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The classic combinatorial construct of maximum matchings probes the random geometry of regions with
local sublattice imbalance in a site-diluted bipartite lattice. We demonstrate that these regions, which host
the monomers of any maximum matching of the lattice, control the localization properties of a zero-energy
quantum particle hopping on this lattice. The structure theory of Dulmage and Mendelsohn provides us
with a way of identifying a complete and nonoverlapping set of such regions. This motivates our large-scale
computational study of the Dulmage-Mendelsohn decomposition of site-diluted bipartite lattices in two and
three dimensions. Our computations uncover an interesting universality class of percolation associated with
the end-to-end connectivity of such monomer-carrying regions with local sublattice imbalance, which we
dub Dulmage-Mendelsohn percolation. Our results imply the existence of a monomer percolation transition
in the classical statistical mechanics of the associated maximally packed dimer model and the existence of a
phase with area-law entanglement entropy of arbitrary many-body eigenstates of the corresponding
quantum dimer model. They also have striking implications for the nature of collective zero-energy
Majorana fermion excitations of bipartite networks of Majorana modes localized on sites of diluted lattices,
for the character of topologically protected zero-energy wavefunctions of the bipartite random hopping
problem on such lattices, and thence for the corresponding quantum percolation problem, and for the nature
of low-energy magnetic excitations in bipartite quantum antiferromagnets diluted by a small density of
nonmagnetic impurities.
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I. INTRODUCTION

Static impurities are an important feature of many
physical systems. This has long motivated studies of
quenched disorder in the context of diffusion of fluids in
disordered media, and electronic conduction and magnet-
ism in disordered solids.
The random interconnectedness of a porous medium can

affect the diffusion of a fluid through it in a striking way if
the end-to-end connectivity of the medium is lost at a
sharp porosity threshold. This key insight led Broadbent
and Hammersley to initiate the theoretical study of perco-
lation processes over 60 years ago as a paradigm for
understanding such behavior. Universal features of such
threshold behavior are expected to be shared by the
corresponding percolation transition of diluted Euclidean

lattices. This transition represents an elementary and
intuitively compelling geometric example of universality
and scaling at a second-order critical point [1–3].
Percolation theory has therefore taken center stage at the
confluence of probability theory, geometry, and statistical
physics in recent years.
Unlike a classical fluid, quantum-mechanical particles

do not simply diffuse through such a disordered medium;
their wavelike character leads to interference phenomena
that can render diffusion over large length scales impos-
sible. This insight led to Anderson’s nearly concurrent
development of the theory of localization for describing
transport properties of the electron fluid in a dirty metal [4].
This general theory addresses the effects of random
potentials and random hopping amplitudes in models of
electronic conduction [5].
The literature on quantum percolation, dating back nearly

50 years [6], constitutes the closest point of contact between
studies of percolation on the one hand and localization on
the other. Quantum percolation is a special case of the
localization problem. It models electronic conduction in
disordered binary alloys by studying the behavior of a
quantum particle hopping with nearest-neighbor hopping

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 12, 021058 (2022)

2160-3308=22=12(2)=021058(36) 021058-1 Published by the American Physical Society

https://orcid.org/0000-0002-0992-5531
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.12.021058&domain=pdf&date_stamp=2022-06-15
https://doi.org/10.1103/PhysRevX.12.021058
https://doi.org/10.1103/PhysRevX.12.021058
https://doi.org/10.1103/PhysRevX.12.021058
https://doi.org/10.1103/PhysRevX.12.021058
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


amplitudes on a diluted lattice without any external random
potentials [7–14].
In the simplest versions of interest to us, the constituent

that does not contribute to the conduction band of the alloy
is represented by missing sites of a site-diluted bipartite
lattice (which admits a decomposition into two sublattices,
labeled “A” and “B” in our discussion below, with sites of
one sublattice only having neighbors on the opposite
sublattice). Can such a system of noninteracting electrons
support ohmic conduction at some specified Fermi energy
when the underlying lattice has end-to-end connectivity in
the thermodynamic limit? Conversely, and more infor-
mally, is there a regime of dilution in which a classical fluid
percolates but a quantum fluid does not? These are the key
questions that motivate this body of work.
The random geometry of such diluted lattices is also

probed by the classic combinatorial problem of maximum
matchings [15]. In a maximum matching of a lattice, one
attempts to cover the maximum number of sites of the
lattice by hard-core dimers that each occupy a single link of
the lattice. In this way, one attempts to match as many sites
as possible with one of their neighbors. While no two
dimers are allowed to touch at any site, some sites may
remain unmatched, i.e., host monomers, if the diluted
lattice has no perfect matchings (equivalently, fully packed
dimer covers). This ensemble of maximummatchings, with
some choice of positive weight for each maximum match-
ing, defines a maximally packed dimer model on the
underlying lattice.
Like percolation and localization, the problem of maxi-

mum matchings also has a long and distinguished history,
having seeded major developments in graph theory, com-
binatorics, and computer science. For instance, it was
Edmonds’s analysis of the computational complexity of
his algorithm for finding maximum matchings [16] that led
to the notion of the computational complexity class P,
which plays a fundamental role in theoretical computer
science.
For such maximally packed dimer models on site-diluted

bipartite lattices such as the square and honeycomb lattices
in two dimensions, and the cubic lattice in three dimen-
sions, our computational study establishes the presence of a
nonzero monomer density in the thermodynamic limit for
any nonzero dilution probability nvac > 0. As we will see
below, the monomers of any maximum matching always
live in well-demarcated regions of the lattice. We also study
the dilution dependence of the end-to-end connectivity of
these monomer-carrying regions. For a range of nvac well
within the geometrically percolated phase of the site-
diluted lattice, our computations reveal the striking pres-
ence of a localized phase of these monomers; this reflects
the finite extent of each such monomer-carrying region.
As nvac is lowered further, our study uncovers interesting

percolation phenomena displayed by the monomer-carrying
regions. In the three-dimensional case, we find a sharply

defined transition associated with the percolation of these
connected monomer-carrying regions. This occurs at a
nonzero ncritvac that lies well within the geometrically perco-
lated phase of the underlying lattice. At an even lower
dilution nlowvac < ncritvac, we also observe a spontaneous sub-
lattice symmetry-breaking transition of the monomer fluid,
whereby the monomers break the statistical sublattice sym-
metry of the randomly diluted bipartite lattice.
In two dimensions, we find that these monomer-carrying

regions undergo an incipient percolation transition in the
nvac → 0 limit of vanishing site dilution. In this limit, large-
scale properties of these regions exhibit universal behavior
controlled by a diverging length scale that represents their
typical size. In three dimensions, large-scale properties in
the vicinity of ncritvac are again controlled by the divergent
typical size of such regions. Our detailed computational
study allows us to identify the correlation length exponent ν
that controls the power-law divergence of this length scale
in the vicinity of the critical point in three dimensions and
in the low-dilution limit in two dimensions: ν2D ¼ 5.1ð9Þ,
ν3D ¼ 0.87ð10Þ.
This universal critical behavior represents an intrinsic

property of the random geometry of the underlying site-
diluted lattice in the following sense: Since every dimer in
any maximum matching of a bipartite lattice pairs one A-
sublattice site with an adjacent B-sublattice site, monomers
in the corresponding maximally packed dimer model are
associated with regions of the diluted lattice with local
sublattice imbalance. The critical exponent ν should thus be
thought of as characterizing the random geometry of local
sublattice imbalance in such site-diluted bipartite lattices.
Clearly, these results are of fundamental interest from the

point of view of the statistical mechanics of such maximally
packed dimer models, and from the point of view of the
graph theory of such random lattices, particularly perco-
lation theory. However, at this point, it would be natural for
any reader to wonder: When the theoretical literature
already abounds with several other interesting variations
on the theme of geometric percolation [17–19], what
motivated our interest in yet another variant, this one
associated with monomers of maximum matchings?
Indeed, what is the motivation for a computational study
of maximum matchings of such lattices in the first place?
And what does any of this have to do with the questions of
Anderson localization and quantum percolation introduced
at the very outset?
It is useful to answer these natural questions before

proceeding further. In the remainder of this Introduction,
we provide a colloquium-level overview that answers these
questions and sketches a number of other interesting con-
nections. Readers who prefer to first understand things at a
technical level maywish to first go through themore detailed
and technical overview in Sec. II and then circle back to the
rest of the Introduction.
To proceed, we begin by noting that our original motiva-

tion came from two pieces of earlier work: One of these,
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Ref. [20], noticed that the site-diluted honeycomb-lattice
tight-binding model that describes low-energy carriers of
undoped but diluted graphene had a nonzero density of
single-particle states at exactly zero energy. These zero
modes were argued to arise from so-called “R-type” regions
of the lattice, which have a local imbalance in the number of
A-sublattice sites relative to B-sublattice sites (even when
there is no such imbalance globally) and a boundary
consisting entirely of sites belonging to the sublattice that
is locally in the minority [20] (see Fig. 1).
Crucially, this proposed mechanism also predicted that

these zero modes are topologically protected, in the sense
that their existence is unaffected by changes in the actual
values of the nonzero hopping amplitudes on each nearest-
neighbor link, so long as the pattern of nearest-neighbor
connectivity in the lattice does not change [20]. Associated
with this robustness is a topologically protected localization
property of the corresponding wavefunction: It lives
entirely within the R-type region [20].
In the other closely related work, Ref. [21] studied the

effects of nonmagnetic impurities in an SU(2)-symmetric
version [22] of Kitaev’s model [23] for a Majorana spin
liquid on the honeycomb lattice. Low-temperature proper-
ties of such systems are controlled by fermionic excitations,
whose spectrum is obtained by solving a tight-binding
model on the site-diluted honeycomb lattice with π flux
attached [23–25] to each vacancy. The topologically
protected zero-energy states identified earlier in the context
of diluted graphene are expected to survive this flux
attachment, albeit with modified wavefunctions [20,21].
In a striking corroboration of this prediction, the density

of zero modes obtained numerically in Ref. [21] in this
problem with flux attachment matched the corresponding
density in diluted graphene to within a few percent. This
strongly suggests that the zero-mode density is dominated
by such topologically protected zero modes, with fragile
modes (that depend on a specific pattern of values for the

nonzero hopping amplitudes) contributing an insignificant
fraction of the total.
If the vacancies are not permitted to get too close to each

other, as was the case in the computations of Refs. [20,21],
the smallest nontrivial example [20] of such topologically
protected zeromodes on the site-diluted honeycomb lattice is
a single mode associated with an R-type region with six
vacancies at specific positions relative to each other. The
expected density of these “R6” regions provides a simple but
rigorous lower bound on the density of topologically
protected zero modes [20]. However, the density of zero
modes computed bymultiprecision numerics far exceeds this
bound in both cases, i.e., with and without flux attachment
[20,21]. This raises the following question: IfR6 regions are
atypical, how does a genericR-type region “look,” and how
many linearly independent zero modes does it support?
This is an interesting question, both in the context of

such Kitaev-like models and in the context of Hubbard-like
models for electron-electron interactions in diluted
undoped graphene. In the Kitaev systems, the density of
zero modes controls the coefficient of a Curie-like term that
dominates the low-temperature susceptibility [21], while
their wavefunction determines the spatial profile of the
vacancy-induced magnetic moments that lead to this Curie
term. Likewise, in the Hubbard model, Hartree-Fock mean
field theory suggests [26] that the zero modes are associated
with local moment formation, with their wavefunctions
again controlling the spatial profile of these local moments.
Since these topologically protected modes are expected

to live in R-type regions with local sublattice imbalance, it
is natural to explore the possibility that progress on this
question can be made by thinking in terms of maximum
matchings of the site-diluted lattice. After all, as we have
already discussed, every dimer pairs one A-sublattice site
with an adjacent B-sublattice site, while monomers of a
maximally packed dimer model are associated with local
sublattice imbalance.
Indeed, a similar line of reasoning led Longuet-Higgins

[27], nearly 60 years ago, to a pair of insightful exact results
that partially anticipated related developments in the graph
theory literature [15]. Transcribed to the language used
here, these results tell us the following: (i) The number of
monomers in any maximum matching of a bipartite lattice
equals the number of linearly independent, topologically
protected, zero-energy wavefunctions of a quantum-
mechanical particle hopping on nearest-neighbor links of
this lattice. (ii) The spatial support of the topologically
protected zero-energy eigenspace of this hopping
Hamiltonian is given by the set of all sites that can host
a monomer in at least one maximummatching of the lattice.
The first of Longuet-Higgins’s results provides a simple

way to independently confirm [28] the relatively large
density of topologically protected zero modes [20], far in
excess of the simple lower bound of Ref. [20]. While this
confirmation [28] is reassuring, the initial impetus for our

FIG. 1. Topologically protected zero modes of bipartite random
hopping problems are expected to live in R-type regions of the
lattice, with local sublattice imbalance and a site boundary
consisting entirely of sites belonging to the sublattice that is
locally in the minority [20]. See Secs. I–III for a detailed
discussion.
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work came mainly from our attempts to go beyond
Longuet-Higgins’s second result in order to answer our
earlier question: What is the spatial morphology of a
“typical” R-type region of the diluted lattice?
This question can be restated more formally: Can we

equip this eigenspace of zero modes with a “natural” basis
that has a topologically protected localization property?
Clearly, answering this requires us to go beyond Longuet-
Higgins’s second result, which only provides a global
characterization of the spatial support of the topologically
protected null space of the hopping matrix as a whole.
Our approach to this question brings into play a graph-

theoretical tool, the Dulmage-Mendelsohn decomposition of
a bipartite graph, which provides a crucial structural char-
acterization of such diluted lattices via the combinatorial
problem of maximummatchings [15,29–31]. This allows us
to use any one maximum matching of the diluted lattice to
construct a set of nonoverlapping connected regions of the
lattice that host the monomers of any maximum matching.
Our key insight is simply stated: These connected

monomer-carrying regions identified using Dulmage and
Mendelsohn’s structure theory provide a natural construc-
tion of a complete nonoverlapping set ofR-type regions of
the lattice. Our construction shows that the number of
linearly independent, topologically protected zero modes
localized within each suchR-type region is precisely equal
to the number of monomers hosted by it in any maximum
matching.
Thus, we obtain an alternate local proof of both of

Longuet-Higgins’s results using the structure theory of
Dulmage and Mendelsohn. This has the advantage that it
also provides a prescription for constructing an orthonor-
mal basis of zero modes with a topologically protected
localization property. The unusual monomer percolation
phenomena advertised earlier correspond to the percolation
transitions of these monomer-carrying components of the
Dulmage-Mendelsohn decomposition. Clearly, this has
consequences for the corresponding quantum-mechanical
wavefunctions.
Indeed, our identification of these Dulmage-Mendelsohn

percolation phenomena has interesting implications for the
zero-energy quantum percolation problem on such site-
diluted bipartite lattices: In the two-dimensional case, a
zero-energy quantum particle is localized for any nonzero
dilution, albeit with a localization length that diverges as
one approaches the nvac → 0 limit of vanishing site
dilution. Thus, there is no quantum percolation in this
case, even deep within the classically percolated phase in
which a classical fluid diffuses unhindered through the
lattice. This settles a question about which there has been
some controversy in the literature [7–11]. In the three-
dimensional case, we conclude that the quantum percola-
tion transition at zero energy is associated with the
Dulmage-Mendelsohn percolation transition of the diluted
lattice. A more detailed discussion of implications of our

work for quantum percolation can be found in Secs. VIII B
and IX.
The structure theory of Dulmage and Mendelsohn also

provides a way of factorizing the partition function of
maximally packed dimer models on diluted bipartite lattices.
Each factor is either associated with a monomer-carrying
R-type region or a regionof the lattice that is always perfectly
matched in any maximum matching. Remarkably, this
factorized structure is valid not just for the simplest case
of noninteracting dimer models (with Boltzmann probabil-
ities determined entirely by weights of occupied links) but
also in the presence of monomer and dimer interactions, so
long as the dimer interaction terms only act on flippable
(perfectly matched) elementary plaquettes or on larger flip-
pable loops, and the monomer interactions are sufficiently
short-ranged. The corresponding quantum dimer models
share these potential-energy terms with their classical ana-
logs. Additionally, they have monomer-hopping terms, as
well as kinetic-energy terms that change the perfect matching
of a flippable loop. For such quantum dimer models, this
factorization property implies that any many-body eigenstate
has a tensor product structure, with one factor associatedwith
each of these regions.
Our computational study of two-dimensional site-diluted

square and honeycomb lattices and the site-diluted cubic
lattice in three dimensions reveals that the perfectly
matched regions remain finite and small in extent in the
thermodynamic limit at any nonzero dilution. Thus, when
there is no percolation of the monomer-carrying regions,
both dimer and monomer correlations in the classical model
remain strictly localized. For the analogous quantum dimer
models in two and three dimensions, this also implies the
existence of a phase with area-law entanglement entropy of
eigenstates in the middle of the energy spectrum. This is
discussed in more detail in Secs. VIII C and IX.
To reiterate the main message of all of the foregoing:

