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It has been proposed that an extended version of the Hubbard model which potentially hosts rich
correlated physics may be well simulated by the transition metal dichalcogenide (TMD) moiré
heterostructures. Motivated by recent reports of continuous metal-insulator transition (MIT) at half
filling, as well as correlated insulators at various fractional fillings in TMD moiré heterostructures, we
propose a theory for the potentially continuous MIT with fractionalized electric charges. The charge
fractionalization at the MITwill lead to various experimental observable effects, such as a large resistivity
as well as large universal resistivity jump at the continuous MIT. These predictions are different from
previously proposed theory for interaction-driven continuous MIT. Physics in phases near the MITwill also
be discussed.
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I. INTRODUCTION

Many correlated phenomena have been observed in
graphene-based moiré systems, such as high temperature
superconductivity (compared with the bandwidth of the
moiré bands), correlated insulators [1–9], and the strange
metal phase [10,11], etc. The most fundamental reason for
the emergence of these correlated physics is that the slow
modulating moiré potential leads to very narrow band-
widths [12,13]. Great theoretical interests and efforts
have been devoted to the graphene-based moiré systems
[14–31]. But the theoretical description and understanding
of the graphene-based moiré systems may be complicated
by the fact that in the noninteracting limit the moiré
minibands can have various types of either robust or fragile
nontrivial topologies [32–40], although the exact role of the
band topology to the interacting physics at fractional filling
is not entirely clear. Hence similar narrow band systems
with trivial band topology and unambiguous concise
theoretical framework would be highly desirable. It was
proposed that much of the correlated physics of the
transition metal dichalcogenide (TMD) moiré heterostruc-
ture can be captured by an extended Hubbard model
with an effective spin-1=2 electron on a triangular moiré
lattice [41]:

H ¼
X
r;r0;α

− tr;r0c
†
r;αcr0;α þ H:c:þ

X
r

Unr;↑nr;↓ þ � � � : ð1Þ

The electron operator cr;α is constructed by states within a
topologically trivial moiré miniband. Because of the strong
spin-orbit coupling, the spin and valley degrees of freedom
are locked with each other in the TMD moiré system. We
will use α ¼↑;↓ or 1,2 to denote two spin or equivalently
two valley flavors. When a moiré band is partially filled, the
correlated physics within the partially filled moiré mini-
bands may be well described by Eq. (1), which only
contains half of the degrees of freedom of a miniband in
a graphene-based moiré system. The ellipsis in Eq. (1) can
include further neighbor hopping, “spin-orbit” coupling
terms allowed by symmetry [42], and further neighbor
interaction. Note the spin-orbit coupling here refers to the
hopping terms in Eq. (1) that depend on the spin index α
and should not be confused with the bare spin-orbit
coupling within the TMD system before the moiré super-
lattice is imposed. The TMD moiré systems are hence
considered as a simulator for the extended Hubbard model
on a triangular lattice [43].
Like the graphene-based moiré systems, the TMD moiré

heterostructure is a platform for many correlated physics.
This paper mainly concerns the metal-insulator transition
(MIT) driven by interaction. The MIT of the Hubbard
model on a triangular lattice has attracted much numerical
effort recently [44,45]. The symmetry of the TMD moiré
heterostructure is different from the simplest version of the
Hubbard model; hence even richer physics can happen
in the system. Continuous MIT has been reported at half
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filling of the moiré bands (electron filling ν ¼ 1=2, or one
electron per moiré unit cell on average) in the TMD moiré
system [46,47]. The experimental tuning parameter of the
MIT in the TMD heterostructure is the displacement field,
i.e., an out-of-plane electric field, which tunes the width of
the mini moiré bands, and hence the ratio between the
kinetic and interaction energies in the effective Hubbard
model. Correlated insulators have also been observed at
various other fractional electron fillings, though the nature
of the MITs at these fractional fillings have not been
thoroughly inspected experimentally [48–51]. In this paper
we mainly focus on ν ¼ 1=2, but other fractional fillings
are also briefly discussed.
The nature of an interaction-driven MIT depends on the

nature of the insulator phase near the MIT. The Hubbard
model on the triangular lattice has one site per unit cell,
which based on the generalized Lieb-Schultz-Matthis
(LSM) theorem [52,53] demands that the insulator phase
at half filling should not be a trivial incompressible
(gapped) state which preserves the translation symmetry.
If the insulator phase has a semiclassical spin order that
breaks the translation symmetry, the evolution between
the metal and insulator could involve two transitions: at the
first transition a semiclassical spin order develops, which
reduces the Fermi surface to several Fermi pockets; and at
the second transition the size of the Fermi pockets shrink
to zero, and the system enters an insulator phase. A more
interesting scenario of the MIT only involves one single
transition [54–56], but then the insulator phase is not a
semiclassical spin order, instead it is a spin liquid state
with a spinon Fermi surface. An intuitive picture for this
transition is that, at the MIT, the charge degrees of freedom
are gapped, but the spins still behave as if there is a “ghost”
Fermi surface. The spinon Fermi surface can lead to the
Friedel oscillation just like the metal phase [57]. The
structure of the Fermi surface does not change drastically
across the transition.
In a purely two-dimensional system, conductivity

(or resistivity) is a dimensionless quantity; hence it can
take universal value at the order of e2=h (or h=e2) in various
scenarios. For example, the Hall conductivity of the
quantum Hall state is precisely σH ¼ νe2=h; the conduc-
tivity (or resistivity) at a ð2þ 1ÞD quantum critical point
also takes a universal value at the order of e2=h (or h=e2)
[58]. One central prediction given by the theory above for
interaction-driven continuous MIT is that there is a uni-
versal resistivity jump at the order of ∼h=e2 at the MIT
compared with the metal phase, and the critical resistivity
at the MIT should also be close to the order of h=e2 (we
review these predictions in the next section). In this paper
we argue that the current experimental observations suggest
that the nature of the MIT in MoTe2=WSe2 moiré super-
lattice without twisting [46] is beyond the previous theory
[54–56], and we propose an alternative candidate theory of
MITwith further charge fractionalizations. We will discuss

how the alternative theory can potentially address the
experimental puzzles, and more predictions based on our
theory will be made. Our assumption is that the MIT in this
system is indeed driven by electron-electron interaction
(as was suggested by Ref. [46]): If the disorder plays the
dominant role in this system, the MIT may be described by
the picture discussed in Ref. [59].
The paper is organized as follows: In Sec. II we introduce

an alternative parton construction for systems described by
the extended Hubbard model with a spin-orbit coupling,
which naturally leads to charge fractionalization at the
interaction-driven MIT even at half filling. We also give an
intuitive argument of physical effects caused by charge
fractionalization at the MIT. In Sec. III, we discuss the
theory for MIT when the insulating phase spontaneously
breaks the translation symmetry. Section IV studies the
theory of MIT when the insulating phase has different
types of topological orders. In Sec. V we discuss various
experimental predictions based on our theory, for the MIT
and also the phases nearby. We present the details of
our theory in Appendixes A–D, including the projective
symmetry group, field theories, the calculation of dc
resistivity, etc.

II. TWO PARTON CONSTRUCTIONS

The previous theory for the interaction-driven continu-
ous MIT for correlated electrons on frustrated lattices was
based on a parton construction. The parton construction
splits the quantum number of an electron into a bosonic
parton which carries the electric charge, and a fermionic
parton which carries the spin. In this paper we compare two
different parton constructions:

I∶ cr;α ¼ brfr;α; II∶ cr;α ¼ br;αfr;α: ð2Þ

In parton construction I only one species of charged
bosonic parton b is introduced for electrons with both
spin-valley flavors, while in parton construction II a
separate charged bosonic parton bα is introduced for each
spin-valley flavor. As we will see later, the two different
parton constructions will lead to very different observable
effects. The construction I is the standard starting point
of the theory of MIT that was used in previous literature
[54–56]; construction II is usually unfavorable for systems
with a full spin SU(2) invariance, because the parton
construction itself breaks the spin rotation symmetry.
But the construction II is a legitimate parton construction
for the system under study, whose band structure in general
does not have full rotation symmetry between the two spin-
valley flavors.
The time-reversal symmetry of the microscopic TMD

system relates the two spin-valley flavors. But it is not
enough to guarantee a full SU(2) rotation symmetry
between the two flavors. In fact, since the two flavors
can be tied to the two valleys of the TMD material, the
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trigonal warping of the TMD bands, which takes opposite
signs for the two different valleys, can lead to the breaking
of such an SU(2) rotation symmetry. To estimate the
trigonal warping effect in the Hubbard model, one can
compare the k2 term and the k3x − 2kxk2y term in the electron
dispersion of one of the two layers in the heterostructure
expanded at one valley. Then the relative strength of
the trigonal warping compared to the SU(2)-invariant
hopping in Eq. (1) is given by the ratio between the lattice
constant of the original TMD material and that of the morié
superlattice. In addition, the natural microscopic origin of
the interactions in the Hamiltonian Eq. (1) is the Coulomb
interaction between the electrons. The Coulomb interaction
when projected to the low-energy bands relevant to the
moiré-scale physics is expected to contain SU(2)-breaking
interaction terms. The momentum conservation only guar-
antees the valley U(1) symmetry. Assuming the unscreened
Coulomb interaction between electrons before the projec-
tion to the low-energy bands, further neighbor interaction
will appear in the extended Hubbard model. The relative
strength of the SU(2)-breaking interaction terms obtained
from the projection compared to the SU(2)-invariant
interactions can again be estimated by the ratio between
the lattice constant of the original TMD material and the
moiré superlattice, as the Fourier transform of unscreened
Coulomb interaction in 2D space is Vq ∼ 1=q.
The most important difference between these two parton

theories resides in the filling of the bosonic partons. Since
each bosonic parton carries the same electric charge as an
electron, the total number of bosonic partons should equal
to the number of electrons. Hence at electron filling ν
(meaning 2ν electrons per unit cell), the filling factor
of boson b in construction I is νb ¼ 2ν, i.e., 2ν bosonic
parton per unit cell; in construction II the filling factor of
boson bα has filling factor ναb ¼ ν for each spin-valley
flavor. Hence even with one electron per site (half filing or
ν ¼ 1=2 of the extended Hubbard model), the bosonic
parton in construction II is already at half filling for each
spin-valley flavor. The half filling will lead to nontrivial
features inside the Mott insulator phase, as well as at the
MIT. Another more theoretical difference is that in con-
struction I there is one dynamical emergent U(1) gauge
field aμ which couples to both b and fα, while in
construction II there are two dynamical U(1) gauge fields
aα;μ, one for each spin-valley flavor.
In construction I, the bosonic parton b is at integer

filling, and the MIT is naturally interpreted as a superfluid
to Mott insulator (SF-MI) transition of boson b. At the MIT,
using the Ioffe-Larkin rule [60], the dc resistivity of system
is ρ ¼ ρb þ ρf, where ρb and ρf are the resistivity con-
tributed by the bosonic and fermionic partons, respectively.
ρf caused by disorder or interaction such as the umklapp
process is a smooth function of the tuning parameter; the
drastic change of ρ across the MIT arises from ρb. In the
metal phase, i.e., the “superfluid phase” of b, ρb is zero, and

