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Collisionless plasmas exhibit nonthermal and anisotropic particle distributions after being energized; as
a consequence, they enter a state of low Boltzmann-Gibbs (BG) entropy relative to the thermal state. The
Vlasov equations predict that in a collisionless plasma with closed boundaries, BG entropy is formally
conserved, along with an infinite set of other Casimir invariants; this provides a seemingly strong constraint
that may explain how plasmas maintain low entropy. Nevertheless, it is commonly believed that entropy
production is enabled by phase mixing or nonlinear entropy cascades. The question of whether such
anomalous entropy production occurs, and of how to characterize it quantitatively, is a fundamental
problem in plasma physics. We construct a new theoretical framework for characterizing entropy
production (in a generalized sense) based on a set of ideally conserved dimensional quantities derived
from the Casimir invariants; these are referred to as the “Casimir momenta,” and they generalize the BG
entropy. The growth of the Casimir momenta relative to the average particle momentum indicates entropy
production. We apply this framework to quantify entropy production in particle-in-cell simulations of
laminar flows and turbulent flows driven in relativistic plasma, where efficient nonthermal particle
acceleration is enabled. We demonstrate that a large amount of anomalous entropy is produced by
turbulence despite nonthermal features. The Casimir momenta grow to cover a range of energies in the
nonthermal tail of the distribution, and we correlate their growth with spatial structures. These results have
implications for reduced modeling of nonthermal particle acceleration and for diagnosing irreversible
dissipation in collisionless plasmas such as the solar wind and Earth’s magnetosphere. Dimensional
representations of generalized entropy analogous to the Casimir momenta may be useful for other problems
in statistical physics.
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I. INTRODUCTION

Entropy is a fundamental quantity that underlies stat-
istical physics by characterizing the number of microscopic
configurations that are consistent with the macroscopic
properties of a system. The production of entropy is often
interpreted as a signature of an irreversible process since a
system is unlikely to evolve from a “more common” to a
“less common” microscopic configuration when acted on
by statistically random forces. In the context of plasma
physics, the kinetic entropy can be calculated from the
particle momentum distribution function fðx; p; tÞ, with the

standard form being the classical Boltzmann-Gibbs (BG)
entropy SðtÞ≡ −

R
d3xd3pf log f (although many other

types of entropies have also been devised; see, e.g.,
Refs. [1–3]). Entropy production is expected to accompany
irreversible heating in a plasma. Shocks, magnetic recon-
nection, and turbulence are all examples of plasma proc-
esses that irreversibly convert energy from bulk motions or
large-scale magnetic fields to internal plasma energy.
Collisionless plasmas provide a somewhat unusual set-

ting in which the role and fate of entropy have not yet been
established concretely, despite its fundamental nature. The
difficulty lies in the fact that the absence of Coulomb
collisions prohibits a direct route for the production of
entropy. It is generally accepted that collisionless plasmas
can be accurately described “from first principles” by the
Vlasov-Maxwell equations and that a variety of kinetic
plasma mechanisms may cause irreversible energy dissipa-
tion, including Landau damping [4], Barnes damping [5],
ion-cyclotron resonance (e.g., Ref. [6]), stochastic heating
(e.g., Ref. [7]), etc. However, the Vlasov-Maxwell equations
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formally conserve entropy for suitable boundary conditions
(e.g., a closed system), which seems to preclude the plasma
from naturally attaining the maximum entropy state (i.e., a
uniform thermal distribution). In fact, not only the BG
entropy S but also an infinite number of closely related
integrals known as theCasimir invariants are conserved. This
plethora of conservedquantities suggests that theBGentropy
is not a unique, or even the most appropriate, quantity for
characterizing the entropy of a collisionless plasma.
Conservation of theCasimir invariants would also seemingly
impose a strong constraint on the kinetic physics of the
plasma (as will be described in Sec. II A). Determining how
irreversible dissipation occurs in a collisionless plasma
subject to this constraint is a challenging mathematical
problem, even for the simplest processes such as nonlinear
Landau damping (see, e.g., Ref. [8]). So, what happens to the
overall entropy (and the Casimir invariants) as a collisionless
plasma is energized?
Broadly speaking, one can conceive three resolutions to

this question: (1) Entropy may be produced by mechanisms
beyond the Vlasov-Maxwell equations (i.e., collisions,
however rare), (2) entropy may be effectively produced at
macroscopic scales while being microscopically conserved,
or (3) entropy may simply be conserved by the global
distribution acquiring an appropriate nonthermal form.
The lack of a clear answer to the question (applied to various
energization processes) signifies a gap in our fundamental
understanding of kinetic plasma physics. We now discuss
these three possible scenarios in more detail.
Scenario (1) is that entropy conservation is broken by

mechanisms outside of the Vlasov-Maxwell equations,
implying that the Vlasov-Maxwell equations are an incom-
plete description of a physical system. In particular, it has
been suggested that the Vlasov equations must be supple-
mented by a collision operator to properly describe real
systems, much like the Euler equations for an incompress-
ible fluid must be supplemented by a viscous term to avoid
the formation of singularities (e.g., Ref. [9]). The collisions,
no matter how insignificant, may then ultimately break
entropy conservation. For example, recent phenomenologi-
cal theories of kinetic turbulence suggest that entropy
production may occur through an entropy cascade (see,
e.g., Refs. [10,11]), which forms fine-scale gradients in the
particle distribution function and thus triggers collisional
dissipation, even in the limit of an infinite mean free path.
The end result is thermal heating. Recent numerical (e.g.,
Refs. [12–14]) and observational (e.g., Ref. [15]) works
indirectly support the existence of these types of phase-
space cascades. To verify this scenario directly, it is critical
to have robust methods for characterizing violations of the
Vlasov equation, which is a motivation of the present work.
Scenario (2) is that entropy is conserved but effectively

scrambled on microscopic scales, so it appears to be
systematically produced on macroscopic scales. In other
words, there is apparent irreversible heating in the coarse-
grained distribution of particles, but the fine-grained

distribution retains memory of the initial entropy. In this
context, the fine-grained distribution refers to a distribution
that is binned on scales comparable to the characteristic
kinetic scales of the plasma (skin depth, characteristic
Larmor radius, or possibly the Debye length), while the
coarse-grained distribution refers to one that is binned on
larger scales (e.g., within the inertial range of turbulence, or
comparable to the characteristic system size). Since, in
many applications, one is interested in the distribution
function measured across macroscopic scales, entropy can
be said to be effectively produced in this case. On this topic,
we note that plasma echoes provide a plausible physical
process by which a phase-space cascade of entropy may be
inhibited, preventing collisions from playing any role
[16,17]. Stochastic plasma echoes have been shown to
inhibit the momentum-space cascade in certain reduced
plasma turbulence models [18–20].
Scenario (3) is that entropy is conserved in a macro-

scopic sense. In this case, when energy is injected into the
plasma, the global particle distribution must evolve sys-
tematically in a way that conserves entropy while admitting
an increase in the average particle energy. Thus, the
distribution must depart from a state of maximum entropy
and will become nonthermal. Intriguingly, nonthermal dis-
tributions are known to be ubiquitous in collisionless
plasmas, as verified by countless laboratory experiments,
space and astrophysical observations, and numerical simu-
lations. It is thennatural to ask if there is a causal link between
entropy conservation and the development of nonthermal
particle distributions. Such ideas areworth considering based
on recent particle-in-cell (PIC) simulations of magnetic
reconnection that claim BG entropy is largely conserved
on the whole, while being redistributed between spatial and
kinetic degrees of freedom as a result of the plasma
dynamics [21].
When comparing the three scenarios above, it is impor-

tant to stress that, in practice, it may be difficult to
distinguish between scenarios (1) and (2) because they
can both yield similar manifestations on macroscopic scales
(measurable by experiments or simulations). Violations of
the Vlasov equation at coarse-grained scales could be
attributed to either scenario since the scrambling in scenario
(2) may be envisioned to occur on arbitrarily fine scales. In
this situation, scenarios (1) and (2) may be essentially
indistinguishable at dynamical scales, and thus the question
of which scenario dominates is mainly of conceptual nature.
In particular, we note that entropy nonconserving weak
solutions of the Vlasov-Maxwell equations may be able to
accurately describe the dynamics across a range of scales for
either scenario (1) or scenario (2); we refer the interested
reader to Ref. [22] for a discussion of the regularity
conditions necessary for entropy conservation in weak
solutions (for which global existence is known [23]). In
contrast, the (full or partial) realization of scenario (3) may
have tangible implications, as will be described below.
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Determining which of the three preceding outcomes is
realized (for various collisionless energization processes) is
not only of fundamental interest but it has applications to
modeling nonthermal particle acceleration and plasma
anisotropies. If entropy is conserved, it acts as a valuable
(and powerful) constraint on the form of the particle
distribution that can be realized after energization. For
example, this may give clues into why nonthermal particle
distributions developed by relativistic magnetic reconnec-
tion and turbulence look so similar (in terms of power-law
indices for energy distributions), both in 2D and in 3D
domains (e.g., Refs. [24–27]). On the other hand, if entropy
is produced, then it may serve as a useful proxy for
irreversible dissipation. In addition, characterizing entropy
may yield insights on the relevance of maximum-entropy
states, magnetic self-organization (a means of counter-
acting entropy production), and plasma phase transitions
[28]. Despite these motivations, there are relatively few
studies that attempt to directly measure kinetic entropy or
related proxies in first-principles simulations of plasmas
(e.g., Refs. [21,28–32]). This is due not only to numerical
issues (such as high resolution demands) but also con-
ceptual issues such as how to meaningfully normalize
entropy [21].
In this work, we construct a new theoretical framework

for characterizing entropy production in collisionless plas-
mas by utilizing the more general set of Casimir invariants.
We propose that entropy production can be quantified
robustly via an (infinite) set of characteristic Casimir
momenta that represent the shape of the particle distribu-
tion in phase space. This framework opens up a novel
approach to determining to what extent entropy is con-
served at various energetic and spatial scales in a plasma.
It also avoids normalization and uniqueness issues that are
inherent to approaches based on the classical BG entropy.
Dimensional representations of generalized entropy analo-
gous to the Casimir momenta may be useful for other
problems in statistical physics beyond plasma physics.
While the previous discussion is applicable to all

