) ¢

It should also be noted that among vector spherical
harmonics, only af,, (/1) is defined for # = 0. In this

case, the only remaining gauge-gauge kernel is Kg'TT(w),
and it vanishes by gauge invariance. The computations to
obtain these gauge-invariance conditions are shown in
Appendix C. Using all of these simplifications, the monop-
ole scaling-dimension correction is given by

B E o? T( N2
A _l/{ ( “’>+ S (2041 {Kq (@) (D7 (@)KZ" (@) + (1 + 7 HE (@)] )]} (4.24)
q.QED3-GN 2 » 60 g K?;B<a))Dg((1))K%E<CU) ’
|
= [® 4x iot x (5 S
where [ = [* dw/(2x), and we define Dg(w):b”—kl[e D‘I(r,O);Yfm(n)Yfm@)’
K& (@) = K& () + K2 (w),  (4.25) (4.28)
4
HZ’T(a)):ij_l / e HY(r,0) ZY )Y g (2), (4.29)
K28 (w) = K&% (w). (4.26)
4z
q.E — iot q
Note that H%T(a)) =0, and thus it does not appear in the K7 (o) = 20+ 1 / {KOO r.0) nym )Yen(2)
denominator.
By turning off the GN interaction in Eq. (4.24), the + K7 ,(r,0) Zaa Ex( afm )]7 (4.30)
scalar-scalar kernel D?(w) and the scalar-gauge kernel
H?"(w) do not contribute, and the monopole scaling-
¢ q.B dr q aB*
dimension correction in QEDj; [16] is recovered: K} (0) = 20+ 1 / TR (r,0) Zafm fm (2),

| [ K4 ()KL (o)
Afl.gm - / N (2 +1)In| St | (4.27)
2 Jo 7= Ky, K

One can alternatively deactivate the gauge field, keeping
only the scalar-scalar kernels, and obtain the pure GN
model. Despite the absence of a gauge field in this model,
one can still introduce an external gauge field with the 4z¢
flux, define a correlation function on this background
configuration, and obtain the related critical exponent.
This was notably achieved for the O(N) model in
Ref. [66]. In a forthcoming publication, we shall also
explore this avenue in the pure-GN model.

The relevant kernel Fourier coefficients to compute the
monopole scaling dimensions in Egs. (4.24) and (4.27) are
found by inverting Eq. (4.18):

(4.31)

where the second coordinates are fixedto 7’ = Oand A’ = 2
without loss of generality, and normalized coordinates a, a’
are introduced.

B. Anomalous dimensions

The anomalous dimensions of monopole operators
(4.24) and (4.27) are computed in this section. To do so,
the kernel coefficients in Eqgs. (4.28), (4.29), (4.30), and
(4.31) must be obtained. These coefficients are built with
real-space kernels (4.9)—(4.11) that depend on the fer-
mionic Green’s function at the saddle point. The Green’s
function is defined by the action of the Dirac operator on it:

iDSSR(1)Gy(r.r) = =8(r— ). (4.32)
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1. ¢=0 kernels

We first compute the expressions in the denominator of
the scaling-dimension corrections (4.24) and (4.27), that is,
the g = 0 kernel coefficients. The eigenkernel in the scalar-
scalar kernel (4.28) is just the sum of spherical harmonics,
which is given by the addition theorem

Lo g 20+1
S Y, ()Y () =

P/(cosy), (4.33)

v/
where

cosy =f-n =cosfcosd + sinfsind cos (¢ — ¢').

(4.34)

When working with 7’ = 2, this function cos y is replaced
by
X = cos 6. (4.35)
For the sums on vector spherical harmonics appearing in
the gauge-gauge kernels (4.30) and (4.31), a similar result
is obtained in spherical coordinates a = 0, g;ﬁ 71in Eqgs. (E4)
and (ES) in Appendix E and is formulated with the same
Legendre polynomial and its first and second derivatives.
This reproduces a result from Ref. [67].
The real-space kernel for ¢ = 0 is also needed. In this
case, the Green’s function takes a simple form which is

simply the conformally transformed 3D flat-space Green’s
function [16]:

7 (M — e (4.36)

X = [2cosh(z —7') — 2 cos y]'/%. (4.37)
The real-space kernels can then be obtained in normalized
spherical coordinates. Inserting this Green’s function along
with the eigenkernels in Egs. (4.28), (4.30), and (4.31), the
resulting g = 0 kernel coefficients are (setting 7’ = 0)

1

1 iot
0.E 1 it 2 1 2 32
Ky () = 322 ; e'"Py(x) _vsz +mvszar
1
X ra (4.39)
K% () = I /ei"”P (x)V2 S (4.40)
‘ 1622¢(¢ + 1) J, T s xe

where integration by parts is used to eliminate the deriv-
atives of P,(x). The differential operators acting on
e"P,(x) can be replaced with the corresponding eigen-
values V3, — —£(£ + 1) and 97 - —* with further inte-
gration by parts. The remaining expressions contain Fourier
transforms of the form [ e*P,(x)XP?, which are obtained
in the Appendix of Ref. [67]. Using these results, the ¢ = 0
kernel coefficients are simplified to

Dy(0) = —(£* + @)Dy (@), (4.41)
K () = =3[0+ 1)+ oPD,(0),  (442)
K (0) = ~3 (P 4+ o)D), (443)
where
B 1—*<1+f+iw) 2
Dy(w) = 'W%*“’) (4.44)

Note that we reproduce the gauge-gauge coefficients
K% (w) and K%(w) given in Ref. [16] by using the
methods of Ref. [67].

2. Anomalous dimensions for q=1/2

For the minimal magnetic charge, the eigenkernels in
Egs. (4.28)—(4.31) are formulated using the same expres-
sions (4.33), (E4), and (E5) as in the last section. In
particular, the gauge-gauge kernels are worked out in
normalized spherical coordinates. As for the real-space
kernels (4.9)—(4.11), they depend on the ¢ = 1/2 fermionic
Green’s function defined through Eq. (4.32). The spectral
decomposition of the Green’s function in terms of spinors
with monopole harmonics components is shown in
Appendix D 2. A generalized addition theorem for monop-

ole harmonics involving the Jacobi polynomials P;O‘zq)(x)
is then needed. Specifically, after taking the sum over the
azimuthal quantum number, the Green’s function for
general g is given by (see also Ref. [16]; there is a sign
error in the first term of the Green’s function in Ref. [16]
that we correct here, but this sign does not affect the
conclusions in Ref. [16])

CHCNIE 0]

o , E -
= %e"zq@ Z e Eqelr=7 {— 1 j‘i Qyr(x)(A—7')-7
‘=q

-

+sen(z—7) {qu,Axn QL)) T

(4.45)
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where the energies E, , are defined in Eq. (3.8) and where

02 02
0o () = L0 [P0 = P (), £ 4
10 = |y, f=a
(4.46)
The phase ™29 comes from the generalized addition

theorem and is defined in Eq. (D17), but it is not involved
in the computation since it is always canceled by the
opposite phase of the Green’s function Hermitian conju-
gate. The Green’s function can be inserted into Egs. (4.9)—
(4.11) to obtain the real-space kernels, which, along with
the eigenkernels (4.33), (E4), and (ES), are inserted into
Egs. (4.28)—(4.31) to compute the four kernel coefficients.

Defining K%”(w) = D%(w) and K%' (o) = H%' (), the
kernel coefficients K%%(w) with Z € {D,T,E,B} are
given by

K?Z(a)) _ Z 47[AZ<E‘I7£/ + E%f//) :Zj

= +E  FE HIZ:|
a)z + (qu/ + qu//)z 2 @ =l 2

o

= Z k;:?fu(a))

20"

(4.47)

where the prefactors are given by

1 1
A7 =10
{ AT A1)

}, YAS {D,T,E,B},
(4.48)

the integrals for scalar-scalar and scalar-gauge kernels are

17 = _z/dxpf [qzllﬁQq,f’Qq,f”

+(1+ x)Q/qf/Q/qf//] , (4.49)
70— _ / dx 1foqu,quu, (4.50)
1T = —2g / dxP,Q, Q.01 (4.51)
77 =0, (4.52)

and the integrals for the gauge-gauge kernels are given by
[here, we define the integrals as in Ref. [16] but with an
extra factor (2 4 1)/(4x) since we use Legendre poly-
nomial P,(x); we find an overall sign in Eq. (4.47) for the
gauge-gauge kernels, which does not change the end result
for QED;]

20(¢ + 1)P, + (1 —x)P,
IIE_2/dX{|: ( )li—x( ) Lﬂ:|q2Qq.f’qu"
—(1- x2)P:,Q'qf,Q’MN}, (4.53)
1+x
75 = /dx< )P;Qq 0 Qe (4.54)

5 —2 / dx{[P} ~ (1 = x)PL][q*Qy Q.

= (14+x)°Q"» Q' 1} (4.55)

IZB = /dx[P'f + (] +X)P;]qurqu//. (456)

These integrals can be performed exactly; see Appendix F
for more details. In the end, these quantities depend only on
the angular momenta: Z%(¢,¢',¢") and Z5(¢,¢',¢"). For
¢’ = ¢" = g, this computation requires more care since both
energies vanish, and the integral over time leading to the
prefactor in Eq. (4.47) instead yields a Dirac delta function
5(w). However, for ¢/ = ¢" = g = 1/2, the term in the
brackets simply vanishes. When only one of ¢’ and ¢ have
their minimal value g = 1/2, there is a nonvanishing
contribution to the anomalous dimension. In this case, only
77 contributes, since the prefactor in front of 7% in Eq. (4.47)
vanishes. For ¢ = 1/2, the contribution of zero modes in
Eq. (4.47) vanishes with Z = @ = 0, otherwise, itis given by

1 £(6+1)
23" KB ) = - YD
/2 2
Py drw* + (6 + 1)

1,-i,0,1}.
(4.57)

The remaining contribution consists of a sum on non-
zero modes £',¢” >3/2. The summand depends on
I%(¢,¢',¢") and Z5 (¢, ¢', "), which are formed of three
J symbolsinZ, ', and ¢” [see Egs. (F6)—(F8)]. Thus, one of
the sums, say, on #”, can be viewed as finite. Then, after
taking the sum on ¢”, the remaining summand tends to a
constant for large ¢”,

S 1
lim k)3 (@) = o? = x{zony.

| (4.58)
7= i3

Thus, for kernels with a nonzero asymptotic constant, the
sum on ¢’ will be divergent. This is regularized with a

zeta function regularization ) & 77 ={(p,a), here
specifically £(0,3/2) = —
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—a—i—z

£'=3/2

{—(x + Z k)22 (@) } (4.59)

£"=3/2

The sum above is then finite and is computed numerically
up to a cutoff #’.. The remainder is approximated with a large-

¢' expansion of the summand —a? + k;{;,’.zfu(a))

i 203,/;2( )(£')7P 4+ O(1/¢'*+1)). Each power in the
Z.+1 to
¢’ = oo with a zeta function. The coefficients cbl,;{;’z(a))
are found by doing the expansion for a few fixed values of ¢
and deducing the general dependence on #. It turns out that
only even powers of 1/£’ have nonvanishing coefficients

c;/ >Z(@). We obtain the expansion up to k = 18. With this
remainder, we find that a cutoff #. = 300 + 1/2 is suffi-
ciently large to achieve the desired precision goals. The first
few terms of the remainders for general g are shown in
Appendix G.

