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The sliding motion of objects is typically governed by their friction with the underlying surface.
Compared to translational friction, however, rotational friction has received much less attention. Here, we
experimentally and theoretically study the rotational depinning and orientational dynamics of two-
dimensional colloidal crystalline clusters on periodically corrugated surfaces in the presence of
magnetically exerted torques. We demonstrate that the traversing of locally commensurate areas of the
moiré pattern through the edges of clusters, which is hindered by potential barriers during cluster rotation,
controls its rotational depinning. The experimentally measured depinning thresholds as a function of cluster
size strikingly collapse onto a universal theoretical curve which predicts the possibility of a superlow-static-
torque state for large clusters. We further reveal a cluster-size-independent rotation-translation depinning
transition when lattice-matched clusters are driven jointly by a torque and a force. Our work provides
guidelines to the design of nanomechanical devices that involve rotational motions on atomic surfaces.
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I. INTRODUCTION

To set an object into motion typically requires a finite
driving force to overcome the static friction with the surface
underneath. Similarly, a finite torque must be applied to
initiate a rotation. Although both effects originate from the
same mechanisms, i.e., molecular adhesion and surface
roughness [1,2], the simultaneous translation and rotation
of macroscopic objects demonstrate a nontrivial relation
between static friction forces and torques [3]. Compared to
macroscopic scales, where the overall tribological behavior
is usually explained in terms of time-honored, yet phe-
nomenological, classical laws, the possible translation-
rotation frictional interplay becomes physically much more
intriguing when dealing with atomically smooth crystalline
contacts at the microscopic and nanoscopic scales. These
contacts appear in many nanomanipulation experiments

and are crucial in microelectromechanical and nanoelec-
tromechanical systems [4–6]. In such cases, friction
strongly depends on the atomic commensurability of the
surface lattices in contact [7], which generate a rich
tribological behavior including stick-slip motion and super-
lubric translational sliding [8–12]. Contrary to translational
nanofriction, which received considerable experimental
and theoretical attention during recent years, microscopic
rotational friction has remained rather elusive despite being
important for the reorientation dynamics and positioning of
molecules and nanomotors on atomic surfaces [13–25]. In
particular, it is unclear how rotational friction couples to the
translational friction at atomic scales and how this depends
on the properties of the two lattices in contact. This lack of
knowledge is due to the difficulty of applying well-
controlled torques at nanoscopic length scales, but also
results from the difficulty of the systematic variation of the
lattice constant of materials. Such problems can be resolved
by using micron-sized colloidal crystals sliding across
patterned surfaces since torques and forces in such systems
can be applied in a precise manner [26–29]. In addition, in
such colloidal systems, contacts with almost arbitrary
interface incommensurability can be created [30,31].
Here, we experimentally and theoretically investigate the

complex rotational motion of close-packed two-dimensional
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(2D) colloidal clusterswhich interactwith a triangular surface
lattice in the presence of a constant external torque. We
observe a nonmonotonic contact-size dependence of the
critical torque per particle required for rotational depinning
of clusters when their lattice spacing differs from that of the
substrate. We also discover a size-independent depinning
boundary for clusters driven by a combination of external
torques and forces.Our results are in excellent agreementwith
a theoretical model which considers the motion-induced
evolution of the moiré pattern at the interface and coarse
grains the locally commensurate moiré areas to Gaussian
energy-density profiles. In contrast to its linear motion, the
evolution of moiré pattern during rotation displays a quali-
tatively different and rather complex behavior: locally com-
mensurate areas expand or shrink continuously in size, thus
crossing the edges of the clusters, which is crucial for the
depinning. Interestingly, our theoretical evaluation of the
rotational depinning threshold reveals a superlow-static-
torque state which may find use for the engineering of
low-friction nanomechanical gears.

II. EXPERIMENTS AND RESULTS

A. Experimental sample preparation
and torque realization

Colloidal clusters are made from an aqueous suspension
of superparamagnetic colloidal particles (diameter

σ ¼ 4.45 μm) where a small amount (0.02% in weight)
of polyacrylamide (PAAm) is added. The PAAm causes
strong interparticle bonds leading to rigid 2D clusters with
the lattice constant a ¼ σ which is fixed in our experiments.
Owing to their fabrication process, the clusters have a broad
distribution in size and shape. As illustrated in Fig. 1(a), the
clusters are interacting with a periodically corrugated
substrate fabricated by photolithography. In our experi-
ments we use four different substrate lattice spacings,
b ¼ 4.4, 4.6, 4.7, 4.8 μm, producing lattice-spacing mis-
matches δ ¼ j1 − a=bj ¼ 1.1%, 3.3%, 5.3%, 7.3%, respec-
tively. Application of a torque to the clusters is achieved by
two mutually perpendicular pairs of coils [Fig. 1(b)] which
create a magnetic field with components Hx ¼ H cosωHt
and Hy ¼ H sinωHt. This leads to rotation of the total H
vector in the x-y sample plane. The frequency fH ¼
ωH=ð2πÞ was set to fH ¼ 10 Hz in all measurements.
The rotating H vector induces a rotating magnetization Mi
within each superparamagnetic colloidal particle i of a
cluster. Because of a small phase lag in Mi, the rotating
magnetic field applies a torque Γ ¼ jPiMi ×Hj
to the entire cluster [32,33]. This causes the cluster to
rotate smoothly on top of a flat surface with an angular
velocity ω ¼ τ=½πηa3ð1þ IÞ� (see Video 1 and Fig. S1 of
the Supplemental Material [34]). Here τ ¼ Γ=N is the
applied torque per particle, N the number of particles,

(c)

(d)(b)

(e) (f)

(g) (h)

FIG. 1. Orientational cluster motion on periodic surfaces. (a),(b) Illustration of the experimental setup. Two perpendicular pairs of
coils generate a rotating magnetic field in the sample plane with frequency ωH. It applies a torque τ to the clusters leading to their rotation
with angular velocity ω ≪ ωH on top of a topographically patterned surface with triangular symmetry. The conical shape of the coils
maximizes the magnetic strength and the area of the uniform field at the center. The angle θ denotes the lattice direction of the colloidal
cluster, relative to the x axis (i.e., substrate lattice direction). (c) Temporal evolution θðtÞ for a cluster with N ¼ 133 when rotating on a
surface with δ ¼ 1.1% under various applied torque τ. Inset: Magnified view of the plateau on the τ ¼ 4.31 pN μm curve. (d) The
interaction energy hϵsi as a function of θ for a cluster with N ¼ 1715 on a δ ¼ 1.1% surface. hi denotes the average over all particles in
the cluster. The dashed lines indicate the snapshots in (e)–(h). (e)–(h) Snapshots of the cluster in (d) at angles θ ¼ 0.06°, 1.60°, 2.46°,
4.39° under applied torque τ ¼ 6.68 pN μm. Particles are color coded according to their interaction energy ϵs with the substrate (see
Appendix C for calculation of ϵs).
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Nπηa3ð1þ IÞω the viscous torque of the cluster rotating in
a liquid with viscosity η, and I ¼ P

i 3r
2
i =ðNσ2Þ a dimen-

sionless factor which depends on the position of each
particle ri relative to the rotation center. For details
regarding sample preparation, cluster formation, particle
tracking, and the calibration of the torque τ, see
Appendixes A and B. In the following we characterize
the cluster’s angular velocity ω� ¼ ðI þ 1Þω ¼ τ=ðπηa3Þ,
which does not depend on the clusters’ size and shape.

