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We construct high-quality graphene-based van der Waals devices with narrow superconducting
niobium nitride (NbN) electrodes, in which superconductivity and a robust fractional quantum Hall
(FQH) state coexist. We find a possible signature for crossed Andreev reflection (CAR) across the
superconductor separating two FQH edges. Our observed CAR probabilities in the particlelike
fractional fillings are markedly higher than those in the integer and hole-conjugate fractional fillings
and depend strongly on temperature and magnetic field unlike the other fillings. Further, we find a
filling-independent CAR probability in integer fillings, which we attribute to spin-orbit coupling in
NbN allowing for Andreev reflection between spin-polarized edges. These results provide a route to
realize novel topological superconducting phases in FQH-superconductor hybrid devices based on
graphene and NbN.
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I. INTRODUCTION

Topological superconductors are predicted to represent a
phase of matter with nonlocal properties, providing a robust-
ness suitable for quantum computing [1–5]. A theoretical
proposal to synthesize a topological superconductor from a
topological insulator and a conventional (s-wave) super-
conductor has motivated hybrid approaches to realize
Majorana modes. Besides topological insulators [6–8], these
approaches now include spin-orbit coupled semiconductors
[9–14], magnetic atom chains [15], and integer quantumHall
edges [16–19]—all in combination with a superconductor—
offering either a test bed for or a route toward topological
qubits. Common to all of these is the noninteracting
description of charge carriers and Ising topological order
which is insufficient for universal quantum computation

[4]. These approaches, however, can be extended to the
computationally universal Fibonacci order [20] predicted
to emerge in a coupled parafermion array [21].
Parafermions, unlikeMajoranas, require electron-electron

interactions to form, which result in richer non-Abelian
braiding statistics [22]. An established condensed matter
system that forms with interactions is the fractional quan-
tum Hall (FQH) state, which is the basis of different
approaches for synthesizing parafermions [20–29]. The
primary approach—combining a FQH state, appearing in
semiconductor heterostructures, with superconductivity
[21,24–28]—has so far presented two major experimental
challenges. First, the strong magnetic fields required for a
FQH state suppress superconductivity [16–19,30]. Second,
coupling a superconductor to a semiconductor heterostruc-
ture [31] can be difficult, often leading to a nontransparent
interface. Here, we overcome these challenges by using
graphene-based van der Waals (vdW) heterostructures
coupled to superconducting niobium nitride (NbN). The
high device quality decreases themagnetic fields required for
a robust FQH state to the regime where NbN remains
superconducting owing to its large critical field. The super-
conductor edge contact to graphene provides an interface
transparent enough to allow Andreev reflection in quantum
Hall edges.
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II. DEVICE AND CROSSED ANDREEV
REFLECTION IN THE FQH STATE

Figure 1(a) shows the schematic of our vdW hetero-
structure, consisting of single-layer graphene as the con-
ducting channel, which is first encapsulated by hexagonal
boron nitride dielectric and then by graphite on both top
and bottom. This heterostructure maximizes the channel
mobility owing to the metallic graphite layers screening
remote impurities [32,33], which is essential for reaching
the FQH phase at magnetic fields low enough to allow
superconductivity. Figure 1(b) shows a typical device,
including the heterostructure (purple) and a <100-nm-wide

NbN superconductor (blue) which is sufficiently narrow
(coherence length ∼50 nm) [17] to allow the possibility of
crossed Andreev reflection (CAR) between the quantum
Hall edges on both sides (see also Fig. 6 for the images of
the measured devices), a necessary ingredient for realizing
parafermions [34]. CAR dramatically affects transport:
when the injected electronlike charges are drained from
the superconductor, holelike charges propagate away
[Fig. 1(c)].
We have measured the resistance RCAR ¼ VCAR=Iexc as

well as the Hall resistance RXY ¼ VXY=Iexc as a function
of gate voltage (charge carrier density) at a magnetic

(d)

(e)

(c)(b)(a)

(f)

FIG. 1. The device and crossed Andreev reflection (CAR) in a FQH state. (a) Schematic of the heterostructure. Graphene is
encapsulated with boron nitride dielectric and graphite. (b) Typical device including a NbN superconductor <100 nm in width and
∼1 μm in length (blue). The extended arms connect to normal leads (not shown) that are used to bias a current Iexc, measure the voltages
VXX and VXY , the potential of the edge mode propagating toward the superconductor V, and finally that of the edge mode propagating
away VCAR. The superconductor is grounded, remaining leads are floating. The solid and the dashed arrows depict, respectively, the
chiral electron and hole conduction in an out-of-plane magnetic field B. The metal electrodes on top graphite (gate) are bridges that
connect the top gate to leads avoiding the edge of the heterostructure. (c) Illustration of the theory model. A narrow superconductor
induces a pairing gap Δ between the counterpropagating fractional quantum Hall edges along both sides. Δ converts an incoming
electron to an outgoing hole by crossed Andreev reflection. (d) RCAR ¼ VCAR=Iexc and RXY ¼ VXY=Iexc as a function of gate voltage
measured at B ¼ 14 T for different temperatures T. An RCAR < 0 at fractional quantum Hall plateaus indicates hole conductance
(CAR). Measured RXY for ν < 1 (high channel impedance) is slightly lower than the expected quantized values, with up to ∼10%
deviation for ν ¼ 1=3, due to a resulting small low-pass frequency in this experimental setup. Similar signal magnitude reduction is
expected for RCAR for ν < 1. This effect does not result in a spurious negative contribution that can increase the negative CAR reading.
Inset of (d) shows the resistance of a narrow NbN for varying T which superconducts below 8 K at 14 T. (e) RCAR at 1.75 K from (d).
(f) RCAR as a function of filling ν and B measured at 15 mK. CAR (RCAR < 0) is observed at 3 T for ν ¼ 2=3.
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field B ¼ 14 T for different temperatures T [Fig. 1(d)].
Here, VCAR is the potential of the edge mode propagating
away from the grounded superconductor, VXY is the Hall
voltage, and Iexc is the bias current [see Fig. 1(b) for the
circuit]. At low T, RCAR becomes negative for quantized
values of RXY . We find an RCAR < 0 for both integer
fillings 1 and 2 [17], and importantly for several fractional
fillings 1=3, 2=5, 2=3, 5=3—our main finding [enlargement
shown in Fig. 1(e)]. An RCAR < 0 indicates that the
electronlike carriers drained from the superconductor
produce holelike carriers with opposite charge, a direct
result of crossed Andreev reflection, which reverses the
sign of the edge potential. RCAR acquires positive values
either when RXY is nonquantized and the bulk of the device
conducts or when superconductivity is suppressed with
increasing T—both destroying CAR as expected. We
confirm that our narrow NbN superconducts at 14 T for
T < 8 K by measuring a strip with identical dimensions as

the one coupled to the quantum Hall edges [Fig. 1(d),
inset]. In a separate cooldown with T reaching 15 mK, we
find RCAR < 0 for several fractional fillings for a wide
range of B [Fig. 1(f)]. At this low temperature, CAR in the
FQH state can be observed in magnetic fields as low as 3 T
(filling 2=3).

