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Efficient energy transfer often occurs between oscillation modes in a resonator when they are tuned to
internal resonance. We design the eigenfrequencies of two vibrational modes of an electromechanical
resonator to be close to a ratio of 3∶1 and demonstrate that the energy supplied to the upper mode can be
controllably transferred to the lower mode. With the lower mode vibrating with a period tripled that of the
upper mode, the discrete time-translation symmetry imposed by the periodic drive is broken. The lower
mode settles into one of three stable period-tripled states with different phases. This channel for energy
transfer from the upper mode can be turned on or off without changing system parameters. When the upper
mode itself becomes multistable under strong resonant or parametric drive, additional sets of coexisting
period-tripled states emerge in the lower mode. In the latter case, we measure a total of six coexisting
vibration states with identical amplitude but phases differing by π=3. Excitation of coexisting states with
three different phases could open new opportunities in designing mechanical memory based on ternary
logic. Coupled resonators with period-tripled states can also be used to model complex interacting systems
with spin equal to one.
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I. INTRODUCTION

Nonlinear mode coupling enables energy exchange
between oscillatory modes with significantly different
resonant frequencies. When the resonant frequencies are
incommensurate or far from each other, application of
parametric modulation is often necessary to enhance the
coupling. The enhanced interaction allows mechanical
resonators to be controlled through their coupling with
optical, microwave, or phononic cavities [1,2]. When the
frequency of one mode becomes commensurate with an
integer multiple of another mode, nonlinear coupling of the
modes becomes strong, giving rise to efficient energy
transfer and internal resonance, which profoundly affects
the response of both modes. Internal resonances in macro-
scopic systems with mode frequencies in the ratios of 3∶1
or 2∶1 exhibit a wealth of phenomena including nonlinear
oscillations, amplitude-modulated oscillations, multistable
behavior, dissipative nonlinearities, and chaotic motions

[3–8]. Recently, internal resonance has been demonstrated
to play an important role in micro- and nanomechanical
resonators [9–16]. When the lower mode is excited by a
periodic drive, energy exchange with the upper mode leads
to novel behaviors in the steady state response as well as the
decay of vibrations when the energy supply is removed. For
example, the frequency fluctuations in the self-sustained
oscillations of the lower mode of a micromechanical device
are dramatically reduced at internal resonance with a
higher mode [9]. In resonators made of nanotube or
two-dimensional materials, complex line shapes and multi-
ple hysteresis are observed [10,11]. The energy exchange
between the two modes at internal resonance also leads to
anomalous decay of vibrations with rates that change with
energy in both micromechanical structures [15] and sus-
pended graphene [16].
While much progress has been made by pumping energy

into the lower mode, the regime in which energy is supplied
to the upper mode for systems at internal resonance is much
less explored. When the nonlinear coupling opens up a
channel of energy transfer from the upper mode to the
lower mode, stable vibrations are induced in the latter with
a period that is an integer multiple of the period of the drive.
As a result, the discrete time-translation symmetry [17,18]
imposed by the periodic drive is broken. The breaking
of discrete time-translation symmetry is well known in
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single-mode parametric oscillators [19–29], where vibra-
tions are period-doubled relative to the modulation. The
two coexisting stable oscillation states with identical
amplitude but opposite phase can be used to represent a
classical bit [30] or an Ising spin [31–35] for logic or
computation applications. For parametrically driven quan-
tum oscillators, the breaking of time-translation symmetry
imposed by the periodic drive, together with many-body
interactions and disorder, can lead to the formation of time
crystals [36–38]. While period-doubled oscillations in a
single mode rely on modulations of the parabolic term in
the confinement potential, it has been predicted [39–41]
that, if the potential contains a cubic term that is modulated
at a frequency ωf close to 3 times the resonant frequency
ωo, period-tripled oscillations can be excited to break the
discrete time-translation symmetry imposed by the modu-
lation. The simplest model for a single-mode system with
stable period-tripled oscillations is given by the equation of
motion:

q̈þ ω2
0qþ 2Γ _qþ ðγ=mÞq3 ¼ ðFp=mÞq2 cosðωftÞ; ð1Þ

where q is the displacement of the mode, m is the effective
mass, γ denotes the Duffing nonlinearity, and Fp is the
strength of the parametric pump at frequencyωf. The system
settles into one of three stable vibration states with phases
differing by 2π=3 or the zero-amplitude state [Figs. 1(a)
and 1(b), where qðtÞ ¼ X cos½ðωf=3Þt� þ Y sin½ðωf=3Þt�].
Unlike period-doubled oscillations, where the coefficient of
the q term in the equation of motion is modulated in time, for
period-tripled oscillations the time modulation is associated
with the q2 term.
Apart from direct parametric modulation of the mode

through a term of q2 cosð3ω1tÞ, period-tripled oscillations
can also be excited by supplying energy to a higher mode
that is at 3∶1 internal resonance with the first mode with
resonant frequency ω1. Through the interaction energy
γ12q31q2 (q1;2 represent the displacements of modes 1 and 2,
respectively), oscillations in mode 2 at amplitude A2 at its
eigenfrequency ω2 generates an effective parametric modu-
lation of the form 3γ12q21½A2 cos ð3ω1tÞ� in the equation of
motion of mode 1. Internal resonance facilitates the transfer
of energy frommode 2 to mode 1, opening the possibility to
excite oscillations in the latter with a period that is 3 times
the periodic drive. Whether stable period-tripled states can
be excited in mode 1 depends on the dynamics of both
modes, because oscillations in mode 1 also affect mode 2.
Enhancement of the drive by a second mode to generate
period-tripled oscillations is demonstrated in superconduct-
ing resonators [42]. The signal includes contributions from
the period-tripled states and the zero-amplitude state as the
system switches among them due to noise. Maintaining the
system in a period-tripled state with practically no interstate
switching may be beneficial for a number of applications
such as memory and frequency conversion. To our

knowledge, such stable period-tripled oscillations have
not been demonstrated.
Here, we show that a properly designed electromechani-