Maximum matchings probe the random geometry of
regions with local sublattice imbalance in a site-diluted
bipartite lattice. These regions host the monomers of any
maximum matching and control the localization properties
of a zero-energy quantum particle hopping on this lattice.
The structure theory of Dulmage andMendelsohn furnishes
us with a way of identifying a complete and nonoverlap-
ping set of such regions, as well as regions of the lattice that
are always perfectly matched in any maximum matching.
This motivates our large-scale computational study of the
Dulmage-Mendelsohn decomposition of site-diluted bipar-
tite lattices in two and three dimensions. Our computations
uncover an interesting universality class of Dulmage-
Mendelsohn percolation phenomena associated with the
end-to-end connectivity of such monomer-carrying regions
(see Figs. 2 and 3), with striking implications for max-
imally packed classical and quantum dimer models on such
lattices, and for the quantum percolation problem.
Having conveyed this main message, we now conclude

this section by describing two other contexts in which our
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results yield interesting and significant conclusions. The
first of these refers to a network [32,33] whose nodes
represent individual Majorana modes engineered to exist on
some physical platforms (for instance, a topological super-
conductor device [34,35]). The links of this network
correspond to the dominant mixing amplitudes that couple
these modes to each other. A missing node represents the
absence of the corresponding localized Majorana mode,
perhaps due to the physical device being in the “wrong”
regime of parameters due to disorder effects.
Although we expect these dominant mixing amplitudes

to lead to most of the localizedMajorana modes being lifted
away from zero energy, we may ask: Are there any
collective zero-energy Majorana fermion excitations of
the network as a whole? If this network can be described
by a site-diluted bipartite lattice in two or three dimensions,
our results yield an interesting answer via a mapping to an
equivalent problem of a quantum-mechanical particle hop-
pingon this bipartite lattice: EveryR-type regionwith anodd
number of linearly independent zero modes of this hopping
problem generically hosts a single such collective zero-
energy Majorana fermion excitation that is perturbatively
stable to the introduction of further-neighbor couplings in
this network. The Dulmage-Mendelsohn percolation phe-
nomena studied here thus have implications for the spatial
structure of collective zero-energy Majorana fermion

excitations of these networks, as discussed further in
Secs. VIII B and IX.
The second of these contexts has to do with diluted

quantum antiferromagnets. In a series of papers largely
motivated by experimental work on impurity effects in
quantum antiferromagnets [36], Sandvik [37] and Wang
[38,39] reported on a detailed quantumMonte Carlo (QMC)
study of theS ¼ 1=2Heisenberg antiferromagnet on the site-
diluted square lattice. The basic conclusion was that long-
range antiferromagnetic order persists in the ground state all
thewayup to the classical percolation threshold of the diluted
lattice. Indeed, it was argued that the critical percolating
cluster at the geometric percolation transition has long-range
antiferromagnetic order in the ground state. As a result, the
antiferromagnetic transition is driven by the underlying
geometric transition, and it occurs right at the geometric
site-percolation threshold of the square lattice [38,39].
These studies also explored the physics of the antiferro-

magnetically ordered phase in the vicinity of this transition
[38,39]. An interesting finding in this regime was the
presence of anomalously low-energy triplet excitations that
dominated the low-energy behavior of the ordered phase
and had an effect on the quantum-critical scaling. These
triplet excitations were argued to arise from regions of the
lattice with local sublattice imbalance [39] and were
therefore modeled in terms of the spatial monomer

FIG. 2. The left (middle) panel shows the boundary of the largest three RA-type (RB-type) regions of the Dulmage-Mendelsohn
decomposition of a honeycomb lattice sample with L ¼ 4000 and periodic boundary conditions, with vacancy density nvac ¼ 0.08. The
right panel shows the largest two RA-type and RB-type regions of the same sample. The color-coding of the boundaries has been
changed in the right panel (relative to the other two panels) for greater visibility. See Secs. I–III for further details.

FIG. 3. Left two panels: At intermediate values of dilution 0.35≲ nvac ≲ 0.6, the largest RA (dark blue bulk with light blue surface)
region and the largestRB-type region (red bulk with yellow surface) of the Dulmage-Mendelsohn decomposition of a site-diluted cubic
lattice both percolate, as shown in this L ¼ 100 example from two different vantage points in these panels. Right two panels: For smaller
nvac, in each sample, either the largestRA-type region is small and the largestRB-type region percolates or vice versa, as is evident from
individual snapshots of the largestRA (dark blue bulk with light blue surface) and the largestRB region (red bulk with yellow surface) in
the example shown. For such low dilution, each sample thus spontaneously breaks the sublattice symmetry that characterizes the
ensemble of site-diluted lattices we consider. See Secs. I–III for further details.
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distribution function of the corresponding dimer model.
Motivated by this, Henley and collaborators studied analo-
gous phenomena on the Bethe lattice at percolation and
developed a Schwinger-boson mean field approach to this
physics [40,41].
Our work adds to this understanding in a direct and

crucial way since the R-type regions constructed using the
structure theory of Dulmage and Mendelsohn constitute a
complete set of nonoverlapping regions that host such low-
energy triplet excitations of this diluted antiferromagnet.
Our identification of incipient Dulmage-Mendelsohn per-
colation phenomena in the nvac → 0 limit, deep in the
geometrically percolated phase of the site-diluted square
lattice, then implies that these triplet excitations of the
diluted S ¼ 1=2 antiferromagnet have their own hitherto-
unsuspected critical behavior deep inside the antiferromag-
netic phase; this is unconnected with the geometric perco-
lation-driven antiferromagnetic transition itself. It also
opens up interesting avenues for further work, which are
discussed in Secs. VIII D and IX.
As mentioned earlier, this introductory discussion sets

the stage for a more technical overview in Sec. II of our
principal ideas and results. This more technical overview
can be read in conjunction with Sec. VIII, which provides
some additional theoretical perspective and a more detailed
discussion of the various implications of our results, and
Sec. IX, which discusses interesting questions thrown up
by our work. The middle third of our article describes the
precise theoretical arguments, the computational methods,
and the detailed analyses of numerical data that lead to
these results. A road map through this part of the paper—
and through the Appendix, which augments this material—
is provided at the end of Sec. II.

II. TECHNICAL OVERVIEW: MODELS,
APPROACH, AND RESULTS

We consider site-diluted bipartite lattices such as the
square and honeycomb lattices in two dimensions and the
cubic lattice in three dimensions, with compensated dilu-
tion nvac, i.e., exactly equal numbers of surviving sites on
the two sublattices. On the one hand, we are interested in
the classical statistical mechanics of maximally packed
dimer models, i.e., of the ensemble of maximum matchings
of such lattices, with the partition function

Z ¼
X
C

expð−SðCÞÞ

S ¼ −
X
hrr0i

wrr0nrr0 ðCÞ þ…; ð1Þ

where nhrr0iðCÞ is the dimer occupation number of the link
hrr0i in maximally packed configuration C, and expðwrr0 Þ
(with real wrr0 > 0) is the associated bond weight. In
contrast to the undiluted case, this ensemble of maximally

packed dimer configurations may have a nonzero number
of monomers associated with it if the disordered lattice
has no perfect matchings. The ellipses refer to monomer
and dimer interaction terms. Monomer interactions are
restricted to be short-ranged in nature, only coupling two
monomers if they are at next-nearest neighbor sites (there
can be no additional nearest-neighbor monomer inter-
actions since monomers of a maximum matching already
obey a nearest-neighbor exclusion constraint). The dimer
interaction terms are defined on flippable (perfectly
matched) elementary plaquettes or larger flippable loops
on the lattice (for the simplest such terms, see the precise
definitions given in Fig. 4).
Additionally, we are interested in the many-body spec-

trum of the corresponding maximally packed quantum
dimer models. The simplest such quantum dimer model
inherits its “potential energy” terms from the corresponding
classical dimer model defined above. In addition, it has two
kinds of “kinetic energy” terms: (1) ring-exchange terms
that flip the state of flippable elementary plaquettes with
amplitude Γ, and (2) monomer kinetic-energy terms that
hop a monomer to a next-nearest-neighbor location with
amplitude Γ0 (see Fig. 4 for the precise form of the
Hamiltonian in the simplest case). Additional kinetic-
energy terms that change the perfect matching of larger
flippable loops are also permitted, as are terms that

(a)

(b)

(c)

FIG. 4. (a) Potential energy (V) and ring exchange (Γ) terms on
flippable elementary plaquettes in the maximally packed
honeycomb-lattice quantumdimermodels of interest to us. (b) Pote-
ntial energy (V) and ring exchange (Γ) terms on flippable elemen-
tary plaquettes in such models on square and cubic lattices.
(c)Monomerhopping term (Γ0) in thesemaximally packed quantum
dimer models. See Secs. II and IV B for a detailed discussion.
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represent longer-range hopping of monomers (along an
alternating sequence of unmatched and matched links).
On the other hand, we are also interested in the zero-

energy wavefunctions of a quantum-mechanical particle
hopping with possibly random hopping amplitudes on links
of such a lattice. The corresponding Hamiltonian for a gas
of noninteracting fermions at zero chemical potential μ ¼ 0
reads

HF ¼ −
X
hrr0i

trr0c
†
rcr0 þ H:c:; ð2Þ

where c†r creates a canonical fermion at site r of this site-
diluted lattice and trr0 is the possibly random hopping
amplitude on nearest-neighbor link hrr0i of this lattice.
Additionally, we are interested in characterizing topo-

logically robust, zero-energy, Majorana fermion excitations
of a bipartite network of localized Majorana modes ηr
described by the Majorana Hamiltonian

HMajorana ¼ i
X
hrr0i

arr0ηrηr0 ; ð3Þ

where arr0 is a real antisymmetric matrix that describes the
mixing between Majorana modes located on neighboring
sites of a site-diluted bipartite lattice.
In all these settings, we focus on topologically protected

aspects that depend only on the connectivity of the under-
lying lattice while being insensitive to the actual values of
the corresponding quantum amplitudes or weights or
interaction energies. To achieve this, we rely crucially
on the Dulmage-Mendelsohn decomposition [15,29–31] of
a bipartite graph. Using this structure theory, which
provides us with a classification of sites of a bipartite
lattice into three distinct types, we construct two classes of
nonoverlapping connected regionsRi (i ¼ 1…NR) and Pj
(j ¼ 1…NP) that together cover the diluted lattice. These
have an intuitively appealing characterization from the
point of view of a maximally packed dimer model defined
on the diluted lattice: Monomers of this maximally packed
dimer model are all confined to live in these R-type
regions, which are of two types: RA-type regions in which
the monomers only live on A-sublattice sites, and RB-type
regions in which the monomers only live on B-sublattice
sites. In any maximum matching, a givenR-type regionRi
hosts the same fixed nonzero number I i of monomers. On
the other hand, P-type regions are parts of the lattice that
are always perfectly matched in any maximum matching.
For the maximally packed classical dimer models

defined in Eq. (1), we establish a complete factorization
of the partition function, with each R-type and P-type
region independently contributing one factor to the parti-
tion function. As a result, correlations between monomers
of the maximally packed dimer model are strictly localized
within individual R-type regions, and dimer correlations

are likewise localized within individualR-type and P-type
regions. For the corresponding quantum dimer models, we
demonstrate that an arbitrary many-body eigenstate can be
written as a tensor product of eigenstates of individual
R-type and P-type regions. As a result, the entanglement
entropy across a cut that partitions the system into two
halves is controlled by the typical size of the R-type and
P-type regions that such a cut passes through. This implies
that many-body eigenstates, even in the middle of the
spectrum, have area-law entanglement entropy whenever
R-type and P-type regions remain finite in the thermo-
dynamic limit.
For the bipartite random hopping problem, we provide

an alternative “local” proof of the graph-theoretic identity
[15,27] between the number of topologically protected
zero-energy eigenstates and the number of monomers in
any maximum matching of the underlying lattice. This
local proof establishes that the wavefunctions of such
topologically protected zero-energy eigenstates can be
chosen to live entirely within individual R-type regions.
Indeed, our argument shows that I i such linearly indepen-
dent zero modes coexist on the A-sublattice (B-sublattice)
sites of each RA-type (RB-type) region Ri.
Our construction of this basis for the zero-energy eigen-

space implies a topologically protected localization property
of the basis-independent zero-energy on-shell Green func-
tion ΔGðr; r0Þ: ΔGðr; r0Þ is nonzero if and only if r and r0
belong to the same R-type region. This has interesting
consequences for the zero-temperature, zero-magnetic-field
conductivity tensor of HF. For the Majorana Hamiltonian
HMajorana, we show that eachR-type regionwith anodd value
for I generically supports a single topologically protected
zero-energy Majorana fermion excitation that is perturba-
tively stable to additionalmixing amplitudes between further
neighbors.
All of this motivates our detailed computational study of

the random geometry of these R-type and P-type regions
of site-diluted bipartite lattices in two and three dimensions.
The basic picture that emerges from our results is common
to the two-dimensional and three-dimensional cases and
can be summarized as follows: The P-type regions remain
finite in extent in the thermodynamic limit over the entire
range of dilution studied. At any nonzero nvac in the
thermodynamic limit, we find a nonzero number density
nR (nP) of R-type (P-type) regions in the thermodynamic
limit (Fig. 5), as well as a nonzero number density of “odd”
R-type regionswith odd imbalance I [this implies a nonzero
density of collective, topologically protected, Majorana
fermion excitations of Eq. (3)]. These R-type (P-type)
regions contain a nonzero fraction mtot (mP) of sites of
the undiluted lattice in the thermodynamic limit (Fig. 5), with
theR-type regions hosting a nonzero densityw ofmonomers
in the maximally packed dimer model of Eq. (1) [equiv-
alently, a density w of topologically protected zero modes in
the bipartite hopping problem of Eq. (2)].
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In the small-nvac limit, we find that most of the sites
of the diluted lattice belong to R-type regions, with
mtot → 1 − nvac, although w → 0 quite rapidly as nvac → 0
(Fig. 5). The typical size of R-type regions is much larger
than the mean spacing between zero modes (Fig. 6) as

nvac → 0; in fact, it appears to be only limited by the finite
size L (Fig. 7) in the range of system sizes (L) accessible to
us. The dominant contribution to both mtot and w in this
regime comes from such largeR-type regions (Figs. 8 and
9). Moreover, in this regime, the dominant contribution to

(a) (b)

(c) (d)

(e) (f)

FIG. 5. (a,b,e) The mean number densities nR and nP of R-type and P-type regions are nonzero in the thermodynamic limit and
decrease rapidly as we approach the low-dilution (nvac → 0) limit of site-diluted honeycomb, square, and cubic lattices. (c,d,f) The
sample-averaged total mass density ofR-type regions,mtot, is nonzero in the thermodynamic limit and appears to tend towards 1 − nvac
in the low-dilution (nvac → 0) limit of site-diluted honeycomb, square, and cubic lattices. This density is normalized to the number of
sites in the undiluted sample, so nvac þmtot þmP ¼ 1 in all three cases (here, mP is the corresponding sample-averaged total mass
density of P-type regions). The sample-averaged density of zero modes, w, is also nonzero in the thermodynamic limit and goes rapidly
to zero in the small-nvac limit. See Sec. VI for details.
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FIG. 6. Mean separation between vacancies, lvac ¼ 1=n1=dvac , the mean distance between zero modes, lw ¼ 1=w1=d (where d is the spatial
dimension), the correlation length ξ associated with the sample-averaged correlation function Cðr − r0Þ, and Rmax, the sample-averaged
radius of gyration of the largest R-type region in a sample, plotted as functions of the vacancy density nvac. Note that ξ and Rmax track
each other, and both are much larger than the other two length scales in the small-nvac limit, being limited only by the system size L in
this regime in the range of sizes accessible to our numerical work. See Sec. VI for details.

(b)(a)

(d)(c)

FIG. 7. Rmax, the sample-averaged radius of gyration of the largestR-type region in a sample, and the correlation length ξ (associated
with the sample-averaged geometric correlation function) both increase rapidly in the small-nvac limit to values that are set by the system
size L for accessible system sizes in two and three dimensions. In two dimensions, curves of the dimensionless ratios Rmax=L and ξ=L
corresponding to different L do not cross over the range of nvac accessible to our numerics. However, on the cubic lattice, there is a clear
crossing in the vicinity of nvac ≈ 0.6 [insets of (c) and (d)]. See Sec. VI for details.
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modd
tot , the fraction of sites of the undiluted lattice belonging

to odd R-type regions, also comes from the large system-
size-limited oddR-type regions (see Figs. 17 and 18 in the
Appendix). This basic picture is equally valid in both two
and three dimensions.
Going beyond this basic picture, we find interesting

differences between the two-dimensional and three-dimen-
sional cases: In two dimensions, both R-type and P-type
regions remain localized at any nonzero nvac accessible to
our numerical study. However, the nvac → 0 limit exhibits
incipient percolation of R-type regions. As a result, large-
scale aspects of the random geometry ofR-type regions are
universal in the small-nvac limit. We obtain a numerical
estimate of ν2D ¼ 5.1� 0.9 for the correlation length
exponent that characterizes this universality class, and
place a bound η2D ≲ 0.06 on the value of the corresponding
anomalous exponent η. A particularly interesting aspect of

this incipient Dulmage-Mendelsohn percolation phenome-
non is that this nontrivial behavior is exhibited in the limit
of vanishing vacancy density, raising the intriguing possi-
bility of being accessible to a rigorous analysis in the
nvac → 0þ limit (although existing results in the mathe-
matical literature are considerably weaker in nature
[42,43]).
In contrast, on the cubic lattice in three dimensions, we

find that there is a nonzero dilution threshold ncritvac ¼
0.5956ð5Þ below which (above which) R-type regions
percolate through the lattice (remain bounded in extent).
In the vicinity of this Dulmage-Mendelsohn percolation
transition, the random geometry ofR-type regions exhibits
critical scaling behavior. We obtain a numerical estimate of
ν3D ¼ 0.87� 0.1 for the correlation length exponent of this
critical point, and place an upper bound η3D ≲ 0.03 on the
corresponding anomalous exponent. Immediately below
ncritvac in the thermodynamic limit, there are two infinite
(percolating) clusters, one RA-type region and another
RB-type region. This behavior persists throughout this
intermediate-nvac phase, until nvac is lowered below
nlowvac ¼ 0.35ð1Þ, which represents the upper limit of a
small-nvac phase with spontaneous sublattice symmetry
breaking. In this low-nvac phase, each random sample has
exactly one percolatingR-type region, which can be either
an RA-type or an RB-type region.
Importantly, all of these interesting phenomena occur

well inside the geometrically percolated phase of the
underlying site-diluted lattice. Clearly, this Dulmage-
Mendelsohn percolation, incipient or otherwise, is a mono-
mer-percolation phenomenon exhibited by the ensemble of
maximum matchings of such lattices. In addition, for the
classical statistical mechanics of the maximally packed
dimer models of Eq. (1), our two-dimensional results, in
conjunction with the factorization property of Z, imply that
monomer and dimer correlation functions remain strictly
localized for arbitrarily small but nonzero dilution (for
caveats and details, see Secs. IVA and VII A). At least at

(a) (b)

FIG. 8. (a) Sample averaged ratio msmall=mtot, where msmall is the contribution of “small” R-type regions (with less than 10 000
vacancies associated with them), which decreases rapidly with nvac. In panel (b), the same holds true for the corresponding ratio
I small=W of zero modes contributed by small R-type regions. See Sec. VI for details.