the total resistivity is just given by ρf. Also, in the
superfluid phase of b, the U(1) gauge field aμ that couples
to both b and fα is rendered massive due to the Higgs
mechanism caused by the condensate of b. In the insulator
phase, ρb and ρ are both infinity, and the system enters a
spin liquid phase with a spinon Fermi surface of fα that
couples to the dynamical U(1) gauge field aμ. The MIT
which corresponds to the condensation of b belongs to the
3D XY universality class. The dynamical gauge field aμ is
argued to be irrelevant at the transition due to the over-
damping of the gauge field that arises from the spinon
Fermi surface [55,56], and hence does not change the
universality class of the SF-MI transition of b.
In parton construction I, at the MIT the bosonic parton

contribution to the resistivity ρb is given by ρb ¼ Rh=e2,
where R is an order-1 universal constant. In the order of
limit T → 0 before ω → 0, R is associated to the 3D XY
universality class [61], because the gauge field aμ is
irrelevant as mentioned above. This universal conductivity
at the 3D XY transition has been studied through various
analytical and numerical methods [58,62–69]. At finite T
and zero frequency, the gauge field aμ can potentially
enhance the value R to R0 > R, based on a large-N
calculation in Ref. [70] (N is different from N in our
work). The evaluation in Ref. [70] gave R0 ∼ 7.92, while we
evaluate the same quantity to be R0 ∼ 7.44. Hence the
prediction of the construction I is that the dc resistivity of
the system right at the MIT has a universal jump compared
with the resistivity at the metallic phase close to the MIT
[55,56]; i.e., Δρ ¼ ρb ¼ R0h=e2. With moderate disorder,
at the MIT ρb of the bosonic parton is supposed to dominate
the resistivity ρf of the fermionic parton fα; hence the total
resistivity ρ ¼ ρb þ ρf should be close to ρb.
In the experiment on the MoTe2=WSe2 moiré super-

lattice, it was reported that disorder in the system is playing
a perturbative role, and the continuous MIT is mainly
driven by the interaction [46]. However, the reported
resistivity ρ increases rapidly with the tuning parameter
(the displacement field) near the MIT. The bare value of ρ
near and at the MIT is significantly greater than h=e2 (and
significantly larger than the computed value of ρb ∼ R0h=e2
mentioned above), and it is clearly beyond the Mott-Ioffe-
Regel limit; i.e., the system near and at the MIT is a very
“bad metal” [71,72]. This suggests that the MIT is not a
simple SF-MI transition of b, or in other words, b should be
“much less conductive” compared with what was predicted
in construction I considered in previous literature. We will
demonstrate that construction II can potentially address the
large resistivity at the MIT. The most basic picture is that,
since b1 and b2 are both at half filling, the LSM theorem
[52,53] dictates that the Mott insulator phase of each flavor
of boson cannot be a trivial insulator; namely, the Mott
insulator must either be a density wave that spontaneously
breaks the translation symmetry or have topological order.
In either case, the MIT is not a simple 3D XY transition, and
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the most prominent feature of the transition is that the
bosonic parton number (or the electric charge) must further
fractionalize.
The MIT with charge fractionalization is discussed in

detail in the next section using the dual vortex formalism,
but the consequence of this charge fractionalization can be
understood from a rather intuitive picture. Suppose b
fractionalizes into N parts at the MIT, meaning the charge
carriers at the MIT have charge e� ¼ e=N, then each charge
carrier will approximately contribute a resistivity at the
order of h=e2� ∼ N2h=e2 at the MIT; and if there are in total
Nb species of the fractionalized charge carriers, at the MIT
the bosonic parton will approximately contribute resistivity,

ρb ∼
N2h
Nbe2

: ð3Þ

There is a factor of Nb in the denominator because
intuitively the total conductivity of b will be a sum of
the conductivity of each species of fractionalized charge
carriers, i.e., σb ¼

PNb
j¼1 σj, in the unit of e2=h (a more

rigorous rule of combining transport from different partons
will be discussed later). Hence, when N2=Nb > 1, the
construction II with inevitable charge fractionalization can
serve as a natural explanation for the large ρ at the MIT, and
it will also predict a large jump of resistivity Δρ at the MIT.

III. MOTT INSULATOR WITH TRANSLATION
SYMMETRY BREAKING

A. General formalism

In this section, we discuss the MIT following the parton
construction II discussed in the previous section. The MIT
is still interpreted as the SF-MI transition of both spin-
valley flavors of the bosonic parton bα, although as we
discussed previously the insulator cannot be a trivial
incompressible state of bα. In the superfluid phase of bα,
both U(1) gauge fields a1;μ and a2;μ that couple to the two
flavors of partons are gapped out by the Higgs mechanism,
and the system enters a metal phase of the electrons; b1 and
b2 must undergo the SF-MI transition simultaneously,
since the time-reversal or spatial reflection symmetries
both interchange the two flavors of partons due to the
spin-valley locking.
The dual vortex theory [73–75] is the most convenient

formalism that describes a transition between a superfluid
and a nontrivial insulator of a boson at fractional filling. If
we start with a boson b, after the boson-vortex duality, a
vortex of the superfluid phase of b becomes a point particle
that couples to a dynamical U(1) gauge field Aμ, which is
the dual of the Goldstone mode of the superfluid [not to be
confused with the U(1) gauge field aμ mentioned before
that couples to the bosonic parton b]. In the dual picture, the
superfluid phase of b (which corresponds to the metal
phase of the electron) is the insulator phase of the vortex

field, while the Mott insulator phase of b corresponds to the
condensate of the vortices, which “Higgses” the U(1) gauge
field Aμ, and drives the boson b into a gapped insulator
phase. If at low energy there is only one component of
vortex field with gauge charge 1 under Aμ (which corre-
sponds to integer filling of boson b), the insulator phase of
b is a trivial insulator without any further symmetry
breaking or topological order; if there is more than one
component of the vortex fields at low energy, or if the
vortex field carries multiple gauge charges of Aμ, the
insulator must be of nontrivial nature.
For example, when b has a fractional filling νb ¼ 1=q

with integer q, Refs. [76,77] studied the quantum phase
transition between the bosonic SF and various MIs with
commensurate density waves which spontaneously break
the translation symmetry but have no topological order. The
study is naturally generalized to filling factor νb ¼ p=q
with coprime integers ðp; qÞ. We can use this formalism in
our system. Hereafter we focus on one spin-valley flavor α,
and the index α will be hidden for conciseness. In this
case the theory for the SF-MI transition at one spin-valley
flavor is

Lð1Þ ¼
XN−1

j¼0

½jð∂μ − iAμÞψ jj2 þ rjψ jj2� þ u

�XN−1

j¼0

jψ jj2
�2

þ i
2π

A ∧ dðaþ eAextÞ þ � � � : ð4Þ

Here, ψ j with j ∈ f0;…; N − 1g are N flavors of vortex
fields of the boson b at low energy, and Aμ is the dual gauge
field of boson b: ½1=ð2πÞ�dA ¼ Jb, where Jb is the current
of boson b. aμ is the gauge field that couples to both b and
f, and Aext is the external electromagnetic field. The reason
there are N flavors of the vortex field is that the vortex
which is defined on a dual honeycomb lattice will view the
partially filled boson density as a fractional background
flux of the dual gauge field Aμ through each hexagon, and
the band structure of the vortex will have multiple minima
in the momentum space. The degeneracy of the multiple
minima is protected by the symmetry of the triangular
lattice. ψ j transforms as a representation of the projective
symmetry group (PSG) of the lattice. Note that since Eq. (4)
describes one of the two spin-valley flavors, the PSG that
constrains Eq. (4) should include translation and 2π=3
rotation of the lattice (R2π=3). There is another more subtle
symmetry PxT for each spin-valley flavor of the boson and
vortex fields. Px that takes x → −x and time-reversal T
both exchange the two spin-valley indices, but their product
will act on the same spin-valley species, and part of its role
is to take momentum ky to −ky.
In the Appendix B, we argue that Py which takes y to −y

within each valley is also a good symmetry of the system,
as long as valley mixing is negligible. One consequence of
the Py symmetry is that the expectation value of gauge flux
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da can be set to zero for the theory Eq. (4), or equivalently
the Py symmetry ensures that the “chemical potential” term
ψ�
j∂τψ j does not appear in Eq. (4), as Py transforms a vortex

to antivortex: ψa → Uabψ
�
b. Also, with long moiré lattice

constant, the trigonal warping k3x − 3kxk2y in each valley of
the original BZ of the system becomes less important
compared with the leading-order quadratic dispersion
expanded at each valley; hence the sixfold rotation Rπ=3

becomes a good approximate symmetry of the effective
Hubbard model with long moiré lattice constant.
The theory in Eq. (4) also has an emergent particle-

hole symmetry. The simplest choice of the particle-
hole symmetry is ψa → Uabψ

�
b, A → −A, a → −a, and

Aext → −Aext. Although we used the same transformation
matrix Uab as Py, this emergent particle-hole symmetry is
different from Py as it does not involve any spatial trans-
formations. Note that any (spatially uniform) Py-symmetric
terms involving only the “matter fields” ψ j must also
preserve this emergent particle-hole symmetry. Another
potentially relevant particle-hole symmetry-breaking pertur-
bation that needs to be examined is given by the finite den-
sity of the fluxes dA. dA is tied to the physical U(1) charge
density (compared to the charge density set by the fixed
electron filling ν ¼ 1=2) and hence should have a vanishing
spatial average. At the SF-MI transition point, the translation
symmetry of the theory Eq. (4) and the fact that dA has a
vanishing spatial average guarantee that dA has a vanishing
expectation value everywhere, which respects the particle-
hole symmetry. Therefore, the particle-hole symmetry is a
valid emergent symmetry at the SF-MI critical point
described by Eq. (4). The same argument would also
conclude the emergent particle-hole symmetry at the ordi-
nary SF-MI transition in the Bose-Hubbard model.
For parton construction II, when the electron has filling

ν ¼ 1=2, both b1 and b2 are at filling ναb ¼ 1=2. For each
flavor of bα, the formalism in Ref. [77] would lead to a dual
vortex theory with N ¼ 4 components of vortex fields;
i.e., there are four degenerate minima of the vortex band
structure in the momentum space for each spin-valley
index. This calculation is analogous to the frustrated
Ising model on the honeycomb lattice [78,79]. Using the
gauge choice of Fig. 1, the four minima are located at the K
and K0 points of the reduced Brillouin zone, with twofold
degeneracy at each point.

B. From N = 4 to “N =∞”

Reference [77] considered a specific band structure
of the vortex, which only involved the nearest neighbor
hopping of vortices on the dual honeycomb lattice. But
there is no fundamental reason that further neighbor
hopping of vortices should be excluded. Indeed, once
we take into account further neighbor hopping, the dual
vortex theory has a much richer possibility. We have
explored the phase diagram of the dual vortex theory up

to seventh neighbor hopping, and we obtained the phase
diagram in Fig. 2(a). Further neighbor hopping of the
vortex field can modify the band structure and lead to
N ¼ 6 or N ¼ 12 components of vortex fields by choosing
different hopping amplitudes. The N ¼ 6 minima are
located at three inequivalent M points of the reduced BZ
(Fig. 2), each M point again has twofold degeneracy. The
twofold degeneracy at each M point is protected by the
translation symmetry of the triangular moiré lattice only,
which is required by the LSM theorem. The shift of the
vortex field minima from theK points toM points is similar
to what was discussed in the context of frustrated quantum
Ising models with further neighbor couplings [80,81].
With symmetries T1;2, R2π=3, and PxT at each spin-valley
flavor, the degeneracy of the N ¼ 6minima at theM points
are protected.
There are two regions in the phase diagram in Fig. 2(b)

with N ¼ 12 modes of vortex, two at each momentum.

