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The threat of global warming and the demand for reliable climate predictions pose a formidable
challenge because the climate system is multiscale, high-dimensional and nonlinear. Spatiotemporal
recurrences of the system hint to the presence of a low-dimensional manifold containing the high-
dimensional climate trajectory that could make the problem more tractable. Here we argue that reproducing
the geometrical and topological properties of the low-dimensional attractor should be a key target for
models used in climate projections. In doing so, we propose a general data-driven framework to
characterize the climate attractor and showcase it in the tropical Pacific Ocean using a reanalysis as
observational proxy and two state-of-the-art models. The analysis spans four variables simultaneously over
the periods 1979–2019 and 2060–2100. At each time t, the system can be uniquely described by a state
space vector parametrized by N variables and their spatial variability. The dynamics is confined on a
manifold with dimension lower than the full state space that we characterize through manifold learning
algorithms, both linear and nonlinear. Nonlinear algorithms describe the attractor through fewer
components than linear ones by considering its curved geometry, allowing for visualizing the high-
dimensional dynamics through low-dimensional projections. The local geometry and local stability of the
high-dimensional, multivariable climate attractor are quantified through the local dimension and
persistence metrics. Model biases that hamper climate predictability are identified and found to be similar
in the multivariate attractor of the two models during the historical period while diverging under the
warming scenario considered. Finally, the relationships between different subspaces (univariate fields), and
therefore among climate variables, are evaluated. The proposed framework provides a comprehensive,
physically based, test for assessing climate feedbacks and opens new avenues for improving their model
representation.
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I. INTRODUCTION

A comprehensive analysis of climate variability should
account for the multivariate and nonlinear dependencies
intrinsic to the system. Quantifying these dependencies is
an urgent challenge in climate research [1]. Dynamical
system theory offers a pathway to this end, so far success-
fully applied to high-dimensional turbulent systems [2,3].
At each time step t, the state of a spatiotemporal chaotic
system can be viewed as a point in an infinite dimensional
state space, parametrized by multiple variables and their
spatial dependency. In the case of dissipative chaotic

systems, this infinitely dimensional dynamics is confined
on a finite dimensional object, commonly known as
“inertial manifold” or “attractor” [4,5]. Spatiotemporal
chaos can then be seen as a walk on this lower-dimensional
inertial manifold [2,3]. Studies of this kind have contrib-
uted a quantitative understanding of moderate Reynolds-
number turbulence [3,6–8], and similar approaches have
been applied to a variety of fields, from computational
neuroscience [9–13] to artificial neural networks [14,15]
and biophysics [16,17]. Each one of these fields present the
challenge of identifying low-dimensional manifolds
embedded in very high-dimensional, noisy data [3,5].
Computer scientists have long been interested in iden-
tifying low-dimensional manifolds from data as dimension-
ality reduction tools, a problem commonly known in the
literature as “manifold learning” (see, e.g., Ref. [18]).
Earth’s climate system is indeed a high-dimensional,
dissipative dynamical system and its dynamics is expected
to be confined to a manifold with lower dimension than the
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full state space [19]. A recent application of manifold
learning in climate science has shown the potential of this
idea by identifying the multistability properties of an
intermediate complexity climate model [20].
In this work, we propose a dynamical systems frame-

work to investigate and compare spatiotemporal climate
variability in observations and state-of-the-art climate. The
climate system is highly nonlinear and climate models are
far from perfect [21]. As a result, climate projections
require ensemble simulations to test for sensitivity to initial
conditions, and different models [21,22] or strategies [23]
to cope with model errors. Intermodel comparisons, such as
the Coupled Model Intercomparison Project [24], generate
petabytes of data. Mining and quantifying sources of
biases, limitations, and ambiguities among these data is
fundamental when communicating results to other scien-
tists and policymakers [25,26]. In this context, the dynami-
cal system view that we propose brings several advantages:
it allows us to comprehensively study the system account-
ing for, and quantifying, multivariable dependencies, to
assess both mean values and instantaneous properties of
each state space point, and to curtail the need for large
ensembles in the evaluation of climate model biases and
future trajectories. The characterization of the manifold
dimensionality of a modeled climate system is indeed
largely independent of the realization or ensemble member
considered if sufficiently well sampled. For a given climate
or time period, the modeled attractor does not change.
The focus of this work is the Pacific Ocean between 20° N