B. Orientational cluster motion

The rotational dynamics of clusters is stronglymodified in
the presence of a periodically patterned surface. This is
illustrated in Fig. 1(c), which shows the time dependence of
the orientation θ of a cluster consisting ofN ¼ 133 particles
rotating on a nearly matched surface (δ ¼ 1.1%) under
various applied torques τ. As expected, θðtÞ displays an
increasingly intermittent behavior for decreasing τ, due to the
increasing relative influence of the substrate corrugation. The
interaction with the substrate leads to plateaus around high-
symmetry angles θ ¼ 0°, 60°, 120° where the rotational
velocity almost vanishes [inset of Fig. 1(c)]. The intermittent
orientational dynamics originates from the rapidly changing
cluster-substrate interaction energy hϵsi near the high-sym-
metry angles. This is illustrated in Fig. 1(d). The reason for

these energy oscillations is clarified in Figs. 1(e)–1(h),
reporting the local energy distribution for four snapshots
of a cluster near θ ¼ 0°. The low-energy spots (i.e., the dark-
colored regions) arrange periodically on the cluster, forming
the moiré pattern of the two contacting lattices. During
rotation, and notably around θ ¼ 0°, the low-energy moiré
spots change drastically in size and spacing [35]. As a
consequence, they regularly move in and out of the cluster’s
edge, as illustrated in Video 2 of the Supplemental Material
[34]. The snapshot in Fig. 1(e) corresponds to a situation
where the entire cluster is covered by a single, broad moiré
spot which determines the absolute potential-energy mini-
mum at θ ¼ 0.06° in Fig. 1(d). As the cluster rotates, the
moiré spot shrinks and the potential energy increases. When
the cluster rotates to θ ¼ 1.60°, the potential energy reaches a
maximum in Fig. 1(d) because neighboringmoiré spots have
reached the edge of the cluster [Fig. 1(f)]. Upon further
rotation, these neighboring moiré spots move through the
cluster’s edge, which leads to an energy local minimum in
Fig. 1(d) at θ ¼ 2.46°, where a first ring of moiré spots has
moved inside the cluster [Fig. 1(g)]. Similarly, another
energy local minimum arises at θ ¼ 4.39° when a second
ring of surrounding moiré spots moves inside the cluster
[Fig. 1(h)]. Video 3 in Supplemental Material provides an
animation on how themoiré-pattern evolution determines the
potential energy [34]. These observations indicate that the

(b)

(c)(a)

FIG. 2. Critical depinning torque and its finite-size scaling. (a) Measured instantaneous rotational velocity ω� and computed average
substrate torque hτsi as a function of θ for the cluster with N ¼ 1715 rotating on a δ ¼ 1.1% surface under applied torque
τ ¼ 6.68 pN μm. Arrows point at the relevant axis for each curve. At any time instant ω� is measured over a time interval of 3.3 s.
(b) The measured average rotational velocity hω�it as a function of the applied torque τ for three clusters of similar size (N ¼ 133, 114,
179) in experiments rotating on δ ¼ 1.1%, 3.3%, 5.3% surfaces, respectively. hit denotes an average over a time interval where the
cluster rotates more than 180°. The data approach the linear relation (dashed line) hω�it ¼ τ=ðπηa3Þ at large τ (viscosity
η ¼ 3.2 × 10−3 pNs=μm2). On the other hand, the clusters stop rotating when τ drops below a critical value τc. (c) Data points:
measured critical torque τc as a function of cluster size N on surfaces of different δ. Solid lines: corresponding theoretical curves from
Eq. (3) for circular clusters. Dashed lines indicate scaling relations as discussed in the text. Arrows along the green curve pinpoint cases
discussed in Fig. 3.
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oscillation of the potential energy near the high-symmetry
angles depends strongly on the shape and size of the cluster.
When the cluster size is similar or smaller compared to the
size of the low-energy spots [Fig. 1(e)], the oscillation
amplitude of the potential energy becomes large. On the
other hand,when the cluster ismuch larger than the size of the
low-energy spots [Fig. 1(h)], the oscillation becomes smaller.
Note that the above picture of the potential energy oscillation
is valid for contacts of arbitrary δ. This is verified in Fig. S2 of
the Supplemental Material [34], which shows similar poten-
tial-energy oscillations when moiré spots are crossing the
edges of clusters rotating on surfaces of different δ.

C. Scaling behaviors of static friction torque

The abovementioned energy oscillation leads to a torque
hτsi ¼ −∂hϵsi=∂θ, which we refer to as the substrate
torque since it is acting on the cluster by the substrate.
In combination with the constant external torque τ they
determine the angular velocity ω� ¼ ðτ þ hτsiÞ=ðπηa3Þ.
This relation is found in good agreement with our experi-
ments which demonstrate an approximate proportionality
between ω� and hτsi in the presence of a constant torque τ
[Fig. 2(a)]. To allow for a continuous cluster rotation, the
applied torque τ must exceed a critical value τc (i.e., the
onset of cluster rotation), to satisfyω� ∝ τ þ hτsi > 0 for all
θ. To determine τc we have gradually decreased τ and
measured the average rotational velocity hω�it as a function
of τ [see Fig. 2(b)]. Note that τc is smaller for clusters on
larger-δ surface. In general, τc also depends on the cluster
size. This is seen in Fig. 2(c) which shows experimentally
measured values of τc as a function ofN for three different δ
(symbols). Despite significant scatter in the data due to
different cluster shapes (see Appendix C), the following
features are observed in our experiments. (i) For nearly
matching conditions (δ ¼ 1.1%), τc ∝ N0.5 up toN ∼ 1000.
(ii) For slightly larger mismatches (δ ¼ 3.3%), such scaling
is satisfied for N ≤ ∼100, and a maximum of τc is observed
around N ≈ 200. (iii) For δ ¼ 5.3%, τc becomes nearly
independent of the cluster size for N > ∼50. Note that the
scaling behavior of rotational friction torque observed here is
very different from that of the translational friction force
[36–38], not just because rotation and translation involve
different degrees of freedom. Moreover, friction torque and
friction force require different ways to measure.