FIG. 1. The triangular moiré lattice, and its dual honeycomb
lattice. In the parton construction II, the bosonic parton bα is at
half filling for each spin-valley flavor, which becomes a π flux
of the dual gauge field Aμ through the hexagon of the dual
honeycomb lattice. Hence the vortex ψ defined on the dual
honeycomb lattice does not have a uniform hopping amplitude;
the dashed links on the dual honeycomb lattice have negative
hopping amplitudes. The symmetry of the lattice will be realized
as a projective symmetry group. There are eight dual sites per unit
cell (shaded area) in this gauge choice. At each spin-valley flavor,
there are translation symmetries T1;2, a rotation symmetry R2π=3,
and a product of reflection Pxðx → −xÞ and time reversal T . We
also argue that Py is a symmetry of the system as long as there is
no valley mixing, and the sixfold rotation Rπ=3 becomes a good
approximate symmetry of the Hubbard model in the case of long
moiré lattice constant.
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The six incommensurate momenta at the minima of the
vortex band structure can be located either on the lines
between Γ and K=K0 or Γ and M. With the Rπ=3 symmetry
that becomes a good approximate symmetry with long
moiré lattice constant, the degeneracy of the N ¼ 12 vortex
modes is protected. In principle, all the symmetries together
including Rπ=3 can protect up to N ¼ 24 degenerate
minima, as shown in Fig. 2(d).
For a theory with N components of vortex fields, the

electric charge carried by the boson b will fractionalize.
Under the boson-vortex duality ½1=ð2πÞ�dA ¼ Jb, the
boson number of b becomes the flux number of the dual
gauge field Aμ. The gauge flux of Aμ is trapped at the vortex
core of each field ψ j (we denote the vortex of ψ j as φj).
With N components of the vortex fields, the vortex of each
ψ j field will carry 1=N flux quantum of the gauge field Aμ;
hence the charge e� of each fractionalized charge carrier
should be e=N at the MIT. And there are in total Nb ¼ 2N
species of the charge carriers (the factor of 2 comes from
the two spin-valley flavors).
With just t1 and t2 (first and second neighbor vortex

hopping), there is a large region of the parameter space
where the minima of the vortex band structure form a ring.
This one-dimensional ring degeneracy is not protected by

the symmetry of the system, but its effect may still be
observable for a finite energy range. A ring degeneracy is
analogous to N ¼ ∞ in Eq. (4). Condensed matter systems
with a ring degeneracy have attracted considerable interests
[82–85]. By integrating out the vortices with ring degen-
eracy, a “mass term” for the transverse component of Aμ is
generated in the infrared limit [85] (in the limit of
momentum going to zero before frequency), meaning the
fluctuation of Aμ is highly suppressed, which is consistent
with the intuition of N ¼ ∞.
The ellipsis in Eq. (4) includes other terms allowed by

the PSG of the triangular lattice, but break the enlarged
flavor symmetry of the CPN−1 model field theory. More
details about PSG, extra terms in the Lagrangian, coupling
to fermionic parton fα [86], and the possible valence bond
solid orders with N ¼ 6 are discussed in Appendixes A
and B. The exact fate of the critical theory in the infrared
is complicated by these extra perturbations. It was shown
previously that nonlocal interactions can drive a transi-
tion to a new fixed point [87–89], and here nonlocal
interactions arise from coupling to the fermionic partons
[86]. Hence the transition may eventually flow to a CFT
different from the CPN−1 theory in Eq. (4), or be driven to
a first-order transition eventually. But as long as the
first-order nature is not strong, the charge fractionali-
zation and large resistivity discussed in the next section
is expected to hold at least for a considerable energy-
temperature window.
So far we have not paid much attention to the dynamical

gauge fields aμ in parton construction I or aα;μ in con-
struction II shared by the bosonic and fermionic partons, as
the gauge coupling between b (bα) and the gauge field is
irrelevant at the MIT with a background spinon Fermi
surface. Here we briefly discuss the fate of the spinon Fermi
surface in the insulator phase. When the bosonic parton b
is gapped, the theory of spinon Fermi surface coupled with
the dynamical U(1) gauge field is a problem that has
attracted a great deal of theoretical efforts [90–96]. These
studies mostly rely on a “patch” theory approximation of
the problem, which zooms in one or two patches of the
Fermi surface. Then an interacting fixed point with a
nonzero gauge coupling is found in the IR limit based
on various analytical perturbative expansion methods.
Previous studies have also shown that the non-Fermi

liquid obtained through coupling a Fermi surface to a
dynamical bosonic field can be instable against BCS
pairing of fermions [97–103]. If there is only one flavor
of U(1) gauge field, the low-energy interacting fixed point
is expected to be robust against this pairing instability,
because the U(1) gauge field leads to repulsive interaction
between the spinons. However, when there are two flavors
of U(1) gauge fields [103,104], like the case in our parton
construction II, the two U(1) gauge fields can lead to
interflavor spinon pairing instability. This interflavor pair-
ing can still happen at the MIT. But depending on the

FIG. 2. (a) The minima of the vortex band structure. With
nearest neighbor vortex hopping on Fig. 1, the minima locate at
the K and K0 points of the Brillouin zone, each K point has two
fold degeneracy; with further neighbor hoppings, the minima can
shift to the three M points, still with twofold degeneracy at each
M point. (b) The phase diagram of vortex modes with seventh
neighbor hopping t7 ¼ 0.1t1, and by tuning t2 there are two
regions in the phase diagram with N ¼ 12 vortex modes at low
energy. The 12 vortex modes are located on the lines between
either Γ and K=K0 or Γ and M. (c) With only t1 and t2, there is a
large region of the phase diagram where there is a ring
degeneracy of the vortex band structure. (d) All the symmetries
(including approximate symmetries) of the system can protect up
to 24 degenerate vortex modes, which locate at 12 incommensu-
rate momenta in the BZ.
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microscopic parameters this instability can happen at rather
low-energy scale.

C. Resistivity at the MIT

For low frequency and temperature, the resistivity of a
system is usually written as ρðxÞ with x ¼ ω=T. The dc
conductivity at zero temperature corresponds to x ¼ 0, i.e.,
the limit ω → 0 before T → 0. As we have mentioned, the
interaction-driven MIT has a jump of resistivity at the MIT
compared with the metal phase near MIT, and this jump is
given by the resistivity ρb of the bosonic parton bα. For a
bosonic system with an emergent particle-hole symmetry
in the infrared, ρbðxÞ with x ¼ 0 or x ¼ ∞ have attracted
most studies. In general, both ρbð0Þ and ρbð∞Þ should be
universal numbers at the order of ∼h=e2. The reason ρbð0Þ
could be finite even without considering disorder and
umklapp process is that, with an emergent particle-hole
symmetry in the infrared discussed in the previous section,
there is zero overlap between the electric current and
the conserved momentum density (extra subtleties about
this from hydrodynamics are discussed in Sec. VI).
The universal ρbð0Þ was evaluated in Ref. [70] for the
interaction-driven MIT without charge fractionalization.
The calculation therein was based on Boltzmann equation
in a theoretical large-N limit and eventually N was taken to
1 (we remind the readers that the N introduced in Ref. [70]
was for technical reasons; it is not to be confused with N
used in this work).
We have generalized the computation in Ref. [70] to

our case with N components of vortex fields and charge
fractionalization. To proceed with the computation we need
to turn on “easy-plane” anisotropy to Eq. (4) and perform
duality to the basis of fractional charge carriers φj

[Eq. (C5)]. The φj will be coupled to multiple gauge fields
which are the dual of the ψ j fields. Eventually the total
resistivity ρbð0Þ is obtained through a generalized Ioffe-
Larkin rule, which combines the resistivity of each parton
φj into ρb:

ρb ¼
ℏ
e2

�XN−1

j¼0

ρb;j

�
: ð5Þ

ρb;j is the resistivity of each charge carrier φj when its
charge is taken to be 1. The detail of the computation is
presented in the Appendix D, and we summarize the results
here. For N flavors of vortices in Eq. (4), the resistivity
ρbð0Þ at the MIT roughly increases linearly with N, as was
expected through the intuitive argument we gave before:

ρbð0Þ ¼ Δρ ¼ ½Rð0Þ þ Rð1ÞðN − 1Þ� h
e2

; ð6Þ

where Rð0Þ ∼ 3.62, Rð1Þ ∼ 1.68. We would like to compare
our prediction with the previous theory of MIT without
charge fractionalization. In the previous theory, the dc

resistivity jump is evaluated to be Δρ ∼ 7.92h=e2 [70] (we
reproduced this calculation and our result at N ¼ Nb ¼ 1 is
7.44h=e2). Equation (3) suggests that when N ≥ 4, the
resistivity jump in our case is indeed larger than that
predicted by the previous theory of MIT.
We would also like to discuss the ac resistivity ρbð∞Þ.

One way to evaluate ρbð∞Þ is to again start with Eq. (C5),
and follow the same strategy as the calculation of the dc
resistivity. According to the generalized Ioffe-Larkin rule,
the ac resistivity contributed by each valley is given by

ρb ¼ N
1

σφ

ℏ
e2

; σφ ¼ lim
ω→0

1

iω
hJφωJφ−ωip⃗¼0; ð7Þ

where Jφ ¼ iφ�
j∇φj þ H:c: is the current of the charge

carrier φj. With the theoretical large-N limit mentioned
above, the effects of all the dynamical gauge fields
are suppressed, and φj will contribute conductivity
σφð∞Þ ¼ 1

16
[contrary to dc transport, σφð∞Þ does not

need collisions; the effects of dynamical gauge fields can be
included through the 1=N expansion]. Eventually one
would obtain resistivity from each valley,

ρb ¼
8N
π

h
e2

; ð8Þ

the final resistivity of the system is half of Eq. (8) due to the
two spin-valley flavors. With N ¼ 1, the transition should
belong to the ordinary 3D XY universality class, and the
value given by Eq. (8) is not far from what was obtained
through more sophisticated methods (see, for instance,
Refs. [63–65], ρb ∼ 2.8h=e2). This should not be surprising
as the 3D XY universality class can be obtained perturba-
tively from the free-boson theory. In our current case with
charge fractionalization, with N ≥ 4, the total ac resistivity
which is half of the value in Eq. (8) is larger than the
universal resistivity at the 3D XY transition.
Another way to evaluate the resistivity of Eq. (4) is by

integrating out ψ j from Eq. (4), and an effective Lagrangian
for Aμ is generated:

L ¼
X
pμ

Np
16

�
δμν −

pμpν

p2

�
AμðpÞAνð−pÞ: ð9Þ

This effective action is supposed to be accurate in the
limit of N → ∞. The electric current carried by b is
Jb ¼ ðe=2πÞdA; hence the current-current correlation can
be extracted from the photon Green’s function based on the
effective action Eq. (9):

ρb;N→∞ ¼ πN
8

h
e2

: ð10Þ

Again the final resistivity of the system is half of Eq. (10)
due to the two spin-valley flavors. The evaluation Eq. (10)
is still proportional to N just like Eq. (8). These two
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different evaluations discussed above give different values
for N ¼ Nb ¼ 1, and compared with the known value of
the universal resistivity at the 3D XY transition, the
evaluation in Eq. (8) is much more favorable, though the
evaluation Eq. (10) based on Eq. (9) is supposed to be
accurate with large N.
When there is a ring of degeneracy in the vortex band

structure, as we mentioned before the gauge field Aμ will
acquire a “mass term” after integrating out ψ j [85]. In this
case the resistivity of the system at the MITwill be infinity,
as the dynamics of Aμ is fully suppressed by the mass term
in the infrared. One can also integrate out the action of Aμ

with the mass term, and verify that the response theory of
Aext is no different from that of an insulator in the infrared
limit. This is consistent with both Eqs. (8) and (10) by
naively taking N to infinity. In Ref. [85] when the boson
field has a ring degeneracy, the phase is identified as a Bose
metal; this is because in Ref. [85] it is the boson with ring
degeneracy that carries charges. But in Eq. (4) the electric
charge is carried by the flux of Aμ.