collisionless plasma energization processes, as a proof
of concept, we apply the framework to characterize
anomalous entropy production in PIC simulations of
two-dimensional (2D) relativistic plasma turbulence.
Recent papers applied PIC simulations to demonstrate that
relativistic turbulence naturally produces nonthermal par-
ticle distributions, with a power-law tail that extends across
a broad range of energies [25,33]. The mechanism of
nonthermal particle acceleration for high-energy particles
resembles second-order Fermi acceleration [34,35]. More
rigorously, quasilinear theory predicts diffusive accelera-
tion from gyroresonant (or resonance-broadened) inter-
actions between particles and various plasma modes at
large scales (see, e.g., Ref. [36] and references therein).
Magnetic reconnection inside of intermittent current sheets
may also contribute to the energization of particles from the

thermal population [25]. In addition to particle acceleration,
the turbulent energization process produces both a system-
atic [37] and a stochastic [38,39] energy-dependent
anisotropy in the particle momentum distribution, which
has implications for the radiative signatures of high-energy
astrophysical systems. This rich nonthermal landscape
makes relativistic turbulence an ideal testing ground for
understanding the competition between entropy production
and entropy conservation in a collisionless plasma.
Our numerical analysis demonstrates the violation of

entropy conservation in PIC simulations of relativistic
plasma turbulence. We rule out scenario (3) outlined above
for the fate of entropy, revealing that entropy is not
conserved at macroscopic scales in a turbulent plasma,
despite nonthermal features that may naively be expected to
counteract entropy production. In addition, we place strong
limits on scenario (2) (fine-grained entropy conservation),
with scenario (1) argued to be the most probable situation.
We then suggest that the Casimir momenta may be used as
a diagnostic to gain insights into the irreversible dissipative
processes operating in the plasma.
This paper is organized as follows. In Sec. II, we describe

the theoretical framework by introducing the Casimir invar-
iants and showing how a set of characteristic Casimir
momenta can be extracted as a proxy for entropy production.
To guide the reader, we present some basic mathematical
properties of the Casimir momenta and highlight their
qualitative similarities with BG entropy. In Sec. III, we
describe the numerical implementation of the diagnostics for
measuring the Casimir momenta and the PIC simulation
setups. In Sec. IV, we describe results from PIC simulations
of laminar flows in three different configurations as a
benchmark for the diagnostics, showing the generalized
entropy (i.e., Casimir momenta) to be conserved to a high
degree relative to the injected energy. Each of the laminar
flows thus follows either scenario (2) or (3) above. In Sec. V,
we describe results from the PIC simulation of 2D relativistic
turbulence, showing that the Casimir momenta grow sig-
nificantly due to irreversible energy dissipation. Turbulence
is thus best represented by scenario (1), although we com-
ment on the viability of scenario (2). Finally, in Sec. VI, we
summarize our conclusions, discuss the future outlook, and
make connections to other problems in statistical physics.

II. THEORETICAL FRAMEWORK

A. Casimir invariants as a generalization of kinetic
Boltzmann-Gibbs entropy

In this work, we consider the case of relativistic Vlasov-
Maxwell equations, which we assume is a reasonable
model of a strictly collisionless plasma. The Vlasov
equation for a given particle species is

∂tf þ v ·∇f þ F ·
∂f
∂p

¼ 0; ð1Þ
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where fðx; p; tÞ is the fine-grained particle distribution
function (normalized such that

R
d3pd3xf ¼ N is the total

number of particles in the system), v ¼ pc=ðm2c2 þ p2Þ1=2
is the particle velocity (with m the particle mass), and
Fðx; p; tÞ is a phase-space conserving force field (satisfying
∂=∂p · F ¼ 0). In the case of a plasma, F includes the
Lorentz force and possible external forces; however, the
following theoretical framework is applicable to general
forms of F and thus can be applied more broadly (e.g., to
the gravitational Vlasov-Poisson equations). Equation (1)
can be applied to any particle species in the plasma; in the
following theoretical discussion, we do not make any
distinction between the various species (electrons, posi-
trons, ions, etc.).
Before proceeding, we note that while the relativistic

Vlasov-Maxwell equations are widely applied in theoretical
physics, there is not yet an established proof in the literature
of the global existence and uniqueness of its solutions
under generic conditions. Global existence and/or unique-
ness were proven only under limiting assumptions, such as
weak topologies [23] or velocities bounded away from the
speed of light [40]. This leaves open the possibility that
Eq. (1) is incomplete. If this is so, then Eq. (1) may need to
be supplemented by a collision operator, which prevents
singularity formation and breaks entropy conservation at
microscopic scales. Another foundational issue is that
Eq. (1) assumes that the distribution f can be defined on
arbitrarily fine-grained scales (in the 6D phase space) and
formally contains an infinite number of particles (N → ∞),
while real systems must be coarse grained at some level and
necessarily have a finite N. PIC simulations only provide
approximate solutions to Eq. (1); numerical discretization
can then act both as a coarse-graining operator and as a
collision operator, allowing violations of Eq. (1) to arise at
small scales. These mathematical issues may limit the use
of Eq. (1) for rigorously describing all aspects of the
plasma, but we believe that Eq. (1) is sufficient for
exploring the essential physical concepts described in
the present paper. Indeed, the theoretical framework dis-
cussed in this paper provides a means for precisely
characterizing departures of physical systems from the
predicted Vlasov dynamics.
A basic feature of Eq. (1) is that, under suitable boundary

conditions, it conserves an infinite number of kinetic
integrals known as the Casimir invariants (see, e.g.,
Refs. [23,41–44]). These Casimir invariants are obtained
from the functional given by

CgðfÞ≡ 1

N

Z
d3xd3pgðfÞ; ð2Þ

where gðfÞ is any differentiable function of f, subject to the
conditions described below. It is straightforward to dem-
onstrate conservation of CgðfÞ by using Eq. (1) to compute
the derivative explicitly:

dCg

dt
¼ 1

N

Z
d3xd3p

dg
df

∂tf

¼ −
1

N

Z
d3xd3p

dg
df

�
v ·∇f þ F ·

∂f
∂p

�

¼ −
1

N

Z
d3xd3p

�
v ·∇gþ F ·

∂g
∂p

�

¼ −
1

N

Z
d3xd3p

�
∇ · ðvgÞ þ ∂

∂p
· ðFgÞ

�

¼ −
1

N

Z
d3pdSx · vg −

1

N

Z
d3xdSp · Fg ¼ 0: ð3Þ

Here, we use the divergence theorem to express the volume
integrals as bounding surface integrals in position space
(surface Sx) and in momentum space (surface Sp), and we
assume boundary conditions that make them vanish. For
example, if f is periodic (or closed) in space, smooth at
p ¼ 0, and → 0 as p → ∞, then Cg will be conserved as
long as g is an increasing function of f and has a
converging integral in momentum space. In addition, F
must be nonsingular as p → 0 and not grow too strongly
with p.
By choosing appropriate g, the Casimir invariants

include the number of particles (g ¼ f) and the BG entropy
(g ¼ −f log f) as special cases. There are, however, an
infinite number of other conserved quantities. Physically,
conservation of the Casimir invariants is associated with
incompressibility of the distribution in 6D phase space.
Each level set of f is constrained to have a fixed filling
fraction; in other words, the number of occurrences for any
given value of f in the 6D phase space will stay constant in
time. Intuitively, this arises from the fact that all particles in a
given parcel of the distribution must evolve along the same
phase space trajectory if the dynamics are deterministic (and
thus reversible). As a consequence, the shape of f in a given
dimension can only be changed if the shape is also changed in
another dimension to balance out the variation (for example,
spatial structure of f may be redistributed into momentum
space structure, or vice versa).
It is important to note that while the Vlasov equation

predicts CgðfÞ to be conserved when calculated from
the fine-grained distribution f, there is no equivalent
conservation law for Cgðf̃l;℘Þ, where f̃l;℘ðx; p; tÞ is the
coarse-grained distribution obtained by discretizing the
distribution on a grid with bin sizes l in position space
and ℘ in momentum space (alternatively, one can apply a
smoothing operator with an arbitrary kernel on f, as in,
e.g., Ref. [11]). Thus, the ideal Vlasov dynamics allow
conservation of the Casimir invariants to be broken at any
coarse-grained scale, in principle, even if they are con-
served at fine-grained scales. This is a difference from other
conserved quantities such as particle number and total
energy. The values of l and ℘ needed to accurately
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represent the fine-grained distribution for a given Vlasov
problem are a priori unknown.
In this work, we treat the Casimir invariants as a

generalization of BG entropy. If the Casimir invariants
are conserved, then the BG entropy is necessarily con-
served. Although one can envision special situations where
BG entropy is conserved while the Casimir invariants are
not conserved, there is no a priori reason to single out the
BG entropy as a preferred conserved quantity. Instead, all
the Casimir invariants must be treated on equal footing. In
the remainder of the paper, we use the term “entropy” to
refer to this notion of “generalized entropy” while referring
to the classical entropy S as the BG entropy.

B. General comments about Casimir invariants

To build the reader’s intuition, we make a few general
comments about the Casimir invariants. First, we note
that for an unperturbed (F ¼ 0) collisionless plasma, any
uniform particle momentum distribution constitutes an
equilibrium. Thus, although the isotropic thermal
(Maxwell-Jüttner) distribution is a “maximum entropy
state” in terms of the BG entropy, there is no a priori
reason to expect such a state to be reached. This can be
interpreted as a consequence of the vast degeneracy
between the BG entropy and the other Casimir invariants.
Density fluctuations, temperature fluctuations, nonther-

mal particle populations, and momentum anisotropies all
contribute to the Casimir invariants (as will be further
described in Sec. II F). In terms of BG entropy, these effects
would decrease entropy relative to the reference thermal
state (i.e., a Maxwell-Jüttner distribution with the same
mean energy).
In contrast, any operations that preserve the local

symmetry of the distribution in 6D phase space do not
contribute to the Casimir invariants since these do not affect
the overall shape of the distribution. For example, local
shifts of the distribution in physical space or momentum
space (corresponding to advection or bulk flows) do not
contribute. Likewise, local rotations of an anisotropic
distribution do not contribute.
If one demands the distribution to always be isotropic

and uniform, fðx; p; tÞ ¼ fðp; tÞ, then there are insuffi-
cient degrees of freedom to evolve the distribution
while conserving all of the Casimir invariants. Such an
evolution would need to be described by a 1D force,
Fðp; x; tÞ ¼ Fðp; tÞp̂, which can satisfy the ∂=∂p · F ¼ 0
condition while simultaneously remaining nonsingular as
p → 0 if and only if F ¼ 0. Thus, a 2D phase space (either
one spatial dimension and one momentum dimension, or
two momentum dimensions) is a minimal requirement for
self-consistent evolution. A simple example of a uniform
distribution (2D in momentum space) that conserves all of
the Casimir invariants by exploiting anisotropy is given in
Appendix A.

