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Power-law distributions are widely used in computational and statistical investigations of extreme events
and complex systems. The usual technique to generate power-law distributed data is to first infer the scale
exponent α using the observed data of interest and then sample from the associated distribution. This
approach has important limitations because it relies on a fixed α (e.g., it has limited applicability in testing
the family of power-law distributions) and on the hypothesis of independent observations (e.g., it ignores
temporal correlations and other constraints typically present in complex systems data). Here we propose a
constrained surrogate method that overcomes these limitations by choosing uniformly at random from a set
of sequences exactly as likely to be observed under a discrete power law as the original sequence (i.e.,
regardless of α) and by showing how additional constraints can be imposed in the sequence (e.g., the
Markov transition probability between states). This nonparametric approach involves redistributing
observed prime factors to randomize values in accordance with a power-law model but without restricting
ourselves to independent observations or to a particular α. We test our results in simulated and real data,
ranging from the intensity of earthquakes to the number of fatalities in disasters.
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I. INTRODUCTION

Heavy-tailed distributions are one of the most pro-
nounced characteristics from complex systems [1–3],
appearing in paradigmatic models in statistical physics
(e.g., critical phenomena, preferential attachment proc-
esses, self-organized criticality) [4–11] and in the analysis
of a variety of datasets (e.g., city sizes, word frequencies,
earthquake waiting times, and magnitude of disasters)
[12–15]. A key computational tool to investigate all these
systems is the generation of synthetic datasets (surrogates)
that account for the heavy-tail characteristic [16] of the
observation or system of interest. These surrogate

sequences x ¼ x1;…; xN represent null models which
allow tests of properties of the data—e.g., whether the
data are compatible with a specific distribution—and to
make estimations—e.g., the magnitude of extreme events.
The typical approach to generate surrogates of heavy-

tailed data is to first fit [18–20] a power-law distribution,

pðxÞ ¼ Cx−α; ð1Þ

to the data (or tail, x ≥ xmin) and then use the maximum-
likelihood estimated parameter α̂ to generate the synthetic
dataset [21–23]. The problems with this approach, which
we overcome in this manuscript, are as follows.

(i) The synthetic dataset arises from a model for the
fixed parameter α̂ and thus does not represent
a null model for power-law distributions in general
(arbitrary α).

(ii) Correlations in the data are not accounted for
[complex systems data are not independent and
identically distributed (IID)] [24–26].

Figure 1 illustrates how these issues affect data analysis: for
small or correlated samples there are substantial differences
between the fitted model and the underlying process
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(estimating scale exponents is hard) and it is difficult to
distinguish between different distributions. Therefore, the
two issues above directly affect the perennial debates about
the ubiquity of power-law distributions: whether log-
normals or power laws better describe city-size distribution
[27–29], and whether power-law degree distributions are
ubiquitous in complex networks [30–34] and more gen-
erally [35–38]. Progress on these fundamental debates, that
lie at the foundation of complex systems research, requires
methods that go beyond the typical approach.
Surrogates are numerically generated data sequences

(time series) that share particular features of the original
data (time series) of interest but that randomize other
characteristics in accordance with a particular model (or
fulfill a certain null hypothesis) [39,40]. Constrained
surrogates fix particular features strictly, matching the
exact value observed in the original data, thus allowing
us to condition these out and draw principled conclusions
about the remaining properties or features which are not
being fixed and which we are interested in testing or
analyzing [41,42]. Constrained surrogates can represent an
entire family of processes, rather than the particular process
with the parameters of best fit, and thus have a range of
favorable properties explained and explored below. Our
contribution in this paper is to develop and apply con-
strained surrogate techniques to sequences with discrete
power-law distributions. We will account for different types
of correlations without committing to particular values of
the scale exponent α (i.e., nonparametrically) while
allowing variation in the values of extreme events and
other statistics of interest. We propose a constrained
surrogate which redistributes observed prime factors to

randomize values while fixing the likelihood of the
sequence for all α and avoiding the challenging problem
of estimating α. We also formulate variants which, in
addition, preserve correlations (up to a given Markov order)
or other constraints. We then apply these constrained
surrogates to artificial and real data, showing that they
lead to exact hypothesis tests, provide unbiased and lower-
variance estimates of statistics, are more robust to model
misspecification, and can accommodate and thus facilitate
inference about correlations present in the time series.
Finally, we show how the use of our constrained surrogates
impacts the conclusions and estimates obtained from
different heavy-tailed data. Our codes are available
in Ref. [43].

II. SURROGATE METHOD

In this section, we introduce our constrained power-law
surrogate methods. Let x ¼ x1;…; xN be an ordered
sequence of integers, each of which is no less than a lower
cutoff xmin. Given one such input sequence xinput, we are
interested in generating an ensemble fxng of other surro-
gate sequences x constrained to the hypothesis of power-
law distribution Eq. (1). A simple surrogate is the shuffle
surrogate [44], which corresponds to a permutation, chosen
uniformly at random, of the input sequence. Another is
bootstrapping: sampling uniformly at random from the
input sequence with replacement. Other important surro-
gates are designed to apply the null hypothesis that
observations are a static transformation of a linear process.
Surrogates for this hypothesis include the statically trans-
formed autoregressive process [45], amplitude adjusted
Fourier transform (AAFT) [46], and iterated AAFT [47],
the last two of which we compare to our proposed surrogate
methods in the Supplemental Material (SM) [48]. While
these surrogates succeed in capturing features of the heavy-
tailed distribution in xinput, a strong limitation is that they
only offer values which have already been observed and
therefore they cannot be used to explore unobserved cases
(SM [48], Fig. S1), such as the extreme events which are
particularly important in heavy-tailed processes.Constrained
surrogates overcome this limitation, while showing other
interesting properties not present in the usual approach based
on maximum-likelihood fitting.

A. Constrained surrogates

Constrained surrogates incorporate hypotheses or con-
straints by fixing a set of properties fKg to match those
observed in xinput such that

KðxÞ ¼ KðxinputÞ; ð2Þ

for all x ∈ fxng. A constrained property K could be, for
example, the number of elements N of the sequence x, the
parity (odd or even) of the sum

P
t xt, or the truth value of

FIG. 1. Correlations and limited samples obscure power laws.
A synthetic time series of length N ¼ 1024 (see inset) is
generated from a correlated (Markov order one) power law with
exponent α ¼ 2.5 and lower cutoff xmin ¼ 12 (black dotted line;
see Appendix A for details). The time series’ empirical distri-
bution is shown (purple filled circles), together with the maxi-
mum-likelihood fit to an IID power law (blue dashed line), and a
log-normal distribution (gray solid line, location parameter μ ¼ 0
and scale parameter σ ¼ 1.5, as defined in Table I).
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the statement “maxt xt ≤ xmax,” where xmax is known and
fixed. Here we are particularly interested in the hypothesis
that xinput is generated from a probability distribution with
parameter(s) α and the corresponding property K to be
constrained is the likelihood function Lx which maps α to
the probability LxðαÞ of generating a sequence x. The
constraint Eq. (2) is then the condition

