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At high magnetic fields, monolayer graphene hosts competing phases distinguished by their breaking of
the approximate SU(4) isospin symmetry. Recent experiments have observed an even denominator
fractional quantum Hall state thought to be associated with a transition in the underlying isospin order from
a spin-singlet charge density wave at low magnetic fields to an antiferromagnet at high magnetic fields,
implying that a similar transition must occur at charge neutrality. However, this transition does not generate
contrast in typical electrical transport or thermodynamic measurements and no direct evidence for it has
been reported, despite theoretical interest arising from its potentially unconventional nature. Here, we
measure the transmission of ferromagnetic magnons through the two-dimensional bulk of clean monolayer
graphene. Using spin polarized fractional quantum Hall states as a benchmark, we find that magnon
transmission is controlled by the detailed properties of the low-momentum spin waves in the intervening
Hall fluid, which is highly density dependent. Remarkably, as the system is driven into the antiferro-
magnetic regime, robust magnon transmission is restored across a wide range of filling factors consistent
with Pauli blocking of fractional quantum Hall spin-wave excitations and their replacement by conven-
tional ferromagnetic magnons confined to the minority graphene sublattice. Finally, using devices in which
spin waves are launched directly into the insulating charge-neutral bulk, we directly detect the hidden phase
transition between bulk insulating charge density wave and a canted antiferromagnetic phase at charge
neutrality, completing the experimental map of broken-symmetry phases in monolayer graphene.

DOI: 10.1103/PhysRevX.12.021060 Subject Areas: Condensed Matter Physics, Graphene
Magnetism

I. INTRODUCTION

Strongly interacting quantum magnets host a variety of
spin- and charge-ordered states. In three-dimensional mate-
rials, numerous probes are available that are directly sensitive
to spin or charge order, allowing experiment to disambig-
uate competing states. In two-dimensional van der Waals

heterostructures common bulk probes usually have insuffi-
cient sensitivity. In their place, experiment typically relies on
electrical transport characterization, and on the ability to use
electric and magnetic fields to tune microscopic parameters
of the Hamiltonian. Comparison with theoretical models can
then be used to infer which phases are experimentally
realized. Quantum Hall ferromagnetism in graphene pro-
vides a paradigmatic experimental example. Here the intrin-
sic flatness of the Landau level bands makes Coulomb
interactions dominant, while the spin and valley degeneracy
endow the Landau levels with a multicomponent nature that
allows for a large number of competing orders. At charge
neutrality, for example, predicted phases include a spin
polarized ferromagnet (FM) [1,2], a canted antiferromagnet
(CAF) [3–5], a lattice scale charge density wave (CDW), and
a partially sublattice polarized (PSP) bond-density wave
[5–7]. The variety of competing phases is even more
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abundant at nonzero Landau level fillings [8,9], featuring a
subtle interplay of ferromagnetic physics and the correlations
underlying the fractional quantum Hall effect. Crucially, the
relative favorability of different isospin symmetry breaking
phases can be tuned experimentally by varying the charge
carrier density, Zeeman energy, and a substrate induced
sublattice splitting.
Experiments to date have focused on detection of the FM

and CAF spin-ordered states, which are distinguished by
edge mode properties that differentiate their two-terminal
conductances [10,11]. In most cases, however, phases
cannot be distinguished by electrical transport. For
example, transport cannot detect the transition at charge
neutrality between spin-ordered CAF states and charge-
ordered CDWor PSP states, which has attracted theoretical
attention as an analog of the Neél to valence bond solid
transition studied in models of quantum magnetism
[12,13]. This transition is expected to occur [7] in samples
with a finite sublattice splitting, which in monolayer
graphene can be induced by a hexagonal boron nitride
(h-BN) substrate [14,15]. In this scenario, a CDW state
obtains at low magnetic fields where the sublattice splitting
is dominant. As the magnetic field is raised, the strength of
the Coulomb interactions grows, including the strength of
the short-range interactions that distinguish the valleys and
favor the CAF state. Once these are sufficiently large, the
CDW gives way to the CAF phase via a partially sublattice
polarized phase featuring a Kekulé distortion of the charge

density wave order. Experimentally, indirect evidence for
this transition has been reported in samples that show a
sublattice gap at Btot ¼ 0 [16].
Here, we fabricate two types of gate-defined monolayer

graphene lateral junctions which allow electrically actuated
magnon transmission measurements [17–19] to directly
probe isospin polarization, independent of its influence on
charge transport. We use these devices to systematically
study the isospin phases in the fractional quantum Hall
regime and at the charge neutrality point.

II. MAGNON TRANSMISSION IN THE
FRACTIONAL QUANTUM HALL REGIME

The schematic structure and optical micrograph of device
A is shown in Fig. 1(a). The monolayer graphene sheet is
encapsulatedwith two hexagonal boron nitride layers.On the
top and bottom are two single-crystal graphite gates that are
patterned with holes to control different regions of the
graphene layer. The heterostructure sits on top of a p-doped
silicon chip covered by a 285-nm-thick silicon dioxide layer.
Applying voltages on the two graphite gates and the silicon
gate allows independent control of the carrier density in
regions I, II, and III [rendered in white, pink, and blue,
respectively, in Fig. 1(a)]. Electrical contacts to the mono-
layer graphene are made inside two holes, allowing charge
transport measurement both along the internal edge and
through the bulk separating the two “islands.” Figures 1(b)
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FIG. 1. Transport measurement on device A. (a) Schematic of the device geometry. Inset: optical micrograph of the sample. Scale bar
represents 5 μm. (b) Schematic of the intraisland transport measurement. (c) Schematic of the interisland transport measurement.
(d) Intraisland conductance as a function of VT measured at B⊥ ¼ 8 T, VB ¼ 0, and VSi ¼ 10 V. VB, VT , and VSi are the voltage
applied on the graphite top gate, the graphite bottom gate, and the silicon gate, respectively. (e) Interisland conductance as a function of
VB measured at B⊥ ¼ 8 T, VT ¼ −0.3556 V, VSi ¼ 6.5 V. (f) Arrhenius plot of the conductance at the charge neutrality point; linear
fitting of the data shows the sample is insulating with an energy gap of 3.7 meV.
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and 1(c) show the wiring of intraisland charge transport and
interisland charge transport measurements, respectively. In
the former case, the two electrodes are connected by inner
boundaries of the monolayer graphene. The conductance is
dominated by edge states in the quantumHall regime.Weuse
this wiring configuration to tune the carrier densities in
regions II and III of the sample to the desired values, which is
crucial for themagnon transmissionmeasurements described
below. A typical result atB⊥ ¼ 8 T is shown in Fig. 1(d). By
applying VSi ¼ 6.5 V and VB ¼ −0.3556 V, we can set the
Landau level filling factors νII ¼ 1, νIII ¼ 2. For the interis-
land charge transport measurement, the two electrodes are
not coupled by any physical or gate-defined boundaries. The
conductance, therefore, is determined by the bulk conduct-
ance of the sample. A typical result at B⊥ ¼ 8 T is shown in
Fig. 1(e), where B⊥ is the perpendicular magnetic field.
Temperature-dependent interisland transport measure-