Finally, we make an important comment about the
physical dimensions of the Casimir invariants. Since f is
a dimensional quantity (having units of inverse phase
volume—i.e., inverse length cubed and inverse momentum
cubed), the Casimir invariants will also be dimensional,
with the dimensions determined by the corresponding
function g. This presents an issue in the context of the
kinetic BG entropy S, which does not have well-defined
dimensions, in the sense that it involves a logarithm of f
and thus the value is not consistent under a change of
physical units (or alternatively, the normalization factor
of f). The BG entropy is therefore nontrivial to normalize
in a meaningful way and has no natural zero point (leading
to the uncomfortable situation that varying N will preserve
the Vlasov equation but cause S to shift). While one can
arrive at physical conclusions by considering changes in S
rather than the absolute value of S, this limits the usefulness
of the BG entropy for interpreting the level of entropy
production in a plasma (see, e.g., discussion in Ref. [21]).
These considerations motivate contemplating other choices
of Cg that have well-defined dimensions, as an alternative
quantity. This leads us to introduce the Casimir momenta as
a generalized, dimensional characterization of entropy in
the next subsection.

C. Characteristic Casimir momenta

While the complete set of Casimir invariants provides the
theoretical foundation for this work, it is necessary in
practice to narrow the scope by selecting the Casimir
invariants with the most practical utility. In the remainder of
the paper, we focus on Casimir invariants associated with
power-law functions, g ¼ fχ , where χ > 0 is an arbitrary
index, and we denote the corresponding functional by

CχðfÞ≡ 1

N

Z
d3xd3pfχ ; ð4Þ

where the subscript is now a real number rather than
a function. The Casimir invariants given by Eq. (4) are
found in the definitions of Renyi entropy [1] and Tsallis
entropy [2]. Since any choice of smooth function for g can
be expanded in a Taylor series, Ci for integer i ∈ N forms a
basis for the other Casimir invariants. Intuitively, large
values of χ are more sensitive to the bulk (low-energy part)
of the distribution, while small values of χ are more
sensitive to high energies; Cχ will diverge at sufficiently
small (or negative) values of χ.
One can extract a quantity that has units of momentum

times length (i.e., angular momentum) by raising Cχ to the

appropriate power. Specifically, the quantity C−1=3ðχ−1Þχ has
these units. For a uniform thermal distribution, this
expression evaluates to about n−1=30 hpi (as will be shown
in Sec. II E), where n0 is the average particle number
density and hpi is the average (thermal) momentum. In the
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applications that motivate this work, n0 is fixed in time by
particle number conservation, while hpi may increase due
to energy injection into the system. Thus, to acquire a
dimensional representation of entropy that can be directly
compared to injected energy, we factor out the length
dimension and define the characteristic Casimir momenta:

pc;χðfÞ≡ n1=30 C−1=3ðχ−1Þχ ðfÞ

¼ n1=30

�
1

N

Z
d3xd3pfχ

�
−1=3ðχ−1Þ

: ð5Þ

Thus, from the set of Casimir invariants, we have derived
the (ideally conserved) Casimir momenta pc;χ as a dimen-
sional quantity that can be compared to the average
momentum hpi at any time.
The set of Casimir momenta pc;χ for varying χ is the

primary quantity that will be used in this work as a
“generalized” measure of entropy. The pc;χ give a detailed
characterization of how well the Casimir invariants (and
hence, entropy) are conserved, relative to any change in the
average particle momentum hpi. If the plasma heats up in a
way such that the plasma is perfectly thermalized (i.e., the
local distribution becomes thermal with uniform temper-
ature and density), then pc;χ will increase in proportion to
the instantaneous average momentum, pc;χ ∝ hpi for all χ.
If, on the other hand, the Casimir invariants are perfectly
conserved, then pc;χ will remain constant in time for all χ,
requiring the development of a highly nonthermal distri-
bution. In general, the dynamics will lie somewhere
between these two extremes, with pc;χ departing from
hpi in a way that may have a complicated dependence on χ.
The mathematical form of the Casimir momenta is

similar to the “exponential entropies” of Ref. [45], further
studied by Refs. [46,47]. The exponential entropies were
proposed as a measure of the extent of a 1D distribution.
The Casimir momenta can be viewed as a further gener-
alization for the higher-dimensional, mixed phase space
considered by the Vlasov equation, where the exponential
entropies would acquire physical dimension of phase-space
volume and thus are not directly relatable to the system
energetics. One may also consider the Casimir momenta to
be fundamentally equivalent to the Renyi and Tsallis
entropies since the underlying phase-space integral is
identical. The advantage of the Casimir momenta over
these previous representations of generalized entropy is that
it takes a form that is physically interpretable for the Vlasov
system.
In the following four subsections (Secs. II D–II G), we

describe some basic analytical properties of the Casimir
momenta. In particular, we show that the set of pc;χ share
several of the same properties as the BG entropy S. The
reader more interested in the numerical results may skip
ahead to Sec. III.

D. Connection to Boltzmann-Gibbs entropy

While the index χ of the Casimir momentum can be
chosen freely as a weight toward different regions of phase
space (as will be described in Sec. II E), the case of χ ¼ 1
deserves special consideration. At this point, the Casimir
invariant [Eq. (4)] represents particle number conservation
and is unity, C1 ¼ 1, but the corresponding Casimir
momentum pc;1 is formally undefined due to the exponent
−1=3ðχ − 1Þ becoming singular. The Casimir momenta in
the limit of χ → 1 evaluate to

pc;χ→1

n1=30

¼ lim
χ→1

�
1

N

Z
d3xd3pfχ

�
−1=3ðχ−1Þ

¼ f−1=3ref lim
ϵ→0

�
1

N

Z
d3xd3pfeϵ log ðf=frefÞ

�
−1=3ϵ

¼ f−1=3ref lim
ϵ→0

�
1

N

Z
d3xd3pf

�
1þ ϵ log

f
fref

��
−1=3ϵ

¼ f−1=3ref lim
ϵ→0

�
1þ ϵ

N

Z
d3xd3pf log

f
fref

�
−1=3ϵ

¼ f−1=3ref exp

�
−

1

3N

Z
d3xd3pf log

f
fref

�

¼ exp

�
−

1

3N

Z
d3xd3pf log f

�
¼ eS=3N; ð6Þ

where in the intermediate steps we introduced fref , an
arbitrary auxiliary constant with the same physical dimen-
sions as f, to make the argument of the logarithm
dimensionless. Thus, in the limit of χ → 1, the Casimir
momenta reduce to the BG entropy S ¼ −

R
d3xd3pf log f,

acted on by an exponential operator that restores physical
dimensions. In other words, the exponentiation negates the
effect of the logarithm acting on f, which is responsible
for the usual issues involving the arbitrary normalization
and zero point of S. Notably, this relationship reveals a
procedure for extracting a dimensionally meaningful quan-
tity from S.

E. Casimir momenta for uniform isotropic distributions

Physically, the Casimir momenta pc;χ describe the
typical width of the momentum distribution at a given
value of f. In this sense, the index χ acts as a weight to
capture different parts of the distribution (or different
regions of the momentum space). In fact, there is a one-
to-one mapping between pc;χ and different values of f for
the idealized case of a uniform isotropic distribution that
monotonically decreases with p. In this subsection, we
illustrate the connection between pc;χ and different regions
of momentum space by evaluating pc;χ for the examples of
a uniform thermal distribution and a nonthermal power-law
distribution.

VLADIMIR ZHDANKIN PHYS. REV. X 12, 031011 (2022)

031011-6



The first example is the uniform Maxwell-Jüttner dis-
tribution, also known as the relativistic thermal distribution:

f ¼ n0
4πm2cTK2ðmc2=TÞ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4 þ p2c2

p
T

�
; ð7Þ

where K2 is the modified Bessel function of the second
kind and T is the temperature. For simplicity, we calculate
pc;χ separately in the ultrarelativistic and nonrelativistic
limits. In the ultrarelativistic limit (T ≫ mc2, relevant to the
PIC simulations described later in this paper), Eq. (7)
becomes

f ∼
n0c3

8πT3
e−pc=T: ð8Þ

In this case, the Casimir momenta evaluate to

pc;χ ¼ n1=30

�
1

N

Z
d3xd3p

�
n0c3

8πT3
e−pc=T

�
χ
�−1=3ðχ−1Þ

¼ n1=30

�
4π

n0

�
n0c3

8πT3

�
χ Z

dpp2e−χpc=T
�−1=3ðχ−1Þ

¼ ð8πÞ1=3χ1=ðχ−1ÞT=c

¼ ð8πÞ1=3
3

χ1=ðχ−1Þhpi; ð9Þ

where we used the fact that the average momentum
hpi ¼ 3T=c in this ultrarelativistic limit. Note that
χ1=ðχ−1Þ is a monotonically decreasing function, approach-
ing∞ as χ → 0 and 1 as χ → ∞; it equals e at χ ¼ 1. Thus,
there is a one-to-one mapping between the set of pc;χ and
different parts of the distribution f. In particular, χ ≲ 1
corresponds to momenta far in the tail of the distribution,
while χ ≫ 1 corresponds to momenta close to the average
momentum.
In the nonrelativistic limit (T ≪ mc2), Eq. (7) becomes

f ∼
n0

ð2πmTÞ3=2 e
−p2=2mT; ð10Þ

and the characteristic momenta can be shown as

pc;χ ¼ ð2πmTÞ1=2χ1=2ðχ−1Þ

¼ π

2
χ1=2ðχ−1Þhpi; ð11Þ

where we used hpi ¼ ð8mT=πÞ1=2 in this limit. Once again,
χ1=2ðχ−1Þ is a monotonically decreasing function, approach-
ing∞ as χ → 0 and 1 as χ → ∞; the interpretation of pc;χ is
thus qualitatively similar to that for the ultrarelativistic case.
The next example is a uniform power-law distribution in

momentum space, as would arise from nonthermal particle
acceleration. For the purposes of illustration, we assume

sharp cutoffs of the distribution at some minimum momen-
tum pmin and maximum momentum pmax, with a large
energetic range pmax ≫ pmin, and a power-law index a > 3
in 3D momentum space so that the majority of particles
reside near pmin. In this case,

f ∼ A0p−a; ð12Þ

where A0 ¼ ða − 3Þn0=4πp3−a
min . The Casimir functionals

evaluate to Cχ ¼ Aχ
0ðp3−aχ

max − p3−aχ
min Þ=ð3 − aχÞ. Thus, the

main contribution to Cχ is from pmin if χ > 3=a and
from pmax if χ < 3=a. As a consequence, pc;χ ∼ pmin for
χ > 3=a and pc;χ ∼ pmax for χ < 3=a, meaning that large χ
capture momenta near the lower cutoff while small χ
capture momenta near the upper cutoff [48], with the
critical index χcrit ¼ 3=a being sensitive to both bounds.
For typical situations of interest, relativistic particle accel-
eration leads to power-law indices in the energy distribution
between −1 and −4, corresponding to 3 < a < 6; this
corresponds to critical indices covering the narrow range
1 > χcrit > 1=2. In our numerical analysis, we choose χ to
encompass this range.
In summary, pc;χ characterize the shape of the distribu-

tion, with a one-to-one mapping (at p≳ hpi) in the case of
a uniform, isotropic distribution that declines monotoni-
cally with p. As demonstrated for a thermal distribution and
a power-law distribution, χ ≲ 1 corresponds to momenta
that are far in the tail, while χ ≫ 1 corresponds to momenta
that are close to the thermal momentum (or lower cutoff of
the power law). The nonconservation of pc;χ at any values
of χ may then be interpreted as the violation of entropy
conservation in the corresponding region of phase space.