LxðαÞ ¼ LxinputðαÞ; ð3Þ

for all x ∈ fxng and all α. Constrained surrogates fxng are
obtained by sampling uniformly at random from a collec-
tion of (ideally all) sequences UðxinputÞ such that
(C1) xinput ∈ UðxinputÞ;
(C2) ∀x ∈ UðxinputÞ;UðxÞ ¼ UðxinputÞ; and
(C3) ∀x ∈ UðxinputÞ and for each constrained property

K, Eq. (2) is satisfied.
This procedure factors out the influence of constraints and
(unknown) model parameters by conditioning on the output
of the map xinput ↦ UðxinputÞ. If we consider (i) xinput as a
realization of a discrete random variable X drawn from a
distribution with parameters α and (ii) the likelihood under
the distribution to be one of the constrained properties K,
then conditions C1–C3 above guarantee that the condi-
tional probability of X given UðXÞ is independent of α—
i.e., Pα(XjUðXÞ)≡ P(XjUðXÞ)—and uniform on UðXÞ,
in agreement with our prescription for constrained surro-
gates (for a proof, see SM [48], Sec. I). That is, as long as
the likelihood under the null hypothesis is one of the fixed
quantities, producing a constrained surrogate is equivalent
to generating data under the hypothesized process subject
to a condition—the particular value of UðXÞ—which has
been observed for the input sequence. In particular, by
preserving the likelihood function we ensure that (maxi-
mum-likelihood) parameter estimations are the same for the
input and surrogate sequences. Constrained surrogates are
closely related to the idea of conditioning on a sufficient
statistic [42,49–51].
Favorable properties of constrained surrogates include

the following.
(i) They preserve the probability distribution of sequen-

ces and, as a consequence, provide unbiased esti-
mates of the expectation of any statistic.

(ii) The expectation of any sample statistic estimated
using the mean over many constrained surrogate
datasets realized independently from the same ob-
servation has variance no larger than the variance of
the original statistic and, as long as this variance is
finite and the sample statistic is nonconstant over the
collection UðxinputÞ for some xinput, strictly smaller.

(iii) Constrained surrogates provide exact [52–54] (i.e.,
theoretically supported) hypothesis tests regardless
of discriminating statistic or sample length [44]. In
particular, this allows for hypothesis testing using
composite [55] hypotheses and nonpivotal [60] test

statistics, a requirement for testing power-law dis-
tributions (for all α) using test statistics of interest.

Property (ii) follows from a classical statistical result that
gives the total variance of any sample statistic as a
positively weighted sum of the variance within and between
the level sets of a statistic [61], and which in our case
implies, for constrained surrogates and any statistic s,

V ½s� ¼ V ½Esurr½s�� þ E½V surr½s��; ð4Þ

where E (V) denotes the expectation (variance) over
sequences from the original generative process and Esurr
(V surr) denotes the expectation (variance) over surrogate
sequences generated from a single input sequence xinput.

B. Constrained power-law surrogates

The constrained power-law surrogate methods we pro-
pose here correspond to the null hypothesis that xinput

follows a power-law distribution (1) with (an unknown)
exponent α (in contrast, in the typical approach α is fixed to
be equal to the maximum-likelihood estimation of α in
xinput). We are interested in constrained surrogates such that
for any surrogate sequence x ∈ fxng and for all α, the
likelihood is the same, i.e., Eq. (3) is satisfied. For an IID
power law governed by Eq. (1), the likelihood is

LxðαÞ ¼ CN

�YN
t¼1

xt

�
−α

¼ CN

�Y
q

qnq
�

−α
;

where nq is the number of instances of the prime factor q in
the product

Q
N
t¼1 xt. It follows that maintaining the like-

lihood is equivalent to preserving the count of each prime
factor which appears in the sequence. By the uniqueness of
prime decompositions, when xmin ¼ 1, we can choose
uniformly at random from among all sequences with the
same likelihood by randomly assigning instances of prime
factors to elements of the sequence such that, for each
distinct prime factor, each possible sequence of counts is
equally likely. This procedure satisfies conditions C1–C3
and so produces a constrained surrogate (Sec. II A). We
illustrate the process in Fig. 2.
When xmin > 1, it is necessary instead to choose uni-

formly at random from a set of sequences with the same
product and each element of which is greater than or equal
to the lower cutoff xmin. This can be accomplished by
(1) associating with each element of a dataset sufficiently
many instances of prime factors that the element cannot dip
below xmin, (2) randomly allocating instances of prime
factors among all elements not associated with any smaller
prime factors, and (3) randomizing the order of the
resulting dataset (see Appendix B for details of choosing
uniformly at random from among all distinct distributions
of prime factors by choosing a random weak integer
composition into a fixed number of parts [62], generating
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constrained IID power-law surrogates with xmin > 1, and
fitting the lower cutoff).

C. Beyond IID

Here we show how to construct power-law surrogates
which go beyond the IID hypothesis mentioned above
and that consider temporal correlations of length m ≥ 1.
We build collections of surrogates fxng that, in addition
to the power-law constraint in Eq. (3), are also con-
strained to have one of the following properties observed
in xinput:
(1) the same rank order of all size mþ 1 subsequence

xt; xtþ1;…; xtþm (lengthmþ 1 ordinal patterns [63]),
(2) the same empirical transition probabilities

pðztjzt−1;…; zt−mÞ between states [69] constructed
as nonoverlapping sets of integers (order m
Markov).

We produce ordinal pattern power-law surrogates (case 1)
using a Metropolis algorithm which, in the limit of a large
number of transitions, samples uniformly at random from
a set of sequences UðxinputÞ ∋ xinput, each of which
satisfies Eq. (3) and also exhibits the same sequences
of ordinal patterns as the input sequence xinput. Because
this prescription satisfies conditions C1–C3 (Sec. II A), it
provides constrained surrogates. The algorithm begins
with x ¼ xinput and for each iteration

(i) a pair of distinct observations xi and xj (in which
i ≠ j but, possibly, xi ¼ xj) is chosen uniformly at
random from the sequence x1;…; xN ,

(ii) the observations xi and xj are replaced by x0i and x0j,
respectively, where x0ix

