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The mechanism of unconventional topological superconductivity (TSC) remains a long-standing issue.
We investigate the quantum phase diagram of the extended t-J-Jχ model including spin chiral interactions
on triangular lattice based on state-of-the-art density matrix renormalization group simulations. We identify
distinct classes of superconducting phases characterized by nonzero topological Chern numbers C ¼ 1 and
2 and a nematic d-wave superconducting phase with a zero Chern number. The TSC states are shown to
emerge from doping either a magnetic insulator or chiral spin liquid, which opens new opportunities for
experimental discovery. In addition, we further classify the C ¼ 2 class of TSC phases into an isotropic and
a nematic TSC phase and present evidence of continuous quantum phase transitions from the nematic TSC
phase to both isotropic TSC and nematic d-wave phases. These results provide new insight into the
mechanism of TSC with an emphasis on the role played by hole dynamics, which changes spin background
and drives a topological phase transition at a hole doping level around 3% upon doping a magnetic insulator
to enable the emergence of TSC.
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I. INTRODUCTION

There have been intensive studies of the canonical
models for strongly correlated systems, the two-dimen-
sional (2D) Hubbard and t-J models, and their generalized
versions since the discovery of high-Tc cuprate super-
conductivity (SC) [1–7]. At the strong coupling limit, these
models host different Mott insulating states varying from
magnetic insulators to spin liquids [8]. Understanding the
interplay of conventional orders, spin liquid physics, and
unconventional SC in doped Mott insulators is one of the
central challenges of condensed matter physics. A large
body of work on unconventional SC is connected to the
original proposal of the resonating valence bond theory [1]
that doping Mott insulators might naturally lead to SC
[2,5,6,9–11]. Lacking well-controlled analytical solutions
in 2D with strong couplings, unbiased numerical studies
play an important role in establishing the quantum phases
in such models. Along this direction, exciting progress has
been made in understanding the emergence of SC and its
interplay with spin fluctuations and charge stripes by

doping the antiferromagnetic Mott state on square lattice
based on extensive numerical simulations [12–23], which is
relevant to cuprate SC. In particular, more recent density
matrix renormalization group (DMRG) [24] studies have
established robust SC for extended t-J and Hubbard models
on square lattice with next-nearest-neighbor hoppings,
suggesting the importance of tuning hole dynamics to
enhance SC [15,21–23].
Mott insulating states on triangular lattice offer another

exciting playground and challenges for their distinct inter-
play between geometric frustrations, lattice rotational sym-
metry, andquantumfluctuations [7,11,25–40].On the experi-
mental side, the SC state observed in NaxCoO2 · yH2O
might be a dþ id-wave topological superconductivity
(TSC) state which breaks time-reversal symmetry [41,42].
More recently, different twisted transition metal dichalco-
genide (TMD) moiré systems have been discovered to be
quantum simulators of the Hubbard model [43,44], which
are promising systems hosting correlated insulators and
topological superconductors [45–47].
Theoretically, the Kalmeyer-Laughlin (KL) chiral spin

liquid (CSL) [48,49] has been identified among the phase
boundaries of different competing magnetic ordered states
[50–54] for frustrated spin systems or near the Mott
transition for the Hubbard model [36,37] on triangular
lattice. Whether doping a KL CSL can generally lead to the
TSC [11,32,34,48,49,55–57] remains an open question. A
recent theoretical study [11] suggests that doping a KL CSL
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may naturally lead to a chiral metal, while a topological
dþ id-wave SC represents a more nontrivial scenario
requiring the internal gauge flux to be adjusted with the
hole doping level. Indeed, unbiased numerical simulations
have found a possible chiral metal by doping the CSL
identified at half filling of the triangular Hubbard model
[34,36]. The nontrivial example of identifying the topo-
logical dþ id-wave SC by doping the KL CSL comes from
the study of the t-J-Jχ model [32] with strong three-spin
chiral interactions. The topological class of the observed
TSC state [32] characterized by a finite integer quantized
spin Chern number [58,59] and chiral Majorana edge
modes has not been revealed. Crucially, the driving
mechanism for the emergence of the TSC remains to be
identified, which may require extensive exploration in the
parameter space by tuning relevant hopping parameters and
interactions [32,53,54]. Given the fact that CSLs often
emerge near the boundaries between different magnetically
ordered states [53,54], related open questions naturally
arise including what the interplay is between TSC and
conventional orders or fluctuations and whether distinct
unconventional SC states can emerge by doping different
magnetically ordered states.
To address these open issues, we study the quantum