III. SPIN-ORBIT COUPLING (SOC)

Figure 2(a) shows RCAR with the accompanying longi-
tudinal resistance RXX as a function of filling ν. For all
integer fillings RXX, which measures bulk conduction, is
much smaller in amplitude than RCAR, linking RCAR strictly
to the potential of the edge mode leaving the super-
conductor. We find a negative edge potential with con-
sistently increasing amplitude for lower fillings, which
remains negative for all integer ν and measured B dem-
onstrating the robustness of CAR [Fig. 2(a), inset].

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Spin-orbit coupling. (a) RCAR and RXX as a function of filling ν. All integer ν show crossed Andreev reflection (RCAR < 0).
Small RXX indicates negligible bulk conductance. Inset of (a) shows RCAR measured at B ¼ 2;…; 4 T. (b) CAR probability pCAR of the
inset of (a). All integer ν, including the spin-polarized ν ¼ 1, have a comparable pCAR, an evidence for the pairing mechanism being the
same for all integer ν, enabled by spin-orbit coupling. The dashed line is the average pCAR. H0 is the Hamiltonian of the edges, HSC the
pairing, and HSO the spin-orbit Hamiltonian. Z represents incoming charges tunneling to the outgoing edge mode without Andreev
reflection (direct tunneling). (c) Illustration of the edges separated by a superconductor without spin-orbit coupling (λR ¼ 0) for ν ¼ 1,
2, and their calculated Bogoliubov–de Gennes spectrum. No pairing gap is present (Δind ¼ 0). Momentum k in units of l−1B with lB the
magnetic length. Solid lines are the electronlike excitations, dashed lines the holelike. Color code indicates the spin and the direction of
propagation. (d) Inclusion of spin-orbit coupling tilts the spins and enables a pairing gap Δind. The only possible pairing is p wave for
any integer ν irrespective of whether it is spin polarized or not. The inner edge modes pair more strongly due to their proximity to the
superconductor. However, for low energy and temperature, pCAR is expected to be independent of the size of Δind. Here, the value of λR
is chosen to provide a spectral superconducting gap matching the experimentally relevant Δind (see Supplemental Material, Table S3
[35]). (e) pCAR at ν ¼ 2 as a function of the incoming edge mode potential V (excitation) for different gate voltages spanning the entire
QH plateau region. Crossed Andreev reflection is limited to below jeVj ∼ 1 meV. (f) Same as (e) but at ν ¼ 6. CAR is observed
for jeVj < 0.2 meV.
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The increasing amplitude of RCAR with decreasing ν is
connected to the decreasing number of edge modes,
which increases RXY . This dependence of RCAR on ν
can be understood by introducing pCAR ¼ −VCAR=V, the
probability of crossed Andreev reflection, where V is
the potential of the incoming edge mode. The Hall
voltage constrains VXY ¼ V − VCAR, leading to the pro-
portional relation RCAR ¼ −RXY=ð1þ p−1

CARÞ. This allows
us to calculate pCAR from the measured RCAR, and thus
to directly compare the CAR rate between different
fillings. Figure 2(b) shows that pCAR is comparable for
all integer ν, including the spin-polarized ν ¼ 1. This
striking finding provides evidence for the presence of
strong spin-orbit coupling (SOC) in the NbN super-
conductor. Without this SOC, CAR cannot occur in
the spin-polarized edges due to the s-wave superconduct-
ing pairing in NbN. Our Bogoliubov–de Gennes spec-
trum, calculated for integer 1 ≤ ν ≤ 6, supports this
observation [Figs. 7 and 17; see also Fig. 2(b), inset,
Appendix B, and Supplemental Material for the theory
model [35]]. Figures 2(c) and 2(d) show the energy
spectrum of ν ¼ 1 and 2 without and with SOC,
represented in our Hamiltonian by the term λR. A pairing
gap Δind does not open without SOC [Fig. 2(c)]. The
inclusion of SOC allows for pairing (Δind > 0) between
the two counterpropagating spin-up edges of ν ¼ 1, and
separately between the two additional counterpropagating
spin-down edges of ν ¼ 2 [Fig. 2(d)]—pairing between
the edges with opposite spin polarization is forbidden
owing to the difference in their Fermi wave vector kF.
Interestingly, our comparable pCAR for all integer ν and
its magnetic field insensitivity for small Iexc and T
(compared to Δind) is consistent with a topologically
nontrivial Δind.
Our pCAR remains much smaller than unity [36]

because of dissipation (subgap transport due to vortices
expected for our type-II superconductor) as well as direct
tunneling of incoming charges to outgoing edge modes
without Andreev reflection. Direct tunneling is micro-
scopically related to disorder in the graphene-supercon-
ductor interface, which we effectively model with dis-
ordered pairing [37] (see CAR resistance in Supplemental
Material [35] and Figs. 18 and 19). Our model does not
include edge reconstruction [38] or charge accumulation
at the superconductor interface (both discussed below)
but accounts for Andreev edge states demonstrated in
quantum Hall–superconductor hybrids without counter-
propagating edge modes [16,18,19,30,39,40]. Andreev
edge states do not result in a pairing gap (Fig. 17)
and in a graphene-based device produce a response
sensitive to small changes in gate voltage, magnetic
field, and the length of the superconductor interface,
which averages to zero [18]. In contrast, our CAR
response is robust, consistently negative, and independent
of the interface length (Fig. 6), suggesting an induced

pairing. We note that Ref. [19] finds consistently negative
CAR response in InAs-based devices in a geometry
excluding counterpropagating edge modes and supporting
Andreev edge states.
A potential link between CAR and the induced pairing

may also be revealed by spectroscopy. We have varied
the energy of the injected charges by tuning V, serving as
the bias voltage [Fig. 1(b)], and found CAR to be limited
to low energies [Figs. 2(e) and 2(f)]. Notably, the energy
range of CAR in ν ¼ 2 is larger than in ν ¼ 6, consistent
with a larger pairing gap for lower fillings owing to their
edge modes’ closer proximity to the superconductor
(Fig. 19). This gate dependence excludes, for integer
fillings, the effects of nonproximitized residual edge
modes originating from the work function mismatch
between the graphene channel and the superconductor,
which would result in ν-independent spectroscopic prop-
erties. (A work function mismatch tends to produce a
heavily doped region near the contact [41], whose precise
physical extent in our device cannot be measured
directly.)