0
j ¼ xixj is a factorization

chosen uniformly at random from among all which
would lead to a sequence which
(A) has no element less than the lower cutoff

xmin and
(B) exhibits the same sequence (of length N −m)

of ordinal patterns of length mþ 1.
In Fig. 3 we illustrate an iteration of the Metropolis
algorithm for generating constrained ordinal pattern
power-law surrogates. The preceding Metropolis algo-
rithm can be adapted to represent alternative assumptions
about correlation structure. Markov power-law surrogates
(case 2) are also obtained using the Metropolis algorithm
above with condition (B) replaced by “exhibits the same
sequence of Markov states.” Subsequently, the sequence
is randomly reordered while preserving empirical tran-
sition probabilities between Markov states [70]; see
Refs. [42,54,71,72]. In our studies we used 105 transitions
of the Metropolis algorithm.
The correlated power-law surrogates defined above can

be used to estimate the effective length m of correlations in
a power-law sequence. To reach this, we emulate a popular
framework for estimating Markov order for non-power-law
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FIG. 3. Schematic illustration of the process to generate power-
law surrogates with additional constraints (ordinal patterns of
length mþ 1 ¼ 3). In each iteration u of the algorithm we
(a) choose randomly a pair of elements xi, xj (x5 ¼ 3,
x12 ¼ 15) from the sequence x1;…; xN , (b) compute all factor-
izations x0i × x0j ¼ xi × xj of the product xi × xj (x5 × x12 ¼ 45),
(c) choose a single factorization x0i × x0j (x05 × x012 ¼ 5 × 9) uni-
formly at random from all factorizations x0i × x0j which preserve all
ordinal patterns in the original sequence (x05 × x012 ¼ 3 × 15;
x05 × x012 ¼ 5 × 9), and (d) update the sequence by setting xi ¼
x0i (x5 ¼ x05 ¼ 5) and xj ¼ x0j (x12 ¼ x012 ¼ 9). The sequence
(a)–(d) is repeated many times, with each iteration preserving
(e) the same sequence of ordinal patterns.
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discrete data [42,54,72]. We increase the hypothesized
length m of correlations, starting from the IID case m ¼ 0,
until we cannot reject with our prespecified test statistic and
level of significance. The lowest value of m for which this
occurs provides a quantification of the correlation (or
temporal dependencies) present in the sequence. If it
appears that no value of m can prevent rejection, then a
power-law model together with the type of correlations
hypothesized is presumably not an appropriate explanation
for the time series.

III. APPLICATIONS

In this section, we show how the methods introduced
above perform in different applications. This is done by
generating surrogates from the following different input
sequences xinput:

(i) IID power laws,
(ii) IID sequences from three other distributions which

can be mistaken for power laws at small sample
lengths: a power law truncated at its 1=1024 upper
quantile, a power law with exponential cutoff and a
discretized log-normal distribution truncated at xmin;
see Table I,

(iii) Markov sequences with power-law limiting distri-
butions,

(iv) real data in the form of records of fatalities from
historical epidemics and terrorist attacks, as well as
intensities of solar flares, energy release by earth-
quakes, customers affected by blackouts, and
frequencies of words in the novel Moby Dick by
Herman Melville; see Table II.

We compare constrained power-law surrogates of different
Markov order with the conventional method and, where
appropriate, with shuffling and bootstrapping on different
hypothesis testing and estimation tasks.

A. Hypothesis testing

In hypothesis testing, a null hypothesis is rejected when
the p value—i.e., the probability (under this hypothesis) of
the value of a discriminating statistic (computed from the
input sequence xinput)—is smaller than a predetermined
threshold (or nominal size parameter, typically set to 0.05
or 0.1). Surrogates provide a computationally efficient
procedure to perform hypothesis testing because the
probability of different discriminating statistics can be
estimated by computing their value in the surrogate
ensemble fxng. Here we use different discriminating
statistics—the mean (an average), variance (an indicator
of spread), maximum (the most extreme event observed),
conditional entropies of order one and two (the conditional
entropy of order mþ 1 quantifies Markov properties of
order mþ 1 and is appropriate for assessing the null
hypothesis that data are Markov of order m; see
Appendix C), and the Kolmogorov-Smirnov (KS) distance,
relative to its maximum-likelihood parameter α̂, of the part
of the dataset no less than the lower cutoff (a popular way to
assess goodness of fit to a power law [21])—and one-sided
hypothesis tests (see Appendix C for details on the
implementation of hypothesis tests). To quantify the
efficiency of different surrogate methods in each such
hypothesis test, we will compute two key quantities:

(i) The size of a test is the rate of rejection of the null
hypothesis when it is indeed true (incorrect rejec-
tion). A test is exact when its size equals the
predetermined nominal size.

(ii) The power of a test as the rate of rejection of the null
hypothesis when this hypothesis is incorrect, which
depends also on the process underlying the input
sequence.

First we test the IID power-law hypothesis and, using
shuffle surrogates, a more general IID hypothesis, for input
sequences generated from an IID power law. In this case,

TABLE I. The probability distributions considered. In each case the constant C is defined such that the total probability mass is unity.

Name Probability Support Parameters

Power law pðxÞ ¼ Cx−α fxmin; xmin þ 1;…g α ¼ 2.5, xmin ¼ 1, 12
Truncated power lawa pðxÞ ¼ Cx−α fxmin; xmin þ 1;…; xmaxg α ¼ 2.5, xmin ¼ 1, xmax ¼ 64
Power law with cutoff
(discretizedb)

pðxÞ ¼ Cx−α exp ð−λxÞ fxmin; xmin þ 1;…g α ¼ 2.5, λ ¼ 0.01, xmin ¼ 1

Log-normal (Truncated
and discretizedb)

pðxÞ ¼ C½1=ðxσ ffiffiffiffiffi
2π

p Þ� exp½−ðlog x − μ=
ffiffiffi
2

p
σÞ2� fxmin; xmin þ 1;…g μ ¼ 0, σ ¼ 1.5, xmin ¼ 1, 12

Power law of Markov
order mc

pðxÞ ¼ Cx−α fxmin; xmin þ 1;…g α ¼ 2.5, xmin ¼ 1

Power law with correlation
(Lyapunov) time τc

pðxÞ ¼ Cx−α fxmin; xmin þ 1;…g α ¼ 2.5, xmin ¼ 1

aThe truncated power law is a power law truncated at its 1=1024 upper quantile.
bInitially continuous random variables were rounded to the nearest integer, so that the final probability of observing an integer x is

proportional to
R
xþ0.5
x−0.5 pðyÞdy, where p is the probability density listed above.