phase diagram and focus on the emergent unconventional
SC in the extended t-J-Jχ model on triangular lattice based
on large-scale DMRG simulations [24]. By tuning the
ratios of the next-nearest- and nearest-neighbor hoppings
(t2=t1) and Heisenberg spin couplings (J2=J1) in the
presence of three spin chiral interactions (Jχ) [32], we
identify different superconducting phases including distinct
dþ id-wave TSC phases that are characterized by nonzero
topological Chern numbers C ¼ 1 and 2 and a nematic SC
phase with a d-wave pairing symmetry breaking lattice
rotational symmetry and C ¼ 0. Furthermore, for weaker
Jχ the C ¼ 2 phases include isotropic and nematic TSC
phases with a continuous quantum phase transition between
them.We demonstrate that these topological and nematic d-
wave SC states have robust power-law-decaying pairing
correlations in the form of Luther-Emery liquid [60] on
wider cylinders, which may lead to different superconduct-
ing states in 2D. The TSC can be induced by either doping a
magnetically ordered state or CSL, which provides a new
opportunity for experimental discovery of unconventional
TSC. We also demonstrate the important role played by
hole dynamics, which can drive a topological phase
transition upon doping a 120° antiferromagnetic (AFM)
state at a hole doping level δ ≈ 3%, enabling the TSC to
emerge. Furthermore, nematic SC with C ¼ 0 can emerge
from either doping the CSL or magnetic ordered states [53],
suggesting the rich interplay between unconventional SC
and spin background.
The rest of the paper is organized as follows. In Sec. II,

we introduce the extended t-J-Jχ model on triangle lattice,
the DMRGmethod, and the topological characterization for

the SC states through spin flux insertion. Its quantum phase
diagram is presented in Sec. III, containing different TSC
phases and a nematic d-wave SC phase. We demonstrate
their distinct topological Chern numbers (Sec. III A),
the quasi-long-range order in SC pairing correlations
(Sec. III B), and the pairing symmetries (Sec. III C) to
characterize these phases. In Sec. IV, we focus on the
quantum phase transitions by tuning the ratios of t2=t1 and
J2=J1, with Sec. IVA showing the evolution of SC pairing
correlations, Sec. IV B addressing the nature of quantum
phase transitions among different phases, and Sec. IV C
showing the evolution of spin correlations. The summary
and discussions are presented in Sec. V.

II. MODEL AND METHOD

We study the extended t-J-Jχ model that is defined as

H ¼ −
X

fijg;σ
tijðĉ†i;σ ĉj;σ þ H:c:Þ þ

X

fijg
Jij

�
Ŝi · Ŝj −

1

4
n̂in̂j

�

þ Jχ
X

fijkg∈∇=Δ
Ŝi · ðŜj × ŜkÞ; ð1Þ

where ĉ†i;σ is the electron creation operator on site i with

spin index σ ¼ �1, Ŝi is the spin-1
2
operator, and n̂i ¼P

σ ĉ
þ
i;σ ĉi;σ is the electron number operator. We consider the

nearest-neighbor and the next-nearest-neighbor hoppings t1
and t2 as well as Heisenberg couplings J1 and J2,
supplemented by the three-spin chiral interactions Jχ on
every elementary triangle as illustrated in Fig. 1(a). The
chiral interaction can be generated from the Hubbard model
with an external magnetic field [32]. We set J1 ¼ 1 as the
unit of energy, t1 ¼ 3, J2=J1 ¼ ðt2=t1Þ2, and focus on the
regime of 0 < J2; Jχ ≤ 0.2 with hole doping level δ ≤ 1=8,
which is the optimal doping region for unconventional
SC [22,32].
To obtain the ground state of the Hamiltonian in Eq. (1),

we apply the DMRGmethod with Uð1Þ × SUð2Þ for charge
and spin symmetries [61] on cylinder systems with an open
boundary condition along the axis (ea or x-) direction and a
periodic boundary condition along the circumferential (eb
or y-) direction, as illustrated in Fig. 1(a). The number of
sites isN ¼ Lx × Ly, where Lx and Ly denote the lengths in
these two directions, respectively. The number of electrons
Ne is related to the doping levelNe=N ¼ 1 − δ. We keep up
to M ¼ 12 000 SU(2) spin multiplets [equivalent to about
m ¼ 36 000 U(1) states] with truncation error ϵ ∼ 10−6,
which leads to accurate results (see Supplemental Sec. II
[62] for details). We develop a topological characterization
for the SC states through the spin flux insertion by
adiabatically evolving the ground state as a function of a
twisted boundary phase θF based on the method established
for CSL and fractional quantum Hall systems [52,63]. The
flux adds a spin-dependent phase factor to the electron
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hoppings ĉ†i;σ ĉj;σ → eiσθF ĉ†i;σ ĉj;σ if j → i crossing the y
boundary from the top [see Fig. 1(a)] and similarly couples
to the spin flip terms [52]. In this type of calculation, SU(2)
symmetry is broken by the spin flux and we use Uð1Þ ×
Uð1Þ symmetries with bond dimensions up to m ¼ 8000
for accurate results due to the robustness of the topologi-
cally protected spin pumping (see Supplemental Sec. I [62]
for more details).

