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We present a comprehensive dynamical mean field study of the triangular lattice moiré Hubbard model,
which is believed to represent the physics of moiré bilayer transition metal dichalcogenides. In these
materials, important aspects of the band structure including the bandwidth and the order and location of van
Hove singularities can be tuned by varying the interlayer potential. We present a magnetic and metal-
insulator phase diagram and a detailed study of the dependence of the resistivity on temperature, band
filling, and interlayer potential. We find that transport displays Fermi liquid, strange metal, and quantum
critical behaviors in distinct regions of the phase diagram. Specifically, we find that the cube-root van Hove
singularity [ρðϵÞ ∼ jϵj−1=3] gives a strange metal behavior with a T-linear scattering rate and ω=T scaling.
We show how magnetic order affects the resistivity. Our results elucidate the physics of the correlated states
and the metal-insulator continuous transition recently observed in twisted homobilayer WSe2 and
heterobilayer MoTe2=WSe2 experiments.
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I. INTRODUCTION

Moiré bilayers have emerged as a fascinating system for
exploration of correlated electron physics [1–6]. Moiré
bilayers are formed when a monolayer of one material is
placed on top of a monolayer of another material (hetero-
bilayer) or when two layers of the same material (homo-
bilayer) are stacked. Bilayers are typically encapsulated
with other materials for protection against degradation and
to enable electrical contacts. In the heterobilayer case, an
in-plane moiré (very long period) superlattice may be
generated when the two components have a lattice mis-
match [5–7]. In the homobilayer case, a moiré superlattice
may be generated when the two layers are placed at a

relative twist angle [3,4,8]. The low-energy properties of
moiré systems are typically described by few-orbital tight-
binding-like models in which the single-particle electronic
properties can be tuned over wide ranges by variation of the
interlayer potential difference (“displacement field”) while
the interaction strength is set by the size of the moiré unit
cell. The tunability of the relative magnitude of interaction
and band scales makes a systematic theory-experiment
comparison possible.
Moiré bilayers formed from transition metal dichalgo-

cenide (TMDC) materials are now of intense interest
[3–11]. In heterobilayer MoTe2=WSe2, the bandwidth
can be tuned over about an order of magnitude, while in
twisted homobilayer WSe2 (tWSe2), properties of the van
Hove point including its Brillouin zone location and the
degree of singularity are controlled by the displacement
field [10,12,13]. tWSe2 has recently been found to exhibit a
reentrant metal-insulator transition that is controlled by the
carrier concentration and displacement field, with regions
of linear-T resistivity near the boundaries to the insulating
phases [3,4]. Heterobilayer MoTe2=WSe2 is reported to
exhibit a metal-insulator transition controlled by the
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displacement field with a scaling collapse of the resistivity
data over wide temperature and displacement field ranges
[5]. The rich experimental phenomenology combined with
the relative simplicity of the systems and the high degree of
experimental control suggests that a more comprehensive
understanding of the physics of the metal-insulator tran-
sitions and the associated strange metal may be possible;
this understanding may shed new light on the physics of
other strongly correlated systems such as twisted bilayer
graphene, high transition temperature cuprates, and
Sr3Ru2O7 because of van Hove singularity and magnetism
[14–17].
The wide range of temperature scales that can be

experimentally accessed, from the asymptotic low-T
regime to temperatures comparable to or greater than
bandwidths, provides a new condensed matter approach
to the fundamental question of the high-temperature
physics of interacting electrons. The intermediate- and
high-temperature regimes [18–21] have been mostly exper-
imentally probed in ultracold atom systems [22–24], while
they are generally inaccessible in solid-state systems due to
the large bandwidths.
In both tWSe2 and MoTe2=WSe2, the low-energy

physics is believed to be well modeled by the triangular
lattice moiré Hubbard model, which extends the familiar
triangular lattice Hubbard model [25–31] by tuning impor-
tant aspects of the band structure and breaking the SU(2)
spin symmetry [3–5,7,9,10]. While the conductivity of
interacting lattice models has been analyzed [18,19,26,32–
39], the physics associated with the moiré tunabilty has not
been fully explored, and the comprehensive analysis
needed to compare to current experiments has not been
performed.
Here, we present a complete phase diagram including

magnetic and metal-insulator transitions and a comprehen-
sive study of the dependence of the resistivity on temper-
ature, band filling. and displacement field. We find regions
of strange metal behavior as well as Fermi liquid regions
and show how magnetic order affects the resistivity and
how varying the displacement field leads to critical scaling.
In particular, we show that the high-order van Hove of
degree three, which appears in twisted systems [12,40–42],
provides an alternative route to realize linear resistivity. We
present a detailed comparison of our results to experiment.
The rest of this paper is organized as follows. In Sec. II,

we present the model and methods. In Sec. III, we present
the magnetic phase diagram at half filling. In Sec. IV, we
discuss the resistivity behavior restricted to nonmagnetic
solutions, and in Sec. V we discuss the linear resistivity
associated with the proximity of the van Hove singularity.
In Sec. VI, we discuss the consequence of the magnetic
order in the resistivity. In Sec. VII, we compare our results
to experiments and devote Sec. VIII to a summary and
conclusion. Appendixes present the details of the band
structure and our analytical continuation methods.

