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The fundamental, or first, band gap is of unmatched importance in the study of photonic crystals. Here,
we address precisely where this gap can be opened in the band structure of three-dimensional photonic
crystals. Although strongly constrained by symmetry, this problem cannot be addressed directly with
conventional band-symmetry analysis due to the existence of a photonic polarization vortex at zero
frequency. We develop an approach for overcoming the associated symmetry singularity by incorporating
fictitious, auxiliary longitudinal modes. Our strategy also enables us to extend recent developments in
symmetry-based topological analysis to the fundamental gap of three-dimensional photonic crystals.
Exploiting this, we systematically study the topology of the minimal fundamental gaps. This reveals the
existence of topological gap obstructions that push the fundamental gap higher than what a conventional
analysis would suggest. Our work demonstrates that topology can play a crucial role in the opening of the
fundamental photonic gap and informs future theoretical and experimental searches for conventional and
topological band gaps in three-dimensional photonic crystals.
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I. INTRODUCTION

The pursuit of photonic band gaps has been a key driving
force in the field of photonic crystals (PhCs) [1,2], from
Rayleigh’s earliest treatments of one-dimensional PhCs in
1887 [3,4], to Yablonovitch’s [5] and John’s [6] three-
dimensional (3D) generalizations a century later, and
continuing to this day [7,8]. The recent incorporation of
ideas from topological band theory [9–11] to photonics
[12–14] has reinvigorated this fascination by highlighting
that PhC bands—and the gaps between them—can possess
robust topological properties. Armed with recent insights
from topological band theory, we address one of the
fundamental problems in the study of 3D PhCs: Where
is the lowest photonic band gap in the band structure, and
what is its topology?
In more precise terms, we ask how many bands are

required, at minimum, by spatial and time-reversal (TR)
symmetry below the first photonic gap [Fig. 1(a)], i.e., where
it can be opened. The first, or fundamental, gap is special—
and of particular interest—for two reasons: (1) The first

photonic gap is usually the largest andmost easily engineered
[15], and (2) the bands below the first gap in a PhC are unlike
all other bosonic quasiparticle bands because they connect to
a polarization singularity at zero frequency (ω ¼ 0) and zero
momentum (k ¼ 0, i.e.,Γ). This singularity arises because of
the transverse polarization of photons [Fig. 1(b)] and has
profound implications for the first gap: In general, the
number of bands required below the first gap is different
from that required between higher-lying gaps since the latter
are not affected by the singularity [16–18]. The singularity
additionally renders the band symmetry at Γ ill-defined,
ostensibly preventing application of symmetry-based topo-
logical analysis to the most important gap of 3D PhCs [19].
A systematic study of this minimum-connectivity prob-

lem for PhCs was recently initiated by Watanabe and Lu
[16], who derived various lower bounds for the number of
connected bands using sub- and supergroup relations.
Given a specific PhC, however, it is unclear, in general,
if these lower bounds have already made maximal use of
the present spatial symmetries. In addition, the topology of
the bands below the first gap remains unaddressed.
Here, we develop new tools that enable us to establish

the exact minimum connectivity and topology below the
first gap for PhCs in each of the 230 possible symmetry
settings, i.e., space groups. Our approach extends recent
symmetry-based tools for topological band analysis in
condensed-matter systems [20–22] to the fundamental
gap of 3D PhCs, overcoming the apparent barrier raised
by the singular Γ-point symmetry. Surprisingly, we find
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that complete answers to the photonic minimum-connec-
tivity question cannot be obtained without topological
considerations. Specifically, we find six space groups
whose minimum-connectivity bands are all topologically
nontrivial, entailing a topological obstruction to the open-
ing of the symmetry-allowed gap. This effect, which we
term “Γ-enforced topology,” resembles filling-enforced
topology [23,24] but arises here as a direct consequence
of the zero-frequency Γ-point singularity. For PhCs with

Γ-enforced topology, observing a minimum-connectivity
fundamental gap along the high-symmetry lines implies
that the gap must close at nodal lines in the interior of the
Brillouin zone (BZ). This pushes the true fundamental gap
to the higher-energy part of the spectrum—an insight from
topological band theory that cannot be inferred from
conventional symmetry analysis alone. Finally, as the
analogous minimum-connectivity problem for phonons
occurs as a subproblem in our approach, we solve the
phononic problem as well.

II. THEORETICAL FRAMEWORK

The two lowest-frequency transverse (2T) solutions of
nonmetallic PhCs (i.e., with periodic and non-negative
dielectric ε and magnetic μ response) asymptotically realize
the effective-medium approximation at small momenta
jkj → 0, where they touch ω ¼ 0 with the lightlike linear

dispersion ðε−1μ−1Þ1=2cjkj [Fig. 1(a)]. Their displacement
fields converge to plane wavesD2T