cal resonator with two vibrational modes at frequencies
close to 3∶1 internal resonance exhibits stable period-
tripled vibrations in the lower mode (mode 1) that break the
discrete time-translation symmetry of a periodic drive
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FIG. 1. (a) Periodic modulation of the cubic term in the
confinement potential of a single mode at frequency ωf close
to 3ωo generates four coexisting stable states. One of them
(black) is a zero-amplitude state. The other three (red, blue, and
green) have identical, nonzero amplitude, with the period tripled
that of the modulation. They are phase shifted by 2π=3 relative to
one another. (b) The phase space is threefold symmetric, with
four stable states shown as solid squares and the saddle points
shown as hollow squares. The separatrices, represented by dashed
lines, go through the latter. (c) Scanning electron micrograph of
the device consisting of two suspended plates connected by a
torsional rod. (d) Excitation and detection scheme (not to scale).
(e) The dependence of the scaled shifts of the frequency of mode
1 on the square of the vibration amplitude A2 of mode 2. The line
is a linear fit. Lower inset: the spectra of mode 1 in response to a
small periodic probe voltage for the data points in the main figure.
Upper inset: the vibration profile of mode 1 involves mainly the
rotations of the large plate. (f) A similar plot for mode 2 where
mostly the small plate rotates.
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applied to the higher mode (mode 2) near its eigenfre-
quency. Since the zero-amplitude state of mode 1 remains
stable for all drive frequencies and amplitudes, energy
transfer from mode 2 to create the period-tripled states
requires activation. Mode 1 needs to be perturbed by a
secondary drive, which is subsequently removed. By
choosing the phase of the perturbation, mode 1 can be
controlled to settle into one of the three period-tripled states
that differ in phase by 2π=3 when the periodic drive on
mode 2 is above a certain threshold value but remains
relatively weak. At certain system parameters, a set of three
coexisting limit cycles emerges in the rotating frame. When
the drive amplitude on mode 2 is increased beyond another
threshold, a second set of period-tripled vibrations at a
different amplitude can be excited for mode 1, yielding a
total of seven coexisting states for a range of drive
frequencies. If the resonant drive on mode 2 is replaced
by parametric modulation of the confinement potential near
twice its eigenfrequency, we observe six coexisting vibra-
tional states in mode 1 with the same amplitude but with
phases differing by integer multiples of π=3. These states
are period-sextupled relative to the parametric modulation
on mode 2. Apart from fundamental interests relevant to the
breaking of discrete time symmetry and classical time
crystals [43], the ability to prepare the system in a specific
period-tripled state opens new opportunities in using
mechanical resonators in ternary memory and logic [44],
as well as in simulations of spin systems with spin of 1 [45]
in a context similar to Ising machines for spin of 1=2
[31–35].
We emphasize that the stable period-three vibrations

described in this paper are qualitatively different from the
multiple-period oscillations often observed in strongly
nonlinear systems where the nonlinear part of the energy
is of the same order of magnitude as the harmonic part. The
latter are best known in the context of the period-
multiplication cascades of limit cycles leading to dynamical
chaos [46–48]. They are generally profoundly nonsinusoi-
dal, with multiple Fourier components. In contrast, the
period-tripling phenomena discussed in this paper rely on
much weaker nonlinearity. The magnitude of the nonlinear
terms in the potential energy of the modes is a factor of
approximately 10−7 smaller than the magnitude of the
harmonic terms. Vibrations in both modes are near per-
fectly sinusoidal. As we show, the very occurrence of the
onset of these vibrations is a consequence of the interplay
of the internal resonance between the modes and the weak
damping. Therefore, a comparatively weak drive is suffi-
cient to excite them. The results presented in this paper are
measured well below the threshold at which chaos occurs.

II. ELECTROMECHANICAL MODES AT
INTERNAL RESONANCE

Figure 1(c) shows a typical device, consisting of two
movable plates of different sizes, with dimensions of

160 μm by 156 μm by 3.5 μm and 104 μm by 100 μm
by 3.5 μm, respectively. The two plates are connected
together by a suspended beam (30 μm by 2 μm by 2 μm).
On the opposite edge for each of the two plates, there is
another suspended beam whose other end is anchored to the
substrate. Mode 1 involves torsional vibrations of the larger
plate with minimal excitation of the small one. For mode 2,
the small plate undergoes torsional vibrations. Since the
large plate remains almost stationary, the resonant fre-
quency (ω2=2π ∼ 34953.3 Hz) is significantly higher than
that of mode 1 (ω1=2π ∼ 11667.5 Hz). The size of the two
plates is chosen so that the ratio ω2=ω1 is close to 3∶1.
There are two electrodes underneath each plate, as shown in
the schematic in Fig. 1(d). By adjusting the dc voltages
Vdc1 and Vdc2 applied to these electrodes, ω1;2 can be fine-
tuned for the system to go into and out of internal resonance
(see Appendix A). Previous studies of internal resonance in
micro- and nanomechanical systems were often hampered
by the difficulty to independently excite and simultane-
ously detect the vibrations of the two modes. Our design
circumvents such problems. For each plate, an ac voltage
applied to the electrode on the left in Fig. 1(d) generates a
periodic electrostatic torque to excite the corresponding
mode. Vibrations of the mode are detected by measuring
the capacitance change between the other electrode and
the plate. All measurements are performed at room temper-
ature at a pressure of< 10−5 torr. The damping constants of
modes 1 and 2 are Γ1=2π ¼ 0.93 Hz and Γ2=2π ¼ 2.77 Hz,
respectively.
We first characterize the system by applying ac voltages

to the electrodes to periodically drive the two modes. Both
modes have softening nonlinearity, with Duffing constants
of −8.1 × 10−7 and −6.1 × 10−8 kgm2 s−2, respectively.
There is strong dispersive coupling between the two modes,
with coupling energy 1

2
γ̃θ21θ

2
2, where θi is the rotation angle

of the plate i for mode i (i ¼ 1, 2). As shown in Figs. 1(e)
and 1(f), the resonant frequency of one mode decreases by
an amount proportional to the square vibration amplitude
of the other mode. The linear fits yield the constant
γ̃ ¼ −1.02 × 10−7 kgm2 s−2. While dispersive coupling
is not required to generate period-tripled oscillations, we
find that it must be included to obtain agreement between
our measurement and theory. For the rest of the paper,
energy is supplied only to mode 2. Unless otherwise stated,
the periodic drive on mode 1 is turned off.
Another relevant term in the interaction energy is of the

form γq31q2, which becomes important for small mismatch
ϵ1 ¼ ω2=3 − ω1 when the two modes are near internal
resonance. The equations of motion are given by

θ̈1þ2Γ1
_θ1þω2

1θ1þ
γ1
I1
θ31þ3

γ

I1
θ21θ2þ

γ̃

I1
θ1θ

2
2 ¼ 0;