FIG. 9. On the site-diluted cubic lattice below nvac ≈ 0.6, the
largest R-type region contributes a nonzero fraction of the total
mass in R-type regions in the thermodynamic limit, as well as a
nonzero fraction of the total number of zero modes in this limit, as
is clear from the corresponding sample-averaged ratios. See
Sec. VI for details.
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first sight, this is a rather remarkable property of such two-
dimensional dimer models. Moreover, our results suggest
that the corresponding monomer correlation functions
could, in principle, exhibit critical scaling in the nvac →
0 limit, possibly with an additional set of independent
exponents that characterize the long-distance behavior of
these functions in this limit.
Similarly, in three dimensions, our results imply a

monomer-percolation transition at ncritvac. This separates
an intermediate-dilution percolated phase from a high-
dilution phase in which monomers are strictly localized.
Additionally, we predict a sublattice symmetry-breaking
transition of the monomer gas at nlowvac ; this transition
separates a low-dilution percolated phase with spontaneous
sublattice symmetry breaking from the intermediate dilu-
tion phase of the monomer gas.
For the corresponding maximally packed quantum dimer

models, our results immediately imply that many-body
eigenstates even in the middle of the spectrum have area-
law entanglement entropy for any nonzero nvac in the two-
dimensional case (for caveats and details, see Secs. IV B,
VII A, and VIII C). For the three-dimensional cubic-lattice
quantum dimer model, our results imply the existence of a
phase with such area-law behavior for nvac > ncritvac. In this
three-dimensional case, the Dulmage-Mendelsohn perco-
lation transition at ncritvac is thus expected to correspond to an
entanglement phase transition separating an nvac < ncritvac
phase with more conventional volume-law entanglement
entropy from an nvac > ncritvac area-law phase (for details and
a caveat, see Secs. IV B and VIII C).
For systems described by HF, the understanding devel-

oped here sheds considerable light on some long-standing
questions in the literature on quantum percolation. Since
ΔGðr; r0Þ is only nonzero when r and r0 both belong to the
same R-type region, our results in two dimensions imply
that there is no delocalized phase and therefore no quantum
percolation transition for any nonzero nvac when the
chemical potential is set to the particle-hole symmetric
value μ ¼ 0. Instead, our results point to the existence of a
different universality class of scaling behavior associated
with incipient wave-function percolation in the nvac → 0
limit (for caveats and details, see Secs. IV D, VII A,
and VIII B).
On the cubic lattice with chemical potential μ ¼ 0, our

results establish the existence of a localized phase for
nvac > ncritvac. Thus, for nvac ∈ ðncritvac; n

geom
vac Þ [where ngeomvac is

the threshold for ordinary site percolation on the cubic
lattice], quantum percolation is forbidden although a
classical fluid percolates. In conjunction with the earlier
literature, our results also imply that there is a delocaliza-
tion transition precisely at the Dulmage-Mendelsohn per-
colation threshold ncritvac (for details and a caveat, see
Secs. IV D and VIII B). This provides an interesting
perspective on the nature of the quantum percolation
transition in three dimensions. Further, our results strongly

suggest that this delocalized phase has a sublattice
symmetry-breaking transition at nlowvac .
Our results also have interesting consequences for

bipartite Majorana networks described by HMajorana. In
two dimensions, our results establish the existence of a
nonzero density of topologically robust zero-energy
Majorana fermion excitations which are localized for
any nonzero nvac. Additionally, they suggest the existence
of an incipient Majorana percolation phenomenon,
whereby these collective zero-energy Majorana fermion
excitations undergo a delocalization transition in the
nvac → 0 limit (for caveats and details, see Secs. IV D,
VII A, and VIII B). In the three-dimensional case, our
results establish the presence of a nonzero density of strictly
localized, zero-energy, Majorana fermion excitations for
nvac > ncritvac and strongly suggest the existence of two
different delocalized phases below ncritvac, separated from
each other by the sublattice symmetry-breaking transition
at nlowvac (for details and a caveat, see Secs. IV D and VIII B).
The precise arguments and detailed analyses that lead to

these results are presented in the next few sections: In
Sec. III, we introduce the Dulmage-Mendelsohn decom-
position of a bipartite graph. In Sec. IV, we use this graph-
theoretical tool to construct the connected components Ri
and Pj of interest to us and establish key properties of these
R-type and P-type regions. In Sec. IVA, we use these to
derive consequences for monomer and dimer correlations
in maximally packed classical dimer models. In Sec. IV B,
we discuss consequences for the entanglement entropy of
arbitrary many-body eigenstates of the correspond-
ing quantum dimer models. In Sec. IV C, we use these
graph-theoretical ideas to provide an alternate proof of the
correspondence, alluded to earlier, between the number of
zero modes and the number of monomers. In Sec. IV D, we
establish a topologically protected localization property of
the on-shell zero-energy Green function of the hopping
problem and discuss consequences for the conductivity
tensor of the free-fermion Hamiltonian HF [Eq. (2)] in the
limit of vanishing temperature and external magnetic field.
This is followed in Sec. IV E by an analysis of implications
for the perturbative stability of collective Majorana fermion
excitations of bipartite Majorana networks.
In Sec. V, we describe our computational methods and

define the various geometric quantities of interest to us.
This is followed in Sec. VI by our results for the basic
properties of the random geometry of R-type and P-type
regions in the thermodynamic limit. Next, we provide a
detailed account of our finite-size scaling analysis of
Dulmage-Mendelsohn percolation in Sec. VII. This
includes a precise characterization of the spontaneous
breaking of sublattice symmetry in three dimensions. As
noted earlier, the last two sections provide additional
theoretical perspective and a more detailed discussion of
the implications of our results, as well as some suggestions
for promising lines of further enquiry. Finally, the
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Appendix is devoted to a description of the morphology of
the largest R-type regions that dominate the low dilution
limit and to a separate study of scaling properties ofR-type
regions with odd monomer number I. This separate study
is motivated by the fact that such regions control the spatial
structure of perturbatively stable, zero-energy Majorana
fermion excitations of the Majorana networks defined
in Eq. (3).

III. DULMAGE-MENDELSOHN DECOMPOSITION

The structure theory of bipartite graphs developed by
Dulmage andMendelsohn [15,29–31] is simple and elegant
but perhaps not well known to physicists. Here, we attempt
to remedy this with a self-contained account, which also
sets up our notation. Our description below follows the
treatment of Ref. [31].
Consider the maximally packed dimer model on a

bipartite graph, i.e., with the proviso that the number of
monomers is restricted to the minimum possible value.
Dulmage and Mendelsohn showed that this ensemble of
maximum matchings defines a unique structural decom-
position of the underlying graph, independent of the
maximum matching one starts with.
To establish this, we start with any one maximum

matching, which has monomers at lattice sites hk, with
k ¼ 1…W. Here, W is the number of unmatched sites in
any maximum matching. Now, consider alternating paths
starting from unmatched vertices that host monomers:
These are paths that begin at any unmatched vertex hk,
traverse any one of the unmatched (unoccupied by dimers)
links emanating from it, and subsequently go along an
alternating sequence of matched and unmatched links of
the lattice without visiting any site more than once or
traversing any link more than once. Maximum matchings
are characterized by the absence of augmenting paths, i.e.,
the absence of alternating paths of odd length that start and
end at unmatched sites [15]. Indeed, if there was such a
path, one could have added one more dimer to the system
by switching the occupied and unoccupied links of this
path, and the original matching would not have maximum
cardinality.
Using this, one can classify sites into three groups—odd

(o-type), even (e-type), and unreachable (u-type): The
o-type sites can be reached by an alternating path of odd
length starting from some monomer; even sites are those
that can be reached by an alternating path of even length
starting from some monomer (this class also includes the
unmatched sites themselves); and unreachable sites cannot
be reached by such an alternating path starting from any
monomer. These three groups of sites are disjoint. To see
this, we first note that the definitions themselves imply that
the set of u-type sites is disjoint from the other two sets.
Additionally, in a bipartite lattice, the same site cannot be
reached both by even-length and odd-length alternating

paths. Indeed, if this were possible, one would either have
an augmenting path connecting two monomers or an odd-
length alternating cycle (simple loop). Neither can exist
since we are working with a maximum matching of a
bipartite graph.
Further, it is easy to check that this decomposition is

unique, no matter which maximum matching one starts
with. To see this, one notes that the overlap of two
maximum matchings consists of edges that are matched
(covered by dimers) in both maximum matchings, vertices
that are left unmatched by both maximum matchings,
overlap loops, and overlap paths. Here, overlap loops are
cycles whose links are alternately covered by dimers
belonging to the two maximum matchings that have been
superposed. Similarly, overlap paths are paths that start at
an unmatched site of one maximum matching and end at an
unmatched site of the other maximum matching; this is
guaranteed by the fact that both matchings are maximum.
These paths also have links alternately covered by dimers
belonging to the two maximum matchings.
Sites left unmatched by both maximum matchings and

sites at the ends of links covered by dimers in both
maximum matchings clearly have the same label
(e-type, o-type, or u-type) starting with either maximum
matching. Sites on the overlap loops also have the same
label starting from either maximummatching. Again, this is
because the lattice is bipartite and all such cycles have even
length. For the paths, we have already noted that they must
start at an unmatched site of one maximum matching and
end at an unmatched site of the other maximum matching.
They must therefore have an equal number of matched
edges (dimers) from each maximum matching and be even
in length. Therefore, sites on the paths also have the same
label starting from either maximum matching.
Thus, this classification into odd, even, and unreachable

represents a fundamental structural property of the lattice
itself. Additionally, it is clear from the definitions that every
o-type site must be paired with some e-type site by a dimer in
any maximummatching. Likewise, in any maximummatch-
ing, every u-type site must always be matched to another
u-type site by a dimer, while an e-type site can either be
unmatched or matched with some o-type site by a dimer.
Next, we note that two e-type sites cannot be connected by

a nearest-neighbor link of the lattice. Indeed, if such a link
were present, it would either imply the existence of an odd
cycle in the lattice or the existence of an augmenting path
starting from a monomer in our matching; since we are
dealing with a maximum matching of a bipartite lattice,
neither is possible.
Additionally, an e-type site cannot be a neighbor of a u-

type site either. To see this, one first recalls from the above
that any link between a u-type site and an e-type site cannot
have a dimer on it since the e-type site is reached from a
monomer of a maximum matching by an alternating path
that ends in a matched link (covered by a dimer) and is
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therefore matched with an o-type site. Given this, it is clear
that the existence of such a link, which must necessarily be
unmatched, would allow for this alternating path to be
extended to reach the u-type site via this unmatched link,
contradicting the fact that it is unreachable.

IV. IMPLICATIONS

We now present five arguments that use this structural
decomposition to provide information on (i) monomer and
dimer correlation functions of the maximally packed
classical dimer models defined in Eq. (1), (ii) entanglement
entropy of eigenstates of the corresponding maximally
packed quantum dimer models, (iii) topologically protected
zero-mode wavefunctions in the free-fermion problem in
Eq. (2), (iv) the corresponding on-shell zero-energy Green
function ΔG and the conductivity tensor for the free-
fermion Hamiltonian in Eq. (2), and (v) the perturbative
stability of zero-energy Majorana fermion excitations in the
corresponding bipartite Majorana networks with the
Hamiltonian in Eq. (3).
All our arguments rely on using the Dulmage-

Mendelsohn classification of sites into o-type, e-type,
and u-type sites to define a further decomposition
of the lattice into nonoverlapping connected regions Ri
(i ¼ 1;…; NR) and Pj (j ¼ 1;…; NP). We define these as
follows: Color all o-type and e-type sites red, and use this
color (red) for all links that connect any o-type site to any e-
type site. Color all u-type sites blue, and use the same color
(blue) for all links between two u-type sites. Delete all links
between u-type sites and o-type sites (e-type sites are never
neighbors of u-type sites), as well as all links between two
o-type sites (two e-type sites never have a link between
them). Our lattice now decomposes into NR þ NP con-
nected components (due to the deletion of links described
above): red components Ri (i ¼ 1;…; NR) consisting of
connected R-type regions and blue components Pj

(j ¼ 1;…; NP) consisting of connected P-type regions.
From the definitions, it is straightforward to see that no
monomers live in the P-type regions, which thus represent
parts of the lattice that are always perfectly matched by any
maximum matching. It is also clear that monomers of any
maximum matching always live on e-type sites inside an
R-type region.
Additionally, we note that the boundary sites of any

R-type region, i.e., those sites that have neighbors belong-
ing to otherR-type or P-type regions, are always of o-type.
Further, since all o-type sites of an R-type region are
matched to an e-type site of the same region, and monomers
live only on e-type sites, this implies that the number of
e-type sites in any R-type region exceeds the number of
o-type sites even though all boundary sites are o-type.
Additionally, we note that these R-type regions come in
two “flavors,” RA and RB: RA-type (RB-type) regions
have all their e-type sites on the A (B) sublattice and all
their o-type sites on the B (A) sublattice.

Finally, we note that each P-type region Pj itself can be
uniquely decomposed into subregions defined to ensure
that each overlap loop (in the ensemble of overlap loops
obtained by superimposing any two perfect matchings of
Pj) lives entirely within a single subregion of Pj. This is
related to the so-called “fine decomposition” of Dulmage
and Mendelsohn used by Pothen and Fan in their algorithm
for block triangularization of matrices [29,30]. As we will
see in our subsequent discussion, this additional “fine
structure” of P-type regions can play a potentially crucial
role in determining the dimer correlation length of the
maximally packed dimer model, especially if P-type
regions are large in size.