IV. MOTT INSULATOR WITH
TOPOLOGICAL ORDER

As we explained in the previous section, due to the
fractional filling of boson bα, the vortex dynamics is
frustrated by the background fractional flux through the
hexagons. To drive the system into an insulator phase,
the vortex can either condense at multiple minima in the
BZ, as was discussed in the previous section, or form a
bound state that carries multiple gauge charge of Aμ and
become “blind” to the background flux. In parton con-
struction II, with electron filling ν ¼ 1=2, each flavor of
boson is at filling νb ¼ 1=2. The double vortex, i.e., bound
state of two vortices, or more generally the bound state
of N vortices with even integer N, no longer sees the
background flux. Hence the N vortex can condense at zero
momentum, and its condensate will drive the system into a
ZN topological order.
After the boson-vortex duality, the theory for the

N-vortex condensation at one of the two spin-valley
flavors is

Lð2Þ ¼ jð∂μ − iNAμÞψ j2 þ rjψ j2 þ gjψ j4

þ i
2π

A ∧ dðaþ eAextÞ þ � � � : ð11Þ

The condensate of ψ will break the U(1) gauge field to a ZN
gauge field, whose deconfined phase has a nontrivial ZN
topological order. In the ZN topological order as well as
at the MIT, the charge carrier is an anyon of the ZN
topological order, and it carries charge e� ¼ e=N. We still
label the fractional charge carrier as φ. φ carries charge
e=N, and is coupled to a ZN gauge field originated from the
ZN topological order discussed in the previous paragraph.

In our case, in order to preserve the time-reversal
symmetry, both spin-valley flavors should form a ZN
topological order simultaneously. Hence there is one
species of φα field for each spin-valley flavor. The MIT
can equally be described as the condensation of the φα

field, and since the ZN gauge field does not lead to singular
correction in the infrared, the condensation of φα is a 3D
XY� transition, and the transition for N ¼ 2 was discussed
in Refs. [53,105–109]. The bα field is now a composite
operator of φα. In the condensate of φα, the electron
operator cα is related to the fermionic parton operator fα
through cα ∼ hbαifα ∼ hφN

α ifα. The coupling between the
two flavors of φα, i.e., the coupling jφ1j2jφ2j2, is irrelevant
at the decoupled 3D XY� transition according to the known
critical exponents of the 3D XY� transition. There are also
couplings such as jφαj2f†αfα allowed by all the symmetries,
but after formally integrating out the fermions, the gen-
erated couplings for φα are also irrelevant at the two
decoupled 3D XY� universality classes. The reason is that
after formally integrating out the fermions, terms such as
ðjωj=qÞjφαj2ω;q⃗jφβj2−ω;−q⃗ can be generated, but this term
is irrelevant knowing that the standard critical exponent
ν > 2=3 for the 3D XY� transition.
Following the large-N calculation discussed before, the

dc resistivity jump ρbð0Þ would be N2=2 times that of the
previous theory [70]; namely,

ρbð0Þ ∼ Rð2ÞN2
h
e2

; ð12Þ

where Rð2Þ ¼ R0=2 ∼ 3.7 based on our evaluation. The ac
jump at the MIT is enhanced by the same factor compared
with the previous theory. We also note that the fractional
universal conductivity at the transition between the super-
fluid and a Z2 topological order was observed numerically
in Ref. [109].
Another set of natural topological orders a boson at

fractional filling can form is bosonic fractional quantum
Hall (BFQH) states which are close analogs to the bosonic
Laughlin’s wave function. We would like to discuss this
possibility as a general exploration, although this state
breaks the Py symmetry (but it still preserves the product
PxT symmetry). If we interpret the half-filled boson at each
site as a quantum spin-1=2 system, this set of states is
analogous to a chiral spin liquid [110,111]. The Chern-
Simons (CS) theory for this set of states at each valley reads

Lcs ¼ −
ik
4π

A ∧ dAþ i
2π

A ∧ dðaþ AextÞ; ð13Þ

with an even integer k and a dynamical Spinc U(1) gauge
field A. The topological order characterized by this theory
is the SUðkÞ1 topological order. Here, the integer k needs to
be even so that this theory is compatible with the LSM
constraint imposed by the boson filling 1=2 on the lattice
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[112]. This is because the boson filling 1=2 requires the
topological phase to contain an Abelian anyon that carries a
fractional charge 1=2 (modulo integer). There should be
one such anyon per unit cell to account for the boson filling
1=2 on the lattice. The fact that such an anyon carries a
fractional charge 1=2 implies that this anyon should
generate under fusion an Abelian group Zp with p an
even number. Such a fusion rule is incompatible with any
odd value of k. Therefore, k needs to be even in the theory
given by Eq. (13). The time reversal of the TMD moiré
system demands that the bosonic parton bα with opposite
spin-valley index α forms a pair of time-reversal conjugate
BFQH states. Or in other words, if we take both spin-valley
flavors together, this state is a fractional topological
insulator, like the state discussed in Ref. [113].
The MIT is now a direct transition between the BFQH

state and the superfluid of bα. When the even integer k is
k ¼ 2n2 with odd integer n, there is a natural theory for this
direct continuous transition, and its simplest version with
n ¼ 1 was proposed in Ref. [114]. The transition is a 3D
QED with two flavors of Dirac fermions coupled to the
dynamical U(1) Spinc gauge field Aμ (the dual of the
Goldstone mode of the boson superfluid) with a Chern-
Simons term at level n2, and the fermions have gauge
charge n:

Lð3Þ ¼
X2
j¼1

χ̄jγ · ð∂ − inAÞχj þMχ̄jχj −
in2

4π
A ∧ dA

þ i
2π

A ∧ dðaþ eAextÞ þ � � � : ð14Þ

In this theory, the fact that A is a Spinc U(1) gauge field
and that n is odd guarantees that this theory describes the
phases of a boson. A Spinc connection Aμ means a U(1)
gauge field with a “charge-statistics relation”: there is no
fermionic object that is neutral under Aμ. When Aμ is a
Spinc U(1) gauge field, and n is an odd integer in Eq. (14),
Eq. (14) describes an interacting state of bosons that carries
electric charge e. The charge-e object of Eq. (14) that is
also neutral under Aμ is a composite of 2π flux of Aμ and n
fermions χ. This composite is a boson as long as n is an odd
integer, and this composite should be identified as bα in
Eq. (2). The ellipsis in this Lagrangian includes other terms
such as the Maxwell term of the gauge field Aμ. Note that
this equation is for one of the two spin-valley flavors of
the physical system. The mass M of the Dirac fermions is
the tuning parameter of the transition. With one sign of the
mass term, after integrating out the Dirac fermions, the
Spinc U(1) gauge field A will acquire a Chern-Simons term
at level −2n2, which describes the SUðkÞ1 topological order
with k ¼ 2n2. With the opposite sign of M, there is no
Chern-Simons term of the gauge field A after integrating
out the Dirac fermions, and the Maxwell term of the gauge
field A is the dual description of the superfluid phase.

Hence by tuning M the system undergoes a transition
between the k ¼ 2n2 BFQH state and the superfluid state of
b (the metal phase of the original electron system).
The translation symmetry of the system actually guar-

antees that the two flavors of Dirac fermions are degenerate
in Eq. (14). If these two Dirac fermions are not degenerate,
an intermediate topological order is generated by changing
the sign of the mass of one of the Dirac fermions in
Eq. (14). Then after integrating out the fermions, the gauge
field A acquires a total CS term with an odd level −n2,
which violates the LSM constraint imposed by the boson
filling 1=2. Therefore, the masses of the two flavors of the
Dirac fermions in Eq. (14) should be the same. In fact, for
the simplest case with n ¼ 1 (k ¼ 2), an explicit parton
construction of this transition can be given following the
strategy in Ref. [114], and the two Dirac fermions in
Eq. (14) are two Dirac cones of a π-flux state of χ on the
triangular lattice. The degeneracy of these two Dirac
fermions is protected by the translation symmetry of the
triangular lattice. From the parton formalism one can also
see that the boson b is constructed as a product of the two
fermions χi.
At the transitionM ¼ 0, though it is difficult to compute

the resistivity of Eq. (14) exactly, the resistivity ρðxÞ should
scale as 1=k with large k ∼ n2, as after integrating out χj
the entire effective action of A scales linearly as k. Then
after integrating out A, the response theory to Aext is
proportional to 1=k.

V. SUMMARY OF PREDICTIONS

So far we have discussed three different kinds of possible
Mott insulators at half filling of the extended Hubbard
model, based on the parton construction II: (1) Mott
insulators with translation symmetry breaking, (2) a ZN
topological order at each spin-valley flavor with even
integer N ≥ 2, and (3) a pair of conjugate BFQH states
at two spin-valley flavors. For all scenarios, we have
evaluated the bosonic parton contribution to the resistivity
ρb at the MIT, which is also the universal jump of resistivity
Δρ. The predicted resistivity jump for the three scenarios
are summarized in Table I.
Another observable effect predicted by the previ-

ous theory of interaction-driven MIT is the scaling of
quasiparticle weight

ffiffiffiffi
Z

p
near the MIT [55,56], whereffiffiffiffi

Z
p

∼ rβ1 ∼ jrj0.33. Our theory also gives a different

TABLE I. Summary of resistivity for three scenarios considered
in this work. TO is topological order.

Nature of insulator Δρ, or ρb
(1) Density wave ρbð0Þ ∼ ½Rð0Þ þ Rð1ÞðN − 1Þ�ðh=e2Þ
(2) ZN TO each flavor ρbð0Þ ¼ Rð2ÞN2ðh=e2Þ
(3) Conjugate BFQH ρbðxÞ ∼ ð1=kÞðh=e2Þ
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prediction of the quasiparticle weight compared with the
previous theory, and this is most conveniently evaluated for
scenario (2). In the metal phase but close to the MIT, the
quasiparticle weight scales as

ffiffiffiffi
Z

p
∼ hφN

α i ∼ jrjβN ; ð15Þ

where βN ¼ νΔN . ν ∼ 0.67 is the standard correlation
length exponent at the 3D XY� transition (it is the same
as the 3D XY transition) and ΔN is the scaling dimension
of φN at the 3D XY transition. These exponents can be
extracted from numerical simulation on the 3D XY and XY�
transitions. For example, when N ¼ 2, β2 should be close
to 0.8 [105,106,115]; hence,

ffiffiffiffi
Z

p
∼ jrj0.8. The scaling of

quasiparticle weight can be checked in future experiments
through the measurement of local density of states of
electrons.
For scenario (1), i.e., where the insulator has translation

symmetry breaking, the scaling of quasiparticle weight can
be estimated with large N in Eq. (4). The boson creation
operator b† is a monopole operator of Aμ which creates a 2π
gauge flux. With large N in Eq. (4) the monopole operator
has scaling dimension proportional to N [116,117]; hence
the critical exponent β in the quasiparticle weight

ffiffiffiffi
Z

p
∼ jrjβ

is expected to be proportional to N. The similar evaluation
applies to Eq. (14), and the creation operator b† has a
scaling dimension proportional to k, which is also propor-
tional to

ffiffiffiffi
Z

p
.