F. Role of inhomogeneity and anisotropy
in decreasing Casimir momenta

The presence of spatial inhomogeneity or momentum
anisotropy acts to decrease entropy in a system. In much the
same way, these features will decrease the Casimir
momenta pc;χ relative to the uniform, isotropic case.
This is an important property of pc;χ that we will demon-
strate in this subsection. These effects are particularly
relevant for the problem of turbulence since inhomogene-
ities arise from temperature or density fluctuations, and
collisionless plasmas generally acquire (and maintain) an
anisotropic distribution with respect to the magnetic field
due to the anisotropy of the energization mechanisms.
We first consider the role of spatial inhomogeneities.

Consider a distribution decomposed into a uniform and a
fluctuating part, fðx; pÞ ¼ f̄ðpÞ þ δfðx; pÞ, where f̄ ¼R
d3xf=V is the global distribution and V is the integration

volume. Hölder’s inequality implies that ðR d3xf=VÞχ ≤R
d3xfχ=V for χ > 1 and ðR d3xf=VÞχ ≥ R d3xfχ=V for

0 < χ < 1. Integrating over momenta, this implies that the
Casimir invariants computed from the global distribution
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obey Cχðf̄Þ ≤ CχðfÞ for χ > 1 and Cχðf̄Þ ≥ CχðfÞ for
0 < χ < 1. In both cases, this causes pc;χ to decrease from
the value calculated with the uniform distribution f̄ alone.
As a result, any nontrivial spatial structure will act to either
decrease the Casimir momenta from the uniform case or, at
best, keep it unchanged (as in the case of bulk flows or local
rotations of the distribution).
To determine the effect of momentum anisotropy, next

consider a uniform distribution decomposed into an iso-
tropic part and an anisotropic fluctuation, fðx; pÞ ¼
fisoðpÞ þ δfðp; θ;ϕÞ, where fisoðpÞ ¼

R
dϕd cos θf=4π

and p ¼ pðcosϕ sin θx̂þ sinϕ sin θŷþ cos θẑÞ defines
the spherical coordinate system. For simplicity, we assume
that f is in the center-of-mass frame (otherwise, a coor-
dinate transform is needed). Hölder’s inequality implies
that ðR dϕd cos θf=4πÞχ ≤ R dϕd cos θfχ=4π for χ > 1

and ðR dϕdcosθf=4πÞχ≥R dϕdcosθfχ=4π for 0 < χ < 1.
Thus, the Casimir invariants computed from the isotropic
distribution obey CχðfisoÞ ≤ CχðfÞ for χ > 1 and CχðfisoÞ ≥
CχðfÞ for 0 < χ < 1. In both cases, this causes pc;χ to
decrease from the value calculated with the isotropic
distribution fiso alone. Thus, anisotropy decreases the
Casimir momenta relative to the isotropic case.
We have shown that spatial inhomogeneities and

momentum anisotropy both contribute to decreasing the
Casimir momenta. This qualitative feature is analogous to
the well-known effect of nontrivial (ordered) structure
decreasing the BG entropy.

G. Growth of global Casimir momenta
with energy injection

The second law of thermodynamics dictates that systems
will tend to evolve from low-entropy to high-entropy states
(e.g., after energy is injected). Similarly, the Casimir
momenta pc;χ computed from the coarse-grained distribu-
tion have a tendency to grow after energy is injected into
the system. In this subsection, we illustrate this by con-
sidering the evolution of pc;χ computed from the global
(spatially averaged) distribution f̄, rather than the local
distribution f. We outline an argument that connects the
growth of these global Casimir momenta with the overall
heating.
Consider the global distribution f̄ðp; tÞ≡ R d3xfðx;

p; tÞ=V. Using Eq. (1), the evolution of the global distri-
bution is given by

∂tf̄ ¼ −
∂

∂p
·F ; ð13Þ

where we defined F ðp; tÞ≡ R d3xFf=V as the momen-
tum-space force density. The evolution of the Casimir
invariants associated with f̄ can then be expressed as

dCgðf̄Þ
dt

¼
Z

d3pg0ðf̄Þ∂tf̄

¼ −
Z

d3pg0ðf̄Þ ∂

∂p
·F

¼
Z

d3pg00ðf̄Þ ∂f̄
∂p

·F ; ð14Þ

where we used primes to indicate derivatives. For com-
parison, the overall “heating” rateQ—defined as the rate of
increase of overall plasma energy—has a similar form:

Q
V
¼ d
dt

Z
d3pd3x

Ef
V

¼
Z

d3pE∂tf̄¼
Z

d3pv ·F ; ð15Þ

where we defined the relativistic energy E ¼ ðm2c4 þ
p2c2Þ1=2 and used ∂E=∂p ¼ v.
By comparing Eq. (14) with Eq. (15), one can see thatF

appears in the momentum-space integrals for both
dCgðf̄Þ=dt and Q but with different weights. As a result,
one may expect the Casimir invariants for the global
distribution to evolve in a similar way as Q. If energy is
injected into the plasma, Q > 0, then the product vF must
have a net positive p̂ component via Eq. (15). In most
realistic cases, f̄ decreases monotonically with p, so
∂f̄=∂p < 0. Although not rigorous, these considerations
suggest that the term ∂f̄=∂p ·F will tend to be negative.
Then, as the plasma heats up, Eq. (14) implies that Cgðf̄Þ
will grow if g00 < 0, decline if g00 > 0, and stay constant if
gðfÞ ¼ f (as it must to enforce particle number conserva-
tion). Interestingly, in terms of the Casimir momenta, this
corresponds to pc;χ increasing after energy injection, for all
χ > 0. As a result, energy injection will typically cause an
increase of the Casimir momenta when measured from the
global distribution (regardless of whether the Casimir
invariants are locally conserved).
This tendency for pc;χ computed from f̄ to increase with

energy injection can be understood intuitively by the fact
that spatial inhomogeneities (which will develop inevitably
from realistic energy injection mechanisms) lead to a local
reduction of entropy. To conserve the local entropy, this
reduction must be compensated by an increase of entropy
via the thermal structure of the distribution. When averag-
ing the distribution over space, only the latter effect
(changes in the thermal structure) is retained; thus, a net
increase in entropy (and the Casimir momenta) is expected.
The numerical results in Secs. IV and V will confirm this
expectation by showing that pc;χ computed from both the
global distribution and the local (coarse-grained) distribu-
tion increase in time.

III. NUMERICAL METHODOLOGY

We now proceed to apply the analytical framework
described in Sec. II to PIC simulations of laminar flows
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and turbulent flows in relativistic pair plasma. This is a
means to demonstrate that the Casimir momenta pc;χ can be
applied to real data to obtain conclusions about the amount
of entropy produced in various regions of phase space, thus
providing a proof of principle for the applicability of the
methods to future problems. In this section, we first
describe the implementation of the diagnostics for meas-
uring pc;χ in PIC simulations and then describe the
numerical setup of the PIC simulations.

A. Measurement of the Casimir invariants

In each PIC simulation, we construct a coarse-grained
particle distribution for each species, from which we
compute the Casimir invariants Cχ via Eq. (4) for a
representative set of indices and then derive the Casimir
momenta pc;χ via Eq. (5). In this work, we present results
for χ ∈ f1=3; 1=2; 3=4; 3=2; 2; 3g. The Vlasov equations
predict that the Casimir invariants are conserved for each
particle species separately; we choose to show results
acquired from the electron distribution but confirm that
the positron distribution gives essentially identical results.
The coarse-grained particle distribution is binned on a

Cartesian grid in both momentum space and physical space,
with bin sizes Δpi;bin in the three momentum directions
(i ∈ fx; y; zg) and Δxbin in the two spatial directions [49].
To measure the Casimir invariants accurately, it is essential
to bin the distribution with sufficient resolution in momen-
tum space, such that the peak of the distribution (near the
average momentum hpi) is resolved, while also having
large enough bins to encompass nonthermal tails. In
addition, there must be sufficient macroparticles per bin
for the distribution to be smooth (otherwise the statistical
noise manifests as artificial structure in the distribution,
reducing pc;χ from the physical value via the arguments in
Sec. II F). To achieve optimal resolution, we use an
adaptive grid in momentum space by shifting and rescaling
the coordinateswith respect to the averagemomentumvalues
in the spatial bin. First, to remove broadening by large-scale
flows, we shift the distribution toward the origin in momen-
tum space by defining new momenta p0 ¼ p − hpibin, where
hpibin is the average particle momentum in the spatial bin.
While not strictly necessary, this transformation to center-of-
momentum coordinates improves the accuracy of the meas-
urement in situations with high flow speeds. Second, we
choose a momentum bin size (for each direction) that is a
fixed fraction of the rms averagemomentum in the spatial bin
at that time, pi;rms;bin ¼ ðhp2

i ibin − hpii2binÞ1=2. This adaptive
binning procedure allows the Casimir invariants to be
measured accurately even with strong local variations in
the plasma distribution and with significant heating of the
plasma over time.
For the runs described in this paper, we resolve the

distribution with either 322 bins (laminar cases) or 642 bins
(turbulence case) in position space and 2563 bins in
momentum space. We choose a momentum bin size of

Δpi;bin ¼ pi;rms;bin=4, allowing the rms average momentum
to be resolved by several cells. This leaves a factor of
pmax;bin=pi;rms;bin ¼ 32 between the maximum momentum
covered by the bins and the average momentum, sufficient
to entirely cover the nonthermal tail of the distribution in
the turbulence case (as will be described in Sec. V).
We performed a large number of simulations to test

numerical convergence of the methods. This includes
varying the number of particles per cell, the spatial
resolution, and the binning resolution. The parameters
chosen for the production simulations were informed by
these numerical tests. We note that an insufficiently large
value of pmax;bin causes Cχ to artificially decrease, as
portions of the distribution are missed, and thus pc;χ

increases from the physical value if χ > 1 and decreases
if χ < 1; we observed this effect in simulations with
insufficiently large pmax;bin when testing the methods.
We also confirmed that if Δpi;bin is too small (or number
of particles per cell too small) as to make the number of
macroparticles per bin order unity, the statistical noise
artificially decreases pc;χ from the converged value. For
reference, the dependence of the results on the spatial bin
size Δxbin is described in Appendix B.