ment shows that the device features a thermal activation
gap at the charge neutrality point at Btot ¼ 0 [Fig. 1(f)]
indicative of a substrate-induced sublattice splitting [14].
Consistent with previous results [16,20], the sample shows
a series of phase transitions at odd denominator fillings,
visible as bulk conductance maxima that mark points at
which the bulk energy gap closes or reaches a minimum
(Fig. 2). In addition, an even denominator state is observed
in the neighborhood ofB�⊥ ≈ 6 T. Taken together, these data
were interpreted [16] as signatures of a transition between
charge density wave and antiferromagnetic orders, in which
fractional occupation is transferred between the carbon
sublattices. However, no sign of the transition is observed in
conventional transport at charge neutrality itself, where all
the candidate states are electrical insulators, nor do typical
electrical measurements give direct insight into the under-
lying isospin polarization of the fractional states.
To directly probe isospin polarization, we performed

electrically actuated magnon transmission measurements
[17–19]. The schematic is shown in Fig. 3(a). During the
experiment, the Landau level filling factors are fixed at
νIII ¼ 2 and νII ¼ 1. The two islands then function as a
magnon “injector” and “detector,” while region I acts as a
magnon “filter,”whose density can be tuned by varying VB.
Magnons are generated at the III-II interface in the injector
by controlling the chemical potential difference eVbias
between copropagating edge states of opposite spin.
When the bias exceeds the threshold set by the Zeeman
energy, eVbias=EZ > 1, electrons can scatter between edge
states conserving spin and energy by emitting a neutral
magnon into the ferromagnetic νII ¼ 1 bulk. Here EZ ¼
gμBBtot is the Zeeman energy, g ¼ 2, and μB is the Bohr
magneton. When region I also supports long-lived neutral
modes that couple strongly to region II magnons, spin and
energy can be transmitted across region I to the detector.
Within the detector, absorption of a magnon generates a
voltage that can be detected via the nonlocal response
δVnl=δVex, where δVnl is a finite-frequency nonlocal

voltage induced at the detector in response to a small
excitation δVex applied to the injector.
Figures 3(b)–3(d) show δVnl=δVex measured at νI ¼ 1,

1=3, and 2=3 atmagnetic fields both above and belowB�⊥. At
νI ¼ 1, region I is density matched to the injector and
detector, resulting in a large nonlocal response at or slightly
above the Zeeman threshold for all B [17,19] corresponding
to ferromagnetic magnon transmission through the uniform
νI ¼ 1 bulk. Similarly, the nonlocal signal is strong both
above and below B�⊥ at νI ¼ 1=3, indicating magnon
propagation. However, magnon transmission is undetect-
able at νI ¼ 2=3 forB ¼ 4 T but is restored at 7 T, indicating
a change in the neutral mode spectrum associated with the
phase transition observed in local bulk transport measure-
ment. We focus first on the nonlocal signal for B < B�⊥,
shown in Figs. 4(a) and 4(b). Besides νI ¼ 1, the strongest
nonlocal response is observed at νI ¼ 5=3 and over a range
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FIG. 2. Signature of isospin phase transition in charge transport
measurement. (a) Interisland conductance as function of B⊥ and
VB showing fractional quantum Hall isospin transitions in the
range corresponding to Landau level filling factors 0 < νI < 1.
The x axis is offset and scaled by the applied magnetic field so that
it is approximately proportional to νI. (b) Same as (a), measured
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regime. (c) Blue: line cut of (a) at νI ¼ 1=3. The maximum in G
indicates the isospin phase transition. Red: same as the blue trace,
measured with a tilted magnetic field applied. The tilting angle is
fixed so that the total magnetic field Btot ¼ 1.45B⊥. (d) Same as
(c), measured at νI ¼ 2=5. (e) Same as (c),(d), measured at
νI ¼ 3=5. (f) Same as (c)–(e), measured at νI ¼ 2=3.
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0.12 < νI < 0.4 that includes νI ¼ 1=3; in contrast, no
nonlocal response is observed for even numerator fractional
quantum Hall states (2=3 and 4=3).
It is tempting to ascribe the observed even-odd effect to a

difference in ground state spin polarization; after all, in the
absence of a Zeeman energy the 2=3 and 4=3 states are
expected to be spin singlet, and as a consequence should
not host propagating spin-wave excitations [21]. However,
tilted field magnetotransport measurements [see Figs. 4(e)
and 4(f) and Ref. [20] ] indicate that the applied B⊥ ¼ 4 T
is sufficient to spin polarize these states. For all spin
polarized states, Larmor’s theorem dictates that the spin-
wave spectrum features at least one mode whose energy
increases quadratically as EðqÞ ≈ EZ þ ℏ2q2=2m and
whose lifetime diverges as q → 0, with the q ¼ 0
Larmor mode corresponding to a uniform rotation of all
spins. Consequently, the suppression of magnon trans-
mission for even numerator n=3 states cannot arise from an
absence of spin-wave excitations; rather, it indicates that
the specific properties of the spin excitations at fractional
filling are incompatible with transmission of ferromagnetic
magnons from the ν ¼ 1 quantum Hall ferromagnet. This
constitutes a much stronger constraint on the ground state
wave function and its excitations than simply sharing a
nonzero spin polarization.