θ̈2þ2Γ2
_θ2þω2

2θ2þ
γ2
I2
θ32þ

γ

I2
θ31þ

γ̃

I2
θ21θ2¼

τd
I2
cosðωdtÞ;

ð2Þ
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where I1;2 are the effective moment of inertia of the two
modes and τd is the amplitude of the periodic torque
applied to mode 2. The last and second-last terms on the
left side in Eqs. (2) originate from the dispersive coupling
and the interaction energy γq31q2, respectively. With the
driving frequency ωd on mode 2 close to ω2, we change
from θðtÞ and _θðtÞ to complex amplitudes θ1ðtÞ ¼
u1ðtÞ exp ½iðωd=3Þt� þ c:c: and θ2ðtÞ ¼ u2ðtÞ exp ½iωdt�þ
c:c:, respectively. Under the rotating wave approximation
in which the fast-oscillating terms are dropped, u1;2ðtÞ
evolves according to

_u1 þ i

�
ϵ

3
þ ϵ1

�
u1 þ Γ1u1 − i

�
3γ11
2ω1

�
u1ju1j2

− i

�
3γ12
ω1

�
u�1

2u2 − i

�
γ̃12
ω1

�
u1ju2j2 ¼ 0;

_u2 þ iϵu2 þ Γ2u2 − i
�
3γ22
2ω2

�
u2ju2j2

− i

�
γ21
ω2

�
u31 − i

�
γ̃21
ω2

�
u2ju1j2 ¼ τ2=4iω2; ð3Þ

where ϵ ¼ ωd − ω2 and ϵ1 ¼ ω2=3 − ω1. Parameters τ2,
γ11, γ22, γ12;21, and γ̃12;21 are determined by τd, γ1, γ2, γ,
and γ̃ in Eq. (2), respectively, taking also into account
contributions from the renormalization due to the cou-
pling between the two modes. We note that the rotating
wave approximation is justified, as the nonlinear terms in
the potential energy are much smaller (approximately
10−7) than the harmonic terms.

III. ENERGY TRANSFER INTO
PERIOD-TRIPLED STATES

We focus on the steady state oscillations, with
_u1 ¼ _u2 ¼ 0. The zero-amplitude state of mode 1 is found
to be stable for all τ2, ϵ, and ϵ1. Measurements on the device
yield results that are consistentwith this theoretical finding: If
the vibration amplitude of mode 1 is initially zero, finite-
amplitude vibrations of this mode cannot be excitedwhenωd
is swept up or down. In this scenario, the response of mode 2
is identical to that of a single-mode Duffing oscillator, as
illustrated by the black data in Fig. 2(a) for a pump voltage of
6 mV. Vdc1 and Vdc2 are chosen to be 1.475 and 1.975 V,
respectively, for the system to be near internal resonance,
with ϵ1=2π ¼ −16.4 Hz. To achieve stable period-tripled
oscillations, it is necessary to apply a proper perturbation to
the system to excite mode 1 out of the zero-amplitude state.
We choose to perturb the system by applying a secondary ac
drive (with amplitude 23 mV) to mode 1 to produce a torque
of the form τ1 cos½ðωd=3Þtþ ϕ�. τ1 and ϕ can be adjusted to
excite vibrations in mode 1 with different amplitude
and phase, as shown in Fig. 2(b), where θ1 ¼
X1 cos ½ðωd=3Þt� þ Y1 sin½ðωd=3Þt�. Upon removal of the
secondary drive, the system either settles into one of the three

period-tripled states, represented by the red, blue, and green
squares, or the zero-amplitude state, represented by the black
square, depending on τ1 and ϕ. Until the perturbation is
applied again, mode 1 remains in one of these four stable
states.
We emphasize that Fig. 2(b) plots the behavior of mode 1

only. In analyzing the dynamics of the system, mode 2 also
needs to be included. Hence, the phase space is four-
dimensional (4D) in the rotating frame. To settle into a
specific state, the system must start inside the basin of
attraction of the corresponding state in 4D phase space.
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FIG. 2. (a) Amplitude A2 of mode 2 as a function of the
frequency detune ϵ ¼ ωd − ω2 of the drive on mode 2 at a pump
voltage of 6 mV and a mode frequency mismatch of
ϵ1=2π ¼ −16.4 Hz. The solid and dashed lines are stable and
unstable vibration states, respectively, calculated using Eq. (3).
Circles are measured results. For the black data, mode 1 is in the
zero-amplitude state. For the red data, mode 1 is in the red period-
tripled state. The behavior of mode 2 is measured to be identical,
within detection noise, regardless of whether mode 1 is in the red,
green, or blue period-tripled state. (b) Under the perturbation of a
secondary drive applied to mode 1, vibrations of mode 1 are
excited, the phase of which depends on the phase of the
secondary drive. The initial state lies approximately on a circle
in the phase space of mode 1. The color of the large circles
indicates to which final state (squares) mode 1 settles after
removal of the secondary drive. For each of the four final states, a
trajectory is shown (small circles) for one chosen initial state. The
hollow squares denote the three saddle points calculated with
Eq. (3). (c) Amplitude A1 of mode 1 versus the frequency detune
ϵ with the same color scheme as (a). If ϵ is swept beyond ωL or
ωH , the response jumps to the black curve. Inset: enlargement of
the isolated loop. (d) Pulses of the secondary drive are applied at
time t ¼ 0, 20, and 40 s (arrows) to change the vibration phase of
mode 1. Energy transfer from mode 2 is turned off at t ¼ 60 s.
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Trajectories from different initial points do not intersect
with each other in the 4D space. Figure 2(b) shows only a
projection of the trajectories on the two-dimensional space
of X1 and Y1.
Figure 2(c) shows that the tristable branch of finite-