B. Simulation setup

We perform new simulations of driven laminar and
turbulent flows using the PIC code Zeltron [50]. All
simulations consider a relativistic electron-positron (pair)
plasma, for numerical and theoretical simplicity. Although
the dynamics will differ for a nonrelativistic electron-ion
plasma, we conjecture that the overall conclusions about
entropy production may not be sensitive to the composition.
For simplicity, we focus on simulations that are 2D in

physical space (neglecting the z coordinate) and 3D in
momentum space; the higher momentum-space dimension
is necessary to allow for out-of-plane electric currents and
thus realistic dynamics. The domain is thus a periodic box
of area L2. The 2D setups allow the distribution to be coarse
grained onto a finer grid than is possible in 3D, which is
essential for measuring Casimir invariants accurately at
small and intermediate scales. We note that 2D and 3D
setups yield similar nonthermal particle distributions in PIC
simulations of both relativistic magnetic reconnection (e.g.,
Refs. [24,26,27]) and relativistic turbulence [25,34], so we
do not anticipate the basic conclusions in this work to be
fundamentally different in 3D.
We initialize particles from a uniform Maxwell-Jüttner

distribution with an ultrarelativistic temperature, θ0 ≡ T0=
mec2 ¼ 100; we confirm that the initial pc;χ measured in
the simulations agree with the analytical values [Eq. (9)] for
the fiducial binning parameters and number of particles per
cell (chosen to be 32 per species). The simulations are
permeated by a uniform mean magnetic field B0, and the
initial plasma beta based on this field is set to
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β0 ≡ 16πn0T0=B2
0 ¼ 1=4, where n0 is the mean particle

number density per species. This value of β0 is sufficiently
low to enable efficient nonthermal particle acceleration in
the turbulence simulation. We note that the relativistic
Alfvén velocity is vA=c≡ ½σ=ð1þ σÞ�1=2 ≈ 0.63, where
σ ¼ 1=ð2βÞ is the magnetization parameter in the relativ-
istically hot limit. The simulation resolution is set so that
the particle gyroradius ρe ¼ hpic=eB0 is initially resolved
by three cells, Δxsim ¼ ρe0=3. For reference, the initial
value of the relativistic electron skin depth is de0 ¼
2ρe0=ð3β0Þ1=2 ≈ 2.3ρe0, and the Debye length is λD0 ¼
ðT0=8πn0e2Þ1=2 ≈ de0=

ffiffiffi
6

p
≈ 0.9ρe0. The laminar flow sim-

ulations have 10242 cells, and thus L=2πρe0 ≈ 54. The
turbulence simulation has 20482 cells and L=2πρe0 ≈ 109.
Each coarse-graining bin contains 322 cells in both setups.
The plasma is disturbed by an external force Fext, which

drives either a laminar flow (Sec. IV) or a turbulent flow
(Sec. V). In this work, we focus on incompressible shear
forces, leaving the case of compressive forces to future
work (for a discussion of the role of solenoidal versus
compressive driving on turbulent particle acceleration, see
Ref. [51]). For completeness, however, we also describe the
case of collisionless damping of a density fluctuation in
Appendix C, where it is shown analytically and numeri-
cally that the decay leads to a modest increase in pc;χ via
phase mixing.

IV. NUMERICAL RESULTS ON LAMINAR FLOWS

To benchmark the numerical diagnostics, we first apply
them to a series of PIC simulations in which a laminar flow
is driven at a single scale by a time-independent shear force:

FshearðxÞ ¼ F0 sin ðkxÞŷ; ð16Þ

where k ¼ 2π=L is the wave number and we set the
amplitude of the force as F0 ¼ 0.6kT0. We track the
evolution of the system for times before any instabilities
arise (either numerical or physical). Since there is negli-
gible irreversible energy dissipation in these cases, entropy
and the Casimir invariants are expected to be conserved.
These cases thus serve to determine the adequate bin
resolution, number of particles per bin, and so on required
to verify conservation of pc;χ to high accuracy.

A. Neutral shear flow

Before considering magnetized plasmas, it is useful to
consider the dynamics of a collection of uncharged par-
ticles—in other words, a collisionless relativistic gas driven
by a shear force. This is described by the Vlasov equation
with no Lorentz force:

∂tf þ vx∂xf þ FshearðxÞ
∂f
∂py

¼ 0; ð17Þ

where FshearðxÞ is the shear force given by Eq. (16); this can
be easily simulated in PIC by setting the electric charge
qs ¼ 0 (see Ref. [52] for the analytical solution to this
equation in the nonrelativistic limit). The shear force drives
bulk flows in the �ŷ directions, while streaming of the
particles in the �x̂ directions causes phase mixing. While
not strictly irreversible, phase mixing enables entropy
production at coarse-grained scales by scrambling the
distribution in momentum space as particles sample the
force to varying degrees while crossing the box at their
transverse speed vx. Particles return to their original state
after crossing the box in x̂; while most particles do this on
the light crossing timescale of about L=c, particles with
velocities predominantly aligned with ŷ take a longer time
to cross the box and thus are accelerated to high energies.
This broadens the global momentum distribution and forms
a nonthermal tail.
We show the evolution of the global 1D momentum

distribution f̄ðp; tÞ from the PIC simulation in the top panel
of Fig. 1; here, f̄ðp; tÞ ¼ p2

R
dΩpf̄ðp; tÞ, where the inte-

gration is over directions of p̂. Thismomentumdistribution is
equivalent to the energy distribution since particles are
relativistic (E ≈ pc). The distribution forms a significant
nonthermal tail with an extent that grows steadily with time
due to the (constantly depleted) subpopulation of particles
that experience continuous acceleration.
The evolution of the relative change in the Casimir

momenta, Δpc;χðtÞ=pc;χð0Þ≡ pc;χðtÞ=pc;χð0Þ − 1, from
this simulation is shown in the bottom panel of Fig. 1,
measured separately using both the local distribution
fðx; p; tÞ and the global distribution f̄ðp; tÞ; this is com-
pared to the relative change in the average particle
momentum ΔhpiðtÞ=hpið0Þ≡ hpiðtÞ=hpið0Þ − 1. The
average particle momentum grows steadily by a factor of
about 3 over the course of the simulation (t ≈ 22L=c) due
to the constant shear acceleration. In contrast, pc;χ only
grow by about 30%, indicating that while they are not
conserved perfectly, they increase by a far smaller amount
than hpi. Thus, pc;χ are approximately conserved in this
case, despite the effect of phase mixing.
The evolution of pc;χ is similar for all measured values

of χ when using the local distribution, but it exhibits
differences for each χ when using the global distribution. In
the latter case, Δpc;χðtÞ=pc;χð0Þ for χ ¼ 3 grows rapidly
before saturating at about 0.3 at the light crossing time L=c.
For χ ¼ 1=3, the growth is much slower and only reaches
the saturation value at the end of the simulation. Other
values of χ are intermediate between the two extremes. This
trend can be understood intuitively as follows. The dynam-
ics are reversible on the transverse crossing timescale L=vx
for each particle since the particles return to their initial
state. Large values of χ (i.e., χ ≳ 1) are sensitive to the
thermal particles, which cross the box on the global light-
crossing timescale of about L=c. Small values of χ (i.e.,
χ ≲ 1), on the other hand, are weighted toward particles in
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the tail of the distribution, which get accelerated to extreme
energies because they have small vx. These “nonthermal”
particles take much longer to cross the box (i.e., their L=vx
is large), so the dynamics do not repeat until late times.
Thus, the saturation of pc;χ reflects the timescale across
which the dynamics are reversible for typical particles in
the energy range that is captured by the weight χ. In
contrast, the evolution of the local distribution represents
phase mixing on the local level, which always appears to be
irreversible due to the existence of particles that have not
yet crossed the box.
This uncharged system serves as a simple setting for

understanding the entropy associated with free-streaming
particles in a collisionless system. In this case, we conclude
that while entropy is produced at coarse-grained scales over
time, it is far outpaced by the energization of the plasma.

This indicates that phase mixing by itself enables only a
limited amount of entropy production, and the outcome at
late times is best represented by scenario (3) in Sec. I. We
next increase the complexity by adding electromagnetic
interactions.

B. Parallel shear flow

We next consider a magnetized plasma with a parallel
shear force FshearkB0. This situation is described by the full
Vlasov-Maxwell equations with force Fs ¼ FLorentz;s þ
Fshear including the Lorentz force FLorentz;s ¼ qsðEþ v ×
B=cÞ (where E is the electric field, B is the magnetic field,
and qs is the electric charge for particle species s) and the
external shear force FshearðxÞŷ given by Eq. (16). The guide
field is thus B0 ¼ B0ŷ.
Since particles stream freely alongB0 while being unable

to cross magnetic field lines beyond their gyroradius, to
lowest order in ρe=L, the plasma at a given x coordinate is
simply advected along B0 at a speed that grows with time.
When electromagnetic field fluctuations are neglected and
an isotropic initial distribution f0ðpÞ is assumed, the
analytical solution to the Vlasov equations for this setup is

fðx; p; tÞ ¼ f0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ

�
py − F0t sin

�
kx −

kpzc
qsB0

��
2

s !