For magnon transmission to be observed, region I must
host long-lived spin-wave excitations that have significant
overlap with the magnons of the ν ¼ 1 quantum Hall
ferromagnet over a range of wave vectors, permitting high
transmission at the I-II interface, propagation to the second
II-I interface, and eventual absorption into the detector.
While there is no general theoretical framework to calculate
the full spin-wave dispersion for a partially filled Landau
level, exact diagonalization of the interacting Hamiltonian
is possible at ν ¼ 1=3 and 2=3, and neutral mode spectra
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calculated for monolayer graphene are shown in Fig. 5 (see
Appendix B). At ν ¼ 1=3, the spin waves are consistent
with a simple evolution of the Larmor mode into a single,
monotonically increasing spin-wave branch that eventually
merges with a spin-flip continuum for E=EZ ≈ 3. In
contrast, calculations at ν ¼ 2=3 produce a qualitatively
different spin-wave dispersion, in which the mode energy at
the lowest finite value of q accessible to the numerical
calculations is lower than the energy at q ¼ 0. This
behavior is consistent with a finite momentum “spin-roton
minimum” in the dispersion, as previously reported based
on both numerical calculations [22,23] and inelastic light
scattering measurements [24]. Physically, it arises from the
interplay between the strong Zeeman effect, which polar-
izes the ground state, and Coulomb interactions, which
favors an unpolarized state [21]. Finite momentum spin
waves correspond to modulations of the ground state spin
density that locally lower the spin polarization and thus the
Coulomb energy, leading to a spin-roton minimum at finite
q (see Appendix C). At ν ¼ 2=3, the spin-flip continuum
also appears at lower energy, closer to E=EZ ≈ 2.
The calculated spectra suggest several possible explan-

ations for the suppression of magnon transmission at ν ¼
2=3 (and 4=3). First, the flatter spin-wave dispersion may
decrease the transmission of magnons across the I-II
interface due to kinematic constraints, in a magnetic analog
of Kapitza resistance. Second, magnons with E > EZ may
decay inelastically into the spin-roton minimum; there, they
have energy E < EZ and consequently cannot enter the
detector. Finally, the presence of a lower-lying spin-flip
continuum, combined with disorder [25], may provide a
damping channel at ν ¼ 2=3 that is not present at ν ¼ 1=3.
Indeed, transport measurements suggest that the bottom of
the spin-flip continuum lies at Δ ∼ 1.5EZ for ν ¼ 2=3 and
4=3 in similar devices [20]. While we are not able to
distinguish between these mechanisms in our current
experiment—and, indeed, they may all be relevant even
at a single filling factor—we note that all are expected to be
highly sensitive to the details of the ground state wave

function and its spin-flip excitations. At the most qualita-
tive level, this is consistent with experiment where an
intricate dependence on νI is observed both for 0 < νI < 1
when B < B�⊥ and for 1 < νI < 2 at all magnetic fields
(Fig. 6). Remarkably, this intricate dependence vanishes at
B > B�⊥, replaced by a density-independent restoration of
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magnon transmission across a continuous range of νI. As
shown in Fig. 6, for B > B�⊥ the nonlocal signal onsets
sharply at the Zeeman threshold—indicating high magnon
transmission—throughout the 0 < ν < 1 range except for
narrow regions near ν ¼ 0 and 1 where signatures of
electron solids have been observed [19]. The B⊥-dependent
change in transmission cannot be attributed to a change in
the ground state spin polarization, as follows from the
absence of any dependence of B�⊥ (or the magnetic fields
corresponding to gap closings at odd denominator fillings)
on the in-plane magnetic field [see Figs. 2(c)–2(f) and
Ref. [16]]. Above B�⊥ the magnon transmission becomes
completely insensitive to the ν-dependent details of the
spin-wave dispersion, in apparent conflict with our pre-
vious observation that magnon transmission is strongly
modulated by the detailed spin-wave spectra of fractional
quantum Hall states.
We understand the decoupling of magnon transport from

the fractional quantum Hall effect as a consequence of the
isospin phase transition thought to underlie the incom-
pressible state at ν ¼ �1=2. Figures 7(a) and 7(b) show the
expected isospin polarization above and below B�⊥, respec-
tively. In both cases, electrons occupy three of the four
isospin flavors, leaving the fourth empty.
Below B�⊥, the underlying order is that of the CDW state,

so the low-energy carbon sublattice corresponding to the
majority valley K is occupied with both spin projections,
νK↑ ¼ νK↓ ¼ 1. The remaining electrons occupy the avail-
able minority sublattice states with the Zeeman favored
spin projection, νK0↑ ¼ ν. Since all available states in the
majority valley are completely occupied, the excitation
spectrum projected onto the minority valley is identical to a
two-component quantum Hall system [26], leading to the
situation described in Fig. 4.

Above B�⊥, in contrast, the underlying order is that of the
antiferromagnetic (AFM) state, so νK0↑ ¼ νK↓ ¼ 1 and the
remaining electrons occupy the favored sublattice with the
Zeeman favored spin projection, νK↑ ¼ ν. Both spin and
sublattice isospins are active. In this case, spin waves in the
minority valley involve a transition from a completely
occupied Landau level (νK0↑ ¼ 1) to an empty Landau level
(νK0↓ ¼ 0). As a result, they are expected to closely
resemble excitations within the ν ¼ 1 injector and detector
regions. Indeed, within a double-mode approximation that
accounts for collective spin-lowering transitions on both
sublattices (see Appendix C), we find that the spin-wave
stiffness increases only slightly compared to that of the
magnons at ν ¼ 1. This is compatible with high trans-
mission of magnons between these ground states and the
observed high nonlocal signal.
The onset of nonlocal response across the entire Landau

level is thus a direct signature of the transition to antiferro-
magnetic order. This interpretation is further supported by the
contrasting behavior of the nonlocal response for 1 < νI < 2
(Fig. 6),where antiferromagnetism is not expected andwhere
no such ubiquitous response is observed.
Despite direct evidence for an AFM-CDW transition at