II. MODEL AND METHOD

The moiré Hubbard model is [4,7,9]

H ¼ −
X

hi;ji;σ¼↑;↓

c†i;σt
i;j
σ cj;σ þU

X
i

ni↑ni↓; ð1Þ

where i, j represent nearest-neighbor sites on the triangular
superlattice, U is an on-site repulsive interaction of
magnitude set by the size of the moiré unit cell, and ti;jσ
is the hopping parameter. Longer-ranged hopping and
interaction terms, neglected in Eq. (1), are believed not
to be of qualitative importance for the carrier concentra-
tions of main interest here, which are near one electron per
moiré unit cell, although the long-ranged interactions may
be relevant for Wigner crystal states reported at much lower
carrier concentrations [43,44]. The moiré Hubbard model
approximates the physics of the two highest-lying valence
bands; other bands slightly overlap the moiré Hubbard
bands at the very lowest band energies, and would have to
be considered at very low electron concentrations, but are
not relevant to this study, which focuses on electron
densities near n ¼ 1 per moiré unit cell.
In heterobilayer MoTe2=WSe2, the moiré pattern is

formed by lattice mismatch. Density functional band theory
(DFT) calculations reveal that the hopping parameter is
real, spin independent, and tunable over more than an order
of magnitude by variations of the displacement field (gate
voltage difference between two layers) [5,7]. In homobi-
layer tWSe2, the moiré pattern is formed by a relative twist
between the two component layers. In this paper, we focus
on the twist angle 4°–5° studied in recent experiments. The
DFT calculations in Ref. [4] indicate that for this twist
angle the top moiré bands are well fitted by the single-
orbital tight-binding model with hopping magnitude jtj
around 10 meV, and the bands are not topological.
Topological bands are found to occur for other twist angles
and in other calculations [8,9,45]. In the experiments [3,4],
the resistivity shows no quantization feature, while strange
metal and quantum criticality behaviors are observed.
Therefore, we focus on the topological trivial region in
this study. The variation of the displacement field over
physically reasonable values changes jtj by about 30% and,
more importantly, adds a spin-dependent complex phase
ti;jσ ¼ jtjeiσϕij in the range 0≲ ϕ≲�π=3. In Appendix A,
we present a brief review of the band structure of tWSe2.
The ϕ dependence of the hopping has a dramatic effect

on the band structure, as seen in the color maps of constant
energy contours shown in the left in Fig. 1 for ϕ ¼ 0, π=12,
and π=6. In these plots, the Fermi surfaces corresponding to
half filling are indicated as white dashed lines. For a certain
value of ϕ (ϕ ¼ π=6 in the nearest-neighbor model
considered here), the three van Hove points merge and
form a higher-order van Hove singularity in which the
density has a power-law divergence ρðϵÞ ∼ jϵj−1=3
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[10,12,13]. This higher-order van Hove point lies on the
Fermi surfaces for half filling with carrier density n ¼ 1,
which are also such that the spin-up and spin-down Fermi
surfaces are nested.
We use the single-site dynamical mean field theory

(DMFT) [46] with the continuous-time hybridization
expansion solver [47] as implemented in the TRIQS
software library [48,49] to perform a comprehensive study
of the metal-insulator and magnetic phase diagram, as well
as the temperature-dependent resistivity, as functions of the
carrier concentration, hopping phase ϕ, relative interaction
strength U=jtj, and temperature T=jtj. The single-site
DMFT replaces the full momentum and frequency-
dependent self-energy by a self-energy that depends only
on frequency. Within this approximation, quantum and
thermal fluctuations are treated on an equal footing, and a
nonperturbative treatment of the physics is possible.

III. PHASE DIAGRAM AT HALF FILLING

In Fig. 1, we present the computed phase diagram at
carrier concentration n ¼ 1. Our results for ϕ ¼ 0 are
consistent with previous DMFT work [25–28,50]. The

low-T, small-U phase is a Fermi liquid metal; as U=t is
increased beyond Uc ≈ 9t at low T, a first-order transition
to a 120° magnetically ordered insulating state occurs (spin
pattern shown in the figure). For large and small U, the
phases found in DMFTagree with the phases found in other
work, but it is likely that for a relatively narrow range of
U ∼ 9t a different insulating phase occurs, possibly a spin
liquid [29–31]. This phase is not captured by the single-site
DMFT formalism and is not discussed in this paper.
Within the DMFT approximation at ϕ ¼ 0 and at low T,

the magnetic transition temperature jumps discontinuously
(within our resolution) to about 0.125t at Uc ≈ 9t and then
varies nonmonotonically on further increase of U. For
U > 9t, the temperature-driven magnetic transition is
second order. As U is varied at higher T, a paramagnetic
metal to paramagnetic insulator crossover is found at U ∼
11t indicated by the vertical dashed line in Fig. 1. Within
our resolution (ΔU ¼ t, ΔT ¼ 0.1t) the crossover is
essentially independent of ϕ. If magnetism is suppressed,
then, as U is increased at very low T, single-site DMFT
finds a first-order nonmagnetic metal–nonmagnetic insu-
lator transition [51] with a critical end point at Tp

c ≈ 0.1t,
Up

c ≈ 11t with interesting scaling associated with the end
point of the paramagnetic metal–paramagnetic insulator
transition [35,52]. For the triangular lattice model consid-
ered here, the critical end point is well within the magnetic
phase and is not discussed further here.
As ϕ is increased, the high-T paramagnetic metal–

paramagnetic insulator crossover does not change.
However, the magnetic phase expands in both temperature
and U, and at ϕ ¼ π=6 the magnetic phase extends to
U ¼ 0 and the transition is everywhere second order. The ϕ
dependence of the magnetic phase boundaries can be
understood from the fermiology, shown in the left in
Fig. 1: As ϕ → π=6, the Fermi surface becomes nested,
and the van Hove singularities merge to form third-order
singularities at K=K0 points of the Brillouin zone.
The ability of DMFT to capture quantum fluctuations

leads to differences from our previous T ¼ 0 Hartree-Fock
phase boundary [10], shown as blue triangles in the figure.
The transition temperature is also greatly overestimated by
the temperature-dependent Hartree-Fock approximation.
Of course, DMFT cannot capture the long-wavelength
physics associated with the true Kosterlitz-Thouless tran-
sition critical behavior implied by the xy symmetry of the
magnetic action [10], but the computed transition temper-
ature is believed to adequately reflect the crossover scale
below which magnetic correlations become very long
ranged [25].