cThe generation of correlated power-law sequences is detailed in Appendix A.
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the distribution of p values is expected to be flat [82,83].
Figure 4 shows this is obtained for constrained power-law
surrogates, regardless of discriminating statistic or sample
length, but not for typical power-law surrogates. Even
when the KS distance is used as a discriminating statistic,
as recommended in Ref. [21], typical surrogates lead to
small but statistically significant deviations from uniform-
ity which are particularly relevant for small sample sizes N.
Figure 5 confirms these results by showing how the size of
different tests scale with N. The constrained power-law
surrogates have an exact size for all discriminating sta-
tistics, while the typical approach shows pronounced
deviations from the desired nominal value. When the
conditional entropy of order one is used as a discriminating
statistic, the traditional approach shows a deviation from
uniformity that even increases with N. Differences between
true and nominal size arise for typical surrogates because
the method allows large variation in the parameter of best fit
which, in turn, lead to excessive variability in discriminat-
ing statistics [44].
As a next test we consider sequences which actually

arose from an IID log-normal distribution, and compare the

rate at which hypothesis tests based on typical and con-
strained surrogates can rule out the hypothesis of an IID
power-law origin. Figure 6 shows that when the KS
distance is used as a statistic, typical surrogates provide
slightly greater power, but that for other (nonpivotal)
statistics constrained surrogates often lead to similar or
higher power, as reported more generally in Ref. [44] for
nonpivotal statistics. Most importantly, constrained surro-
gates seem to perform systematically better in the crucial
case of small sample size N. In the limit of small sample
length N, the power of tests based on typical surrogates can
approach zero, but the power arising from constrained
surrogates approaches the nominal size.
Finally, we apply hypothesis tests to heavy-tailed empir-

ical data recording deaths from historical epidemics, the
numbers of customers affected by blackouts, word frequen-
cies in the novel Moby Dick, the number of deaths as a
direct result of terrorist attacks, intensities of solar flares,
and energies released by earthquakes. In Table II we show
that the p values associated with the hypothesis that real
data are IID power law above a lower cutoff can vary
considerably with statistic and surrogate method. The

TABLE II. Constrained and typical power-law surrogates can lead to different conclusions about empirical data. The p values
identified via tests using the KS distance, mean, variance, and maximum, and 999 surrogates of the hypothesis that the NG elements of a
dataset which exceed the fitted lower cutoff x̂min (Appendix B) arose IID under a power law [21]. Values which, ignoring issues
associated with multiple tests, would allow rejection at the 10% level of significance [21] are shown in bold font. The lower cutoff xmin is
fitted to the value which minimizes the KS distance between the empirical probability distribution function and the maximum-likelihood
discrete power law on x ≥ xmin [19,21,30], and surrogates are conditioned on fitted lower cutoff x̂min (Appendix B). When continuous
datasets are discretized or converted to units of 103 (in the cases indicated in the footnotes to this table), we are considering power-law
models for the coarsened sequences rather than the data to their original precision.

Typical Constrained

Name N x̂min NG pKS pmean pVar pmax pKS pMean pVar pmax

Diseasesa 72 2317 27 0.834 0.363 0.343 0.318 0.282 0.388 0.396 0.300
Blackoutsb 211 235 57 0.883 0.435 0.390 0.476 0.557 0.369 0.466 0.581
Terrorismc 9,101 12 547 0.679 0.680 0.743 0.763 0.939 0.027 0.023 0.293
Flaresd 1,711 1 1,711 0.008 0.058 0.012 0.003 0.006 0.065 0.011 0.001
Wordse 18,855 7 2,958 0.712 0.191 0.097 0.141 0.346 0.161 0.122 0.169
Earthquakesf 59,555 1 59,555 0.001 0.798 0.752 0.714 0.003 0.913 0.866 0.840

a“Diseases” corresponds to average estimates in units of 103 of fatalities due to historical epidemics, rescaled as outlined in Ref. [37].
b“Blackouts” comprises the numbers of customers, in 103 and rounded to the nearest integer, affected by electrical blackouts in the

United States between 1984 and 2002 [1,21]: Ref. [73].
c“Terrorism” lists the number of deaths as a direct result of terrorist attacks which took place between February 1968 and June 2006

[74]: Ref. [75].
d“Flares” lists the peak gamma-ray intensity of solar flares, in counts per second, made from a particular satellite between 1980 and

1989 [1]: Ref. [76]. Intensities less than 323 counts per second were discarded [21], then the time series was divided by twice this lower
cut-off, to obtain a sequence of real numbers bounded below by 0.5. Finally, each element was rounded to the nearest integer, rounding
up when two integers were equally close.

e“Words” comprises the count of unique words in the novel Moby Dick by Herman Melville [1,21]: Ref. [77].
f“Earthquakes” records the approximate energies released by the 59 555 earthquakes of magnitude at least 2.0 [78] detected in

southern California between 1981 and 2000 [79]: Ref. [80]. Each earthquake magnitude M was converted to an approximate energy E,
in Joules, using the formula [81]

log10 E ¼ 5.24þ 1.44M:

These energies were divided by twice the energy required for an earthquake of magnitude 2.0, to obtain a sequence of real numbers
bounded below by 0.5. Finally, each element of this sequence of energies was rounded to the nearest integer.
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difference between surrogate methods is especially notice-
able for the “Terrorism” data when the mean or variance is
used as a discriminating statistic.

B. Estimation

Now we show the advantages of using constrained
surrogates to estimate quantities of interest. We are par-
ticularly interested in extreme events (e.g., expected sample
maxima) because of their significance in processes with
heavy-tailed distributions such as power laws and, through-
out this section, employ statistics sensitive to the tail of the
distribution. In contrast to shuffling and bootstrapping,
constrained surrogates and the typical approach allow for
the estimation of the probability of unobserved (extreme)
events. The benefit of constrained surrogates over the
typical approach is that they avoid biasing estimations of
extreme events which, as we will see below, is particularly
relevant for small N.
First, we consider independently generating power-law

sequences, and for each surrogate sequence estimating the
sample maximum, ratio of the two largest values, and index
of dispersion (the ratio of variance to mean [84]). For each
statistic s we also calculate the relative bias ðẼ½s� − E½s�Þ=
E½s� in the expectation Ẽ½s� computed using the considered
surrogate method. Figure 7 shows that constrained surro-
gates provide an unbiased estimate in all cases, in contrast
to bootstrapping and the typical approach. This advantage
is particularly important in the relevant case of small
sample size N (e.g., the expectation of sample maximum

FIG. 5. Constrained surrogates lead to exact tests (true size
equals nominal size), regardless of sample length or discrimi-
nating statistic. Sizes estimated from 10 000 hypothesis tests,
each using an independent sample of length N from an IID power
law with scale exponent α ¼ 2.5 and lower cutoff xmin ¼ 1 or 12.
Tests use nine typical, constrained, or shuffled surrogates, with
nominal size 10%, and use as test statistics the KS distance, mean,
maximum, or conditional entropy of order one (from left to right).
The gray line spans one standard error above and below the
nominal size, and the error bars of other lines correspond to
standard error but are at most only slightly larger than the
linewidth.

FIG. 6. Constrained surrogates can increase power for small
sample lengths. Powers estimated from 10 000 hypothesis tests
(power-law null hypothesis) each using an independent sample of
length N from an IID log-normal distribution with location
parameter μ ¼ 0, shape parameter σ ¼ 1.5, and lower cutoff
xmin ¼ 1 or 12. Tests use nine typical or constrained surrogates,
with nominal size 10%, and use as discriminating statistics the
KS distance, mean, or maximum (from left to right). Error bars
show standard error and are at most only slightly larger than the
linewidth.