III. QUANTUM PHASE DIAGRAM

At half filling (with no doping δ ¼ 0), the Hamiltonian in
Eq. (1) reduces to the Heisenberg J1-J2-Jχ model [53]. In
the small J2 regime (J1 ¼ 1), the 120° AFM order survives
up to J2 ≈ 0.07 at Jχ ¼ 0, which smoothly extends to the

nonzero Jχ regime. The intermediate J2 regime is domi-
nated by the CSL, which separates from the AFM order by
the dash-dotted line as shown in Fig. 1(b) obtained from
Refs. [53,54]. Through extensive DMRG simulations of
topological Chern numbers and SC pairing correlations on
Ly ¼ 4–6 cylinders for hole-doped systems, we establish
a quantum phase diagram in the parameter space 0 <
J2; Jχ ≤ 0.2 for doping δ ¼ 1=12, with three distinct
classes of superconducting phases stabilized by small
J2; Jχ ≥ 0.01 [64] as shown in Fig. 1(b). These SC phases
are characterized by different topological spin Chern
numbers. At small J2, we find a topological chiral
dþ id-wave SC phase with spin Chern number C ¼ 1
(labeled as SC1) by doping the AFM (DAFM) state. In the
intermediate J2 regime, another class of topological dþ id-
wave SC phases emerges characterized by a quantized C ¼
2 (SC2), which can be induced by doping either the AFM
state or the CSL (DCSL) as illustrated in Fig. 1(b). The
SC2 class is further divided into an isotropic TSC phase
and a nematic TSC phase breaking rotational symmetry.
Interestingly, the nematic TSC state is an analog state of the
recently revealed nematic fractional quantum Hall effect
[65–68]. At larger J2, the SC phase has d-wave symmetry
with anisotropic pairing correlations breaking the lattice
rotational symmetry and C ¼ 0 (SC0) indicating a topo-
logically trivial SC phase. The SC0 phase belongs to the
same quantum phase as the nematic d-wave SC identified
for an extended t-J model [33] with time-reversal sym-
metry. The phase diagram is essentially the same for other
doping levels δ ¼ 1=24–1=8 with small shifts in phase

boundaries (e.g., at δ ¼ 1=8, ΔJð1Þ2c ≈ 0.01–0.02, where Jð1Þ2c
denotes the critical J2 between SC1 and SC2). We also find
that the previously revealed dþ id-wave SC state (at Jχ ¼
0.4 and J2 ¼ t2 ¼ 0.0) [32] has C ¼ 2 sitting near the
phase boundary of the SC2 phase.

A. Topological Chern number characterization
through flux insertion

The nonzero Chern number characterizes the topological
nature of the dþ id-wave superconductors [58,59], which
also identifies the number of chiral Majorana edge modes.
We determine the spin Chern number through the spin
pumping with inserting flux θF into the cylinder, as illus-
trated in Fig. 1(a). The net spin with nonzero Sz accumulates
near the boundaries of the cylinder as the flux adiabatically
increases, while the total Sz ¼ 0 for the ground state at
different θF. We use a small step for the increase of the flux
θF → θF þ ΔθF withΔθF ¼ 2π=16. A finite Chern number
[52] can be obtained from the total spin pumping C ¼
ΔQsj2π0 ¼ ðn↑ − n↓Þj2π0 measured at the left boundary at
θF ¼ 0 and 2π, where nσ is the accumulated charge near the
boundary with spin σ. We directly measure the pumped spin
for each θF from the reduced density matrix by calcula-
ting the sum Qs ¼

P
α λαðn↑;α − n↓;αÞ, where λα is the

FIG. 1. Quantum phase diagram. (a) Schematic illustration of
the extended t-J-Jχ model on triangle lattice with the nearest-
neighbor and the next-nearest-neighbor hoppings t1 and t2 and
Heisenberg exchange J1 and J2 interactions, as well as the three-
spin chiral interactions Jχ . The dashed lines indicate the periodic
boundary condition. (b) The quantum phase diagram obtained on
Ly ¼ 6 cylinders based on the Chern number simulations. For
0.01 ≤ J2=J1, Jχ=J1 ≤ 0.2, and doping level δ ¼ 1=12, we
identify distinct classes of SC phases labeled as SC1, SC2,
and SC0 from left to right characterized by their spin Chern
number C. The SC2 regime represents two phases: the isotropic
TSC (lighter red region) and nematic TSC (darker red region)
phases. Different symbols represent parameter points studied
with the DMRG methods. The triangles mark points presented in
the paper with the lower indices representing the indices of
figures. A scan of the Chern number, SC pairing symmetry, and
energy or entropy along the horizontal dashed line is used in
Figs. 2(c), 5(d), and 6, respectively. The main feature of the phase
diagram is essentially the same for other doping levels
δ ¼ 1=24–1=8.
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eigenvalue and α the eigenstate of the reduced densitymatrix
[63] and n↑;α (n↓;α) is the particle number of the α state with
up (down) spin. Because the inserted flux breaks SU(2)
symmetry, we use infinite DMRG with Uð1Þ × Uð1Þ sym-
metries with a large unit cell that is commensurate with the
doping level (see Supplemental Sec. I [62]).
We show examples of the flux insertion and the resulting