A. Maximally packed classical dimer models:
Monomer and dimer correlations

We now consider the statistical mechanics of the max-
imally packed dimermodel, Eq. (1). Our discussion relies on
three crucial observations: (i) Any alternating path starting
from an unmatched site of a maximummatching lies entirely
within a singleR-type region. In other words, the number of
monomers inside any givenR-type region remains the same
in all maximum matchings. (ii) The links deleted during our
construction (of connectedR-type andP-type regions) never
host a dimer in any maximummatching of the full lattice. To
establish this, we simply note that the boundary sites of any
R-type region are o-type sites, which must be matched to e-
type sites within that region itself, and all sites of anyP-type
region are matched among themselves within that region.
(iii) Since monomers only live on e-type sites of an R-type
region and the boundary of R-type regions is made up
entirely of o-type sites, two monomers on next-nearest-
neighbor sites must lie in the same R-type region.
The last observation implies that each monomer inter-

action term in themaximally packed dimermodels defined in
Eq. (1) always acts entirelywithin any oneR-type region.On
the other hand, the second observation implies that each
flippable (perfectly matched) elementary plaquette or larger
flippable loop must lie entirely within a single R-type or
P-type region. As a result, each dimer interaction term in
Eq. (1) also acts entirely within a single R-type or P-type
region. Therefore, the ensemble of maximummatchings can
begenerated fromanyonemaximummatchingbymaking all
possible rearrangements of dimers (keeping their numbers
fixed) independently within each connected component Ri
and each connected component Pj.
Indeed, the classical statistical mechanics of the corre-

sponding maximally packed dimer models defined in
Eq. (1) can be studied by separately considering each
connected componentRi and Pj. Each Pj is guaranteed to
independently host a fully packed dimer model, with its
sites always being perfectly matched amongst themselves
in any maximum matching, and interdimer interactions
acting entirely within the region. On the other hand, since
eachR-type region hosts the same fixed nonzero number of
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monomers in any maximum matching, one has an inde-
pendent maximally packed dimer model defined on each
R-type region, again with dimer and monomer interaction
terms acting entirely within each region.
The classical partition function Z of such maximally

packed dimer models thus factorizes:

Z ¼
�Y

i

ZPi

�
×
�Y

j

ZRj

�
: ð4Þ

This factorization is topological in nature, in the sense that
it is independent of numerical values of the nonzero bond
fugacities assigned to each link and only depends on the
pattern of nearest-neighbor links of the graph. It immedi-
ately implies that monomer and dimer correlations do not
extend beyond individual connected components. The
foregoing implies that the typical size of an R-type region
places an upper bound on the length scale over which
correlations can propagate in the gas of monomers.
For dimer correlations, the situation is more complicated

because the average two-point correlation function of
dimers has two contributions that could be very different
from each other: one arising from dimer correlations within
each R-type region (which hosts a maximally packed
dimer model) and the other arising from perfectly matched
P-type regions (each of which hosts a fully packed dimer
model). In the site-diluted lattices we study, it is not a priori
obviouswhich of these dominates the long-distance behavior
of the average two-point dimer correlation function. The
issue is the following: Although the P-type regions turn out
to be typically much smaller than R-type regions in the
regimes of interest to us, there is no a priori guarantee that
their contribution is negligible compared to that of R-type
regions. This is because the dimer correlation length in anR-
type region can potentially bemuch smaller than its size since
the dimers coexist with a gas of monomers.
Clearly, a detailed numerical study of this question

would depend on lattice-level details and is somewhat
removed from the focus of the present work. Here, we
confine ourselves to noting that this question becomes
tricky if the dimer correlation length inR-type regions is of
the same order of magnitude as the typical size of P-type
regions. In this case, the fine decomposition of P-type
regions [29,30] comes into play: As we have noted in the
previous section, each P-type region itself can be decom-
posed into subregions that are defined to ensure that overlap
loops between two perfect matchings of P live entirely
within a single subregion. This implies a further factori-
zation of each ZPi

in Eq. (4). As a consequence, dimer
correlations cannot extend beyond these individual sub-
regions identified by the fine decomposition. In this case, it
is the typical size of these subregions that potentially plays
the key role in determining the dimer correlation length.

B. Maximally packed quantum dimer models:
Entanglement entropy of arbitrary eigenstates

This analysis also leads to an interesting conclusion
about entanglement properties of eigenstates of a natural
quantum version of the maximally packed dimer model on
such diluted lattices, whose Hamiltonian has been dis-
played in Fig. 4 and defined in the accompanying dis-
cussion in Sec. II.
From the properties of R-type and P-type regions

established in Sec. III and the analysis of the classical
case presented in the preceding section, it is clear that all
the terms in the Hamiltonian of such a quantum dimer
model also act entirely within a single R-type or P-type
region. This includes dimer potential-energy and kinetic-
energy terms defined on arbitrary flippable loops, next-
nearest-neighbor monomer interactions, and any monomer
kinetic-energy terms that hop a monomer by two or more
units along an alternating path starting at that unmatched
site. An immediate consequence of this is that every
eigenstate of such quantum dimer models can be written
as a tensor product of some eigenstates of the individual P-
type and R-type regions:

jΨi ¼⊗i jψPi
i ⊗j jψRj

i: ð5Þ

If these regions remain finite in extent in the thermody-
namic limit, this immediately implies that jΨi cannot have
volume-law entanglement entropy even if it is in the middle
of the many-body spectrum. Indeed, in this case, the
entanglement entropy of jΨi across a cut that partitions
the system into two halves must have area-law scaling due
to its tensor product structure. Clearly, the prefactor of this
area-law scaling will be determined by the typical sizes of
the R-type and P-type regions through which this cut
passes. This conclusion holds independent of the values of
Γ, Γ0, and V, including in the presence of quenched
randomness in their values.
We emphasize again that this tensor product structure of

arbitrary many-body eigenstates is not entirely fragile: Any
ring-exchange or dimer potential-energy terms that act on
any flippable loops preserve this structure, as do next-
nearest-neighbor interactions between the monomers, and
monomer kinetic-energy terms that move a monomer along
an alternating path. As noted in the preceding section, this
is because any such flippable loop or alternating paths must
lie entirely within a single P-type or R-type region, and
two monomers on next-nearest-neighbor sites must also be
in the same R-type region. However, an interaction
between monomers on next-next-nearest-neighbor sites
can couple an RA-type region to a neighboring RB-type
region. Therefore, in the presence of such extended
intermonomer interactions, many-body eigenstates are no
longer guaranteed to have this tensor-product structure.
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C. Bipartite random-hopping models:
Topologically protected zero modes

We now discuss topologically protected zero modes of
the hopping problem. By topologically protected zero
modes, we mean zero modes whose existence is robust
to changes in the actual values of the hopping amplitudes
and depends only on the connectivity of the graph, i.e., on
whether a given hopping amplitude is zero or nonzero.
Such modes are robust to bond disorder since their
existence is unaffected by randomness or modulations in
the hopping amplitudes.
In Ref. [20], the nonzero density of zero modes of the

tight-binding model for diluted graphene was argued to
arise from the presence of so-called RA-type (RB-type)
regions of the site-diluted sample, having more A (B) sites
than B (A) sites but a boundary consisting of only B (A)
sites. From the foregoing discussion, it is now clear that the
connected components Ri defined here provide a consis-
tent and convenient (not to mention elegant) construction of
these R-type regions of Ref. [20], thus justifying the
commonality of nomenclature.
This allows us to now make a precise argument for the

number and structure of such topologically protected zero
modes: Let the number of o-type sites in any one particular
R-type region be No and the number of e-type sites be Ne,
with their difference I ¼ Ne − No being a positive number
equal to the number of monomers hosted by this region in
any maximum matching. We now establish that there are I
linearly independent, topologically protected solutions of
the zero-energy Schrödinger equation with the property that
the corresponding wavefunctions are only nonzero on
e-type sites within this one region. To establish this, we
write down the system of Schrödinger equations that must
be satisfied by any zero-energy wavefunction of this form.
Counting the number of nontrivial equations and the
number of free variables, we see that this is a rectangular
system with Ne variables and No equations.
To see this, first note that the Schrödinger equation on all

e-type sites of this R-type region is trivially satisfied since
the wavefunction is zero on all the neighbors of each of
these e-type sites. This is true because e-type sites always
have o-type neighbors. This is guaranteed by the fact that
there are no e-type sites on the boundary of an R-type
region (as we have seen earlier, the boundary consists
entirely of o-type sites). Further, all e-type neighbors of
each o-type site belonging to this region, including e-type
neighbors of o-type sites on the boundary of this region, lie
within this R-type region. The zero-energy Schrödinger
equations to be satisfied by our wavefunction therefore
reduce to No constraints (one on each of the o-type sites of
this region) that must be satisfied by Ne variables (corre-
sponding to the wave-function amplitudes on the Ne e-type
sites of this region).
The minimum number of linearly independent solutions

of this system of equations equals Ne − rmax, where rmax is

the maximum rank of the corresponding rectangular matrix
with Ne columns and No rows. Since No < Ne, rmax ≤ No,
implying the existence of at least Ne − No ≡ I linearly
independent solutions to these equations, independent of
the precise values of the nonzero hopping amplitudes.
Thus, we have established that each R-type region Ri
constructed using the structure theory of Dulmage and
Mendelsohn contributes exactly I i topologically protected
zero modes in the quantum mechanics of a particle hopping
on the lattice. The total number of topologically protected
zero modes is thus W ¼ P

i I i, i.e., exactly equal to the
number of monomers in any maximum matching of the
lattice.
This argument provides an alternate proof of the well-

known graph-theoretic identity between the number of
topologically protected zero modes W and the number of
monomers in any maximum matching [15,27]. In contrast
to the standard “global” approaches [15,27] that make use
of determinants to prove this, our “local” argument uses the
structure of the connected components Ri to provide a
constructive proof. In the process, we uncover a crucial
aspect of the topologically protected zero-energy eigen-
space, namely, the fact that it is possible to choose a basis
such that each zero-energy wavefunction of this basis lives
entirely within one R-type region, with I i such basis
functions coexisting in region Ri (for i ¼ 1;…; NR).

D. Quantum percolation: On-shell zero-energy
Green function and conductivity tensor

Next, we consider the on-shell zero-energy Green
function: ΔGðr; r0Þ≡P

α ψαðrÞψ�
αðr0Þ þ H:c:, where the

sum on α is over W zero-energy eigenfunctions that make
up any choice of orthonormal basis for the zero-energy
eigenspace, and r and r0 represent position coordinates of
points on the lattice. By construction, ΔG defined in this
manner is independent of this choice of basis. It is therefore
particularly convenient to evaluate it using the basis
described above, i.e., consisting of I i orthonormal wave-
functions that live entirely within each R-type region Ri
for i ¼ 1;…; NR. There is of course considerable residual
freedom in choosing an orthonormal basis set to span this
I i dimensional subspace of wavefunctions that live within
a single regionRi. But again, ΔG is of course independent
of these choices.
Employing such a basis, we see that ΔGðr; r0Þ in only

nonzero if r and r0 both belong to the same R-type region.
Thus, our argument identifies a generic maximally local-
ized choice of zero-energy eigenbasis whose localization
property is topological in nature and implies a correspond-
ing topologically protected localization property of the on-
shell zero-energy Green function. While the behavior of
ΔG within any given Ri will depend on the strength of
the disorder in the hopping amplitudes in that region,
our argument shows that ξG, the localization length of
hjΔGj2iðr − r0Þ (where the angular brackets represent
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averaging over quenched disorder), must be bounded above
by the typical size ξ of R-type regions: ξG < ξ.
To appreciate the consequences of this for transport

properties of Eq. (2) at the particle-hole symmetric chemi-
cal potential μ ¼ 0, we recall the careful analysis in
Ref. [44] of the conductivity tensor σðr; r0Þ of free-fermion
systems. In the limit of vanishing temperature and magnetic
field, σðr; r0Þ has an expression given entirely in terms of
ΔGðr; r0Þ. As a result, the localization length ξloc that
governs the spatial dependence of hσiðr − r0Þ (where the
angular brackets again denote averaging over quenched
disorder) must also be bounded above by the typical size of
R-type regions: ξloc < ξ.
Thus, if R-type regions remain bounded in size, the

corresponding fermionic system is guaranteed to be an
insulator at μ ¼ 0 in the zero temperature limit. On the
other hand, if the typical size of R-type regions diverges,
ξloc and ξG could still be finite due to the localized character
of the zero-mode wavefunctions inside the largest R-type
regions in a sample. Although this cannot be ruled out, one
expects [45,46] that zero-energy wavefunctions of bipartite
random hopping problems are not exponentially localized,
suggesting that a phase with delocalized R-type regions
likely corresponds to a delocalization transition in the
transport properties of the free fermions.

E. Bipartite Majorana networks: Zero-energy
Majorana fermion excitations

Our understanding of the spatial structure of topologi-
cally protected zero-mode wavefunctions also leads us to
an interesting conclusion regarding the nature of collective
zero-energy Majorana fermion excitations of bipartite
Majorana networks [32,33] modeled by the Hamiltonian:

HMajorana ¼ i
X
hrr0i

arr0ηrηr0 ; ð6Þ

where r, r0 label localized Majorana modes by their
positions, arr0 is a real antisymmetric matrix that represents
the mixing of nearest-neighbor Majorana modes in this
bipartite network, and we have neglected quartic interaction
terms whose effects [47,48] are assumed to be unimportant
in our analysis below. Specifically, we demonstrate that
“odd” R-type regions (with odd values of I) are expected
to generically host a single topologically protected zero-
energy Majorana fermion excitation of the bipartite
Majorana network described by Eq. (6). This mode
survives the leading effects of additional next-nearest-
neighbor couplings. In contrast, R-type regions with even
I do not generically host such robust zero-energy Majorana
fermion excitations.
To see this, we first use the bipartite structure of the

network to define a new basis, whose B-sublattice compo-
nents have a phase expðiπ=2Þ relative to the corresponding
components of the original basis in which arr0 is written.

The A-sublattice components of the new basis are identical
to those of the original basis. In this new basis, the matrix of
unperturbed mixing amplitudes is now a real symmetric

matrix tð0Þrr0 that defines a bipartite random hopping problem.
The collective zero-energy Majorana excitations of the
bipartite network are now obtained from the zero modes of
this real symmetric matrix, which has matrix elements

tð0ÞrArB ¼ tð0ÞrBrA ¼ arArB . Thus, for bipartite networks whose
geometry is that of a diluted bipartite lattice, this maps to a
special case of the bipartite random hopping problem on
such lattices (with real hopping amplitudes) [49].
Next, we consider the perturbative effect of weak addi-

tional mixing amplitudes that couple nearby modes on the
same sublattice. In other words, we write iãrr0 ¼ iarr0þ
iδarr0 , where the real antisymmetric matrix δa represents
weak mixing between modes on nearby sites of the same
sublattice of this network. In the newbasis,wehave a random
hopping problem defined by the Hermitian hopping ampli-
tudes trr0 ¼ t0rr0 þ δtrr0 , with

tð0ÞrAr0A
¼ tð0ÞrBr0B

¼ 0;

tð0ÞrArB ¼ tð0ÞrBrA ¼ arArB ;

δtrArB ¼ 0;

δtrAr0A ¼ iδarAr0A ;

δtrBr0B ¼ iδarBr0B : ð7Þ

To understand the effects of this perturbation on the
collective zero-energy Majorana fermion excitations to
leading order in perturbation theory, we study the effect
of δt on the zero modes of the unperturbed random hopping
problem. In order to do this, we must project the perturba-

tion δt into the zero-energy subspace of tð0Þrr0 and diagonalize
the resulting matrix. This is greatly facilitated by thinking
in terms of the maximally localized choice of basis
described in the previous section, with each unperturbed
zero-energy basis state living entirely within any one
R-type region, and I i such basis states coexisting in region
Ri for i ¼ 1;…; NR. Further, since tð0Þ is a real symmetric
matrix, these basis vectors are real in this particular case.
Consider first a perturbation δt that mixes next-nearest-

neighbor sites on the same sublattice but does not have any
other nonzero matrix elements. Observe that all e-type sites
(in the language of Sec. III) of anRA (RB) region belong to
the A (B) sublattice, and boundary sites ofRA (RB) regions
are all o-type and belong to theB (A) sublattice.Additionally,
recall that the basis states have nonzero amplitudes only on e-
type sites. As a result of this structure, the projection of δtrr0
into the unperturbed zero-energy subspace has a block-
diagonal form in this basis if δtrr0 is zero beyond next-
nearest-neighbor sites (in the sense of connectivity, not
geometric distance). Indeed, when δtrr0 does not extend
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beyond next-nearest-neighbor sites, this projection decom-
poses into NR independent blocks corresponding to the
R-type regions of the lattice, with each region Ri contrib-
uting a block of size I i × I i for i ¼ 1;…; NR.
Further analysis depends crucially on the fact that each

of these I i × I i blocks inherits the “chiral” symmetry of
the original problem [49], which guarantees that a positive
eigenvalueþλ always has a partner at −λ. To see that this is
true, note that δt is pure imaginary and antisymmetric, and
all states in our chosen basis of unperturbed zero modes are
real, implying that each of these blocks is a pure imaginary
antisymmetric matrix. As a result of this, one can immedi-
ately conclude that every regionRi with odd I i will host at
least one collective Majorana zero mode that survives the
leading-order effects of any perturbation δtrr0 that does not
extend beyond next-nearest neighbors. This lends addi-
tional significance toR-type regions with odd imbalance I .
These robust zero-energy Majorana excitations hosted by
such R-type regions with odd I are also potentially stable
to the leading effects of additional longer-range but weak
mixing terms. However, this depends on the detailed
morphology of the R-type regions and the range of the
perturbation.
Finally, we note that the argument given here is some-

what analogous to earlier results in the one-dimensional
case of Majorana wires (as exemplified by the paradigmatic
Kitaev chain [35]). In the thermodynamic limit of the
original Kitaev chain, there is one Majorana mode at each
end of the chain in the topological phase. Together, these
form a single complex fermion whose wavefunction is split
between the two ends of the chain and whose energy goes
to zero exponentially in the thermodynamic limit. In
multichannel generalizations of this situation, one finds
that Majorana modes at one end of the wire can generically
mix due to additional local mixing terms in the
Hamiltonian, leading to a situation in which each end of
the wire has either a single Majorana mode or none,
depending on whether the number of original Majorana
modes at each end is odd or even [50].

V. COMPUTATIONAL METHODS AND
OBSERVABLES

The arguments presented inSec. IVmotivate our computa-
tional study of the random geometry of the Dulmage-
Mendelsohn decomposition of site-diluted bipartite lattices.
We focus on random dilution of L × L honeycomb (square)
lattices consisting of Nsites ¼ 2L2 (Nsites ¼ L2) sites in two
dimensions and cubic lattices with Nsites ¼ L3 sites in three
dimensions, with periodic boundary conditions and even L.
Throughout this work, we restrict ourselves to samples with
compensated dilution so that each random sample in our
ensemble has an equal number of A and B sublattice sites.
This ensures that our data set is not “contaminated” by
spurious effects associated with a global imbalance in the
number of A- and B-sublattice sites.