IV. RESISTIVITY IN THE
PARAMAGNETIC STATE

The resistivity is perhaps the most experimentally
accessible observable in twisted bilayer systems. In this
section and Sec. V, we focus on the resistivity of the

FIG. 1. DMFT phase diagram at half filling for (a) ϕ ¼ 0,
(b) π=12, and (c) π=6. The red lines represent the phase boundary
between the magnetic state and the paramagnetic state, deter-
mined by the Landau theory. The black dashed line indicates the
paramagnetic insulator transition, with resolution ΔU ¼ t,
ΔT ¼ 0.1t. The blue triangle marks the transition at zero temper-
ature from the Hartree-Fock calculation. On the left, we also show
the isoenergy dispersion contours at zero interaction, where the
dashed lines mark the Fermi surface at half filling.
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paramagnetic phase, turning to the effects of magnetism
in Sec. VI. The conductivity of the Hubbard model
has been studied previously [18,19,26,32,33,35–39]. The
published conductivities exhibit Fermi liquid metal and
“Mott insulating” regimes, depending on carrier concen-
tration and interaction strength. An interesting scaling
behavior has been found to be associated with the
metal-insulator transition. The critical end point of the
paramagnetic metal–paramagnetic insulator first-order
metal-insulator transition line gives rise to an Ising criticality
[32,35,36,53], while over a much broader range at high T a
data collapse associated with a critical scaling has been
reported [37,38]. Here, we investigate how the displacement
field affects the conductivity, with a particular focus on the
tunable van Hove singularity.
In the dynamical mean field approximation and in the

paramagnetic phase, the conductivity is given by [46]

σnonmag
dc ¼ 2πe2

ℏSN

X
k

�
∂ϵk
∂kx

�
2
Z

dωAðϵk;ωÞ2
−∂nFðωÞ

∂ω
; ð2Þ

where the k sum is over the Brillouin zone of the triangular
lattice with N sites, S ¼ ffiffiffi

3
p

a2=2 is the area of the unit cell,
ϵk is the dispersion, nFðωÞ is the Fermi-Dirac function, and
Aðϵk;ωÞ ¼ −ð1=πÞIm½ωþ μ − ϵk − ΣðωÞ�−1 is the spectral
function. The resistivity requires knowledge of the self-
energy ΣðωÞ for real frequencies; we obtain ΣðωÞ via
maximum entropy analytical continuation (MaxEnt)
[54,55] of our quantum Monte Carlo (QMC) data and
spot check the results both by analyzing the data directly on
the imaginary axis and by comparison to the Padé method
of continuation [56].
Figure 2(a) shows the resistivity calculated at half filling

and ϕ ¼ 0 over a wide range of temperatures and inter-
actions. These results agree with previous calculations
[18,19,26,32,33,35–39]. Three temperature regimes are
evident: a low-T regime (T ≲ 0.4t), where an asymptotic
low-T behavior is evident (either gapped, for large U, or
tending to perfect conduction for smaller U), a high-T
regime (roughly T ≳ 2t with the precise boundary being U
dependent and becoming larger than the largest scale
shown for U ≳ 12t), where the resistivity is approx-
imately of the form ρ ¼ Aþ BT [19], and an intermediate-
temperature crossover regime. As shown in Fig. 2(b) (solid
line), the different regimes are associated with different
behaviors of the electronic spectral function, with the low-T
behavior associated with the presence of either a gap or a
sharp quasiparticle peak and the high-T behavior associated
with a very broad spectral function with weak temperature
dependence arising only from the T dependence of the
chemical potential, as previously noted in Refs. [19,20].
We now proceed to the new features at ϕ ≠ 0. Figure 3

compares the resistivity at ϕ ¼ 0 to the resistivity at
ϕ ¼ π=6. Figure 3(a) highlights the moderate-interaction

regime where the paramagnetic phase ground state is a
metal. We see that varying the phase angle does not change
the resistivity significantly at higher T ≳ t but has a
profound effect at lower T, changing the scaling with
temperature from quadratic to linear and concomitantly
increasing the magnitude. Figure 3(b) presents the large U
metal-insulator crossover regime. We see that changing ϕ
again has essentially no effect at higher temperatures, with,
in particular, the Mott gap insensitive to the displacement
field. However, in the crossover regime U ≈ 10–11t,
increasing ϕ has a much stronger effect. As T is decreased
below T ∼ t into the metal-insulator crossover regime, the
resistivity is governed by two competing effects charac-
terized by different energy scales. A Hubbard gap structure
[visible in the U ¼ 10; 11t spectral function shown in
Fig. 2(b)] begins to open, causing a rapid upturn in the
resistivity; then, at lower T a midgap quasiparticle peak
appears [46], leading to a rapid downturn in the resistivity
and ultimately metallic behavior. We see that the initial
upturn is essentially the same for ϕ ¼ 0 and ϕ ¼ π=6,
consistent with a minimal effect of ϕ on the Mott gap.
However, the difference in temperature of the resistivity
maximum shows that the enhanced density of states related
to the Fermi surface van Hove singularity at ϕ ¼ π=6
favors the formation of the midgap quasiparticle peak [seen

FIG. 2. (a) Temperature dependence of resistivity at half filling
for ϕ ¼ 0 with different interactions. The black cross marks the
magnetic transition temperature for U=t ¼ 9, 10. (b) Spectral
function for ϕ ¼ 0 (solid line) and π=6 (dashed line) at repre-
sentative temperatures for different interactions.
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also in Fig. 2(b) at U ¼ 11t], leading to the much lower
resistivity at T ∼ 0.5t. Finally, at very low T, the enhanced
scattering arising from the van Hove singularity makes the
resistivity at ϕ ¼ π=6 again larger. The nonmonotonic
behavior is highlighted in Fig. 3(c), which presents the
ratio ρðϕ ¼ π=6Þ=ρðϕ ¼ 0Þ. The ϕ dependence of the
metal-insulator crossover may be expected to lead to a ϕ
dependence of the location of the critical end point of the
metal-insulator transition and may affect other features of
the metal-insulator crossover line and the critical end point.
The ϕ dependence is weak, essentially outside of our
resolution ΔU ∼ t, Δt ∼ 0.1t. A detailed study of these
aspects is left for the future.