As we explained, our theory provides a natural explan-
ation of the anomalously large resistivity at the MIT.
Another qualitative experimental feature reported in
Ref. [46] is that the resistivity drops rapidly as a function
of temperature at the MIT where the charge gap vanishes.
Our theory also provides a natural explanation for the
temperature dependence of the critical resistivity. At zero
temperature the bosonic chargeon parton b fractionalizes
into multiple partons with smaller charges, and these
partons will couple to extra gauge fields. These extra
gauge fields will all confine at finite temperature. Hence
at finite temperature, there is a crossover from transport
with fractionalized charge to unfractionalized charge,
which will cause a significant drop of resistivity with
increasing temperature.
In the following paragraphs we discuss physics in phases

near the MIT, based on our theory. These analyses can
distinguish the three possible scenarios discussed to this
point. Let us first discuss the insulator phase at fixed
electron filling ν ¼ 1=2. The scenario (3) describes a
topological order that is essentially a topological fractional
quantum spin Hall insulator; hence this insulator phase, if it
does exist, must have nonchiral gapless modes localized at
the boundary of the system. These nonchiral edge states
should lead to similar experimental phenomena as the
experiments on quantum spin Hall insulator [118], but

rather than edge conductance 2e2=h, the edge conductance
of the fractional quantum spin Hall insulator should be
2e2=ðkhÞ, which is twice that of the edge conductance of
the BFQH state with CS level k. Also, the edge conduct-
ance should be suppressed by an external magnetic field,
also analogous to what was observed in Ref. [118].
The insulating phase of scenario (1) and scenario

(2) also lead to distinctive predictions. In scenario (1),
the electric charges are only deconfined at the MIT, but
still confined in the insulating phase, which has no
topological order. Hence the charge deconfinement of
scenario (1) is analogous to the original deconfined
quantum critical point discussed in Refs. [107,108].
The confinement of fractional charges in scenario (1) hap-
pens even at zero temperature in the insulating phase.
However, in scenario (2), the insulator phase has a ZN
topological order that supports deconfined fractional
charge at zero temperature even in the insulator phase.
While at finite temperature, the ZN gauge field will lead to
confinement of fractional charges with confinement
length ξ ∼ expðcΔm=TÞ, where Δm is the gap of the
fractionalized ZN gauge fluxes, which is an anyon with
nontrivial statistics with the fractional charges. If we look
at the insulator phase close to the MIT, the gap of the
fractional charge (the e anyon of the ZN topological order)
is supposed to be smaller thanΔm, as the MIT corresponds
to the condensation of the e anyon; hence at very low
temperature the thermally activated e anyon has a much
smaller distance le with each other compared with ξ. Then
at low but finite temperature the transport is governed
by charge carriers with gap Δe and charge e� ¼ e=N. The
gap Δe can be extracted from fitting the low-temperature
transport data versus temperature. However, if one mea-
sures the tunneling gap through tunneling spectroscopy,
since the external device can only inject a single electron
which fractionalizes into multiple e anyons, the tunneling
gap should be approximately NΔe. This contrast between
tunneling gap and the thermally activated transport gap
happens in scenario (2) but not scenario (1).
We also consider the metallic phase next to the insulator

after charge doping, and we will see that scenario (2) also
leads to very nontrivial predictions due to the deconfined
nature of the ZN topological order. In scenario (2), after
some charge doping, we expect a metallic state with charge
fractionalization at low temperature. The bosonic charge
carriers are coupled to the ZN gauge field as well as the
U(1) gauge field aμ that are shared with the fermionic
partons fα. When the temperature is increased, the ZN
gauge field will confine, and due to the time-reversal
symmetry, the confine-deconfine crossover should happen
for both spin and valley flavors simultaneously. In the
following, we shall only focus on one spin or valley.
According to the Ioffe-Larkin composition rule, the total
resistivity is composed of contributions from both bosonic
and fermionic partons ρ ¼ σ−1 ¼ σ−1b þ σ−1f . Let us assume
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the resistivity of both the bosonic and fermionic sectors are
dominated by the scattering with the gauge field aμ (this of
course assumes that the momentum of the gauge field aμ
can relax through other mechanisms such as disorder).
This scattering mechanism was first evaluated in
Ref. [119]. The gauge-field propagator can be written as

Dðω; qÞ−1 ¼ iγω=qþ χdq2, where the ω=q term is due to
the Landau damping from the Fermi surface, and the
“diamagnetic” χd is roughly a constant within the temper-
ature window of interest. The scattering rate can then be
estimated using the imaginary part of the boson or fermion
self-energy:

ImΣb;fðω; kÞ ¼
Z

∞

0

dω0
Z

d2k0

ð2πÞ2 ½1þ nbðω0Þ�½1� nb;fðωk0 Þ�
ðkα þ k0αÞðkβ þ k0βÞ

2mb;f

δαβ − qαqβ
q2

δðω − ωk0 − ω0ÞImDðω0; qÞ;

where q ¼ k0 − k, nb;fðωÞ denotes the Bose-Einstein
(Fermi-Dirac) distribution function, and mb;f is the bo-
son-fermion mass. We must stress that the expression of
Σb;f is valid for partons with gauge charge 1. When the ZN

gauge field is deconfined, each boson carries the gauge
charge 1=N of the gauge field aμ, and therefore there is an
additional factor 1=N2 in the self-energy. The integral was
evaluated in Ref. [119], and the timescale responsible
for transport has an extra factor proportional to q2 in the
integral. After taking these into account, we obtain the
“transport” scattering rate for boson or fermion

1

τf
∼ T4=3;

1

τb
≈

kBT
mbχd

: ð16Þ

Comparing 1=τb and 1=τf, we can see that the resistivity is
dominated by the boson-gauge scattering at low temper-
ature, and the bosonic partons are in a disordered phase
rather than a quasi-long-range order at finite temperature
due to their coupling to the dynamical gauge field aμ. We
take the Drude formula for the dilute Bose gas that we use
to model the bosonic partons at finite temperature:

ρ ∼
mb

n�e2�

1

τb
∼

g2�
n�e2�

kBT
χd

; ð17Þ

where e� ¼ e=N and g� ¼ 1=N denote the electric and
gauge charges of bosons, and n�e� is the doped physical
electric charge density. Here, we have assumed that the
resistivity ρ is dominated by the boson contribution because
(i) the scattering rate of the boson is bigger compared to the
fermions at low temperature as shown in Eq. (16) and
(ii) the bosons have much lower density at low charge
doping compared to the fermions which already have finite
Fermi surface at zero charge doping. In the following
discussion, we work under these assumptions at least up to
the temperature scale Tc around which the ZN gauge
becomes fully confined.
The ZN gauge field is fully confined when ξ is at the

same order as the lattice constant; i.e., T > Tc ∼ Δm. Here
we assume that the gauge field aμ that is coupled to the
fermionic parton is less prone to confinement due to its

coupling to the large density of gapless fermions. Above
Tc, the charge carriers in the system carry charge e.
The equation above still holds with the substitutions
e� → e ¼ Ne�; g� → g ¼ Ng�; n� → n ¼ n�=N. We expect
there is a crossover from the deconfined value of resistivity
ρðT ∼ 0Þ to the confined value ρðT ≥ TcÞ:

ðdρ=dTÞT≥Tc

ðdρ=dTÞT∼0
∼ N: ð18Þ

This is an observable effect of scenario (2) that can be
experimentally verified. Note that the crossover caused by
confinement at the metallic phase is different from the
critical point of the MIT, as transport at the critical point
originates from rather different physics; for example, both
particles and holes will contribute to the charge transport at
the critical point [120].
Contrary to the Ioffe-Larkin rule, the total thermal

conductivity of the system is a sum of the contribution
from the bosonic parton, fermionic parton, and also the
gauge boson. With low charge doping away from ν ¼ 1=2,
we expect the fermionic partons dominate the thermal
transport according to Ref. [121]: κf ∼ T1=3. As we dis-
cussed above, in scenario (2) the low-temperature charge
transport is dominated by the boson contribution σb ∼ 1=T,
while the thermal transport is dominated by the fermion
contribution κf ∼ T1=3. Because of the crossover of charge
transport at finite temperature caused by the confinement
of the ZN gauge field in scenario (2), there is also an
observable prediction one can make for the Lorentz number
L ¼ κ=ðTσÞ ≈ κf=ðTσbÞ:

ðL=T1=3ÞT≥Tc

ðL=T1=3ÞT∼0
∼ N: ð19Þ

VI. SUMMARY, DISCUSSION, AND
OTHER FRACTIONAL FILLINGS

In this work we proposed a theory for a potentially
continuous metal-insulator transition for the extended
Hubbard model on the triangular lattice at half filling
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(one electron per unit cell). The extended Hubbard model
is simulated by the TMD moiré systems. We introduce a
different parton construction from the previous literature,
which leads to a series of observable predictions. We
demonstrated that our theory is more favorable given the
current experiments on the heterobilayer TMD moiré
systems. Although our theory was motivated by the recent
experiments on MoTe2=WSe2 moiré superlattice [46], we
envision our theory can have broad application given
the recent rapid progresses in synthesizing pure two-
dimensional systems.
The moiré potential in the MoTe2=WSe2 moiré super-

lattice with no twisting is formed due to the mismatch of the
lattice constants of the two layers. There is another experi-
ment on MIT in twisted WSe2 [47]. The situation in twisted
WSe2 seems rather different from MoTe2=WSe2 moiré
superlattice. Inside the “insulator phase,” the resistivity
ρðTÞ at some displacement fields first increases with
decreasing temperature, and eventually the plot seems to
saturate at a finite value, which is much lower than the
resistivity observed in the MoTe2=WSe2 moiré superlattice
near the MIT. Hence the MIT of twisted WSe2 could be
of a different nature: between the metallic phase and the
insulator phase, there could be an intermediate phasewith an
order at nonzero momentum and reduced size of electron
Fermi pockets.
Correlated insulators at other fractional fillings ν ¼ p=q

have been reported in various TMD moiré systems [48–51].
Although the nature of the MITat these fillings has not been
looked into carefully, here we briefly discuss the theory for
the possible continuous MIT at general fractional filling
ν ¼ p=q. As long as q > 2, even for parton construction I,
the bosonic partonbwill have fractional filling, andhence the
insulator phase of b cannot be a trivial incompressible state
without translation symmetry breaking or topological order.
Here we would like to acknowledge that charge fractionali-
zation for interacting electron system at fractional electron
number per unit cell was discussed in previous literature
[122], using similar formalism as the parton construction I.
At electron filling ν ¼ 1=q, the boson filling νb ¼ 2=q; if we
only consider nearest neighbor hopping of the vortex, the
insulator has commensurate densitywave that spontaneously
breaks the translation symmetry, and theMIT is described by
Eq. (4) with N ¼ q for odd integer q, N ¼ q=2 for
q ¼ 4kþ 2, and N ¼ q for q ¼ 4k. The electron charge
will further fractionalize at the continuous MIT. In parton
construction I, there are in total N species of the charge
carriers each carrying electric charge e� ¼ e=N. Hence the
estimate of ρb is ρb ∼ Nh=e2.
For parton construction II, with electron filling ν ¼ 1=q,