∼ f0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2⊥ þ ðpy − F0t sin ðkxÞÞ2
q �

; ð18Þ

where the last expression holds in the limit of kρe ≪ 1, and
we define p2⊥ ¼ p2

x þ p2
z . In essence, a shear flow is

continuously accelerated. This leads to a nonthermal
population in the global distribution since the plasma is
locally accelerated to high energies in the regions of strong
force. However, the local distribution remains a (shifted)
thermal distribution. In other words, the global distribution
is a superposition of drifting thermal distributions with a
broad range of drift velocities.
The evolution of the global 1D momentum distribution

f̄ðp; tÞ for the PIC simulation of the parallel shear flow is
shown in the top panel of Fig. 2. The shear flow accel-
eration produces a broad, flat distribution that grows to
higher energies over time.
The evolution of the relative change in Casimir

momenta, Δpc;χðtÞ=pc;χð0Þ, measured from the local and
global distributions is shown in the bottom panel of Fig. 2.
For comparison, the mean momentum hpi increases by a
factor of about 5 over the duration of t ∼ 6.5L=c; the
injected energy is contained exclusively in the kinetic
energy of the bulk flow, rather than internal energy.
When pc;χ is measured from the local distribution, it
increases by less than 20% over this timescale. In fact,
we find that the conservation of pc;χ is limited only by the
numerical resolution: If we increase the resolution of the
spatial bins while simultaneously increasing the number of

FIG. 1. Top panel: global 1D momentum distribution in the PIC
simulation of a shear force acting on an uncharged collection of
particles, demonstrating the formation of a nonthermal tail.
Bottom panel: change of the Casimir momenta Δpc;χðtÞ relative
to the initial value pc;χð0Þ for the local coarse-grained distribution
(solid lines) and for the global distribution (dotted lines); varying
χ values are indicated by colors in the legend. For reference, the
relative increase in the average momentum ΔhpiðtÞ=hpið0Þ is
shown by the black dashed line.
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particles to keep the same number of particles per bin, the
growth of pc;χ can be further reduced (unlike the other
cases described in this paper, which are converged; see
Appendix B). In this sense, within the accuracy of our
measurements, pc;χ measured from the local coarse-grained
distribution are consistent with being perfectly conserved in
this case. Note that pc;χ grows by a smaller amount for
χ ¼ 1=3 than for χ ¼ 3; this suggests that conservation is
better represented by small values of χ.
When pc;χ is measured from the global distribution

f̄ðp; tÞ, we find that pc;χ increases by a factor of about 2
from the initial value, with an initial growth that is
comparable to that of hpi. Thus, there is an apparent
entropy production in the global distribution due to the
transfer of entropy from the spatial degrees of freedom (in
this case, shear flow, which reduces the local entropy) to
momentum-space degrees of freedom.

In summary, for a shear flow parallel to the background
magnetic field, the Casimir momenta are consistent with
entropy conservation at the coarse-grained level but exhibit
significant entropy production at the global level. Thus, the
outcome matches scenario (2) in Sec. I.

C. Perpendicular shear flow

As the final laminar case, we consider a perpendicular
shear force (Fshear⊥B0) by applying the external force
FshearðxÞŷ given by Eq. (16) and the guide field B0 ¼ B0ẑ.
In this case, a shear flow is caused by E × B drift of
particles across the magnetic field lines, rather than free
streaming. As a result, an x̂ component of the electric field
is established as the flow accelerates. An electric charge
forms since ∇ · E ≠ 0, the advection of which leads to an
electric current J at wave number 2k and thus a weak
fluctuation in the parallel magnetic field δBz. While the
early evolution of the flow is laminar, these effects
eventually destabilize the flow at times later than those
considered here.
We show the evolution of the 1D momentum distribution

from the PIC simulation of perpendicular shear flow in the
top panel of Fig. 3. Much like the previous cases, the
distribution is broadened by the bulk flows, but this time it
remains “quasithermal” in the sense of resembling a
broadened thermal distribution.
The relative change in the Casimir momenta, Δpc;χðtÞ=

pc;χð0Þ, is shown in the bottom panel of Fig. 3, measured
from both the local distribution and global distribution.
Like the previous cases, pc;χ from the local distribution
grows with time, by about 10%, which is a small change
compared to hpi, which increases by a factor of about 4
over the duration of the simulation (t ∼ 7.5L=c). The
growth is similar for all values of χ considered, after a
transient period during the first couple of light crossing
times. One difference from the parallel shear flow is that the
local pc;χ are converged with respect to binning in this case,
indicating some degree of physical irreversibility. The
evolution of pc;χ from the global distribution is qualita-
tively similar to the parallel shear flow, growing at a rate
comparable to hpi initially before reaching an increase of
about 50% for all χ at the end of the simulation. One
difference from the previous case is that whereas pc;χ grows
the least for small values of χ in the parallel shear flow, it
grows the least for larger values of χ in the perpendicular
shear flow; this may be related to the different shapes of the
distribution (nonthermal versus quasithermal). In this case,
we conclude that entropy is approximately conserved at the
coarse-grained level but produced in significant amounts at
the global level. Thus, the outcome is again best repre-
sented by scenario (2) in Sec. I.
In summary, in all of the laminar shear flow cases, the

growth of the Casimir momenta pc;χ measured from the
local “coarse-grained” distribution is on the order of 10%,
which is about an order of magnitude less than the growth of

FIG. 2. Top panel: global 1D momentum distribution in the PIC
simulation of a shear force acting parallel to the mean magnetic
field B0, exhibiting broadening by bulk flows. Bottom panel:
change of the Casimir momenta Δpc;χðtÞ relative to the initial
value pc;χð0Þ for the local coarse-grained distribution (solid lines)
and for the global distribution (dotted lines); varying χ values are
indicated by colors in the legend. For reference, the relative
increase in the average momentum ΔhpiðtÞ=hpið0Þ is shown by
the black dashed line.
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the averagemomentum hpi. This suggests that while entropy
production is not entirely negligible, the process of bulk flow
acceleration is predominantly entropy conserving. When
pc;χ aremeasured with only the global distribution f̄, there is
a large amount of entropy production, comparable to hpi, for
all cases except the uncharged case. The nonconservation at
the global level is not surprising since the Vlasov equations
only predict the Casimir invariants of the local distribution to
be conserved.With this intuition,wenext consider the case of
driven 2D turbulence.

V. NUMERICAL RESULTS ON
TURBULENT FLOW

A. General evolution

We now describe results from the turbulence simulation.
We consider an out-of-plane mean field B0 ¼ B0ẑ. We

drive turbulence via an external incompressible force that is
perpendicular to B0, which consists of 20 modes with wave
vectors k⊥ ≡ ðk2x þ k2yÞ ≤ 51=22π=L and independent ran-
domly evolving phases. Essentially, a shear force is driven
at each of these modes, similar to the one used to drive the
laminar flows [Eq. (16)] but with amplitude F0 ¼ 2.4T0k⊥
for each mode. The driving mechanism is described in more
detail in our previous work [51].
A spectrum of turbulent fluctuations quickly forms in the

simulation. The evolution of the overall energy partition is
shown in the top panel of Fig. 4. The fully developed
turbulence is quasi-Alfvénic (by construction), with the
magnetic energy and bulk kinetic energies being compa-
rable: Emag;turb ∼ Ebulk; the driving amplitude is such that
both are roughly a factor of 2 less than the energy in the
mean magnetic field Emag;mean. Note that there are no linear

FIG. 3. Top panel: global 1D momentum distribution in the PIC
simulation of a shear force acting perpendicular to the mean
magnetic field B0, exhibiting broadening by bulk flows. Bottom
panel: change of the Casimir momenta Δpc;χðtÞ relative to the
initial value pc;χð0Þ for the local coarse-grained distribution (solid
lines) and for the global distribution (dotted lines); varying χ
values are indicated by colors in the legend. For reference, the
relative increase in the average momentum ΔhpiðtÞ=hpið0Þ is
shown by the black dashed line.

FIG. 4. Top panel: evolution of the global energies in the PIC
simulation of 2D turbulence. Lines indicate turbulent magnetic
energy (red), electric energy (blue), mean field magnetic energy
(black), internal energy (gold), and turbulent bulk kinetic energy
(green). Bottom panel: evolution of the global 1D particle
momentum distribution, with a p−3 power-law scaling shown
for reference. The green dash-dotted line indicates the system-
size limited momentum pmax at which the particle gyroradius is
half of the box size.
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Alfvén waves at large scales due to the absence of spatial
variation along B0. The internal energy Eint (and thus hpi)
increases in time due to turbulent energy dissipation,
growing by more than an order of magnitude over the
course of the simulation (up to tc=L ∼ 35). The electric
energy Eelec is subdominant. We use the relativistic
definitions for Ebulk and Eint described in our previous
work [33]. Overall, the turbulence energies (and power
spectra, not shown) are qualitatively similar to previously
published 3D cases [33], consistent with previous works
(see, e.g., Refs. [25,34]).
Relativistic turbulence leads to efficient nonthermal

particle acceleration (see, e.g., Refs. [25,33]). We show
the evolution of the global 1D particle momentum distri-
bution f̄ðp; tÞ in the bottom panel of Fig. 4. Notably, a
power-law tail with index α ≈ −3 is formed and main-
tained, in addition to some “thermal” heating that shifts
the distribution peak to higher energies. Since an index of
α ¼ −3 in the 1D momentum distribution corresponds to
an index a ¼ 5 in the 3D momentum distribution fðp; tÞ,
this implies that the critical index for the Casimir momen-
tum to be weighted toward the high-energy end of the tail is
χcrit ¼ 3=5; values of χ smaller than this will primarily
capture the nonthermal population (see Sec. II C).

B. Evolution of Casimir momenta

In the top panel of Fig. 5, we show that in contrast to the
laminar flows, the Casimir momenta pc;χ in the turbulence
simulation grow at a rate comparable to that of the average
momentum hpi for all χ. In particular, we find that for
χ < 1, Δpc;χðtÞ=pc;χð0Þ ≈ hpiðtÞ=hpið0Þ − 1, indicating
efficient thermalization. In this sense, turbulence is an
efficient producer of entropy, despite the presence of the
nonthermal tail in the global distribution. In contrast, for
values of χ > 1weighted toward low energies, pc;χ remains
a factor of a few below hpi, indicating better conservation
at low energies than at high energies. Intuitively, the set of
pc;χ evolve to cover a broad range of momenta, which
indicates that the distribution evolves from a single char-
acteristic energy (thermal energy of about T) to a distri-
bution that spans over many energies.
The Casimir momenta measured from the global dis-

tribution f̄ðp; tÞ (shown in the bottom panel of Fig. 5)
evolve in a similar way to those measured from the local
(coarse-grained) distribution, but the relative growth of
Δpc;χ is larger by a factor of about 2. This is consistent with
the considerations in Sec. II F, indicating that a uniform
distribution will have higher pc;χ (and entropy) than a
spatially varying distribution. In this global case, pc;3=4

grows at a similar rate as hpi, while pc;1=3 grows at an even
faster rate than hpi. This corresponds to pc;χ inhabiting a
range of values surrounding hpi within the power-law tail
of the distribution. The value of χ ¼ 1=3 samples the high-
energy end of the distribution (since χcrit ¼ 3=5 for

α ¼ −3), consistent with the observation that pc;1=3

exceeds hpi.
An important question is as follows: Do the growth rates

of the Casimir momenta depend on the coarse-graining
level relative to the kinetic scales and/or system size? To
answer this, we compare the fiducial simulation to twice-
smaller PIC simulations (10242 cells, L=2πρe0 ≈ 54) with
varying levels of coarse graining (and fixed number of
macroparticles per spatial bin). WhenΔxbin is twice smaller
relative to the kinetic scales than the fiducial case, but the
same size relative to the domain, the Casimir momenta
from the smaller simulation evolve in a nearly identical
manner to those from the fiducial simulation in Fig. 5.
Likewise, when Δxbin is the same relative to the kinetic
scales as the fiducial case, but twice smaller relative to the
domain, the Casimir momenta also exhibit a nearly
identical evolution. We point the reader to Appendix B
for details on this result. We thus conclude that these results
are converged with respect to coarse-graining level relative
to either kinetic or global scales, for the range of Δxbin
considered.