Chern numbers for systems with δ ¼ 1=12 in Fig. 2(a). For
three parameter points inside the SC2 phase on the Ly ¼ 6

system, the ΔQs increases almost linearly with θF, indicat-
ing uniform Berry curvature [69], and there is ΔQs ≈ 2.0
net spin pumped to the boundary after the threading of one
flux quantum (θF ¼ 0 → 2π). This corresponds to the
quantized Chern number C ¼ 2, which remains the same
on various Ly ¼ 4, 5, and 6 as shown in Fig. 2(b). The
pumping rate becomes more uniform with the increase of
Ly, indicating the increased robustness of the topological
quantization for larger systems. In contrast, at J2 ¼
0.01; Jχ ¼ 0.05 inside the SC1 phase, we find no linear
relation between ΔQs and θF, which indicates the

nonuniform Berry curvature versus boundary phase θF
[69]. The measured ΔQs ≈ 0.983, indicating around one
net spin pumped with the insertion of one flux quantum and
C ¼ 1. The Chern number becomes nonquantized extended
to the J2 ¼ 0 limit as shown in Fig. 2(c), signaling gapless
low-energy excitations. We believe the large variance of the
Berry curvature versus θF for the SC1 phase may indicate a
topological state with gapless excitations at small J2
consistent with an early proposal for a topological super-
conducting state for the NaxCoO2 · yH2O system based on
variational simulations [42]. In the SC0 phase at larger
J2 ¼ Jχ ¼ 0.2, we find ΔQs ≈ −0.01, which confirms
C ¼ 0 for a topologically trivial SC state. Thus, the phase
transitions between the three phases can be characterized
by jumps of topological Chern numberCwith varying J2 at
a fixed Jχ ¼ 0.05 as illustrated in Fig. 2(c).
Since the undoped (δ ¼ 0) parent state of the SC2 phase

contains both the AFM state and CSL, a natural question is
how the Chern number evolves with the doping level. As
demonstrated in Fig. 2(d), for two points in the DAFM
regime at J2 ¼ 0.04, 0.05 and Jχ ¼ 0.05, C jumps from
0 to 2 at a small doping of δ ¼ 1=36 and remains quantized
at C ¼ 2 for larger δ, which demonstrates a doping-induced
topological quantum phase transition. On the contrary, in
the DCSL regime at J2 ¼ Jχ ¼ 0.1, C ¼ 2 for δ ¼ 0–1=8,
which shows a robust Chern number quantization from the
parent CSL to the topological dþ id-wave SC. This is
consistent with the fact that the KL CSL is a bosonic
ν ¼ 1=2 fractional quantum Hall state [48,49,58], which is
equivalent to the C ¼ 2 topological order for fermionic
systems where the phase space is enlarged by a factor of 4
in the definition of the Chern number [70] with a doubled
flux period for the Hamiltonian to be invariant. The exact
quantization C ¼ 2 of the SC2 phase indicates that doped
holes can indeed adjust the internal flux with the hole
doping level to realize a bosonic integer quantum Hall
effect for holons [11].

B. Quasi-long-range order in superconducting
pairing correlations

To explore the superconducting nature of the system, we
focus on the dominant spin singlet pairing correlations
PαβðrÞ ¼ hΔ̂†

αðr0ÞΔ̂βðr0 þ rÞi, where the pairing operator

Δ̂αðrÞ ¼ ðĉr↑ĉrþeα↓ − ĉr↓ĉrþeα↑Þ=
ffiffiffi
2

p
with α ¼ a, b, c,

representing different nearest-neighboring bonds as illus-
trated in Fig. 1(a).
We first give an example of the SC pairing correlations in

the SC2 regime as shown in Fig. 3(a), where the magnitude
of pairing correlations at longer distance for two b bonds
(along the y direction) jPbbðrÞj increases gradually as the
DMRG bond dimension increases from M ¼ 6000 to
12 000 at J2 ¼ 0.1; Jχ ¼ 0.05 on the N ¼ 36 × 6 system.
Because the DMRG represents the ground state in the
matrix product form [71] with finite bond dimensions, the

(a) (b)

(c) (d)

FIG. 2. The pumped spin by inserting flux and spin Chern
number. (a) The pumped spin ΔQs with adiabatically inserted
flux θF is shown for different SC phases on the Ly ¼ 6 cylinder.
For the three parameter points in the SC2 phase, the measured
spin pumping after inserting one flux quantum ΔQsj2π0 ¼ 1.993,
1.983, and 1.990, respectively, indicating that the error bar is
around 1% from the exactly quantized value ΔQsj2π0 ¼ 2 for
different systems. (b) ΔQs versus θF for J2 ¼ Jχ ¼ 0.05 inside
SC2 phase on Ly ¼ 4, 5, 6 cylinders. (c) The evolution of Chern
number C with varying J2 at Jχ ¼ 0.05 on Ly ¼ 6. C ¼ ΔQsj2π0
is obtained after inserting one flux quantum θF ¼ 0 → 2π. SC1-

SC2 and SC2-SC0 phase transitions take place at J2 ¼ Jð1Þ2c and

Jð2Þ2c , respectively, where the Chern number jumps. The doping
level is δ ¼ 1=12 for (a)–(c). (d) C versus δ for parameter points
with different undoped parent states (e.g., DAFM or DCSL)
on Ly ¼ 6.
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scaling to M → ∞ is needed to identify the true nature of
long-distance correlations for wider cylinders. Using a
second-order polynomial fitting of 1=M, we find that the
extrapolated jPbbðrÞj shows a power-law decay with
distance jPbbðrÞj ∼ r−KSC , with the Luttinger exponent
KSC ≈ 0.76. Similar results are obtained for correlations
with other bonds and also for different Lx or Ly ¼ 4

systems (see Supplemental Sec. III A [62]). KSC ≲ 1 holds
for the SC2 phase, indicating a strong divergent SC
susceptibility in the zero-temperature limit [33].
We then turn to the density-density DðrÞ ¼ hn̂r0 n̂r0þri −

hn̂r0ihn̂r0þri and single-particle GðrÞ ¼ P
σhĉ†r0;σ ĉr0þr;σi

correlations. As shown in Fig. 3(b), the jDðrÞj decays with
a power-law relation at long distance using extrapolated
data. The Luttinger exponent for density-density correla-
tions is KCDW ≈ 1.50, much larger than KSC. Both jPbbðrÞj
and jDðrÞj show similar spatial oscillations consistent
with the electron density oscillation in real space (see