and 20° S, where the ElNiño SouthernOscillation (ENSO) is
the main mode of climate variability. ENSO is an oscillatory
mode driving, with its warm and cold phases, El Niño and La
Niña, the most dramatic year-to-year variation of Earth’s
climate system [27]. ENSO affects rainfall patterns, tropical
cyclogenesis and the likelihood of droughts and floods, and
freshwater availability. ENSO also impacts food security,
with cascading effects on health,water, sanitation, education,
and overall increased mortality [27–30]. In light of its great
societal relevance, the tropical Pacific is a much studied
region, and therefore a convenient, well-known, test case.
Our approach, however, is general and could be applied
anywhere else at both global and regional scales. Model
evaluations for ENSO dynamics commonly employ tradi-
tional methodologies, such as power spectra and standard
deviations [31–33], or more advanced methods such as
percolation theory [34] and complex networks [35,36].
Current analyses, however, do not routinely adopt a multi-
variate approach and quantify only average dynamical
properties. Furthermore, the high dimensionality of the
system is very seldom considered, and the analysis is often
limited to one component, associated to theNiño3.4 index or
the first principal component (PC) [37].
Here, we consider a subset of four key variables relevant

to the tropical Pacific dynamics: surface temperature, zonal
and meridional surface velocities, and outgoing long wave
radiation (OLR), and perform our analysis on the ERA5

reanalysis [38] and two state-of-the-art climate models
from the Coupled Model Intercomparison Project-phase 6
(CMIP6) [39], the Max Planck Institute (MPI) and EC-
Earth models [31,40]. We analyze daily data and their
anomalies over two 40-year periods, 1979–2019 and 2060–
2100. The two models were chosen because of their output
availability and significant differences in their parametri-
zations, resolutions, and performance [41]. We visualize the
high-dimensional inertial manifold using both a linear,
principal component analysis (PCA) [37], and a nonlinear,
Isomap [42], dimensionality reduction method. Isomap has
been chosen among many others (see, e.g., Refs. [43–47];
see also Ref. [48] for a brief review) for its simplicity. Using
a nonlinear method has the advantage of identifying the
curved manifold itself (intrinsic dimension), rather than
the embedding space found by PCA, as discussed in
Refs. [12,48].
The time series that we obtain describe the time evolution

ofmodes of climate variability, accounting formore than one
variable, and potentially could include all or most model
variables; the linear regression of these time series onto each
original spatiotemporal field defines the spatial signature of
the modes. Most importantly, by comparing projections in
the multivariate and univariate representation, we can high-
light the role of each variable in the overall system’s
dynamics and its relation with the other fields.
We then estimate the local properties and stability of the

climate attractor of the tropical Pacific in the reanalysis and
the models. For a given climate state ζ (i.e., configuration
of the Pacific at an instant in time), we evaluate the
geometrical properties of the attractor in terms of its local
dimension metric dðζÞ [49,50] and its stability θðζÞ through
the inverse of the average persistence of the trajectory
around ζ [51,52]. While d roughly quantifies the number of
directions the system can evolve from or into, and therefore
the number of degrees of freedom required to describe it at
that point in time, the persistence quantifies the “stickiness”
of the trajectory around each neighborhood in state space,
and therefore how predictable the future evolution of that
state is, or its predictability potential. These concepts were
first introduced in Refs. [53,54] and have been applied so
far to univariate fields to explore atmospheric weather
regimes [19,49,50,55–61].
Finally, we explore subspaces of the original state

space by evaluating local dimension and persistence of
each univariate field. The dimension of the modeled
manifold is lower than in the observation by construction
due to the limits imposed by the model resolution.
However, a reliable model should capture the observed
relationships among variables, and therefore the scaling of
such metrics, to properly represent climate feedbacks.
The data analyzed are described in Sec. II. The analysis

framework is presented in Sec. III, followed by the results
(Sec. IV). A discussion of our results and their implications
and future avenues of research concludes this work.
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II. DATA