σkðrÞ ∼ ê2Tσke
ik·r (σ ¼ 1, 2),

with mutually orthogonal polarization vectors ê2Tσk polarized
transversely to the wave vector k. The resulting vortexlike
polarization texture around theΓ point [Fig. 1(b)] renders the
continuation of the 2T solutions to jkj ¼ 0 ill-defined (it
depends on k̂) and is the salient feature that distinguishes
photons from all other bosonic quasiparticles (e.g., phonons,
excitons, or magnons) in the present context.
The above considerations show that the lightlike 2T

modes behave as free photons (in an effective medium) at
small momenta. As we go to higher momenta, however, the
effects of the PhC become apparent. The periodicity of the
PhC leads to BZ folding, and photonic band gaps arise
when energetically intersecting bands anticross with each
other. Such anticrossing is heavily constrained by the
spatial symmetries of the PhC since the hybridization
matrix elements between bands with distinct symmetry
characters vanish. Importantly, symmetry eigenvalues of
rotations and mirrors as well as their nonsymmorphic
counterparts—screw and glides—are continuously defined
over lines and planes in the BZ. For the lowest-lying states,
these symmetry eigenvalues of the bands can be traced
down to the singularity at the zero-frequency limit [16].
This leads to a dilemma in the symmetry analysis of the
fundamental photonic band gap: While the symmetry
characters of the lowest bands are dictated by those of
the lowest-lying lightlike modes, their symmetry eigenval-
ues are ill-defined in the zero-momentum limit.
In the following, we outline our theoretical framework

and strategy for overcoming the singularity problem. We
first describe the fundamental relationship between band
connectivity, compatibility relations, and band symmetries
and introduce a scheme to generate all allowable band
symmetries through stacking of a minimal set of intrinsi-
cally connected bands (Sec. II A). We then discuss the
implications of the polarization vortex in the context of

FIG. 1. PhC band connectivity below the fundamental gap.
(a) The two lowest-frequency “lightlike” PhC bands (blue and
red) are pinned to ω ¼ 0 at the Γ point. The minimum
connectivity μT of these bands, i.e., below the fundamental
gap, is generally not equal to the minimum connectivity μ of
higher bands (orange). (b) The polarization vectors ê2T1;2 of the
transverse modes near ω ¼ 0 span a space (yellow disk) that
varies with wave-vector orientation k̂, rendering their associated
symmetry content at Γ singular. (c) In addition to physical,
transverse PhC modes, the Maxwell equations also admit a set of
nonphysical, longitudinal modes (purple). (d) The singularity can
be regularized by adding a longitudinal mode (1L) to the two
transverse modes (2T) at ω ¼ 0. (e) Realizable band configura-
tions connected to ω ¼ 0 correspond to compatibility-allowed
symmetry vectors nTþL of the combined transverse and longi-
tudinal band set, which is itself a sum of longitudinal and
transverse contributions nL and nT.
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pinned symmetry and compatibility relations (Sec. II B)
and introduce a regularization strategy featuring auxiliary
apolar and longitudinal modes (Sec. II C). Following this
overview, Sec. III considers the results obtained from the
application of our theoretical framework. The results for the
minimum photonic connectivity below the first gap are
given first (Sec. III A). Next, we introduce a scheme to
evaluate the symmetry-identifiable topology of the other-
wise singular photonic bands below the first gap and use it
to determine the topology of all minimum-connectivity
solutions (Sec. III B). Our analysis uncovers six space
groups whose minimum-connectivity solutions are all
topologically nontrivial and consequently display a topo-
logical obstruction to gap opening. We end by introducing
two concrete PhCs that demonstrate this effect (Sec. III C).

A. Compatibility relations and band connectivity

The presence of crystalline symmetries constrains the
possible connections between energy bands across the BZ
due to the existence of compatibility relations [25–28].
These relations express a familiar notion, namely, the
splitting of symmetry-protected degeneracies in finite
systems but translated to k-space. In finite systems, such
degeneracies can be split only by deforming the considered
object to a state of lowered symmetry (i.e., by lowering the
point-group symmetry). In crystalline systems, however,
the modal symmetry at any given k-point in the band
structure is determined by the subset of the space-group
symmetry that additionally leaves the considered k-point
invariant (i.e., by the little group of k). Compatibility
relations express how modal degeneracy and symmetry are
reduced or maintained as we move off an initial high-
symmetry point towards a lower-symmetry line (or plane).
Since such lines can connect to other high-symmetry k-
points—e.g., starting at Γ and moving towards kx, one
reaches the high-symmetry point X at the BZ boundary—
and since continuity requires modal symmetry to be
invariant along lines of fixed symmetry, the compatibility
relations at distinct high-symmetry points become coupled,
effectively tying together multiple local relations into a
global set of consistency constraints spanning the BZ.
These global constraints restrict how (and how many times)
bands must connect and, crucially, when they can be
gapped [17,29].
For any given space group, the solutions to the aggregate

set of compatibility constraints (along with a requirement
that all symmetry data be non-negative) define the set of all
physically realizable band structures fBSg. Each element
of fBSg can be identified with a “symmetry vector” n that
enumerates the symmetry content of the included bands
across all nonequivalent k-points, fkig, in the BZ. The
elements of n give the multiplicity nαki

of the αth small
irreducible representation (irrep) Dα

ki
in the little group Gki

at ki [30], such that

n≡ ½n1k1
; n2k1

;…; n1ki
; n2ki

;…; μ�T; ð1Þ

with the number of included bands μ incorporated as well.
We denote by nk ≡ ½n1k; n2k;…�T the projection of n to its
content at a particular k. To obtain nk for a band grouping
fn0g, we first compute the symmetry eigenvalues xnkðgÞ≡
hEnkjgDnki for each operation g ∈ Gk ¼ fg1;…; gjGkjg
and each band n ∈ fn0g; next, we aggregate eigenvalues in
the character vector xk ≡P