the boson filling for each spin-valley flavor is νb ¼ 1=q.
Again, if only nearest neighbor hopping of the vortices is
considered, the MIT is described by Eq. (4) with N ¼ q for
odd integer q, N ¼ 2q for even integer q. The field theory
describing the MIT is two copies of Eq. (4): ψ j, Aμ, and aμ

should all carry a spin index α. There are in total Nb ¼ 2N
species of the charge carriers each carrying electric charge
e� ¼ e=N. Hence the estimate of ρb is ρb ∼ Nh=ð2e2Þ. If
we consider further neighbor hopping like in Sec. III, the
charge carriers may carry even smaller fractional charge,
and hence larger ρb.
Here, we would like to discuss some subtlety regarding

the conductivity σb of the bosonic parton. In a generic
theory with momentum conservation, one expects a finite
overlap between the electric current and the conversed
momentum. Such a finite overlap would lead to a Drude
peak in the (optical) conductivity (see Ref. [120] for a
review), σðωÞ ¼ σQ þD½ði=ωÞ þ δðωÞ�, where D > 0 is
the Drude weight andω is the frequency. In a theory with an
exact particle-hole symmetry, this overlap between the
electric current and momentum is strictly zero and, con-
sequently, the Drude weight D vanishes. In the MIT
considered in this paper and previous literature such as
Refs. [54,55,70], the theories that govern the bosonic
partons all have an emergent particle-hole symmetry.
This emergent particle-hole symmetry is expected to
produce a Drude weight that vanishes at zero temperature;
namely, D → 0 as T → 0. If there is a finite momentum
relaxation time τp induced by, for example, disorder, the
Drude peak should take the formD=τ−1p − iω and should be
viewed as an extra correction, when we take ω → 0, to the
bosonic parton dc conductivity σb calculated for the MIT.
Since D vanishes as T → 0 due to the emergent particle-
hole symmetry, the dc limit, i.e., ω → 0, of the Drude peak
becomes a small correction to the bosonic parton dc
conductivity σb at low temperature.
There is another subtlety associated with the bosonic

parton conductivity due to extra hydrodynamical corrections
and the purely two-dimensional nature of the system. It was
known (see, for example, Ref. [123] for a review) that, when
momentum is strictly conversed, even in the presence of
particle-hole symmetry, hydrodynamical fluctuations lead
to a logarithmic correction to the optical conductivity that
scale as logðτthωÞ. Here, τth is the timescale of local therma-
lization [124] and can be estimated as ∼T−1. This hydro-
dynamical correction to the conductivity diverges in the
dc limit. This divergence is due to the long-lived hydro-
dynamical mode associated with the conserved momentum.
As we mentioned before, in real systems disorder and
umklapp process always induce a finite momentum relax-
ation time τp. The diverging hydrodynamical correction is
only valid when τp ≫ τth ∼ T−1, meaning momentum is
strictly conserved over the thermalization timescale, where
the hydrodynamical description becomes applicable. When
the temperature T is low compared to τ−1p , hydrodynamical
corrections are cut off by τ−1p and are again expected to be
small corrections to the bosonic parton conductivity calcu-
lated in the rest of this paper. In fact, the divergent
hydrodynamical correctionmay be already cut off at a higher
temperature scale that is favorable to us, as the crossover
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scale is suppressed by a large factor depending on the
dimensionless entropy density of the system [124].
We would like to stress that the optical conductivity

σð∞Þ which is much easier to evaluate theoretically (see
Sec. III for an example) is free of these subtleties, and we
encourage future experiments to measure the optical
conductivity at the MIT as well.
In recent years very impressive progress has been made on

numerically simulating interacting fermionic systems (for
examples, see Refs. [125–128]). It is conceivable that an
extended Hubbard model with spin-orbit coupling can be
constructed on the triangular lattice, and by changing the
parameter (for example, the strength of the spin-orbit cou-
pling), two types of interaction-driven MIT may be realized,
one described by the original theory [54,56], the other
described by our current theory. Predictions made in these
two theories, such as different universality classes and trans-
port properties at the MIT, different scalings of quasiparticle
weight, and the existence of the spinon Fermi surface in the
insulator phase, can potentially be directly tested through
various numerical methods on the extended Hubbard model.
We leave this to future exploration.
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APPENDIX A: FIELD THEORIES FOR
N = 6 and N = 12 OF SCENARIO (1)

In Appendix B, we derive the projective symmetry
group transformation for the low-energy vortex modes
of scenario (1). For N ¼ 6, with symmetries R2π=3, trans-
lation, PxT , and Py, the PSG-invariant interactions
between the vortex fields ψa beyond Eq. (4) take the
following form:

Lð1Þ0½ψa� ¼ u1
X2
a¼0

ðjψ2aj2 þ jψ2aþ1j2Þ2 þ u2

�X5
a¼0

jψaj2
�2

þ v1

�X5
a¼0

ψ2
a

��X5
a¼0

ðψ�
aÞ2

�
þ v2

X2
a¼0

ðψ2
2a þ ψ2

2aþ1Þ½ðψ�
2aÞ2 þ ðψ�

2aþ1Þ2�

þ w1

X2
a¼0

ðjψ2aj2 − jψ2aþ1j2Þðψ2aþ2ψ
�
2aþ3 þ ψ�

2aþ2ψ2aþ3Þ þ w2

�X2
a¼0

ðψ2
2a − ψ2

2aþ1Þψ�
2aþ2ψ

�
2aþ3 þ c:c:

�
þ � � � :

ðA1Þ

Here the dots stand for terms higher than the quartic order.
The parameters fu1; u2; v1; v2; w1; w2g in Eq. (A1) are all
real, and the index a for ψa is regarded as cyclic modulo 6.
In addition to the quartic terms, the gauge-invariant

density wave order parameter can couple to the Fermi
surface of the fermionic partons, and quartic terms of ψa

with singularity in the frequency space can be generated as
was pointed out by Ref. [86], such as jωjjSω;qj2, where Sω;q
is a bilinear of ψa. This coupling only arises for scenario
(1). For scenario (2) discussed in the main text, the 3D XY�

fixed point should be stable against symmetry allowed
perturbations; the field theory Eq. (14) is also stable against
coupling to the fermionic parton Fermi surface.
Althoughwe do not aim to give a full discussion of the fate

of the infrared limit of scenario (1), in the current work we
establish the formalism for this problem that one canuse in the
future. As we explained in the previous paragraph, after
integrating out the fermion that is connected by the finite
momentum of the density wave order parameter, a term is

generated ∼jωjjSω;qj2, where S ¼ ψ†Tψ and T is an N × N
matrix.Onecan introduce anew fieldΦ through theHubbard-
Stratonovich transformation, and ψa will interact with the Φ
field [129]. We start with the first line of Eq. (A1). The field
theory Eq. (4) with u1 and u2 in Eq. (A1) can be reformulated
by introducing multiple Lagrange multipliers λi:

Lð1Þ ¼
XN−1

a¼0

jð∂− iAÞψaj2þ i
XN1

i¼1

λi

�XN2

τ¼1

jψτ;ij2
�

þ iΦψ†Tψ ;

hλiðq⃗Þλi0 ð−q⃗Þi ¼
8

N2

jqjδi;i0 ;

hAμðq⃗ÞAνð−q⃗Þi ¼
16

N

�
δμν −qμqν=q2

jqj
�
;

hΦðq⃗ÞΦð−q⃗Þi ¼ gjωj: ðA2Þ
HereN ¼ N1N2, and for the real systemwithN ¼ 6,N1 ¼ 3
andN2 ¼ 2. Introducing λi for each index i physicallymeans
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that we are investigating the theory near the point with a
SUðN2Þ symmetry for each index i, rather than the original
CPN−1 theory with a large SUðNÞ flavor symmetry. This is
analogous to the “easy-plane bosonic QED3” considered in
Ref. [130]. The actions of λi and the transverse component of
gauge field A are generated by integrating out the fields ψa.
One possible way to proceed with the calculation is that we
can fixN1, and take 1=N2 as a small parameter.When g is the
same order of 1=N2, the interaction between ψa and the Φ
field will lead to the contribution comparablewith that arising
from coupling to λi and A. The calculation would be
analogous to the one formulated in Ref. [89], where
the nonlocal interaction on top of a bosonic QED flows

to a new fixed point. One can evaluate the scaling
behaviors (such as relevance or irrelevance in the IR) of
the v and w terms in the second and third lines in
Eq. (A1) at this new fixed point. By exploring the
parameter space of g, 1=N2, and different choice of
matrix T, it is possible to identify a finite region where
Eq. (A2) corresponds to a stable fixed point where the v
and w terms in Eq. (A1) are irrelevant.
The same strategy can be applied to the situation with

N ¼ 12. With long moiré lattice constants, the sixfold
rotation Rπ=3 also becomes a good approximate symmetry.
Together with Rπ=3, the quartic terms in the field theory for
N ¼ 12 (refer to the phase diagram in Fig. 2) are

Lð1Þ0½ψσ;τ;i� ¼ u1
X
σ;i

�X
τ
jψσ;τ;ij2

�
2

þ u2

�X
στi
jψστij2

�
2

þ v1
X
σ;i≠i0

�X
τ

jψσ;τ;ij2
��X

τ0
jψσ;τ0;i0 j2

�

þ v2
X
i

�X
τ

jψþ;τ;ij2
��X

τ0
jψ−;τ0;ij2

�
þ w1

���X
i;τ
ψþ;τ;iψ−;τ;i

���2

þ iw2

�X
i;τ;τ0

ψ�
þ;τ;iþ1ψ

�
−;τ;iþ1ψþ;τ0;iψ−;τ0;i − H:c:

�
: ðA3Þ

Here the 12 modes are labeled by ψσ;τ;i in which τ ¼
� labels two degenerate modes at the same momentum,
σ ¼ � labels two sets of momenta that are each connected
by R2π=3, and i ¼ 0; 1; 2 mod 3 labels these three momenta
within each set.
We can again start with the first line of Eq. (A3), and

introduce Lagrange multiplier λσ;i which couples to the ψa

fields as
PN2

τ¼1 λσ;ijψσ;τ;ij2. Note that we have genera-
lized τ to 1;…; N2. Then the Hubbard-Stratonovich trans-
formation can introduce new fields that couple to ψa to
account for the singular terms generated through interacting
with the Fermi surface. A combined perturbation theory of
1=N2 and g can again determine the relevance or irrel-
evance of the second and third lines of Eq. (A3). In
particular, the two terms in the second line of Eq. (A3)
are indeed irrelevant with large N2, as the scaling dimen-
sion of

P
τ jψσ;τ;ij2 is 2 with large N2.