amplitude vibrations of mode 1 (shown in red) is discon-
nected from the zero-amplitude branch. The corresponding
isolated branch ofmode 2 is shown in red in Fig. 2(a).When ϵ
is increased beyondωH, mode 1 jumps to the zero-amplitude
state. Correspondingly, mode 2 jumps to the response of an
ordinary Duffing oscillator. The system also undergoes a
jump if ϵ is decreased beyond ωL. Once a jump to the zero-
amplitude state takes place, getting back to any one of the
three period-tripled states in mode 1 requires activation, as
discussed earlier. The amplitude for the unstable oscillation
states (the saddle points) is calculated from Eq. (3) and is
shown as dashed lines (see Appendix B). We find that a
saddle-node bifurcation occurs atωH, where one stable state
merges with one saddle point and disappears. At ωL, the
system undergoes a Hopf bifurcation where limit cycles
develop in the rotating frame, as we discuss later. In mode 1,
the branches of stable and unstable states form an isolated
loop. For mode 2, the stable and unstable branches attain
peak amplitude at ϵ=2π ¼ −5.5 and−6.8 Hz, respectively. If
the amplitude of the pump is reduced, the loops decrease in
size and eventually shrink to zero at a pump amplitude of
5.5 mV. Below this threshold value of pump amplitude, only
the zero-amplitude state is stable, and theperiod-tripled states
cannot be excited even with activation.
The energy transfer from mode 2 to mode 1 can be

controllably turned on and off. Figure 2(d) plots the
vibration amplitude and phase of mode 1 measured as a
function of time. Initially, mode 1 is in the zero-amplitude
state with no energy transferred from mode 2. The phase
fluctuates due to thermal motion. At time t ¼ 0, the
secondary drive with ϕ ¼ 150° is turned on for a duration
of 0.9 s and then turned off. With this perturbation, mode 1
settles to the green period-tripled state. At t ¼ 20 and 40 s,
similar secondary drive pulses are applied with ϕ ¼ 30°
and 270°, respectively, putting mode 1 in the red period-
tripled state followed by the blue one. Energy transfer from
mode 2 is turned off when a pulse of the secondary drive
with ϕ ¼ 90° is applied at t ¼ 60 s. The vibration of mode
1 goes back to zero, and the phase fluctuates randomly.

IV. TWO COEXISTING SETS OF
PERIOD-TRIPLED STATES

As discussed earlier, vibrations in mode 2 result in an
effective parametric modulation of mode 1 through the term
proportional to 3θ21θ2 in Eq. (2). This approach of gen-
erating period-tripled oscillations via internal resonance
offers a number of advantages over directly modulating the
cubic term in the confinement potential of a single mode
[Eq. (1)]. In addition to the resonant enhancement of the
modulation amplitude via the response of mode 2, multiple

sets of period-tripled states can be generated. Since each
stable oscillation state in mode 2 can give rise to one set of
stable period-tripled oscillation states in mode 1, the
occurrence of multistable oscillation states of mode 2
opens the possibility for the coexistence of multiple sets
of period-tripled states in mode 1 with different amplitudes
and/or phase.
We first consider the case when the resonant drive on

mode 2 is increased so that bistability develops in the
isolated loop of this mode for a certain range of ϵ as shown
in Fig. 3(a) when the pump voltage is increased to 9 mV.
The peak in the isolated branch of stable oscillations (red)
becomes higher and covers a wider range of frequencies. It
bends over toward low frequencies in a manner similar to
the ordinary Duffing response of mode 2 (black). As a
result, a new, isolated branch of stable vibrations emerges at
lower amplitude, plotted in light red in Fig. 3(a). The
isolated branch of unstable states, calculated using Eq. (3),
also becomes wider and higher. It is connected to the stable
branch as shown in the inset in Fig. 3(a). For the upper
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FIG. 3. (a) Dependence of the vibration amplitude of mode 2 on
the frequency detune of the resonant drive. Black circles are the
measured amplitude of mode 2 when mode 1 is in the zero-
amplitude state. Light and dark red circles represent the measured
amplitude of mode 2 when mode 1 is in a period-tripled state.
Solid lines are stable states calculated with Eq. (3). Dashed lines
are unstable states. The left and right light red arrows mark ωL2
and ωH2, respectively. Inset: For clarity, calculated amplitudes are
shown without measurement data. (b) Vibration amplitude of
mode 1. Inset: two sets of period-tripled states with different
amplitudes plotted in the phase space. (c) The vibration amplitude
of mode 2 when its eigenfrequency is parametrically modulated
near 2ω2. (d) The corresponding vibration amplitude of mode 1.
Inset: six coexisting states with identical amplitude but with
phases differing by π=3 in phase space.
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branch of stable vibrations, there are saddle-node bifurca-
tions at both ends (ωL1 and ωH1). Starting from ϵ=2π ¼
−5.1 Hz [red square in Fig. 3(a)], if the drive frequency is
swept up beyond ωH1, as indicated by the thin dotted
arrows pointing to the right, mode 2 jumps up to the
Duffing response of a single mode (black). If, instead, the
driving frequency is swept down, mode 2 jumps down to
the Duffing response at ωL1. For the lower branch of stable
vibrations, there is a saddle-node bifurcation on the right
end at ωH2. The left end at ωL2 is a Hopf bifurcation where
limit cycles develop in the rotating frame, as we discuss
later. Starting from a stable vibration state in the lower
branch, sweeping the drive frequency up or down even-
tually lead to jumping of mode 2 down to the Duffing
response, as indicated by the two light red arrows. Once
mode 2 jumps to the Duffing response from either the upper
or lower branch, merely reversing the direction of fre-
quency sweeping does not bring the system back to the
isolated branch. Returning to the isolated branch requires
activation, similar to the case of a single set of period-
tripled states discussed earlier.
Each stable state in the isolated loop of mode 2 is

associated with one set of three stable period-tripled oscil-
lation states of mode 1. Figure 3(b) shows the amplitude of
the period-tripled states in mode 1. The zero-amplitude state,
despite lying out of the range of the vertical axis of the plot,
remains stable. For driving frequencies between ωL2 and
ωH2, there are a total of seven stable states in mode 1. The
inset in Fig. 3(b) shows the seven coexisting states in phase
space for ϵ=2π ¼ −9.72 Hz. We note that no switching
between the states is observed. Thermal noise is not strong
enough to induce transitions in the duration of our meas-
urement. To place mode 1 in the low-amplitude branch, one
method is to start from a smaller drive amplitude on mode 2
that yields only one single branch of period-tripled states, as
in Fig. 2. When the drive voltage is gradually increased, the
system settles to the low-amplitude branch in mode 1.
Placing mode 1 in the high-amplitude branch requires slight
modifications to the scheme, because the frequency range for
stable period-tripled states (between ωL2 and ωH2) does not
overlap with that at smaller drive amplitude in Fig. 2
(between ωL and ωH). The drive amplitude is increased in
small steps. Between successive steps, the drive detune
frequency ϵ is decreased by an appropriate amount so that
mode 1 settles in the high-amplitude branch at the end of the
process. More details of preparing mode 1 in the high-
amplitude state are described in Appendix D.
Coexisting stable states of vibrations of mode 2 can also