n½xnkðg1Þ;…; xnkðgjGkjÞ�T;
finally, we solve χknk ¼ xk for nk, with χk denoting
the character table of Gk with characters χαkðgÞ≡ TrDα

kðgÞ
operation-indexed (g) along rows and irrep-indexed (α)
along columns. For the lossless media considered here, the
associated eigenvalue problem is Hermitian under the inner
product hEnkjDnki [1,36]. The E and D fields transform as
vector fields, i.e., gDnkðrÞ ¼ ðgDnkÞðg−1rÞ [2]. Basic
transformation properties of the Maxwell equations are
reviewed in Sec. S1 of the Supplemental Material [37].
The structure of fBSg has been explored using both

graph theory [22,38,39] and linear algebra [20,21,40].
Here, inspired by Ref. [41], we pursue a different approach
that allows us to assemble fBSg from a set of minimal and
intrinsically connected bands. First, we note that elements
of fBSg are equipped with a composition operation,
namely, “stacking” of bands (addition of symmetry vectors)
but not with an analogous inverse operation (subtraction of
symmetry vectors need not be physical, i.e., fBSg is not
closed under subtraction). This describes the algebraic
structure of a monoid: A group lacking inverse operations.
More precisely, fBSg is a positive affine monoid (it is a
submonoid of a free Abelian group [21], bounded by a
pointed polyhedral cone) and is therefore equipped with a
unique, minimal basis fhig—a Hilbert basis [42]—whose
non-negative integer combinations generate fBSg:

fBSg ¼
�X

i

cihi

�
�
�
�ci ∈ N

�

: ð2Þ

As we show in Supplemental Sec. S2 [37], the basis fhig
can be derived from a related basis, namely, the elementary
band representations (EBRs) of topological quantum chem-
istry [22] whose stacking generates the set of all topologi-
cally trivial (or “atomic”) insulators (in summary, we define
fBSg as the intersection of a lattice and a polyhedral cone
and obtain the associated Hilbert basis using the Normaliz
software [43]). Crucially, the basis vectors hi necessarily
describe connected bands; otherwise, they would not form
a minimal basis for fBSg. Conceptually, the elements of
fhig are the indivisible units whose stacking yields all
separable band structures.

B. Pinned symmetry content at Γ
At first glance, the existence and properties of a Hilbert

basis for fBSg would appear to solve the question of band
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connectivity entirely. Indeed, denoting the connectivities
associated with the Hilbert basis fhig by fμig, the minimum
realizable connectivity of any regular band grouping (e.g.,
electrons) is just minfμig. As noted earlier, however,
photonic bands below the first gap are not regular due to
the ill-definiteness of the 2T solutions at Γ. This ill-
definiteness extends to the symmetry vector for 2T-
connected bands, presenting a clear obstacle.
To overcome this, we first describe how a partial,

effective assignment of the 2T Γ-point symmetry can be
constructed. Specifically, we can treat the 2T Γ-point
symmetry as a surrogate for compatibility constraints
imposed by line and plane little groups that intersect Γ.
These “interior” little groups can include proper rotations
and screws rθ (of angle θ) as well as mirrors and glides, m.
Their symmetry eigenvalues can be evaluated directly from
our knowledge of the asymptotic 2T fields at small jkj and
then continued to Γ, giving e�iθ and �1, respectively, as
noted by Watanabe and Lu [16]. The associated characters,
i.e., sum of symmetry eigenvalues, are x2TΓ ðrθÞ≡ 2 cos θ
and x2TΓ ðmÞ ¼ 0.
Unlike rotations and mirrors, improper rotations and

inversions can only be symmetries atΓ or at theBZ boundary,
so they are not similarly continuable to Γ. The surrogate Γ-
point irrep is therefore underdetermined for space groups
with (roto-)inversions. Moreover, even for the 113 space
groups without (roto-)inversions, the surrogate 2T irrep can
be singular. As an example, space group 16 (P222) consists of
operations f1; 2001; 2010; 2100g and has the 2T Γ-point char-
acter vectorx2T

Γ ≡½x2TΓ ð1Þ;x2TΓ ð2001Þ;x2TΓ ð2010Þ;x2TΓ ð2100Þ�T¼
½2;−2;−2;−2�T (in CDML notation [34]). The associated Γ-
projected symmetry vector is n2T

Γ ¼ −Γ1 þ Γ2 þ Γ3 þ Γ4.
Notably, this includes a subtracted irrep Γ1, which prevents
an expansion in the Hilbert basis fhig (which is strictly non-
negative): The 2T symmetry at Γ is singular.
We now introduce new techniques to regularize this

singularity. To that end, we first observe that the Maxwell
equations admit not only transverse (divergence-free)
solutions but also longitudinal (curl-free) solutions,
which, however, violate the transversality condition
∇ ·D ¼ ∇ ·B ¼ 0 (unless ε or μ vanishes). In local
media, the longitudinal solutions are completely degen-
erate with eigenfrequencies ωnk ¼ 0. It is useful to
imagine lifting their dispersion to a more conventional
band structure (which, physically, can be achieved, e.g.,
by including nonlocality and a weak Drude term in the
material response) as illustrated in Fig. 1(c). Even in this
“lifted” picture, a single longitudinal solution (1L) will
always connect to ω ¼ 0 at Γ with an asymptotic plane-
wave-like field profile D1L

k ðrÞ ∼ k̂eik·r. Its Γ-continuable
rotation and mirror eigenvalues transform trivially, i.e.,
x1LΓ ðrθÞ ¼ x1LΓ ðmÞ ¼ 1. Analogously to the 2T case, the
1L (roto-)inversion eigenvalues cannot be continued onto
Γ either and appear nominally unpinned. In fact, the
pinned rotation- and mirror-symmetry eigenvalues and an