III. THEORETICAL ANALYSIS

A. Analytical model

The above experimental findings are well reproduced by
numerical simulations of a microscopic model (Appendix C)
which explicitly considers all particle-surface interactions as
in Figs. 1(e)–1(h) and which can be applied to clusters of
arbitrary size and shape. In the following, we demonstrate
that the above results are quantitatively reproduced by a
much simpler coarse-grained model which allows an

analytical formulation of the cluster-surface interaction
energy. Within this analytical framework we are able to
provide a clear physical understanding of how rotational
friction depends, e.g., on cluster size and latticemismatch. To
construct our analytical model, we treat the cluster as a
circular disk of radiusRcl ∝ N0.5, cutting a finite region of the
moiré pattern [Fig. 3(a)]. Themoiré spots are centered on the
lattice points of a triangular gridwith lattice spacingL and are
each described by a Gaussian energy density profile of
strength ϵ=ð ffiffiffi

3
p

a2=2Þ and width λL. The cluster-surface
interaction is approximated by integration of all the
Gaussian profiles within the cluster area; see Eq. (D1) in
AppendixD.Because of the interplay between the contacting
lattices, a rotation θ of the cluster results in a rotation ψ ¼
ψðθÞ of the moiré pattern accompanied with a shrinkage or
expansion of the lattice spacing L ¼ LðθÞ; a cluster trans-
lation rcm results in a translation t ¼ tðθ; rcmÞ of the moiré
pattern [35]. The integration yields an analytic expression for
the interaction energy per particle hϵsi as a function of θ and
rcm, i.e.,

hϵsiðθ; rcmÞ ¼ −ϵeff
L
Rcl

J1

�
4πffiffiffi
3

p Rcl

L

�

×
X5
n¼0

cos

�
4πffiffiffi
3

p
b
x̂ ·R

�
2nπ þ π

6

�
rcm

�
: ð1Þ

Here ϵeff ¼ 8π2λ2ϵ expð−8π2λ2=3Þ, J1ðÞ the first-order
Bessel function of the first kind, x̂ ¼ ð1; 0Þ a unit vector,
and RðφÞrcm rotates the vector rcm by an angle φ counter-
clockwise. Note that rotation and translation contribute
separately to hϵsiðθ; rcmÞ through the LJ1 and the cosine
term, respectively. The hϵsi calculated with Eq. (1) shows
excellent agreement with that obtained from the microscopic
model; see Figs. S3–S5 of the Supplemental Material [34].
Differentiating Eq. (1) with respect to θ we obtain the

following expression for the mean substrate torque:

hτsi ¼ −ϵeff
4πL2 sin θffiffiffi

3
p

ab
J2

�
4πffiffiffi
3

p Rcl

L

�

×
X5
n¼0

cos

�
4πffiffiffi
3

p
b
x̂ ·R

�
2nπ þ π

6

�
rcm

�
: ð2Þ

Here J2ðÞ is the second-order Bessel function of the first
kind. The critical torque for rotational depinning,

τc ¼ −hτsiðθ ¼ θc; rcm ¼ 0Þ; ð3Þ

is reported in Fig. 2(c) as a function of cluster size N (solid
lines) for δ ¼ 1.1%, 3.3%, 5.3%, where θc denotes the
angle where hτsi reaches its minimum for rcm ¼ 0 (i.e.,
pure rotation).
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B. Theoretical understandings of the cluster-size
dependence of the critical torque

The above analytical results confirm the experimentally
observed N0.5 scaling at small N. In addition, Eq. (3)
predicts a strict N0.5 scaling at all cluster size N for the
δ ¼ 0 contact (see Appendix D). Such scaling results from
the coherent summation of all local substrate torques τs
inside the cluster, which applies when the cluster size is
smaller than a single moiré spot. This is exemplarily shown
in Figs. 3(b) and 3(c) where the local torques of two small
clusters at their depinning angles θ ¼ θc are obtained from
the microscopic model. Even though they differ in ampli-
tude, all local torques have the same sign upon cluster
depinning which rationalizes a coherent summation.
Equation (3) shows that critical torques for different δ in
Fig. 2(c) can overlap into a single universal curve appli-
cable to all mismatches (see Appendix D). Interestingly,
Eq. (3) also suggests an oscillatory behavior of τc as a
function of N for all contacts with δ > 0. To rationalize
such behavior, Figs. 3(d)–3(g) illustrate the local torque
distributions for four simulated clusters of increasing size at
their corresponding θc. Summation of such local torques
yields an oscillation the of τc−N relation (see Appendix C),
which is fully captured by Eq. (3). Opposed to the small
clusters of Figs. 3(b) and 3(c), torques of both signs are

observed in Figs. 3(d)–3(g), where cluster sizes are large
enough to accommodate a first and second ring of moiré
spots. This leads to drastic changes in the local torque
distribution for clusters near certain sizes when a new moiré
ring enters their edge [e.g., Fig. 3(c) versus Fig. 3(d), and
Fig. 3(e) versus Fig. 3(f)], and eventually leads to the
observed oscillatory behavior of τcðNÞ in Fig. 2(c). At the
same time, θc changes between positive and negative values
at these sizes. By comparison, Fig. 3(h) reports the
substrate torque per particle hτsi obtained from Eq. (2)
as a function of the cluster’s orientation θc for six circular
clusters with the same size as shown in Figs. 3(b)–3(g). The
absolute minima denote the corresponding θc which reveal
similar sign changes as a function of size. Such sign
changes are also observed in experiments for clusters
rotating on δ ¼ 1.1%, 3.3%, 5.3% surfaces (see Fig. S6
of the Supplemental Material [34]).
Remarkably, since the oscillation amplitude of the

integer-order Bessel functions JnðzÞ decays as 1=
ffiffiffi
z

p
,

Eq. (3) predicts an asymptotic behavior τc ∝ N−0.25 at
large N (see Appendix D), which is also reproduced by
simulations of circular clusters (see Appendix C).
Interestingly, this scaling leads to a sublinear relation of
the total static torque Γc ¼ Nτc ∝ N0.75, which suggests a
superlow-static-torque state. Although it is mathematically

(c) (e) (f)

(a)

(b) (d) (g)

(h)