After performing the sums in Eqs. (4.57) and (4.59), the
kernel coefficients in Eq. (4.47) are computed and inserted
into Eq. (4.24) [or Eq. (4.27) for the case of QED;]. The
kernel coefficients in the denominator of the logarithm of
the monopole anomalous dimension are obtained analyti-
cally in Egs. (4.41)—(4.43). The remaining sum on ¢ and
integral on @ are computed up to a relativistic cutoff [16]

expansion is summed analytically from £ =

£(6+1)+w? <L(L+1). (4.60)
We obtain the anomalous dimension with a cutoff up to
L.« = 65. A function of 1/L is then fitted to extract the
value of the anomalous dimension as the full sum and
integration are taken with L. — oco. Figure 1 shows a quartic
function fitted with the data from L € [L,, — 10, L., ]. The
anomalous dimension of a charge g = 1 /2 monopole in

QED;-GN extracted from this fit is A%QEDrGN = 0.11890,
0.00 0.05 0.10 015 0.20
1L
(@)

FIG. 1. Anomalous dimension of the ¢ = 1/2 monopole

(1)

whereas in QED; it is given by A /2.QED; —0.03814. This

reproduces the result in Ref. [16] up to a difference of
order 107,

While we extrapolate the result for L — oo with a quartic
fit based on a cutoff of L, = 65, varying the maximal
relativistic cutoff can change the last digit in the result

quoted above. For instance, Agl/)quEm |z, —s0 = —0.03815.
In Appendix I, we show how we compute anomalous
dimensions for various L,,,, and use the trend as L ,,, — o
to estimate the anomalous dimensions and their errors. The
error we quote in what follows reflects the uncertainties
related to the extrapolations and not the precision of our
computation, which yields relatively negligible errors.
Using this method, the anomalous dimension of ¢ = 1/2
monopoles at next-to-leading order in the 1/N expansion in
QED;-GN is given by
AL oep.cn = 0-118911(7). (4.61)
The scaling dimension of ¢ = 1/2 monopole opera-
tors in QED;-GN is then given by 2N x 0.26510 +
0.118911(7) + O(N~"). In QED3, the correction we find is

Al

U.qep, = —0.038138(5).

(4.62)

With this estimated uncertainty of our result, it is clearer
that there is a small discrepancy when comparing our result
with the correction —0.0383 computed in Ref. [16]. Trying
to replicate the method in Ref. [16], we use a cubic fit with
data L € [5,45] and obtain —0.03823, which is closer
to —0.0383.

3. Anomalous dimensions for general q

For larger topological charge g, many of the results used
from Appendix F are not easily generalized. In the previous

0.120F

0.115

(1)
Fir

0.110

0.105 e
S S S S S S R T |

0.00 0.05 0.10
1L

(b)

Agl/)z [Egs. (4.24) and (4.27)] as a function of the relativistic cutoff L

[Eq. (4.60)] in (a) QED5 and (b) QED;-GN. The points are obtained by numerically computing Eqs. (4.24) and (4.27), and the solid line

is a quartic fit in 1/L with the points L € [55, 65].
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section, the computations involved three different Jacobi
polynomials that appear after taking the sum over an
appropriate azimuthal quantum number. Here instead,
the real-space kernels and the eigenkernels will be written
explicitly as sums of monopole spherical harmonics,
respectively, with finite charge ¢ and vanishing charge.
This follows the alternative and more algorithmic method
presented in Ref. [65].

For the real-space kernels, the required formulation
already appears as an intermediate step in Appendix D 2
when obtaining the Green’s function in Eq. (4.45).
The Green’s function is a 2Xx2 matrix acting on
particle-hole space with components given by the product
of two monopole harmonics [Eqgs. (D14) and (D15)].
Consequently, the real-space kernels are formulated as
products of four monopole harmonics. As for the eigen-

kernels appearing in D%(w), H%' (), they are already
expressed as the product of two spherical harmonics
[Egs. (4.28) and (4.29)]. Only the gauge-gauge kernels
then need a reformulation. In this case, a different basis
uy, (), vy, (1), Wy, (i) for the vector spherical har-
monics can be introduced. These are eigenfunctions with
respective total spin j =7 —1,¢, and £+ 1 [16]. Most
importantly, the components of these harmonics are
simply given by spherical harmonics (see Appendix E 2).
We discuss the relation with the previous basis shortly.

Before doing so, we note that, in this new formulation,
the kernel coefficients are expressed as the integral of a
product of four monopole harmonics and two spherical
harmonics. To be more precise, half of these functions are
conjugate harmonics, but they can all be expressed as
harmonics with the following relation:

Yoem(B) = (=1)T"Y_gp_(R). (4.63)

Just as in Sec. IV B, the primed coordinates can be fixed as

7 =0 and #' = Z without loss of generality. As a result,
half of the six harmonics are eliminated

20 +1

Yq,f,m(z) = 5q,—m Adx .

(4.64)

This removes every sum on azimuthal quantum numbers,
which greatly simplifies the computation. There remains an
integral over three harmonics

/ dﬁYq,f,m (ﬁ)Yq’,f’,m’ (ﬁ)Yq”,f”,m” (ﬁ)

Y &R EGER)

f f/ f// f f/ f//
X<q q q”><m m’ m”)'

(4.65)

The explicit expressions for the kernel coefficients involve
the sum of many such integrals and are not reproduced here.

Returning to the change of basis, the U, V, W vector
spherical harmonics in the j = ¢ sector can be related to the
harmonics previously introduced in Egs. (4.14)—(4.16) by

A~ 41 |4 /A
Upir () iz Ve 9\ (el
Wo_ (1) | = [ ¢ /41 ol (i
fﬂ l,mA JEAR] ﬁ 0 If;m( )
Vem() 0 o i) \aii®)
VTN
am (i)
=R| agl(n) (4.66)
B/
afrs(”)

The Fourier coefficients can also be transformed in this
basis:
K@) K@) 0
R| K™ (0) K@) 0 R
0 0 K%%% (w)
K% (w)  KE7V(w) 0
= | K" (0) KI"(0) 0
0 0 K%Y ()

(4.67)

The matrix of eigenkernels keeps the same structure
thanks to the block-diagonal form of the transformation
matrix R. This is expected, as we can also argue that the
kernels K4YY (w) = K" () = 0 vanish because of CT

invariance, as we do for K" (w) = K%""(w) = 0. The
relevant relations are then

K (0) = K7 (@), (4.68)

K2 w) + K4 (0) = K4 (0).  (4.69)
The first relation is found by comparing the bottom-right
components in Eq. (4.67) and using the definition of
K;’;B(w) (4.26), whereas the second relation is found by
taking the trace of Eq. (4.67), using the first result in

Eq. (4.68) and the definition of KZ’E(a)) [Eq. (4.25)]. The

kernels K%"(w) and K%” () can then be replaced in the
scaling-dimension corrections (4.24) and (4.27) by their
formulation in the new basis.

For general charge, the regularization of the kernels
presented in Eqgs. (4.58) and (4.59) is still valid: The
regulator terms —1/(2z) and —1/(4x) can be used,
respectively, for the scalar-scalar and gauge-gauge kernels,
while the scalar-gauge kernel does not require regulariza-
tion. The contribution of the zero modes using this method
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FIG. 2. Anomalous dimension of the ¢ = 5/2 monopole Asl/

is also very straightforward and algorithmic. However,
there seems to be additional contributions coming from the
combination of zero modes in both Green’s functions,
¢ =" = q. As discussed previously, this contribution is
proportional to a Dirac delta function §(w) instead of the
energy prefactor in Eq. (4.47). This contribution vanishes
once integrated over w (see Appendix H). Numerical sums
on ¢’ are obtained up to £, = 200 + g (we use a smaller
cutoff for the general charge ¢, which is still sufficient for
the precision needed and less computationally intensive),
and the remainder is computed analytically with an
expansion up to 1/7''%. In this case, the coefficients of
the expansion also depend on the charge ¢ and are found by
fixing £ and ¢ for a few values.

The anomalous dimension AE,I) for each charge is
computed with a relativistic cutoff L,,, = 35 + |¢], where
|¢] = Round(gq). Here, the convention is that half-integers
are rounded to even numbers, e.g., [1/2] =0 and
|3/2] = 2. The value of L,,,, is modulated with the charge
q to ensure that a regime with a tail-like behavior, as
observed in Fig. 1, is attained for larger charges. For the
three minimal charges, we use a larger relativistic cutoff:
We use L., = 65 for ¢ = 1/2 (as in the last section) and
Lo = 46, 47 for g = 1,3/2 [68]. We find that the results
are robust as L. is increased and more precise (see
Appendix I). The results for L € [L,,.x — 6, L., are used
to fit a quartic function in 1/L to extrapolate the anomalous

dimensions AE,I) as L — oo. The fits obtained for ¢ = 5/2

monopoles in QED; and QED;-GN are shown in Fig. 2 and
1

yield scaling-dimension corrections Ag />2.QED3 = —1.0359
and AL oo oy = 0.6253 as L — co.

As before, the uncertainty in the scaling dimension is
estimated by varying L., and estimating the anomalous
dimension as L, — co. More details are shown in
Appendix I. The resulting scaling dimensions up to

(1)

0.20

2
[Eq. (4.60)] in (a) QED;3 and (b) QED3-GN. The points are obtained by numerically computing Eqs. (4.24) and (4.27), and the solid line

is a quartic fit in 1/L with the points L € [L. — 6, L., here [31,37].

L e |
0.6f ]
osf ]

w04 ]
| :
(<]
0.2f o
1 n n 1 n n 1 n n 1 n n 11
0.00 0.05 0.10 0.15 0.20
UL
(b)

[Egs. (4.24) and (4.27)] as a function of the relativistic cutoff L

g =7/2 obtained in this way are shown in Table L
Comparing the QED; monopoles’ anomalous dimensions
with the results in Ref. [65], discrepancies of order 10~* to
1073 are again observed for higher charges.

The ¢ = 1/2 results obtained in Sec. IV B 2 are success-
fully reproduced with the more general method. Monopole
scaling dimensions up to ¢ = 13 are shown in Appendix J.

The next-to-leading-order term in 1/N decreases the
scaling dimension of monopoles in QED;, whereas it
increases for QED;-GN. That is, quantum corrections help
stabilize the QED3;-GN model and destabilize QED;. To
understand the difference between both cases, it is useful to
write the scaling dimension as

0

b3

+—
=1

w* T
(1 + 7z HE (o))
DY(w)K}" (o)

1 1 1
A((,,())ED3-GN = AE],())ED3 + AE,,)GN (20 +1)

x In [1 + ] . (4.70)

TABLE 1. Leading order and next-to-leading order in 1/N
contributions to monopole scaling dimensions in QED;,
QED;-GN, and QED;-Z,GN models. The latter model is dis-
cussed in Sec. VII. The leading-order result is the same in all
models. The scaling dimension in a given model is A

aNAY 4+ A + o(N ).

q

q ASIO> AE,%Em AE]{Q)ED;-GN AE]%ED;—ZQGN
1/2 026510 —0.038138(5) 0.118911(7) 0.102846(9)
1 0.67315  —0.19340(3) 0.23561(4) 0.18663(4)
3/2 1.18643 —0.42109(4) 0.35808(6) 0.26528(7)
2 1.78690  —0.70482(9) 0.4879(2) 0.3426(2)
5/2 246345 —1.0358(2) 0.6254(2) 0.4202(3)

3 3.20837 —1.4082(2) 0.7705(3) 0.4989(3)
7/2 4.01591 -1.8181(2) 0.9229(3) 0.5789(4)
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1 .
where Al =1 [, Y%, (2¢ + 1) log [DY()/DY(w)] is
the contribution in the QED;-GN anomalous dimension
(4.24) coming exclusively from the pseudo-scalar field
(it is also the expression for the anomalous dimension
of monopoles in a pure GN model, hence, the label).
Computing AEI%N in the same way as we do for AEII’(BED}_GN
and AEI%ED3, we find this contribution is positive AE,%N >0
and more important than the contribution coming exclu-
sively from gauge fields |AE]%N| > |AE;)QED3|' As for the
remaining scalar-gauge contribution in the second line of
Eq. (4.70), it is also positive. To see this, we must show that
the second term in the logarithm is positive. The numerator
is explicitly positive. As for the denominator, we note that

A;{éN is real, meaning that D (w) and the DY (o) must have

the same sign. The latter ¢ = O kernel is negative, as seen
from Egs. (4.41) and (4.44), meaning that DY (w) < 0. The

same goes for KZ'E(a)); thus, the denominator is positive

D(0)K%" (@) > 0. The scalar-gauge kernel thus gives a
positive contribution to the anomalous dimension in
QED;-GN. It then must be that the QED;-GN monopole
anomalous dimension is positive, A(q{éEDS_GN > 0, given
what is known about each contribution on the right-hand
side (rhs) of Eq. (4.70). It would be desirable to understand
heuristically why quantum fluctuations render monopoles
less relevant at the QCP compared to deep in the Dirac
spin liquid.