“emergent” O(3) effective-medium limit symmetry con-
strains the allowable roto-inversion eigenvalues to points
in a discrete lattice (Supplemental Sec. S4 [37]). A
physically natural choice among these, which we make
throughout and which is possible in all space groups, is a
trivially transforming 1L mode [i.e., letting x1LðgÞ ¼ 1

for all operations; n1L
Γ is then a Γ1 or Γþ

1 irrep]. Thus, the
Γ-symmetry content of the 1L mode can always be
chosen regularly.
Further, the symmetry content of the “apolar” sum of 1L

and 2T bands, i.e., n1Lþ2T
Γ ¼ n1L

Γ þ n2T
Γ , is well-defined

and regular [Fig. 1(d)] because the space spanned by their
combination is invariant to k̂ in the jkj → 0 limit. The
associated characters are uniquely determined for both
proper (þ) and improper (−) rotations g, equaling
x1Lþ2T
Γ ðgÞ ¼ �2 cos θ � 1. Considering again space group
16, we have n1Lþ2T

Γ ¼ Γ2 þ Γ3 þ Γ4 and n1L
Γ ¼ Γ1,

revealing that the negative Γ1 irrep in n2T
Γ simply represents

a subtraction of the 1L mode. We therefore generally define
the surrogate 2T symmetry at Γ as n2T

Γ ¼ n1Lþ2T
Γ − n1L

Γ ,
i.e., as the subtraction of two regular representations.

C. Transverse band solutions

The Γ-symmetry content at ω ¼ 0, i.e., n1L
Γ , n2T

Γ , and
n1Lþ2T
Γ , imposes constraints

nL
Γ ≥ n1L

Γ ; nT
Γ ≥ n2T

Γ ; nLþT
Γ ≥ n1Lþ2T

Γ ; ð3Þ
on the symmetry vectors of the longitudinal (nL), trans-
verse (nT), and apolar (nTþL) band solutions connected to
ω ¼ 0 [Fig. 1(e)]. These constraints, jointly with the
definitions of n1L

Γ , n2T
Γ , and n1Lþ2T

Γ , fully implement the
physical distinctions between the considered polarizations.
We emphasize the distinctions between fnL

Γ;n
T
Γ;n

LþT
Γ g

and fn1L
Γ ;n2T

Γ ;n1Lþ2T
Γ g: While the former includes the

Γ-symmetry content of all bands below the first gap, the
latter includes only the zero-frequency content. Since n1L

Γ
and n1Lþ2T

Γ are regular, the auxiliary solutions nL and nLþT

can always be expanded in the Hilbert basis fhig. However,
this is generally not possible for the transverse solutions nT

since the constraint n2T
Γ may be singular. Candidate trans-

verse solutions can instead be obtained as the subtraction
of an apolar and a longitudinal solution, i.e., as nT ¼
nTþL − nL. Those candidates that respect the Γ constraints
of Eq. (3) and are regular at all other k-points, i.e., have

nT
ki
≥ 0; ð4Þ

for all ki ≠ Γ, correspond to physically realizable transverse
bands connected toω ¼ 0. If we denote by fnLþTg the set of
all apolar solutions and by ñL some longitudinal solution,
each consistent with Eq. (3), then all transverse solutions
fnTg can be identified with the elements of the set fnLþTg −
ñL that are consistent with Eqs. (3) and (4). The specific
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choice of ñL is immaterial since the transverse and auxiliary
longitudinal degrees of freedom are decoupled, except at
ω ¼ 0 (Supplemental Sec. S5.A [37]).
Jointly, this implies a simple strategy for determining the

minimum connectivity μT below the first gap of PhCs:
1. Pick a longitudinal solution ñL with connectivity μL

and define μLþT ¼ μL þ 2.
2. Find all apolar solutions fnLþTg with connectiv-

ity μLþT.
3. If any fnLþTg − ñL are valid, i.e., respect Eqs. (3) and

(4), they represent physically realizable transverse
solutions fnTg with connectivity μT ¼ μLþT − μL; if
not, increment μLþT and return to step 2.

The Hilbert basis fhig allows a highly efficient and exhaus-
tive computation of the finite set of solutions in step 2without
the combinatorial challenges that a nonconical basis would
present Supplemental Sec. S3.B [37]). Nonminimal con-
nectivity solutions can be obtained by simply continuing the
iteration procedure (Supplemental Sec. S8 [37]).