FIG. 3. Angle dependence of the average substrate torque of different-sized clusters and the corresponding critical configurations.
(a) Comparison of the microscopic model and the coarse-grained model. We assume circular-shaped clusters with lattice misalignment
angle θ relative to the substrate lattice. In the microscopic model, discrete particles are considered and their energies [color code as in
Figs. 1(e)–1(h)] are summed up to calculate the interaction energy hϵsi. Instead, the coarse-grained model focuses on the periodically
arranged moiré spots (red and gray circles). These moiré spots are Gaussian energy-density profiles of width λL which contribute to hϵsi
if they are covered by the cluster (red). (b)–(g) Local torque distributions of simulated (with the microscopic model) circular clusters at
their depinning angles θ ¼ θc (reported in the corresponding panel) on a δ ¼ 3.3% surface. Individual particles are color coded
according to their local substrate torque τs (Appendix C). The τc values for the six cluster sizes reported here are marked by arrows in
Fig. 2(c). (h) hτsi versus θ, as obtained from Eq. (2) (coarse-grained model) for rcm ¼ 0 and b ¼ 4.6 μm (δ ¼ 3.3%) for the six cluster
sizes as shown in (b)–(g). The filled dots on the curves mark the respective global minima θc.
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different from a superlubric state where the contacting
surfaces can depin without resistance [39], such scaling
enables extremely small rotational friction per unit area for
sufficiently large contacts in nanomechanical components.
Note that such a state only occurs for δ > 0 and circular
contacts. For noncircular contacts, such as hexagons,
squares, and triangles, a τc ∝ N0 scaling is observed at
large N in numerical simulations and in experiments; see
Appendix C. The observed τc ∝ N0.5, τc ∝ N0, and τc ∝
N−0.25 scaling relations agree well with an extension of an
empirical scaling law obtained for translational friction (see
Appendix E). Our findings regarding the size scaling are
summarized in Table S1 of the Supplemental Material [34].

C. Translational and orientational friction coupling

To study the interplay of translational and rotational
depinning, we consider the analytic expression of the
generalized enthalpy Aðθ;rcmÞ¼ hϵsiðθ;rcmÞ−θτ− rcm ·F,
which determines the equilibrium position of the cluster in
the presence of an external driving torque τ and force F.
Instability (i.e., depinning) occurs when the determinant of
the Hessian matrix detH of the second derivatives of
Aðθ; rcmÞ turns negative (see Appendix D for details). For
simplicityweonly consider translations along thexdirection,
i.e., rcm ¼ ðx; 0Þ. The calculated detH as a function of θ and
x is reported in Fig. 4(a) for a cluster ofN ¼ 363 and δ ¼ 0.

A boundary between the stable (green) and unstable (pink)
region is indicated by detH ¼ 0 (orange solid line), which
marks the critical displacement ðθ; xÞc. Figure 4(b) reports
the critical drive ðτ; FÞc corresponding to ðθ; xÞc, which is in
excellent agreement with the experimental and simulated
results obtained for clusters of very different sizes and
shapes. Note that the ðτ; FÞc line (solid) obtained for circular
colloidal clusters on perfect crystalline surfaces systemati-
cally falls below that obtained for a macroscopic disk in
contact with a uniform surface (dashed curve) [3]. The
difference originates from a fundamentally distinct depin-
ning mechanism: compared to the spatially uniform depin-
ning of rigid macroscopic contacts [3], the depinning of our
colloidal cluster depends on the rotation- and translation-
induced moiré-pattern evolution as shown in Figs. 4(c)–4(f)
and Video 4 in the Supplemental Material [34]. In the case
when only torque (force) is involved, the cluster leaves the
initial perfectly commensurate configuration [Fig. 4(c)] and
moves along the torque-driven (force-driven) direction. The
moiré pattern, which starts to develop, shrinks (translates)
uniformly as shown in Fig. 4(d) [Fig. 4(f)] until the cluster
depins. In situations where both torque and force are
involved, the moiré spot becomes located at one side of
the cluster as shown in Fig. 4(e). In this case, depinning is
favorably triggered by the emergence, at the opposite side of
the cluster, of a locally incommensurateweak-pinning region

(f)

(a) (b)

(c)

(d)

(e)

FIG. 4. Rotation-translation depinning boundary and its mechanism. (a) The calculated detH (color code) as a function of the center-
of-mass rotation θ and translation x, for a cluster with N ¼ 363 (Rcl ¼ 44.5 μm) on a δ ¼ 0 surface. Green and pink regions correspond
to detH > 0 and detH < 0, respectively. The orange line marks the detH ¼ 0 depinning boundary. (b) The measured ðτ; FÞc pairs for
two experimental clusters with N ¼ 27 and N ¼ 100 on a δ ¼ 1.1% surface (squares and triangles), and for simulated clusters with a
range of sizes (from N ¼ 15 to 5000) and shapes (circular, hexagonal) on a δ ¼ 0 surface (dots). The force in experiments is achieved by
tilting the sample at an angle α, which applies gravitational force F ¼ mg sin α to colloidal particles of buoyant weight mg [30,31]. In
both experiments and simulations, to measure the ðτ; FÞc pairs, we apply a force F in the x direction and then gradually increase the
torque τ until the cluster depins. All simulation points collapse near the stability-boundary line (solid), obtained within the coarse-
grained model. (c)–(f) Snapshots of the N ¼ 363 simulated circular cluster shown in (a) at four different coordinates ðθ; xÞ indicated by
the corresponding linked dot. The colloids are color coded according to the substrate potential as in Figs. 1(e)–1(h), showing the moiré-
pattern evolution when the cluster coordinates change.
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of the moiré pattern which then leads to depinning of the
entire system. This nonuniform depinningmechanism domi-
nates as long as the moiré spots are not symmetrically
distributed in the cluster. This mechanism, remarkably
observed in a δ ¼ 0 contact, becomes particularly relevant
for the δ > 0 contacts, where the depinning is determined by
the preformed moiré spots at the cluster’s edge, which leads
to further deviation of the ðτ; FÞc line from that of the δ ¼ 0
case, as shown by the numerical simulations in Fig. S7 of the
Supplemental Material [34].

IV. DISCUSSIONS

The complex depinning of torque- and force-driven
colloidal clusters on crystalline surfaces as demonstrated
here should be of immediate relevance for nanomanipula-
tion experiments where, e.g., atomic-force microscopes
often induce not only forces but additional torques which
drastically affect the depinning of nanoparticles and their
translational friction [40,41]. Similar to macroscopic scales
where, e.g., circular-shaped clutches or end bearings are
used to achieve smooth friction forces, the superlow static
rotational friction state found in our work suggests that
circular contacts also provide the ideal contact geometry at
microscopic scales. This may be useful for the design of
atomic actuators and nanoelectromechanical devices where
low rotational friction is desired. Finally, the complex
moiré-pattern evolution upon cluster rotation may find
use in the area of twistronics where angle-dependent
variations of the electronic properties between atomically
flat layers are exploited for applications [42].
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APPENDIX A: SAMPLE PREPARATION,
CLUSTER FORMATION, AND IMAGE ANALYSIS

We use superparamagnetic colloidal spheres (Dynabeads
M-450) with diameter a ¼ 4.45 μm which are dispersed in
an aqueous sodium dodecyl sulfate (SDS) solution at 90%
of the critical micellar concentration. The concentration of
colloidal particles is about 2 × 108=mL. As flocculating
agent we use an aqueous solution of 0.02 wt % polyacry-
lamide (PAAm) with molecular weight 18 000 000 amu.