V. LINEAR RESISTIVITY AT ϕ= π=6

Figure 3(a) shows that at ϕ ¼ π=6, where the high-order
van Hove singularity is at the Fermi surface, the asymptotic
low-temperature resistivity is ρ ∼ T. At very low

temperature, the resistivity is related to the scattering rate,
or the imaginary part of the self-energy ImΣðωÞ, and it is
important to verify that the linearity we find is not an
artifact of the maximum entropy analytic continuation
method used to obtain most of our resistivity data.
As a first check, we examine directly the imaginary axis

behavior. In the Fermi liquid regime at sufficiently low T,
the self-energy on the Matsubara axis has the low-energy
expansion

ImΣðiωn; TÞ ≈
�
1 −

1

Z

�
ωn þ

ω2
n − ðπTÞ2

E
þOðω3

nÞ; ð3Þ

which implies, at the first Matsubara point iωn¼0 ¼ iπT,

ImΣðiπT; TÞ
T

¼
�
1 −

1

Z

�
π þOðTÞ: ð4Þ

So, a deviation from linearity with T of the self-energy at
the lowest Matsubara frequency indicates a non-Fermi-
liquid behavior [57,58].
To understand what the deviations might be, we observe

that the real and imaginary self-energies are connected by
the Kramers-Kronig relation:

ImΣðiωn; TÞ ¼ −
ωn

π

Z
∞

−∞
dω

ImΣðω; TÞ
ω2 þ ω2

n
: ð5Þ

A natural guess for the non-Fermi-liquid behavior is a
scaling function such as the “marginal Fermi liquid” form,
where ImΣðωÞ ¼ b½ω2 þ ðcπTÞ2�1=2 [59]. Inserting this
expression into the Kramers-Kronig relation gives

ImΣðiπT; TÞ
T

¼ −2b ln
E⋆
T

þOðTÞ; ð6Þ

with E⋆ a cutoff energy scale. With this idea, we plot
ImΣðiπT; TÞ=T as a function of lnT in Fig. 4(b). For
ϕ ¼ 0, ImΣðiπT; TÞ=T is a constant, confirming the Fermi
liquid behavior; while, for ϕ ¼ π=6, ImΣðiπT; TÞ=T is
proportional to lnT with slope b ¼ 0.240� 0.001, con-
firming the non-Fermi-liquid behavior.
Next, we employ a longer quantum Monte Carlo loop

NQMC ¼ 1010 to obtain higher-accuracy data for ΣðiωnÞ at
U ¼ 4t, ϕ ¼ 0 and π=6, and several temperatures. We
analytically continue these data using the Padé method
[56], which is believed to provide a more accurate estimate
of the small frequency and low-temperature self-energy
than the maximum entropy method. Figure 4(b) shows that
for ϕ ¼ 0 we obtain the quadratic behavior expected in a
Fermi liquid, while for ϕ ¼ π=6 we see a linear ω
dependence at T ≪ ω and a linear T dependence at
ω ≪ T. To further analyze this behavior, we replot the
data as ImΣðωÞ=T against ω=T, as shown in Fig. 4(c). We
see that this scaling of the variables leads to an essentially

FIG. 3. (a),(b) Resistivity for ϕ ¼ 0 (solid line) and ϕ ¼ π=6
(dashed line) for moderate and large interactions, respectively.
The DMFT computation is restricted to nonmagnetic solutions,
and the black (ϕ ¼ 0) and red (ϕ ¼ π=6) crosses mark the
magnetic transition temperature. (c) The ratio of resistivity of two
phases ρðϕ ¼ π=6Þ=ρðϕ ¼ 0Þ at different temperatures and
interactions.

DYNAMICAL MEAN-FIELD THEORY OF MOIRÉ BILAYER … PHYS. REV. X 12, 021064 (2022)

021064-5



perfect scaling collapse, implying that the low-energy self-
energy is a scaling function ImΣðω; TÞ → Tgðω=TÞ with
limx→∞ gðxÞ ¼ bx and limx→0 gðxÞ ¼ bcπ. Deviations
occur when ω is comparable to U. We compare our results
to two specific forms of the scaling function: gðxÞ ¼
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðcπÞ2

p
and gðxÞ ¼ bx= tanhðx=cπÞ. The first one

corresponds to the marginal Fermi liquid form [59], and the
second one is inspired by the one found in conformally
invariant quantum impurity models [60] (for which, how-
ever, c ¼ 2=π). The slope b used in the figure is directly
obtained from the fitting of Matsubara frequency, and it
agrees well with the Padé data. c ≈ 0.92 is obtained from
the linear fitting of Im½ΣðωÞ� at ω ¼ 0, but this value is
sensitive to the uncertainties of analytical continuation.
Determining the precise scaling function associated with
the self-energy is left for future work.
In summary, we analytically and numerically confirm

that at ϕ ¼ π=6 the low-temperature resistivity in the
metallic phase is linear. The linearity is theoretically
expected for a van Hove singularity of degree three within
the DMFTapproximation [39,61]. The single-site DMFT is
a local approximation; study of the self-energy [17,62,63]
and resistivity [26,51] beyond the local self-energy
approximation is left to future work.
Finally, we consider the doping-driven crossover of the

metallic resistivity from the T-linear behavior found when
the Fermi surface touches the third-order van Hove point
to the T2 behavior expected when the van Hove point is not
at the Fermi surface. Figure 5 shows the T dependence of

the low-T resistivity computed for two representative
interactions U ¼ 4t and 8t for different hole dopings. For
ϕ ¼ 0, as expected, the system has a clear T2 dependence at
low temperature at all dopings with a dramatic increase in
coefficient as n → 1. For ϕ ¼ π=6, the low-T temperature
dependence gradually changes from T linear to T2 as doping
is increased, but the magnitude of the resistivity is less
sensitive to the carrier concentration near n ¼ 1. As shown in
the inset in Fig. 5(c), atU ¼ 4t andϕ ¼ π=6, we find that the
crossover from theT-linear to T2 resistivity is approximately
given by ρ ∼ ð6.5T2Þ=ðT þ T⋆Þ with the crossover scale
T⋆ ¼ 6tð1 − nÞ2. As seen, the formula describes the data
well for n≳ 0.7 and T ≲ 0.6t. The crossover scale T⋆
becomes very small for n near 1.