We consider two disorder ensembles in the two-dimen-
sional case: In one of these, we have chosen to impose a
nearest-neighbor and next-nearest-neighbor exclusion con-
straint on the position of thevacancies to largely eliminate the
possibility of subregions of the lattice disconnecting com-
pletely from the rest of the graph at small values of the
dilution nvac. In the other ensemble, each site can be
independently deleted with dilution probability nvac subject
to the global compensation constraint. With this global
constraint in place in both ensembles, we find that the
universal aspects we focus on here are independent of the
exclusion constraints. Therefore, in the two-dimensional
case, we only present the results for the ensemble with
exclusion constraints. Likewise, we confine ourselves to a
study of the independently diluted case in three dimensions,
again with global compensation.
Our tests of the efficiency of various maximum-matching

algorithms described in Ref. [51] suggest that the Breadth-
First-Search (BFS) algorithm with pruning of search
branches outperforms the others (including the Hopcroft-
Karp algorithm, which has the theoretical advantage in
terms of worst-case complexity) in the two-dimensional
case at small dilution. On the other hand, on the site-diluted
cubic lattice, we find that the Pothen-Fan algorithm out-
performs both the Hopcroft-Karp and the BFS algorithm
for vacancy densities smaller than approximately 0.2, with
the BFS algorithm being the worst of the three in this
regime. However, the performance of the Pothen-Fan
algorithm deteriorates very rapidly and dramatically when
the vacancy density is increased beyond approximately 0.2.
For these higher vacancy densities, we have to rely on
either the Hopcroft-Karp algorithm or the BFS algorithm.
For vacancy concentrations up to approximately 0.35, the
Hopcroft-Karp algorithm outperforms the BFS algorithm,
while the BFS algorithm outperforms the Hopcroft-Karp
algorithm by a small margin for vacancy densities above
approximately 0.35.
To increase the computational efficiency of our matching

code, we choose to use the maximum matching at a lower
(higher) vacancy concentration to obtain an initial con-
dition for the matching algorithm at the next higher (lower)
concentration, and we work our way up (down) a grid of
concentrations; the two-dimensional data with exclusion
constraints are obtained by working our way up an
ascending sequence of nvac, while most of the data without
exclusion constraints are obtained by working our way
down a descending sequence of nvac. This gives us one
random sample at each concentration. This process is then
repeated many times to generate our ensemble. For most of
the data shown, we use an ensemble consisting of at least
3000 samples at the largest sizes, with smaller size data
being obtained by averaging over a substantially larger
number of samples. In both two and three dimensions, we
are limited by the time needed to find a maximummatching
to Nsites ≲ 109.
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Once we have constructed a maximum matching of the
diluted lattice corresponding to a given sample, we can
construct alternating paths starting from the unmatched sites
to obtain the connected R-type regions Ri (i ¼ 1;…; NR)
that contain the monomers of any maximum matching. In
practice, we find it convenient to first use these paths to label
each site odd (o-type), even (e-type), or unreachable (u-type)
to obtain the Dulmage-Mendelsohn decomposition defined
in Sec. III. Based on this labeling, we then use a simple and
efficient burning algorithm to construct the connected R-
type andP-type regions defined in Sec. IV.With this in hand,
we measure a number of statistical properties of the random
geometry of these regions.
The most basic of these are hMtoti ¼ hPi mii, the

ensemble-averaged sum of the mass (number of sites) mi
ofR-type regionsRi, the ensemble-averaged number hNRi
(hNPi) of R-type (P-type) regions in a sample, and the
ensemble-averaged total number of zero modes hWi ¼
hPi I ii in a sample. Anticipating our results, we also define
the corresponding densities in the Nsites → ∞ thermody-
namic limit: nR ≡ hNRi=Nsites, nP ≡ hNPi=Nsites, mtot≡
hMtoti=Nsites, and w≡ hWi=Nsites. As expected, these den-
sities are found to be self-averaging for a large enough system
size, with smaller nvac requiring a larger size for the self-
averaging property to hold.
A nonzero w defines a length scale lw ≡ 1=w1=d, where d

is the spatial dimensionality. This length scale lw is a
measure of the “typical distance” between zero modes if one
thinks of them as localized objects. Note, however, that this
interpretation of lw cannot be taken too literally if the
wavefunctions of individual modes are spread out on a scale
comparable to lw, or, more precisely, if the length scale ξG
that controls the spatial dependence of hΔG2iðr − r0Þ is
comparable to lw. Independent of this caveat, we find it
illuminating in our subsequent discussion to compare our
results for lw to another length scale lvac, which represents the
typical distance between vacancies: lvac ¼ 1=n1=dvac .
We also find it useful to separately keep track of the mass

mA
max (mB

max) of the largest (by mass) RA-type (RB-type)
region in each sample. For the larger (by mass) of these two
regions, we also keep track of the imbalance Imax and the
size Bmax of the boundary. This size Bmax is defined in
terms of the number of surviving links to the rest of the
lattice from o-type sites that make up the boundary of the
largest R-type region in each sample.
In addition, we also keep track of the number of deleted

links Dw
max (Dnw

max) that would have connected an e-type site
(o-type site) of this region to a neighboring site that now
hosts a vacancy. The superscripts “w” and “nw” stand for
the labels “wavefunction” and “non-wavefunction.” This
refers to the fact that the zero-mode wavefunctions of an
R-type region have amplitude only on the e-type sites of
the R-type region. The underlying intuition that motivates
this measurement is as follows: Roughly speaking, since
I ¼ Ne − No (see Sec. IV C), we expect vacancies adjacent

to e-type sites to “seed” zero modes in this R-type region,
while vacancies adjacent to o-type sites “eliminate”
zero modes.
It is also useful to measure a suitably defined length scale

associated with the size of large R-type regions. Two
different but related length scales come to mind. The first is
Rmax, the sample-averaged radius of gyration of the largest
(by mass)R-type region in each sample. The second length
scale ξ admits a natural interpretation as a correlation length
associated with a sample-averaged geometric correlation
function Cðr − r0Þ, which gets a contribution of þ1 from a
sample if both r and r0 are in the sameR-type region in that
sample, and no contribution otherwise [2,3]. In terms of C,
we define

2ξ2 ¼
P

r;r0Cðr − r0Þjr − r0j2P
r;r0Cðr − r0Þ : ð8Þ

In classical bond percolation, this correlation function and
the associated correlation length map to corresponding
properties of the q-state Potts model in the q → 1 limit [2,3].
By thinking in terms of contributions of each R-type

region to the double summation in Eq. (8), we see that ξ2 is
also the mean-square radius of gyration of R-type regions,
with the average taken to be weighted bym2, wherem is the
mass of an R-type region. Thus, we have the expression

ξ2 ¼ hPNR
i¼1m

2
i R

2
i i

hPNR
i¼1m

2
i i

¼
P

mm
2R2

mNmP
mm

2Nm
; ð9Þ

where the angular brackets in the first expression indicate
averaging over the ensemble of diluted samples, and Nm

and R2
m in the second expression are defined, respectively,

to be the mean number ofR-type regions of massm and the
mean-square radius of gyration of such regions in this
ensemble.
The toroidal geometry of our samples introduces a

subtlety in our actual measurements of these length scales
and causes the strict correspondence between the two
definitions of ξ in Eqs. (8) and (9) to break down. This
is because a definition of jr − r0j [in Eq. (8)] that takes the
periodic boundary conditions into account would involve
computing the shortest distance on the torus between r and
r0 for each pair of points r and r0 that belong to a particular
R-type region. The corresponding computational cost of
using Eq. (8) to obtain ξ scales as L2d if there is even one
such region that contains OðLdÞ sites; this introduces a
significant inefficiency in the computation.
Fortunately, there is a simple workaround. The idea is to

use Eq. (9) instead of Eq. (8) and compute the radius of
gyration of each cluster using a method borrowed from the
image-processing literature [52]: This involves making two
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passes through each cluster. The first pass computes a
particular definition of center of mass that is well adapted to
the toroidal geometry and provides a sensible location of
the center of mass of the cluster. The second pass then
computes the mean-square shortest distance of each point
of the cluster from this center of mass. In all our work, we
adopt this definition of the radius of gyration of each cluster
and use Eq. (9) to obtain ξ2. Although the strict equivalence
with Eq. (8) is now lost, we have checked that this
computationally convenient redefinition shares all the
qualitative features of the length scale originally defined
in Eq. (8).
In addition, we also probe the statistics of the mass m of

R-type regions by measuring the susceptibility χ, which is
defined in terms of the sample-averaged geometric corre-
lation function Cðr − r0Þ in the following natural way:

χ ¼ 1

Ld

X
r;r0

Cðr − r0Þ

¼ 1

Ld

�XNR

i¼1

m2
i

�

¼ 1

Ld

X
m

m2Nm; ð10Þ

where d is the spatial dimensionality.
Finally, with an eye towards the possibility of a perco-

lation transition associated with the random geometry ofR-
type regions, we keep track of the wrapping probability P,
which is defined in both two and three dimensions as the
probability that a sample has at least oneR-type region that
wraps in at least one direction around the torus. In addition,
in the three-dimensional case, we also count, for each
sample, the number ofR-type regions that wrap around the
3-torus simultaneously in three independent directions, as
well as the number of oddR-type regions that wrap around
the 3-torus simultaneously in three independent directions.
These measurements are all made using efficient techniques
borrowed from the percolation theory literature [53–55].

VI. RANDOM GEOMETRY OF THE
DULMAGE-MENDELSOHN DECOMPOSITION:

BASIC PICTURE

We now present the basic picture that emerges from our
computational study of the random geometry of the
Dulmage-Mendelsohn decomposition of site-diluted
square, honeycomb, and cubic lattices. Our initial focus
is on thermodynamic densities, which converge rapidly to a
nonzero thermodynamic limit at any nonzero dilution nvac.
This is followed by a characterization of the important
length scales that control the statistical properties of this
decomposition.

A. Thermodynamic densities

How do Mtot, NR, NP , and W scale with system size L
and vacancy concentration nvac in the small-nvac limit? Our
answer to this question is displayed in Fig. 5.
From the behavior of nR and nP for the honeycomb and

square lattices in two dimensions and the cubic lattice in
three dimensions, we see that nR and nP both tend rapidly
to a nonzero value in the thermodynamic limit, with finite-
size corrections that are not readily visible at the sizes
studied here. The same also holds (although we have not
displayed it) for noddR , the corresponding number density of
odd R-type regions. From the nvac dependence of these
quantities, we see that these densities decrease rapidly to
zero as nvac → 0 (Fig. 5).
From Fig. 5, we also see that the density of zero modes w

on the honeycomb and square lattices in two dimensions
and the cubic lattice in three dimensions saturates to a
nonzero value in the thermodynamic limit, with finite-size
corrections that are not readily visible in the range of sizes
studied here. As expected, we also see that w tends to zero
as nvac → 0. From Fig. 5, we see that mtot saturates rapidly
to a nonzero value in the thermodynamic limit in both two
and three dimensions, with finite-size corrections that are
not visible in the size range studied. Moreover, it is
apparent that mtot tends towards the value mtot ¼
1 − nvac as nvac goes to zero in both two and three
dimensions. In conjunction with the behavior of nR, this
implies that the entire sample is taken over by a fewR-type
regions in this limit.
At first sight, this is a surprising and counterintuitive

result since nvac ¼ 0 corresponds to the pure lattice, which
admits a perfect matching. In other words, at nvac ¼ 0, we
have w ¼ 0. In the language of the Dulmage-Mendelsohn
decomposition, there are no R-type regions, and the
undiluted system consists of a single P-type region at
nvac ¼ 0. How are we to reconcile this counterintuitive
result for mtot with the existence of perfect matchings at
nvac ¼ 0? As we detail below, the answer has to do with the
order in which the thermodynamic limit and the limit of
zero dilution are taken.

B. Diverging length scales

As noted earlier, a nonzero density of vacancies is
naturally associated with a length scale lvac that corre-
sponds to the typical distance between vacancies, while a
nonzero w defines a second length scale lw, which is a
measure of the typical distance between zero modes if one
thinks of them as localized objects. If we take the
thermodynamic limit at fixed nonzero nvac and then take
the limit nvac → 0, we have the limit L=lvac → ∞,
lvac → ∞. In this case, we see from our computations that
mtot → 1 in this nvac → 0 limit. On the other hand, if we
first send nvac to zero while keeping L fixed and then take
the thermodynamic limit, we have the limit lvac=L → ∞,
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L → ∞. This corresponds to the limiting case of the pure
system for which mtot → 0 since the entire sample has a
perfect matching.
From the nvac dependence of w in the small-nvac limit, we

see that lw=lvac → ∞ in the limit L=lvac → ∞; lvac → ∞ in
both two and three dimensions since w goes to zero very
rapidly in the limit of small dilution. Thus, these two length
scales have a parametrically large separation lw ≫ lvac at
small nvac. In other words, zero modes in this limit are a
cooperative effect of a very large number of vacancies, both
in two and in three dimensions.
We now discuss the key observation that motivates much

of our subsequent analysis. In Fig. 6, we plot Rmax, ξ, lw,
and lvac as a function of nvac for the largest sizes studied,
both in two and three dimensions, while Fig. 7 shows Rmax
and ξ for different sizes as a function of nvac. It is clear from
the displayed results that Rmax and ξmore or less track each
other, with both of these length scales dominating over lvac
and over lw in the small-nvac limit in the two-dimensional
case. For values of L accessible to our computational
method, we see that both of these length scales appear to be
limited only by the system size L in the small-nvac limit in
two dimensions. The three-dimensional case also displays
similar behaviors, which set in much “earlier,” i.e., below a
much larger threshold in the vicinity of nvac ≈ 0.6.
Thus, in the thermodynamic limit, we conclude that the

typical size of anR-type region grows without bound in the
nvac → 0 limit in two dimensions. In three dimensions, the
corresponding quantity exhibits the same behavior below
nvac ≈ 0.6. The presence of this diverging length scale
suggests that the random geometry of R-type regions may
be independent of lattice-scale details in the corresponding
regimes, both in two and in three dimensions. Additionally,
as is clear from the insets in Fig. 7, we see that curves of
Rmax=L and ξ=L corresponding to cubic lattices of different
linear sizes L appear to cross near this threshold when
plotted as a function of nvac. This suggests that this
threshold is associated with a critical point in the cubic-
lattice case.

C. Dominance of large R-type regions

In two dimensions, additional support for this scenario
comes from a study of the nvac dependence of msmall=mtot,
wheremsmall is the contribution tomtot from “small”R-type
regions of absolute mass m < m�ðnvacÞ. For the cutoff
value m�, we choose m�ðnvacÞ ¼ Vsmall=nvac to ensure that
clusters of mass m� can be expected, on average, to be
associated with some fixed “small” number of vacancies,
Vsmall. Another characterization of m�ðnvacÞ is that it
corresponds to the expected number of sites in a region
of linear size lsmall ¼

ffiffiffiffiffiffiffiffiffiffiffi
Vsmall

p
× lvac in the pure system.

The results of this study with Vsmall ¼ 10000, i.e.,
lsmall ¼ 100 × lvac, are shown in Fig. 8. Analogous results
for the nvac dependence of I small=W, where I small is the
contribution toW from these smallR-type regions of mass

m < m�ðnvacÞ, are also shown in Fig. 8. From the data
displayed in this figure, it is clear that the small-nvac limit is
dominated by the physics of large R-type regions whose
size diverges even when measured in units of lvac.
In three dimensions, a similar picture emerges in a

somewhat more direct way from a study of the nvac
dependence of hmmax=Mtoti, where Mtot is the total mass
in allR-type regions of a sample, the angular brackets denote
an ensemble average, and mmax is the mass of the largest
R-type region in a sample, i.e., the larger ofmA

max andmB
max.

As is clear from Fig. 9, the largestR-type region contains a
nonzero fraction of the total mass as well as a nonzero
fraction of the total number of zero modes once nvac is
reduced below a threshold in the vicinity of nvac ≈ 0.6.
When the dilution falls below a lower threshold in the

vicinity of nvac ≈ 0.35, we see that this mass fraction climbs
rapidly to 1, suggesting that a single, large R-type region
dominates in the low-dilution regime below this lower
threshold. This lower threshold is also associated with a
cusplike feature in hImax=Wi, suggesting an abrupt quali-
tative change in the morphology of the largest R-type
regions below this threshold.
In the context of the quantum percolation problem

or in the context of diluted quantum antiferromagnets
and closely related particle-hole symmetric Hubbard mod-
els on such diluted lattices, the behavior of I small=W
(hImax=Wi) in two (three) dimensions implies that the
low-energy physics of interest to us is completely domi-
nated by the fact that the typical size of R-type regions
diverges in the limit of low dilution.
In the Appendix, we establish that odd R-type regions

behave similarly to their even cousins; i.e., they also have a
divergent typical size in the low-dilution limit, both in two
and in three dimensions. However, in contrast to the above,
the implication of this divergent typical size of odd R-type
regions for the physics of Majorana networks is somewhat
different. This is because each odd R-type region only
hosts a single stable zero-energy Majorana excitation of the
network. As a result, although long-distance properties are
completely controlled by the large, oddR-type regions, the
density of robust zero-energy Majorana fermion excitations
is not dominated by this large-scale physics since small,
odd R-type regions also contribute significantly to this
density.
Finally, in both two and three dimensions, we consider

the probability P that a sample with periodic boundary
conditions has at least oneR-type region that wraps around
the torus in at least one direction (Fig. 10). In classical
percolation theory, the analogous quantity provides a
simple diagnostic of the percolation transition [56,57]: If
one plots this wrapping probability as a function of
concentration for various L, these curves cross each other
at the critical concentration. In the percolated phase, this
probability is closer to 1 for larger L, while the unperco-
lated phase is characterized by the opposite behavior. In our
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two-dimensional case, it is clear that the corresponding
curves for different L all tend to 1 as nvac → 0, but there is
no crossing point at any nonzero nvac accessible to our
numerics. However, on the cubic lattice, we see that there is
a clear crossing point in the vicinity of the previously
identified threshold near nvac ≈ 0.6, signaling the presence
of a percolation transition at a nonzero critical dilution in
this three-dimensional case.
Thus, our two-dimensional results strongly suggest that

the nvac → 0 limit in two dimensions may be fruitfully
thought of in terms of universality and critical scaling
associated with an incipient percolation phenomenon
corresponding to a critical point at nvac ¼ 0. By the same
token, our three-dimensional results motivate a scaling
description in the vicinity of the threshold nvac ≈ 0.6,
associated with a transition to a percolated phase. In
addition, the results at lower dilution point towards the
possibility of a second transition near nvac ≈ 0.35within the
percolated phase.