III. RESULTS

A. Minimum photonic band connectivity

We apply our framework to compute the minimum-
connectivity transverse solutions for each of the 230 space
groups [44], with and without TR symmetry [46]. As one of
the central results of this work, Fig. 2 summarizes the
associated minimum transverse connectivities μT versus
space group. In addition to the minimum transverse
connectivity, we also indicate the minimum regular con-
nectivity μ (with TR), which applies to all bands above the
first gap. As previously noted by Watanabe and Lu [16], μT

is neither smaller nor larger than μ, in general: E.g., in all
symmorphic space groups, the regular connectivity is
μ ¼ 1, but the transverse connectivity μT is larger, equaling
either 2 or 3 (at least 2 due to the double degeneracy at
ω ¼ 0). Conversely, the cubic space groups 199 (I213) and
214 (I4132; single gyroid) have μT ¼ 2 smaller than μ ¼ 4.
Reference [16] established the existence of μT ¼ 2 solu-
tions for 104 space groups and obtained μT ≥ 3 or μT ≥ 4
lower bounds for the remaining groups (with TR) by
manually deriving compatibility-respecting solutions for
38 key groups in combination with translationengleiche
[49] sub- and supergroup relations (Supplemental
Sec. S6 [37]). By evaluating all solutions explicitly, we
find 19 exceptions—namely, space groups 72, 114, 126,
128, 130, 133, 135, 137, 142, 169, 170, 178, 179, 218, 220,
222, 223, 228, and 230 (Fig. 2, dashed boxes)—that exceed
these lower bounds (as we discuss later, accounting for
topology reveals additional exceptions). The exceptions are
all nonsymmorphic space groups and are associated with
the presence of additional screw or glide axes—or, rarely,
with inversion—relative to the considered key subgroup
[50]. Generally, we observe that space groups with μT > 2
are either nonsymmorphic or body- or face-centered,

consistently with Ref. [16]. The exact impact of non-
symmorphic symmetry is varied and detail sensitive: As an
example, the nonsymmorphic tetragonal space groups 112
(P4̄2c), 113 (P4̄21m), and 114 (P4̄21c) have μT equal to 2,
4, and 6, respectively—despite having identical point-
group symmetry (4̄2m or D2d) and screws and glides that
differ only in their translation parts.
We can compare our results for μT with a recent high-

throughput computational search for PhC band gaps by
Cersonsky et al. [8]. In this search, 103 space groups were
identified by explicit examples as capable of hosting
complete PhC gaps at a dielectric contrast below 16. In
each such case, the computed number of bands below the
first gap in Ref. [8] is consistent with the μT reported here
(i.e., equal to or higher, with equality attained in 31 space
groups) [51].
By breaking TR symmetry, e.g., via an external magnetic

field, irreps that otherwise stick together because of TR are
split (i.e., complex or pseudoreal irreps [47]). In 36 space
groups, this leads to a reduction of the TR-broken trans-
verse connectivity μ̃T relative to its TR-invariant value μT

(Fig. 2, triangular cutouts). The reduction often corre-
sponds to the splitting of a Hilbert basis vector in the TR-
invariant solution into two TR-broken components that are
otherwise held together by a (self-)conjugate irrep pair; e.g.,
in space group 161 (R3c), splitting the physically real 4D
irrepT3T3 into two pseudoreal 2DT3 irreps lowers μT ¼ 4 to
μ̃T ¼ 2. In these cases, applying a TR-breaking perturbation
to a TR-invariant minimum-connectivity solution will nec-
essarily lower the connectivity from μT to μ̃T. Interestingly,
several μ̃T < μT solutions cannot be obtained in this pertur-
bative fashion. For instance, the TR-invariant μT ¼ 4 sol-
utions of space group 73 (Ibca) require theX-point symmetry
Xþ
1 þ Xþ

2 þ Xþ
3 þ Xþ

4 or X−
1 þ X−

2 þ X−
3 þ X−

4 , while the
TR-broken μ̃T ¼ 2 solution requires Xþ

4 þ X−
4 symmetry;

the latter cannot be decomposed from the former and hence
also not by perturbatively breaking TR.
As in the example above, a given connectivity can

usually be realized by multiple symmetry vectors fnTg.
The associated regular symmetry content is definite and
physical—i.e., fnT

Γg − n2T
Γ and fnT

k≠Γg are physical quan-
tities—and we exhaustively enumerate every minimum-
connectivity symmetry vector in Supplemental Secs. S11.A
and S11.B [37]. In the following, we introduce a method to
evaluate the transverse solutions’ topology despite their
singular Γ-point symmetry. Surprisingly, we find that
topology can constrain μT beyond the requirements
imposed by compatibility relations.

B. Topology of singular transverse bands

Any regular symmetry vector can be mapped to topo-
logical indices ðν1;…; νλdBS Þ in the symmetry indicator
group XBS ¼ Zλ1 ×… × ZλdBS

with Zλi ≡f0;1;…;λi−1g
(Supplemental Secs. S2.C–S2.F [37]) [21]. For brevity, we
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omit trivial factor groups, i.e., write Zλi × Z1 as Zλi and
Z1 ×… × Z1 as Z1. Space groups with symmetry-
identifiable topology have indicator groups XBS ≠ Z1

(equivalently, νi ¼ 0 denotes a trivial index): With TR
symmetry, there are 53 such space groups, all correspond-
ing to topological nodal features [52]. Denoting by B the