APPENDIX B: PSG TRANSFORMATION FOR
N = 6 IN SCENARIO (1)

Under the boson-vortex duality, the dual vortex theory
on the hexagonal lattice takes the form

H¼
X
hiji

− tijϕ�
iϕjþH0

ϕþVϕþ��� ; tij¼ te−iAij : ðB1Þ

Here H0
ϕ describes hopping terms between further neigh-

bors. The potential Vϕ includes a quadratic term
P

i rjϕij2
which tunes through the phase transition.

When tij is nonzero only for nearest neighbor links on
the dual honeycomb lattice, and it takes positive sign on the
solid links and negative sign on the dashed links in Fig. 1
due to the π flux of Aμ through each hexagon, there are four
minima of the vortex band structure in the Brillouin zone
(Fig. 2). We label the four minimum modes from 0 to 3,
each having momentum ðkx; kyÞ:

Q0;1 ¼ K ¼
�

2π

3
ffiffiffi
3

p ; 0

�
; Q2;3 ¼ K0 ¼

�
π

3
ffiffiffi
3

p ;
π

3

�
:

ðB2Þ

With further neighbor vortex hopping (refer to the phase
diagram in Fig. 2), the minima of the vortex band structure
can shift to the M points, similar to Ref. [80]. When the
degenerate minima are shifted to the M points (Fig. 2), the
six corresponding momenta are

Q0;1¼
�

π

2
ffiffiffi
3

p ;−
π

6

�
; Q2;3¼

�
π

2
ffiffiffi
3

p ;
π

6

�
; Q4;5¼

�
0;
π

3

�
:

ðB3Þ

Similar to the four minima case, the vortex field can be
expanded using these six modes as

ϕn;r ∼
X5
a¼0

ψava;neiQa·r: ðB4Þ

The coefficients va;n are solved from the band structure.
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The symmetries of the theory for one single valley must include translation T1, T2, threefold rotation R2π=3, PxT (as
illustrated in Fig. 3). These transformations do notmix the two valleys. In the followingwe derive the PSGmatrices of these
symmetries. We first need the form of the transformations when acting on the 8 sites in each unit cell:

T1;2ðϕn;kÞ ¼
X
m

ðt1;2Þnmϕm;k; t1 ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

; t2 ¼

0
BBBBBBBBBBBBB@

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0

1
CCCCCCCCCCCCCA

;

ðB5Þ

R2π=3ðϕn;kÞ ¼ ðrπ=3Þnmϕm;R2π=3k; r2π=3 ¼

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCA

; ðB6Þ

PxT ðϕn;kÞ ¼ ðpxtÞnmϕm;−Pxk; ðpxtÞab ¼

0
BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

1
CCCCCCCCCCCCCA

: ðB7Þ

Besides these symmetries, herewe argue that, if the system
does have an effective Hubbard model description with two
localWannier orbitals per unit cell (one for each valley),Py is
also a good symmetry of the Hubbard model, as long as the
valley mixing is negligible, which is a justified assumption
with longwavelengthmoiré potentialmodulation. Let us first
assume there is no valley mixing, then for each valley the
band structure of the moiré miniband is described by a tight
binding model with one orbital per site on the moiré
triangular lattice. The hopping amplitude tðθÞ along angle
θ must satisfy the following relations based on the explicit
PxT and translation symmetry:

tðθÞ ¼ t�ðπ − θÞ; t�ðθÞ ¼ tðπ þ θÞ: ðB8Þ

We can easily show that tðθÞ ¼ tð−θÞ; namely, the system
should have a Py symmetry.
However, when there is valley mixing, t becomes a 2 × 2

matrix with off-diagonal terms that mix two valleys. A 2 × 2
hopping matrix t should satisfy four symmetries, Px, T , tran-
slation, andR2π=3 rotation.Anatural choice ofPx andT on t is

Px∶ tðθÞ → σxtðπ − θÞσx; T ∶ tðθÞ → ðiσyÞt�ð−iσyÞ;
ðB9Þ
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and the translation symmetry plus Hermicity demands
t†ðθÞ ¼ tðπ þ θÞ. Py does not change the valley indices; if
Py takes tðθÞ to tð−θÞ, there exists a valleymixing term tðθÞ ∼
iσx sinð3θÞ that preserves all the symmetriesmentioned above,
but breaks Py; while if Py takes tðθÞ to σztð−θÞσz, this term
becomes tðθÞ ∼ iσy cosð3θÞ.
Py acts on the ϕ bosons as

Pyðϕn;kÞ ¼ ðpyÞnmϕ�
m;−Pyk

;

ðpyÞab ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

: ðB10Þ

Furthermore, in the case with long moiré lattice constant,
we additionally have the sixfold rotation Rπ=3:

Rπ=3ðϕn;kÞ ¼ ðrπ=3Þnmϕm;Rπ=3k;

ðrπ=3Þab ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 −1
0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

: ðB11Þ

In the position space, the transformation rules can be
summarized as

Gðϕn;rÞ ¼
X8
m¼1

gn;mϕm;r0m; ðB12Þ

in which r0m is the center of the unit cell of field ϕm which is
obtained by certain site in the original unit cell (centered
at r) after transformation under symmetry operation G.
For example, under T1, r07 ¼ r08 ¼ rþ 2a2, because sites 1
and 2 at unit cell r are transformed into sites 7 and 8 in
the nearby enlarged unit cell which is centered at rþ 2a2.
In general, we can write the transformation as r0m ¼
Grþ Δ⃗G;m, in which Δ⃗G;m is a constant that does not
depend on r, and Gr is the coordinate of the center of the
unit cell after spacial symmetry G.
Now we plug in the low-energy expansions of ϕnk

around the minima into the equation, which yields

XN−1

a¼0

GðψaÞva;neiQa·r ¼
XN−1

a¼0

X8
m¼1

ψagnmvm;aeiQa·r0m: ðB13Þ

The relation can be viewed as a vector identity with n being
the vector index on both sides. Because all the vectors
va;nða ¼ 0;…; N − 1Þ are orthogonal to each other, we can
multiply the conjugated vector v�b;n on both sides and sum
over n:

GðψbÞeiQb·r ¼
XN−1

a¼0

X8
m;n¼1

ψav�b;ngn;mva;me
iQa·r0m: ðB14Þ

For this equation to hold for all r, the rhs needs to have the
same momentum. This requires Qb ¼ G−1Qa, which can
only be satisfied by two possible choices of a (recall that in
the convention of eight-site unit cell, each momentum Qa
always has twofold degeneracy for all N), denoted by a1
and a2. Thus we eventually have

GðψbÞ ¼
X8
m;n¼1

v†b;ngnmva1;me
iQa1

·Δ⃗G;m × ψa1

þ
X8
m;n¼1

v†b;ngnmva2;me
iQa2

·Δ⃗G;m × ψa2 : ðB15Þ

The final results can be organized into N × N matrices. For
N ¼ 6, the transformations read

FIG. 3. Crystal symmetry of the triangular lattice, the nearest
neighbor hopping amplitudes of the vortices, and the unit cell
after taking into account of the sign of tij.
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T1;2ðψaÞ ¼ ðt1;2Þabψb;

ðt1Þab ¼

0
BBBBBBBBB@

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

1
CCCCCCCCCA
;

ðt2Þab ¼

0
BBBBBBBBB@

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1
0 0 0 0 −1 0

1
CCCCCCCCCA
; ðB16Þ

R2π=3ðψaÞ ¼ ðR2π=3Þabψb;

ðR2π=3Þab ¼

0
BBBBBBBBB@

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1
CCCCCCCCCA
; ðB17Þ

PxT ðψaÞ¼ðPxTÞabψb;

ðPxTÞab¼
1ffiffiffi
2

p

0
BBBBBBBBB@

0 0 1 −1 0 0

0 0 −1 −1 0 0

1 −1 0 0 0 0

−1 −1 0 0 0 0

0 0 0 0 1 −1
0 0 0 0 −1 −1

1
CCCCCCCCCA
; ðB18Þ

PyðψaÞ ¼ ðPyÞabψ�
b;

ðPyÞab ¼
1ffiffiffi
2

p

0
BBBBBBBBB@

0 0 1 1 0 0

0 0 1 −1 0 0

1 1 0 0 0 0

1 −1 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 −1

1
CCCCCCCCCA
; ðB19Þ

Rπ=3ðψaÞ ¼ ðRπ=3Þabψb;

ðRπ=3Þab ¼

0
BBBBBBBBB@

0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 1 0 0 0 0

−1 0 0 0 0 0

1
CCCCCCCCCA
: ðB20Þ

Deep inside the vortex condensate phase with r ≪ 0 in

Eq. (4), the vector Ψ⃗ ¼ ðψ0;ψ1;ψ2;ψ3;ψ4;ψ5Þ can
have different condensates depending on the para-
meters in Eq. (A1). Without loss of generality we setP

5
a¼0 jψaj2 ¼ 1. The two figures in Fig. 4 illustrate the

density waves of the bosonic parton centered at the bonds
and the sites on the moiré triangular lattice that correspond

to two different possible condensates of Ψ⃗. The density on
the bond l is inferred from tijhϕ�

iϕji, with ij being the link
on the dual honeycomb lattice that is dual to l, and tij takes
the sign according to the gauge convention of Fig. 1. The
operator tijhϕ�

iϕji is the energy density in terms of vortex
fields, and the modulation of this operator should corre-
spond to the valence bond solid of the original bosonic
parton. We also consider an operator centered on site p
of the original lattice (plaquette of the dual lattice):P

hiji∈p tijhϕ�
iϕji, with the summation over the links that

surround the plaquette p on the dual honeycomb lattice,
whose center hosts the site p of the original moiré
triangular lattice. In both cases, hϕ�

iϕji is evaluated using

Eq. (B4) and the value of Ψ⃗ which minimizes the quartic
energy. The left-hand pattern in Fig. 4 is a rather common
valence bond solid configuration for either spin-1=2 system
or hard core boson on the triangular lattice. If one started
with the construction I of the parton construction, the
discussion in this appendix corresponds to the original
electron system with an average 1=2 electron per unit cell
(the filling considered in Ref. [49]); while for construction
II, the discussion here applies to one electron per unit cell,

FIG. 4. Some possible density wave patterns of the original
boson that correspond to different condensate of ψa with

a ¼ 0;…; 5. The left- and right-hand patterns correspond to Ψ⃗ ∼
ð1; 0; 0; 0; 0; 0Þ and Ψ⃗ ∼ ð0; 1= ffiffiffi

2
p

; 1=2;−1=2; 0; 0Þ, respectively.
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and the analysis in this appendix corresponds to one of the
two spin or valley flavors of the system.