In the CPY-! model, similar relations between the
different contributions to the monopole anomalous dimen-
sion are found. A positive contribution coming only from
the auxiliary boson was found numerically in Ref. [66]; the
correction from the mixed scalar-gauge kernel can be
deduced as positive [67,69], and the total anomalous
dimension of monopoles in CPN~! numerically found in
Ref. [69] is also positive.

4. Convexity conjecture

It was recently conjectured that CFT operators charged
under a global U(1) symmetry respect the following
convexity relation:

A((ny + ny)ng) = A(ning) + A(nang) — (4.71)
for some positive integer n, of order 1 [70]. We test this
conjecture using the monopole operators that are charged
under U(1),,,. Here, ng, ny, n, are integers, where in our
notation A(2¢g) = A,. Using the scaling dimensions we
obtain in Table V and extrapolating to finite NV, we find this
relation is respected for the monopoles under consideration
in QED3;, QED;-GN (and also for the case QED3-Z,GN
presented later on) for any 2N € Z, starting from ny = 1,
i.e., the minimal possible value.

V. LARGE-CHARGE UNIVERSALITY

In CFTs with a global U(1) symmetry, the related charge
g can be used as an expansion parameter by using effective-
field-theory methods. It was shown that the lowest scaling
dimension among charge-g operators has the following
expansion at g > 1 [54]:

A, =c3pg?? +cipg' P o+ (5D)
where the ellipsis denotes negative half-integer and integer
powers of g [71]. While c¢3,, and ¢/, depend on the
specific QFT considered, the O(q") coefficient is universal
(theory independent) [54,72]:

rua) = —0.0937... (5.2)
This coefficient is obtained by computing the Casimir
energy of the U(l) Goldstone mode. The Goldstone
mode appears in the state-operator correspondence
where the charged-operator insertion is mapped to a
state where the saddle-point configuration breaks the
U(1) symmetry.

This analysis applies to monopole operators in theories
with the global U, (1) symmetry group. Given the
universality of the coefficient 7, no term at O(¢°) should
be present at leading order in the 1/N expansion (here, the
parameter N is used to designate either N complex boson
flavors or 2N fermion flavors), since the leading-order term
is proportional to N and thus nonuniversal. This large-g
behavior was indeed observed in QEDs, and O(2)- and
0O(3)-QED;-GN models (these models are also known as
QED;—chiral XY GN and QED;—chiral Heisenberg GN
models, respectively) [31,33] as well as in the CPN~!
model [67,73] [while Ref. [67] discusses only the O(g*/?)
term of the large-g expansion, it is straightforward to use
their analytical results to verify that no O(N¢°) term is
present]. Since QED; and QED5-GN monopoles have the
same leading-order scaling dimensions, as we discuss in

Sec. III, the absence of an O(Ng") term also applies to
QED5-GN monopoles.

Using the monopole anomalous dimensions Afll), the
0(q°) coefficient y can be computed. This was done for

the CPV=! model in Ref. [73], where AS,I) was obtained for
100 charges ¢ = 1/2,1,...,50, and the expected expan-
sion (5.1) is fitted numerically to extract y. A similar
computation is performed here for monopoles in the
QED;-GN and QED; models. We fit all monopole
anomalous dimensions in QED;-GN and QED; shown
in Table V by using the fitting function in Eq. (5.1) with
powers down to g~! [71]. The fits and the anomalous
dimensions are shown in Fig. 3; note that the errors in the
values of the anomalous dimension are smaller than the
dots in the figure. Including more powers in the fitting
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FIG. 3. Anomalous dimensions of monopoles in QED;-GN and
QED; fitted with the large-g expansion (5.1). The points are the
scaling-dimension corrections obtained with a quartic fitin 1/L.
The solid and dashed lines are the fitting functions for QED;-GN
and QEDj, respectively, with a minimal power of ¢~!.

function would yield significantly larger errors in the
estimation of y.

The value of y obtained for each theory is consistent with
the expected universal value (5.2)

YQED, = 1.02(4) x Yu(1)s (5.3)

YQED;-GN = 1.01(6) x Yu(1)- (5.4)
This is a nice consistency check of the anomalous scaling
dimensions obtained in the last section.

The universal coefficient of the scaling dimension of
U(1)-charged operators in Eq. (5.1) can also be formulated
with the following sum rule [54]:

2 3 2 3
2A — .9, > A = _9, > A
154 <2+4+16> ¢-! <2 4 16) Rt

3
=—grum Tt 0(q™"%) = 0.0351... (5.5)

The rhs results from a cancellation of order O(¢*?) and
O(q'/?) terms on the Ihs. In comparison, the error on the lhs
coming from the triplet A,_;,A,, A, is comparatively
large, even more so as the coefficients in front of the scaling
dimensions, which are of order g¢?, become larger with
increasing ¢g. The resulting errors are too important to
obtain a reliable fit of the large-g behavior of this sum rule.

Nevertheless, we observe good qualitative agreement for
the scaling dimensions shown in Table V.

VI. CFT DUALITY: QED;-GN AND CP! MODELS

Another interesting application of our results concerns
the duality between the QED;-GN model with 2N =2

two-component Dirac fermion flavors and the CPN~!
model with N = 2 complex boson flavors [53]. Crucially,
the duality between these models implies an emergent
SO(5) symmetry. The following SO(5) multiplet in the
QED;-GN|,y_, model

(Re(w M), ~Im(y|M] ).

Re(yh M ,). Im(yiM] ). ¢) (6.1)

is dual to the following multiplet in the CP! model:

(2Re(M] ), 2Im(M? ), 27612, 27052, 27 032). (6.2)

Here, M, are the QED;-GN|,y_, minimally charged
monopoles which must be dressed with an additional zero

mode wd{ or 1,//; on top of a Dirac sea in order to be gauge
invariant. These monopoles form an SU(2) doublet

MYy = (M, . M],, )T. On the CP' side, z is an
SU(2) doublet z = (z;, z,)T, where each flavor is a complex
boson and M? /» is the minimally charged monopole. The

SO(5) symmetry means that all scaling dimensions within a
multiplet should be equal, while operators identified by the
duality should also have the same scaling dimension.
Putting this together, this means that all the operators
above should have the same scaling dimension. A decent
agreement was already observed in Ref. [31], but the
scaling dimension of QED3;-GN monopoles were obtained
only at leading order in 1/N, with A L 0.53. Updating

the comparison with the next-to-leading-order correction,

we find A, = 0.65, which gives an even better agree-
1/2

ment. For instance, the scaling dimension of the ¢ = 1/2
monopole on the CP! side obtained at next-to-leading order
in 1/N is given by Ale;/z = 0.63 [67,69]. In contrast, if we

extrapolate the large-N QED; result to 2N = 2, we obtain a
scaling dimension of 0.49, which is further from the CP!
result, as expected since the two CFTs are not related by
duality. The scaling dimensions of the other operators in the
duality also show good agreement coming from both
analytical and numerical studies, as shown in Table II.
In the same way, monopoles with the second smallest
charge ¢ =1 were argued to be part of the symmetric
traceless 14 representation of SO(5) [44,74]. The various
relevant scaling dimensions obtained with analytical meth-
ods are also compared in Table III. Again, there is very
good agreement between the scaling dimension of monop-
ole operators, with AM{ = 1.58 and AM’; = 1.50. The

agreement is weaker with other operators, but by taking
into account the Padé and Padé-Borel resummations, the
duality prediction seems quite reasonable. The scaling
dimension related to auxiliary bosons A . and A; obtained
using the large N have greater discrepancy with A ~ 1, but
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TABLE II.  Operators in the SO(5) 5 multiplets [Egs. (6.1) and
(6.2)] and their scaling dimensions. “VBS” and “Néel” make
reference to operators whose scaling dimensions are obtained
numerically on lattices. The results for monopole operators are
obtained by using the state-operator correspondence at next-to-
leading order in 1/N. The scaling dimension of the auxiliary
boson ¢ in QED3-GN is obtained at order 1/N using the mean of
Padé and Padé-Borel [0/1] resummations (nonresummed scaling
dimensions are unphysical). The scaling dimension of the
fermionic monopole operator can also be resummed to
(0.59,0.68), but not in the bosonic case. The operator falize
designates any of the boson bilinears, i.e., flavor spin-1 in the
bosonic side. It is obtained at order 1/N? in Ref. [74] and using
functional renormalization group in Ref. [75].

O AO Ref

M{/z 0.65 This work

M, 0.63 [69]

¢ (0.59, 0.64) [47]

Pl 24 0.64 [74]
0.61 [75]

VBS, Néel [0.60, 0.68] [76-80]

these expansions are not very well controlled. However, the
same can be said about the monopole operator on the
bosonic side. Overall, the duality for the 14 representation
of SO(5) is not as convincing as it is for the 5, but it is
still reasonable for the perturbative results. The scaling
dimension of the Lagrange field obtained using the func-
tional renormalization group also agrees reasonably well
A, =1.21 [75].

The situation becomes more puzzling when the critical
exponents in Table III are compared to numerical lattice

TABLE III. Operators in the SO(5) symmetric traceless 14
multiplets and their scaling dimensions predicted to be equal
according to the duality between the QED;-GN|,y_, and CP!
models. The scaling dimensions presented are obtained analyti-
cally with the large-N expansion. Padé and Padé-Borel [0/1]
resummations are shown in parentheses (apart from Ref. [47],
resummations are not obtained in the references cited). The
symbol “x” indicates unphysical results, i.e., negative scaling
dimensions. The operator 1 is the Lagrange multiplier field on the
CP! side. Results for monopole operators are obtained using
state-operator correspondence at order N°, while other results are
obtained at order N~!. The resummed value for Ay 1s obtained
in Ref. [47] and is the same for A( <56 at this order.

10 AO ( Aléadé7 Algdé—Borel) Ref.
Mfl‘ 1.58 (1.63,1.75) This work
M 1.50 (x,0.24) [69]
yoy 1.19 (1.42,1.51) [47,74]
(z'6z)(z762)T 1.19 (1.42,1.51) [74]
&+ 4.43 (x,1.02) [47,74]
A X (0.90,1.11) [81,82]

results. The apparent consistency observed in the analytical
results (at least for operators that do not need resummation)
does not hold for the numerical lattice results. Specifically,
we compare the analytical results to the correlation length
exponent v obtained in many numerical studies of the CP!
model. This exponent is related to the Lagrange field
scaling dimension as A, = 3 — 1 /v. Its value varies greatly
among many numerical works. Earlier results indicate that
A, € [1.34,1.67] [76,77,83,84], which seems compatible
with other scaling dimensions in Table III. However,
unusual scaling behavior and the “drifting” of v with
increasing lattice size [80] motivated further studies, and
lower scaling dimensions have been found. The wide range
of values obtained are shown in Table I'V. Notably, a scaling
dimension going down to A; = 0.80(1) by considering the
presence of a second length scale [85].