FIG. 4. Constrained surrogates lead to flat distributions of p
values. Distributions of p values estimated from 10 000 hypoth-
esis tests each using an independent sample of length N ¼ 4, 64,
or 1024 from an IID power law with scale exponent α ¼ 2.5 and
lower cutoff xmin ¼ 1. Each test uses nine typical, constrained, or
shuffled surrogates, with nominal size 10%, and uses as test
statistic the KS distance, mean, maximum, or conditional entropy
of order one (from left to right). The gray line spans one standard
error above and below the expected fraction of p values in each
interval, and error bars of other lines correspond to standard error
but are smaller than the linewidth.
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is much larger when based on typical surrogates, and
smaller when based on bootstrapping). Constrained power-
law surrogates also reduce finite variance, as predicted by
Eq. (4), without introducing bias (see SM [48], Fig. S3,
where, in addition to statistics investigated herein, we
consider a measure of inequality or heterogeneity called
the coefficient of variation [85]).
Now we consider time series which are not power-law

distributed, but which could reasonably be misidentified as
such at small sample length (log-normal distribution,
truncated power law, or power law with exponential cutoff;
see Table I). Although the model will not be optimal for
these time series, in the absence of knowledge of the true
underlying process decision makers may decide to apply
power-law surrogates, especially when trying to allow for
the possibility of extreme events. Figure 8 shows that
constrained surrogates also improve estimates of the
expectation of statistics in this context. In particular, the
overestimation of the sample maxima is not as extreme as
the one obtained using the typical approach. For these non-
power-law distributions, bootstrapping, which does not
apply a power-law model, provides estimates of maxima
closer to the true expected maximum than estimates arising
from either typical or constrained power-law surrogates.
However, bootstrapping cannot produce new values, with
the consequence that resulting maxima are always less than
or equal to the maximum of the original observation.

Finally, we consider again heavy-tailed empirical data of
varied origin. In Fig. 9, we compare the predictions made
by typical and constrained power-law surrogate methods of
the expected maximum of random subsamples of varied
length N. This includes estimates under an IID power-law
model of the expected maximum number of people killed in
a single event among the next N epidemics or terrorist
attacks. Typical surrogates often produce estimates of
expected sample maxima which are alarmingly large.
Conversely, bootstrapping, because it cannot provide unob-
served values, systematically underestimates the expectation
of sample maximum. Constrained surrogates provide a
compromise which avoids systematic underestimation but
leads to sample maxima which, in expectation, are usually
closer to the expected maximum of samples drawn IID from
the original data than are the sample maxima of typical
surrogates (though not as close as the systematic under-
estimates available from bootstrapping).

C. Correlated data

In this section, we explore power-law and empirical
datasets that are not IID We show that correlations impact
sample statistics and hypothesis tests based on traditional
surrogates, but can be accommodated by constrained
surrogates. We focus consistently on the possibility that
empirical data are correlated, rather than the alternative

FIG. 7. Constrained surrogates do not bias sample statistics.
(a)–(c) Expectation E of sample statistics and (d)–(f) relative bias
of the calculated expectation. The expectation E is calculated
using 10 000 independent input sequences xinput, each comprising
N values drawn IID from a power-law distribution with α ¼ 2.5,
using each input sequence to generate 100 surrogates. The
surrogates considered are either generated independently from
the true underlying process (solid gray), typical, constrained, or
bootstrapped. Surrogates have the same length N as the original
sequence (horizontal axis). Results for the sample maximum,
ratio of the two largest observations, and index of dispersion are
shown in each column and were computed in sequences
of length N.

FIG. 8. Constrained surrogates ameliorate overestimation of the
expected maximum arising from misapplication of a power-law
model. The expected maximum in N samples was estimated as
the mean over 10 000 independent realizations of input sequences
xinput drawn IID from three distributions (left to right): log-
normal, power law truncated at its 1=1024 upper quantile, and a
power law with an exponential cutoff. In the upper panels (a)–(c),
the probability mass functions pðxÞ of these distributions (solid
gray line) is compared with that of a power law with scale
exponent α ¼ 2.5 and lower cutoff xmin ¼ 1 (densely dotted
black line). In the lower panels (d)–(f), the true values of the
expected maxima are compared to the ones estimated using three
surrogate methods: typical, constrained, and bootstrap. Error bars
show standard error.
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explanation of deviations from IID which could be pro-
vided by nonstationarity.
First, in Fig. 10, we consider data with a stochastic

component: these are indeed power law, but also Markov of
order one or two (Appendix A). Whether the KS distance or
a conditional entropy is used as a discriminating statistic,
typical and constrained power-law surrogates—which
enforce an IID power-law hypothesis—both lead to high
rates of rejection of the power-law hypothesis (at least, for
long samples). This rejection occurs not because the
sequences are not power law, but because they are not
IID. The same is true of shuffle surrogates, designed to apply
an IID hypothesis without utilizing a power-law model,
when the conditional entropy is used as a discriminating
statistic. Constrained Markov order power-law surrogates,
designed to enforce the null hypothesis that an observed
sequence is power law andMarkov of order onewith a given
set of Markov states, lead to different behavior: constrained
Markov order power-law surrogates avoid inappropriate
(and provide appropriate) rejections. When the original
power-law data are Markov of order one, a constrained
power-law Markov order one surrogate (with correctly
chosen Markov states) leads to a rate of rejection which
closely matches the nominal size of the test. When the
original power-law sequence is Markov of order two, and
the constrained power-law Markov order one surrogate is
used, rates of rejection are, once again, close to the nominal
size when either the KS distance or conditional entropy of
order one is used as a discriminating statistic. This result is
reasonable, because theKS distance and conditional entropy
of order one are not designed to be sensitive to Markov

properties of order greater than one. When the conditional
entropy of order two, which is sensitive to order twoMarkov
properties, is used as a discriminating statistic, the rate of
rejection correctly approaches unity as the sample length
increases. Constrained Markov order power-law surrogates
maintain similar advantages across a wider range of dis-
criminating statistics and competing surrogate methods than
shown here (see SM [48], Fig. S4).
Next, in Fig. 11, we use IID and constrained ordinal

pattern power-law surrogates to investigate power-law data
of deterministic chaotic origin, having correlation time
(Lyapunov time) τ ¼ 5.0, 10.2, and 17.9 seconds per
natural unit of information (sec/nat) (Appendix A). We
apply hypothesis tests which employ the discriminating
statistic most widely used in tests of a power-law null
hypothesis: the KS distance. As correlation time τ
increases, the considered power-law sequences deviate
more from IID, leading to increases in the rejection rates
arising from both typical and constrained IID power-law
surrogates. In contrast, constrained ordinal pattern power-
law surrogates can accommodate correlations. The length
mþ 1 of ordinal patterns which must be preserved to avoid
rates of rejection above the nominal size increases as the
correlation time τ grows, showing how ordinal pattern
power-law surrogates can be used to resolve correlation
structure in observed data.

FIG. 9. Constrained surrogates avoid extreme values of ex-
pected maximum when applying a power-law model to empirical
observations (Table II). Expectations of sample maximum esti-
mated as the mean over 10 000 independent samples of length N
drawn IID from the original data (solid purple) or a typical,
constrained, or bootstrap surrogate produced from this sample.
Only values of the original data which equal or exceed the fitted
lower cutoff x̂min are considered.