FIG. 2. Minimum photonic band connectivity and Γ-enforced topology. The TR-invariant minimum transverse band connectivity
below the first gap, μT, is given for each space group (labeled squares). Watanabe and Lu’s [16] lower bounds are shown (dashed boxes)
when our explicit solutions exceed them. The corresponding TR-broken connectivities μ̃T are shown (lower triangular cutouts) when
they differ from their TR-invariant counterparts. Minimum-connectivity solutions with Γ-enforced topology are highlighted by circular
markers (in yellow, with TR; in pink, without TR). TR-invariant minimum regular connectivities μ are shown as context (narrow
rectangles). Compatibility relations allow μT ¼ 2 solutions in space groups 13, 48 – 50, 68, and 86 (lower-diagonal box shading);
however, they are topologically obstructed (i.e., incompatible with a gap) because of Γ-enforced nongaps, which increases μT to 4
(upper-diagonal box shading).
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columnwise matrix concatenation of EBR vectors, and by
B ¼ SΛT its associated Smith normal decomposition,
the topological indices of a symmetry vector n ∈ fBSg
are [53]

νi ¼ S−1
i;⋆n mod λi; ð5Þ

with S−1
i;⋆ denoting the ith row of S−1 and λi the ith diagonal

element of Λ (corresponding to the indicator group’s
Zλi term).
For photonic bands below the first gap, a similar

approach might not immediately appear workable since
the associated symmetry vector nT may be singular (i.e., nT

may not belong to fBSg). In the spirit of K theory, we
instead define indices for nT by considering the difference
of the apolar (νLþT

i ) and longitudinal (νLi ) indices, whose
symmetry vectors are regular:

νTi ¼ ðνLþT
i − νLi Þ mod λi: ð6Þ

This is a key result of our work: It enables direct and full
application of symmetry-based diagnosis for band topology
to all 3D PhCs, despite the Γ-point singularity at ω ¼ 0.
Crucially, while the auxiliary indices νLþT

i and νLi are not
unique—Eq. (3) leaves substantial freedom of choice for
the auxiliary symmetry vectors—their difference is
(Supplemental Sec. S5.B [37]). In fact, since Eq. (5) is a
linear relation, Eq. (6) establishes that νTi can actually be
evaluated directly from nT regardless of its singular
characteristics, i.e., that νTi ¼ Si;⋆nT mod λi [54].

C. Photonic topological nongaps

Using Eq. (6), we evaluate the symmetry-indicated
topology of every minimum-connectivity transverse sol-
ution (Supplemental Secs. S11.A and S11.B [37]). In doing
so, we discover six centrosymmetric and nonsymmorphic
space groups—13 (P2=c), 48 (Pnnn), 49 (Pccm), 50 (Pban),
68 (Ccce), and 86 (P42=n)—whose minimum-connectivity
(μT ¼ 2) transverse solutions are all topologically non-
trivial (Fig. 2, yellow markers). If a gap exists between
bands 2 and 3 in the high-symmetry band structure of these
space groups, the resulting gap is guaranteed to be
topologically nontrivial—i.e., nontrivial topology is
implied by band connectivity alone. While such connec-
tivity-implied nontriviality is reminiscent of filling-
enforced topology in the electronic context [23,24], we
stress that its appearance in the photonic context is intrinsi-
cally different since it is inseparable from the Γ-point
singularity—accordingly, we refer to it as “Γ-enforced
topology.” In contrast, the minimum-connectivity solutions
of TR-invariant regular bosons (e.g., photonic bands
above the first gap) do not display Γ-enforced topology
(Supplemental Sec. S9 [37]).
Notably, all TR-invariant, symmetry-identifiable,

bosonic topology is associated with bulk nodal features:
Specifically, with nodal lines and Weyl points for centro-
symmetric and noncentrosymmetic space groups, respec-
tively [52]. Intriguingly, for the six space groups with
Γ-enforced topology, observing a μT ¼ 2 gap along high-
symmetry paths in the BZ thus necessarily implies the
existence of gap-closing nodal lines between bands 2 and 3
at generic momenta. We refer to this as a topological

FIG. 3. Photonic topological nongap in space group 86 (P42=n). (a) PhC unit cell and (b) associated band structure (along indicated BZ
path) that realizes a minimum-connectivity (μT ¼ 2) Γ-enforced topological solution in space group 86 (unit-cell parametrization in
Supplemental Table S3 [37]; ε ¼ 16material in gray, embedded in vacuum with a filling fraction of 35%; ai and bi, direct and reciprocal
lattice vectors). (c) Four nodal lines connecting bands 2 and 3, running along kz at generic ðkx; kyÞ. (d) Projection of nodal lines to the
ðkx; kyÞ plane and definition of a fixed-kz loop CðkzÞ, which encloses a quadrant of the ðkx; kyÞ plane and a nodal line. Bands 1–4 do not
touch on CðkzÞ: The Berry phase of bands 2 and 3 (bands 1 and 4) around CðkzÞ is π (0), protecting an odd multiple of nodal lines in the
interior of CðkzÞ.
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“nongap”: A high-symmetry gap that implies a gap closing.
Nongaps demonstrate a new, topological constraint on
photonic band connectivity beyond compatibility con-
straints. With this constraint accounted for, μT is increased
from 2 to 4 for space groups 13, 48–50, 68, and 86
(Supplemental Sec. S8.A [37]).
We next demonstrate a concrete PhC with a topo-

logical nongap in space group 86 (generated by inversion
−1 and screws f2001j 12 12 0g and f4þ001j0 1