FIG. 5. Relative change of the Casimir momenta, Δpc;χðtÞ=
pc;χð0Þ, computed using the local coarse-grained distribution (top
panel) and the global distribution f̄ (bottom panel); varying χ
values are indicated by colors in the legend. For reference, the
relative increase in the average momentum ΔhpiðtÞ=hpið0Þ is
shown by the black dashed line.
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In summary, in the turbulence simulation, the evolution
of pc;χ is comparable to that of the average momentum hpi,
for both the local and the global distribution, indicating that
a large amount of entropy is produced. This result is in
contrast to the laminar flows, demonstrating the link
between irreversible energization (via the turbulent cas-
cade) and entropy production. The situation is then con-
sistent with scenario (1) in Sec. I, although one cannot
a priori rule out the possibility of scenario (2) holding at
finer scales; we will return to this point in Sec. VI.

C. Spatial profile of local Casimir momenta

We close this work by commenting on the spatial
structure of the Casimir momenta measured in local
subdomains of the turbulence simulation, as a preliminary
consideration of their potential as a diagnostic for local
irreversible energy dissipation. By measuring the Casimir
invariants in each spatial bin, rather than integrating over

the entire domain, we can construct local Casimir
momenta, denoted ploc

c;χðx; tÞ, defined in the same way as
Eq. (5) but with the spatial integral constrained to bins of
size Δxbin (while keeping the normalization factors based
on the global average number density n0 and using
N → n0Vbin, where Vbin is the bin volume). In the con-
tinuum limit (Δxbin → 0), this would become

ploc
c;χðfÞ → n1=30

�
1

n0

Z
d3pfχ

�
−1=3ðχ−1Þ

: ð19Þ

Since each subdomain has open boundaries, the local
Casimir momenta ploc

c;χ are not conserved by the Vlasov
equation due to advection effects but may give insight into
structures that contribute the most to the overall Casimir
momenta pc;χ .
In the top panels of Fig. 6, we show images of the out-of-

plane electric current density Jz and electron kinetic energy

FIG. 6. Clockwise from top-left panel: the spatial profile of the out-of-plane current density Jz (relative to the rms value), fluctuations
in the electron energy density Ekin;e (relative to the mean value), and local Casimir momenta ploc

c;χ (normalized to the mean value) for
χ ¼ 2 and χ ¼ 1=2 in the turbulence simulation.
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density Ekin;e, at an arbitrary time (tc=L ¼ 8.75) during
fully developed turbulence. Intermittent current sheets and
plasmoids formed by magnetic reconnection are evident in
the current density; much of the high-energy plasma,
however, resides outside of such structures. In the bottom
panels of Fig. 6, we show the spatial profile of ploc

c;χ for
χ ¼ 1=2 and χ ¼ 2 (acquired from the electron distribu-
tion). We find that ploc

c;1=2 is very strongly correlated with
Ekin;e, confirming that the Casimir momenta at low χ are
associated with regions of heated plasma. Curiously, while
ploc
c;2 also exhibits some correlation with Ekin;e, the dominant

structures have a different morphology and location than
ploc
c;1=2. In particular, the largest values of ploc

c;2 occur in
filamentary structures upstream of the reconnection layers
and plasmoids. The qualitative differences in the spatial
profile of ploc

c;1=2 and p
loc
c;2 confirm that the different values of

χ are sensitive to different dissipation processes.
Recent work has suggested that in relativistic turbulence,

low-energy particles may be preferentially energized by
magnetic reconnection in intermittent current sheets, while
high-energy ones may be energized by diffusive particle
acceleration (see discussion in Ref. [34]). One may
anticipate that some of the differences between ploc

c;1=2
and ploc

c;2 are related to this process: Since ploc
c;2 is sensitive

to lower-energy particles than ploc
c;1=2, it will be more

sensitive to irreversible dissipation processes occurring at
those low energies.
This concludes our application of the Casimir momenta

for measuring entropy production in PIC simulations of 2D
relativistic turbulence. We next summarize our results and
point out these future directions.

VI. CONCLUSIONS

In this work, we created a theoretical framework for
understanding the anomalous production of kinetic entropy
in collisionless plasmas by manipulating the more general
Casimir invariants. We introduced the infinite set of
Casimir momenta to characterize the violation of entropy
conservation (in a generalized sense) relative to the energy
injection; these momenta are defined simply by

pc;χ ≡ n1=30

�
1

N

Z
d3xd3pfχ

�
−1=3ðχ−1Þ

; ð20Þ

where χ is a free index that parametrizes the weight toward
different regions of phase space (low energy for large χ and
high energy for small χ). The Vlasov equation predicts pc;χ

to be conserved, for suitable boundary conditions and in the
absence of collisions, but anomalous entropy production
(enabled by phase mixing or nonlinear entropy cascades)
breaks the conservation of pc;χ .
This theoretical framework provides a novel approach to

characterizing entropy in collisionless plasmas, bypassing

ambiguities with the standard BG entropy (in particular, the
nonuniqueness, arbitrary normalization, and arbitrary zero
point). In the author’s opinion, further investigation of the
mathematical properties of the Casimir momenta and their
evolution in various analytical problems is warranted. The
Casimir invariants have played a key role in previous
analytical works by constraining the properties of possible
solutions to the Vlasov-Maxwell equations (such as in the
proof of the existence of weak solutions by Ref. [23]); the
Casimir momenta may provide a means to better character-
ize departures of the coarse-grained dynamics from the
Vlasov equation.
As an initial application, we employed this theoretical

framework to PIC simulations of 2D relativistic kinetic
turbulence to demonstrate that a substantial amount of
entropy is produced despite nonthermal features in the
particle distribution. This rules out scenario (3) described in
Sec. I. At a glance, this appears to limit the direct
application of the Casimir invariants to constrain the form
of the nonthermal particle distribution after turbulent
particle energization. However, it opens up the possibility
of using maximum-entropy principles to explain certain
aspects of nonthermal distributions, which will be explored
in future work. We also foresee that measurements of the
Casimir momenta may lead to a better understanding of the
kinetic processes responsible for irreversible energy dis-
sipation by rigorously characterizing the competition
between entropy production and entropy conservation. In
particular, the Casimir momenta measured in local sub-
domains may serve as a proxy for identifying the spatial
structures responsible for irreversible dissipation. In future
work, it is desirable to perform a more comprehensive
numerical analysis by studying the spatial structure and
statistics of the Casimir momenta in more detail and in 3D
geometry.
An important theoretical question is whether the anoma-

lous entropy production observed in our turbulence sim-
ulation is due to phase mixing or due to a nonlinear entropy
cascade. Broadly speaking, the former allows an increase of
entropy at coarse scales by accumulating structure at finer
scales, as described by scenario (2) in Sec. I, while the latter
forms singularities that enable collisional entropy produc-
tion via scenario (1). The neutral shear flow (described in
Sec. IVA) reveals that entropy production from pure phase
mixing of counterstreaming flows has only a limited
contribution to entropy production. The phase mixing of
density fluctuations may also contribute to entropy pro-
duction (as described in Appendix C); however, this
channel is likely subdominant for incompressible driving
(and B0 oriented out of the 2D domain). Given these
considerations, it is reasonable to surmise that a significant
contribution to the anomalous entropy production in
turbulence comes from the entropy cascade, which is
responsible for the thermal heating of the distribution at
low energies. The fact that growth rates of the Casimir
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momenta are nearly identical when considering simulations
with varying coarse-graining scales (as shown in
Appendix B) and system sizes may be viewed as further
support for this scenario. However, we again emphasize
that scenarios (1) and (2) may be difficult (if not impos-
sible) to distinguish if both processes persist to fine
subkinetic scales. In future work, it may be useful to
consider PIC simulations with explicit collisions in order to
control and diagnose directly the contribution of scenario
(1). It will also need to be demonstrated whether our
findings extend to other parameter regimes (such as low or
high β) and to 3D geometry, where parallel phase mixing
might be enhanced due to spatial variability along the
global guide field.
The Casimir momenta derived in this paper may be

useful for characterizing local heating in weakly collisional
plasmas such as the solar wind and Earth’s magnetosphere,
where high-quality information of the particle momentum
distribution is available from in situ spacecraft measure-
ments. Indeed, recent work has compared various energy-
based and distribution-based measures of irreversible
dissipation and highlighted the need for more rigorous
methods [53]. The Casimir momenta provide one such
distribution-based measure, which may have some con-
ceptual advantages over other measures such as the BG
entropy.
The Casimir momenta may be applied to better under-

stand dissipative plasma processes other than turbulence.
An obvious candidate for this is magnetic reconnection.
Recent studies have applied numerical simulations to study
the reversibility of magnetic reconnection and suggested
that it may be reversible for a sufficiently strong guide field
(e.g., Refs. [54,55]). Likewise, there is numerical evidence
for the BG entropy being conserved to high precision in
PIC simulations [21]. If so, the Casimir momenta may
provide a useful constraint on reduced modeling of the
evolved plasma distribution.
The theoretical framework presented in this paper (based

on dimensional representations of generalized entropy)
may be relevant for a range of statistical mechanical
problems outside of plasma physics. One example is in
galactic dynamics, where stellar distribution functions are
modeled via the gravitational Vlasov-Poisson equation.
Previous theoretical works have suggested using Casimir
invariants as a basis for generalized statistics (see, e.g.,
Refs. [56–58]), whereas numerical studies of N-body
systems have mainly focused on characterizing anomalous
BG entropy production rates and mechanisms (e.g.,
Refs. [59–61]); Casimir momenta (or related dimensional
invariants) may provide a method for bridging the two.
Recent analytical work has also proposed extensions of
generalized statistics to plasmas [62] and other collisionless
systems with long-range interactions (e.g., dark matter)
[63], which have yet to be tested by numerical simulations.
Future work will assess the applicability of our ideas to

these various problems. The possibility of using the
Casimir momenta as a basis for generalized statistics is
further studied in a follow-up paper to this work [64],
which applies maximum-entropy principles to derive
power-law nonthermal distributions from the Casimir
momenta.
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APPENDIX A: EXAMPLE OF A UNIFORM
ENTROPY-CONSERVING DISTRIBUTION