Patterned substrates are prepared by first spin coating a
glass surface with a thin layer (∼80 nm) of SU8 photo-
resist. Afterward it is exposed to ultraviolet light through a
photomask that contains the corresponding surface pattern.
After development a patterned area on the substrate with
dimensions 16 × 40 mm2 is obtained. To achieve a closed
sample cell, we first apply two parafilm spacers with
∼150 μm thickness at two opposite sides of the patterned
area and glue a cover slide on top of it. Then, a mixture of
the suspension containing 5 μL of the colloid-SDS solution
and 100 μL of the flocculant solution is injected at the open
ends and sealed afterward with epoxy glue. Since the
colloidal spheres are heavier than water (buoyant weight
mg ¼ 286 fN), they sediment toward the bottom substrate
of the sample cell. Because of the flocculation effect,
colloidal spheres stick tightly together once they come into
contact (e.g., via diffusion). To accelerate the formation of
large colloidal clusters, we tilt the sample at 20°, so that
emerging colloidal clusters drift over the entire substrate.
During this process they grow in size by collecting more
and more colloids (see Fig. S8 of the Supplemental
Material [34]). This process yields 2D crystalline clusters
with a broad distribution of size (up to N ¼ 1700 particles)
and shape. As shown in Fig. S9 of the Supplemental
Material [34], these clusters have an extremely small
nearest-neighbor bond length fluctuation (0.34%) during
their rotation on the periodic surfaces. This leads to a
critical size of about Nc ¼ ð1=0.0034Þ2 ≈ 90 000 particles,
below which the cluster’s elasticity effect can be negligible.
Like in previous work [30], we obtain the positions of the
colloidal particles and those of the substrate wells simulta-
neously by using computer microscopy as shown in
Fig. S10 of the Supplemental Material [34]. This allows
us to know the positions of the colloidal particles relative to
the substrate wells.
One of the advantages of our colloidal model system is

that we can measure the cluster’s orientation in a very
precise manner. Specifically, this is done by measuring the
average orientation of all nearest-neighbor bonds in one
lattice direction. For a single bond, the error of its
orientation is roughly 0.5°, which is estimated from the
uncertainty in the particle position (approximately 40 nm or
1=3 pixel size) divided by the interparticle spacing
(4.45 μm). The more particles in the cluster, the more
nearest-neighbor bonds are involved in the calculation of
the cluster orientation, and the more precisely the cluster
angle is measured. A rough estimation of the precision of
the orientation of a cluster composed of N particles is
0.5°=

ffiffiffiffiffiffiffi
2N

p
. Here the factor 2N comes from the fact that

each particle has, on average, two bonds along a certain
lattice direction. Taking, for example, a cluster of 50
particles, the precision of the angle is roughly 0.05°. For
the cluster shown in Figs. 1(e)–1(h), it contains N ¼ 1715
particles, which yields a precision of about 0.008°.
Note that these estimations assume independent and
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normal-distributed uncertainties in individual bond angle
measurement; the real precisions will even be better due to
the existence of correlations inherent from sharing of
bonding particles.

APPENDIX B: VISCOUS ROTATION, MAGNETIC
TORQUE FORMULATION, AND CALIBRATION

The viscous torque of a rigid colloid cluster rotating with
angular velocity ω in a liquid suspension can be expressed
as [32] Γv ¼

P
iðτi þ riFiÞ. Here τi ¼ 8πηða=2Þ3ω is the

viscous torque of a single colloidal sphere rotating at
angular velocity ω around its center of mass, Fi ¼
6πηða=2Þωri the viscous force acting on the colloid when
moving at speed ωri in the suspension, ri the distance of
particle i to the axis of rotation (the cluster’s center-of-mass
position for our 2D clusters), η the solvent’s viscosity, and
a ¼ 4.45 μm the colloidal diameter. With the above quan-
tities this yields Γv ¼ 8Nπηða=2Þ3ωþ 6πηða=2ÞωP

i r
2
i .

With the shape-dependent factor I ¼ P
i 3r

2
i =ðNa2Þ, this

finally leads to

Γv ¼ Nπηa3ð1þ IÞω: ðB1Þ

The factor I characterizes the cluster shape. For a one-
dimensional periodic chain of particles, IðNÞ ∝ N2. For a
two-dimensional cluster, IðNÞ ∝ N. In our experiments, we
have chosen compact two-dimensional clusters where a
linear relation IðNÞ ∝ N is revealed (see Fig. S11 of the
Supplemental Material [34]).
A rotating magnetic field H induces a rotating magneti-

zation Mi in each colloidal particle i within a cluster.
Because of a small phase lag in Mi, a torque Γ ¼
jPi Mi ×Hj acts on the entire cluster. Since the magneti-
zation of particles within a cluster is slightly screened by
their neighbors, the total magnetization

P
i Mi, and thus Γ,

depends on the size and shape of the cluster. Considering
that our colloidal spheres have a rather uniform size
(polydispersity < 5%), Γ can be calculated by classifying
the colloidal particles within the cluster as either bulk
particles (coordination number ¼ 6) or edge particles
(coordination number < 6). Therefore, N ¼ Nbulk þ Nedge

and
P

iMi ¼ NbulkMbulk þ NedgeMedge. Here Mbulk is the
magnetization of the bulk particles and Medge is the
magnetization of the edge particles. We assume Medge ¼
lMbulk where l is a parameter that describes the edge-
particle magnetization relative to that of the bulk particle.
For simplicity we treat l as a constant in our experiments.
Accordingly, the total magnetization

P
i Mi ¼ ρMNMbulk,

with ρM ¼ 1 − ðNedge=NÞð1 − lÞ describing the influence
of the edge particles. This leads to Γ ¼ ρMNjMbulk ×Hj.
Considering a linear response jMbulkj ∝ H ¼ jHj, we
finally obtain

Γ ¼ ρMNkH2; ðB2Þ

where k depends on the magnetic susceptibility of the
colloids as well as the misalignment angle between Mbulk
andH. The balance between magnetic and viscous torques
gives Nπηa3ð1þ IÞω ¼ ρMNkH2, or