The varying results among different lattice studies are
also interpreted as a hint for a weakly first-order transi-
tion. This possibility has been discussed [74,87] in a field
theory context where the dual models QED3-GN],,_, and
CPN=!|y_, are possibly complex CFTs emerging from the
collision of fixed points as the number of matter flavors is
lowered below a critical level. On the other hand, our
analysis shows there is still consistency among scaling
dimensions on both sides of the duality. This may imply
that the duality can still give valuable information, even if
the CFT is nonunitary.

A similar tension between the results from field theory
and lattice models was observed in Ref. [88] where the
QED;|,y_, model was studied using conformal bootstrap.
The duality to the easy-plane CP' model conjectured in
Ref. [53] implies a self-duality and an emergent O(4)
symmetry on both sides. While the conformal bootstrap
study of QEDs|,y_, is consistent with the self-duality and
the emergent symmetry, it contradicts the results from the
lattice study of the easy-plane CP' model [89].

An interesting approach to understand these discrepan-
cies could be that of pseudo-criticality, that is a weakly
first-order transition with a generically long correlation
length. In Ref. [90], a Wess-Zumino-Witten model in 2 + ¢

TABLE IV. Numerical determination of the correlation length
exponent v and the related scaling dimension A; =3 —1/v in
lattice studies describing the CP! side.

v A, Ref.
0.78(3) 1.72(5) [76]
0.68(4) 1.52(9) [77]
0.67(1) 1.51(3) [84]
{ 0.69(2) 1.55(5)
0.62(2) 1.39(5) [83]
0.54(5) 1.13(17) [79]
[0.51,0.69] [1.04, 1.55] [86]
0.468(6) 0.87(3) [80]
0.455(2) 0.80(1) [85]
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dimensions, with target space $°*¢, with global symmetry
SO(4 + €) has been shown to exhibit this behavior and is
consistent with numerical results in the literature. A crucial
point was that the physical dimension d = 3 is close to the
critical dimension d = 2.77 where fixed points collide.
Pseudo-criticality was also found in a loop model describ-
ing the easy-plane Néel-VBS transition [91].

A. Higher charge

The duality can be tested further by comparing monop-
oles on both sides of the duality. First, the relation between
minimally charged monopoles is further discussed. This
relation is simpler to see with the appropriate submodels.
A duality between QEDj;|,y_, and easy-plane CP! is
formulated by including additional external gauge fields
B,. B, and Chern-Simons terms [53,92]

1Dy ipzi* + |Dprp ol = 2|* = |2af*

1 1 1
——bd(B+B')——BdB'——B'dB (6.3)
2w 2w 2w

_ . _ 1
S Y iDy_gyy + aiD , gys + EadB’

1

— (BdB — B'dB'), 6.4
L ) (64)
where b, and a, are the dynamical gauge fields in bosonic
and fermionic models, respectively. By inspecting the
charges under the external gauge fields (g, gp), we can
identify the following bosonic operators:

(M} ,.2zi20) & ((WiM] L) whM] ). (6.5)

Here, the first and second components on both sides have
charges (1,1) and (1, —1) under B, and B,,. While an SU(2)
doublet structure is manifest on the rhs with the fermion
zero modes, it is less clear on the lhs and may be seen as a
nontrivial corollary of the duality. This may, however, be
motivated by the self-duality in the easy-plane CP' model.
The VBS order in the original model ./\/lil’ 1 is mapped to the
XY order in terms of the dual bosons wjw,. Conversely,
monopoles in the dual side are mapped to zjz, in the
original model.

These relations between operators translate back to
the QED;-GN|,y_, © CP! duality. In particular, it is
useful to focus on the dual relation between the CP!
monopole 2/\/1{ /> and the corresponding dual monopole in

QED;5-GN|,y_», (wiﬂ{h/z)? For convenience, we define
the following monopole operator /\/l{ (X)) = 2(1//17\//1{ /Z)T.

Our starting point is then the conjectured dual relation
between minimally charged monopoles in QED;3-GN|,y_,

(M{/z) and in CP' (M7 ;) models

M (x) & M) (x). (6.6)
Using this relation and the OPE
O1(0)0x(y) = > _cu(x =)0, (), (6.7)

the scaling dimensions of higher-charge monopoles can
also be compared. The OPE of two ¢ = 1/2 monopole
operators yields the expansion over ¢ = 1 operators

lim M )5 (x) M 5 (y) :il_fg c(x=y)My(x)+---,

(6.8)
y—=x

where the ellipsis stands for other primary operators
with larger scaling dimensions. By definition, M, (x)
has the smallest scaling dimension in the ¢ = 1 topological
sector. We can then identify the scaling dimension of
g = 1 monopole operators on both sides of the duality

A{;:l = AZ:l. This is expected, as these monopoles are
conjectured to be components dual SO(5) symmetric
traceless 14 multiplet [44,74]. Using the same logic for
higher-charge monopoles, we find more generally that
Al = AL, (6.9)
Comparing our results for QED;-GN|,y_, monopoles in
Table I to CP! monopoles in Ref. [73], we obtain good
agreement for higher charges, as shown in Fig. 4. For larger
charges, the relative difference tends to 10%. This is a great

improvement compared to the results obtained with only
the leading-order scaling dimensions: The behavior is

009*‘ T T T T T T T T TA
0.08} ]

0.07F ]

AL-AY ]
‘ (8G+00)/2
0.05} ]

0.06

0.04fF ]

0.03}, ]

FIG. 4. Relative difference between the scaling dimensions of
monopoles in QED3-GN|,y_, and CP! models as a function of
the topological charge. The computation is done with next-to-
leading-order results in both models. The solid line is a fit
fo+ foqg '+ f_3/2q‘3/2, where the asymptote for large charge
is approximately a 10% relative difference. The powers used in
the fitting function are deduced from Eq. (5.1).
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similar, and the asymptotic relative difference for large ¢ is
76% instead.

VII. TRANSITION TO Z, SPIN LIQUIDS

In this section, we consider quantum critical transitions
to Z, spin liquids. The pairing of the spinons gaps out the
gauge field through the Higgs mechanism. We begin with
the most symmetric pairing interaction, and we then discuss
the more general case where the pairing further breaks the
flavor symmetry.

A. Symmetric Z, spin liquid
The transition out of the U(1) DSL to a Z, spin liquid
can also be studied with a gauged Gross-Neveu model
[30,49-51]. The Lagrangian describing this transition is
written in Euclidean flat spacetime as

2N
Ey/ = Z _l/_/i(d - 144/(1 - lA)l//z
i=1

o
+ Z(¢*Wiri72¥/i + H.c.), (7.1)
i=1

where ¢ is a complex scalar that decouples a quartic
superconducting pairing term for the fermions. The inter-
action term included preserves Lorentz invariance. As ¢
describes Cooper pairs, it transforms as iy, under U(1)
gauge transformations. The Yukawa interaction term in the
above equation is thus gauge invariant. In the Z, QSL, ¢
acquires an expectation value, which Higgses the gauge
field, leading to a gapped s-wave superconducting state for
the Dirac fermions.

We recall that the Dirac conjugate is defined by
W= le’o, and AZ is the external gauge field that sources
the flux of 4zg. The gauge-covariant derivative for the
external gauge field A on a curved spacetime is defined in
Eq. (2.13). We now introduce the Nambu spinor defined as

Vi Vi
() (%)
ir ! Cyl

In addition, we define C = diag(C, C), where C = iy,.
The C operator obeys C?> = -1, CT = C~! = —C, and
Cy,C= y,f. The transpose of the Nambu spinor is given by
YT = (y!,y,CT) = (y!,—p;C). Thus, the fermionic
action can be expressed as

(7.2)

Sp =1 / TI(RCG (r. ) L,().

7.3
3/, (7.3)

where the (inverse) Nambu Green’s function is

~D_(ay4,)

2¢(r)

As in Sec. 1V, the fields ¢ and A are expanded about
their saddle-point values as ¢ = (¢) +06/V2N, A=
(A) 4+ a/+/2N, where the fluctuations are suppressed by

1/v2N. At the QCP, the saddle-point values are (@) =
(A) =0 [50]. Thus, in terms of the saddle point and
fluctuation fields, the inverse Green’s function is

G (o) — ( 2¢7(r)

Dy,

>5(r— Y. (1.4)

-1 N =G (r, ¥ L r)é(r—r
G(r.r') =Gy (r, )+mxﬂ( )8 ( )

! X, (r)é(r—7).

V2N

Here, Q(j ! is the bare inverse Green’s function determined
from the gauge-covariant derivative term involving Af in
Eq. (7.4), and X, and X, are given by

X,,:z((: 2) X,,:(Z _0¢>. (7.6)

Integrating out the fermions then gives the effective
action as [ DY exp(—Sy) = exp(—Sefr), where Sep =
—2(2N)TrlogG™'. We let Tr denote a “trace” over all
relevant degrees of freedom, whereas tr denotes a trace over
spinor components. To compute the effective action, we
express the fermionic action as a quadratic form in the
fluctuation fields and perform a Gaussian functional integral
over a and o. The linear terms in a and ¢ vanish due to the
saddle-point conditions for A and ¢. Thus, to quadratic order,
the effective action becomes

+ (7.5)

1 1
Sett = Sefr|sp + ZTrg()Xag()Xa + ZTrgOXagOXa

+ %TrgnggoXa + %TrgoXagng. (7.7)

The fluctuations are O(1/(2N)); thus, they cancel the
prefactor 2N. The second and third terms involve both the
gauge field and the scalar field. By taking the trace over
the Nambu matrix structure, these terms are found to
vanish. Indeed, these terms must vanish from gauge
invariance. Hence, only the gauge-gauge and scalar-scalar
kernels contribute, which is in contrast to the QED;-GN
case where mixing between the two sectors exists. After
performing the trace over the Nambu indices, the scalar-
scalar kernel is

LTG0 X, (1ol )X, (7)

) / RaGLERET
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where the scalar kernel is the same as in Eq. (4.9).
Similarly, the gauge-gauge kernel is the same as in QEDj5:

lTrgo(r’, X (r)Go(r, )X, (1)

4
1 / /
:§[J/ GH(V)K”U(I",F)aD(r), (79)

where the gauge-gauge kernel is the same as in Eq. (4.10).
Combining these two results, we find that the fluctuation
action (obtained after integrating out ¢ and a) is just the
sum of twice the pure GN and the QED; results. The
anomalous dimension for the minimal charge ¢ = 1/2 is
thus deduced to be

1 1 1
A, z,6x = Dopp, +2AG% = 0.102846(9).  (7.10)

The value and the error are estimated in the same way as
described in Sec. IVand Appendix I by finding an expression
similar to Eq. (4.24) for the QED5-Z,GN case. The result is
surprisingly close to the QED;-GN case, although the
quantum fluctuations possess a different structure at the
two transitions. In Table I, we give the answer for higher ¢. It
can be seen that the values of the anomalous dimensions for
q > 1/2 for the CSL and Z, QSL are not as close as in the
case of the minimal charge. By using the anomalous
dimensions up to ¢ = 13 shown in Appendix J, one can
again confirm the value of the universal coefficient for CFTs
with a U(1) global symmetry as described in Sec. V: In this
case, we find yqep,z,an = 0.98(7) X 7y (1)

B. More general Z, spin liquids

Let us now consider a more general (superconducting)
pairing interaction given by

2N
Lin=>_ ¢1wICMLy; +He. (7.11)
i=1

Here, C is the same as in the previous subsection—an
antisymmetric and unitary matrix with indices denoting the
Dirac indices of the spinor y. The additional term in the
interaction M! represents a “flavor” matrix, which is
symmetric and has indices in the valley and spin spaces.
We consider some simple concrete examples of M later in
this section. The index 7, which is implicitly summed over,
corresponds to the number of charged scalar fields, i.e., the
competing pairing channels. In the previous section, / = 1
and M corresponds to the identity operator.