VI. RESISTIVITY IN THE MAGNETIC STATE

We next explore the consequence of the magnetic order
for the resistivity, focusing on ϕ ¼ π=6. We consider two
representative interaction strengths, U ¼ 4t and U ¼ 8t,
and consider the temperature and doping dependence of the
magnetic order parameter and the resistivity. In computing
the conductivity, we note that the magnetic order breaks the
translation symmetry, so the calculation is formulated in the
reduced magnetic Brillouin zone. However, we showed
previously that a space-dependent spin rotation combined
with a spin-dependent gauge transformation maps the 120°
antiferromagnetic state into an in-plane ferromagnetic state
with hopping phase ϕ ¼ π=2 [10]. In this transformed
frame, the magnetic order parameter is

m ¼ TrðσxGÞ; ð7Þ

FIG. 5. Resistivity from paramagnetic DMFT solution at
U=t ¼ 4, 8 for ϕ ¼ 0; π=6 for different carrier concentrations,
shown in the legend. The inset in (c) shows resistivity data (solid
line) and dashed curves calculated by a simple formula ρ ¼
ð6.5T2Þ=ðT þ T⋆Þ with the crossover scale T⋆ ¼ 6tð1 − nÞ2.

FIG. 4. (a) ImΣðiωn ¼ iπT; TÞ=T as a function of lnðT=tÞ at the
first Matsubara frequency point. (b) The imaginary part of the
self-energy Im½ΣðωÞ� for ϕ ¼ 0 and π=6 at U ¼ 4t and half
filling. (c) Im½ΣðωÞ�=T versus ω=T for ϕ ¼ π=6. The black and
red lines are reference lines gðxÞ ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðcπÞ2

p
and

gðxÞ ¼ bx=tanh½x=ðcπÞ�, correspondingly. The slope b ≈ 0.24
is obtained independently from the fitting shown in (a), and c ≈
0.92 is obtained from the linear fitting of Im½Σðω ¼ 0Þ�.
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where Gσσ0 is the Green function matrix in the spin basis.
The dc conductivity is

σmag
dc ¼ πe2

ℏSN

X
k;σ;σ0

vxkσv
x
kσ0

Z
dωAkσσ0 ðωÞAkσ0σðωÞ

−∂nFðνÞ
∂ω

;

ð8Þ

where vxkσ ¼ ∂ϵkσ=∂kx is the group velocity and
Akσσ0 ðωÞ ¼ −ð1=πÞImGσσ0 ðk;ωÞ is the spectral function,
which now has spin off-diagonal components because of
the in-plane magnetic order.
The left in Fig. 6 shows the magnetic order parameter for

different carrier concentrations. We see that the ordering
temperature and amplitude of magnetic order decrease as
the system is doped away from the half filled point. The
right shows the corresponding temperature-dependent
resistivities. We see that the onset of magnetism leads to
an abrupt increase in the resistivity. For n ¼ 1, the system is
fully gapped, and the resistivity in the magnetic state
diverges at T ¼ 0. For n ≠ 1, the Fermi surface is not
fully gapped, and after the initial increase the resistivity
again decreases as temperature is decreased. At a temper-
ature below but not too far below the ordering temperature,
the resistivity is higher in the magnetic state than it would
be if the magnetization were suppressed. It might be that at
very low T the fact that the magnetization gaps out some of
the fluctuations that scatter electrons means that the
resistivity of the magnetic state may even become lower
than that of the paramagnetic state as T → 0.
The detailed temperature and doping dependence of the

conductivity is controlled in a subtle way by the evolution
of the chemical potential and the magnetic order parameter.
Figure 7(a) shows the momentum-integrated spectral

function for n ¼ 0.95 and U ¼ 8t. At zero temperature
(not shown), the Fermi level (here defined to be at ω ¼ 0) is
just below the upper edge of the valence band, leading to a
hole pocket (of very elongated aspect ratio because of the
perfect nesting at n ¼ 1). As the temperature increases, two
effects compete with each other. On the one hand, the
chemical potential moves rapidly into the gap due to the
thermal effects. This is seen in Fig. 7(a) as a downward shift
in the peak of the spectral function in the range 0.1t≲
T ≲ 0.3t (recall that ω ¼ 0 defines the chemical potential)
and in the momentum resolved spectral function shown in
Fig. 7(b). This effect increases the resistivity. On the other
hand, the magnetic order gradually disappears, leading to a
gap decrease that decreases the resistivity. As the temper-
ature further increases, the gap closes and the peak in the
spectral function moves back to ω ≈ 0. Therefore, the
resistivity goes back to the paramagnetic behavior.

VII. COMPARISON TO EXPERIMENTS

Here, we compare our theoretical results to recent
experiments [3–5] on moiré bilayer TMDC materials.

FIG. 6. (a),(b) Amplitude of the magnetic order [Eq. (7)] for
U=t ¼ 4, 8 and densities shown, at ϕ ¼ π=6. (c),(d) Solid line:
resistivity computed at densities shown for U=t ¼ 4, 8, including
the effects of magnetic order; dashed line: resistivity, computed in
the paramagnetic state.

FIG. 7. (a) The momentum integrated spectral function for spin
up A↑↑ðωÞ at U ¼ 8t and carrier concentration n ¼ 0.95 is
plotted at ϕ ¼ π=6 and different temperatures (solid line). For
comparison, the spectral function for n ¼ 1 at T ¼ 0.1t is shown
as the dashed line. (b) The momentum-dependent spectral
function Ak↑↑ðωÞ for spin up along a momentum line at
U=t ¼ 8, n ¼ 0.95, and ϕ ¼ π=6. The spectral function is
analytically continued from the self-energy ΣðωÞ using MaxEnt.
The ω ¼ 0 (dashed line) corresponds to the Fermi level.
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Ghiotto and co-workers [3] study tWSe2, finding a re-
entrant metal-insulator transition tuned by carrier concen-
tration and displacement field with an interesting scaling of
the temperature dependence of the resistivity near the
metal-insulator transition point. Li and co-workers [5]
study heterobilayer MoTe2=WSe2, where varying the
displacement field drives a metal to insulator transition
with scaling exhibited over a wide temperature range. All of
these experimental phenomena are also found in our
calculations; we present here a more detailed discussion
of the correspondence between theory and experiment.