ω ¼ ω0ρM=ð1þ IÞ; ðB3Þ

where ω0 ¼ kH2=ðπηa3Þ. Video 1 and Fig. S1 of the
Supplemental Material [34] clearly show the smooth
rotation of two colloidal clusters on a flat, i.e., unpatterned,
substrate when the rotating magnetic field is switched on.
According to Eq. (B3), ω scales with the square of H,
which is verified in our experiments for clusters of various
sizes and shapes (Fig. S12 of the Supplemental Material
[34]). This scaling also demonstrates that k does not depend
on the magnetic-field amplitude and rationalizes that it can
be considered to be constant in our experiments.
Equation (B2) allows us to calculate the value of Γ for

every cluster in our experiments at any given magnetic field
H, once we know the parameters k and l. These two
parameters can be fitted from Eq. (B3) as we measure the
value of ω for ∼100 clusters of different size and shape at
fixed H ¼ 244 A=m in a colloidal sample with
η ¼ 4.3 × 10−3 pNs=μm2. The fitting is done by minimiz-
ing a cost function CðωcalÞ ¼

P
iðωcal − ωiÞ2, where ωi is

the measured rotational velocity of a cluster i and ωcal is the
corresponding calculated results from Eq. (B3). The value
of k and l that best fits to our experimental measurement is
k ¼ 7.06 × 10−5 pN μm=ðA=mÞ2 and l ¼ 0.33. To demon-
strate the fitting, in Figs. S13(a) and S13(b) of the
Supplemental Material [34] we plot the measured ω as a
function of ρM=ð1þ IÞ for the ∼100 experimental clusters
for l ¼ 1 and l ¼ 0.33, respectively. According to Eq. (B3),
ω scales linearly with ρM=ð1þ IÞ. This linear relation is not
fulfilled as in Fig. S13(a) of the Supplemental Material [34]
when we choose l ¼ 1. In contrast, the linear relation is
clearly revealed in Fig. S13(b) of the Supplemental
Material [34] when we choose l ¼ 0.33. The slope of
the linear relation is ω0 ¼ 3.54 rad=s, which gives
k ¼ πηa3ω0=H2 ¼ 7.06 × 10−5 pN μm=ðA=mÞ2.

APPENDIX C: PARTICLE-SUBSTRATE
INTERACTIONS AND NUMERICAL

SIMULATION OF THE MICROSCOPIC MODEL

To calculate the potential energy ϵs ¼ VwellðδrÞ of a
colloidal particle placed at a distance δr from the center of
the nearest potential well, we use the formula

VwellðδrÞ ¼ −ϵeðδr2Þ=ð2w2Þ; δr ≤ rm;

VwellðδrÞ ¼ −ϵeðδr2Þ=ð2w2ÞfsðρrÞ; rm < δr < rM;

VwellðδrÞ ¼ 0; δr ≥ rM; ðC1Þ

with ρr¼ðδr−rmÞ=ðrM−rmÞ, rm¼ 1.5 μm, rM ¼ 2.15 μm,
ϵ ¼ 270 zJ ¼ 66.34kBT, w ¼ 0.7 μm, and the function
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fsðρrÞ ¼ 1–10ρ3r þ 15ρ4r − 6ρ5r provides a smooth cutoff to
the Gaussian profile which prevents energy cusps and force
discontinuities. The parameters rm, rM, w, and ϵ are chosen
such that Eq. (C1) closely resembles the potential profile of
a colloidal sphere on the topographic surfaces as shown in
Fig. S14 of the Supplemental Material [34]. Given
Eq. (C1), the potential energy per particle hϵsi as calculated
in Fig. 1(d) is then the summation of the VwellðδrÞ for all
particles in the cluster divided by N. Similarly, the substrate
torque τs of a colloidal particle can be expressed as
τs ¼ ðr − rcmÞ × ∇VwellðδrÞ, where r − rcm is the position
of the colloidal particle relative to the center of mass of the
colloidal cluster. The hτsi reported in Fig. 2(a) is averaged
over all the particles in the cluster.
In simulation, we describe a cluster of colloids as a rigid

body with particle positions ri ¼ i1RðθÞa1 þ i2RðθÞa2þ
rcm, where a1 ¼ ða; 0Þ, a2 ¼ ð−a=2; ffiffiffi

3
p

a=2Þ, RðθÞ is the
two-dimensional rotation matrix, rcm ¼ P

i ri=N is the
center of mass of the cluster, and the set of integer pairs
i ¼ ði1; i2Þ defines the shape and size of the cluster. The
shape of the cluster is chosen so that its c.m. coincides with
a particle. The numerically calculated τc-N relation for such
clusters of different shape and on substrate of different
mismatch ratio δ is shown in Fig. 5. A comparison of these
τc-N relations with those measured in experiments is shown
in Fig. 6. The numerical results in Figs. 5 and 6 show that
clusters of different shapes can have very different values of
τc even when they have the same cluster size. This accounts
for the large dispersion of experimental data in Fig. 2(c).

Note that the rigid-contact assumption in our experi-
ments is also well established in various real nanoscale 2D
systems over a wide range of sample sizes. For example, an
elastic critical length is defined in Ref. [43], below which
the dislocation-induced elasticity will be negligible at the
contact interface. Using the experimental data in Refs. [44–
47], the elastic critical length for MoS2/graphene hetero-
structure and double-walled carbon nanotube are calculated
to be on the order of millimeters and centimeters, respec-
tively, which are already far larger than the contact sizes in
most of the relevant experiments.
To simulate the cluster depinning in the presence of

external torque and force ðτ;FÞ as in Fig. 4(b), we assume
an overdamped dynamic of the rigid cluster and integrate
the first-order Langevin equations of motion:

γr _θ¼−
X
i

ðri−rcmÞ×∇VwellðδriÞþ τþ
ffiffiffiffiffiffiffiffiffiffi
2Tγr

p
η; ðC2Þ

γt _rcm ¼ −
X
i

∇VwellðδriÞ þ Fþ
ffiffiffiffiffiffiffiffiffi
2Tγt

p
η: ðC3Þ

The equations are integrated with a time step
dt ¼ 5 × 10−4 ms. The effective rotational and transla-
tional viscous-friction coefficients are defined as γr ¼
γ
P

i r
2
i and γt ¼ γN, respectively, with γ ¼ 1 fKg=ms.

Since we solve first-order equations, the value of the γ does
not affect the dynamic behavior of the system. η is an
uncorrelated Gaussian random variable of unit variance.