ν ≠ 0, magnon transmission is not observed near the
Zeeman threshold at charge neutrality for any magnetic
field. The absence of a signal at low fields is expected, since
the CDW phase is nonmagnetic. However, in the high -field
phase, a noncollinear canted antiferromagnet is thought to
be the ground state because the Zeeman energy favors spin
canting when the two sublattices have equal occupation
[5,8]. Although prior work [17,18] has reported nonlocal
response at ν ¼ 0, it has been observed only at bias
voltages far above the Zeeman threshold, where, for
example, Joule heating by the injector is non-negligible
[19] and high-energy spinless collective excitations such as
plasmons may also be generated.
Theoretical calculation within the linear spin-wave

approximation [27] suggests the absence of a low-energy
nonlocal signal is because of the mismatch between the
magnon dispersion of ν ¼ 0 CAF and the ν ¼ 1 FM.
Additionally, the presence of two magnon modes in the
CAF opens up magnon-magnon and other decay channels.

III. CHARGE DENSITY WAVE TO CANTED
ANTIFERROMAGNET TRANSITION AT ν = 0

To disentangle these issues and more directly probe the
magnon transmission at ν ¼ 0, we introduce a different
sample geometry shown in Fig. 8(a). Again, three patterned
graphite gates are used to control the charge carrier density
in different regions of the monolayer graphene sheet. In this
sample, region I is controlled by V1 and V2. Region II is
controlled by V1 and V3, and region III is controlled by V1.
Here, V1, V2, and V3 are the voltages applied to graphite
gate 1, 2, and 3, respectively. Figure 8(c) shows the wiring

(a) (b)

FIG. 7. Schematic of the isospin phase transition. (a) Single
particle energy level diagram for the zero Landau level in the low
magnetic field regime. The K valley is fully occupied, corre-
sponding to a sublattice polarized state (inset). Additional frac-
tional occupation is in the K0;↑ level. Spin-1 excitations with
Eðq ¼ 0Þ ¼ EZ consist of excitations between the partially filled
and empty K0 states, indicated by the arrow. (b) The same
diagram but for the high-field phase. Now the underlying order is
antiferromagnetic (inset). Spin-1 excitations from the fractionally
occupied level are Pauli blocked, with low-energy excitations
possible only between the filled K0;↑ and empty K0;↓ levels—
identical to those of the quantum Hall ferromagnets in the injector
and detector.
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configuration of the interisland charge transport measure-
ment. Since edge states do not connect the islands, once
again interisland transport probes the bulk conductivity as
in device A. Figures 8(e) and 8(f) show the result of
interisland magnetotransport as a function of V2 at
0 < νI < 2. Multiple gap closings are observed at
0 < νI < 1, and an even denominator fractional quantum
Hall state is observed at around B⊥ ¼ 8 T, shown as a
conductance minimum in Fig. 8(f). Thermal activation gap
measurement shows an AB-sublattice splitting of 3.9 meV
[Fig. 8(g)]. Device B is thus in the same regime as device A,
or devices studied in Ref. [16].
As in the first device geometry, magnon transmission

measurements are affected by setting the carrier densities
such that νII ¼ 1 and νIII ¼ 2. This is achieved by using V1

to control vIII, and then tuning V2 to keep νI ¼ 0. Changing
νII can be realized by sweeping V3. Figure 8(h) shows
intraisland transport measured at B⊥ ¼ 8 T, showing clear
plateaus at these integer filling factors.
Magnon generation and detection follows the same

mechanism as in the first device geometry [Fig. 9(a)],
with the contact configuration allowing for a potential
imbalance between copropagating ν ¼ 1 and ν ¼ 2 edge
states. In contrast to device A, however, magnons may be
generated directly at a boundary with the ν ¼ 0 state, and
nonlocal response need not be mediated by ν ¼ 1 magnons
[28]. Figure 9(b) shows the measured nonlocal response in
device B. A clear onset of nonlocal response at the Zeeman
threshold is observed around B⊥ ¼ 5 T, indicating a phase
transition from a nonmagnetic phase to a magnetic phase
supporting long-range transport of neutral excitations. With

an in-plane field applied, the phase transition is shifted to a
smaller B⊥ [Fig. 9(c)]. This is in excellent agreement with
the expectations for the CAF phase, which is favored by the
Zeeman energy as compared to the nonmagnetic CDW
phase due to its canted spin structure and finite magnetic
moment [5,8].
Our detection of the CDW-AFM transition confirms the

theoretically predicted picture of isospin symmetry broken
phases in monolayer graphene at charge neutrality.
However, we note that our data also raise a number of
new questions. While we have focused on the most
tractable filling factors of ν ¼ 0 and integer multiples of
1=3, the magnon data of Figs. 4(a), 4(b), and 6 show a
highly featured evolution of the magnon transmission with
fractional filling, the precise mechanisms of which remain
to be understood. A fuller theoretical interpretation of these
features may provide insight into their spin and valley
polarizations, as well as the nature of neutral modes in
strongly interacting systems more generally. An additional
intriguing feature of the data is the qualitative change in the
nonlocal signal in sample B in the neighborhood of the
ν ¼ 1=2 state [16,20,29,30] shown in Fig. 9(b). Absent a
quantitative theory of magnon transmission, this signature
is difficult to interpret, but may shed light on the nature of
the correlated state, which is currently not well understood.
Finally, a mean-field analysis of the phase diagram of the
ν ¼ 0 state predicts the existence of a Kekulé distorted PSP
phase between the CDW and CAF phases. Future experi-
ments with sensitivity to the sublattice polarization, and
theoretical treatments of the magnon transmission in this
regime, may shed light on this enigmatic phase.
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conductance versus carrier density and magnetic field between ν ¼ 0 to ν ¼ 2, measured in the configuration of (c). (f) Line cuts of
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arrows. (g) Arrhenius plot of the conductance at the charge neutrality point; linear fitting of the data shows the sample is insulating with
an energy gap of 3.9 meV. (h) A typical trace of intraisland conductance as a function of V3 measured in the configuration of (d).
V1 ¼ 0.6131 V. V2 ¼ −0.4717 V. This combination of V1 and V2 ensures νI ¼ 0 and νIII ¼ 2.