It may be helpful for the reader to consider an example of
a distribution that systematically changes its shape while
conserving all of the Casimir invariants. For this purpose,
consider an initially uniform plasma with an isotropic
distribution f0ðpÞ. Suppose that energy is injected into
the plasma in a way such that the plasma ultimately remains
uniform (perhaps after a transient period) but an anisotropy
and nonthermal population are produced (the details of the
force F required to accomplish this will not be considered).
Assume that the anisotropy is cylindrically symmetric
about pz (which may be, e.g., the direction of the back-
ground magnetic field). In this case, an entropy-conserving
solution is given by

fðx; p; tÞ ¼ f0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ap2⊥ þ p2
z=a2

q �
; ðA1Þ

where p2⊥ ¼ p2
x þ p2

y and aðtÞ is a rescaling factor such that
að0Þ ¼ 1, determined by the amount of energy injected
(i.e., details of F and duration). The Casimir invariants
[Eq. (2)] are conserved since

CgðfÞ ¼
2π

N

Z
d3xdp⊥dpzp⊥g

�
f0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ap2⊥ þ p2
z=a2

q ��

¼ 2π

N

Z
d3xdp0⊥dp0

zp0⊥g
�
f0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p0⊥2 þ p0
z
2

q ��
¼ Cgðf0Þ; ðA2Þ
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where we defined p0⊥ ¼ a1=2p⊥ and p0
z ¼ pz=a. In this

solution, the plasma effectively cools in the perpendicular
direction and heats in the parallel direction if a > 1, and
vice versa if a < 1. The resulting anisotropy scales with the
amount of injected energy. If f0 is a relativistic Maxwell-
Jüttner, i.e., f0 ∝ exp ð−p=p0Þ where p0 is the initial
thermal momentum, the resulting energy distribution will
be highly nonthermal (i.e., a hard power law, with an extent
determined by a). Although this example is very idealized,
it demonstrates that the Casimir invariants (and thus
entropy) can be conserved at macroscopic scales by simple
distributions, in principle.

APPENDIX B: DEPENDENCE ON BIN SIZE

In this section, we present some results from our
convergence study of the Casimir momenta pc;χ with
respect to distribution bin size in the spatial dimension,
Δxbin. We perform PIC simulations that are identical to the
neutral shear flow from Sec. IVA, parallel shear flow from
Sec. IV B, perpendicular shear flow from Sec. IV C, and

turbulent flow from Sec. V, except that Δxbin is varied from
the fiducial value (Δxbin ¼ L=32 for the laminar flows and
Δxbin ¼ L=64 for the turbulent flow) while the number of
macroparticles per bin is held fixed. All simulations are
well converged with respect to the number of particles per
cell. In Fig. 7, we show the relative change in the Casimir
momenta, Δpc;χðtÞ=pc;χð0Þ, for χ ∈ f1=3; 3g and varying
coarse-graining scale Δxbin. We also show the correspond-
ing quantity computed from the global distribution (marked
Δxbin ¼ L) with the fiducial number of macroparticles
per cell.
For the neutral shear flow (top-left panel), we take

Δxbin ∈ fL=32; L=16; L=8g; the cases with Δxbin ≤ L=16
show no significant dependence on Δxbin. For the parallel
shear flow (top-right panel), we take Δxbin ∈ fL=64; L=
32; L=16g; this case does not exhibit any signs of conver-
gence with Δxbin, which is consistent with pc;χ being
perfectly conserved in the fine-grained limit. For the
perpendicular shear flow (bottom-left panel), we take
Δxbin ∈ fL=64; L=32; L=16g and find that results are essen-
tially converged when Δxbin ≤ L=32. Finally, for the

FIG. 7. Change of the Casimir momenta Δpc;χðtÞ relative to the initial value pc;χð0Þ for χ ¼ 1=3 (red) and χ ¼ 3 (blue), with varying
coarse-graining levels (indicated by line styles in the legend, including the global distribution indicated by Δxbin ¼ L). The panels
correspond to the neutral shear flow from Sec. IVA (top left), parallel shear flow from Sec. IV B (top right), perpendicular shear flow
from Sec. IV C (bottom left), and turbulent flow from Sec. V (bottom right). For comparison, the relative change in the average
momentum Δhpi=p0 is also shown (black dashed line).
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turbulence case, we take Δxbin ∈ fL=64; L=32; L=16g and
find that results are converged when Δxbin ≤ L=32. The
results indicate that the asymptotic/converged Δpc;χðtÞ=
pc;χð0Þ is relatively small in the laminar cases but large in
the turbulence case. One notable observation is that for the
neutral shear flow and turbulence cases, Δpc;χðtÞ=pc;χð0Þ
appears to converge faster for χ ¼ 1=3 compared to χ ¼ 3.
Finally, we show that the results are insensitive to the

system size for the turbulence case. In Fig. 8, we compare
Δpc;χðtÞ=pc;χð0Þ (with χ ∈ f1=3; 3g) for the fiducial
(L=2πρe ≈ 109, Δxbin ¼ L=64) turbulence simulation with
two twice-smaller (L=2πρe ≈ 54) cases that have Δxbin ¼
L=64 andΔxbin ¼ L=32. The similarity of these three cases
supports the statements made in Sec. V B.

APPENDIX C: DAMPING OF DENSITY
PERTURBATION

The collisionless damping of a density perturbation is one
of the simplest examples of coarse-grained entropy produc-
tion via phase mixing. In this situation, there is no energy
injected into the particles, so the global particle distribution is
preserved during the decay and the average particle momen-
tum is fixed to the initial value, hpiðtÞ ¼ p0. Nevertheless,
the Casimir momenta measured from the coarse-grained
distribution experiencegrowthdue to thedevelopment of fine
structure in the local distribution. In this section, we
demonstrate that this growth is small compared to that
observed in the turbulence simulation of Sec. V.
Consider a pair plasma immersed in a uniform magnetic

field B0 ¼ B0x̂, with a density perturbation δnðxÞ that has

spatial variation only along B0. We assume an initial
distribution (for each species) of the form f0ðx; pÞ ¼
½1þ δn0ðxÞ=n0�fgðpÞ, where n0 is the mean number
density and fgðpÞ is the global momentum distribution,
taken to be isotropic. The Vlasov equation for either species
reduces to an advection equation ∂tf þ vx∂xf ¼ 0 (exploit-
ing gyrosymmetry and species mass symmetry), which has
a solution

fðx; p; tÞ ¼ f0ðx − vxt; pÞ
¼ ½1þ δn0ðx − vxtÞ=n0�fgðpÞ: ðC1Þ

A similar solution would be obtained for a density
fluctuation in a neutral collisionless gas. Equation (C1)
indicates that the distribution at each value of vx is simply
advected by that velocity. Over long times, the initial
fluctuation is sheared apart in phase space; upon coarse
graining, the distribution approaches the uniform fgðpÞ at
asymptotically late times. If we assume perfect mixing,
then we can relate the Casimir momenta of the initial state
to those of the final state,

pc;χ;0 ¼ n1=30

�
1

N

Z
d3xd3pfχ0

�
−1=3ðχ−1Þ

¼ n1=30

�
1

N

Z
d3x

�
1þ δn0

n0

�
χ
Z

d3pfχg

�
−1=3ðχ−1Þ

¼
�	�

1þ δn0
n0

�
χ

�

−1=3ðχ−1Þ
pc;χ;∞; ðC2Þ

where brackets indicate a spatial average and pc;χ;∞ are the
asymptotic Casimir momenta computed from fg. Thus, the

FIG. 8. Change of the Casimir momenta Δpc;χðtÞ relative to the
initial value pc;χð0Þ for χ ¼ 1=3 (red) and χ ¼ 3 (blue), for the
fiducial (L=2πρe ≈ 109, Δxbin ¼ L=64) turbulence simulation
(solid line), a similar case with L=2πρe ≈ 54;Δxbin ¼ L=64
(dotted line), and a similar case with L=2πρe ≈ 54;Δxbin ¼
L=32 (dash-dotted line). For comparison, the relative change
in the average momentum Δhpi=p0 is also shown (black
dashed line).

FIG. 9. Change of the Casimir momenta Δpc;χðtÞ relative to the
initial value pc;χð0Þ (from the local coarse-grained distribution)
measured for the decay of a density fluctuation; varying χ values
are indicated by colors in the legend. For reference, the
asymptotic limit of Δpc;χðtÞ=pc;χð0Þ → 21=3 − 1 from phase
mixing is indicated by the dashed line.
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phase-mixed final state is of higher entropy, pc;χ;∞ > pc;χ;0,
as long as the distribution is coarse grained at any level
below the initial fluctuation scale (regardless of the
presence or absence of collisions).
As a concrete example, consider a periodic domain that is

initially half empty (n ¼ 0) and half full (n ¼ 2n0), with the
profile nðxÞ ¼ 2n0Hðx − L=2Þ, where H is the Heaviside
step function. In this case, hð1þ δn0=n0Þχi ¼ 2χ−1, so
Eq. (C2) implies pc;χ;∞ ¼ 21=3pc;χ;0 for all χ. Thus, the
decay of the density fluctuation produces only a modest
increase of pc;χ , despite the high amplitude. To confirm that
the asymptotic value is reachedon a reasonable timescale,we
perform aPIC simulationwith this density profile and similar
parameters to the other laminar flow simulations in this work
(relativistic pair plasma in 2Ddomain, but no external driving
and a larger Δpbin by factor of 4). The resulting evolution of
pc;χ for several values of χ is shown in Fig. 9, confirming that
Δpc;χ=pc;χ;0 → 21=3 − 1 ≈ 0.26 (to a fair numerical accu-
racy) on the timescale of a few light crossing times.
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