APPENDIX C: DUAL OF THE VORTEX THEORY

Here we derive the Lagrangian written in terms of the
fractionally charged bosonic partons for scenario (1). We
start with Eq. (4) in the main text:

Lð1Þ ¼
XN−1

j¼0

jð∂μ − iAμÞψ jj2 þ rjψ jj2

þ i
2π

A ∧ dðaþ eAextÞ þ � � � : ðC1Þ

To facilitate the calculation of the dc resistivity which we
discuss in the next appendix, we need to “dual back” to the
charge carriers, which requires deforming Eq. (C1) with
an easy-plane anisotropy

P
j jψ jj4. The bosonic fractional

charge carriers φj are the vortices of the vortex fields ψ j. We
first take the standard duality for ψ j, and Eq. (C1) becomes

Lð1Þ ¼
XN−1

j¼0

jð∂ − iÃjÞφjj2 þ r̃jφjj2 þ
i
2π

Ãj ∧ dA

þ i
2π

A ∧ dðaþ eAextÞ þ � � � : ðC2Þ

According to the basic duality relation, the current of ψ j, i.e.,
Jψ j

, is mapped to dÃj. Now integrating out A would lead to
the following constraint for the rest of the gauge fields:X

j

Ãj − a − eAext ¼ 0: ðC3Þ

From this constraint we can take Ãj as

Ãj ¼ ãj þ
1

N
aþ e

N
Aext;

X
j

ãj ¼ 0: ðC4Þ

Hence the dual of the dual theory becomes

Lð1Þ ¼
XN−1

j¼0

����
�
∂− iãj − i

1

N
a− i

e
N
Aext

�
φj

����
2

þ r̃jφjj2þ� � � :

ðC5Þ
The gauge fields ãj are still subject to the constraintP

j ãj ¼ 0. φj carries e=N charge of external electro-
magnetic gauge field; it also carries charge 1=N of gauge
field a which is shared with the fermionic parton fα.
For scenario (2) the theory in terms of fractional parton φ

is much simpler: there is only one flavor of φ for each
valley, and there is no extra continuous gauge fields ã
besides gauge field a. Following the calculation in
Ref. [70], one can generalize this one flavor of φ in each
valley to an N component of bosons:

Lð2Þ ¼
XN
l¼1

����
�
∂− i

1

N
a− i

e
N
Aext

�
φl

����
2

þ iλjφlj2þ���; ðC6Þ

and the bosons will scatter with both gauge field a and
field λ which is introduced as a Lagrange multiplier. The
fact that φl carries charge 1=N of gauge field a does not
change the scattering rate through the large-N calculation,
as the gauge charge cancels out in the calculation of
scattering rate through the large-N approach. Compared
with scenario (2), in scenario (1) the parton φj is also
coupled to extra gauge fields ãj, which will lead to extra
scattering to the charge carriers.
When computing the resistivity, especially the dc

resistivity of scenario (1), we also rely on a large-N
generalization; namely, we need to introduce an extra
l ¼ 1;…;N index for each component of fractional
charge field: φl

j.

APPENDIX D: dc RESISTIVITY JUMP
IN SCENARIO (1)

In this appendix, we present a detailed computation of
the dc resistivity jump in scenario (1) of MIT, i.e., the
scenario when the insulator has a density wave. We start
with Eq. (C5). The resistivity jump at the MIT is given by
the universal resistivity of the bosonic sector of the system
ρb at the MIT. First, one can prove a generalized Ioffe-
Larkin rule, which combines the resistivity of each parton
φj into ρb:

ρb ¼
ℏ
e2

�XN−1

j¼0

ρb;j

�
; ðD1Þ

where ρb;j is the resistivity of each parton φj, when the
charge of φj is taken to be 1. This generalized Ioffe-Larkin
rule can be proven by formally integrating out φj, gauge
fields ãj and a from Eq. (C5), and eventually arriving at a
response function of Aext. At each level of the path integral,
we keep a quadratic form of the action, i.e., the random
phase approximation. This Ioffe-Larkin rule is independent
of the assignment of electric charges on each parton.
To compute ρb, we formulate the quantum Boltzmann

equation for the φj fields of a given valley. The compu-
tation follows that for ρb at the MIT without charge
fractionalization [70], where the gauge-field dynamics
needs to be modified due to the charge fractionalization,
which we explain in detail below for comparison. Note that
ρb can be finite without momentum relaxation due to the
emergent particle-hole symmetry. Furthermore, the two-in
two-out scatterings among the φj fields are enough to relax
the current and generate finite dc resistivity. For simplicity,
we consider the scattering between the φj and emergent
gauge fields in Eq. (C5), where the gauge fields are in
thermal equilibrium and their dynamics is acquired due to
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the coupling with the matter fields φj and f. Here, we argue
that treating the gauge fields as in thermal equilibrium is a
legitimate approximation. First, the gauge field a couples to
the spinon field f, which is sensitive to impurities and
relaxes momentum fast. Second, diagrammatically, the
two-in two-out scatterings between the φj fields that give

finite dc resistivity can be captured by the φj scattering with
the emergent gauge fields.
To simplify the computation of the gauge field dynamics,

it is convenient to express Eq. (C5) in terms of the gauge
field Ãj [Eq. (C3)], together with the effective action for the
spinon field, the dual theory reads

Lð1Þ ¼
XN−1

j¼0

jð∂ − iÃjÞφjj2 þ r̃jφjj2 þ f̄

�
∂τ − μ − i

XN−1

j¼0

Ãj;0 þ ieAext;0 þ
1

2m

�
∇ − i

XN−1

j¼0

Ãj þ ieAext

�2	
f þ � � � : ðD2Þ

Integrating out φj and f fields, the gauge-field propagators read

DðÃÞ
ij ¼ −ihTtÃiÃji ¼

8>><
>>:

ΠJ
bþðN−1ÞΠJ

f

ðΠJ
bÞ2þNΠJ

bΠ
J
f

if i ¼ j

−ΠJ
f

ðΠJ
bÞ2þNΠJ

bΠf
if i ≠ j;

ðD3Þ

where ΠJ
b;ΠJ

f is the current-current correlation function for φj and f fields, respectively.
For a controlled systematic calculation of transport, we introduce a large number of (complex) rotor and spinon flavorsN

with the constraint
P

N
l¼1 jφl

jj2 ¼ 1 for all j ¼ 0; 1;…; N − 1, and only the l ¼ 1 component couples to Aext. The N ¼ 1

limit will be taken at the end. The effective action for the extended model becomes

L ¼
XN−1

j¼0

�XN
l¼1

jð∂ − iÃjÞφl
jj2 þ iλj

�XN
l¼1

jφl
jj2 − 1

�
þ 1

2g2
ðϵμνλ∂νÃj;λÞ2

	

þ
XN
l¼1

f̄l

�
∂τ − μ − i

XN−1

j¼0

Ãj;0 þ ieAext;0δl;1 þ
1

2m

�
∇ − i

XN−1

j¼0

Ãj þ ieAextδl;1

�2	
fl þ � � � : ðD4Þ

Using the Fourier expansion for the electrically charged
rotor φl¼1

j in terms of the holons (+) and doublons (-),

φl¼1
j ¼

Z
k
αþ;jðt; kÞeik·x þ α−;jðt; kÞe−ik·x; ðD5Þ

the conductivity σb;j ¼ ρ−1b;j can be obtained as

σb;j ¼ hJx;ji=Ex; hJx;ji ¼
Z
k

X
s¼�

s
k
ϵk
fs;jðt; kÞ; ðD6Þ

where we define the distribution for holon (s ¼ þ) and
doublon (s ¼ −) as fs;j ¼ hα†s;jðt; kÞαs;jðt; kÞi, and they
satisfy the quantum Boltzmann equation as

ð∂t þ sE · ∂kÞfs;jðt; kÞ ¼
1

2N
ðIλj ½f�;j� þ IÃj

½f�;j�Þ: ðD7Þ

Note that the gauge choice in Eq. (D2) ensures that fs;j are
decoupled and equal for different j within the approximation
that Ãj is in thermal equilibrium, so the subindex j will be
dropped unless there is ambiguity. The rhs of Eq. (D7) reads

rhs ¼ 1

2N

Z
∞

0

dΩ
π

Z
d2q
ð2πÞ2 fτλImDðλÞðΩ; qÞ þ τÃImDðÃÞ

ii ðΩ; qÞg

×

�
2πδðϵk − ϵkþq þ ΩÞ

4ϵkϵkþq
ffsðt; kÞ½1þ fsðt; kþ qÞ�nqðΩÞ − ½1þ fsðt; kÞ�fsðt; kþ qÞ½1þ nqðΩÞ�g

þ 2πδðϵk − ϵkþq −ΩÞ
4ϵkϵkþq

ffsðt; kÞ½1þ fsðt; kþ qÞ�½1þ nqðΩÞ� − ½1þ fsðt; kÞ�fsðt; kþ qÞnqðΩÞg

þ 2πδð−ϵk − ϵkþq þ ΩÞ
4ϵkϵkþq

ffsðt; kÞfsðt; kþ qÞ½1þ nqðΩÞ� − ½1þ fsðt; kÞ�½1þ fsðt; kþ qÞ�nqðΩÞg
�
; ðD8Þ
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where τλ ¼ −1 and τÃ ¼ ð2k × q̂Þ2 come from the bare
vertex functions.
ImDðλÞ; ImDðÃÞ physically denote the density of states

of the emergent fields that scatter with φ, which are broad in
the ðΩ; qÞ space due to the couplingswith theφ fields. Below,
we ignore the bare dynamics. DðλÞ;ðÃÞ in the large-N limit
reads

DðλÞðΩ; qÞ ¼ 1

Πb
;

DðÃÞ
ii ðΩ; qÞ ¼ ΠJ

b þ ðN − 1ÞΠJ
f

ðΠJ
bÞ2 þ NΠJ

bΠJ
f

¼ N − 1

N
1

ΠJ
b
þ 1

N
1

ΠJ
b þ NΠJ

f
; ðD9Þ

where DðÃÞ
ii reduces to the MIT without charge fractionali-

zation as discussed in Ref. [70] when N ¼ 1. For N > 1, as
only the linear combinationof Ãj, i.e.,

P
N−1
j¼0 Ãj couples to the

spinon field f and is Landau damped, there is a factor 1=N for
the Landau damped component of the gauge-field propagator

DðÃÞ
ii , which may also be understood as the a component

of gauge field in Eq. (C5). The rest does not receive Landau
damping, and is determined solely by ΠJ

b. Note that as
ImΠJ

f ≫ ImΠJ
b in the limit μ ≫ T, the Landau damped

component can be approximated as ð1=NÞ½1=ðΠJ
b þNΠJ

fÞ�≈
ð1=NÞf1=½ðΠJ

bðΩ¼ 0;qÞ þNΠJ
fðΩ;qÞ�g, and can be treated

in the sameway asRef. [70] for thegauge fielda. On the other

hand, the first term in DðÃÞ
ii should be determined for generic

Ω, q. Using the standard expression for polarizations Π,

ΠbðΩ; qÞ ¼
T
2

X
m

Z
k
τλ

1

ðνm þ ΩnÞ2 þ ϵ2kþq

1

ν2m þ ϵ2k

����
iΩn→Ωþiδ

;

ΠJ
bðΩ; qÞ ¼

T
2

X
m

Z
k
τÃ

1

ðνm þΩnÞ2 þ ϵ2kþq

1

ν2m þ ϵ2k

����
iΩn→Ωþiδ

;

ΠJ
fðΩ; qÞ ¼ −

T
2

X
m

Z
k

ð2k × q̂Þ2
ð2mÞ2

1

iðωm þ ΩnÞ − ξkþq

1

iωm − ξk

����
iΩn→Ωþiδ

: ðD10Þ

Equation (D7) can be solved self-consistently. In Table II,
we show σb;j and the final resistivity ρb ¼ ðNσ−1b;jÞ=2 at
different N; again the factor of 1=2 arises from the two spin
and valley flavors. ρb increases roughly linearly with N,
and the fit of the data points at different N gives

ρb ¼ ½Rð0Þ þ Rð1ÞðN − 1Þ� h
e2

¼ ½3.62þ 1.68ðN − 1Þ� h
e2

:

ðD11Þ
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