The analysis for this more general pairing interaction
follows the same lines as before. The Nambu spinor is the
same as in Eq. (7.2); however, the inverse Green’s function
now becomes

2¢7(r)M" =D _a44,)

“(r, )=
gnr) ( 26, ()M’

>5(r—r’). (7.12)

_DA+Aq

Here we suppose that M is Hermitian. The inverse Green’s
function can be expanded again using the large-N formal-
ism, and the effective action can be similarly expressed as
in Eq. (7.7). The terms involving both the gauge field and
the scalar field again vanish due to gauge invariance, and
the gauge-gauge term is the same as in Eq. (7.9). The
scalar-scalar kernel is now

%Trgo(rf, PX ) (FGo(r. )X, (r)

=23 | #0D bl oy, (113

r,

where we assume that the different channels labeled by 7
are orthogonal: tr(M'M”) = 0 if I # J. Then, the anoma-
lous dimension is

+2a4 2ytel(MY)?]

(1) (1)
A A
N 2N

QED;-Z,GN' — “*QED;, (7.14)

In the previous section, M’ is the identity operator and so
tr[(M")?] = 2N, which leads to the previous result for the
anomalous dimension in Eq. (7.10). As another example,
consider the case where the pairing interaction is of the
form ¢.yw" Cow + ¢ w" Co y; note that we cannot use o,
since it is not symmetric. In this case, Y, tr[(M')?] = 4N,
and so the anomalous dimension of the second term in
Eq. (7.14) is now 4 times the pure-GN result.

Note that the superconducting pairing generally reduces
the flavor (spin and valley) global symmetry. Therefore,
monopole operators with different flavor quantum numbers
are expected to have different scaling dimensions, resulting
in a hierarchy of monopoles [33]. As our present formalism
selects only the monopole with the smallest scaling
dimension, a constraint on the flavor quantum numbers
would be needed to describe other monopoles. Moreover,
since the pairing field cannot have an expectation value for
gauge-invariant monopoles, it is expected that next-to-
leading corrections are necessary to observe this hierarchy.
Generalizing Ref. [33] to quantify this effect would be an
interesting avenue to explore.

To understand these more general Z, spin liquids, we
analyze the pairing Hamiltonian in further detail. In
particular, here we focus on the Bogoliubov—de Gennes
(BdG) Hamiltonian for the mean-field description of
Eq. (7.11). In the preceding section, we formulate the
theory in terms of a Euclidean Lagrangian description.
Since the Hamiltonian A is the time component of an
energy-momentum tensor, it is necessarily a non-Lorentz-
invariant entity. Thus, here we use Minkowski spacetime to
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perform the analysis, which enables standard field theory
methods to determine A from L.

We define H = my — L, where z is the canonical
momentum conjugate to y. From Eqgs. (7.1) (without the
gauge field) and (7.11), we construct the following
Hamiltonian:

H = —(iy]y'y - Vy; + vl CMy; +He.). (7.15)
Our choice of gamma matrices is given by y# =
(t,.ity,ity); this definition is consistent with the
Clifford algebra with a mostly minus metric. Here,
C = ir,. We define the Nambu spinor y(k) by

wi(k) )

v (H) (7.16)

xi(k) = (

In terms of the Nambu spinor y(k), the Hamiltonian has the
following form in momentum space:

1 - 5ij707 -k —2¢;;
H== [ 4k (k), 7.17
3 [ )( Loy J0 0

where ¢}; = ¢7M};. In general the Hamiltonian can be

expressed as H =3 k)(l i (k)H(k)y;(k), where H (k) is the
BdG matrix. In the simplest case, we have 2N = 2; that is,
there are 2 spin degrees of freedom, and the BdG
Hamiltonian is 8 x 8. In the previous section, we consider
the case where the pairing matrix is the identity M’ = Aoy,
where A is the finite value of the pairing term in the Z, spin
liquid phase.

Here we contemplate some simple examples of pairing
matrices, namely, M/ = A, or M! = Ac,. For these
classes of spin liquids, the BdG matrix is of the form

0
-1

0 2y
Z2AF 0 fo-

HE) = 00 ® (é ) ® (~tk + 7,k

+0,® ( (7.18)

Here, 6, = 0, 06,, or o,. The various matrices appearing
above correspond to the spin indices, Nambu indices,
and finally the Dirac indices, respectively. For the sim-
ple case where o, = 0y, the eigenvalues are given by
E(k) = k? +4|A]?, with a fourfold degeneracy.
These eigenvalues are the same as in the Fu-Kane model
at half filling [93]. Indeed, in the Fu-Kane model the
Hamiltonian is a 4 x 4 matrix with spin and Nambu indices.
Here we have two copies of this model Hamiltonian for
each species of spin. In the case where 6, = o, or o, we
also have the same dispersion. In general, this dispersion
describes a gapped Z, spin liquid. The QCP in the present
model is generally thought to be well defined at modest

values of N; we can incorporate N copies of the valley
degrees of freedom and obtain the same (copies) of the
eigenvalues.

For the case where we have two competing channels

= A0, + Ao, the dispersion is given by E . (k) =
+/k%+ 24,7 + 24,7 £ 4|AAf — AiA, | with twofold
degeneracy. In the case where either A, or A, is equal to
zero, we recover the previous result for the eigenvalues.
Interestingly, for the specific case where |A,| = |A,| and
arg(A,) —arg(A,) = £z/2 (mod =), there are gapless
Dirac cones +k. For such pairings, we thus have a gapless
Z, spin liquid with massless relativistic fermions, and a
gapped Z, gauge field.

This last case can be reformulated as a pairing term
given by M! = |A|d 0,6 with d—e"/’(l 0,=+i). This
expression is similar to the time-reversal-breaking triplet
state defined with d — (1,4,0), notably used to describe
an LaNiC, compound [94], as well as a potential order
parameter in twisted bilayer graphene [95]. This situa-
tion occurs when the general condensates Ay, A, in
M! = Ayoy + Ao, are aligned in the complex plane
arg(4o) — arg(4,) € {0, 7}

An important quantity for gapped systems is the Chern
number [96], which corresponds to the flux of the Berry
curvature in the Brillouin zone (BZ). In the presence of a
gap, the Chern number is an integer and describes a
topological property of the system. A nonzero Chern
number indicates broken time-reversal symmetry; however,
the converse is not always true. For a 2D system, it is

defined by
C= : /dsz(k)
2%

Here, B is the Berry curvature defined by B(k) =
i(Vy xA(k)),, where A=)", (u,(k)|Viu,(k)) with u,(k)
a normalized eigenstate of the Hamiltonian, and the sum
running over the occupied bands. Here we are considering a
continuum theory where the band structure has a power-law
dependence on momentum. In a lattice calculation, where
the band structure is defined in the first BZ and involves
trigonometric functions, the Chern number is well defined.
To incorporate such physics, we extend the continuum
model to a simple lattice dispersion where we replace k,;, k,
with sin(k, ), sin(k,). This procedure does necessarily add
additional Dirac points in the BZ. For the points in
parameter space where there is a gap, we find that the
Chern number is well defined, and at all such points
we obtain C = 0. This is expected when the system has
time-reversal symmetry, which happens when both con-
densates A, and A, are imaginary. Other points that break
time-reversal symmetry are connected without gap closing
and thus are also expected to have a vanishing Chern
number.

(7.19)
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VIII. OTHER PHASE TRANSITIONS

The QEDs;-U(N) x U(N) GN, QEDs;—chiral XY GN,
and QED;-CHGN transitions are also described with GN
models, where the fermionic quartic interaction is, respec-
tively, decoupled with N, = 1, 2, 3 real auxiliary bosons

5= = [ A-UDpait bW+ 1)

where the sum over 1 < I < N, is implicit, and y; are Pauli
matrices acting on a two-dimensional flavor subspace
where

b
iy = Pubs + Dy,

bW

(8.2)

As mentioned previously, the QED;-CHGN model
describes the transition from a U(1) DSL to an AFM on
the kagome lattice. In the case of this interaction, the Pauli
matrices /i act on magnetic spin subspace. As for the chiral
XY interaction, taking p,, p, to act on a valley subspace,
this describes the transition to a VBS order parameter.
These transitions were observed for Monte Carlo simu-
lations on a square lattice where by tuning gauge-field
fluctuations, the U(1) DSL is driven to either an AFM or
VBS order, depending on the number of fermion flavors
[97,98]. A theoretical study that elucidated the field theory
for the transition to an AFM was performed in Ref. [99]
(see also Refs. [28,31] for earlier studies of this model),
while the field theory for the transition to the VBS was
outlined in Refs. [100-102]. In this work, we use the
appellation QED3-GN to designate the model with U(2N)
symmetry, following the convention of Refs. [47,53],
notably. The Pauli matrix in this case acts on valley
subspace. However, the label is also used in the literature
to refer to the U(N)x U(N) symmetric model; see
Ref. [45], for instance. Both variations of QED; were
considered in Refs. [48,74].

As shown in Ref. [31], the auxiliary boson in these cases
has a nonvanishing expectation value: (|¢|) # 0 in the
monopole background on S x R. This is also true for other
choices of Pauli matrices, not only the specific one
prescribed before to describe specific universality classes.
For instance, the i considered for the QED;-CHGN
universality class could also act on valley subspace, in
which case the order parameter is odd under time reversal.
There is still a nonvanishing expectation value of the
auxiliary boson. Consequently, the Green’s function in
Eq. (4.45) must be modified to include a nonzero mass for
the fermions. Using the addition theorems for spinor
monopole harmonics needed to compute the zero-mass
Green’s function should be sufficient for this adaptation.
Real-space kernels like in Egs. (4.9)—(4.11) would also

include Pauli matrices for traces on the magnetic spin
subspace, with the number of kernels to compute increasing
accordingly with the number of auxiliary bosons N,.

IX. CONCLUSION

We obtain the scaling dimension of monopole opera-
tors at the QCP between a U(1) DSL and two types of
topological spin liquids, namely, the CSL and a general
class of Z, QSLs, at next-to-leading order in a 1/N
expansion. The most relevant monopole operator in the
CSL case has a minimal charge ¢ = 1/2 and a scaling
dimension AI/Z,QED3—GN = 2N X 026510 + 0118911<7),
while the analog scaling dimension in the case of the
Simplest Z2 QSL is AI/Z,QED3—ZZGN =2N x 026510+
0.102846(9). For the other general Z, spin liquids, where
the spin and valley flavor interaction is included, we
obtain a general expression for the anomalous dimension.
Since the spin and valley interaction reduces the size of
the flavor group, an interesting question is what type of
hierarchy the monopoles will have and how can one
observe this in the monopole scaling dimensions. We also
rederive the QED; monopole scaling dimensions and find
small discrepancies, e.g., the ¢ = 1/2 anomalous dimen-
sion is —0.038138(5) instead of —0.0383 and so on for
other charges up to ¢ = 5/2 [16,65]. This also leads to
corrections to the anomalous dimensions of certain monop-
ole operators in QCD; with non-Abelian gauge groups,
such as U(N,.), where the QED; anomalous dimension
makes its appearance [65].

With these anomalous dimensions, we obtain a fit in
the topological charge ¢ and compare the O(q") coef-
ficient with the universal value obtained in a large-
charge expansion for operators charged under a global
U(1) symmetry [54]. We obtain the expected value y =
—0.0937 in QED3, QED5-GN, and QED;-Z,GN. We also
revisit the conjectured duality between QED;-GN|,y_,
and in CP' models [53]. Notably, the ¢ = 1/2 monopole
scaling dimensions in QED3-GN|,y_, agree very well
with the scaling dimensions of other operators that are
predicted to be equal under the duality. Specifically, the
anomalous dimension obtained in this work greatly
improves this agreement. We also argue that all monop-
oles with equal charges should have the same scaling
dimensions in the QED;-GN|,y_, and CP' models.
Using next-to-leading-order results for both models, we
obtain an agreement that is better for a minimally charged
monopole, with a relative difference of 3%. As the
topological charge increases, this difference increases
and eventually saturates at 10% for ¢ — oo.