IV. MAGNETIC FIELD DEPENDENCE

We now extend our analysis of pCAR to fractional ν
and a larger B range. Figure 3(a) shows pCAR and the
accompanying νRXX (RXX normalized for different ν),
with the measured RCAR and RXX at B ¼ 9 T plotted in
Fig. 3(b). For all fractional ν with RCAR < 0, we find a
negligibly small RXX which excludes bulk conduction.
Bulk conduction does, however, result in RCAR > 0

observed for lower values of B or for fractional ν with
smaller excitation gaps. Figure 3(c) shows the B depend-
ence of pCAR for several fractional and integer ν. In this
B range, we again find for several fillings a pCAR that
does not depend on B and is comparable between
different ν, this time including several fractional ν
[Fig. 3(b), inset]. Importantly, this observation is con-
trasted by particlelike fillings ν ¼ 1=3 and 4=3, which
present a well-developed FQH state (negligible RXX)
together with a strong magnetic field dependence. The
origin of this behavior is presently unknown and can be
either a result of edge reconstruction or intrinsic to the
superconducting pairing of FQH edges. Identifying these
scenarios theoretically is challenging due to the interact-
ing many-body nature of a FQH state not allowing for
our Bogoliubov-Dirac-Landau analysis. Experimentally,
we find a pCAR that strongly depends on B (and T,
presented below) only for the particlelike FQH states
whose pCAR is significantly larger than that for integer ν.
Such B and T dependences are much weaker for ν ¼ 2=3
and 5=3, as well as for the FQH states in our second
device—although with a slightly different geometry and
measured at higher T > 1.6 K—whose pCAR are com-
parable to those for integer states (Figs. 4,8–14).
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V. GRAPHENE REGION SURROUNDING THE
SUPERCONDUCTOR

To investigate the pronounced CAR of particlelike
fractions, we simultaneously control top and bottom gate
voltage in our second device, which allows for tuning the
density in the ∼100 nm narrow graphene region sur-
rounding the superconductor without affecting the bulk
filling ν [Fig. 4(a)]. This experimental knob affects the
filling ν0 around the superconductor, which enables the
probing of the profiles of the FQH edges and the extent
of charge accumulation at the superconductor interface
(contact-induced doping). Varying ν0 for constant ν
changes the existing edge modes along the superconduc-
tor, as shown in Fig. 4(b) for the depleted, neutral (ν0
matches ν) and accumulated narrow graphene region.
First, we observe that the particlelike fractional states
ν ¼ 1=3, 2=5 [Fig. 4(c)] produce a qualitatively different
behavior from the integer [Fig. 4(e)] or hole-conjugate

fractional states ν ¼ 3=5, 2=3 [Fig. 4(d)]: while CAR in
the particlelike fractions is limited to the matched regime,
CAR in the integers or hole-conjugate fractions is not
suppressed in the accumulation regime. This could be
related to the details of edge profile and reconstruction in,
for instance, ν ¼ 1=3 and 2=3, where 1=3 is described by
a single edge mode whereas 2=3 is described by counter-
propagating edge modes of 1 and 1=3 which equilibrate
[42,43]. Second, for all FQH states a small decrease of ν0

compared to ν suppresses CAR. These observations are
compatible with the scenario that the accumulation region
in the graphene channel related to contact-induced doping
is very narrow (≪100 nm) and thus fully proximitized,
which can potentially explain the strong CAR response
for particlelike FQH edges. However, we cannot rule out
alternative explanations such as a mundane disorder-
induced origin for our pronounced CAR in certain
fractions.

(c)

(b)

(a)

FIG. 3. Magnetic field dependence. (a) pCAR and RXX (normalized for different ν) as a function of filling and magnetic field B. These
measurements have a step size of 0.5 Tand have been interpolated in B axis corresponding to 0.1 T steps in order to provide visibility for
the evolution of the conductance features in magnetic field. (b) RCAR and RXX at B ¼ 9 T from (a). Small RXX indicates negligible bulk
conductance. Inset of (b) shows pCAR from (a) as function of B for several ν. pCAR of ν ¼ 1=3 shows a strong B dependence reaching
10% at B ¼ 8.5 T. pCAR ∼ 1% for the rest of the fillings shown. The shades represent the uncertainty in the measured values. (c) pCAR
from (a) for B ¼ 4;…; 9 T. pCAR at ν ¼ 1=3 and 4=3 changes with B, reaching, respectively, >6% (B ¼ 9 T) and >8% (B ¼ 7 T). The
rest of the fillings are insensitive to B once they are well developed. The dashed line is the average pCAR for fillings which do not exhibit
a B dependence.
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(a)

(d)(c) (e)

(b)

FIG. 4. Graphene region surrounding the superconductor. (a) Inset illustrates the region around the superconductor in our devices. The
∼100 nm narrow graphene region surrounding the superconductor is not covered by top graphite (gate). This enables tuning the density
(filling ν0) around the superconductor without affecting the bulk filling ν. Here, ν is set simultaneously by top and bottom gate:
ν ∝ ðVT þ c · VBÞ where VT is the top gate voltage, VB the bottom, and c ¼ 0.51 the ratio of the capacitive couplings of top and bottom
gate to the bulk graphene. In contrast, graphene surrounding the superconductor is capacitively coupled primarily to the bottom gate
(ν0 ∝ VB). Color plot shows CAR for several fillings ν as a function of VB. The symbols mark the edge mode configurations illustrated in
(b) corresponding to the matched (ν ¼ ν0) regime for which VT ¼ 0. Increasing VB results in the accumulation (ν < ν0) regime, whereas
decreasing VB results in the depletion (ν > ν0) regime. The dashed line marks V0

B, the value of VB for which VT ¼ 0. (b) Illustrations of
the edge mode configuration of the particlelike ν ¼ 1=3, the hole conjugate ν ¼ 2=3, and the integer ν ¼ 1 for varying ν0. The dashed
and the solid green line surrounding the superconductor illustrate integer edge modes potentially induced by an increased charge carrier
density at the superconductor interface (contact-induced doping). The thin dashed arcs between the two edge modes 1=3 (orange line)
and 1 (green line) depict their equilibration with each other. CAR is absent in the depletion regime, present in the matched regime. Our
observed suppression of CAR in ν ¼ 1=3 for ν0 ¼ 1 suggests an incomplete equilibration between the edge modes 1=3 and 1 along the
electrostatically defined edge (accumulation, top panel). In contrast, CAR in ν ¼ 2=3 is present for ν0 ¼ 1, which is consistent with a
complete equilibration between the two edge modes along the physical sample edge (accumulation, middle panel). Shaded area in the
bottom right accumulation panel depicts a compressible region. The presence of CAR for this filling configuration (ν ¼ 1 < ν0) suggests
negligible tunneling between the edge mode and the compressible region. We also note that we did not observe oscillatory conductance
between the two fillings 1=3 and 1, presumably due to the 1D nature of the interface between them and higher temperatures than in the
recent experiment [44]. (c) CAR in the particlelike fractional states is limited to small jVB − V0