2
1
2
g). The μT ¼ 2

compatibility-respecting solutions of space group 86 are
nT ¼ ½ð▪Þ2T; A∓

1 þ A�
2 ;M1; Z2; R1; X1�—with ð▪Þ2T indi-

cating the singular Γ-point symmetry—with nontrivial
index νT1 ¼ 1 ∈ Z2. We perform a random search of
PhCs spanned by symmetry-respecting Fourier-sum iso-
surfaces (Supplemental Sec. S3.D [37]), checking the
symmetry vectors of their lowest two bands against nT

to identify a realization [55]. Figures 3(a) and 3(b) show
one such PhC realization: Its associated band structure
shows a μT ¼ 2 connectivity along the high-symmetry BZ
paths. For regular TR-invariant bosonic bands in space
group 86, a ν1 ¼ 1 index protects a π-Berry phase in each

quadrant of any kz slice of the BZ (stabilized by the
combination of TR and inversion symmetry), which in turn
requires the existence of 4 (mod 8) nodal lines running
along kz [52]. Consistently, our PhC hosts four nodal lines
between bands 2 and 3, each protected by a π-Berry phase
in band 2 [Figs. 3(c) and 3(d)].
Unlike space group 86, the nodal lines of space groups

48–50 and 68 are protected not only by a π-Berry phase but
also by a Z2 monopole charge (space group 13 may exhibit
either type of protection) [52]. Figure 4 shows a PhC reali-
zation in space group 68 (generated by inversion −1, screws
f2001j 12 00g and f2010j00 1

2
g, and a C-centering translation

f1j 1
2
1
2
0g). The PhC realizes the sole μT ¼ 2 compatibility-

respecting solution, with symmetry vector nT ¼ ½ð▪Þ2T;
T1; Y

þ
2 þ Y−

2 ; Z2; R1; S1� and index νT1 ¼ 1 ∈ Z2. The
high-symmetry band structure thus exhibits a μT ¼ 2 gap
[Fig. 4(b)]—but there are nodal lines closing the gap at
generic momenta [Fig. 4(c)]. For any loop enclosing a single
nodal line, the summed Berry phase of bands 1 and 2 is π, as
before. More interestingly, for a loop CðkzÞ enclosing a pair
of nodal lines [Fig. 4(d)], bands 1 and 2 (and 3 and 4)

FIG. 4. Photonic topological nongap in space group 68 (Ccce) with Z2 monopole charge. (a) PhC unit cell and (b) associated band
structure (along the indicated BZ path) that realizes a minimum-connectivity (μT ¼ 2) Γ-enforced topological solution in space group 68
(unit-cell parametrization in Supplemental Table S4 [37]; ε ¼ 16material in gray, embedded in vacuum with a filling fraction of 35%; ai
and bi, direct and reciprocal primitive lattice vectors). (c) Nodal lines connecting bands 2 and 3 at generic momenta. (d) Projection of
nodal lines to the ðkx; kyÞ plane and definition of a fixed-kz loop CðkzÞ that encloses a pair of nodal lines. (e) Non-Abelian Berry phases
around CðkzÞ of bands 1 and 2 wind relatively when kz ranges over its domain. The nodal lines are consequently protected by a Z2

monopole charge (in addition to a π-Berry phase).
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necessarily touch as kz is wound over its domain [57].
Computing the non-AbelianBerry phases [58–60] of bands 1
and 2 over CðkzÞ while winding kz, we observe a relatively
winding Berry phase spectrum signaling an enclosed Z2

monopole charge [Fig. 4(e)] [61,62], consistent with the
general predictions from topological band theory [52,63].
These Z2-charged nodal lines are protected against gapping
by any TR- and inversion-preserving perturbations, just as
the more conventional π-Berry phase nodal lines, but addi-
tionally, they can only be created and annihilated in pairs
[62,64,65]. The impact of the distinct topological protections
in space groups 86 and 68 could be detected experimentally
since surface states extending from the projections of the
nodal lines, e.g., at [001] facets, are single helicoid for π-
Berry phase lines but double helicoid for Z2-charged
lines [66,67].
We also search for Γ-enforced topology in the TR-

broken setting, finding 32 space groups (Fig. 2, pink
markers). However, since nontrivial TR-broken topology
also includes gapped phases, this Γ-enforced topology does
not necessarily correspond to topological nongaps. A
prominent mechanism for breaking TR for photons
involves applying a uniform magnetic field to magneto-
optic PhC [68]. Among the identified candidates, only
space groups 13, 85, 86, and 87 have symmetries com-
patible with a uniform magnetic field. Of these, only space
groups 85 and 87 require TR breaking in order to exhibit Γ-
enforced topology. By analyzing their solutions’ symmetry,
we find that the TR-broken minimum-connectivity
(μ̃T ¼ 2) solutions of either case cannot be obtained by
perturbatively applying TR breaking to their TR-invariant
minimum-connectivity solutions. Instead, they require
either large-amplitude TR breaking or fine-tuned accidental
degeneracies (Supplemental Sec. S7 [37]).
Our discovery of topological nongaps is an interesting

counterexample to the usual working assumption that a gap
along the high-symmetry lines and edges of the BZ implies
a full gap. Here, instead, the converse is guaranteed. While
exceptions to the rule are well known [69,70], it is true that
most band extrema occur at the BZ edge or along high-
symmetry lines [69,71]. Our findings are consistent with
this perspective since nodal lines are linear band degener-
acies, not band extrema.