A. tWSe2
As noted above, density functional band calculations [4]

performed for the system studied by Ghiotto and
co-workers are consistent with a basic hopping parameter
t ∼ 10 meV which increases moderately as the displace-
ment field is increased and a phase angle that can be tuned
from ϕ ¼ 0 to ϕ ≈ π=3 over the physically relevant
displacement field range. The displacement field depend-
ence of t and ϕ is given in Appendix A.
The key experimental observation is a low-T insulating

state that exists only in a narrow range of displacement
field, so that, in particular, by varying the displacement
field at fixed carrier concentration the system can be tuned
from metal to insulator back to metal. To make a direct
comparison, we plot the phase diagram as a function of
interaction and phase ϕ at half filling and T ¼ 0.1t, as
shown in Fig. 8(a). For U ≲ 8t, the properties are reentrant
as ϕ is varied, with a metallic phase at ϕ ¼ 0 giving way to
an insulating phase for ϕ near π=6 and then evolving back
to a metallic phase as ϕ is further increased, which is
consistent with the experimental findings. Our theoretically
calculated insulating state is due to magnetic order, which
occurs for displacement fields such that the higher-order
van Hove singularity is near the Fermi surface. The
association of insulating behavior with magnetic order is
strengthened by the experimental observation of a sign
change of the Hall coefficient as the insulating state is
approached by varying doping. This sign change is con-
sistent with the Fermi surface reconstruction expected from
magnetic order. The magnetic order we find is an in-plane
magnetic order. Under the perpendicular magnetic field, the
spins tilt and, eventually, the order and the insulating
behavior disappear. At much larger fields, the bands is
fully split, and at n ¼ 1 an insulating behavior reappears.
We now attempt a more detailed comparison. In the

experimental results, near the boundary of the insulating
state, a T-linear resistivity is reported, with a slope of
approximately 0.06–0.1 kΩ=K (Fig. 3 in Ref. [3]), which
corresponds to 5–10 kΩ=t for t ∼ 10 meV ∼ 100 K. And
the resistivity amplitude is on the order of approximately
4 kΩ at 50 K. Comparison to our calculated resistivity in
Fig. 3(a) indicates that these data correspond to a relatively

small U ∼ 4t. The temperature below which the insulating
behavior onsets is approximately 10 K, also consistent with
a U=t≲ 4t. We then fix the interaction at U ¼ 4t and plot
the phase diagram and the gap size Δ as a function of the
chemical potential and ϕ, as shown in Figs. 8(b)–8(d).
Experimentally, the system is tuned by varying top and
bottom gate voltages whose relation to the displacement
field and carrier concentration are approximately but not
precisely known. Furthermore, for experimental reasons,
much of the data are obtained by fixing the voltage on the
top gate and varying the bottom gate, implying that the
carrier concentration and displacement field are simulta-
neously varied. Our phase diagram [Fig. 8(b)] is roughly
consistent with the phase diagram shown in Fig. 1(f) in

FIG. 8. (a) Magnetization as a function of phase ϕ and
interaction U at half filling. The color represents the magneti-
zation amplitude. The white arrow shows the parameter space
trajectory followed when the displacement field is increased in
experiments. (b) Metal-insulator reentrant behavior as a function
of chemical potential μ and phase ϕ at U ¼ 4t. We numerically
determine the insulating state: The system is insulating if density
remains at half filling (Δn < 0.01) with varied chemical potential
and if magnetization m > 0.1. (c) Gap size Δ and density n
versus ϕ at μ ¼ 2t. (d) Gap size Δ and density n versus μ at
ϕ ¼ π=6. The gap size is extracted from (b), which is the energy
difference between μ and the closest band. (e),(f) Resistivity for
different phases ϕ at half filling. The dashed line shows the
resistivity computed in the paramagnetic state. In the figure, we
choose t ¼ 100 K. In (f), we mark four regions that are explained
in the main text.
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Ref. [4] and Fig. 1(c) in Ref. [3], while our Figs. 8(c)
and 8(d) are consistent with Figs. 1(d) and 1(e) in Ref. [3].
The maximum reported value of the gap is 3 meV, roughly
consistent with our results, and the temperature dependence
of the resistivity in our Figs. 8(e) and 8(f) is similarly
qualitatively consistent with Fig. 3(c) in Ref. [3].
Another important finding in our study is the onset of the

strange metal behavior as the system approaches the high-
order van Hove singularity, where the density has a third-
power-law divergence ρðϵÞ ∼ jϵj−1=3. In Figs. 8(e) and 8(f),
we plot the resistivity for different ϕ at half filling. As ϕ
approaches π=6, the resistivity not only shows the insulat-
ing behavior, but also goes from Fermi liquid to non- or
marginal Fermi liquid, consistent with Fig. 5(a) in Ref. [3].
Finally, we summarize different regions in the resistivity,

shown in Fig. 8(f): For T ≲ 50 K (t is chosen as 100 K), the
system goes in to the insulating state, where ρ decreases
as T increases; for 50≲ T ≲ 100 K, the system enters
the bad metal region. As T further increases to around
100≲ T ≲ 150 K, the system experiences a crossover,
from a low-T regime where the resistivity rapidly increases
with T to a high-T regime where the resistivity is only
weakly dependent on T. Remarkably, experiments also
observe a relatively sharp defined crossover at T ≈ 100 K
[Fig. 3(c) in Ref. [3]]. A noticeable difference is that the
experimentally measured resistivity has less T dependence
above the high-T crossover than is theoretically found. It is
possible that this difference arises from extra bands in the
real system, which begin to contribute to the conductance at
higher energy scales.