Bj. (d),(e) CAR in the integer and the hole-
conjugate fractional states are not suppressed for large VB − V0

B.
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VI. TRANSPORT SPECTROSCOPY AND
TEMPERATURE DEPENDENCE

Next, we perform spectroscopy in fractional ν by
varying V and monitoring pCAR and RXX simultaneously
at different temperatures. Figures 5(a)–5(d) show CAR
for ν ¼ 1=3 and 2=5, both limited to an energy range
below jeVj ∼ 1 meV and to low T (see also the color
plots as insets and Fig. 15, which shows RCAR instead of
pCAR). Increasing V and T bring the injected charges
above the excitation gap of the fractional fillings (bulk
conduction) or above Δind (Bogoliubov-quasiparticle
transport without Andreev reflection), both suppressing
CAR. The comparison of fractional v (excitation gaps in
the same range as Δind) with ν ¼ 2 (largest Landau gap,
significantly larger than Δind) suggests that for our frac-
tional ν an increasing V suppresses CAR primarily due to
bulk conduction, while the suppression with T is due to
both bulk conduction and Bogoliubov-quasiparticle trans-
port [Figs. 5(a) and 5(c) versus Figs. 5(a), left-hand inset;
Figs. 5(b) and 5(d) versus Fig. 14].
We proceed with the temperature dependence of pCAR

for several integer and fractional ν [Fig. 5(e)]. We find
consistent CAR below ∼5 K for all well-developed
fillings, demonstrating the robustness of superconductiv-
ity in the FQH state. Above this T increasing quasipar-
ticle transport overcomes CAR. The CAR at ν ¼ 1 and
2 persists up to a larger T in our second device measured
using a different setup (Fig. 14), indicating that quasi-
particle transport can be further decreased.
Figure 5(f) shows the vertical cuts from Fig. 5(e) for

several ν. We find a pCAR saturating at low temperatures
for the integer fillings ν ¼ 1, 2 as well as ν ¼ 2=3.
Interestingly, a topological Δind is also expected to
provide a temperature-independent behavior for integer
ν, equivalent to the B independence presented in Figs. 2
and 3. In stark contrast, the particlelike fillings ν ¼ 1=3
and 2=5 show a clear temperature dependence down to
the lowest T (Fig. 16), with the pCAR of ν ¼ 1=3
reaching above 6% at T ¼ 15 mK, as shown in
Fig. 3 (B ¼ 9 T).
An increasing pCAR with decreasing T could be a

feature of the superconducting pairing of fractional

charges e� [Fig. 5(f), right-hand inset, and Fig. 20].
Here, considering ν ¼ 1=3, CAR converts an incoming
electronlike e� ¼ 1=3 to an outgoing holelike −e� ¼
−1=3 adding a 2=3 charge to the superconductor. Such T
dependence is not expected for pairing of integer charges
in FQH edges [Fig. 5(f), left-hand inset], where, for
ν ¼ 1=3, three incoming e� bunch together, which are
then converted to three bunched −e� leaving the super-
conductor. In this case, CAR vanishes (RCAR ¼ 0) at zero
temperature, which is not observed for both our devices
at our lowest T. Although our experiments do not con-
stitute direct evidence for pairing of fractional charges,
which can be complicated by contact-induced doping,
our pCAR for fully developed particlelike FQH states
being larger than that of integer and hole-conjugate
fractional ν suggests a different underlying mechanism
for pronounced fractional CAR. Direct evidence for
fractional charge pairing could be obtained in measure-
ments which are sensitive to the charge of the Andreev-
reflected particles. Additionally, strong bulk disorder in
the NbN superconductor corresponding to a mean free
path <1 nm, which is smaller than the magnetic lengths
∼10 nm in our B range, is expected to result in
momentum-nonconserving processes. While such proc-
esses should provide an additional s-wave pairing for
fillings ν ≥ 2, our experiments did not resolve an s-wave
contribution which would result in different magnetic
field dependence for ν ¼ 1 versus larger fillings ν ≥ 2.
This is surprising because such strong disorder strengths
are expected to suppress p-wave pairing and leave
s-wave pairing as the sole mechanism responsible for
superconductivity.
Our presented experiments show Andreev reflection

in the fractional quantum Hall state, enabled by spin-
orbit coupling in the superconductor. Following experi-
ments, including tunneling [29,47], noise [48,49], and
supercurrent [50] measurements, will be able to reveal
direct evidence for pairing of fractional charges in this
hybrid system. Accessing the topological properties will
require significant increase of CAR probability by a
suppression of edge disorder and vortices, both chal-
lenging to be theoretically accounted for in order to
predict the experiment, such as temperature dependence.
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(a) (b)

(d)(c)

(f)(e)

FIG. 5. Transport spectroscopy and temperature dependence. (a) pCAR at ν ¼ 1=3 as a function of the incoming edge mode potential V
(excitation) for different temperatures T. Crossed Andreev reflection is limited to below jeVj ∼ 1 meV and T < 6 K. Increasing
excitation and T suppress CAR. Left-hand inset of (a) shows pCAR at ν ¼ 2 with a V and T dependence similar to that at ν ¼ 1=3 apart
from a larger V range and a smaller pCAR. Right-hand inset of (a) shows the pCAR corresponding to (a). (b) RXX corresponding to (a),
divided by the incoming edge mode potential RCAR þ RXY , allowing a direct comparison to pCAR. Increasing excitation and T result in
bulk conductance which suppresses CAR. Inset of (b) shows RXX corresponding to the right-hand inset of (a). (c),(d) Same as (a) and
(b) but for ν ¼ 2=5, which shows a V and T dependence similar to that for ν ¼ 1=3. (e) pCAR as a function of ν for varying T. RCAR < 0
below ∼5 K for all well-developed fillings (highlighted with arrows). (f) Vertical cuts from (e). At ν ¼ 2=3, 1, and 2. pCAR saturates
below ∼4 K with decreasing T, whereas at ν ¼ 1=3 and 2=5 continues to increase in amplitude without saturating. The shades are the
uncertainty in the measurement while sweeping the gate voltage. The uncertainty is larger for fillings represented by fewer data points.
Insets of (f) illustrate two different mechanisms of charge transport to the superconductor. Left-hand schematic illustrates bunching of
fractional charges of e� ¼ 1=3 to form integer charges of e that pair. This mechanism converts three incoming e� to an outgoing −e, an
integer-charged hole, adding 2e to the superconductor. Right-hand schematic illustrates the pairing of fractional charges, a mechanism
that converts e� to −e�, adding 2e=3 to a fractional topological superconductor. For pairing of integer charges, pCAR vanishes at T ¼ 0.
In contrast, pCAR monotonically increases in amplitude with decreasing T when fractional charges pair.
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FIG. 6. The presented devices. Data presented in Figs. 1–
3,5,15,16 are taken from device 1; Figs. 4,8–14 are taken on
device 2. The superconductor in device 1 is ∼1 μm long resulting
in a ∼2-μm-long graphene-superconductor interface. The super-
conductor in device 2 is ∼2 μm long, which results in a ∼4-μm-
long interface. No systematic dependence of pCAR on the inter-
face length has been observed. The width of the superconductor is
<100 nm in both devices.