IV. DISCUSSION

Here, we have explicitly constructed the photonic mini-
mum connectivity below the first gap by requiring consis-
tency with compatibility relations and pinned symmetry
content at ω ¼ 0. A natural question is whether every such
connectivity can be realized with available optical materials.
Space group 230 (Ia3̄d), which, e.g., hosts the double-gyroid
structure [72,73], provides an interesting counterexample:
While we predict the possibility of a μT ¼ 8 gap (Fig. 2), to
the best of our knowledge, all previously observed gaps
exhibit a higher connectivity [8,72]. This apparent

discrepancy is caused by what we call a “dielectric obstruc-
tion”—a difficulty in bringing together the band symmetries
required by a given solution because of material constraints.
Inmore detail, every μT ¼ 8 solution in Ia3̄d requires aΓþ

1 or
Γ−
1 irrep or both (Supplemental Sec. S11.A [37]). These

irreps, however, occur only in the very high-lying bands of
PhCs in Ia3̄d.Tounderstand this,we consider the irreps of the
empty-lattice structure (i.e., uniform ε): There, no Γ�

1

features in the 38 lowest-frequency modes at Γ
(Supplemental Sec. S10 [37]). To gradually transform the
empty lattice to a hypothetical μT ¼ 8 PhC then requires at
least 38 band inversions at Γ—necessitating an extremely
large dielectric contrast, likely outside the attainable range.
Precisely where such dielectric obstructions arise is an
interesting question, with implications for photonic topology
and band engineering, in general.
Our construction relies explicitly on the use of a set of

auxiliary apolar and longitudinal modes to circumvent the
symmetry singularity at ω ¼ 0. This need arises because
the transversality condition requires the discarding of one-
third of all solutions to the Maxwell equations—the
longitudinal modes—fracturing the symmetry content at
ω ¼ 0. Unlike photons, phonons and acoustic waves allow
both transverse and longitudinal polarizations; like pho-
tons, they intersect ω ¼ 0 at Γ but in a triply degenerate
fashion [27]. Their symmetry content at ω ¼ 0 is con-
sequently not singular, but it is still pinned by their long-
wavelength plane-wave-like behavior. Phonons and acous-
tic waves are therefore subject to the apolar n1Lþ2T

Γ
constraint in Eq. (3): The connected phononic solutions
below the first gap are simply all the non-negative
combinations of Hilbert vectors that each contribute to
fulfilling this constraint. The minimum phononic connec-
tivity below the first gap μLþT (Fig. 5) can consequently be
computed immediately with the tools already developed.
The corresponding solutions are regular, and their (stable)
topology can be evaluated directly from Eq. (5)—in fact,
regularity also enables evaluation of fragile topology [74]
(by checking non-negative integer expansion feasibility in
the EBR basis; see Supplemental Sec. S2.F [37]). Doing so
for every space group, we find no Γ-enforced topology in
the TR-invariant setting but nine space groups with
TR-broken Γ-enforced stable topology and three with
fragile or mixed stable-fragile topology (Supplemental
Sec. S11.C [37]). Such Γ-enforced topological phonons,
or magnetic space-group analogues [75,76], may be real-
izable in ferroelectric materials. A related application is to
the connectivity of bulk longitudinal plasmons of metals
(associated with zeros of the longitudinal nonlocal dielec-
tric function [77]) or to certain recently proposed perfect-
metal metamaterials [78] (governed by the quasistatic
Poisson equation), which, if wholly decoupled from trans-
verse fields, are subject only to the n1L

Γ constraint in Eq. (3).
In this work, we provide explicit constructions of all

minimum-connectivity solutions below the first gap in
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PhCs. Our approach exploits the existence of a Hilbert basis
fhig, consisting of all minimally connected bands, to very
efficiently and exhaustively solve constrained connectivity
problems. To apply this technique to the singular ω ¼ 0-
connected transverse PhC bands, we introduce two auxiliary,
regular problems associated with bands of apolar and
longitudinal polarizations, whose difference corresponds
to the physical transverse bands. Leveraging this

decomposition further, we introduce a definition for the
symmetry-identifiable topological indices of the singular
PhC bands below the first gap in Eq. (6), thereby overcoming
the key technical barrier to the application of a symmetry-
based diagnosis of band topology to 3D PhCs [19]. By
exhaustive computation of the topology of the minimum-
connectivity solutions in every space group, we discover the
existence of photonic topological nongaps—gaps in the

FIG. 5. Minimum phononic and acoustic band connectivity below the first gap and associated Γ-enforced topology. Conventions are as
in Fig. 2.
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high-symmetry band structure whose existence implies
necessary band closings, in the form of nodal lines, in the
interior of the BZ—in space groups 13, 48–50, 68, and 86,
providing proof-of-concept examples for the latter two.
The singular nature of the ω ¼ 0 bands is a uniquely

photonic feature, arising as a direct result of the transverse
polarization of photons. Beyond the problems considered
here, the singularity’s manifestations are at the core of
several problems in electromagnetic theory, including, e.g.,
unique photonic considerations for k · p models [79] and
long-standing obstacles to the construction of exponentially
localized Wannier functions in 3D PhCs [80]. We expect
the ideas introduced here to be useful also in these
directions.

The software tools developed in this work are made
available as open-source software implemented in the Julia
programming language [33,81,82]. Functionality to com-
pute general symmetry eigenvalues of PhC eigenstates was
added to the MPB frequency-domain solver [56] as part of
this work.
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