STRONG-MAGNETIC-FIELD MAGNON TRANSPORT IN … PHYS. REV. X 12, 021060 (2022)

021060-7



ACKNOWLEDGMENTS

A. F. Y. and H. Z. acknowledge discussions with
I. Sodemann. A. H.M., C. H., and N.W. acknowledge
support from the ARO under Grant No. W911NF-16-1-
0472 and from the Welch Foundation under Grant
No. F1473. Z. P. acknowledges support by the
Leverhulme Trust Research Leadership Grant No. RL-
2019-015. M. P. Z. acknowledges support from the ARO
through the MURI program (Grant No. W911NF-17-1-
0323). Experimental work by H. Z. and A. F. Y. was
supported by the National Science Foundation under
DMR-1654186. A portion of this work was performed
at the National High Magnetic Field Laboratory, which is
supported by the National Science Foundation Cooperative
Agreement No. DMR-1644779 and the state of Florida.
K.W. and T. T. acknowledge support from the Elemental
Strategy Initiative conducted by the MEXT, Japan,

Grant No. JPMXP0112101001, JSPS KAKENHI Grant
No. JP20H00354, and the CREST(JPMJCR15F3), JST.

APPENDIX A: EXPERIMENTAL METHODS

Devices were fabricated using a dry transfer procedure.
Sample Awas fabricated following Refs. [20,31]. Sample B
was fabricated by first assembling and patterning a hetero-
structure containing monolayer graphene and two graphite
gates, and then subsequently transferring the third graphite
gate. In both of the devices, hexagonal boron nitride flakes
are used to isolate conducting layers, which are not shown
in Figs. 1(a) and 8(a).
All data except those in Figs. 6(m) and 6(n) were

acquired in a dilution refrigerator equipped with a 14 T
superconducting magnet. The measurements were per-
formed at base temperature unless indicated, corresponding
to a measured temperature of T ≲ 30 mK on the probe.
Data in Figs. 6(m) and 6(n) were performed in a dilution
refrigerator equipped with an 18 T superconducting magnet
at a base temperature T ≲ 50 mK indicated by the ther-
mometer on the probe. The local bulk conductance and
nonlocal voltage measurements on sample A require tuning
of the carrier density in regions II and III, following
Ref. [19]. The differential conductance was measured
using a lock-in amplifier with a 100 μV excitation at
17.777 Hz. The nonlocal voltage was measured using a
lock-in amplifier with an ac excitation at 1234.5 Hz with
various amplitudes on the order of 100 μV. The frequency
is chosen to reduce the noise while maintaining negligible
phase shift, and the amplitude is chosen to balance the
signal-to-noise ratio and sampling precision. The nonlocal
voltage measurements on sample B were performed with an
ac excitation of 99.2 μV at 17.777 Hz.

APPENDIX B: METHOD OF EXACT
DIAGONALIZATION

Exact diagonalization calculations of the neutral mode
spectra were performed using the torus geometry [32]. This
geometry, which does not suffer from the ambiguity of
“shift” [33], allows us to obtain the exact low-lying energy
spectrum at filling factor ν, resolved as a function of a two-
dimensional momentum q [34] and the total z projection of
spin Sz of the particles. We diagonalized systems of N ¼
6–10 electrons (holes) at filling factor ν ¼ 1=3 (ν ¼ 2=3),
with up to two spin-flips away from the maximal polari-
zation (Sz ≥ N=2 − 2). In order to obtain finer resolution of
the collective mode, we collated the data corresponding to
different types of unit cells, varying the angle between the
lattice vectors going from square to hexagonal unit cell,
with aspect ratio of the torus fixed to unity. The effective
interaction potential is taken from Ref. [35], and includes

the dielectric constant ϵh−BN ¼
ffiffiffiffiffiffiffiffiffiffi
ϵjjϵ⊥

p
, with ϵ⊥ ¼ 3.0 and

ϵjj ¼ 6.6, as well as the screening by the graphite gates,
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FIG. 9. Charge density wave to canted antiferromagnet tran-
sition at ν ¼ 0. (a) Schematic of the experiment. (b) Nonlocal
response versus eVbias=EZ and B⊥ at νI ¼ 0. The arrow indicates
the value of B⊥ where the incompressible ν ¼ 1=2 state appears.
(c) Solid line: line cut of (b) at eVbias=EZ ¼ 1.74. Dashed
line: same measurement with a tilted magnetic field applied.
B⊥ ¼ 0.71Btot. The arrows label the value of B⊥ where the
nonlocal voltage starts to increase.
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which are accounted for using standard electrostatic cal-
culations, and by the filled Dirac sea at the RPA level [36].

APPENDIX C: MEAN-FIELD THEORY
OF MAGNON TRANSMISSION

In this Appendix, we discuss magnon transmission for a
device geometry consisting of an integer quantum Hall
ferromagnet with filling faction νII ¼ 1 and a state at filling
fraction 0 < νI < 1. Reference [27] presents microscopic
calculations of the magnon transmission probability for the
case of νI ¼ 0 and νI ¼ −1 using time-dependent Hartree-
Fock theory. The result is that the average magnon trans-
mission for νI ¼ 0 canted antiferromagnet is lower than
νI ¼ −1 ferromagnet. This is because the magnon
dispersion of the CAF is stiffer than FM, so the energy
and transverse-momentum conservation limits the available
phase space for transmission. This effect resembles that
underlying Kapitza heat resistance [37]. Based on the idea
of energy mismatch, we proceed to give a rough estimate of
magnon transmission probability. We assume the long-
wavelength magnon dispersion in the νI region is para-
metrized by a density-dependent spin stiffness ρν:
ℏωνðqÞ ¼ EZ þ ρνq2. Because of the quadratic dispersion,
a magnon’s equation of motion satisfies the Schrödinger
equation and we solve it via elementary means:

ψðxÞ ¼ AeiqLx þ Be−iqLx; x < 0;

¼ CeiqRx; x > 0; ðC1Þ

where ρ1q2L ¼ ρνIq
2
R. Current conservation and wave

function continuation imposes the following boundary
conditions:

ρ1qLðA − BÞ ¼ ρνIqR; Aþ B ¼ C: ðC2Þ

By solving the above equations, we obtain the ratio of the
transmitted and injected spin current as follows:

T ¼ jtrans
jtot

¼ ρνIqRjCj2
ρ1qLjAj2

¼ 4
ffiffiffiffiffiffiffiffiffiffi
ρ1ρνI

p
ð ffiffiffiffiffi

ρ1
p þ ffiffiffiffiffiffi

ρνI
p Þ2 : ðC3Þ

We shall now estimate the magnon dispersion for the
weak-field CDW-like state and the strong-field AFM-like
state.