(a)

(b)

FIG. 7. Evolution of Bogoliubov–de Gennes spectrum when
including superconductivity without spin-orbit coupling. (a) Il-
lustration of the edges separated by vacuum for ν ¼ 1, 2, and their
calculated Bogoliubov–de Gennes spectrum. Momentum k in
units of l−1B with lB the magnetic length. k to −k symmetry is a
result of physical (Z2) symmetry—a reflection with respect to the
separating vacuum [or superconductor for (b)], which exchanges
the left mover and the right mover. Spectrum is doubled to show
both electronlike (solid lines) and holelike (dashed lines) ex-
citations. Color code indicates the spin and the direction of
propagation. (b) Inclusion of superconductivity (Δ > 0) without
spin-orbit coupling (λR ¼ 0) does not affect the spin polarization.
This leaves the zero-energy crossings spin polarized, which
cannot be gapped by an s-wave superconductor—an induced
pairing gap Δind does not open. (b) Same as Fig. 2(c). For these
simulations and the ones presented in Fig. 2, the system
parameters are set as follows: Δ1 ¼ 0.3ε0, Δ2 ¼ 0.2ε0
(Δ1;2 ¼ 0 for vacuum), ms ¼ 3ε0, mn ¼ 0.06ε0, μs ¼ 8ε0
(μs ¼ 0 for vacuum), μn ¼ 0.2ε0 (for ν ¼ 1), μn ¼ 0.45ε0 (for
ν ¼ 2), gn ¼ 0.2ε0, λRy ¼ λSO ¼ 0 and λRx ¼ 0.2ε0 (λRx ¼ 0 for
no spin orbit), Ws ¼ 6lB ¼ 1.7ξ0 ¼ 62.7 nm, ε0 ¼ 89 meV.
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(a)

(c)

(b)

(d)

(f)(e)

FIG. 8. Crossed Andreev reflection in the FQH state in device 2. (a),(b) RCAR and RXX as a function of gate voltage at B ¼ 13 T for
different temperatures T. RCAR < 0 at the highlighted fillings indicates crossed Andreev reflection. (c),(d) Same as (a) and (b) but for
integer fillings 1 and 2 in a larger T range. (e),(f) pCAR at T ¼ 1.7 K, respectively, from (a) and (c).
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(b)

(a)

FIG. 10. Magnetic field dependence in device 2. (a) pCAR and
RXX (normalized for different ν) as a function of filling and
magnetic field B. Crossed Andreev reflection (RCAR < 0) is seen
for all well-developed ν. Bulk conduction suppresses CAR
observed for lower values of B or for fractional ν with smaller
excitation gaps. (b) RCAR and RXX at B ¼ 13 T from (a). Bulk
conductance (RXX) is negligible for all highlighted fillings except
ν ¼ 2=3, a complication related to equilibration in the contact,
which is limited to this measurement.

FIG. 9. Spin-orbit coupling in device 2. (a) pCAR as a function
of filling ν. Integer fillings, including the spin-polarized ν ¼ 1,
have a comparable pCAR, an evidence for the pairing mechanism
enabled by spin-orbit coupling. The dashed line is the average
pCAR. Inset shows RCAR measured at B ¼ 6.5;…; 8.5 T. The
filling axis has been adjusted such that the measured fillings align
with the integer values of the axis. This procedure to convert gate
voltage to filling is present herein and in Figs. 2(a) and 2(b).
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(a) (b)

(c) (d)

(e) (f)

FIG. 11. Transport spectroscopy in device 2 (part 1). (a)–(f) RCAR and RXX at several fillings as a function of the incoming edge mode
potential V (excitation) for different temperatures T. Crossed Andreev reflection (RCAR < 0) is limited to below jeVj ∼ 1 meV.
Increasing excitation and T suppress CAR by increasing bulk conductance for these fillings in this device. The features in (e) and
(f) appearing at V ∼ 1 mV correspond to the magnon excitation [45,46], missing in other integer and fractional quantum Hall states.
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(a)

(c)

(e)

(b)

(d)

(f)

FIG. 12. Transport spectroscopy in device 2 (part 2). (a)–(f) pCAR and RXX at several fillings as a function of the incoming edge mode
potential V (excitation) for different temperatures T. Crossed Andreev reflection (RCAR < 0) is limited to below jeVj ∼ 1 meV, T ∼ 4 K
for ν ¼ 1=3 and 2=3, and T ∼ 6 K for ν ¼ 1.
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(a)

(c)

(b)

(d)

FIG. 13. Temperature dependence in device 2 (part 1, fractional fillings). (a),(b) pCAR and RXX (normalized for different ν) as a
function of filling for varying T. Crossed Andreev reflection (pCAR > 0) is seen for the well-developed fillings ν ¼ 1=3, 2=3, and 1, as
well as the fillings with smaller excitation gaps ν ¼ 2=5 and 3=5, all highlighted with arrows. (c),(d) Vertical cuts, respectively, from (a)
and (b). The shades represent the standard deviation.

(a) (b)

(d)(c)

FIG. 14. Temperature dependence in device 2 (part 2, integer fillings). (a),(b) pCAR and RXX (normalized for different ν) as a function
of filling for varying T. Crossed Andreev reflection (pCAR > 0) is seen for both integer fillings ν ¼ 1 and 2. (c),(d) Vertical cuts,
respectively, from (a) and (b). The shades represent the standard deviation. Crossed Andreev reflection at ν ¼ 2 is undisturbed by bulk
conductance and suppressed when the NbN superconductor turns normal at T ∼ 9 K.
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(a) (b)

(c) (d)

FIG. 15. Transport spectroscopy in device 1 showing RCAR and RXX. (a),(b) RCAR and RXX for ν ¼ 1=3 as a function of the incoming
edge mode potential V (excitation) for different temperatures T. Crossed Andreev reflection (RCAR < 0) is limited to below
jeVj ∼ 1 meV. (c),(d) Same as (a) and (b) but for ν ¼ 2=5, which shows a V and T dependence similar to that for ν ¼ 1=3.