The ERA5 reanalysis [38] is the observational-based
dataset adopted. Produced by the European Centre for
Medium-Range Weather Forecasts, ERA5 data are avail-
able at a spatial resolution up to 31 km globally. We
consider two models, the Max Planck Institute MPI-
ESM1.2-HR and EC-Earth3-HR (MPI and EC-Earth
hereafter) [31,63]. The resolution of their atmosphere
and ocean components is ∼100 km and 0.4° for MPI
and ∼40 km and 0.25° for EC-Earth. Both datasets are
part of the Coupled Model Intercomparison Project-phase 6
[39] catalog. Their performance according to the scoring
analysis by Ref. [41] is in the top five (EC-Earth) and
middle range (MPI) among the 37 model configuration
tested over the historical period.
The analysis spans the periods 1979–2019 and 2060–

2100 at daily frequency. Given that the CMIP6 historical
integrations end on December 2014, we concatenated four
years from the SSP585 scenario, the “worst-case scenario”
with the highest radiative forcing (up to 8.5 W=m2 in
2100). We further analyzed the SSP585 outputs for the last
four decades of the 21st century, 2060–2100.
For each model we analyze four members, randomly

chosen, in the historical period and four for EC-Earth and
two for MPI (only two are available with daily outputs) in
the future. Our discussion, however, focuses on one
member, the first in the respective ensembles, in most of
our presentation (CMIP6 label: r1i1p1f1 for both models).
In the last section of this work (Sec. VI A), we show that the
attractor characteristics, as quantified by the local dimen-
sion and persistence metrics, do not change as a function of
the ensemble member considered. In fact, chaotic trajecto-
ries of the same dynamical system are still bounded to live
on the same manifold, and manifold properties should not
depend on the ensemble member, provided that we sample
such object well enough.
The domain of interest is the tropical Pacific in the

latitude-longitude range [20° S–20° N, 120° E–70°W]. All
datasets are remapped on a coarser grid with resolution of
1° in latitude by 1.5° in longitude; a reasonable step as we
are interested in large-scale dynamics. A higher latitudinal
resolution is chosen to ensure we are resolving the Rossby
wave field [64].
The variables considered are surface temperature (T),

zonal and meridional velocities (u, v) at the surface, and
outgoing long wave radiation. The temperature field is a
driver of variability in the Pacific Ocean, the horizontal
velocity vector field quantifies the dynamical response of
the system, and the outgoing long wave radiation is a proxy
for cloud variability which is key during ENSO. For
reproducibility purposes, the variables chosen are temper-
ature at 2m (label: t2m), zonal and meridional velocity at
10m (label: u10 and v10), the top net thermal radiation
(label: ttr and equal to the negative of OLR) in ERA5,
temperature and velocities at the surface (labels: tas, uas,

and vas), and the outgoing long wave flux at the top of the
atmosphere (label: rlut) in the models.

A. State space embedding

Given the choice of fields, at each time step t, the tropical
Pacific climate is uniquely described by a state space vector
defined by X ¼ ½Tðx; yÞ; uðx; yÞ; vðx; yÞ;OLRðx; yÞ�ðtÞ ∈
RT;N . T is the length of each time series and given that
we consider separately two 40-year-long periods at daily
temporal resolution, T ¼ 14 975 days. N is the dimension-
ality of the state space and for the spatial resolution and
variables considered, N ¼ 17 092.

III. EARTH’S CLIMATE AS A
DYNAMICAL SYSTEM

An important novelty of our approach is that we study
the evolution of the highly dimensional climate system
focusing on multiple variables simultaneously [3].
Let us consider a spatiotemporal climate system

described by m fields Yi, i ¼ 1; 2;…; m, embedded in a
grid of size g and spanning a time interval T. For each field
Yi, first we weight all time series by the cosine of their
latitude. Each field is then standardized to zero mean and
unit variance. If velocity fields are included, it is crucial to
standardize the velocity vector and not each single com-
ponent separately.
At each time step t, the system is uniquely described

by a state space vector X ¼ ½Y1;Y2;…;Ym�ðtÞ ∈ RT;N of
dimensionality N ¼ m × g. In this formulation, a single-
point trajectory in state space describes the climate system
evolution. This trajectory spans a manifold with lower
dimension than the full state space because the system is
dissipative [19].
Several methodologies can then be applied to investigate

such high-dimensional dynamics, as briefly summarized
below.