Supplemental Sec. V [62]). Similarly, the single-particle
Green function jGðrÞj can also be fit into power-law
behavior [Fig. 3(b)]. Interestingly, we identify a crossover
for jGðrÞj with the increase of J2. At smaller J2 ¼ 0.05 in
the SC2 regime, we observe an exponential decay in jGðrÞj
with a short correlation length ξG ≈ 2.41 which is con-
sistent with the gapped isotropic TSC state as shown in
Fig. 3(c). With the increase of J2, the correlation length for
jGðrÞj increases to ξG ≈ 8.36, larger than Ly, which could
also be fitted by a power-law decay [as shown in Fig. 3(b)]
at J2 ¼ 0.1 for fixed Jχ ¼ 0.05 on different systems N ¼
24 × 6 and 36 × 6. The evolution of the single-particle
correlation length is a signature of the evolution of the
quasiparticle excitation gap, which gradually reduces with
the increase of the J2 approaching the quantum phase
transition from a gapped SC state to a nodal nematic SC
state as we address further in Sec. IV. In comparison, the
spin-spin correlations remain exponentially decay with a
short correlation length ξS ≈ 1.53 (2.06) as shown in the
main panel (inset) in Fig. 3(d) at J2 ¼ 0.1 (0.05), indicating
a finite spin gap which protects the SC state. These results
provide compelling evidence for the robust SC pairing
correlations as dominant correlations for SC phases with
C ¼ 2, which are the quasi-1D descendent states of 2D
topological superconductors.
Now we discuss the features of various correlations at

small J2, where the SC1 phase is identified with the Chern
number C ¼ 1. The SC pairing correlations are shown in
Fig. 4(a), where the magnitude of the SC pairing correla-
tions jPbbðrÞj show power-law behavior with the Luttinger
exponents KSC ≈ 1.09 and 0.59 for J2 ¼ 0 and 0.01,
respectively, obtained with a fixed Jχ ¼ 0.05 for the N ¼
48 × 4 system. In comparison, as shown in Fig. 4(b), the
jDðrÞj decays with a power-law relation with larger
exponents (KCDW ≈ 1.56 and 1.39), while the jGðrÞj
[Fig. 4(c)] and jSðrÞj [Fig. 4(d)] both decay exponentially
with small correlation lengths. These results indicate that
the SC1 phase has dominant SC correlations observed for
Ly ¼ 4 cylinders. We also confirm power-law SC correla-
tions for a wider system of N ¼ 20 × 6 at J2 ¼ 0.01; Jχ ¼
0.05 with good numerical convergence for this possible
gapless phase. Interestingly, there are stronger spin corre-
lations for the Ly ¼ 6 system, indicating a vanishing or
very small spin gap (see Supplemental Sec. III D [62]),
which is consistent with the fact that the SC1 phase has a
spin gap-closing transition from the C ¼ 2 phase.
We further confirm that the SC0 phase has robust

quasi-long-range SC pairing correlations with a Luttinger
exponent KSC ≈ 1.10 at J2 ¼ Jχ ¼ 0.2 dominating the
density-density correlations. This phase can be smoothly
connected to the d-wave phase identified by doping the
J1 − J2 model [33] with larger J2 (see Supplemental
Sec. III C [62] for more details).
There are other competing quantum phases and addi-

tional quantum phase transitions as we reduce the three spin

(a) (b)

(c) (d)

FIG. 3. Pairing and other correlations in SC2. (a) The SC
pairing correlations for different bond dimensions M at J2 ¼
0.1; Jχ ¼ 0.05 for the N ¼ 36 × 6 system. r is chosen along the x
direction r ¼ ðr; 0Þ, and the reference point is r0 ¼ ðLx=4; y0Þ to
avoid the boundary effect (the results are independent of y0
because of the translational invariant along the y direction). The
straight-line fit in the log-log plot of the extrapolated data in the
infinite M limit follows a power-law behavior. (b) The density-
density correlation jDðrÞj and single-particle correlation jGðrÞj
which are fit by the power-law relation for N ¼ 24 × 6 and
36 × 6, at J2 ¼ 0.1; Jχ ¼ 0.05. (c) The comparison of jGðrÞj at
J2 ¼ 0.05 and 0.1 with the same Jχ ¼ 0.05, which demonstrates
the fast growing of the correlation length ξG with the increase of
J2. (d) The exponential decay of the spin correlations jSðrÞj in the
main figure and its inset for the same parameters as in (c), where
r > 15 data points are ignored in the fitting, because their values
are comparable to the numerical truncation error. The doping
level is δ ¼ 1=12. The obtained fitting exponents or correlation
lengths have error bars around 0.02, except for the one in the inset
in (d), which is around 0.06.
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chiral interactions to zero in the small J2 regime. For
example, at J2 ¼ Jχ ¼ 0, the ground state is dominated by
charge stripe and spin fluctuations with suppressed pairing
correlations. Furthermore, additional results for Ly ¼ 4

with small J2 for a possible pairing density wave SC phase
[38] and a d-wave SC phase coexisting with phase
separation are shown in Supplemental Sec. III F [62].
These results provide further support that a small but finite
chiral interaction plays an important role in stabilizing the
topological SC phases for the systems we study.