1. Magnon transmission below the critical field

For the weak-field state jΨLi, the majority valley is fully
occupied with both spin projections while the minority
fractionally occupied the Zeeman favored spin projection
[Fig. 7(a)]. As a result, the ground state has the following
property:

sþi jΨLi ¼ τþi jΨLi ¼ 0; ∀ i ¼ 1; 2;…; Ne; ðC4Þ

where Ne is the number of electrons where sþi and τþi are,
respectively, the spin and valley creation operators.
The zero energy Landau level projected spin lowering

operator is given by the following operator:

S−q;B ¼
X
j

eiq⃗·R⃗j
1 − τzj
2

s−j : ðC5Þ

This operator acts on the guiding center coordinate R⃗ of all
the electrons and creates a single magnon in minority valley
(K0) with wave vector q⃗.
The single-mode approximation (SMA) assumes the

spectral weight of spin-1 excitations at wave vector q⃗ is
mainly concentrated at the energy ℏωvðq⃗Þ, which is the
energy required to create S−q;BjψLi. This approximation is
exact at q ¼ 0 since it satisfies Larmor’s theorem and it
remains a good approximation in the long-wavelength limit.
Starting from the Heisenberg equation of motion, we

arrive at the familiar equation for the SMA:

ωνðq⃗Þ ¼
h½Sþ−q;B; ½H; S−q;B��i

hSþ−q;BS−q;Bi
; ðC6Þ

where hi denotes the expectation value with respect to jΨLi.
The Hamiltonian projected to the zero Landau level is given
by the following:

H ¼ H0 þHz þH⊥ −
ΔAB

2
τzk¼0 −

Δz

2
Szk¼0; ðC7Þ

H0 ¼
1

2A

X
k

g0ðkÞρ−kρk; ðC8Þ

Hz ¼
1

2A

X
k

gzðkÞτz−kτzk; ðC9Þ

H⊥ ¼ 1

4A

X
k

g⊥ðkÞðτþ−kτ−k þ τ−−kτ
þ
k Þ: ðC10Þ

Here we defined ρk ¼
P

j e
ik⃗·R⃗j and Γk ¼

P
j e

ik⃗·R⃗jΓj for
arbitrary combination Γ of Pauli matrices.

g0ðkÞ ¼
e2

ϵ

2π

k
e−k

2l2B=2; gz=⊥ðkÞ ¼ gz=⊥e−k
2l2B=2: ðC11Þ

Using the commutation relation ½Rμ
i ; R

ν
j � ¼ −il2Bϵμνδij;

ðμ; ν ¼ fx; ygÞ, we can evaluate the following double
commutators for later convenience:
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½Sþ−q;α; ½H0 þHz; S−q;α�� ¼
4

A

X
k

½g0ðkÞ þ gzðkÞ� sin2
�
k ∧ q
2

��
1

2
fSþ−k−q;α; S−kþq;αg − ρ−kρk

�
; ðC12Þ

½Sþ−q;β; ½H⊥; S−q;α�� ¼
cαcβ
2

X
k

g⊥ðkÞeði=2Þk⃗∧q⃗ðcα−cβÞ
�
fðτþsþÞ−k−q; ðτ−s−Þkþqg

þ fðτ−sþÞk−q; ðτþs−Þkþqg − 4

��
τ−

1 − sz

2

�
k
; τþ−k

�
− 4

��
τþ

1þ sz

2

�
−k
; τ−k

��
; ðC13Þ

where α; β ¼ fA;Bg and cα ¼ 1ð−1Þ for α ¼ AðBÞ. In this section, we are only interested in α ¼ β ¼ B. Substituting the
above two equations into Eq. (C6), applying Eq. (C4) to simplify the expression and using the spin susceptibilty,

hSþ−q;BS−q;Bi ¼ 4NB↑; ðC14Þ

where Ns;α is the electron number on sublattice α with spin s, we derive the magnon dispersion and spin stiffness:

ωνðq⃗Þ ¼ Ez þ
2

A

X
k

½goðkÞ þ gzðkÞ�sin2
�
k ∧ q
2

�
½1 − SνðkÞ�; ðC15Þ

ρν ¼
1

4

Z
d2k
ð2πÞ2 ½goðkÞ þ gzðkÞ�k2½1 − SνðkÞ�: ðC16Þ

Here, SνðkÞ ¼ N−1
B↑hρ−kρki is the static structure factor. It

has the following properties: (1) SνðkÞ is only nonvanishing
in the fractionally occupied Landau level, i.e., S1ðkÞ ¼ 0,
and (2) SνðkÞ satisfies the following equation under
particle-hole transformation, νSνðkÞ ¼ ð1 − νÞS1−νðkÞ for
k ≠ 0. Using these properties and Eq. (C15), we arrive at
the following equation relating the mode frequencies at
different ν:

ων ¼
�
2 −

1

ν

�
ω1 þ

�
1

ν
− 1

�
ω1−ν: ðC17Þ

For ν ¼ 1, the spin stiffness can be easily calculated from
Eq. (C16), which yields ρ1 ¼

ffiffiffiffiffiffi
2π

p
e2=8ϵlB þ uz=2. For

ν ¼ 1=3, we use the static structure factor evaluated in
Ref. [38] to calculate the spin stiffness ρ1=3. When the
ground state of ν ¼ 2=3 is assumed to be the particle-hole
conjugation of the fully spin polarized ν ¼ 1=3 Laughlin
state, we can use Eq. (C17) to estimate the magnon
excitation energy. This leads to the following result:

ρ1=3 ≈ 0.035
e2

ϵlB
¼B¼4T

0.1ρ1; ðC18Þ

ρ2=3 ¼
1

2
ðρ1 þ ρ1=3Þ ¼B¼4T

0.55ρ1: ðC19Þ

The SMA predicts that the magnon excitation energy at
finite q is always larger than the Larmor mode at q ¼ 0.
When we substitute their dispersions into Eq. (C3) to
estimate the transmission probability, we arrive at

T1=3 ¼ 73%; T2=3 ¼ 98%: ðC20Þ

For ν ¼ 1=3, the SMA is in good agreement with finite-size
exact-diagonalization calculation [39] for small q. For
ν ¼ 2=3, the SMA fails to produce the spin-roton minimum
revealed by exact diagonalization (as shown in Fig. 5(b) of
main text and described in the associated discussion).
Evidently, substantial spin-flip spectral weight is placed
in higher-energy states that are not captured in the SMA,
leading to a discrepancy with the experiment.

2. Spin roton at integer filling fractions

In order to gain simple physical understanding of the
spin-roton minimum at ν ¼ 2=3, we consider a simplified
model system of a two-component system at filling 2—i.e.,
an integer filling factor analog of the ν ¼ 2=3 state. The
Hamiltonian is given by the following:

H ¼
X
n;m;σ

ðnℏωþ σEz=2Þc†nmσcnmσ þ
1

2

X
q⃗

X
n1;2;3;4

V̄n4;n3;n2;n1ðq⃗Þ½ρ̄n4n1ð−q⃗Þρ̄n3n2ðq⃗Þ − δn3;n1 ρ̄n4n2ð0Þ�; ðC21Þ
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V̄n4;n3;n2;n1ðq⃗Þ ¼ Vðq⃗ÞFn4n1ð−q⃗ÞFn3n2ðq⃗Þ; ðC22Þ

where cnm↑=↓ annihilates a spin-up or spin-down electron in the mth guiding center and the nth Landau level. The form
factor Fn0n and the projected density operator ρ̄n0n read

Fn0nðq⃗Þ ¼ hn0je−iq⃗·ð−Π⃗×ẑÞl2B jni ¼
ffiffiffiffiffiffiffiffiffi
2l

0
l0!

2ll!

s
½−iqx þ qysgnðn0 − nÞ�l−l0Ll−l0

l0

�
q⃗2

2

�
e−q

2=4; ðC23Þ

ρn0nðq⃗Þ ¼
X
m0;m;σ

hm0je−iq⃗·R⃗jmic†n0m0σcnmσ; ðC24Þ

where l≡maxfn; n0g; l0 ≡minfn; n0g, and Ll0
l ðxÞ is the

generalized Laguerre polynomial. We express the inter-
action Hamiltonian in terms of the projected density
operator at the cost of an additional term proportional to
ρ̄n0nð0Þ to correct the ordering of fermion operators. This
additional term cannot be dropped if the Hilbert space
includes more than one Landau level since it in general
does not commute with the first part of the interaction
Hamiltonian. Let us calculate the dispersion of spin-flip
collective modes within the Hilbert space spanned by
n ¼ 0, 1 Landau levels at ν ¼ 2. When the exchange
energy is the most dominant energy scale, the ground state
is a quantum Hall ferromagnet (QHF): a Slater determinant
with electrons occupying the spin-up states of the n ¼ 0
and n ¼ 1 Landau levels. Using the equation of motion
described in the last section, we arrive at the following
eigenvalue equation:

X1
n2;n1¼0

½ωχn4n3;n2n1 − Ωn4n3;n2n1ðq⃗Þ�Yn2n1ðq⃗Þ ¼ 0; ðC25Þ

where

χn4n3;n2n1 ¼ δn4;n2δn3;n1hSþn4n3ðq⃗ÞS−n2n1ðq⃗Þi ¼ δn4;n2δn3;n1Nϕ;

ðC26Þ

Ωn4n3;n2n1 ¼ h½S̄þn4n3ð−q⃗Þ; ½H; S̄−n2n1ðq⃗Þ��i ðC27Þ

¼ ½ðn2 − n1Þℏωþ Ez�χn4n3;n2n1 þ
X
q⃗;n0

V̄n1n0n4n0 ðq⃗0Þδn2n3Nϕ

−
X
q⃗

V̄n1n3n2n4ðq⃗0Þ cosðq⃗0 ∧ q⃗ÞNϕ; ðC28Þ

S̄−n0;nðq⃗Þ ¼
X
m0;m

jm0ie−iq⃗·R⃗jmic†n0m0↓cnm↑; ðC29Þ

and Nϕ is the number of flux quanta. To derive this
equation, we have used the following properties of the
quantum Hall ferromagnet:

S̄þn0nðq⃗ÞjΨQHFi ¼ 0; ðC30Þ

ρ̄n0nðq⃗ÞjΨQHFi ¼ δq⃗;0δn0nNϕ: ðC31Þ

At a given q, Eq. (C25) is a 4 × 4 matrix equation whose
eigenvalues correspond to the four spin-flip collective
modes plotted in Figs. 10(a) and 10(b), where energy is
measured relative to the Zeeman energy. Note there is
always a mode with energy exactly equal to Ez at q⃗ ¼ 0, as
required by Larmor’s theorem. Increasing the cyclotron
energy will lower the energies of spin-flip transitions that
lower the LL index. This mode will mix with the Larmor
mode at finite momentum q ¼ q� and the consequent level-
repulsion effect leads to a “spin-roton”minimumwhen ℏωc
is sufficiently large.
In this calculation, the ground state is always assumed to