A. Manifold learning

The identification of modes of variability in climate
science often relies on principal component analysis [37],
commonly referred to as empirical orthogonal functions
(EOF) and its variations, such as rotated EOF [65] and
extended EOF [66]. In most climate applications, nonlinear
components are neglected (for an exception see, e.g.,
Ref. [43]) and variables are investigated one at a time.
However, the climate system is composed by many inter-
acting, covarying variables, and a multivariate approach
represents a more rigorous way of quantifying its dynam-
ics. State space embedding for the climate system as a
whole is an ill-posed problem, due to the very large number
of variables spanning physical, chemical, and biological
processes, and not all governing equations are known. For
specific problems, on the other hand, a subset of key
variables considered together, for example, those for which
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we have a good observational record of sort, can offer an in-
depth dynamical understanding of the system. To visualize
the geometry of the underlying manifold the linear,
principal component analysis [37] may still be adopted,
or we can rely on nonlinear methods, such as Isomap [42].

1. Principal component analysis

Principal component analysis [37], or empirical orthogo-
nal function analysis [67], is a linear modal decomposition
method. Given a spatiotemporal dataset X ∈ RT;N with N
time series each of length T, PCA identifies the underlying
manifold by fitting hyperplanes in the directions that
contain most of the variance. This is achieved by comput-
ing the Gram matrix as G ¼ ½1=ðT − 1Þ�XXT ∈ RT;T [43].
The T eigenvectors U ∈ RT;T of the Gram matrix G are
the principal components of the dataset. Alternatively,
it is possible to eigendecompose the covariance matrix
C ¼ ½1=ðN − 1Þ�XTX ∈ RN;N . In this case the eigenvec-
tors V ∈ RN;N of C are spatial patterns and the projection
of V onto X describes their temporal variability. The
decomposition of the Gram matrix returns the same
solution of the covariance matrix up to T eigenvectors
[43,68]. A third, equivalent alternative, is to eigendecom-
pose the Euclidean distance matrix containing the
(Euclidean) distances between each point in X with the
multidimensional scaling (MDS) algorithm [18,69]. Each
Ui explains a given variance based on the ratio of its
correspondent eigenvalue and the sum of all eigenvalues,
i.e., λi=

P
j λj. To identify the correspondent spatial pat-

terns is enough to linearly regress each (standardized) PC
on the dataset as ½1=ðT − 1Þ�UTX. The low-dimensional
projection found by PCA preserves the variances as
measured in the high-dimensional input X [42].

2. Isometric feature mapping (Isomap)

If the manifold is nonlinear Euclidean distances cannot
capture the intrinsic distances along the manifold. Isomap
is one of the available tools to address this problem (see
Ref. [48]) and has been introduced to climate science by
Refs. [70,71] for univariate fields. Isomap adds a key step
to the MDS algorithm. Given a dataset X ∈ RT;N , with N
time series each of length T and centered to zero mean,
Isomap first identifies the K-nearest neighbors of each
point i in the manifold, then it computes the geodesic
distances δi;j between each couple of points i and j by
assuming that the manifold is locally flat in a radius of K
points (see also Appendix A). The geodesic distance matrix
DG is finally used as input to the MDS algorithm [69].

Given the squared distances ðDð2Þ
G Þi;j ¼ δ2i;j, the double

centering matrix is computed as A ¼ − 1
2
JDð2Þ

G J, with
J ¼ IT − ð1=TÞeeT, where IT is the identity matrix of
order T and e ¼ ½1; 1;…; 1�T ∈ RT is a vector of length T
containing all ones.

The dimensionality of the dataset is then reduced by
finding the eigenvectors of the double centered matrix A
(i.e., solving A ¼ UΛUT). Each component Vi is obtained
by weighting the ith eigenvector Ui by the square root
of its correspondent eigenvalue

ffiffiffiffi
λi

p
, as Vi ¼ Ui

ffiffiffiffi
λi

p
[42].