VII. RANDOM GEOMETRY OFR-TYPE REGIONS

With this motivation, we now present finite-size scaling
analyses of incipient percolation of R-type regions in the
nvac → 0 limit in two dimensions, and of the corresponding
percolation transition in thevicinity ofnvac ≈ 0.6 in the three-
dimensional cubic-lattice case. In the three-dimensional
case, we also analyze the geometry of the largest R-type
regions in the vicinity of a second transition deep within the
percolated phase. Our analysis establishes that this is a
sublattice symmetry-breaking transition. A study of the
analogous scaling behavior of just the odd R-type regions,
i.e., with odd imbalance I , is also interesting since each such
region hosts a robust zero-energy Majorana fermion excita-
tion of the corresponding bipartite Majorana network
described by Eq. (3). This is presented in the Appendix,
which also describes our detailed study of themorphology of
the largest R-type regions as a function of the dilution.

A. Overview of analysis

Our computational resources do not allow a study of
large-enough samples in the small-dilution regime with
nvac < 0.04 (nvac < 0.06) on the honeycomb (square)
lattice at present. As a result, we cannot definitively rule
out the possibility that there is a percolation transition at a
small nonzero nhvac ≪ 0.04 (nsvac ≪ 0.06) on the honey-
comb (square) lattice, rather than an nvac ¼ 0 critical point
on both lattices. Nevertheless, Occam’s razor dictates that
we first explore the simpler description in terms of an
nvac ¼ 0 critical point in two dimensions. On the cubic
lattice, we are limited to nvac ≳ 0.2. Fortunately, both
transitions we study on the cubic lattice occur at much
higher dilutions, and this limitation is therefore not a
serious constraint. Thus, the main caveat attached to the
various rather interesting implications of our two-dimen-
sional results is the possibility of a percolation threshold at
an extremely small but nonzero nvac, both on the square and
on the honeycomb lattice. This possibility would leave all
our conclusions unaffected for nvac greater than this
currently inaccessible threshold value in two dimensions
while possibly introducing a new regime with volume-law
entanglement entropy in the phase diagram of the quantum
dimer models of Sec. II and a delocalized phase of the
particle-hole symmetric quantum percolation problem.
Guided by the usual finite-size scaling ideas [58], and by

an analogy to the scaling picture of the standard geometric
percolation transition [2,3,56–58], we ask if various
observables in the vicinity of nvac ¼ 0 (ncritvac) in two
dimensions (on the three-dimensional cubic lattice), when
rescaled by a suitable power of the system size L, collapse
onto scaling functions of the scaling variable δ̄s ≡ nvacL1=ν

[δ̄s ≡ ðnvac − ncritvacÞL1=ν] for a suitable dimension-specific
choice of ν and, in the three-dimensional cubic case, a
lattice-specific choice of ncritvac.

FIG. 10. Probability P that a sample with periodic boundary
conditions has at least one R-type region that wraps around the
torus in at least one direction. In two dimensions, this tends
towards P ¼ 1 in the small-nvac limit, but curves for different
sample sizes L never cross each other at any nonzero nvac
accessible to our numerical work. In contrast, for the cubic lattice,
this rises sharply to P ≈ 1 around nvac ≈ 0.6, with curves of
different sizes crossing one another at a sharply defined threshold
value. See Sec. VI for details.
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As in any such finite-size scaling analysis, one can either
identify a single best-fit set of exponents that simultane-
ously achieves a good scaling collapse of all critical
properties, or one can find the best-fit exponents individu-
ally for each critical observable. In the former approach, the
observed quality of the simultaneous scaling collapse
serves to validate the underlying scaling hypothesis. In
the latter approach, the spread in the values of best-fit
exponents obtained from different observables contributes
to the uncertainty in estimates of various exponents. We
have explored both approaches. Here, we display scaling
collapses corresponding to a single set of best-fit exponents
to provide the reader with a direct visual confirmation of
scaling behavior, but we quote conservative error bars that
are dominated by the spread in their values within the
second approach.

B. Universal scaling at the percolation threshold

We begin by studying the scaling behavior of the
wrapping probability P. In Fig. 11, we see that this scaling
hypothesis gives a rather good account of our data for these
wrapping probabilities. Note that these wrapping proba-
bilities, being dimensionless variables, require no rescaling
by any power of L. Next, we consider another dimension-
less ratio Rmax=L. In Fig. 12, we again see that this scaling
hypothesis gives an extremely good account of the data for
Rmax=L. Since ξ represents the correlation length associated
with the sample-averaged geometric correlation function,
we expect that ξ=L will also exhibit scaling behavior
analogous to Rmax=L. In Fig. 13, we see that this is also
the case.
Next, we consider two dimensionful quantities, the

susceptibility χ, and the mean mass of the largest R-type
region, defined as mmax ≡ hmaxðmA

max; mB
maxÞi. For the

susceptibility, we expect that our data for χ=L2−η at various

(a)

(b)

FIG. 11. (a) Data for Pðnvac; LÞ, the probability that a two-
dimensional L × L sample (with periodic boundary conditions
and dilution nvac) has at least one R-type region that wraps
around the torus in at least one direction, collapse onto a single
scaling curve when data for various L and nvac are plotted against
the scaling variable nvacL1=ν for small values of nvac. (b) Left
panel: plot against nvac of the corresponding probability P for an
L × L × L site-diluted cubic lattice. Note that curves correspond-
ing to different L cross at a threshold ncritvac in the vicinity of
nvac ¼ 0.6. (b) Right panel: In the three-dimensional case, data
for this probability Pðnvac; LÞ collapse onto a single scaling curve
when plotted against the scaling variable ðnvac − ncritvacÞL1=ν for
nvac close to ncritvac. See Sec. VII for details.

(a)

(b)

FIG. 12. (a) Data for Rmaxðnvac; LÞ, the sample-averaged radius
of gyration of the largest R-type region in two-dimensional L ×
L samples at various values of nvac, collapse onto a single scaling
curve when Rmax=L is plotted as a function of nvacL1=ν for small
values of nvac. (b) Left panel: same quantity on three-dimensional
L × L × L cubic lattices, plotted as a function of nvac. Note that
curves corresponding to different L display a sharp crossing at a
threshold ncritvac near nvac ≈ 0.6. (b) Right panel: data for Rmax=L
from L × L × L cubic lattices collapse onto a single scaling curve
in the vicinity of this threshold when plotted as a function of the
scaling variable ðnvac − ncritvacÞL1=ν. See Sec. VII for details.
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L collapse onto a single curve when plotted versus the
scaling variable δ̄s for nvac in the vicinity of the putative
critical point. Similarly, we expect that mmax=Ld=2þ1−η=2

exhibits an analogous scaling collapse. In Fig. 14, we see
that these expectations are both borne out by our data.
We have also studied the scaling behavior of the

analogous observables constructed by considering only
the odd R-type regions, with odd imbalance I . Our basic
conclusion is that restricting attention to such odd R-type
regions does not change the scaling picture. Some illustrative
examples of this scaling behavior are presented in the
Appendix. From this, we conclude that the spatial extent
of topologically robust zero-energy Majorana excitations
also exhibits the same critical behavior in the nvac → 0 limit.
However, we caution that their density noddR does not exhibit
critical behavior since it is dominated by small, oddR-type
regions.

Although we have set η ¼ 0 in all the tests of scaling
displayed here, we emphasize that scaling collapses of
comparable quality can also be achieved for η≲ 0.06 in
two dimensions and η≲ 0.03 in the cubic case. Nonzero

(a)

(b)

FIG. 13. (a) Data for ξðnvac; LÞ, the correlation length corre-
sponding to the sample-averaged geometric correlation function
Cðr − r0Þ of two-dimensional L × L samples at various values of
nvac, collapse onto a single scaling curve when ξ=L is plotted as a
function of nvacL1=ν for small values of nvac. (b) Left panel: same
quantity on three-dimensional L × L × L cubic lattices, plotted as
a function of nvac. Note that curves corresponding to different L
display a sharp crossing at a threshold ncritvac near nvac ≈ 0.6.
(b) Right panel: data for ξ=L from L × L × L cubic lattices
collapse onto a single scaling curve in the vicinity of this
threshold when plotted as a function of the scaling variable
ðnvac − ncritvacÞL1=ν. See Sec. VII for details.

(a)

(b)

(c)

FIG. 14. In panels (a) and the left panel of (c), for appropriate
dimension-dependent choices of ν and η, the susceptibility χ
associated with the sample-averaged geometric correlation func-
tion Cðr − r0Þ in two-dimensional L × L samples [three-dimen-
sional L × L × L samples], when rescaled by L2−η, collapses onto
a single curve when plotted as a function of nvacL1=ν

[ðnvac − ncritvacÞL1=ν] for small nvac [for nvac close to ncritvac]. In
panels (b) and the right panel of (c), mmax, the sample-averaged
mass of the largest R-type region in two-dimensional L × L
samples (three-dimensional L × L × L samples), when rescaled
by Ld=2þ1−η=2 with d ¼ 2 (with d ¼ 3), shows analogous scaling
behavior. See Sec. VII for details.
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values of η are generically accompanied by slightly larger
best-fit values for the correlation length exponent ν.
Folding the results of this systematic analysis into our
error estimates, we conclude that ν2D ¼ 5.1� 0.9,
ν3D ¼ 0.87� 0.1, η2D ≲ 0.06, η3D ≲ 0.03. Additionally,
we obtain a rather accurate determination of the
Dulmage-Mendelsohn percolation threshold of the cubic
lattice: ncritvac ¼ 0.5956ð5Þ.

C. Sublattice symmetry-breaking transition

As noted earlier, several properties dominated by the
geometry of the largestR-type regions display a distinctive
feature in the vicinity of a dilution of nvac ≈ 0.35 on the
cubic lattice. Here, we argue that this signals an interesting
sublattice symmetry-breaking transition at a sharply
defined threshold nlowvac ¼ 0.35ð1Þ. To this end, we first
note that just below the percolation threshold of ncritvac in the
limit of large L, we find that there are always exactly two
clusters that both wrap in three independent directions
around the torus and no clusters that wrap in just one or two
independent directions. A closer inspection of our data
reveals that one of these is always anRA-type region while
the other is an RB-type region.
To explore this further, we keep track of the number of

R-type regions in a sample that wrap in three independent
directions in the large-size limit and study the dilution
dependence of the corresponding ensemble average Nxyz in
the low and intermediate dilution regimes. From Fig. 15,
we see that this number drops from 2 to 1 at the threshold
value of nlowvac ¼ 0.35ð1Þ, with this threshold becoming
increasingly sharp as one approaches the thermodynamic
limit. Unlike the critical scaling in the vicinity of the
percolation transition at ncritvac, the behavior in the vicinity of
this threshold has a distinct first-order character, with
curves of Nxyz corresponding to different L showing no

crossing point. The corresponding number for odd R-type
regions also shows a sharp drop, from a mean value of 1 to a
mean value close to 0.5. We also monitor the sample
average of the ratio jmA

max −mB
maxj=mtot as a function of the

dilution (Fig. 16). In the thermodynamic limit, we find that
this exhibits a sharply defined transition, becoming nonzero
as soon as we cross into the low-dilution phase with
nvac < nlowvac . This nonzero value serves as the order param-
eter corresponding to the spontaneous breaking of sub-
lattice symmetry in this low-dilution phase.

VIII. DISCUSSION

We have provided convincing evidence for a new
universality class of percolation phenomena in site-diluted
bipartite lattices in two and three dimensions. These
phenomena are associated with the end-to-end connectivity
of regions of the lattice with local sublattice imbalance,
identified using the structure theory of Dulmage and
Mendelsohn. This geometric criticality is expected to be
associated with monomer percolation in the maximally
packed dimer model on these lattices, with a transition from
area law to volume law in the entanglement entropy of
arbitrary many-body eigenstates of the corresponding
quantum dimer models, with the quantum percolation
transition of a zero-energy particle hopping on such a
lattice, and with a Majorana percolation transition gov-
erning the spatial extent of collective zero-energy Majorana
fermion excitations of the corresponding bipartite network
of localized Majorana modes. In addition, these results on
the geometry of regions with local sublattice imbalance
also shed light on the origin of low-energy triplet excita-
tions in diluted quantum antiferromagnets.
Here, we first provide a heuristic reinterpretation of our

geometric results and then discuss, in more detail, their

FIG. 15. Nxyz, the number of R-type regions that wrap around
cubic lattice in three independent directions, jumps at a sharply
defined threshold nlowvac ¼ 0.35ð1Þ from 2 to 1 in the thermody-
namic limit. Correspondingly, the number Nodd

xyz of such odd R-
type regions jumps from a mean value of 1 to a mean value close
to 0.5. See Sec. VII C for details.

FIG. 16. Sample averaged ratio jmA
max −mB

maxj=mtot displays a
jump in the thermodynamic limit at a sharply defined threshold
value nlowvac ¼ 0.35ð1Þ, corresponding to an abrupt onset of
sublattice symmetry breaking. See Sec. VII C for details.
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implications in various contexts. In addition, we describe
how our results lead to a unified perspective on two
apparently disparate strands of recent work, one of which
deals with dimer models on the quasiperiodic Penrose tiling,
while the other studies tight-binding models on the same
lattice.

A. Heuristic reinterpretation of results

At the risk of oversimplification, we present here a
heuristic interpretation of our results on the random
geometry of the Dulmage-Mendelsohn decomposition of
diluted bipartite lattices. This is based on the coarse-grained
Coulomb phenomenology of fully packed dimers on the
parent bipartite lattices [59–62]. As is well known, in this
way of thinking, a fully packed dimer configuration
corresponds to a divergence-free configuration of a polari-
zation field P. An unmatched site on the A (B) sublattice
corresponds to the location of a unit positive (negative)
electric charge in this description.
Now consider the undiluted square or honeycomb lattice

with boundary conditions that allow a perfect matching. If
we remove exactly one A site (say, the site A0 at the origin)
and look for a maximum matching, it is clear that any such
maximum matching leaves one B site of the diluted lattice
unmatched. The coarse-grained picture for this ensemble of
maximum matchings then has a static unit charge þ1 at the
origin A0 and a mobile unit negative charge that is attracted
to the origin by an entropically generated logarithmic
“Coulomb potential” VðrÞ ¼ ηm lnðrÞ of strength ηm; ηm
is expected to be equal to 1=2 for the square and
honeycomb lattice dimer models [63–65]. At this coarse-
grained level of description, it seems clear that this mobile
charge can diffuse anywhere on the lattice, with the
probability for being at distance r from the origin falling
off in equilibrium as expð−VðrÞÞ. In the three-dimensional
case, the corresponding potential is the usual three-dimen-
sional Coulomb potential of an isolated charge, VðrÞ ∼
−1=r at large r. In other words, one expects that there is a
single Dulmage-Mendelsohn region RA0

that spans the
whole lattice. For the square and honeycomb lattices, this
can presumably be verified by a direct free-fermion
(Pfaffian) calculation of the lattice-level partition function
with exactly two monomers fixed at two given locations.
What about a nonzero density of vacancies? One may

again think of each vacancy as being a static charge with a
sign given by the sublattice. But it is no longer clear if the
“screening cloud” provided by a mobile monomer on the
other sublattice extends over all space. Indeed, in this
heuristic language of fluctuating electrostatics, our results
on the nontrivial geometry of R-type regions of slightly
diluted samples correspond to a phenomenon whereby a
group of vacancies seeds a “screening cloud” of mobile
charges that are all of like sign and confined to a finite
region of the lattice (corresponding to an individualR-type
region).