be a QHF with maximum spin polarization because the
energy that favors a spin polarized phase (exchange energy
plus Zeeman energy) is bigger than the energy that favors a
spin unpolarized phase (cyclotron energy), i.e., ðΔex þ EZÞ=
ℏωc > 1. Note typically Δex ≫ EZ. As the ratio approaches
one from above, ðΔex þ EZÞ=ℏωc → 1þ, the spin-flip exci-
tation spectrum of the QHF develops a deeper spin-roton
minimum, as shown in Figs. 10(a) and 10(b). This is because
the energy of the spin unpolarized state favored by ℏωc
becomes nearly degenerate to the ground state energy of
the QHF.
At ν ¼ 2=3, the Coulomb energy favors a spin-singlet

state. When the Zeeman energy wins over the Coulomb
energy, the ground state is spin polarized and its spin-flip
excitation also shows a shallow spin-roton minimum. The
integer calculation suggests that this spin-roton minimum
could arise from the competition between the spin polarized
state and the spin-singlet state. However, since the Zeeman
energy merely provides a q-independent shift to the spin-
flip spectrum, the characteristics of the spin-roton mini-
mum (e.g., position and depth) are determined solely by the
Coulomb energy.
Despite the difference between ν ¼ 2 and ν ¼ 2=3

excited wave functions, their spin-roton dispersion is
similar and this is sufficient to suppress magnon trans-
mission into the stiffer ν ¼ 1. By conservation of energy
and transverse momentum qy, we equate
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ωrotðqx;in; qyÞ ¼ ων¼1ðqx;out; qyÞ; ðC32Þ

where ων¼1 is the magnon dispersion of ν ¼ 1 and ωrot is
plotted in Fig. 10(c). Because ω1 is stiffer than ωrot, qx;out
becomes imaginary when the incident angle tan−1ðqy=qx;inÞ
is large. The average transmission rate at low energy is thus
reduced to less than 40%, already a large suppression
compared to the 98% transmission obtained by the naive
SMA approximation [Fig. 10(d)].

3. Magnon transmission above the critical field

For B > B�⊥, the high-field configuration jΨHi is shown
in Fig. 7(b). We study magnon dispersion using the natural
generalization of single-mode approximation. In metallic
ferromagnets, magnons can be emitted when minority spin
electron change to majority spin electron e↓ → e ↑ and
when majority spin hole change to minority spin hole
h ↑→ h↓. Similarly, magnons in jΨHi can be created by
e↓ → e ↑ in the minority valley (K0 ¼ B) and h ↑→ h↓ in
the majority valley (K ¼ A). Hence, the spin-lowering
process is in general a linear combination of the two
valleys:

O†
q ¼ YqS−qA þ ZqS−qB: ðC33Þ

Using the equation of motion method, we arrive at the
following:

ℏωq

�
χAA 0

0 χBB

�
·

�
Yq

Zq

�
¼

�ΩAA ΩAB

ΩBA ΩBB

��
Yq

Zq

�
;

ðC34Þ

where

χij¼hSþ−qiS−qji; Ωij¼h½Sþ−qi; ½H;S−qj��i; i;j¼fA;Bg;
ðC35Þ

and hi denotes the expectation value of the high-field
ground state jΨHi. The static susceptibility can be easily
evaluated to give

χii ¼ 4ðNi↑ − Ni↓Þ: ðC36Þ

The frequency matrix is slightly more complicated. Using
Eqs. (C12) and (C13), we found

(a) (b)

(c) (d)

FIG. 10. The energy E of the four spin-flip collective modes in the N ¼ 0, 1 LL with the cyclotron energy (a) ℏωc ¼ 0.8e2=ϵlB and
(b) e2=ϵlB. The Zeeman energy is not included since it only produces a constant shift of all these dispersions. The line color stands for
the overlap between the normal modes jψqi and the single magnon wave function ansatz S−q j0i, which is exactly one for the q ¼ 0

Larmor mode. (c) The low-energy dispersion of the lowest mode in (a). Here we include the Zeeman energy. (d) The phase space of
magnon transmission in the incident angle-energy plane. When the incident angle from ν ¼ 2 QHF onto the ν ¼ 1 QHF becomes large,
they become evanescent in the ν ¼ 1 region.
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ΩAAðqÞ
χAA

¼ Δz þ
2

A

X
k

½goðkÞ þ gzðkÞ�sin2
�
k ∧ q
2

�
½−1þ SνðkÞ� þ

u⊥D
2χAA

¼ Δz − ρ1=3q2 þOðq4Þ; ðC37Þ

ΩBBðqÞ
χBB

¼ Δz þ
2

A

X
k

½goðkÞ þ gzðkÞ� sin2
�
k ∧ q
2

�
þ u⊥D
2χBB

¼ Δz þ u⊥
D

2χBB
þ ρ1q2 þOðq4Þ; ðC38Þ

ΩABðqÞ
χAA

¼ −
u⊥D
2χAA

e−q
2l2B=2; ðC39Þ

ΩBAðqÞ
χBB

¼ −
u⊥D
2χBB

e−q
2l2=2; ðC40Þ

where we define

D ¼ 8½NA↑ þ ðNA↑ − NB↑Þ − ðNA↓ − NB↓Þ�; ðC41Þ

SνðkÞ ¼
hρkAρ−kAi

jNA↑ − NA↓j
≡ hð1þ τzÞ−kð1þ τzÞki

4jNA↑ − NA↓j
; ðC42Þ

and also used the following properties of the jΨHi:

S−q;AjΨHi ¼ Sþq;BjΨHi ¼ ðτþs−ÞqjΨHi ¼ ðτ−sþÞqjΨHi ¼ 0:

ðC43Þ

The normal mode frequency, ωq ¼ Δz þ ρðHÞ
2=3q

2 þOðq4Þ,

ρðHÞ
2=3 ¼ ρ1 − ρ1=3

2
þ ρ1 þ ρ1=3

2

χBB − χAA
χBB þ χAA

−
u⊥D

2ðχBB þ χAAÞ
¼B¼8T

1.9ρ1: ðC44Þ

We see that the antiferromagnetic coupling between the
spin in the two sublattices makes the magnon stiffer. The
transmission probability, T ≈ 98%, of ν ¼ 1j2=3 interface
at high field is higher than the low field.
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