It would be interesting to study monopole operators
in the other gauged GN models that we briefly discuss,
notably the model describing the transition to an AFM
[31-33]. Another interesting aspect to consider that is
not included in this work is the case of monopole
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operators in the pure-GN model. It is a straightforward
adaptation to write out the monopole anomalous dimen-
sions in this case and use the results of this work to
obtain them. Although there is no U(1),,, due to the
absence of a gauge field in this model, these objects
still have useful applications. This notably motivated
the study of monopoles in the bosonic O(N) model
[66,103]. A study of the GN global monopoles and
some of their applications will appear in a forthcom-
ing work.
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APPENDIX A: LARGE-N NONCOMPACT
QUANTUM PHASE TRANSITION

An auxiliary boson ¢ can be introduced to decouple the
GN term in the action in Eq. (2.1) through a Hubbard-
Stratonovich transformation

S:/d3x{—‘i’(ﬁ—iﬂ+¢)q’+%¢2} (A1)

where the coupling constant h? is rescaled with N, the
number of valley nodes. The fermion part of the action is
now quadratic and can be integrated

Seff =N |:— In det (ﬁ— lA —+ (b) + / d3x%¢2:| , (AZ)

where the valley subspace is traced out. The saddle-point
equation for the gauge field is
i
—ip = i{A) + ¢

=N / ‘Z’;u
- N/ e ( e L

_ A”>
”/ (2 A7+ @7

which is solved for a vanishing gauge field (a,) = 0, as
required by gauge invariance. Taking a homogeneous

oS eff

0:5A

(A3)

ansatz for the pseudo-scalar field, the remaining gap
equation is given by

20 [ ]
(a9

oS eff

0:
5 1g).4a,)

At the QCP, where (¢) = 0, the critical coupling is defined

through
1 / &p 1 _0
we ) @n)ppr

where this result is obtained through zeta regularization of
the integral. In this scheme, only the determinant operator
remains in the effective action (A2); i.e., we obtain
Eq. (2.4).

(AS)

APPENDIX B: SCALAR-GAUGE KERNEL

We noted earlier that MZ(w) is non-Hermitian. Here we
elaborate on this point in more detail. First, we note that
HZ,(r, r') is imaginary. Conjugating the expression in
Eq. (4.11), we obtain

HZ,(r, ') = —itr[G(r, r’)yﬂ/G (r, )], (B1)
[HZ,(r, )] = itr[Gy (r, r’)yZ,G,TI(r, )]
= itr[G,(r, r’)yZ,GZ(r, ], (B2)

where we use that the trace of a matrix is equal to the
trace of the transposed matrix. Here, the gamma

matrices are simply the Pauli matrices, thus, 7;’ =Yy

As a result, there is an extra sign in the conjugation of
He(r,7):

"

[HZ,(r, = —HZ,(r, r). (B3)

Hence, the kernel is imaginary.

Next, we make a relevant observation for the kernel
Fourier coefficient. The decomposition of HY(r,r’) by
definition (4.18) and (4.19) is

/ZH‘IT —1a)1 7 P,f(n ) (B4)

where we use the addition theorem in Eq. (4.33). As for the
other scalar-gauge kernel H? (7, r), it can be defined in the

same way, but with a different coefficient, say, FI?T(Q)).

This is then related to H?T(a)) by exchanging coordinates
in the expression above
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mmﬂ=/2ﬁfwfw%me>
oy
- [Sn e

Thus, A%" (o) = HY" (~w). Since H’(r, ') is imaginary,
we have that H%" (—w) = —[H%" (0)]*, meaning that

e @@=Ip, (i), (BS)

A (@) = ~[HYT ()] (B6)

This explains the signs in the first column of Eq. (4.19).

APPENDIX C: GAUGE INVARIANCE

Using conservation of the U(1) current V,J¥(r) = 0 in
Egs. (4.6) and (4.7), one can show the gauge invariance of
the kernels

)207 ):0, )ZO

(C1)

VEK (1,7 V“’Kﬂ”/(r, r V/"Hﬂr(r, r

We reexpress these conditions in the Fourier-transformed
space. To do so, we take the divergence of the various
eigenvectors of the gauge field

. 1 .
V”‘f’_lma,{,fm(ﬁ) =V (—a) Yfm(ﬁ)v;le_wn>

1 )
= — Yfm<l,’\l)vﬂv”€_lwt

= —iwe Y ., (1), (C2)
Veemiorak, (7) = V¥ (76_"” VY (i )
ﬂ,fm( ) z,ﬂ(f—}—l) ute ( )
e—iwr
- WYy, (h
v o)
— VEPT D (3, (CY)
VheivaB, (7) = ( e V.Y, (R) )
~ V/‘71—“\/‘“
=0e77Y,,,(R), (C4)
which implies the following relation:
Ve (@l (B) afp, () af,(h))
= (~io —AZTT) 0)e Y, (R). (C5)

Taking the divergence of the kernels, we obtain

o 4
VUK, (r, 7 :/ ety (
ﬂﬂ( wz Z fm )

7741 0)
K" (w)  K(0) KET(0)
w) KI*(w) Ki%(0)

(
K" w) K3 (o) K7 (w)

Sy (1)
x| (@) |, (Co)
Sy (1)
0 4
VEH, (r) = [ Y3 ey, ()Y, (7)
@ £=0 m=—
~HE" (@)
x (=i —/20+1) 0) | ~HE (@) |.
~HY™ (@)
(€7)

where [ = [dw/(27). Requiring gauge invariance and
setting these divergences to 0, we obtain the following
relations:

—ioK}" (0) = E(€ + 1KY (@) =0, (C8)
—iwK}" " (0) = /E(6 + DK (@) =0, (C9)
—iwK?"™ () = /(£ + DK™ (0) =0,  (C10)

iwHY (0) +/€(¢ + DHE (0) =0.  (C11)

1. Verifications

Let us check one important relation following from
gauge invariance:

w2

Ki(w) = (0 +1)

K2 (w). (C12)

This is easily verified for ¢ = 0 where closed forms of the
kernels are easily obtained as we discuss in Sec. IV B 1.
This is a bit more involved when ¢ # 0. We have
expressions where the dependence on w is easily isolated,
taking the following form:

1 + E "
k()= [ary "f R (x),
f’f”w + qfl +Eq.f”)

zZ e {T. E}.

(C13)

031012-22



ANOMALOUS DIMENSIONS OF MONOPOLE OPERATORS AT THE ...

PHYS. REV. X 12, 031012 (2022)

On the rhs of the gauge-invariance condition in Eq. (C12),
we may reexpress the w-dependent function as

®* (Ego+E 0)?

=1= : ’ . Cl4
&+ (E p+E ) 0+ (Egp+E, ) (C14)

Upon integration over , the first term is a simple
divergence that can be regularized away. In the presence
of test function f(w), this contribution is [ dwf(w) x 1,
and it again vanishes provided the test function is con-
vergent with no poles. The gauge-invariance condition in
Eq. (C12) can then be written by simply comparing the
finite parts

qt” + E N ~q,EE
/ E Pt (E s TET s ky g1 pn(X)
20" qf/ (],f”

E 4+ E )2
—/dXZ[—( q.f+ q.f):|
f/f”

£ +1)

qfl+quU

K (0):
C() + (Eq_f/ + qu//)

£, 20"

(C15)

This last relation following from gauge invariance is
verified for ¢ = 1/2. Note that gauge invariance also
implies that

kl/Z,TT(x) —0.

0.7 " (Cl16)

which is also verified by direct computation.

APPENDIX D: GREEN’S FUNCTION

1. Eigenvalues of determinant operator

In a general basis, the gauge-covariant derivative acting
on a spin-1/2 spinor on spacetime I will take the form
D 4 = ehy’lo, — Q, —iAfl, (D1)
where Q, is the spin connection transporting the fermion
fields on spacetime 9. On a flat spacetime MM = R3, there
are also spin connections in spherical coordinates that can
be eliminated with a unitary transformation [104]. In this
case, the covariant derivative Vﬂ:"ﬂ»lﬁ can be traded for a

normal derivative d,_, g 4

3 3

DR, = (e®)iy"lo, — iAfl. (D2)
Proceeding with the Weyl transformation y — ™"y, g, —

27 discussed in Eq. (2.6), the Dirac operator on S? x R is
given by [15]

1 .
PSSR = (S Rytyb [aﬂ — 0 lA,’{]. (D3)
To diagonalize this operator,
monopole harmonics

Si N ( j:a:th,f’.m’ >
Lo T >
1 ax Yq,f’,m'+l

f/
ai:\/

These spinors diagonalize the following generalized total
spin and angular momentum operators JZ, JG, L2 In
particular, the spinor monopole harmomcs S* p have a
total spin j = ¢ £+ 1/2. In the j = £ — 1/2 basis, the Dirac
operator mixes the two types of spinors and simply
becomes a matrix with c-number entries [15]:

we introduce spinor

Y12+ +1)2)
20 4+ 1 '

(D4)

iDAq e za)‘rSJrf i za)‘rSJr L
q, m . q.£=1,m
; —iwt ¢— - qu(w + qu'f) |: —iwt ¢— :| ’
iD e e
A q.t,m q.t,m
(D5)
where

1 E.p
Nq,f = _?(qTZ+Eq;fo)v Mq,f :%(Eq;ffz_qfx)’

Eq;f: \/fz—qz. (D6)
Here, the 7; are the Pauli matrices acting inthe j = £ — 1/2
basis; i.e., they mix the components S 0.f—1.m and S 7.0.m- For

¢ = g (we suppose a positive magnetlc charge g > 0), only
S4.q.m €xists and corresponds to a zero mode of the Dirac
operator. By diagonalizing this matrix, we retrieve the

eigenvalues used in Sec. IIL

2. Green’s function

The Green’s function can be obtained with the spectral
decomposition

(D7)

v ()

where ,(r) are eigenspinors of the Dirac operator
iD g0y, = E,r, forming a complete basis 3,y (r)y} (') =
S(r—r'). With this formulation, the Green’s function
respects its defining equation of motion (4.32). We can
simply keep working in the spinor monopole harmonics
basis instead of further diagonalizing. The spectral decom-
position of the Green’s function in this basis is then

(D8)

Gy(r,r) = —1/7/1(r>(E_1)/1,1"/7}(r/)'
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The eigenvalue matrix is block diagonal, separating each
j=1¢ —1/2 sector. To obtain a Green’s function which
has two particle-hole indices but which is a scalar with
respect to the +/— structure described above, we take
the left eigenspinor as a row vector in the +/— space
e ST 1 (71), e77S ,, ()]. The action of the Dirac

q,.f—1.m
operator on the left eigenspinor is then given by

iD gu(e” leS;rf ) } r
iD 4 (e‘”‘”S;f )

twrs+ T
-1,
qua)%—zMM){ ! ’"D
€ Sq.,f.m

[Ny s (0 —iM

—iwt Q—
e

— [e—la)TS o

qf)]’ (D9)

q.0-1.m

where weuse that N} , =N, .M} , =M ,,andM /N, , =
—N, /M, ,. We can read the eigenvalue matrix from this
relation and write the Green’s function as [105]

/ ifzi qflmﬁ Sgem()]

f q m=—¢
emio(=) (S pmim(@))
Xqu(w_iMq,f) { (Squ(ﬁ))T } (D10)

We can note that N;} =N, ., as this matrix squares
to identity N7 , = £7*(q* + E}.,)79 = 7. Also, by not-
ing that |a)+quf|2 (0* + E /)7, it follows that
(0=iM, /)" = (0?+E, ;)" (w—&—quf).Then, the inverse
matrix in the spectral decomposition becomes

(Cl) - Z.qu)_lN;,lf = a)2 T E2 (a) + l.qu)qu
q:¢
1

=———(wN,,+E,  T,),
a)z—i—Eé;f (oN, ¢:Ty)

(D11)

where we use that M, /N, , = The spectral
decomposition of the Green’s function then becomes

—lEq;ny.

o -
Gq(r’r / Z Z qf 1.m qt’,m]
f -

—iw(r—7) (SJr )T
e q.f—-1.m
X————(wN,,+E_ 7
@’ + Ej, (@No + Egery) [ (S em)
(DI12)

The contour integral on @ is obtained with the residue
theorem

© da e~i@r=7) @
/_wﬁwz +E2, { 1

= —isgn(z —7’)

e Eqelt=7| —iE ssgn(t —17')
—2iE sgn(t—7') | 1
— 7 — /
L e { t_slgn(r 7)
2 Eq;t’

The spectral decomposition after the @ integration becomes

E —E ./|t—7| E
e qf 1,m qu]

m=—¢

X {sgn(r—’r/)qu—F (_01 o)} l(*g;f:;) ]

(D14)

(D13)

By inserting Eq. (D4), we obtain a 2 x 2 matrix whose
components are pairs of monopole harmonics

G,(r.r) =

oo 7
X E E Y0160 mivom ()

(2 x 2 matrix)_

'=qm'=—£"+1
X Y; £ +6¢" m' +6m'’ (ﬁ/)’ (D15)
where
{ 55/@/’, € {-1,0}, (D16)
ém',om', € {0,1}.