(a) (b)

(d)(c)

FIG. 5. The static torque τc as a function of cluster size N evaluated numerically from the microscopic model (data points) at different
mismatch ratio δ. Panels (a)–(d) correspond to circular-, hexagonal-, square-, and triangular-shaped clusters, respectively. In each panel,
the four sets of data (from above to below) correspond to δ ¼ 0.0%, 1.1%, 3.3%, 7.3%, respectively (also specified by different colors as
reported in the legend). A scaling τc ∝ N0 is observed at large N for all shapes except for the circular clusters in (a) where a τc ∝ N−0.25

relation is observed, in agreement with the corresponding curves of the coarse-grained model (solid lines).
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APPENDIX D: ANALYTIC COARSE-GRAINED
MODEL

To obtain an analytical form for the cluster-substrate
interaction energy and torque, we resort to a coarse-grained
model. Consider a cluster translation rcm ¼ rcmRðθdÞx̂
along direction θd, where x̂ ¼ ð1; 0Þ is the unit vector in
the x direction. This translation of the cluster yields a
translation t ¼ ðrcmL=bÞRðψ þ θdÞx̂ of the moiré lattice
along the direction ψ þ θd [35], where ψ is the orientation
of the moiré lattice. Consider also a rotation of the cluster to
an orientation θ: this leads not only to the rotation of the
moiré lattice according to tanψ ¼ sin θ=ðcos θ − ρÞ, but
also to the shrinkage or expansion of the moiré lattice
spacing according to L ¼ bρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2 − 2ρ cosðθÞ

p
, where

ρ ¼ a=b is the lattice-spacing ratio of the colloidal
cluster and the periodic surface. We index each moiré
spot by a integer pair n1, n2. The centers of the moiré
spots are expressed by Rn1;n2 ¼ n1A1 þ n2A2 þ t, where
A1 ¼ LRðψÞx̂ and A2 ¼ LRðψ þ 2π=3Þx̂ are the primi-
tive vectors of the moiré pattern. We assume that the energy
contribution of each moiré spot amounts to a Gaussian
density profile centered at Rn1;n2 , namely, Sn1;n2ðθ; rÞ ¼
ϵM exp½−ðr −Rn1;n2Þ2=ð2λ2L2Þ�, where ϵM ¼ 2ϵ=ð ffiffiffi

3
p

a2Þ
and λ ¼ 0.4875 determine the strength and width of the
Gaussian profile, respectively, and are here chosen to best
replicate the microscopic model and experimental results;
see Figs. S3–S5 of the Supplemental Material [34]. By
integrating over the area of the cluster oriented at θ and
translated at rcm, the interaction energy per particle is

hϵsiðθ; rcmÞ ¼
1

N

Z
drhðRcl − jr − rcmjÞ

× Σn1;n2Sn1;n2ðθ; r − tÞ: ðD1Þ

Here the Heaviside function hðÞ cuts the moiré spots that
are inside the cluster and the summation runs over all
integer pairs n1, n2. The sum of the Gaussian contributions
Sn1;n2 can be calculated by means of the Fourier transform,

X
n1;n2

Sn1;n2 ¼
16π3λ2ϵMffiffiffi

3
p

Z
dqIIIðqÞ exp

�
−
ðλLjqjÞ2

2

�

× exp½iq · ðr − tÞ�; ðD2Þ
where IIIðqÞ ¼ P

Q δðq −QÞ is the Dirac comb, Q ¼
m1β1 þm2β2 a reciprocal moiré lattice vector, m1, m2

integers, and β1, β2 primitive reciprocal moiré lattice
vectors which satisfy βi ·Aj ¼ 2πδij for i, j ¼ 1, 2. δij
is the Kroneker delta function. This way, Eq. (D1) can be
rewritten as

hϵsi ¼ −
32π4λ2ϵMffiffiffi

3
p

N

X
Q

cosðQ · tÞe−ð1=2ÞðQλLÞ2

×
Z

∞

0

drrhðRcl − jr − rcmjÞJ0ðQrÞ: ðD3Þ

Here Q¼ jQj ¼ ðKb=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1þm2
2þm1m2

p
with K ¼ 4π=

ð ffiffiffi
3

p
bÞ, r ¼ jrj, the scalar product Q · t ¼

Krcmf½m1 cosðθd − π=6Þ þm2 sin θd�g. Since rcm is small

(a)

(c)

(b)

(d)

FIG. 6. The static torque τc as a function of cluster sizeN calculated numerically from the microscopic model for circular-, hexagonal-,
square-, and triangular-shaped clusters (filled data points) and measured from experiments for irregular-shaped clusters (empty stars).
Panels (a)–(d) correspond to results of different lattice mismatches δ ¼ 1.1%, 3.3%, 5.3%, and 7.3%, respectively.
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compared with t, we take the approximation
hðRcl − jr − rcmjÞ ≈ hðRcl − rÞ. The integral in Eq. (D3)
becomes the Hankel transform FHankelhðRcl − rÞ ¼R
∞
0 drrhðRcl − rÞJ0ðQrÞ ¼ J1ðQRclÞRcl=Q. Further sub-
stituting N ¼ 2πR2

cl=ð
ffiffiffi
3

p
a2Þ in Eq. (D3), we obtain the

energy:

hϵsiðθ; rcmÞ ¼ −16π3λ2a2ϵM
X
Q

e−ð1=2ÞðQλLÞ2

QRcl

× J1ðQRclÞ cosðQ · tÞ: ðD4Þ

The factor exp½−ðQλLÞ2=2�=ðQRclÞ in Eq. (D4) decays
rapidly as Q increases: as an approximation, we consider
only the six shortest vectors of Q in the summation with
ðm1; m2Þ ¼ ð1; 0Þ; ð0; 1Þ; ð−1; 1Þ; ð−1; 0Þ; ð0;−1Þ; ð1;−1Þ,
with length Q ¼ Ka=L. This finally leads to Eq. (1).
For δ ≠ 0, the moiré spacing L has a finite maximum

value Lmax. Therefore, at cluster size Rcl ≫ Lmax, the
Bessel function’s oscillation amplitude decays as

ðRcl=LÞ−0.5. By substituting these relations into Eq. (2)
and using Eq. (3), we see that τc ∝ R−0.5

cl ∝ N−0.25. On the
other hand, for cluster sizes Rcl ≪ Lmax, depinning occurs
at the angle θc when the first ring of moiré spots reaches the
edge of the cluster, i.e., L ≈ Rcl [see Figs. 1(e) and 1(f)].
This leads to L ≈ a=½2 sinðθc=2Þ�, implying L sin θc ≈ a
considering that θc is generally small (see Fig. S6 of the
Supplemental Material [34]). Plugging L ≈ Rcl and
L sin θc ≈ a into Eq. (2) yields τc ∝ Rcl ∝ N0.5. Note that
the above analysis does not depend on the exact value of δ
as long as δ > 0. This suggests that the τc − N curves in
Fig. 2(c) for different δ can overlap into a single universal
curve which is confirmed in Fig. 7. In contrast, at δ ¼ 0 the
relation τc ∝ N0.5 is valid at any cluster size as shown in
Fig. 5(a). Notably, this τc ∝ N0.5 scaling matches the τc ∝
A0.5 law of macroscopic friction between a rotating disk of
area A and a flat surface with uniform friction coefficient [48].
For the stability diagram in Fig. 4(a) we focus on the