Similarly to PCA, the associated spatial patterns can be
retrieved by linearly regressing the (standardized) Isomap
components on the original dataset as ½1=ðT − 1Þ�VTX.
A downside of using nonlinear dimensionality reduction

methods is that the explained variance cannot be directly
estimated. The so-called residual variance has been proposed
as a valid alternative. It is defined as 1 − RðDM;DYÞ2, where
DM is the algorithm’s estimate of manifold distances (i.e.,
Euclidean distance matrix for PCA and geodesic matrix for
Isomap),DY is the matrix of Euclidean distances in the low-
dimensional embedding computed by each algorithm, and R
is the Pearson correlation coefficient among all entries ofDM
and DY [42].
As mentioned, Isomap relies on the parameter K. In our

subsequent analysis we set K ¼ 10, thus assuming that the
manifold is locally flat within a radius of 10 days, which is
reasonable given the spatial resolution considered and the
length of our time series.

B. Dynamical systems metrics:
Local dimension and persistence

Quantifying the dimensionality of the inertial manifold
allows us to estimate the effective degrees of freedom of the
dynamical system being investigated, and therefore its
complexity [72]. This is a difficult problem for spatiotem-
poral chaotic systems and an exact estimation of such
quantity may require knowing the equation of motions, as
done in Ding et al. [5] for the Kuramoto-Sivashinsky
system. For very high-dimensional, noisy datasets, data-
driven methods have shown limitations [73], and depend-
ing on the problem at hand, certain approaches may be
more useful than others.
In the case of climate variability, recent advances at the

interface of dynamical system and extreme value theory
have opened the possibility to estimate the dimensionality
of underlying attractors [54]. For a given dynamical
system, the probability of recurrence of a state ζ obeys a
generalized Pareto distribution. Locally, such distribu-
tion scales with a parameter, shown to be equal to the
local dimension dðζÞ. The attractor dimensionality (i.e.,
Hausdorff dimension) can be retrieved by averaging all d
[74,75]. Furthermore, for a climate system it is useful to
quantify the tendency of the trajectory to persist in a
neighbor of the state space, because this tendency is
directly linked to the predictability of that state. The greater
the persistence, the higher the predictability. This property
can be quantified by introducing the so-called extremal
index [51]. The two metrics, local dimension and persist-
ency, are powerful tools to explore high-dimensional
dynamics and have been useful to characterize univariate
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atmospheric fields in several recent studies (see, e.g.,
Refs. [49,57,59,61] among others).
Here we briefly present these tools and refer the reader to

Ref. [54] for details and rigorous proofs.
We consider the high-dimensional trajectory XðtÞ ∈

RT;N and for each state ζ ¼ XðτÞ, with τ ∈ ½1; T�, we
define the observable as

g(XðtÞ; ζ) ¼ − log (δðXðtÞ; ζÞ): ð1Þ

Here δðx; yÞ represents the Euclidean distance between two
vectors x and y and the logarithm further increases the
discrimination between close recurrences [49,54]. Theminus
sign turns minima into maxima for practical convenience;
thus the time series g is large when XðtÞ is similar to ζ.
We then define a threshold sðq; ζÞ as the qth quantile for

each g(XðtÞ; ζ) and adopt q ¼ 0.98, as in Ref. [49]. The
sensitivity to the choice of q value is addressed in
Appendix G. The points in g(XðtÞ; ζ) that exceed the
threshold sðq; ζÞ represent the Poincaré recurrences of ζ
and are here referred to as uðζÞ [54]. Finding recurrences of
a state ζ in a neighborhood of radius r is therefore
equivalent to find exceedances of g(XðtÞ; ζ) over a thresh-
old s, and we refer to a neighborhood of a state ζ as ΓqðζÞ.
The Freitas-Freitas-Todd theorem [53], modified by
Lucarini et al. [54], states that the probability Pðu; ζÞ that
the dynamics XðtÞ returns in a neighborhood ΓqðζÞ
converges to a generalized Pareto distribution [76]:

Pðu; ζÞ ≃ exp

�
−θðζÞ uðζÞ

σðζÞ
�
; ð2Þ

where σðζÞ and θðζÞ, the so-called extremal index [51,77],
are parameters of the distribution.
The local dimension dðζÞ can be computed as dðζÞ ¼

½1=σðζÞ� [54]. It relates to the density of state space points
in a neighborhood ΓqðζÞ and roughly quantifies the number
of directions the system can evolve from or into. dðζÞ is
therefore linked to the intrinsic local predictability of ζ [49]
(i.e., the lower dðζÞ is, the larger the predictability of that
state). Reference [54] suggests that the attractor dimension
can be computed as the average over all local dimensions
D ¼ hdðζÞi, and Ref. [49] has shown that this is indeed the
case for the Lorenz system [78].
The persistence of the trajectoryXðtÞ in a neighborhood