C. Pairing symmetry for topological and
nematic SC phases

The SC pairing symmetry can be identified by the phases
of the pairing correlations for different bonds. To extract the
phase, we rewrite the SC pairing correlation as
PαβðrÞ ¼ jPαβðrÞjeiϕαβðrÞ, where ϕαβðrÞ is the phase for
the correlation, and the pairing order parameter as
ΔαðrÞ ¼ jΔαðrÞjeiθαðrÞ. Using the definition of the pairing
correlations, we obtain θαβðrÞ ¼ θαðrÞ − θβðrÞ ¼ ϕααðrÞ −
ϕαβðrÞ as the relative phases of the pairing order parameters

for different nearest-neighbor bonds; see illustrations in the
inset in Fig. 5(a). The pairing symmetry for different SC
states is illustrated in Fig. 5(a) on N ¼ 36 × 6 systems. At
J2 ¼ Jχ ¼ 0.05 in the SC2 regime, θαβðrÞ remains almost
independent of r, and the phases for order parameters are
nearly quantized to ½θbb; θbc; θba� ≈ ½0;−0.64π; 0.65π�≈
½0;− 2

3
π; 2

3
π�, which represents an isotropic dþ id wave

with C3 rotational symmetry. The angles θba and θbc are
closer to �2π=3 on wider system Ly ¼ 6 compared with
Ly ¼ 4 results (with Lx ¼ 48) as shown in Figs. 5(a) and
5(b). At larger J2 ¼ 0.15 with Jχ ¼ 0.05 in the SC0 phase,
these phases become ½θbb; θbc; θba� ≈ ½0;−0.93π; 0.93π�≈
½0;−π; π�, which are nearly independent of Ly ¼ 4 or 6,
suggesting a d-wave SC state consistent with the Chern
number C ¼ 0 for this phase.
On the other hand, the relative strength of the SC

correlations for different bonds also evolves with the
increase of J2. As shown in Fig. 5(c), jPbaðrÞ=PbbðrÞj
and jPbcðrÞ=PbbðrÞj have spatial oscillations and remain
almost a constant average as r increases, which suggests a
power-law-decaying behavior of jPbaðrÞj and jPbcðrÞj with
the same exponents KSC. At smaller J2 ¼ 0.05, the ratios
jPbaðrÞ=PbbðrÞj and jPbcðrÞ=PbbðrÞj are close to 1.0, while
they drop to around 0.46 observed at J2 ¼ 0.1, keeping the

(a) (b)

(d)(c)

FIG. 5. Transition from the dþ id-wave SC2 phases to SC0
phase. (a) The spatial dependence of relative phases for SC order
parameters for various J2 on the Ly ¼ 6 (Lx ¼ 36) system. r is
chosen along the x direction r ¼ ðr; 0Þ. (b) The relative phases for
SC order parameters on the Ly ¼ 4 (Lx ¼ 48) system. (c) The
ratio of the magnitudes of different SC correlations. The dashed
line indicates the average over distances. (d) The spatial average
values of the relative phases of SC order parameters and the ratios
of magnitudes of different SC correlations for various J2. All
results are obtained at Jχ ¼ 0.05 with bond dimension M ¼
10 000 (M ¼ 8000) on Ly ¼ 6 (Ly ¼ 4) systems. The doping
level is δ ¼ 1=12.

(a) (b)

(c) (d)

FIG. 4. Pairing and other correlations at Jχ ¼ 0.05 for smaller
J2 on Ly ¼ 4. The results are converged with a large bond
dimension M ¼ 10 000. (a) The SC pairing correlations. r is
chosen along the x direction r ¼ ðr; 0Þ, and the reference point is
r0 ¼ ðLx=4; Ly=2Þ to avoid the boundary effect. The straight-line
fit in the log-log plot follows a power-law behavior, with
exponents of 1.09 and 0.59 for J2 ¼ 0 and 0.01, respectively.
(b) The density-density correlations jDðrÞj which are fit by a
power-law relation, with exponents of 1.56 and 1.39 for J2 ¼ 0
and 0.01, respectively. (c) The single-particle correlations jGðrÞj
which are fit by an exponential decay with correlation lengths of
2.96 and 2.41 for J2 ¼ 0 and 0.01, respectively. (d) The spin
correlations jSðrÞj which are fit by an exponential decay with
correlation lengths of 2.94 and 2.30 for J2 ¼ 0 and 0.01,
respectively. The doping level is δ ¼ 1=12. The obtained fitting
exponents or correlation lengths have error bars around 0.03.
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same Jχ ¼ 0.05. We further show an example of the SC1
phase at J2 ¼ 0.01 and Jχ ¼ 0.05 on Ly ¼ 4 in Fig. 5(b)
with nearly quantized phases ½θbb; θbc; θba� ≈ ½0;−0.64π;
0.64π� ≈ ½0;− 2

3
π; 2

3
π�. From mean-field theory, the iso-

tropic SC1 state with C ¼ 1 has nodal quasiparticle
excitations [42], and we leave the full nature of this state
to future study due to the increased difficulty of converging
the SC correlations for this critical phase on Ly ¼ 6.