The typical size of this screening cloud grows as ξ ∼
n−ν2Dvac in the nvac → 0 limit in two dimensions; on the cubic
lattice, it undergoes a percolation transition at a nonzero
dilution threshold ncritvac ¼ 0.5956ð5Þ. A curious aspect of
our computational results is that such a group of vacancies
does not correspond to static charges that all have the same
sign. Instead, whenever the screening cloud is made up
entirely of positive (negative) screening charges, negatively
(positively) charged vacancies outnumber positively (neg-
atively) charged vacancies by an amount proportional to the
number of mobile screening charges. The three-dimen-
sional cubic lattice also displays another interesting phe-
nomenon: Below a lower threshold of nlowvac ¼ 0.35ð1Þ, only
one spontaneously chosen kind of polarization cloud
percolates in each sample, either with positive screening
charge or with negative screening charge. Screening clouds
of the opposite charge remain finite in extent. This
spontaneously breaks the sublattice symmetry of the
underlying statistical ensemble from which diluted samples
are drawn. In contrast, for nlowvac < nvac < ncritvac, screening
clouds of both signs of charge percolate through the
sample.
It is natural to ask if this restatement of our results in

Coulomb language suggests a scaling argument for the
scaling behavior at low density. However, any attempt at a
low-density scaling argument must first deal with the
following difficulty: A key ingredient of any such argument
would have to be some kind of large deviation estimate or
Griffiths argument for the likelihood of having regions of a
given sizewith extensive local sublattice imbalance and a site
boundarymade up entirely of sites belonging to the sublattice
that is locally in theminority. It is this constraint on the nature
of the boundary that complicates any such argument. We
have not been able to overcome this difficulty, which
represents an interesting question for future work.

B. Implications for quantum percolation
and Majorana percolation

As we have already remarked earlier, R-type regions
remain localized in two dimensions at any nonzero dilution
nvac, no matter how small, but are characterized by a
growing length scale ξ ∼ n−ν2Dvac in the limit of nvac → 0. Our
results thus imply that the corresponding quantum perco-
lation problem does not have a delocalized phase at any
nonzero nvac. Further, our results suggest that the low-
dilution limit is associated with interesting scaling behavior
of the localization length ξloc (defined in Sec. IV D), which
determines the conductivity tensor of the system at zero
chemical potential. However, there is a subtlety associated
with this, which we now highlight.
Strictly speaking, our results only tell us that ξloc < ξ.

However, since bipartite random hopping problems are
characterized by a localization length that diverges as the
band center ϵ ¼ 0 is approached, we expect that ξloc will
also grow without bound whenever ξ diverges [45,46],
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although we emphasize that we have not studied this
directly in our work here.
Likewise, in three dimensions, on the cubic lattice at

μ ¼ 0, our identification of a Dulmage-Mendelsohn per-
colation threshold ncritvac ¼ 0.5956ð5Þ serves to establish the
presence of a localized phase of the fermion system for
nvac ∈ ðncritvac; n

gp
vacÞ, where ngpvac ≈ 0.688 [2,3] is the geomet-

rical site percolation threshold of the cubic lattice. With the
same caveat as above, the particle-hole symmetric fer-
mionic system with μ ¼ 0 is thus expected to undergo a
metal-insulator transition at ncritvac, allowing us to identify the
Dulmage-Mendelsohn percolation transition with the μ ¼ 0
quantum percolation transition. What about the sublattice
symmetry breaking that sets in below nlowvac on the site-
diluted cubic lattice? While the implications of this for
transport in the free Fermi system are not entirely clear, it
seems likely that a small Hubbard interaction U in this
regime will give rise to interesting magnetic properties
associated with the formation of local moments whose
spatial profile is controlled by ΔGðr; r0Þ. Some closely
related possibilities for follow-up work are discussed
in Sec. IX.
Further, since R-type regions with odd imbalance I

exhibit the same signatures of Dulmage-Mendelsohn per-
colation as those with even I , the spatial structure of the
collective zero-energy Majorana fermion excitations of the
corresponding Majorana networks is also expected to
exhibit critical behavior, with the same caveat as above.
All of this provides a strong motivation for a detailed
numerical study of the character of the zero-energy wave-
functions inside the largest R-type regions that dominate
both the low-dilution limit in two dimensions and the
critical regime in the vicinity of Dulmage-Mendelsohn
percolation transition in three dimensions.

C. Area-law scaling of entanglement entropy in
maximally packed quantum dimer models

These computational results on the random geometry of
R-type and P-type regions thus imply, via the argument
presented in Sec. IV B for the tensor-product structure of
arbitrary many-body eigenstates, the existence of a phase
with area-law entanglement entropy [66] of all many-body
eigenstates of the corresponding maximally packed quan-
tum dimer models in two and three dimensions.
In particular, we expect that any nonzero dilution leads to

such behavior in site-diluted quantum dimer models on the
square and honeycomb lattices in two dimensions. The
prefactor of this area-law entanglement entropy is expected
to diverge in the nvac → 0 limit. Similarly, on the three-
dimensional cubic lattice, the corresponding site-diluted
quantum dimer models are expected to exhibit such area-
law behavior for nvac > ncritvac, with the prefactor of the area
law again expected to diverge as nvac → ncritvac. Since these
phases exist at dilutions well below the geometric perco-
lation threshold both in two and in three dimensions, they

represent genuinely interesting and nontrivial examples of
area-law behavior.
Likewise, the Dulmage-Mendelsohn percolation transi-

tion at ncritvac is expected to correspond to a genuine
entanglement transition to area-law behavior in such
cubic-lattice quantum dimer models. Curiously enough,
the only uncertainty in connection with this expectation has
to do with the existence of a volume-law entanglement
entropy in the presence of disordered couplings in such
quantum dimer models when R-type regions percolate for
nvac < ncritvac; while our arguments conclusively establish
area-law behavior for nvac > ncritvac, they do not say anything
definite about the existence of a volume law for nvac < ncritvac
in the presence of quenched disorder in the coupling
strengths.
As noted in Sec. IV B, the tensor-product structure of

many-body eigenstates is not entirely fragile, and it remains
unaffected by additional ring-exchange and potential-
energy terms defined on larger flippable loops, as well
as next-nearest-neighbor interactions between monomers.
Nevertheless, since the three-dimensional transition at ncritvac
on the cubic lattice is entirely driven by the underlying
Dulmage-Mendelsohn percolation transition, a generic
many-body-localization critical point in higher dimensions,
if it exists, will most likely be in a different universality
class. Loosely speaking, the situation is akin to the
ferromagnetic quantum phase transition of the two-dimen-
sional or three-dimensional transverse field Ising model on
a diluted lattice, which is also driven entirely by the
underlying percolation transition of the diluted lattice. In
that case, the percolation-driven transition [67] does share
some features with the strong-disorder fixed point [68]
controlling the ferromagnetic quantum phase transition of
the random transverse field Ising model in higher dimen-
sions. It is not clear if this will be the case for the
geometrically driven transition identified here since area-
law entanglement entropy is only one of several different
ways in which many-body localization manifests itself
[66]. In Sec. IX, we outline a specific suggestion for follow-
up work that could address a related question.

D. Implications for diluted quantum antiferromagnets

Turning to implications for diluted quantum antiferro-
magnets, our work strongly suggests that it would be
extremely interesting in follow-up work to repeat the earlier
QMC calculations [38,39] but at much smaller values of
nvac, corresponding to the low-dilution limit of the site-
diluted square lattice rather than the vicinity of the geo-
metric percolation threshold studied earlier [38,39].
The rationale for this suggestion is as follows: In the

valence-bond picture, the antiferromagnetically ordered
ground state can be thought of as a wavefunction with a
broad distribution of valence-bond lengths, so two spins far
away from each other have a sizable amplitude for freezing
into a singlet state. On the other hand, valence-bond solid
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and spin-liquid ground states are expected to be described
by a wavefunction in which the valence bonds are short-
ranged [69].
In the extreme limit in which the valence bonds only

form singlets between nearest-neighbor pairs of spins, it
becomes possible to make a precise connection between
monomers in the maximally packed dimer model, on the
one hand, and dangling free spins in the magnet; these
dangling free spins are expected to lead to a Curie tail in the
low-temperature susceptibility. Conversely, in an antiferro-
magnetically ordered state, monomers of the maximally
packed dimer model are not expected to be related in such a
direct way to dangling free spins.
Nevertheless, the results of Ref. [39] provide clear

evidence that anomalously low-energy triplet excitations
in the antiferromagnetically ordered phase of diluted square
lattice antiferromagnets have a spatial distribution that is
accounted for quite well by identifying regions of the lattice
that can host monomers in the maximally packed dimer
model. These results of Ref. [39] are in a regime with fairly
high levels of dilution, close to the geometric percolation
threshold.
Our heuristic explanation for this close correspondence

between low-energy triplet excitations and monomer-car-
rying regions is as follows: As noted above, there is a direct
correspondence between monomers and free spins if
valence bonds are strictly restricted to nearest-neighbor
links. From this point of view, the main effect of the longer-
range valence bonds in the antiferromagnetically ordered
phase is then to form singlets between two such would-be
dangling spins on opposite sublattices of the square lattice.
Since monomers in anRA-type (RB-type) region all live

on the A (B) sublattice, such a longer-range singlet between
two dangling spins would need to extend from oneRA-type
region to a neighboring RB-type region. The longer the
range over which such a singlet is formed, the lower the
corresponding binding energy or singlet-triplet gap. Thus,
our picture is that the low-energy triplet excitations found
in the antiferromagnetically ordered phase in Ref. [39]
correspond to triplet excitations of these longer-range
valence bonds that connect an A-sublattice site of an RA
region with a B-sublattice site of an adjacent RB region.
This is plausible because our results show that R-type

regions tend to be rather small in extent in the high-dilution
regime studied in Ref. [39]. As a result, the longer-range
valence bonds characteristic of the antiferromagnetically
ordered ground state can readily form singlets between two
spins in two differentR-type regions, giving rise to low but
nonzero-energy triplet excitations.
However, in the nvac → 0 limit, our results show that R-

type regions are very large in size. In this regime, valence
bonds that straddle two adjacentR-type regions would then
need to be extremely long. Based on the picture developed
above, the corresponding triplet excitation energy would be
extremely small. In other words, slightly diluted samples

with very small nvac may be reasonably expected to carry a
signature of the diverging length scale ξ ∼ n−ν2Dvac in their
triplet excitation spectrum.
The analogous system in three dimensions, say, a diluted

quantum antiferromagnet on the cubic lattice, presents
interesting questions of its own: Does the Dulmage-
Mendelsohn percolation transition identified here corre-
spond to a qualitative change in the nature of these triplet
excitations? Does the sublattice symmetry breaking found
deep in the low-dilution phase give rise to observable
effects in the triplet excitation spectrum of the antiferro-
magnet? It would be interesting to explore these questions
via QMC simulations, although the large length scales
involved pose a significant challenge. Other closely related
suggestions for follow-up work are described in Sec. IX.

E. An aside: Tight-binding and dimer models on the
Penrose tiling

There is a fairly large body of work going back nearly
four decades, whose focus has been the spectrum of tight-
binding models defined on quasiperiodic lattices, most
prominently, the Penrose tiling made up of rhombi. For
instance, Kohmoto and Sutherland [70] noted that the
hopping Hamiltonian for a quantum mechanical particle
hopping along links of the Penrose tiling had extensively
degenerate zero-energy states with localized wavefunc-
tions. In subsequent work, Arai and collaborators provided
a partial characterization of these localized wavefunctions
by identifying certain geometric motifs that supported such
states [71]. Based on this, they also arrived at a conjecture
for the density of such localized zero-energy states in the
thermodynamic limit.
In an insightful analysis [26], Koga and Tsunetsugu

exploited the self-similar nature of the Penrose tiling to
arrive at an essentially complete characterization of the
geometric motifs that support such localized zero modes
and proved the conjecture of Arai and co-authors.
Recognizing that local sublattice imbalance is an essential
feature of these geometric motifs, Koga and Tsunetsugu
also obtained a detailed characterization of the antiferro-
magnetic order that develops for infinitesimal on-site
repulsion in the Hubbard model on this lattice. This local
sublattice imbalance associated with these geometric motifs
was also emphasized in very recent work [72].
On the other hand, in the recent work of Flicker and

collaborators [73], essentially the same geometric motifs
seem to arise in the course of their analysis of the density of
monomers in any maximum matching of the Penrose tiling.
Their result for the monomer density also corresponds
exactly to the previously obtained density of zero modes
of the hopping problem. Moreover, their characterization of
regions accessible to monomers bears an uncanny resem-
blance to the earlier characterizations of the localized zero-
mode wavefunctions of the hopping problem.
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Using the perspective developed here, we see that this is
no coincidence: Indeed, it becomes apparent that the results
of Koga and Tsunetsugu amount to an essentially complete
analytic characterization of the Dulmage-Mendelsohn
decomposition of the Penrose tiling, which was independ-
ently rediscovered in the context of maximum matchings
by Flicker and collaborators. Moreover, this suggests other
natural questions that appear to be worth studying. These
are discussed in Sec. IX.

IX. OUTLOOK

The foregoing results and their interpretation lead us to
identify several natural lines of enquiry. We conclude by
listing some of these as suggestions for potentially fruitful
follow-up studies.
We begin with a question about the nvac → 0 limit in two

dimensions. Our results imply that there is a hierarchy of
growing length scales in this limit: lvac ∼ 1=

ffiffiffiffiffiffiffiffi
nvac

p
,

lw ∼ 1=
ffiffiffiffi
w

p
, and ξ ∼ 1=nνvac, with ν2D ¼ 5.1� 0.9 ensuring

that lvac ≪ lw ≪ ξ. Thus, R-type regions in finite-size
systems with lw ≪ L ≪ ξ “look” critical, in the sense that
standard finite-size scaling ideas strongly suggest that their
properties would be controlled by the incipient critical
point at nvac ¼ 0. Given that the critical point of classical
percolation in two dimensions has conformal invariance
[56,57], is there some sense in which a similar enlarged
symmetry governs the behavior of such R-type regions?
The next two questions concern both this critical regime

in the vicinity of nvac ¼ 0 in d ¼ 2 and the corresponding
critical regime in the vicinity of ncritvac ¼ 0.5956ð5Þ on the
cubic lattice: The localization length ξloc that controls the
conductivity tensor of the free Fermi gas [Eq. (2)] obeys
the bound ξloc < ξ but may also be expected to diverge
whenever ξ diverges (since the localization length in the
closely related bipartite random hopping problem is
expected to diverge as one approaches the band center
[45,46]). Is the ratio ξloc=ξ in the critical regime charac-
terized by an independent scaling exponent, and does this
depend on the presence of hopping disorder? A similar
question arises in a natural way for the monomer and dimer
correlation lengths ξM and ξD in the associated maximally
packed dimer model [Eq. (1)]: What is the behavior of
ξM=ξ and ξD=ξ in this critical regime, and how does it
depend on the strength of the bond disorder?
It would also be interesting to ask if some of the

universal aspects of our results extend to situations in
which bonds are diluted randomly instead of sites, both in
two and in three dimensions. In addition, it would be
interesting to study Dulmage-Mendelsohn percolation on
other diluted planar bipartite graphs, most notably, hyper-
bolic graphs similar to those studied recently in the context
of circuit quantum electrodynamics [74] and network
theory [75]. The percolation theory of such graphs is a
well-developed subject in the mathematical literature [76],

and it would be interesting to explore the possible critical
behavior of Dulmage-Mendelsohn clusters in this setting.
The next suggestion has to do with a natural generali-

zation to random regular bipartite graphs. For such graphs,
there is no notion of geometric distance between vertices,
but the question of the distribution of sizes of the Dulmage-
Mendelsohn clusters remains interesting. This is because
recent work has already identified interesting algorithmic
implications of the size of a maximum matching for
some problems in computer science [77]. Given our argu-
ments about the factorization of themonomer-dimer partition
function into factors associated with Dulmage-Mendelsohn
clusters, it would also be interesting to study the size
distribution of Dulmage-Mendelsohn clusters in this algo-
rithmic context. Given that some results for such graphs can
be obtained analytically, there is also the intriguing possibil-
ity of obtaining some exact results in this setting.
Another natural question has to do with the statistics of

overlap loops and paths. The dimer model on the undiluted
square and honeycomb lattices has a useful coarse-grained
description in terms of a compact scalar height field with a
Gaussian action [59,60,62,78]. Dimer correlations and
correlations of test monomers are readily related to corre-
lation functions of this Gaussian theory, which can be
computed exactly. In a certain well-defined sense, corre-
lation functions in these dimer models exhibit conformal
invariance [78]. The double dimer model [79] consists of
two independent copies of the dimer model, with the
partition function given by the square of the dimer model
partition function. In such a double-dimer model, the
interesting observables are overlap loops built by tracing
closed paths that alternately go along dimers in one copy
and then the other. This defines an ensemble of loops,
which is related to the contour lines of a Gaussian free field
theory [80,81] and exhibits conformal invariance in the
scaling limit [79]. In the diluted case, the analog of the
double-dimer model involves two copies of the maximally
packed dimer model. This defines an ensemble of overlap
loops and paths. The following question then arises: What
is the statistics of these loops and paths in the small-nvac
critical regime? The overlap loop ensemble defined by the
fully packed dimer model on the cubic lattice is also
interesting [82]. This motivates a study of the correspond-
ing ensemble of loops and paths on the site-diluted cubic
lattice, particularly in the vicinity of the Dulmage-
Mendelsohn percolation transition.
The next set of questions have to do with the physics of