ΓqðζÞ is quantified by the extremal index θðζÞ [51,79–81].
Here θ is computed using the methodology proposed by
Süveges [79]. Intuitively, θ ∈ ½0; 1� is linked to the inverse
of the mean residence time of XðtÞ in ΓqðζÞ, with low
values implying higher persistence in the neighborhood.
Higher persistence around a state ζ quantifies the tendency
of the trajectory to stick in its neighborhood, therefore
increasing the potential predictability around ζ. The value
of θðζÞ should be divided by the time step Δt [i.e.,
θðζÞ=Δt], but in this paper we are in the trivial situation

of Δt ¼ 1 day. For the Lorenz system, lower θ are found in
the neighborhoods of the three unstable fixed points [49].
The local dimension and persistence metrics are adopted

after removing the seasonality and the trend. This allows us
to focus on stationary time series.

IV. NONLINEAR AND MULTIVARIATE
DIMENSIONALITY REDUCTION

A. First test: Mean state and seasonal cycle

As a proof of concept, we consider the state space
evolution in the ERA5, MPI, and EC-Earth in the
tropical Pacific retaining trends and seasonal cycle and
considering all four fields mentioned. The residual
variance after applying the PCA and Isomap algorithms
(see Sec. III) on the embedded state space vector
X ¼ ½Tðx; yÞ; uðx; yÞ; vðx; yÞ;OLRðx; yÞ�ðtÞ is shown in
Fig. 1(a). In both observations and models, the residual
variance of the first three components is lower in Isomap;
additionally, Isomap saturates faster than PCA. In other
words, the 17 092-dimensional trajectory of the tropical
Pacific domain lives on a low-dimensional object, which is
nonlinear, as verified by comparing Euclidean and geodesic
distances for the three datasets (see Appendix A, Fig. 12).
The models share strong similarities in their average
Euclidean distance, but they differ from the reanalysis in
their geodesic components.
Comparing ERA5 and models, the residual variance of

the first PCA and Isomap components is higher in the
reanalysis, and saturates to a higher value. In EC-Earth, on
the other hand, PC1 and Isomap-1 explain a nearly identical
amount of variance.
Focusing on the low-dimensional Isomap projections,

each point in Fig. 1(b) represents the state of the Pacific
system X ¼ ½Tðx; yÞ; uðx; yÞ; vðx; yÞ;OLRðx; yÞ�ðtÞ at a
given day. Because of the inclusion of the seasonal cycle
and its dominance on the overall variability, the dynamics
lives on a torus, which is topologically similar among
models and reanalysis. The ERA5 dynamics, however,
deviates from the periodic trajectory in correspondence of
the 1982–1983 and 1997–1998 El Niño events. No clear
deviation occurs in the models at any time, indicating that
no ENSO event was capable of modifying the modeled
seasonal cycle in the simulations considered [82].
The correlation between Isomap-1 and PC1 is higher than

0.98 independently of the dataset, illustrating that the
seasonal cycle variability is a close-to-linear process, as
expected. Furthermore, the Pearson correlation across data-
sets is higher than 0.95 in all cases, indicating that the
temporal characteristics of the seasonal cycle are well
captured by both models. Large correlations across datasets,
however, do not imply similar spatial projections (see
Sec. III), which also consider differences in the signals’
variance: large regional biases in the representation of the
seasonal cycle are verified, as shown in Appendix B, Fig. 13.
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B. Variability: ENSO