B. MoTe2=WSe2
In the moiré heterobilayer material MoTe2=WSe2 stud-

ied by Li et al. [5], an out-of-plane electrical field E
continuously increases the bandwidth while making little
change to the interaction strength, inducing a bandwidth-
driven Mott-insulator transition at half filling consistent
with the calculations reported in Fig. 2. The experimentally
applied electrical field E is associated with the theoretically
defined displacement field D in the corresponding DFT
calculation. However, a precise correspondence between
the experimentally applied field and the bandwidth is not
known, for reasons including uncertainty in the relation
between the applied field and the potential drop from one
layer to the next and theoretical uncertainties arising from
proximity to a band mixing point at small field and to
electric-field-induced interband transitions at large field [5].
To make a direct comparison with experiments, we take

advantage of the idea that the interaction strength is set by
the size of the moiré unit cell and is not dependent on the
electric field to replot our calculated resistivity curves with
temperature T and hopping t in units of the interactionU, as
shown in Fig. 9(a). Our calculation remarkably agrees with
the experimental data in Fig. 2(a) in Ref. [5]. In both the
experimental and theoretical datasets, the resistivity at the

metal-insulator crossover has a peak at a definite temper-
ature. In the experiments, the lowest peak is at T ≈ 5 K. We
associate this with the U ¼ 11t theoretical trace, and then
from the peak energy we estimate that the interaction in this
system is around 250 K–21.5 meV, with bandwidth
approximately 9t changing from 10 to 25 meV over the
relevant range of electric fields (U=16 < t < U=8).
We then follow Ref. [5] and rescale the resistivity data by

the “critical resistivity” ρcðTÞ and rescale the temperature
by a t-dependent parameter T0. As shown in Fig. 9(b), the
resistivity curves collapse onto “insulating” and “metallic”
branches. We use resistivity at t ¼ 1=11U as ρc, while t ¼
1=12U gives a similar result. In the scaling process, we use
a similar procedure as experiments: We first set T0 ¼ 1 for
the curve furthest from the critical point, and then we
determine the value of T0 for the next normalized resistivity
curves to best collapse it onto the first curve. Compared
with the experimental data (Figs. 2 and 3 in Ref. [5]), both
the collapse and the t dependence of T0 have very similar
behavior. Such scaling is called a “hidden quantum
criticality” by Dobrosavljević et al. [37,38]. We suggest
that the scaling may be understood as follows: Single-site
DMFT has a T ¼ 0 metal-insulator transition with a
complicated structure involving both the appearance of a
midgap quasiparticle peak and a gap opening (the two
phenomena happen at close but different values of U=t).

FIG. 9. (a) Resistivity near the paramagnetic Mott-insulator
transition for ϕ ¼ 0 plotted in log scale with temperature T and
hopping t in unit of interaction. The “plus” symbol marks the
magnetic transition temperature. (b) Resistivity curves collapse
onto two branches. The resistivity is scaled by the resistivity at
U ¼ 11t. The temperatures are scaled by a t-dependent T0 to
collapse the data. The inset shows the value of T0.
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However, at high temperatures, these two effects are not
distinguishable, and one critical behavior associated with a
combination of both effects is observed. Consistent with
this view is the observation that the scaling behavior is not
extremely sensitive to the value of Uc chosen.
It should be noted that, within the DMFT framework, a

magnetic transition happens for U=t≳ 9t [25] at low
enough temperature, with an estimated Tc marked by the
“plus” sign in Fig. 9(a). The onset of magnetism is visible
within the calculated temperature range but is not detected
in the experiments. It is possible that spatial fluctuation in
the moiré system suppresses the magnetic transition to a
lower temperature.

VIII. CONCLUSIONS

In this study, we present a comprehensive dynamical
mean field study of the moiré Hubbard model. We calculate
the resistivity over wide temperature and interaction ranges,
which provides a direct comparison to the experiments. The
new feature in the Hubbard model is the phase ϕ, which
favors the magnetic phase. At ϕ ¼ π=6, the high-order van
Hove singularity combined with nesting induces magnetic
order. Interestingly, this specific type of van Hove with
order three [ρðϵÞ ∼ jϵj−1=3] also gives a strange metal
behavior with a T-linear scattering rate and ω=T scaling.
The linear resistivity could survive with nonzero doping. It
should be noted that the van Hove singularity of degree
three can be realized not just in tWSe2 but also in general
moiré and multilayer systems [12,40–42] and may induce
interesting behavior.
Our results elucidate the mechanisms underlying the

experimental findings in twisted homobilayer WSe2 and
heterobilayer MoTe2=WSe2 [3–5]. Both systems exhibit
continuous Mott transitions and quantum criticality. We
find that the behavior of both systems is well captured by
the moiré Hubbard model, but in different ways. In tWSe2,
the continuous metal-insulator transition is driven by a
magnetic transition associated with a change of the hopping
phase ϕ that brings the high-order van Hove point of degree
three to the Fermi level. The proximity to this van Hove
point also induces a linear resistivity. In MoTe2=WSe2, one
has a paramagnetic metal to paramagnetic Mott insulator
transition driven by variation of the bandwidth, with the
displacement field (ϕ) effects being unimportant. The close
correspondence between the data and the calculations
reported here establishes the moiré Hubbard model as a
good theoretical description for wide ranges of temperature
and carrier concentrations not too far from the half filled
point and motivates further examination of the properties of
the model, using methods that go beyond the single-site
dynamical mean field techniques used here, as well as
further experiments to search, among other things, for
signatures of the magnetic order found theoretically.
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APPENDIX A: BAND STRUCTURE OF tWSe2