IV. SYMMETRY EVOLUTION AND
PHASE TRANSITIONS

A. Evolution of the pairing order parameters

Now we focus on the symmetry evolution of the pairing
order parameters from SC2 phases to SC0 phase. As shown
in Fig. 5(d), the −θbc and θba averaged over the middle 24
columns of the system with Lx ¼ 36 increase monotoni-
cally from 2

3
π toward π as J2 increases. At the same time,

we find direct evidence of the increased nematicity as J2
increases, which is identified by the ratio of the magnitudes
of SC pairing correlations for different bonds. As shown
in Fig. 5(d), the spatial averaged ratios jPba=Pbbj and
jPbc=Pbbj decrease monotonically from 1 to around 0.4 at
the larger J2 side. A transition from an isotropic TSC phase
to a nematic SC phase takes place inside the SC2 regime as
indicated by the arrow in Fig. 5(d) pointing to a critical J2c0,
where both the jPba=Pbbj and jPbc=Pbbj decrease quickly
to the near-saturated value. This feature revealed by the
nematicity evolution shows a transition inside the SC2
regime, indicating that a nematic TSC phase emerges for

J2c0 < J2 < Jð2Þ2c . As shown in Fig. 1(b), we identify a finite
regime with increased nematicity in the SC pairing corre-
lations, while its topological nature remains the same with
the Chern number C ¼ 2, which is consistent with a
nematic TSC state emerging within the C ¼ 2 class of
SC phases. The phase boundary is determined by the quick
increase of θba to around 5

6
π. The emergent nematic TSC

state is an analog state to the nematic fractional quantum
Hall state with gapless collective excitations [65–68]. With
further increase of J2, the topological quantum phase
transition takes place where the nematic d-wave SC state
is recovered in the SC0 phase.

B. Nature of quantum phase transitions

We now explore the nature of quantum phase transitions
by following the energy and entanglement entropy evolu-
tion along the parameter line of Jχ ¼ 0.05. To calculate the
entanglement entropy S, the cylinder is cut into two equal
halves, and S is obtained from the eigenvalues λi of the
reduced density matrix S ¼ −

P
i λi logðλiÞ. As shown in

Fig. 6(a), the energy per site E0 shows a small kink, and the

entropy S shows a large jump at Jð1Þ2c ≈ 0.021, which is very

close to the transition point between C ¼ 1 and C ¼ 2
phases, indicating a first-order transition between SC1 and
the isotropic TSC (SC2) phase. The first-order transition is
further revealed by −dE0=dJ2 given in Fig. 6(b), which

shows discontinuity around Jð1Þ2c . Two other transitions from
the isotropic TSC to nematic TSC and from nematic TSC
to d-wave SC are continuous transitions with smooth
evolution of E0 and S [Fig. 6(a)] and their derivatives
[Figs. 6(c)–6(f)]. Interestingly, the transition point between
the isotropic TSC and nematic TSC is indicated by the peak
in −dS=dJ2, which is very close to the one identified by the
nematicity in SC pairing correlations. The transition
between nematic TSC and nematic d-wave SC may be
identified by the peak in d2S=dJ22, which is shifted from the
one identified by the Chern number with flux insertion into
a very long cylinder studied in the infinite DMRG. This
may be explained by the finite size effect for identifying
higher-order transitions where the peaks in entropy usually
shift with system lengths [72,73].

(a) (b)

(c) (d)

(e) (f)

FIG. 6. The energy per site E0 and entanglement entropy S for
various J2 obtained at fixed Jχ ¼ 0.05 on a N ¼ 16 × 6 cylinder.

(a) The energy and entanglement entropy where Jð1Þ2c is identified
from the small jump in S. (b) The first-order derivative of E0 with

respect to J2 where Jð1Þ2c is identified at the discontinuity point.
(c) The first-order derivative of E0 for larger J2. (d) The second-
order derivative of E0 for larger J2. (e) The first-order derivative
of S where J2c0 is identified as the peak. (f) The second-order

derivative of S where Jð2Þ2c is identified as the peak. The results are
obtained with M ¼ 10 000. The doping level is δ ¼ 1=12.
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C. Evolution of the spin correlations