be excited by parametric modulating its resonant frequency.
We modulate the gradient dτ=dθ of the electrostatic torque
exerted by the electrode on the small plate at frequency ωp

near 2ω2 (see Appendix A). When there is no energy
transfer to mode 1, mode 2 follows the response of a single-
mode parametric resonator, as shown in black in Fig. 3(c).
The oscillation states are period-doubled with respect to the

modulation. They occurs in pairs that are out of phase with
each other. For certain range of parameters, internal reso-
nance enables the energy transfer into mode 1, leading to
stable vibrations in mode 1 with period 12π=ωp. Figure 3(d)
plots the dependence of the amplitude of mode 1 on the
modulation frequency detuning ϵ2 ¼ ωp=2 − ω2. We mea-
sure six coexisting stablevibration states ofmode1, as shown
in the inset in Fig. 3(d), where θ1 ¼ X1p cos½ðωp=6Þt�þ
Y1p sin½ðωp=6Þt�. The six stable states aremeasured to have a
phase offset of π=3 from one another. They are period-tripled
compared to oscillations in mode 2 and period-sextupled
compared to the parametric modulation on mode 2. Unlike
Fig. 2(b) and the inset in Fig. 3(b), the inset in Fig. 3(d)
displays sixfold symmetry. When energy is transferred to
mode 1, mode 2 follows the red response in Fig. 3(c) that is
slightly shifted from the black branch. In calculating the
vibration amplitudes and phase, Eqs. (2) and (3) need to be
modified (see Appendix F).

V. COEXISTING LIMIT CYCLES

Interesting phenomena such as limit cycles and chaos have
been demonstrated in coupled micro- and nanomechanical
resonators [49–53]. In particular, limit cycles are observed
for two coupled modes in 3∶1 internal resonance when
energy is supplied to the lower mode [52]. Our system, in
contrast, is under periodic drive on the higher mode and
shows qualitatively different behavior. Figure 4(a) plots the
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FIG. 4. (a) Enlargement of Fig. 3(b). Stable period-tripled states
in mode 1 turn into limit cycles at the right end of the gray band.
The limit cycles disappear at the left end of the gray band.
(b) Three coexisting limit cycles in mode 1 are measured at
frequency detune ϵ=2π of −10.01 Hz. (c) Enlargement of the red
limit cycle. The line represents calculations. (d) Corresponding
data for mode 2.
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amplitude of mode 1 when mode 2 is driven at a pump
amplitude of 9 mV. It is an enlargement of the high-
amplitude branch in Fig. 3(b). At ϵ=2π ¼ −9.93 Hz, a
Hopf bifurcation takes place, and limit cycles emerge.
Each of the three period-tripled states evolves into a limit
cycle in the rotating frame, with a threefold symmetry
illustrated in Fig. 4(b). As ϵ is further decreased, the limit
cycles become larger and eventually disappear at
ϵ=2π ¼ −10.07 Hz. Without energy transfer from mode
2, the vibration amplitude of mode 1 drops to zero. The
gray band in Fig. 4(a) indicates the frequency range for the
occurrence of limit cycles both in measurement and in
calculations. Limit cycles appear only in a narrow frequency
range of approximately 0.14Hz that is small compared to the
frequency range at which stable period-tripled vibrations
take place in mode 1 (approximately 12 Hz). For smaller
drive amplitudes in Fig. 2(c), limit cycles also develop at the
left side of the isolated branch of period-tripled vibrations.
However, the frequency range at which limit cycles occur is
too small to be visible.

VI. DISCUSSIONS AND OUTLOOK

Our experiment shows that, by using an electromechani-
cal resonator with two modes at internal resonance, the
nonlinear coupling leads to an effective parametric modu-
lation on the lower mode that is resonantly enhanced by the
higher mode. Upon activation, energy can be transferred
from the higher mode to the lower mode to excite
oscillations in the latter with a period that is tripled the
period of pumping. The system can be prepared in any one
of the three period-tripled states of mode 1 and remains
stable in the duration of the experiment, opening the
possibility of using parametrically driven mechanical
modes for ternary memory and logic. More efficient
schemes for writing bits in period-doubled states in “para-
metrons” [20,22,29,54] can be modified to be used in the
period-tripled system. Demonstration of such schemes in
our two-mode system is in progress.
Away from the internal resonance with the lower mode,

the higher mode has multiple stable states with different
amplitude and/or phase due to its own nonlinearity. Each of
these states can enhance the effective parametric modula-
tion on the lower mode when the two modes are tuned into
internal resonance. If the coupling is sufficiently strong,
each state is accompanied by a set of period-tripled states in
the lower mode. We demonstrate the excitation of two sets
of period-tripled states when the higher mode is under a
strong resonant drive. Alternatively, we apply parametric
modulation to the higher mode, resulting in two sets of
states in mode 1 that are period-tripled with respect to
vibrations in mode 2 and period-sextupled with respect to
the parametric modulation applied. Mode 2 can also be
designed and excited to have even larger numbers of
coexisting stable states. For example, if the Duffing
(third-order) and fifth-order nonlinear coefficients in the

restoring force are of opposite signs, the higher mode can
possess three stable states at different amplitude and phase
[55]. If each of these states generates a set of period-tripled
states in the lower mode, there are a total of ten coexisting
states in the latter including the zero-amplitude state. A
single resonator can, therefore, in principle, be used to
represent a decimal digit. Alternatively, if mode 2 is
subjected to parametric modulation described by Eq. (1),
three coexisting states can be excited. Internal resonance
with the lower mode can potentially lead to nine states in
the lower mode with finite vibration amplitude but phase
shifted by 2π=9. With a period that is 9 times the parametric
modulation, the reduction of discrete time-translation
symmetry will be even more pronounced than the data
presented in this paper.
Near the bifurcation points where stable period-tripled