The band structure of tWSe2 has been calculated using
DFT and continuum theory extensively in previous studies
[4,8–10]. In this section, we briefly review the band
structure and explain how the moiré Hubbard model in
Eq. (1) captures the most important features relevant to the
physics discussed in this paper.
In the monolayer WSe2, the top valence bands at two

valleys K⃗ and −K⃗ are dominated by opposite spins due to
spin-orbital coupling and are related by time reversal
symmetry [64]. Stacking two layers of WSe2 with a relative
twist angle between them creates an enlarged moiré lattice,
and a “flat band” is formed due to the tunneling between
two layers [3,4,7–9]. Owing to the strong spin-
orbital coupling in the monolayer, the flat bands around
valleys K⃗ and −K⃗ are also dominated by opposite spins. In
Figs. 10(a) and 10(b), we show the band structure calcu-
lated from the continuum model [7–9] at twist angle
θ ¼ 4°. For twist angle 4°–5° reported in experiments
[3,4], the topmost bands slightly overlap with lower bands
at the very lowest band energies according to DFT
calculation [4] [also illustrated in Figs. 10(a) and 10(b)].
For density not far below half filling, the single-band
description is valid. In our study, we consider density
around half filling. However, the effect of the hybridization
of lower bands should be considered when the density
is small.
Two bands from two valleys are related by time reversal

symmetry. For each valley, the topmost band can be viewed
approximately as a result of hybridization of two parabolic
bands −k2=2mWSe2 centered at the top-layer K⃗m point and
bottom-layer K⃗0m point in the moiré Brillouin zone, as
shown in Fig. 10(a). At the high symmetry K⃗m and K⃗0m
point, each spin state comes only from one layer, but at a
general k⃗ point each spin state is a combination of the top
and bottom layer states. The displacement field changes the
relative potential of the top and bottom layers and changes
the shape of the band structure, as shown in Fig. 10(b).
Previous studies show that the topmost energy band can

be well described by a tight-binding model on the moiré
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triangular lattice with the phase ϕ tuned by the displace-
ment field [4,9,10]. In Figs. 10(c) and 10(d), we show the
reported tight-binding parameters fitted from DFT calcu-
lations at twist angle θ ¼ 5.09° [4]. As the displacement
field increases, the amplitude of the first-nearest-neighbor
hopping t1 is on the order of 10 meV, with second- and
third-neighbor hopping smaller than approximately 20% of
t1. The phase ϕ of t1 increases from 0 to approximately π=3
as the displacement field increases, as shown in Fig. 10(c).
The model in the main text [Eq. (1)] is a simplification of
the original tight-binding model, where only first-neighbor
hopping and its phase ϕ are retained. In Figs. 10(e) and
10(f), we plot the band structure of Eq. (1) at ϕ ¼ 0 and
π=6. Compared to Figs. 10(a) and 10(b), we can see this
model indeed captures the most important features of the
effect of the displacement field: The phase ϕ generates an
inequivalence at moiré K⃗m and K⃗0

m points, which captures
the change of the relative potential of two layers induced by
the displacement field. Adding further neighbor hopping
slightly modifies the band structure and changes the
transition temperature of the magnetic insulator, while it
does not change the essential physics.
For this model, we consider the on-site interaction only.

The nonlocal interaction plays an important role at frac-
tional fillings for heterobilayers, where a Wigner crystal
can be realized [43,44]. For homobilayer tWSe2 with

twisted angle 4°–5°, the on-site interaction is not big
(U ∼ 4t), as discussed in the main text. The nearest-
neighbor interaction of the moiré system is generally
smaller than 20% of on-site interaction from previous
estimation [65]. Therefore, we expect that the nonlocal
interaction will not have a strong effect on tWSe2 for the
relevant twist angle. Currently, no Wigner crystal state has
been reported in twisted homobilayer system, consistent
with the estimation. It is an open question for investigating
the effect of the nearest-neighbor interaction in homobi-
layer system with a smaller twisted angle.
Previous studies also show that the moiré band of tWSe2

can go from a topologically trivial to nontrivial region by
tuning the parameters of the continuum model [7,9].
Currently, no topological features have been found in
experiments, and the topmost band is well fitted by a
single orbital from previous tight-binding and DFT calcu-
lation at twisted angle 4°–5° [4]. Therefore, in this study, we
focus on the topological trivial region to study the proper-
ties of strange metal and quantum criticality. The study of
topology [8,9,45] in this system is an important question
for future research.

APPENDIX B: COMPARISON BETWEEN
MAXENT AND PADÉ METHODS

In the main text, we mainly use the MaxEnt continuation
method to obtain our resistivity data. Here, we perform the
continuation via the Padé method and compare the resis-
tivity data of the two methods. The continuations for
different interactions are performed using the same settings

FIG. 10. (a),(b) Sketch of the band structure of tWSe2 with and
without a displacement field using the continuum model (Refs.
[8,10]). The blue (orange) line highlights the topmost valence
band from the K⃗ (−K⃗) valley with spin up (down) dominant. The
dotted line indicates the Fermi level at half filling. (c),(d) Tight-
binding parameters as a function of displacement field D. The
phase of nearest-neighbor hopping ϕ1 and the hopping amplitude
of nearest, second, and third neighbors jt1j, jt2j, and jt3j,
respectively, are extracted from previous DFT and tight-binding
calculation at θ ¼ 5.09° [4]. (e),(f) Band structure of the moiré
Hubbard model [Eq. (1)] at ϕ ¼ 0 and π=6, where only the
nearest-neighbor hopping t1 is considered.

FIG. 11. Resistivity of the paramagnetic state for ϕ ¼ 0; π=6 at
half filling using analytical continuation MaxEnt (solid line) and
Padé (dashed line) methods.
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of parameters without fine-tuning. As shown in Fig. 11,
results from Padé and MaxEnt methods agree well with
each other except for T ¼ 0.3t, where Padé’s results deviate
a little due to the singularity issues. Generally, the Padé
method is believed to provide a more accurate estimate than
MaxEnt at low temperature and is less accurate at high
temperature. However, sometimes Padé has singularity
issues. Therefore, in the main text, we use the MaxEnt
method to obtain the resistivity data over a wide range of
temperatures.
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