FIG. 10. Constrained Markov order power-law surrogates can
reduce correlation-based rejection of power-law hypotheses.
Rates of rejection estimated from 1000 hypothesis tests, each
using a sample of length N from a power law which has scale
exponent α ¼ 2.5, lower cutoff xmin ¼ 1, and Markov order
(a)–(c) one or (d)–(f) two (Appendix A). Tests use nine typical,
constrained, shuffled, or constrained Markov order one power-
law surrogates, have a nominal size 10%, and use as test statistics
the KS distance or conditional entropy of order one or two. Note
that the conditional entropy of order mþ 1 is an appropriate
statistic for testing for Markov order m (Appendix C). Markov
power-law surrogates use the same Markov states as the original
time series. Error bars show standard error and are at most only
slightly larger than the linewidth.
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Finally, in Fig. 12 we illustrate how the choice of
surrogate method impacts the conclusions we make about
the correlated empirical datasets comprising sequences of
solar flare intensities and earthquake energy release.
Employing a constrained Markov order one power-law
surrogate instead of a typical or constrained IID power-law
surrogate consistently leads to low rates of rejection of a
power-law hypothesis on the basis of sample maximum or
the KS distance. However, the type of order one Markov
constraints which we consider do not explain the observed
order two Markov properties (captured by the conditional
entropy of order two) of sequences of solar flare intensities.
In contrast, for sequences of earthquake energies these
Markov constraints substantially decrease rates of rejection
when using the conditional entropy of order two and so
appear to be able to at least partly explain the observed
memory properties. Constrained length mþ 1 ¼ 16
ordinal pattern power-law surrogates, which enforce the
null hypothesis that sequences are power law but have
correlations which can be captured by ordinal patterns of
lengthmþ 1 ¼ 16, also lead to low rates of rejection based
on the KS distance (for ordinal patterns of other lengths,
other discriminating statistics, and results for another
empirical dataset, see SM [48], Figs. S5 and S6).
However, for solar flare intensities, using ordinal pattern
surrogates only slightly reduces the rate of rejection when
the conditional entropy of order two is used as a discrimi-
nating statistic, and actually increases the rate of rejection
when using the maximum.When correlations in earthquake
intensities are accommodated by constraining ordinal
patterns, the discriminating statistics considered consis-
tently lead to low rates of rejection of a power-law model.

IV. CONCLUSIONS

Generating sequences with heavy-tailed distributions is a
critical step in quantitative investigations of complex
systems. The traditional parametric approach, based on
fitting a power law to the data, has the important limitations
that it leads to sequences from a single power-law exponent
α and ignores correlations in the data. In this paper, we
proposed nonparametric methods to obtain constrained
power-law surrogates which overcome these limitations
by not restricting α and by accommodating correlations in
the data up to a predefined length m. We explored the
benefit of our surrogates over alternative approaches
(shuffling, bootstrapping, and the typical power-law fitting
approach) in a variety of settings and datasets. Our
approach leads to uniformly distributed p values, exact
hypothesis tests, and unbiased estimates of expectation
regardless of the sample statistics. The benefits are par-
ticularly important for small sample lengths N, which is the
most important regime because this is when the determi-
nation of the validity of power-law distributions is chal-
lenging. This regime is also relevant in large datasets
because of the reduction of the effective sample size N

FIG. 11. By constraining longer ordinal patterns we can
accommodate longer correlations in power-law data. Rates of
rejection estimated from 1000 hypothesis tests with KS distance
as discriminating statistic. Each test uses a sample of length N ¼
1024 from a power law which has scale exponent α ¼ 2.5 and
Lyapunov time τ equal to 5.0 (black diamonds with densely
dotted lines), 10.2 (maroon circles with dashed lines), and
17.9 sec =nat (red squares with dotted lines) (see Appendix A).
Tests use nine typical, constrained, or constrained length mþ 1
ordinal pattern power-law surrogates, have a nominal size 10%,
and use the KS distance as test statistic. The gray line spans one
standard error above and below the nominal size. Error bars show
standard error, but are smaller than the marker size.

FIG. 12. Incorporating correlation constraints impacts the rate
of rejection of power-law hypotheses for empirical observations.
Rates of rejection estimated from 1000 hypothesis tests of
sequences of length N of (a)–(c) intensities of solar flares and
(d)–(f) energy released by earthquakes (Table II). Each input
sequence xinput considered begins at an independently and
randomly chosen point in the full empirical sequence. Tests
use nine typical IID, constrained IID, shuffled, constrained
Markov order one, or constrained length 16 ordinal pattern
surrogates, have nominal size 10%, and employ as discriminating
statistics the KS distance, maximum, or conditional entropy of
order two. Note that the conditional entropy of order mþ 1 is an
appropriate statistic for testing for Markov orderm (Appendix C).
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that occurs when a power law is fit only to the tail of a
distribution [21,30] and when sequences are downsampled
to reduce correlations [26].
The significance of our methods and findings is that they

provide an improved methodology to address problems
recently raised in the long-standing debates on the ubiquity
of power-law distributions in complex systems. First, it has
recently been shown that ignoring correlations, which are
ubiquitous in complex systems and affect statistical proper-
ties of time series, leads to wrong conclusions about the
validity of power-law distributions [26]. The usual methods
do not account for correlations, but our constrained surro-
gates do. Second, it is becoming increasingly accepted that
whether a distribution is a power law is less important than
whether it has a heavy or fat [86] tail, and that it is impor-
tant to move beyond goodness-of-fit statistics [35,36].
Constrained power-law surrogates align with this view
because (i) they provide theoretical support for arbitrary
discriminating statistics and, hence, a license to investigate
whichever types of deviation from power-law behavior are
most likely to affect the best course of action, and (ii) they
provide estimates substantially more accurate than the
typical approach when the underlying distribution is log-
normal rather than power law, and we would expect similar
advantages to hold for other heavy-tailed distributions.
Third, the application of our constrained surrogatesmodifies
conclusions obtained in data analysis, as shown inFig. 12 for
the case of the analysis of earthquake datasets; the appli-
cation of the usual approaches leads to a rejection of the
power-law hypothesis (Gutenberg-Richter law), but the
incorporation of correlations within our constrained surro-
gate approach shows that this hypothesis cannot be rejected
at a rate significantly higher than the nominal size of the test.
Constrained power-law surrogates can preserve arbitrary

additional properties present in the original sequence, but
precisely which characteristics should be preserved
depends on cases of interest. Further research is needed
to overcome limitations of our work and expand the results
to new settings of interest. In the setting of networks,
analysis of whether the degree distribution is power-law
distributed (scale-free hypothesis) needs to account for
constraints related to the formation of networks (e.g.,
impose that the degree sequence of a simple undirected
graph must be graphical [87,88] and account for the process
of network creation [33,89]). It would be interesting to
investigate what effect these additional constraints would
have on conclusions made about the ubiquity of scale-free
networks [30]. Another limitation of our results is that they
apply to discrete power laws and originally continuous
datasets have to be rounded. It would be valuable to
formally extend results to the continuous setting and to
systematically study the impact of discretization (rounding)
—common steps in data collection, interpretation, and
analysis [90]—on conclusions and estimates about

heavy-tailed datasets. For instance, relationships which
are theoretically assured for discrete data might hold only
approximately for continuous power laws. For this reason,
and also because the additional analytic properties of
real continuous data could provide new opportunities
[41,45,91–93], it would be valuable separately to develop
constrained continuous power-law surrogates which can be
used to explore unobserved events. Finally, in order to
support the use of constrained surrogates in estimating
confidence intervals, it would be important to account
systematically for our finding of lower variance of con-
strained power-law surrogates (when compared with the
IID case).
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Corrêa, Yinqi Xuan, and anonymous reviewers for valu-
able input.