This formulation is used in Sec. IV B 3.
For the minimal-charge case, the Green’s function can be
further simplified by taking the sum on the azimutal
quantum number [16], which yields Eq. (4.45) in the main
text [the difference that we note [105] concerning what
inverse matrix is used in Eq. (D10) implies an extra sign in
the first line of the Green’s function]. The phase appearing
in Eq. (4.45) is given by [16]
-6 cos ! — cos L cos? 4 sinZsin . e-itt-)
e coszfcoszcosz—ksmzsmze .

(D17)
APPENDIX E: EIGENKERNELS
1. First basis

We work in spherical normalized coordinates

cosfcos¢ —sinfsing sinécosqp
sin@sing |. (EI)

cosd

= | cosfsin¢g sinOcosg
—sinf 0
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Using the definitions of the vector spherical harmonics
(4.14), the eigenkernels in Egs. (4.30) and (4.31) can be
written as

a, E*
E :afm afm )

- mvava’ (Zm:Y?m(ﬁ)Yfm(ﬁ’)>, (E2)
Za;’f* afm )
1 ab
T+ ) Wv,,v,, <ZY )Y o (7 )
(E3)

Using the addition formula in Eq. (4.33), we obtain the
results in Ref. [67],

zaaE* )

L 20+1 1 <—(1 —x?)P(x) + xP,(x) 0 >
4 (£ +1) 0 P (x)
8 < cos ¢ sin¢> (E4)
—sing cos¢p /)’
Zaa B* afm )
2411 < Py(x) 0 )
o 4r (21 0 (1= x2)PU(x) + xPL(x)
" < co§¢ sinqﬁ). (ES)
—sin¢g cos¢

This may be further simplified by using the differential
equation for Legendre polynomials

1

PUx) = 5 PP ) = (6 + P (B0
2. Second basis
By working in helical coordinates,
=t = b (—x + iy, V27, x + iy), (E7)
V2
the vector spherical harmonics U¢, (i), V¢, (i), W<, (7t)

introduced in Sec. IV B 3 take the following form:

(f—m+l)(f—m+2)Yf+l " l(i’\l)

(27+2)(2¢+3)

UL(i) = | =\t Y (i) |, (E8)
et Y e ()
™Y e ()

Ven(R) = e e Y
“‘;”,?fiif';“ Yemi1()

%Y r-1.m-1 (1)

W, (7) = oS oy () (E10)
%Y rtmy1()

Using a transformation matrix

-1/v2 0 1/V2
)= -i/v2 0 -i/v2 |, (Ell)
0 1 0

these harmonics can be rotated to Cartesian coordinates

hze (),  Z=U,V,W, (E12)

which corresponds to the harmonics used in the main text.

3. Kernel coefficients for general ¢

As we turn to compute kernel coefficients,

= srr1 s | A )

< Ky (r. )24 ()07

(K3 (@)]x7

(E13)

with X, Z € {U, V, W}, the real-space kernels can also be
worked out in Cartesian coordinates

= —tr[y,G,(r, r’)yﬂrGZ(r, "],

VsV = (Gx’ Oy, O-Z)'

KZ”, (r,7)

(E14)

In the limit # — 0, where half of the harmonics can be
eliminated [see Eq. (4.64)], the various functions at play in
our computation can be rewritten as [see Eq. (4.63)]

G,(r,0) =
& qu,f’+5f’.—q+5m’ (ﬁ) ’
f/

(2 x 2matrix) .

(E15)
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K?,(r,0) = (3 x 3matrix),,,

& qu.f’+5f’.—q+5m’ (ﬁ) Y—q.f”+5;f”,q+5m” (ﬁ),

"

(E16)
Z8 (A)Z8(2) = (3 x 3 matrix)*
« Yor15,5m(7), (E17)
where

o', ¢" € {-1,0}, (E18)
sm/,sm” € {-1,0,1}, (E19)
6¢; ={-1,0,1},Z e {W,V, U}, (E20)
sme {-2,-1,0,1,-2}. (E21)

As claimed in the main text, the kernel coefficients take the
form

/ P aIK (r.0) 7 (W2 (2)

~ E / ditY g ¢ 150 —grom (W)Y g o7 507 gvomr ()
f!’fﬂ

X Yo rr50,6m(). (E22)

APPENDIX F: RESULTS FOR THE 0=1/2
COMPUTATIONS

We review specific results that concern the g = 1/2
computation in Sec. IV B 2. Using the differential equation
defining a Legendre polynomial

Py(x) = 2xPy(x) = £(¢ + 1)P,(x)] =0 (F1)

1—x2

and the equivalent relation for Q7 ,(x) [16]

1 [ﬂ— 247

1—x2 1 +x] Qg (x) =0,

(F2)

1
00+ o) +

Jo(f,f1+l/2,f2+l/2) = -

(f1+1/2>(0ﬂ2+1/2)(0 ()1 02>( —g 1l —21>

the integrals appearing in the g = 1/2 computation in
Sec. IV B 2 can be reformulated in the form

/ dxlarp o (XVPA(3) + by oo ()P ()] @y () Qo ().

(F3)

Specifically, for ¢ = 1/2, we obtain
b =1, |:f(f+ 1) —f’z—f”2+i] —J, =,
2 =~y
IT = -(Ji = o).
IE=(J, = Jy) {f(f +1) =% ="+ %] ,
5 = ~J1 = Ja,
IB =2+ )&+ 1)y —2J,]

— Uy = ds+ £+ 1)) [fﬂ +om -%]
I8 =0+ 7, =€+ 1)J,, (F4)

where

1
I _xPf(x)Quzf'(X)Quz.f”(x)»

1
Jo(£. 0. ¢") = / dx

1 1
J\(¢, 0.7 = /1 dx _xP}(X)Ql/z.f’(x)Ql/Z,f”(x>?

_ 1

Py(x)Q1/2.0(x)Q1/2.07(%).
(F5)

I (6,6, 6") = / a2
-1 1—x

The result for these integrals was obtained in Ref. [16]
[our definitions for the J; have an extra factor 4z/(2¢ + 1)
since we define them with P,(x) and not F,(x)=
(2¢ + 1)P,(x)/(4x) as in Ref. [16]]

47[2\/f1(f] +1)f2(f2+ 1)
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VEC TN (6 +1)2) (¢, + 1/2)<L; ‘i "ﬂ2>

0 O
87°\/¢1(6) + 1)65(¢, + 1)

JvEmmE( 4 )t 2 ®

(&, 60+ 1)2,6,+1)2) =

VEE N +1/2) (¢, + 1/2)(’(’: fo‘ ”;2>
87[2\/1/&1(1/&1 + l)fz(fz + 1)

x[ (f—l)(f+2)<f+l “1 52)_ f(f+1)<fz;1 % fz)}, (F8)

-2 11 1 -1

L€ 6 +1/2,6,+1/2) =

where £/ = ¢, +1/2 and " = ¢, + 1/2.

APPENDIX G: REMAINDER COEFFICIENTS

When computing kernel coefficients in Secs. IV B 2 and IV B 3, we deal with regularized sums as

i [ o’ + Z Pc } (G1)

'=q+1 =q+1

which is the general-g version of the sum in Eq. (4.59). As in the main text, Z € {D, T, E, B}. Setting a numerical cutoff
¢!, = 200 + g, the remainder of the sum is obtained analytically, as we discuss in Sec. IV B2,

5 [ 55 )] - 5 [Setioner]-Setonasn. @

=41 =q+1 =, +1Lp=2

In our computations, we obtain the remainders down to order (#’)~!%. To obtain the coefficients, the expansion in 1/#’ must
be carried out, which in turn requires fixing £ and ¢. The resulting expansion then yields the analytic dependence on w,
while the dependence on ¢ and ¢ is found by fitting many coefficients with specific values of # and g. The coefficients we

find cfﬂ’_i(co) are polynomials of w?, (£ + 1) = ¢,, ¢* (the scalar-gauge kernel Z = T has an extra factor of g),

S (SC/ER) PR S S A O )
D: ( (6y—4q° +2w°) + 2567

6n (765 + £,(24¢° + 8w?* — 2) — 8(—6¢*w? + 6g* + a)4)]>

g6.2c +1) 3 21252 2 2042 4 4 2
004 1325 + 265[35¢% — 3(w* + 3)] + 4£,[5¢* (4w* + 3) + 30¢* — 90" — 2w* + 1]
v4
+ 8(30g*w? — 10¢*w* — 20¢° +a)6)> + ..., (G3)
OO 6l o
T: —|———— —_— 20g- — - 4
( or 902t T g, 462(662 4207 —90® = 8) | + .., (G4)

(4,7, +1)

(62— 44> +20°) +

2,7+ 1
E: — [M 265 + ¢,(12¢% + @ — 2) 4+ 8¢*(Bw? — 4) — 24¢* — 20* (2w + 3)]

32n 256z
6,7, +1
% (1 123 + 4£320¢% — 3(0? + 2)] + 44, 2¢* (50> — 78) + 60g* — 8w — 60> + 3]
T
—16[¢*(80 — 300?) + ¢*>(10w* — 21@* — 88) + 20¢° — w*(w* + 50 + 5)])} + .. (GS)
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(4,7, + 1)

.62z +1) 22

32r
¢6,7. +1
40967

—16[g*(80 — 30w?) + ¢*(100* — 21@* — 88) + 20¢° — w?(w* + 5w* + 5)])} +

This dependence on w* and #(¢ + 1) was also observed for
global monopoles in the context of the O(N) model [66].