states disappear, effects of fluctuations are expected to be
strong. For a single-mode system experiencing period
tripling described by Eq. (1), the basins of attraction of
the period-tripled states are isolated from each other in the
2D phase space. As shown in Fig. 1(b), each basin is
surrounded by the basin of the zero-amplitude state. In the
presence of thermal or external noise, the system fluctuates
about the stable state. If the system crosses the separatrix, it
switches to the zero-amplitude state. For weak noise, the
system does not switch to the other two period-tripled states.
Interestingly, it is predicted that the behavior is qualitatively
different in quantum oscillators, where direct switching
between the period-tripled states can take place [56]. In the
two-mode classical system of this paper, the phase space is
4D, making it difficult to plot and visualize the basins of
attraction. By injecting noise into the drive to increase the
effective temperature, the system can be induced to switch
out of a stable period-tripled state. Preliminary results
indicate that, when the system switches out of one of the
period-tripled states, it settles in the zero-amplitude state for
the system parameters chosen in the current experiment. The
results are consistent with the notion that the basins of the
period-tripled states are isolated from each other in the 4D
phase space, similar to the much simpler case of the single-
mode system described by Eq. (1). Whether the behavior
changes for other system parameter values, especially those
that exhibit limit cycles in phase space, remains an open
question that warrants further studies.
The switching from the isolated branch of period-tripled

states to zero amplitude in both directions can be used for
detecting small perturbations of the eigenfrequencies of the
modes. At the saddle-node bifurcations discussed in this
paper, the activation barrier for switching is expected to
scale with the frequency detuning from the bifurcation
point with an exponent of 3=2 [57–59]. Unlike traditional
bifurcation amplifiers [60] that are sensitive only to uni-
polar change in parameters, here perturbations in both
directions lead to jumps in amplitude that can be easily
detected. High sensitivity can be achieved by tuning the
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amplitude of the pump on mode 2 to produce a narrow
frequency range at which the isolated period-tripled branch
in the lower mode is stable.
With the capability to excite and detect vibrations of two

modes independently, our system provides a versatile
platform for studying nontrivial nonlinear effects including
limit cycles and dynamical chaos that are absent from
single-mode systems with only two dynamic variables
described by Eq. (1). We demonstrate that a set of three
coexisting limit cycles develops over a narrow range of
driving frequencies when mode 2 is under resonant drive.
The limit cycles in the rotating frame correspond to
nonsinusoidal vibrations that could lead to the development
of frequency combs [61–63]. Just before the limit cycles
disappear, fluctuations are expected to become strong.
Future efforts will explore whether period-doubling
cascades and/or chaotic motion arise when the driving
amplitude on mode 2 is further increased.
While the period-tripled vibrations reported here are

observed in two vibrational modes in a micromechanical
resonator designed to be near internal resonance, the
findings are generic and applicable to other resonators,
such as coupled superconducting coplanar waveguides
[42], optical cavities [64], membranes of two-dimensional
materials [11,16], and carbon nanotubes [10]. The main
requirements are that the ratio of the frequencies of the two
nonlinearly coupled modes is near 3∶1 and the higher mode
is subjected to a resonant drive sufficiently strong but well
below the threshold of driving the system into dynamical
chaos. In fact, the coexistence of period-tripled oscillation
states and the zero-amplitude state is demonstrated in
superconducting coplanar waveguide resonators [42].
However, the detected signal includes contributions from
all four states as the system switches among them due
to noise.
The interplay of fluctuations and dynamics has novel,

and yet fairly general, features in systems that display
period tripling. Some of these features arise because the
zero-amplitude state remains dynamically stable indepen-
dent of the drive frequency and strength. Activation is
required to excite the system into one of the three period-
tripled states. The activation can come from thermal noise
[65] or, as recently suggested [66], from quantum fluctua-
tions. A nontrivial aspect of the activation is that, as the
driving amplitude is increased, the unstable states in
the phase space [hollow squares in Fig. 1(b)] move toward
the origin (the zero-amplitude state). The activation barrier
for switching out of the zero-amplitude state approaches
zero but never disappears completely. It is predicted that in
this limit the switching dynamics is qualitatively different
from the escape from metastable states near bifurcation
points: In contrast to conventional wisdom, there is no
detailed balance, and the switching is not controlled by a
soft mode. Even though the theoretical results [65,66] refer
to the case of a single mode, the analysis can likely be

extended to the coupled modes. It is possible that such
generic behavior in switching could be revealed in reso-
nator systems with modes at internal resonance
[10,11,16,42,64], including the one measured in this paper.
Another important feature of period tripling, which makes

it qualitatively different from the seemingly similar and
extensively studied period doubling, is nontrivial topology.
This topology has been found in the analysis of quantum
tunneling between period-three states of a singlemode and is
related to the geometric phase between the period-three states
[39,67,68]. We demonstrate in a coupled-mode classical
system that, when the upper mode is under resonant or
parametric drive, up to six symmetry-breaking vibration
states in the lower mode can coexist. This finding could
motivate studies of topological effects resulting from tunnel-
ing among these states in a quantum resonator.
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Note added.—Recently, the authors learned that the decay
and energy exchange of two coupled modes in 3∶1 internal
resonance is studied by Wang et al. [69]. The main
difference from our experiment is that the drive on the
higher mode is turned off. Under certain conditions, as the
two modes decay, their vibrations are found to phase lock
with each other so that the period of the lower mode is
tripled that of the upper mode over a certain duration.
Period tripling, therefore, plays an important role in both
the steady state and transient response of coupled mechani-
cal modes. It holds promise in providing a new platform for
using mechanical resonators for subharmonic generation
and sensing applications.

APPENDIX A: GENERATION OF
ELECTROSTATIC TORQUE AND
DETECTION OF VIBRATIONS

For each plate, a voltage Vd applied to the left electrode
in Fig. 1(d) generates an electrostatic torque:

τ ¼ 1

2

dC
dθ

V2
d; ðA1Þ

where C is the capacitance between the movable plate and
the electrode. The torque can be written as a Taylor
expansion about the equilibrium angle θ0:

τ ¼ 1

2

�
C0ðθ0Þ þ C00ðθ0Þðθ − θ0Þ þ

1

2
Cð3Þðθ0Þðθ − θ0Þ2

þ 1

6
Cð4Þðθ0Þðθ − θ0Þ3

�
V2
d; ðA2Þ
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where C0, C00, Cð3Þ, and Cð4Þ represent the first, second,
third, and fourth derivative of C with respect to θ,
respectively. Higher-order terms are neglected. The voltage
Vd consists of a sum of a dc component Vdc and an ac
component with amplitude Vac and frequency ωf:

Vd ¼ Vdc þ Vac cosðωftÞ; ðA3Þ

where Vac ≪ Vdc.
The time-independent component of τ given by Eqs. (A2)

and (A3) changes the system parameters. First, the constant
term produces a shift in the equilibrium position of θ to θ0.
Second, electrostatic spring softening is induced by the term
proportional to θ − θ0. The restoring torque on the plate is
modified by an amount 1

2
C00ðθ0ÞV2

dcðθ − θ0Þ. Our experi-
ment relies on such electrostatic tuning of the resonant
frequencies to control the frequency mismatch ϵ1 of the
two modes by adjusting Vdc1 and Vdc2. Third, contributions
from the nonlinear restoring torques of 1

4
Cð3Þðθ0ÞV2

dcðθ −
θ0Þ2 and 1

12
Cð4Þðθ0ÞV2

dcðθ − θ0Þ3 dominate the Duffing
nonlinearity.
The ac voltage leads to both an additive torque

C0ðθ0ÞVdcVac cosðωftÞ and a torqueC00ðθ0ÞVdcVac cosðωftÞ
ðθ − θ0Þ that modulates the effective spring constant. In the

main text, when the drive is applied to mode 2 at a frequency
close to ω2, ωf is replaced by ωd to denote resonant driving.
When the frequency is close to 2ω2, the main effect is
parametric modulation of the spring constant.ωf is replaced
byωp to distinguish the parametricmodulation from the case
of resonant driving.
Vibrations of each plate are detected by capacitive

detection. The application of dc voltages to the right
electrodes in Fig. 1(d) leads to buildup of charges between
the top plates and the electrodes. Rotations of the plates
lead to changes in their capacitance. Charge flowing out of
the two plates are measured simultaneously and independ-
ently by two separate charge sensitive amplifiers, the
outputs of which are fed into the two channels of a
lock-in amplifier (Zurich Instruments HF2LI).

APPENDIX B: CALCULATION OF STABLE
VIBRATION STATES AND SADDLE POINTS

The stable states of vibration and the saddle points are
calculated by assuming that the complex amplitudes u1 and
u2 are independent of time. Equations (3) reduce to two
algebraic equations, the solutions of which give the sta-
tionary states:

�
ϵ

3
þ ϵ1

�
ju1j − iΓ1ju1j −

�
3γ11
2ω1

�
ju1j3 −

�
γ̃12
ω1

�
ju1jju2j2 ¼

�
3γ12
ω1

�
ju1j2ju2jeiðϑ2−3ϑ1Þ;

ϵju2j − iΓj2u2j −
�
3γ22
2ω2

�
ju2j3 −

�
γ21
ω2

�
juj31eið3ϑ1−ϑ2Þ −

�
γ̃21
ω2

�
ju2jju1j2 ¼ −

�
τ2
4ω2

�
e−iϑ2 ; ðB1Þ

where u1;2 ¼ ju1;2jeiϑ1;2 . The stability of the states is found
by linearizing Eq. (3) about the stationary values of u1
and u2.

APPENDIX C: DETERMINATION OF SYSTEM
PARAMETERS

All parameters in Eq. (3) are individually characterized
without using the data for period-tripled vibrations, with
the exception of γ12;21 that originate from the coupling
energy γq31q2. γ12;21 are fitted using the vibration ampli-
tudes of the two modes in Figs. 2(a) and 2(c) when period-
tripled vibrations take place in mode 1. There are no fitting
parameters for the theory curves in Figs. 3 and 4.
The eigenfrequency ω1 and damping coefficient Γ1 of

mode 1 are determined by fitting to the response when a
small resonant drive is applied to mode 1 only but not to
mode 2. Subsequently, the driving amplitude is increased
so that the response becomes nonlinear. The constant γ11
(−1.51 × 1012 s−2) in the u1ju1j2 Duffing nonlinear

term is obtained from the shift of the peak frequency
as the vibration amplitude increases. The procedure is
then repeated for mode 2 to determine ω2, Γ2, and
γ22 (−8.04 × 1011 s−2).
Dispersive coupling energy of the form 1

2
γθ21θ

2
2 leads to a

shift in the resonant frequency of one mode by an amount
proportional to the square vibration amplitude of the other
mode. In Figs. 1(e) and 1(f), the slopes of the linear fits are
given by γ̃12=4ω1 and γ̃21=4ω2, respectively, yielding γ̃12 ¼
−1.92 × 1011 s−2 and γ̃21 ≈ −1.34 × 1012 s−2. Measure-
ment of γ̃12 and γ̃21 also allows the ratio of the effective
moment of inertia of the two modes to be determined,
through the relation ðI2=I1Þ ¼ ðγ̃12=γ̃21Þ. In mode 2, the
rotation of the large plate is negligible. By taking I2 to be the
moment of inertia of the small plate about the rotation axis
(7.61×10−20kgm2), I1 is calculated to be 5.34×10−19kgm2.
All the system parameters in Eq. (3) are, thus, individu-

ally characterized. The only exceptions are γ12 and γ21.
Both originate from the coupling energy γq31q2. Their ratio
is known, given by ðγ12=γ21Þ ¼ ðI2=I1Þ, similar to the case
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for dispersion coupling discussed above. By setting _u1 ¼ 0
in the first equation in Eq. (3), the steady state vibration
amplitudes satisfy

�
Γ2
1 þ

�
1

3
ϵþ ϵ1 −

3γ11
2ω1

ju1j2 −
γ̃12
ω1

ju2j2
�

2
�

¼
�
3γ12
ω1

�
2

ju1j2ju2j2: ðC1Þ

γ12 can be written in terms of the other system parameters
and u1;2:

γ12 ¼
ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Γ2

1 þ ð1
3
ϵþ ϵ1 −

3γ11
2ω1

ju1j2 − γ̃12
ω1
ju2j2Þ2�

q
3ju1jju2j

: ðC2Þ

Figure 5 plots γ12 calculated with Eq. (C2), using the
measured values of u1;2 [red data points in Figs. 2(a) and
2(c)] as the drive detune ϵ is varied. Detection noise of u1;2
leads to small fluctuations of γ12 about the mean value of
1.10 × 1011 s−2. γ21 ¼ ðI1=I2Þγ12 is determined to be
7.74 × 1011 s−2. These values of γ12;21 are used to generate
the theory curves in Figs. 2–4. Only the data in Fig. 2 are
used in the fitting to determine γ21. There are no fitting
parameters for the theory curves in Figs. 3 and 4.