APPENDIX A: CORRELATED
POWER-LAW SEQUENCES

Here we describe how we generate input sequences xinput

which are power-law distributed, but not IID. We consider
two cases: (1) a stochastic generative process of Markov
order m > 0 and (2) a deterministic chaotic system with
tunable correlation time τ.

1. Stochastic process

Sequences from power laws of Markov order m > 0 are
obtained using as Markov states the partition A ¼
faiji ∈ Zþg of the set of integers greater than or equal to
the lower cutoff xmin which comprises intervals of equal
logarithmic width defined by ai¼fk∈Zj3i−1ðxmin−0.5Þ≤
k< 3iðxmin−0.5Þg. The first m elements x1;…; xm of the
sequence are generated IID from the limiting power-law
distribution. For each integer time t > m, with probability ν
the element xt is also generated IID from the limiting power-
law distribution. Otherwise, the element xt is instead gen-
erated by first choosing one of the previous m values of x
(say, x�), identifying the interval ai� such that x� ∈ ai� , and
choosing the value xt randomly within ai� according to the
corresponding power-law distribution:
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pðxjx ∈ ai� Þ ¼
8<
:

x−α=
P
y∈ai�

y−α x ∈ ai�

0 x ∉ ai� :

We now check that this algorithm leads to the desired
limiting distribution in the case of Markov of order one (the
same reasoning applies for higher order). The probability
ptþ1ðaÞ of Markov state a ∈ A at time tþ 1 given the
probability ptðaÞ at time t is

ptþ1ðaÞ ¼ νplimitingðaÞ þ ð1 − νÞptðaÞ; ðA1Þ

where plimiting is the desired limiting distribution of Markov
states and ν is a parameter governing the probability of
choosing the next value according to plimiting. Iterating
Eq. (A1) we find that, for a ∈ A and non-negative integer t,

ptðaÞ ¼ ν

�Xt

j¼0

ð1 − νÞj
�
plimitingðaÞ þ ð1 − νÞtp0ðaÞ;

and so limt→∞ ptðaÞ ¼ plimitingðaÞ for any 0 < ν ≤ 1. In
our case, plimiting is a power law with scale exponent α ¼
2.5 and lower cutoff xmin ¼ 1, and ν ¼ 0.1.

2. Deterministic chaotic system

We generate power-law sequences with tunable corre-
lation time τ using a one-dimensional deterministic chaotic
system. This is achieved by first generating a sequence
from a map with a tunable correlation (Lyapunov time) and
then applying a transformation of variables that maps the
invariant density to a power-law distribution. We use the
asymmetric tent map f∶½0; 1� → ½0; 1� given by

wtþ1 ¼ fðwtÞ ¼
�
r−1wt 0 ≤ wt ≤ r

ð1 − rÞ−1ð1 − wtÞ r < wt ≤ 1;

where r ∈ ½0; 1� is a parameter, and iterate starting from a
point w1 ∈ ½0; 1� chosen uniformly at random to produce a
sequence w ¼ w1;…; wN of length N. This map is uni-
formly hyperbolic with a Lyapunov exponent given by [94]

λ ¼ jr log rþ ð1 − rÞ logð1 − rÞj:

The inverse of the Lyapunov exponent τ ¼ 1=λ provides a
measure of the correlation (memory) in the sequence. We
consider parameters r ¼ 0.95, 0.98, and 0.99, correspond-
ing to τ ¼ 5.0, 10.2, and 17.9 sec =nat, respectively (the
Lyapunov exponent has units of nat/sec because we use
natural logarithms). The invariant density of the map is
uniform in [0, 1] [95], which allows us to obtain a
correlated power-law sequence x ¼ x1;…; xN . This is done
mapping each value wt ∈ ½0; 1� to an integer xt no smaller
than the desired lower cutoff xmin via the inverse of the

cumulative distribution function of a discrete power law
with the desired scale exponent α.

APPENDIX B: SURROGATE ALGORITHM

In this appendix, we detail our method for producing
constrained power-law surrogates with arbitrary lower
cutoff xmin ∈ Zþ (the code is available in Ref. [43]).
Given an input sequence xinput ¼ x1; x2;…; xN , let xt ¼Qrt

j¼1 qt;j be the prime decomposition of element xt, where
qt;1 ≥ qt;2 ≥ � � � ≥ qt;rt and rt is the total number of
instances of prime factors in xt. As mentioned in the main
text, our strategy involves three steps.
(1) Associate with each element xt ¼

Qrt
j¼1 qt;j the kt

prime numbers qt;1; qt;2;…; qt;kt , where kt is chosen

such that
Qkt

j¼1 qt;j ≥ xmin but, for l ¼ 1; 2;…; kt − 1,Q
l
j¼1 qt;j < xmin. Our strategy involves keeping these

kt instances of prime factors with element xt, and thus
ensuring that xt does not decrease beneath the lower
cutoff xmin or, indeed, beneath its personal lower
cutoff xt;min ¼

Qkt
j¼1 qt;j ≥ xmin. For each element xt,

note the maximum admissible prime factor qt;kt.
(2) Randomly allocate all instances of prime factors

which are not associated with an element of the
sequence. For each distinct prime q, all instances of
this prime factor which are not associated with a
particular element of the input sequence xinput are
distributed among all elements of the sequence for
which the maximum admissible factor is no smaller
than q (i.e., all elements xt for which qt;kt ≥ q). So
that surrogates are drawn uniformly at random from
a set of sequences which have the same product and
the same likelihood, the instances of the prime factor
q are distributed such that all distinct redistributions
are equally likely. Because an element xt will receive
no additional instances of prime factors q > qt;kt , its

personal lower cutoff xt;min ¼
Qkt

j¼1 qt;j will not
change. Furthermore, each distinct time series with
the same likelihood and the same sequence of
personal lower cutoffs x1;min; x2;min;…; xN;min is
equally likely.