APPENDIX H: ONLY ZERO-MODE
CONTRIBUTION IN THE KERNELS

The contribution of the zero modes in the Green’s
function (D14) is

w1 =3 5510 siani(smie-01( 1))

m=—q

- {(S;Sm) }

We focus on the contribution of this function to kernel
coefficients. For instance, for the scalar-scalar kernel
coefficient (4.28), we have

(H1)

4n .
st | € tlGaalr )Gl )

XZY Yfm "‘,

where the ellipses indicates terms including nonzero-mode
contributions that have already been incorporated in the
main text computations. This ‘“zero-zero-mode contri-
bution” has no fermion energy +/#?> —g*> — 0, and the
Green’s function can be factorized as

Dy (w) =

(H2)

Gq;0<r7 0) = Sgn(T)Gq;O<ﬁa 0) (H3)
The zero-zero-mode contribution to the kernel coefficient

then simplifies to

4 A i A A
27 +1 % 276(w) / dntr[G (1, O)GZ;O(n,O)]
x nym (R)Y g (2 (H4)
Let us then write the kernel as
Di(w) = C%5(w) + regular terms. (H5)

Hence, looking only at the scalar-scalar kernel, the con-
tribution around @ = 0 is [the contribution of the ¢ =0

(565 + €,(12¢° + Tw?* — 4) + 8¢*(Bw? — 4)

—24¢* = 20*(20° + 3)]

) (41@ + 4435047 — 3(w? + 8)] + 445 [¢*(700* — 208) + 60g* — 28w* — 14w? + 17]

(G6)

kernel in the denominator does not matter since it can be
isolated and it vanishes lim,_ [ (dw/27) In D%(w) — 0],

L4 (Ser s ymiio)

_ %/_‘é_: <i(2f + 1) In[C25(w) + reg])

=0

=3 [ (e o1+ Z)
—Ej/_:;i—:(Z(2f—|—1)ln[1+5(a’)]>’

=0

(Ho)

where we change the variable, and J is the resulting
Jacobian. We also use lim,_q [ (dw/27)Inreg — 0. It
turns out that the remaining term also vanishes

dw
/_ a1 +8(w)] =0,

. (H7)

as we show in what follows.
The logarithm in Eq. (H7) can be rewritten as an integral

1
/da)n /dw/dtl—i—té

We then exchange the order of integration and obtain a

vanishing integral
1
/ dt / dw|6(w
1+ 1+ 16(w)

/dwln
dti
/ 1 +15(0)
1

(H8)

1. Generalization

The kernel coefficients with the zero-zero-mode contri-
bution explicitly included can be written as
q
D f(a))

= Cpb(w) + regp, (H10)

031012-28



ANOMALOUS DIMENSIONS OF MONOPOLE OPERATORS AT THE ...

PHYS. REV. X 12, 031012 (2022)

HYT () = Cyrd(w) + regpr, (H11)
K?E(w) = Cgpd(w) + reggg., (H12)
K% (0) = 0 + reggs. (H13)

In fact, it turns out that Cp = —iCpy = —Ckp, but this is
not necessary for the argument that follows. Again, let us
consider the calculation of the scaling dimension in
QED;-GN near @ = 0. Once again, we can ignore the
denominator:

3 [ 5o mpgar

+ i(zz +1)In {K‘;’B(a)) (D)KL ()
=1

# (14 ]

The KZ’B(w) is also regular and can be removed. Also,
we already showed that [ (dw/27)InD}(w) =0, and
we can use this to eliminate the £ = 0 contribution. We are
left with

[ (S

=1
(@]

Let us now consider the argument of the logarithm

(H14)

(H15)

2
E @ T
D} (0)K7" (@) + <1 +m> |F7 (o)
= [Cpreggp + Cpregyp + 2N (Cprregrr)|6(w)
+[CpCke +|Crr|*6(w)?
2
+ |regpreggg + | 1+ 7 regpr|?
200+1)

=ad(w)? +bS(w) +c = a[s(w) — f1][6(w) — f>]. (H16)

Then, the scaling-dimension correction near @ = 0 can be
written as

APPENDIX I: FITTING PROCEDURE
FOR ANOMALOUS DIMENSIONS

The method used to determine the monopole anomalous
dimensions and estimate the errors is described here for the
QED; and QED;-GN models. To estimate the error, we vary
the maximal cutoff L ., [see Eq. (4.60)] of the dataset used to
extrapolate the anomalous dimension to L — oo (the cutoff £/,
we use has a negligible contribution to the uncertainty, thanks
to the very precise expansion, up to 1/£'13, of the remainder).

(i) Compute the anomalous dimension up to the cutoff
L. (for instance, this is L, = 65 for g = 1/2).

(i) Extrapolate the behavior as L — oo with a fit
Zf:() Cik: LmaxL_i with polynomial order k = 4 (for
qg=1/2, we use L € [Lp — 10, Lyai]).

(iii) Repeat step 2 with smaller values of L ,,,, computing
the scaling dimension four more times. For instance,
with ¢ = 1/2, we repeat with L ,,, € [61,65].

(iv) Extrapolate the behavior as L,,,, — oo with a linear
fit in 1/L ., Co + €1/ Lpax, using the five anoma-
lous dimensions obtained. The fit and the anomalous
dimensions are shown in Fig. 5 for the case ¢ = 1/2.
Additional points down to L., =45 are also
displayed in Fig. 5 to discuss the behavior later on.

(v) Compare the anomalous dimension obtained with
the maximal value of L., that we note in what
follows as L}, (for ¢ =1/2, L%, = 65) and the
extrapolated value at L, — oo and estimate the
anomalous dimension as

(1)

1 1
AS] ) = 5 (A(q ) Lnax=Liax + Aq Lmux_’oo)
1 a 1
:l: 5 (A(q )|Lmax:Lrnux - AS] )|Lmax_’00). (Il)

This result with the error bar is shown in Fig. 5 for
the case ¢ = 1/2 and is given by

AL g, = —0.038138(5),
AL qepeon = 0.118911(7). (12)

‘We emphasize that the data used for the extrapolation in step 4
are themselves the result of the extrapolation in step 2 (and step
3). The extrapolated value at L,,,, — oo is therefore used as a
guiding value. If we take a dataset with smaller values of L .,
the fitted line will simply overshoot the one currently presented
in Fig. 5. The anomalous dimension in Eq. (I1) will have more
extreme values and thus a greater error.

To further characterize the effect that the size of L ,,, has
on the anomalous dimensions, we also consider the cases
qg=1,3/2 and g = 25/2 where we use a cutoff L, =
45+ |q] (although we do obtain ¢ =25/2 anomalous
dimensions for the largest cutoff, the corresponding values
and errors presented in Table V are obtained with cutoff
Lyax =35+ |¢]). For those charges obtained with a
larger cutoff, we can restrain our dataset and obtain the
anomalous dimensions with L, = 35 + | ¢]. The results
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ag .
< "< 0.118905F
-0.038145}
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-0.038150+ 0.118895
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025
1L may Vi
(@) (b)

FIG. 5. Fitting procedure of anomalous dimensions of the ¢ = 1/2 monopole A(Il/)z in (a) QED; and (b) QED5-GN. The points are
obtained with fits > ¥  ¢;y.p L7 with L € [Lyyx — 5, Lypay)- The solid line is a linear fitin 1 /L, with L, €[61, 65]. The point with

‘max

the error bar corresponds to the anomalous dimension computed with Eq. (I1) and shown in Eq. (12).

1.0003f 3 T
] 1.0002f T ]
_ 1.0002f E T T
= ] =, 1.0001 [ ]
g 1.0001¢ ] T E z
% 10000} ® s 8 o] % 1.0000f & s s Y
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"< 0.9998F o [ <35+ g1 ] < l J o [ <35+ 41
] 0.9998 J ]
0.9997 | J B [ <45+ 41 4 B [ <45+ q1 l
0.9996 F L . 3 0.9997¢ , . . ]
1/2 1 3/2 25/2 1/2 1 3/2 25/2
q q
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FIG. 6. Normalized anomalous dimensions in (a) QED; and (b) QED;-GN. There are two sets of scaling dimensions obtained for
Ly €31+ 41,354+ [¢]] (L <35+ |¢]) and L, € [41+ |q]1.45+ |¢]] (L <45+ |¢]). The anomalous dimensions are

normalized as AQ”/AE” <35+ (g1

-1.03565}
N 0.6256 .
-1.03570}
0.6255
-1.03575f
o -1.03580F _o 06254
s} e
< <
-1.03585}
0.6253
-1.03590fF
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-1.03595}
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1L max UL max
(@) (b)

FIG. 7. Fitting procedure for anomalous dimensions of the ¢ = 5/2 monopole Agl/z in (a) QED; and (b) QED5-GN. The points are
obtained with fits Y%  ¢;p L7 With L € [Lyyay — Sy Lyngx] With 8 = {5, 10, 14} for k = {4, 5, 6}. Each set of five points is obtained
by varying L., €[33, 37]. Solid, dashed, and dot-dashed lines are linear fits in 1/L,,, of the k =4, 5, 6 results.
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with L., =45+ |¢] are slightly more precise and very
similar to those with L,,,, = 35 + |¢]. As shown in Fig. 6,
the drift of the anomalous dimension as L., is increased is
very small relative to the estimated errors, which indicates
the stability of our method.

The same procedure is also used for different fitting
functions Y %, Cixr, L™ with higher polynomial order
k =5, 6, as shown in Fig. 7. We find a similar behavior and
more precise results. However, these fits demand a larger
dataset. For larger ¢ (and therefore, larger maximal cutoff
since the cutoff increases with [¢]), a similar behavior
remains. However, the size of the datasets needs to be
increased. This is also observed for ¢ = 1/2 when comparing
relativistic cutoffs L, of different sizes. It may indicate that
errors are overfitted for smaller datasets with higher-order fits,
as the effect is less important for k = 4. We used the quartic fit
for all of the anomalous dimensions quoted in this work.

APPENDIX J: MONOPOLE SCALING
DIMENSIONS FOR 1/2 <0 <13

In this appendix, we provide leading-order and next-to-
leading order contributions to the scaling dimensions for
values of g up to 13.

TABLE V. Scaling dimension of monopole operators at leading
order and next-to-leading order in 1/N in the QED;3, QED;-GN,
and QED5-Z,GN models. The leading-order result is the same in

all models. The scaling dimension is 2N Ag()) + Agl).

q ASIO) AEII,()QED3 A(ql‘()QEDyGN A((J{()QED3—ZZGN
1/2 026510 —0.038138(5) 0.118911(7) 0.102846(9)
1 0.67315 —0.19340(3)  0.23561(4)  0.18663(4)
3/2 118643 —042109(4) 0.35808(6)  0.26528(7)
2 178690 —0.70482(9)  0.4879(2)  0.3426(2)
5/2 246345 —1.0358(2)  0.6254(2)  0.4202(3)
3 320837 -1.4082(2)  0.77053)  0.4989(3)
7/2 401591 -18181(2)  0.92293)  0.5789(4)
4 488154 —2.2623(3)  1.0824(4)  0.6605(4)
9/2 580161 —2.7384(3)  1.2488(4)  0.7439(5)
5 6.77309 —3.2445(3)  14218(5)  0.8290(6)
11/2 779338 —3.7788(4)  1.6013(5)  0.9160(6)
6 8.86025 —4.3401(4)  1.7869(6)  1.0048(7)
13/2 997175 -4.9269(4)  1.9786(7)  1.0955(8)
7 11.12616 —5.5384(5)  2.1762(7)  1.1881(8)
15/2 1232195 —6.1735(5)  2.3794(7)  1.2825(9)
8 13.55772  —6.8314(5)  2.5882(8)  1.3787(9)
17/2 14.83223 -7.5113(6)  2.8024(9)  1.477(1)
9 16.14432  —82125(6)  3.021909)  1.577(2)
19/2 1749296 -8.9345(6)  3.2466(9)  1.678(2)
10 18.87719 —-9.6766(7)  3.476(1) 1.781(2)
21/2 2029609 —10.4383(7) 3.711(2) 1.886(2)
11 21.74886 —11.2191(7)  3.950(2) 1.993(2)
23/2 2323472 —12.0186(7) 4.195(2) 2.102(2)
12 2475294 —12.8363(8)  4.444(2) 2.212(2)
25/2 2630286 —13.6719(8)  4.697(2) 2.323(2)
13 27.88383 —14.5249(8)  4.955(2) 2.437(2)
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