The evolution of spin correlations can be studied
through the spin structure factor defined as SðkÞ ¼
ð1=N0ÞPi;j hSi · Sjieik·ðri−rjÞ for a system with N ¼
36 × 6, where i and j are summed over the middle
N0 ¼ 2Ly × Ly sites to avoid boundary effects. As shown
in Fig. 7(a), SðkÞ has strong peaks at the K points
representing strong 120° AFM fluctuations at short dis-
tances for J2 ¼ 0.01; Jχ ¼ 0.05 inside the SC1 phase,
while the spin correlations exponentially decay at long
distance for all three classes of SC phases (see
Supplemental Sec. III E [62] for details). With a larger
J2 ¼ 0.05 in the SC2 phase, SðkÞ becomes nearly feature-
less with some intensity around the Brillouin zone
boundaries as shown in Figs. 7(b) and 7(c), which is
consistent with an isotropic dþ id-wave TSC state. As J2
further increases to 0.1, moderate peaks appear in SðkÞ
at the M points with nematicity as seen in Figs. 7(d)
and 7(e), where the SC pairing order parameters also
become anisotropic [Fig. 5(d)]. Further increasing J2 into
the SC0 phase, the spin fluctuations appear as brighter
peaks in SðkÞ at the M points, with stronger stripe
fluctuations as shown in Fig. 7(f). The emerging picture
is that the spin nematicity tuned by hole dynamics (see
more details in Supplemental Sec. IV [62]) and spin
interactions with the increase of J2 (and t2) are the
determining forces in driving the quantum phase transi-
tions between different SC phases.

V. SUMMARY AND DISCUSSION

We have extensively studied the ground state of the
lightly doped extended t-J-Jχ model on triangular lattice
based on the state-of-the-art DMRGmethod and uncovered
a global picture of emergent unconventional superconduc-
tivity in systems with chiral interactions that could be
induced by an external magnetic field [32]. We identify
three classes of superconducting phases (SC1, SC2, and
SC0) characterized by different topological Chern numbers
and pairing symmetries. As next-nearest-neighbor hopping
t2 and the related spin coupling J2 increase, the critical SC1
state with Chern number C ¼ 1 has a transition to the
isotropic TSC phase, which is a gapped topological dþ id-
wave superconductor with C ¼ 2. With further increase of
t2 and J2, the isotropic TSC state has a transition to a
nematic TSC state in the smaller Jχ regime, which is an
analogy of the nematic fractional quantum Hall state with
broken rotational symmetry [66–68]. A topological phase
transition from the C ¼ 2 TSC states to the nematic d-wave
SC0 state with C ¼ 0 occurs for larger t2 and J2. The hole
dynamics tuned by next-nearest-neighboring hoppings and
spin couplings drives the topological quantum phase
transitions between different SC phases, and a small chiral
interaction Jχ ≈ 0.01 stabilizes the SC states.
The TSC is a long-sought state, and it was conjectured

that such a SC state may be realized by doping a CSL
[48,49] if it can win over other competing states varying
from a chiral metal [11,34] to a fractionalized Wigner
crystal [57,74]. Despite intensive efforts in searching for
such a TSC state in strongly correlated systems during the
past decades, there is only one established example by
unbiased numerical studies of the t-J-Jχ model [32]. The
identified TSC state also showed some instability on a
wider cylinder (Ly ¼ 6) [32] before adding next-nearest-
neighboring hopping, indicating that it is near a phase
boundary. In this work, we uncover a global phase diagram
for the same model and unravel two distinct classes of TSC
phases with Chern numbers C ¼ 1, 2 and a nematic d-wave
SC phase with C ¼ 0. The new insight to the mechanism of
the doping-induced TSC is that the TSC can emerge by
doping a correlated Mott insulating state with 120° AFM
besides doping a CSL state. Importantly, the hole dynamics
changes the spin background and induces a topological
quantum phase transition upon doping a magnetic ordered
state, widening the opportunity for discovering TSC in
triangular compounds. On the other hand, nematic SC with
C ¼ 0 can emerge from either doping the CSL or magnetic
ordered states [53], suggesting the rich interplay between
unconventional SC and spin background.
A recent analytical study [46] has identified topological

and nematic SC in the moiré superlattice of twisted bilayer
TMD that realizes an effective triangular lattice model with
repulsive interactions. While the study addresses the
physics in the weak coupling picture with spin-valley
fluctuations, it is interesting to see the C ¼ 2 topological

FIG. 7. The spin structure factor SðkÞ obtained on an N ¼
36 × 6 cylinder using correlations from middleN0 ¼ 12 × 6 sites.
(a) SC1 phase at J2 ¼ 0.01. (b),(c) Isotropic dþ id-wave TSC
phase at J2 ¼ 0.05 with near-isotropic structure. (d),(e) Nematic
TSC phase at J2 ¼ 0.1. (f) SC0 state at J2 ¼ 0.2. The first
Brillouin zone is indicated by the solid line with the M and K
points marked, and the black dots represent the allowed discrete
momenta for the finite system with 12 × 6 sites. The results are
obtained with M ¼ 10 000. The doping level is δ ¼ 1=12.
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dþ id-wave SC and the nematic d-wave SC being dis-
covered, which may indicate a possible universal picture
for SC on triangular lattice with repulsive interactions. It
would be exciting to examine the extended Hubbard model
with short-range Coulomb interactions for such systems
from weak to strong couplings [7], which can make further
predictions for TMD systems. In light of the theoretical
prediction of the SU(4) CSL [75] in time-reversal-invariant
TMD bilayers, we anticipate TSC to be a strong competing
state and a rich phase diagram to be revealed. Besides the
triangular lattice, it will also be interesting to search for
possible TSC states in other systems including kagome
compounds, where Mott insulators show similar rich
physics with emergent CSL [52].
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