(3) Randomly permute the time series so that more
distinct sequences are accessible. Whether this
permutation is performed in the first or final stage
of the surrogate algorithm does not affect the
probability distribution of sequences.

The algorithm just described involves ordering prime
factors from largest to smallest. Any other ordering of
the prime numbers would be valid, but would lead to a
distinct surrogate algorithm. Our choice preferentially fixes
large prime factors and allows smaller factors (which we
expect to tend to be more numerous) to be redistributed.
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Choosing uniformly at random from all distributions of
k instances of a prime factor among N elements is
equivalent to choosing a random weak composition of
k into N parts, for which we use the algorithm RANCOM

[62]. We follow Ref. [96] in choosing a random (N − 1)
subset using the OðNÞ algorithm RKS2 instead of the
OðN logNÞ algorithm RKSB originally employed as a
subroutine of algorithm RANCOM [62]. The computational
times required for constrained and typical IID power-law
surrogates both scale almost linearly in sample length N
(see SM [48], Fig. S7).
When either constructing constrained IID power-law

surrogates with xmin ≥ 2 or generating constrained corre-
lated power-law surrogates, we would expect our methods
to benefit from the presence of more instances of prime
factors, because this should allow more randomization.
As stated in the main text, the lower cutoff xmin

describing an empirical dataset of length N is chosen as
the value x̂min which minimizes the KS distance between
the empirical distribution for theNG values above the lower
cutoff and the corresponding maximum-likelihood discrete
power law on x ≥ xmin [19,21,30]. This fitted lower cutoff
is actually treated in three slightly different ways depending
on the surrogate methods considered. (1) We fit the lower
cutoff xmin only once for each empirical dataset, using all
available data. Thereafter we work with (subsamples or
subsequences of) the sequence of elements no less than this
fitted lower cutoff x̂min, and treat the previously fitted value
x̂min as the known value of the lower cutoff xmin. In
particular, the KS distance is calculated using this pre-
viously fitted x̂min. This approach has been applied in all
cases, except in Table II. (2) Following Ref. [21], each
typical surrogate considered in Table II comprises a
sequence of N values chosen IID, as follows. With
probability NG=N, the value is drawn IID from the
maximum-likelihood power law for the NG values no less
than the fitted lower cutoff x̂min. Otherwise [i.e., with
probability ðN − NGÞ=N], the value is drawn IID from the
ðN − NGÞ elements which fall below the fitted lower cutoff
xmin. The KS distance is calculated only after refitting the
lower cutoff to the surrogate sequence [21]. (3) Each
constrained surrogate of Table II is generated while
constraining the fitted lower cutoff x̂min as well as the
maximum likelihood value α̂ of the scale exponent α. Each
such surrogate comprises the values in the original
observation which fell below the fitted lower cutoff
x̂min, together with a constrained power-law surrogate
generated from the observations with values above the
fitted lower cutoff. To constrain the fitted lower cutoff
x̂min, we accept a surrogate only when it leads to the same
fitted value of x̂min as does the original observation, but in
other cases discard the result and repeat the surrogate
generation process. Conditioning on the fitted lower
cutoff x̂min increases computational cost, which is why
we consider this approach only in Table II.

APPENDIX C: IMPLEMENTING
HYPOTHESIS TESTS

In this appendix, we detail the implementation of
hypothesis tests for an observed real sequence xinput ¼
x1;…; xN and a given null hypothesis. Before beginning a
test, we choose (1) a discriminating statistic s∶RN → R (in
the main text we use the KS distance, the mean, the
variance, the maximum, and conditional entropies of order
one and two), (2) a size αsize ∈ ð0; 1Þ, which corresponds to
the maximum allowable probability of incorrectly rejecting
the null hypothesis even when it is true, also called the rate
of false positives or type I error (in the main text we use
αsize ¼ 0.1), (3) a numberNs of surrogates x independently
to generate (in the main text we use Ns ¼ 9, except in
Table II, where we use Ns ¼ 999), and (4) whether the test
should be left tailed (appropriate when lower values of the
discriminating statistic are more extreme or less consistent
with the null hypothesis), right tailed (appropriate when
higher values of the discriminating statistic are more
extreme or less consistent with the null hypothesis), or
two tailed (appropriate when both unexpectedly low and
unexpectedly high values of the discriminating statistic
correspond to noteworthy evidence against the null hypoth-
esis). A quantile q is estimated as

q ¼ r − 0.5
Ns þ 1

∈ ð0; 1Þ;

where the rank r ∈ f1; 2;…; Ns þ 1g is the position of the
value sinput ¼ sðxinputÞ of the discriminating statistic
observed for the input sequence xinput when it is combined
with the Ns values fsn ¼ sðxnÞg observed for the Ns
surrogate sequences xn, and these Ns þ 1 values are ranked
from smallest to largest, with ties broken by adding small
random perturbations. The p value p ∈ ð0; 1Þ can then be
computed from the quantile q according to

p ¼
8<
:

q if the test is left tailed

1 − q if the test is right tailed

2 minfq; 1 − qg if the test is two tailed:

Finally, if p < αsize (p ≥ αsize), then we reject (fail to reject)
the null hypothesis at the level of significance αsize.
The most popular method to assess a power-law hypoth-

esis involves a right-tailed test using the KS distance as the
discriminating statistic [21,30]. The best combination of
statistic and tail depends on the specific type of deviations
of most interest or practical importance. We have used left-
tailed tests together with the mean, maximum, and variance
because power-law distributions are often used to inves-
tigate extreme events or to represent heavy-tailed processes.
We would intuitively expect lower values for these dis-
criminating statistics to correspond to lower risk from
extreme events, less support for the hypothesis of a
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heavy-tailed process, and less motivation to model these
processes using power-law distributions.
A test of the null hypothesis that a sequence arose from a

Markov chain of order m should use a statistic which is
sensitive to Markov properties of order greater than m,
because this allows detection of differences between
surrogates of Markov order m and original data of higher
Markov order. Such a statistic is an estimate of the
conditional entropy hmþ1 of order mþ 1, which for a
stationary sequence z1; z2;…; zN is given by

hmþ1 ¼ Hmþ1 −Hm;

where Hm is the entropy of order m:

Hm ¼ −
X

zt;ztþ1;…;ztþm

pðzt; ztþ1;…; ztþmÞ

× logpðzt; ztþ1;…; ztþmÞ;

and pðzt; ztþ1;…; ztþmÞ is the probability that a sub-
sequence of length mþ 1 will be zt; ztþ1;…; ztþm. By
stationarity, this probability is independent of t. Because we
are interested in both the power-law and Markov properties
of sequences, we consider conditional entropies defined in
terms of the original time series x1; x2;…; xN rather than
the sequence of Markov states z1; z2;…; zN . Joint proba-
bilities are estimated from the observed sequence using the
maximum-likelihood method, for which probabilities are
proportional to the frequency. We use natural logarithms, so
that entropies have units of nats. Following, e.g.,
Refs. [42,54,72], tests involving conditional entropies are
also left tailed.
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