(a) (b)

(c) (d)

FIG. 16. Temperature dependence of crossed Andreev reflection at ν ¼ 1=3 and 2=5 in device 1. (a) shows the CAR probability at
ν ¼ 1=3, (b) shows that at ν ¼ 2=5. (c) and (d) respectively show RCAR at ν ¼ 1=3 and 2=5 together with the corresponding RXX.
Probability of crossed Andreev reflection in fillings ν ¼ 1=3 and 2=5 is rapidly increasing with decreasing T down to the lowest
temperature, at which bulk conductance vanishes (RXX ∼ 0). Data extracted from Figs. 5(a)–5(d).
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APPENDIX A: EXPERIMENTAL METHODS

1. Assembly of the heterostructure

We assembled our five-layer graphite–hexagonal boron
nitride (hBN)–single layer graphene–hBN–graphite
van der Waals heterostructures with the standard dry
transfer technique [51], using a polycarbonate- (PC)
polydimethylsiloxane (PDMS) stamp. We exfoliated the
flakes via thermal release tape onto (doped) Si substrates
covered with 285-nm-thick SiO2-—the same substrate on
which the devices were fabricated. To increase the size of
the flakes we baked the substrates, the tape carrying bulk
hBN and graphite still adhered, at 100 °C for 1 min on a hot
plate before releasing the tape. After exfoliation we
annealed the substrates with the flakes at high vacuum
(∼3 × 10−7 mbar) and 350 °C for 20 min to remove the
tape residues, ramping the temperature from 20 °C over 3 h.
We did not perform these two heat treatments on single-
layer graphene to avoid modifying its intrinsic properties.
We determined the cleanness and thickness of the flakes by
first optical and then atomic force microscopy. The graphite

layers in our heterostructures were determined to be
∼1.5–3 nm thick (5–10 layers) while the hBN layers were
∼50 nm (top) and 90–100 nm (bottom), all con-
firmed to be atomically flat. We used a thicker bottom
hBN to prevent an electrical connection between the
bottom graphite and the overlapping superconductor
(see Appendix A 2). After choosing suitable flakes,
we assembled the heterostructure in a glovebox
(H2O < 0.1 ppm, O2 < 0.1 ppm) to decrease contamina-
tion between the layers.
To make the stamp, we prepared a PC solution (8 wt %)

and pipetted it onto a glass slide. We placed another glass
slide on top of the solution and left the resulting film to cure
in ambient conditions. We then placed a rectangular block
(∼8 × 5 mm) of PDMS (Gel-Pak) on a separate glass slide
and transferred the PC film (with a larger area than that of
the PDMS) on top. To ensure adhesion between the PC film
and the glass slide we baked the stamp at 180 °C for 5 min,
and then mounted the finished stamp on a dry trans-
fer setup.
Before transferring flakes, we flattened the surface of the

PC film by touching the stamp onto a bare substrate held by
vacuum on a sample stage at 155 °C. After a cooldown
period during which the PC film detached from the bare
substrate, we replaced the substrate with the one containing
the top graphite. The stamp was used to pick up the graphite
at ∼130 °C, followed by a cooldown until the stamp
detached. We then used this top graphite to pick up the
top hBN via van der Waals force. In this step, the top
graphite approached the hBN extremely slowly at
150 °C–155 °C to minimize the formation of bubbles. We
picked up this hBN, the graphene, and the bottom hBN
with the same procedure described above. We then dropped
the whole stack (graphite–hBN–graphene–hBN) from the
stamp onto the bottom graphite at ∼170 °C. Importantly,
dropping the stack at this high temperature allowed us to
push out the bubbles formed between the layers during
assembly [52]. Finally, we released the PC film at 190 °C,
ending the transfer process. We completed the assembly
by removing polymer residues from the heterostruc-
ture, first leaving the chip in chloroform overnight and
then annealing the heterostructure at high vacuum
(∼3 × 10−7 mbar) and 350 °C for 30 min after a 3 h
temperature ramp.

2. Nanofabrication

We defined the superconductor, normal leads, and the
shape of the device via electron beam lithography followed
by reactive ion etching (RIE). For RIE, we used a CHF3,
Ar, and O2 gas mixture, whereas we excluded CHF3 for the
selective removal of the top graphite. Both the super-
conductor and the normal leads contact the graphene from
its edge, and were deposited following RIE in one
lithography step in which the etch mask also served as
the deposition mask. For the superconductor, we first
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selectively etched the top graphite that would otherwise
surround the superconductor, leaving a∼100 nm separation
to avoid an electrical connection. In the subsequent lithog-
raphy step, we deposited the superconductor after vertically
etching the heterostructure beyond the graphene layer using
an etch stop. This etch stop is based on the ex situmeasured
conductance of a test area of identical layer composition and
leavesmost of the bottom hBNunetchedwhich insulates the
superconductor from the bottom graphite. Unlike the super-
conductor, the normal leads do not overlap the top or bottom
graphite, and instead connect to the fractional quantumHall
heterostructure through graphene that extends beyond both
graphite layers (Fig. 6).
The normal leads areCr=Pd=Au (2=7=150 nm), thermally

evaporated on a rotating sample stage with ∼15° tilt. We
deposited our superconductor in an AJA International UHV
hybrid system (base pressure ∼10−7 Torr). The supercon-
ductor deposition started with electron beam evaporation of
Ti (10 nm,with rotation and 15° tilt) immediately followedby
dcmagnetron sputtering of Nb=NbN (5=75 nm, without tilt)
at a pressure of 3 mTorr and a power of 200 W using a Nb
target. We deposited Nb in an Ar environment. For NbN we
used an Ar=N2 (50=6 sccm) gas mixture. This supercon-
ductor has a critical temperature Tc ∼ 12 K at B ¼ 0 T. An
overview of the fabricated devices is given in Supplemental
Material, Table S4.

3. Measurement

The parts of the graphene that extend beyond the top and
bottom graphite, which connect the normal leads to the
fractional quantum Hall heterostructure, were doped by
using the substrate as a global gate. The top and bottom
graphite layers were used as gates to control the charge
carrier density in the fractional quantum Hall heterostruc-
ture. Device 1 used top graphite as the gate while the
bottom graphite was grounded, whereas the opposite was
the case for device 2 except in Fig. 4, where device 2 used
top and bottom graphite simultaneously as gates.
We measured device 1 in a variable temperature inset

(VTI) at T ≥ 1.75 K and in a dilution refrigerator with its
cold finger at T ¼ 15 mK, and device 2 in a different VTI
at T ≥ 1.6 K. For the measurements in VTIs, we used a RC
filter attached to the chip carrier, whereas the dilution
refrigerator was equipped with RC, copper powder, and pi
filters (LCL filter manufactured by Mini-Circuits) all
thermalized to the cold finger. We reproduced our obser-
vations after every thermocycle for both our devices.
Importantly, however, we were unable to measure crossed
Andreev reflection without a filter.
We used the standard ac lock-in technique (f ¼

17.77 Hz) with an excitation current Iexc ¼ 5 or 10 nA
for the VTI measurements and Iexc ¼ 1 or 5 nA for the
dilution refrigerator measurements (ac circuit simulations
of the device within the measurement circuit are provided
in Refs. [35,53]). All presented measurements used a single

source and the superconductor as the single drain. Because
of the finite resistance (wiring and filters) between the
superconductor and the breakout box at room temperature,
VCAR and V [Fig. 1(b)] were measured relative to the
superconductor potential. Our superconductor coupled to
the fractional quantum Hall edges branches out to four
separate leads (Fig. 6). Two branch out immediately after
leaving the heterostructure (one used as the drain, the other
to monitor the potential), and the remaining two (left
floating) after a narrow strip with identical dimensions
as the one coupled to the fractional quantum Hall edges.
This strip allowed for an independent test of our super-
conductor. An overview of the measured devices is given in
Supplemental Material, Table S5 [35]. The data that
support the findings of this study are available in Ref. [53].