APPENDIX D: DEPENDENCE OF PERIOD-
TRIPLED VIBRATIONS ON THE DRIVING

AMPLITUDE

Figure 6(a) shows the calculated amplitudes of the
stationary points of the isolated loop in mode 2 when
the mode is under resonant drive. The calculation is
performed by setting _u1 ¼ _u2 ¼ 0 in Eq. (3). Solid and
dashed lines represent stable and unstable solutions,

respectively. As the drive amplitude is increased, the
frequency range for stable vibrations widens. The peaks
become higher and tilt toward low frequencies. At the
largest driving amplitude of 10 mV, the peak tips over, and
a second, isolated stable branch appears at low amplitudes.
Figure 6(b) plots the amplitudes for the corresponding
vibrations of mode 1 with period tripled that of mode 2.
Starting from the red curve for a driving amplitude of

6 mV in Fig. 6(a), increasing the drive amplitude while
keeping frequency detune ϵ fixed brings mode 2 to the
upper branch for a driving amplitude of 10 mV. To place
mode 2 in the lower branch, it is necessary to decrease the
driving frequency as the driving amplitude is increased in
small steps. One choice for the driving frequencies is
illustrated by the black squares in Fig. 6(a).

APPENDIX E: SYSTEM PARAMETERS FOR
EXCITING STABLE PERIOD-TRIPLED STATES

The frequency mismatch ϵ1 ¼ ω2=3 − ω1 is fixed for all
results presented in the main text, with ϵ1=2π ¼ −16.4 Hz.
We choose ϵ1 to be nonzero, because excitation of period-
tripled vibrations in our system requires both modes to
vibrate at moderately large amplitudes so that the shifts in
eigenfrequencies due to the Duffing nonlinearities are
significant. While the Duffing coefficients of both modes
are negative, the shift in the frequency of mode 1 is much
larger (approximately 5 times) than mode 2. It is, therefore,
necessary to pick ω1 exceeding ω2=3 so that, at the larger
amplitudes, the ratio of the shifted eigenfrequencies
becomes close to 3 to satisfy the conditions of internal
resonance. For ϵ1 > 0, we do not observe any stable period-
tripled vibrations in mode 1 in our system.
The range of ϵ1 that yields stable period-tripled vibra-

tions can be calculated using the procedure described in
Appendix B. Figure 7(a) shows the range of ϵ1 and drive
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FIG. 5. Dependence of γ12 on the drive detune ϵ calculated with
Eq. (C2). The measured values of u1;2 from the isolated branches
in Figs. 2(a) and 2(c) are used.
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FIG. 6. (a) Amplitude A2 of mode 2 as a function of the
frequency detune ϵ of the drive on mode 2 for pump voltages of
5.54 (blue lines), 6 (red lines), 7 (green lines), and 10 mV (orange
lines). Stable and unstable solutions to Eq. (3) with _u1 ¼ _u2 ¼ 0
are plotted as solid and dashed lines, respectively. The black
squares illustrate one way to access the lower branch for a pump
voltage of 10 mV: ϵ is adjusted lower as the drive amplitude is
increased. (b) Corresponding vibration amplitude for the period-
tripled vibrations in mode 1. Insets: enlargement of a pump
voltage of 5.54 mV. Solutions for zero vibration amplitude for
mode 1 are omitted in both panels.
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frequency detune ϵ in which period-tripled vibrations of
mode 1 are stable, at a pump amplitude of 6 mV. When the
pump amplitude is increased to 9 mV, it is possible to excite
a second branch of period-tripled states, as illustrated by the
light red region in Fig. 7(b).

APPENDIX F: ENERGY TRANSFER TO
MODE 1 WHEN MODE 2 IS UNDER

PARAMETRIC MODULATION

When the resonant drive on mode 2 in Eq. (2) is replaced
by parametric modulation of its eigenfrequency, the equa-
tions of motion are modified to

θ̈1 þ 2Γ1
_θ1 þ ω2

1θ1 þ
γ1
I1
θ31 þ 3

γ

I1
θ21θ2 þ

γ̃

I1
θ1θ

2
2 ¼ 0;

θ̈2 þ 2Γ2
_θ2 þ

�
ω2
2 þ

ke
I2

cos ðωptÞ
�
θ2

þ γ2
I2
θ32 þ

γ

I2
θ31 þ

γ̃

I2
θ21θ2 ¼ 0; ðF1Þ

where ke ¼ −C00Vdc2Vac2 is the amplitude of the modula-
tion of the torsional spring constant, C00 is the second
derivative of the capacitance between plate 2 and the
driving electrode with respect to θ2, and Vac2 (80 mV) is
the amplitude of the periodic ac voltage applied to the
driving electrode. With the modulation frequency ωp close

to 2ω2, we change from θðtÞ and _θðtÞ to complex
amplitudes θ1ðtÞ ¼ u1ðtÞ exp ½iðωp=6Þt� þ c:c: and θ2ðtÞ ¼
u2ðtÞ exp ½iðωp=2Þt� þ c:c:, respectively. Under the rotating
wave approximation, u1;2ðtÞ evolves according to

_u1 þ i

�
ϵ

3
þ ϵ1

�
u1 þ Γ1u1 − i

�
3γ11
2ω1

�
u1ju1j2

− i

�
3γ12
ω1

�
u�1

2u2 − i

�
γ̃12
ω1

�
u1ju2j2 ¼ 0;

_u2 þ iϵu2 − i
ω2ke
4I2

u�2 þ Γ2u2 − i

�
3γ22
2ω2

�
u2ju2j2

− i

�
γ21
ω2

�
u31 − i

�
γ̃21
ω2

�
u2ju1j2 ¼ 0: ðF2Þ

The stationary states and their stability are determined
using the procedure described in Appendix B.
Figure 8(a) plots stable vibration states and saddle points

for mode 2 as solid and dashed lines, respectively. For each
branch, there are two vibrational states that are opposite in
phase and period-doubled with respect to the parametric
modulation. The ordinary parametric resonance of mode 2
[black results in Fig. 3(a)] is omitted for clarity. Figure 8(b)
shows similar plots for mode 1, where the vibrational states
are period-sextupled with respect to the parametric modu-
lation. At both the low- and high-frequency ends of the
stable branch, the stable states merge with the correspond-
ing saddle points in saddle-node bifurcations.
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