SU(N) antiferromagnets in a certain large-N limit [83] that
has played a key role in the subsequent conceptual
development of our understanding of quantum disordered
phases of magnets. In these SU(N) models, one sublattice
carries the fundamental representation, and the other has
SU(N) spins that transform under the complex conjugate of
the fundamental. Thinking in terms of the corresponding
Hubbard model, each site has N different fermion orbi-
tals with the constraint that the total fermion number of
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A-sublattice sites is 1, while that of B-sublattice sites is
N − 1. In the large-N limit of this model, the physics is
dominated by the subspace of singlet states spanned by any
fully packed configuration of nearest-neighbor SU(N)
singlet bonds and reduces to a quantum dimer model on
the lattice at leading order in 1=N. At large but finite N,
longer-range valence bonds come into play. Direct com-
putational studies of these models are possible, for exam-
ple, using quantumMonte Carlo (QMC) methods that work
in the basis of bipartite (but not necessarily nearest-
neighbor) valence bonds [84–86]. Such computational
approaches have been used to study the physics of these
systems as a function of N, finding a transition from
quantum antiferromagnetism at N ¼ 2 to a valence-bond
solid state above a threshold value of N [87].
Clearly, the analogous large-N limit of the diluted model

will exhibit interesting effects associated with the presence
of a nonzero density of monomers in the corresponding
maximally packed dimer model. Since these monomers are
expected to be associated with SU(N) spinon degrees of
freedom that cannot be quenched by short-ranged singlet
bonds, it would be interesting in the site-diluted case to
revisit this large-N limit, and to perform QMC studies of
the corresponding finite-N behavior in the limit of low
dilution (i.e., when the typical size ξ of R-type regions
becomes very large). It would also be interesting to study
resonating nearest-neighbor valence-bond wavefunctions
[88,89] for such SU(N) antiferromagnets: In the pure case,
these are singlet wavefunctions that map to interesting loop
ensembles that interpolate between the classical dimer
model and the double-dimer model [90–92]. In the site-
diluted case, their generalizations will describe degenerate
ground states with a nonzero spinon number [93–98] and
map on to an ensemble of loops and paths closely related to
the double-dimer model on the diluted lattice. It would be
interesting to study the spinon localization properties of
these wavefunctions on such slightly diluted lattices,
especially given the divergent size of the R- type regions
studied here. It seems likely that these studies will add to
our understanding of the physics of dangling spins and
local moments studied earlier [37–41].
Direct analogs of these questions are also potentially

interesting in the context of Penrose tilings since the results
of Refs. [26,73] provide us with an essentially complete
analytic determination of the Dulmage-Mendelsohn
decomposition of the Penrose tiling. Although there is no
geometric criticality at play in this case, it would clearly be of
interest to (i) use these analytical results to explore the
physics of the Read-Sachdev large-N limit of SU(N) anti-
ferromagnets, (ii) perform a QMC study of the related
physics at large but finite N, (iii) understand the nature of
the SU(N) nearest-neighbor RVB wavefunctions mentioned
above, and (iv) study the closely related ensemble of overlap
loops and paths defined by the double-dimer model.

Next, we note that our results, in conjunctionwith those of
Ref. [26], suggest some interesting questions about local-
moment formation in the particle-hole-symmetric Hubbard
model on site-diluted bipartite lattices. Localized states tied
to the Fermi energy μ ¼ 0 are expected to be intimately
connectedwith thephysics of localmoment formation [99] in
such situations. How is this physics affected by the large
length scale ξ associated with the typical size of R-type
regions at low dilution and by the presence of a nonzero
density of coexisting zero modes in each such region? Does
the topologically protected nature of the zero modes lead to
these moments being relatively robust to perturbations that
preserve the particle-hole symmetry? How is the sponta-
neous breaking of sublattice symmetry reflected in the
magnetic properties of this Hubbard model for nvac < nlowvac
on the cubic lattice? Given that recent scanning tunneling
microscopy experiments [100] have detected direct signa-
tures of π-electron magnetism associated with vacancies in
undoped graphene, these questions may be of particular
interest in the context of vacancy defects in graphene.
Our work also suggests interesting questions about the

thermodynamic susceptibility of Kitaev’s honeycomb
model with nonmagnetic impurities. From the detailed
analysis of vacancy effects in Ref. [24], it is clear that a
vacancy-induced pileup of low (but nonzero) energy
fermionic excitations is associated with a weak singularity
in the low-temperature susceptibility. By analogy with the
results of Ref. [21] on an SU(2) symmetric version [22] of
the Kitaev model, the topologically protected zero-energy
states studied here are expected to lead to a stronger Curie-
like singularity χðTÞ ∼ C=T in the linear susceptibility.
How does the Curie coefficient C scale in the small-nvac
limit of a weakly diluted honeycomb lattice? And does the
topologically protected nature of the zero-energy states
endow this Curie term with some degree of protection
against time-reversal invariant perturbations such as a
Heisenberg exchange term in the spin Hamiltonian?
Finally, we mention what is perhaps the most computa-

tionally challenging suggestion for follow-up work: As
noted in Sec. VIII C, our identification of a phase with area-
law entanglement entropy of arbitrary eigenstates in a class
of maximally packed quantum dimer models (Fig. 4 of
Sec. II) on diluted bipartite lattices relies on the existence of
a particular tensor-product structure (derived in Sec. IV B)
of arbitrary many-body eigenstates. Since this structure is
disrupted by the presence of additional next-next-nearest-
neighbor interactions between monomers (see Sec. IV B),
the following question arises: Can the computational
methods of Refs. [101,102] be extended to study the effect
of this additional interaction on the area-law phases
identified here? Does this area-law behavior survive when
this additional interaction is weak but nonzero?
As one goes through this list of suggestions for follow-up

studies, it is clear that our work opens up a number of
interesting and potentially fruitful lines of enquiry. It also
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becomes obvious that the elephant in the room throughout
has been the bipartite nature of the underlying lattice. Are
there natural generalizations to the nonbipartite case of any of
the geometric questions studied here? Are the corresponding
results in the small-dilution limit interesting? The answer to
the first question turns out to be in the affirmative [103],
motivating follow-up studies aimed at addressing the second
question.
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APPENDIX: SCALING OF ODD R-TYPE
REGIONS AND MORPHOLOGY OF THE

LARGEST R-TYPE REGIONS

As noted in Sec. VI, the density noddR of odd R-type
regions is nonzero in the thermodynamic limit, signaling
the presence of a thermodynamic density of collective zero-
energy Majorana fermion excitations of bipartite Majorana
networks described by Eq. (3). Here, we provide evidence
of critical behavior of such excitations associated with
large, odd R-type regions. This is important from the
perspective of perturbatively stable Majorana modes hosted
by the odd R-type regions. Indeed, this scaling analysis
confirms that these collective zero-energy Majorana fer-
mion excitations of bipartite Majorana networks defined on

FIG. 17. The sample averaged ratiomodd
small=m

odd
tot , wheremodd

small is
the contribution of “small” odd R-type regions (with odd
imbalance and less than 10000 vacancies associated with them)
decreases rapidly with nvac. This may be compared with results
discussed in Sec. VI.

FIG. 18. On the cubic lattice, the largest, odd R-type region
contains a nonzero fraction of the total mass in such odd regions
below a threshold value of nvac ≈ 0.6 in the thermodynamic limit,
as is clear from the displayed results for the sample average of this
fraction. This may be compared with results discussed in Sec. VI.
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such diluted lattices also exhibit the Dulmage-Mendelsohn
percolation phenomena that are the focus of our work.
In Fig. 17, we display the fraction of the total mass of

odd R-type regions that is contained in “small” odd
regions, with smallness defined as in the main text:
“Small” regions have absolute mass m < V=nvac (with
V ¼ 10000). Again, we see that most of the mass is in large
odd regions. A similar conclusion follows more directly in
the cubic-lattice case: In Fig. 18, we display the fraction of
mass of odd R-type regions contained in the largest such
region in the diluted cubic lattice. Again, we see that below
nvac ≈ 0.6, the largest odd region contains a nonzero
fraction of the total mass of such regions in the thermo-
dynamic limit, with this fraction displaying another kink-
like feature at nvac ≈ 0.35. As in the main text, we attribute
this feature to the sublattice-symmetry-breaking transition
studied in Sec. VII C.
In Fig. 19, we display the scaling of ξodd, the correla-

tion length that characterizes the sample-averaged odd

correlation function Coddðr − r0Þ (to which each sample
contributes 1 if both r and r0 belong to the same oddR-type
region in that sample, and zero otherwise). The scaling
behavior of the corresponding odd susceptibility χodd is
displayed in Figs. 20 and 21. The same figures also show
the scaling of the mass of the largest oddR-type region. All
these scaling analyses confirm that the odd R-type regions
share the same critical behavior as the other R-type
regions.
Next, we turn to the morphology of the largest R-type

region in a finite-size sample. This is interesting especially
since very large finite-size-limitedR-type regions dominate
many observables at low dilution, both in two and in three
dimensions. A plausible estimate for the size Bmax of its
boundary is as follows: In the classical theory of percolation,
the analog ofBmax is expected to scale asmmax. This is due to
the fact thatBmax counts both the size of the internal boundary
(due to voids or holes) and the actual size of the external
boundary. As a result, the boundary Bmax of the critical

(a)

(b)

FIG. 19. (a) Data for ξoddðnvac; LÞ, the correlation length
corresponding to the odd analog Coddðr − r0Þ of the sample-
averaged geometric correlation function in two-dimensional L ×
L samples at various values of nvac, collapse onto a single scaling
curve when ξodd=L is plotted as a function of nvacL1=ν for small
values of nvac. (b) Same quantity on three-dimensional L × L × L
cubic lattices, plotted as a function of nvac. Note that curves
corresponding to different L display a sharp crossing at a
threshold ncritvac near nvac ≈ 0.6. Right panel: Data for ξodd=L from
L × L × L cubic lattices in the vicinity of this threshold collapse
onto a single scaling curve when plotted as a function of the
scaling variable ðnvac − ncritvacÞL1=ν. This may be compared with
results discussed in Sec. VII.

(a)

(b)

FIG. 20. (a) For appropriate choices of ν and η, the suscep-
tibilities χodd associated with the odd analog Coddðr − r0Þ of the
sample-averaged geometric correlation function constructed from
just odd R-type regions of two-dimensional L × L samples,
when rescaled by L2−η, collapse onto a single curve when plotted
as a function of nvacL1=ν for small nvac. (b) The masses modd

max of
the largest, odd R-type region in two-dimensional L × L sam-
ples, when rescaled by Ld=2þ1−η=2 with d ¼ 2, show analogous
scaling behavior. This may be compared with results discussed in
Sec. VII.
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cluster in classical percolation is dominated by the contri-
bution of these voids. In our case, it is reasonable to assume
that the analogs of voids are P-type regions since it is clear
from our results that the size of the typical P-type regions
remains very small over the entire range of nvac studied, both
in two and in three dimensions. We estimate that there are of
order mmaxnP such voids, with each void contributing
ðmP=nPÞðd−1Þ=d on average to Bmax. Assembling this infor-
mation, we arrive at the estimate Bmax ∼mmaxnP ×
ðmP=nPÞðd−1Þ=d in d spatial dimensions. Based on this

argument, we expect Bmax=mmax∼mðd−1Þ=d
P n1=dP . In Figs. 22

and 23, we see that this expectation is borne out by the data,
with the corresponding ratio converging very quickly to its
thermodynamic limit in two and three dimensions (indeed, at
the sizes we study, no finite-size effects are readily dis-
cernible). In two dimensions, this ratio has a very mild and
nonsingular dependence onnvac in the limit of small dilution.
On the cubic lattice, we see a noticeable cusplike feature near
nvac ≈ 0.35, which we attribute to a second sublattice-
symmetry-breaking transition (see Sec. VII C).
In Figs. 22 and 23, we also see that the ratio Imaxð1 −

nvacÞ=ðwmmaxÞ saturates quickly to the thermodynamic
limit in both two and three dimensions, with no discernible
finite-size corrections in the range of sizes studied here. In
two dimensions, it has a Oð1Þ value with a mild depend-
ence on nvac. Thus, the largest R-type region has a zero-
mode density that is not very different from the globally
averaged density w of zero modes. On the cubic lattice,
however, this ratio decreases noticeably with nvac inside the
percolated phase, suggesting that the percolated infinite

cluster has a systematically smaller density of zero modes
compared to the sample-wide average in the limit of low
dilution.
Next, we consider Dnw

max þDw
max, which is a measure of

the number of vacancies adjacent to sites that belong to the
largest R-type region (more accurately, it measures the
number of links deleted due to these vacancies). If
this region is not atypical in terms of the overall
density of vacancies associated with it, one would expect
ðDnw

max þDw
maxÞ ∼ nvacmmax=ð1 − nvacÞ. In Figs. 24 and 25,

we see that the corresponding ratio saturates very quickly to
the thermodynamic limit and has a very mild nonsingular
dependence on nvac, thus confirming this basic picture in
both two and three dimensions.
Turning to Dw

max −Dnw
max, we begin by making more

explicit our intuitive picture for the zero modes and
monomers hosted by R-type regions: A local imbalance
in the numbers of surviving sites on the two sublattices
gives rise to these zero modes and mandates the existence

FIG. 21. Left panel: For appropriate choices of ν and η, the
susceptibilities χodd associated with the odd analog Coddðr − r0Þ
of the sample-averaged geometric correlation function con-
structed from just odd R-type regions of three-dimensional L ×
L × L samples, when rescaled by L2−η, collapse onto a single
curve when plotted as a function of ðnvac − ncritvacÞL1=ν for nvac
close to ncritvac. Right panel: The massesmodd

max of the largest, oddR-
type regions in three-dimensional L × L × L samples, when
rescaled by Ld=2þ1−η=2 with d ¼ 3, show analogous scaling
behavior. This may be compared with results discussed in
Sec. VII.

(a)

(b)

FIG. 22. (a,b) From the sample average of the corresponding
ratio on the square and honeycomb lattices, we see that the size
Bmax of the boundary of the largestR-type region is proportional,

with no discernible finite-size corrections, to mmaxm
ðd−1Þ=d
P n1=dP ,

where mmax is the mass of this region and nP (mP) is the total
number (mass) density of P-type regions in the thermodynamic
limit in d ¼ 2 dimensions. From the sample average of the
corresponding ratio, Imax, the number of zero modes hosted by
the largest R-type region scales with wmmax=ð1 − nvacÞ, with no
discernible finite-size corrections.
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of monomers in this region. Since the largestR-type region
hosts a nonzero monomer density, these regions must be
atypical, in thatDw

max −Dnw
max must scale in the same way as

Dw
max þDnw

max, i.e., proportional to mmax, rather than

exhibiting the
ffiffiffiffiffiffiffiffiffiffi
mmax

p
scaling that would characterize a

truly random region of the diluted lattice. In Figs. 24
and 25, we see that this expectation is also borne out by the
corresponding ratio, which converges rapidly to the
thermodynamic limit, again with no discernible finite-size
corrections for the range of sizes studied here. Moreover,
the nvac dependence of this ratio broadly resembles that of
the ratio Imaxð1 − nvacÞ=ðwmmaxÞ.
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[101] H. Théveniaut, Z. Lan, G. Meyer, and F. Alet, Transition to
a Many-Body Localized Regime in a Two-Dimensional
Disordered Quantum Dimer Model, Phys. Rev. Research
2, 033154 (2020).

[102] Francesca Pietracaprina and Fabien Alet, Probing Many-
Body Localization in a Disordered Quantum Dimer Model
on the Honeycomb Lattice, SciPost Phys. 10, 044 (2021).

[103] K. Damle, Theory of Collective Topologically Protected
Majorana Fermion Excitations of Networks of Localized
Majorana Modes, Phys. Rev. B 105, 235118 (2022).

BHOLA, BISWAS, ISLAM, and DAMLE PHYS. REV. X 12, 021058 (2022)

021058-36

https://doi.org/10.1103/PhysRevB.82.024407
https://doi.org/10.1103/PhysRevB.82.024407
https://doi.org/10.1016/j.nuclphysb.2006.05.032
https://doi.org/10.1103/PhysRevE.103.042136
https://doi.org/10.1103/PhysRevB.77.134430
https://doi.org/10.1103/PhysRevB.77.134430
https://doi.org/10.1103/PhysRevB.80.184401
https://doi.org/10.1103/PhysRevB.80.184401
https://doi.org/10.1103/PhysRevB.84.174427
https://doi.org/10.1103/PhysRevB.82.180408
https://doi.org/10.1103/PhysRevLett.108.247216
https://doi.org/10.1103/PhysRevLett.109.147204
https://doi.org/10.1103/PhysRevB.90.245121
https://doi.org/10.1103/PhysRevB.90.245121
https://doi.org/10.1088/1742-5468/2010/08/P08017
https://doi.org/10.1088/1742-5468/2010/08/P08017
https://doi.org/10.1103/PhysRevB.82.155139
https://doi.org/10.1103/PhysRevB.82.155139
https://doi.org/10.1103/PhysRevB.83.235111
https://doi.org/10.1103/PhysRevB.84.235129
https://doi.org/10.1103/PhysRevLett.107.157201
https://doi.org/10.1103/PhysRevLett.107.157201
https://doi.org/10.1103/PhysRevB.86.064418
https://doi.org/10.1103/PhysRevLett.63.82
https://doi.org/10.1103/PhysRevLett.117.166801
https://doi.org/10.1103/PhysRevLett.117.166801
https://doi.org/10.1103/PhysRevResearch.2.033154
https://doi.org/10.1103/PhysRevResearch.2.033154
https://doi.org/10.21468/SciPostPhys.10.2.044
https://doi.org/10.1103/PhysRevB.105.235118