APPENDIX B: THEORY

The inset of Fig. 2(b) (see also Fig. S1 in Supplemental
Material [35]) shows the schematic of the vertically shrunk
experimental system which satisfies Iexc ¼ ν · e2=h ·
ðV − VCARÞ. A pCAR ¼ 1 implies RCAR=RXY ¼ −1=2. In
Supplemental Material [35], we present a low-energy theory
of graphene in the presence of a strong out-of-plane B [54]
(Fig. S2 in Supplemental Material) and compute crossed
Andreev reflection for integer fillings. In the following, we
first highlight the results of our integer quantum Hall theory
analysis supporting our experimental findings, and then
renormalization flow equations which describe CAR
response in the FQH edge as the temperature is varied.

1. CAR in the integer quantum Hall state

We consider counterpropagating edge modes along either
side of the superconductor [Fig. 2(b), inset, y axis is along the
superconductor]. For reference, we show in Fig. S4 the
armchair edge energy spectra in the absence and presence of
the Dirac mass term, where we replace the superconducting
region with vacuum (see Supplemental Material for details
[35]). Without any (valley) symmetry breaking, the quantum
Hall sequence is ν ¼ 2; 4; 6;…. Adding the Dirac mass term
modifies the sequence into ν ¼ 1; 2; 4;… with a spin and
valley polarized ν ¼ 1. Turning on superconductivity yields
Fig. 17, with the top panels for ν ¼ 1 and the bottom panels
for ν ¼ 2. For any integer filling zero-energy band crossings
are between particle-hole partners with identical spin polari-
zation. Therefore, there is no direct mechanism for s-wave
pairing (even for spin-unpolarized fillings such as ν ¼ 2).
However, the large spin-orbit coupling in NbN supercon-
ductor provides a necessary ingredient for a spin-flip process
allowing for a pairing between electrons with the same spin
polarization. We account for spin-orbit coupling via [55]

hSO ¼ λSOτzszσz þ λR;xτzsyσx − λR;ysxσy:

Because the induced pairing between the counterpropagating
edge modes exponentially decays as a function of the
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superconductor thickness, a gap does not open for a thick
superconductor (left-hand panels). This is the experimental
scenario in which Andreev edge states govern the transport
[16,18,19,30,39,40]. Reducing the thickness of the super-
conductor hybridizes the edge modes along both sides of the
superconductor and opens a gap in the Bogoliubov–de
Gennes spectrum (middle panels). The band crossings and
the resulting hybridization occur for eachmode separately—
each edge mode (for instance, spin-up and spin-down)
experiences a similar induced pairing (gap opening) mecha-
nism. The gap opening term is a spin-polarized pairing of the
form ψLsψRs, which originates from the combination of the
spin-singlet pairing of the parent superconductor and spin-
orbit coupling. Turning off spin-orbit coupling results in
zero-energy band crossings remaining intact (right-hand
panels). The degeneracy points (band crossings at finite
energies) near ky ¼ 0 are lifted for a thin superconductor
regardless of the presence of spin-orbit coupling. This is
because those degeneracies open by either spin-singlet
intraedge pairing or simply direct tunneling. Nevertheless,
these processes do not play any role for the zero-energy band
crossings between two spin-polarized modes since the
former process does not open a gap in a spin-polarized

channel and the latter is forbidden at finite k due to violating
momentum conservation. This implies that ν ¼ 2 edge
modes can be treated effectively as two copies of ν ¼ 1.
Our numerical analysis confirms that the induced gapswithin
different edge modes are of the same order and decrease as
the superconductor is made thicker (Fig. S5 in Supplemental
Material [35]).
To study crossed Andreev reflection in a realistic

experimental system we use an effective edge theory
(see Supplemental Material for details [35]). We consider
a disordered pairing potential,

Vdis ¼ Δ1ðyÞτyσxsy þ Δ2ðyÞτyσy;

which we vary over the minimum coherence length
ξ0 ∼ vF=Δm. Here, both Δ1 and Δ2 are random variables
drawn from a uniform distribution ½ − Δm;Δm�. (Note that
here we suppress the complex phase of the pairing potential
for simplicity. Our numerical results for disorder simulation
do not exhibit qualitative change when we choose a
complex pairing potential.) The resulting CAR is shown
in Fig. 18. It is evident that in both the clean and the
disordered case the zero-bias RCAR is inversely proportional

FIG. 17. Bogoliubov spectrum. Top row: ν ¼ 1 with μn ¼ 0.3ε0. Bottom row: ν ¼ 2 with μn ¼ 0.55ε0 (see the right-hand panel of
Fig. S4 in Supplemental Material for the location of the chemical potential [35]). Left-hand column represents the case of a thick
superconductor Ws ¼ 15lB ¼ 10ξ0. Middle and right-hand column correspond to a thin superconductor Ws ¼ 6lB ¼ 4ξ0. There is no
energy gap in the thick regime, while there is a gap opening in the thin regime when spin-orbit coupling is present (middle column). For
reference, we provide the right-hand column which has no spin-orbit coupling. In the other panels we set λRx ¼ ε0. It is evident that
either turning off the spin-orbit coupling or making the superconductor thick prevents the edge modes from hybridizing and leads to a
gapless spectrum with propagating Andreev edge states along the QH-superconductor interface. For these simulations, the system
parameters are set as follows: Δ1 ¼ 0.5ε0, Δ2 ¼ 0.6ε0, ms ¼ 3ε0, μs ¼ 8ε0, λRy ¼ λSO ¼ 0, λRx ¼ ε0.
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to the filling ν, consistent with the experiment. Notably, the
experimental observation of CAR vanishing at finite
energies can only be recovered in our calculation by
introducing disorder which breaks translation symmetry
and effectively produces direct tunneling terms. For the

clean case, CAR remains consistently finite even at
high energies. This implies that the pairing gap and dis-
order together determine the energy range of CAR. Finally,
Fig. 19 compares the calculated CAR response with
the experiment, qualitatively reproducing the observed

FIG. 18. Comparison of RCAR for ν ¼ 1 and 2. Left is the ideal limit, right is the disordered pairing with Z ¼ 0.4.