δ ¼ 0 case at small θ. This leads to L ≈ a=θ. For simplicity,
we consider only translations along x̂, i.e., rcm ¼ ðx; 0Þ; the
potential energy then reads

hϵsiðθ; xÞ ¼ −
2aϵeff
Rcl

θ−1J1

�
4πRclθffiffiffi

3
p

a

��
1þ 2 cos

�
2πx
a

��
:

ðD5Þ

Figure S15 of the Supplemental Material [34] reports a
comparison between the energy computed in the micro-
scopic model and the coarse-grained model with Eq. (D5).
In the presence of an external torque τ and driving force

F in the x direction, the equilibrium condition satisfies
∂A=∂θ ¼ 0 and ∂A=∂x ¼ 0, where Aðθ; xÞ ¼ hϵsiðθ; xÞ −
θτ − xF is the generalized enthalpy. This leads to

τ ¼ ∂hϵsi
∂θ ¼ 2aϵeff

Rcl
θ−1J2

�
4πRclθffiffiffi

3
p

a

��
1þ 2 cos

�
2πx
a

��
;

ðD6Þ

F ¼ ∂hϵsi
∂x ¼ 8πϵeff

Rcl
θ−1J1

�
4πRclθffiffiffi

3
p

a

�
sin

�
2πx
a

�
: ðD7Þ

By differentiating Eqs. (D6) and (D7) again with respect
to θ and x, we obtain the Hessian matrix H ¼
½Hθθ; Hθx;Hxθ; Hxx�:

Hθθ ¼
∂2hϵsi
∂θ2 ¼ 2aϵeff

Rcl

�
θ−1J1

�
4πRclθffiffiffi

3
p

a

�
− 3θ−2J2

�
4πRclθffiffiffi

3
p

a

��
· ½1þ 2 cos

�
2πx
a

��
;

Hxx ¼
∂2hϵsi
∂x2 ¼ 16π2ϵeff

aRcl
θ−1J1

�
4πRclθffiffiffi

3
p

a

�
cos

�
2πx
a

�
;

Hθx ¼
∂2hϵsi
∂x∂θ ¼ Hxθ ¼ −

8πϵeff
Rcl

θ−1J2

�
4πRclθffiffiffi

3
p

a

�
sin

�
2πx
a

�
: ðD8Þ

FIG. 7. Universal size scaling of critical torque. The same
curves and experimental data points as in Fig. 2(c) of the main
text, but expressed in terms of rescaled cluster size ½Lðθ ¼
0°Þ�−1Rcl and critical torque δ · ρ−0.5ϵ−1τc. Observe that the
theoretical curves, obtained following Eq. (3) of the main text,
overlap perfectly, indicating a universal size dependence of the
critical torque at any mismatched surface, i.e., for arbitrary δ > 0.
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The sign of the determinant ofH provides indications about
the mechanical stability of the cluster and is shown by the
color pattern reported in Fig. 4(a). The stability boundary is
defined by detH ¼ 0. This condition provides the critical
ðθ; xÞc, reported as a solid line in Fig. 4(a). The corre-
sponding ðτ; FÞc reported in Fig. 4(b) are obtained by
evaluating Eqs. (D6) and (D7) at the ðθ; xÞc.

APPENDIX E: PHENOMENOLOGICAL SCALING
LAW OF STATIC TRANSLATIONAL FRICTION
AND OUR EXTENSION TO STATIC TORSIONAL

FRICTION

In a recent work [49], Koren and Duerig (KD) decom-
posed the static translational friction force Fstatic of a
crystalline cluster (or flake) interacting with a periodic
surface as follows:

Fstatic ¼ Fa þ Fe: ðE1Þ

Here Fa ¼ Fa0R
2β
cl is the area (or bulk) contribution, Fe ¼

Fe0R
γ
cl is the edge (or rim) contribution, Rcl ∝

ffiffiffiffi
N

p
is the

radius of the cluster, and β and γ are appropriate scaling
exponents. According to results of KD, area exponents β ¼
1 (β ¼ 1=4) are obtained for commensurate (incommen-
surate) contacts. Edge exponents γ ¼ 1 (γ ¼ 1=2) are
obtained for hexagon-shaped (circular-shaped) clusters.
To extend KD’s scaling law, we introduce a position-
dependent scaling relation and assume circular-shaped
clusters with radius Rcl:

fstatic ¼ faðrÞ; r < Rcl;

fstatic ¼ feðRclÞ; r ¼ Rcl; ðE2Þ

where faðrÞ ¼ fa0r2β−2 is the bulk contribution, feðRclÞ ¼
fe0R

γ
cl is the edge contribution, and r < Rcl is the distance

from the center of the cluster. The integral Fstatic ¼
2π

R Rcl
0 rdrfaðrÞ þ 2πfeðRclÞ of the position-dependent

force over the area and the edge recovers Eq. (E1).
To evaluate the static torque, and thus rotational

friction, we construct the following integral, by multiplying
the corresponding position-dependent force in the
integrand by the appropriate force arm, namely, Γstatic ¼
2π

R Rcl
0 rdr½rfaðrÞ� þ 2π½RclfeðRclÞ�. Integration yields

Γstatic ¼ 2πfa0R
2βþ1
cl =ð2β þ 1Þ þ 2πfe0R

γþ1
cl , or, dividing

by the number N ∝ R2
cl of particles in the cluster,

τc ¼ Γstatic=N ¼ τaNð2β−1Þ=2 þ τeNðγ−1Þ=2; ðE3Þ

where τa and τe are constants. Even though obtained by
assuming circular-shaped clusters, Eq. (E3) agrees very
well with the observed scaling relation even for clusters of
different shapes, with the same exponents as obtained by
KD. In a lattice-matched contact (δ ¼ 0) where β ¼ 1, the

area contribution dominates Eq. (E3), yielding τc ∝ N0.5

regardless of the shape of the cluster. This recovers the
small-N scaling we observe in Fig. 2(c). For a mismatched
contact (δ > 0) with β ¼ 1=4, the overall scaling of τc as
described by Eq. (E3) depends on the cluster shape. For
hexagon-shaped clusters, the γ ¼ 1 edge contribution
becomes the leading term in Eq. (E3), yielding τc ∝ N0,
in agreement with the numerical results of Fig. 5(b) and the
δ ¼ 7.3% experimental points of Fig. 6(d). Similarly, for
circular-shaped clusters, KD found γ ¼ 1=2 for transla-
tional friction. Remarkably, for rotational friction this value
leads to the same scaling of the area and the edge
contributions, namely, τc ∝ N−0.25. This scaling is consis-
tent with the large-N envelopes of the results of our
numerical simulations and predictions of the coarse-
grained analytic formula reported in Fig. 5(a).
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