(e)

(f)

(c)

(d)

(a)

(b)

FIG. 19. Bogoliubov–de Gennes spectrum, calculated CAR response, and transport spectroscopy in device 1 for ν ¼ 2 and 6. (a),(b)
Bogoliubov–de Gennes spectrum of ν ¼ 2 and 6 calculated using 2D simulations. Hybridization of the inner edge modes (those from
lower Landau levels) is stronger due to their closer proximity to the superconductor, leading to larger gaps around k for which band
crossings occur. Colored squares indicate the Landau levels whose edge modes hybridize. (c),(d) CAR response calculated using the
effective edge theory in the ideal and the disordered case. For the clean case, CAR asymptotically vanishes at high energies. Including
disorder limits the energy range for which pCAR > 0. This implies that the pairing gap and disorder together determine the energy range
of CAR in a realistic setup. We note that in the presence of disorder, pCAR turns negative (i.e., RCAR becomes positive) at a bias voltage
much larger than the energy scale of Δind due to direct tunneling processes dominating at higher energy. The parameters used in the
effective theory are extracted from the 2D simulations for which the system parameters are the same as in Fig. 7 (μn ¼ 1.2ε0 for ν ¼ 6).
(e),(f) pCAR at ν ¼ 2 and 6 as a function of the incoming edge mode potential V (excitation) for different gate voltages spanning the
entire QH plateau region. CAR is limited to below jeVj ∼ 1 meV for ν ¼ 2 and below jeVj ∼ 0.2 meV for ν ¼ 6. (a) Same as in Fig. 2
(d). (e),(f) Same as Figs. 2(e) and 2(f).
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difference between ν ¼ 2 and 6. The larger energy range of
CAR in ν ¼ 2 is due to its counterpropagating edge modes
being closer to the superconductor than those of ν ¼ 6,
which results in a stronger hybridization (larger Δind).
Apart from enabling direct tunneling, translation symmetry
breaking also enables gap-opening superconducting pairing
terms between counterpropagating edge modes of different
Landau levels (for example, in ν ¼ 2 the inner edge mode
can now pair with the counterpropagating outer edge
mode), which is not possible for a disorder-free gra-
phene-superconductor interface. This mechanism provides
an additional s-wave contribution for fillings ν ≥ 2. (Note
that for ν ¼ 1 no such s-wave term is present even with
disorder.) However, such momentum-violating pairing
terms hybridizing counterpropagating edge modes from
different Landau levels are likely not dominant in the
experimental system because no strong filling dependence
is observed, particularly for ν ¼ 1 versus larger fil-
lings ν ≥ 2.

2. CAR in the fractional quantum Hall state

Now we turn to the FQH state, which requires different
approaches from the integer QH CAR discussed above. For
simplicity, we shall consider only the ν ¼ 1=m Laughlin
states (with odd m), where the edge theory is single
component. The system is described by two chiral edge
modes near top and bottom of the sample:

Ledge ¼
1

4πν

Z
dy½∂tϕL∂yϕL − V∂yϕL∂yϕL�

þ 1

4πν

Z
dy½−∂tϕR∂yϕR − V∂yϕR∂yϕR�;

where

½ϕL;Rðy1Þ;ϕL;Rðy2Þ� ¼∓ i
π

m
sgnðy1 − y2Þ;

½ϕLðy1Þ;ϕRðy2Þ� ¼ i
π

m
:

ϕL;R are chiral bosons [56,57]. Using this formulation, the
electric charge density associated with ϕα is given by

ρα ¼
1

2π
∂yϕα;

and the Ith electron operator is described by the vertex
operator,

Ψe;L=R ¼ eiν
−1ϕL=R :

In the right half of the system [recall Fig. 2(b), inset] the
two edge modes are decoupled. In the left half, the two edge
modes are coupled via the following induced pairing term:

Lpairing ¼ Δ
Z

∞

0

dx cos ν−1ðϕL þ ϕRÞ:

Note that we drop the Klein factor since it commutes with
other terms in the Hamiltonian. The bare scaling dimension
of this term is 1 − ν−1. However, we work in the strong
coupling limitΔ → ∞. The ground state of the x > 0 region
is obtained by pinning the field ν−1ðϕL þ ϕRÞ ¼ 2πn, where
n ¼ 0; 1; 2;…; ν−1 − 1. This in turn implies not only
eiν

−1ðϕLþϕRÞ ≠ 0 but also eiðϕLþϕRÞ ≠ 0; that is, we get a
condensate of quasiparticle and quasihole pairs. The scatter-
ing of a (quasi)particle impinging on the x > 0 region from
the left region can be addressed by the following two
processes:
(1) coherent conversion of a right-moving quasielectron

to a left-moving quasihole, which is described by the
following term

Γqp

Z
dyδðy − 0−ÞeiðϕLþϕRÞ þ H:c:

(2) coherent conversion of a right-moving electron to a
left-moving hole, which is described by the follow-
ing term:

Γeh

Z
dyδðy − 0−Þeiν−1ðϕLþϕRÞ þ H:c:

The latter process requires electron bunching before going
through the superconductor. The scaling dimensions of the
two processes are given by ν and ν−1, respectively. Hence, the
tunneling amplitudes obey the renormalization flow equa-
tions,

dΓqp

dl
¼ ð1 − νÞ;

dΓeh

dl
¼ ð1 − ν−1Þ;

which implies that in the infrared limit (low energy), for ν < 1,
Γqp is relevant while Γeh is irrelevant. Now, we compare
experimental consequences of both processes (Fig. 20).
(1) Γqp: Since this term is relevant, it drives the system

to a strong coupling limit fixed point Γqp → ∞ in the
low-energy limit. So, we expect that at low temper-
atures there is a constant CAR response proportional
to jΓqpj2 and it gradually decreases as T2ν−2 when
the temperature is increased or as V2ν−2 when a bias
voltage is applied.

(2) Γeh: Since this term is irrelevant, at zero temperature
the system in a weak coupling limit Γeh → 0 and
there is no CAR response. We expect that as we
increase the temperature or apply a bias voltage, the
CAR response increases as T2ν−1−2 or V2ν−1−2,
respectively.
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Given that the experimental data as a function of temperature
show an initial plateau and gradual increase as T is decreased,
we conclude thatΓqp is the dominant termgoverning theCAR
response. Note that this scaling analysis provides a qualitative
picture. Further quantitative discussion on FQHCAR requires
many-body simulation of the FQH states.
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