We next investigate the interannual variability of the
tropical Pacific by repeating the analysis after detrending
and deseasonalizing the data. PCA and Isomap are again
applied to the embedded state space vector X ¼
½Tðx; yÞ; uðx; yÞ; vðx; yÞ;OLRðx; yÞ�ðtÞ and the residual
variances are shown in Fig. 2(a). For ERA5, the first
Isomap component explains considerably more variance
than the first PC (residual variances are 0.42 and 0.78 for
Isomap-1 and PC1, respectively), and the first three Isomap
components capture ∼70% of the total variance. Higher
Isomap components show a faster saturation than PCs in
residual variance but never fully saturate, underlying the
high dimensionality of the manifold in all three datasets.
The PCs residual variance behaves similarly among models
and reanalysis, while the Isomap residual variance in ERA5
differs from the models, suggesting that MPI and EC-Earth
struggle in capturing the nonlinear topological character-
istics of the reanalysis. In Appendix A, Fig. 12 we prove

that also the manifold of the anomalies is nonlinear in
all cases.
Differences among datasets emerge in the low-

dimensional 2D and 3D Isomap projections of the state
space trajectory [Fig. 2(b)]. The strong 1982–1983 and
1997–1998 El Niños, followed by the 2015–2016 event, are
excursions away from the state space region usually
explored by the tropical Pacific trajectory. Neither model
replicates such behavior. We cannot exclude that the
40 years examined are outliers in the observational reali-
zation, of which we have only one sample. However, we
verified that this characteristic disruption of the seasonal
cycle is not reproduced in any of the ensemble members
analyzed, which may indeed suggest a structural difference
between ERA5 and MPI and EC-Earth. The residual
variance explained by different components and the state
space occupation are similar among models. This is verified
despite the different ENSO characteristics quantified by the
first Isomap and PC components and their power spectrum

FIG. 1. Dimensionality reduction of the tropical Pacific climate retaining seasonality and trends. (a) Residual variance of PCA and
Isomap for ERA5 and the two CMIP6 models (MPI and EC-Earth). (b) Low-dimensional, Isomap projections (first two or three
components, respectively) of the three datasets; Isomap components are indicated as X1, X2, X3, respectively. Each point encodes the
multivariate state of the tropical Pacific Ocean at a given day from January 1979 to December 2019. Projections have been standardized
to unit variance.
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(see Appendix D, Fig. 15). The spectral analysis identifies
the largest, significant peak at ∼3.7 yr in ERA5 and EC-
Earth, and at more than ∼8 yr in MPI. In ERA5, PC1 and
Isomap-1 projections are well correlated (r ¼ 0.9) with
largest discrepancies in correspondence of the 1982–1983
and 1997–1998 events. The peak, correspondent to the
strong 2015–2016 El Niño event is similarly identified in
the PC1 and Isomap-1 components. Therefore, differently
from the PC analysis, the Isomap projection implies that the
2015–2016 event was of smaller amplitude and “more
linear” in behavior compared to the 1982–1983 and 1997–
1998 El Niños. In the models the correlations between PC1
and Isomap-1 projections are higher than in ERA5
(r ¼ 0.95 for MPI and 0.94 for EC-Earth).
Spatial patterns are visualized by the regressions of

Isomap-1 and shown in Appendix D, Fig. 15. In ERA5,
ENSO is characterized by a larger temperature variance on
a narrow band in the equatorial eastern Pacific compared to
the models, accompanied by a surface wind response

consistent with a shift in the convective cell over the
central to East Pacific and negative OLR anomalies (or
more clouds) in the whole equatorial Pacific. In MPI the
ENSO pattern is amplified in the central Pacific, as noted in
Ref. [63], and the wind and cloud response is shifted to the
western side of the basin. In EC-Earth the ENSO spatial
signature in surface temperatures is closer to that of the
reanalysis Ref. [31], but the atmospheric response remains
biased similarly to MPI, with wind and OLR anomalies not
extending sufficiently eastward and a visible double inter-
tropical convergence zone bias in cloud distribution.
By the end of the 21st century, ENSO dynamics change

in the models in response to the increasing greenhouse gas
concentrations of the SSP585 scenario.
The first components—PC1 and Isomap-1—of MPI,

resemble the currently observed ENSO, with a spectral
peak at ∼3.6 yr but no extreme El Niño events, while in
EC-Earth positive and negative events recur periodically
every four years (see Appendix D, Fig. 16). ENSO

FIG. 2. Dimensionality reduction of the tropical Pacific Ocean anomalies (no linear trend and no seasonal cycle). (a) Residual variance
of PCA and Isomap for observations (ERA5) and the two CMIP6 models (MPI and EC-Earth). (b) Low-dimensional, Isomap
projections (first two or three components, respectively) of the three datasets; Isomap components are indicated as X1, X2, X3,
respectively. Each point encodes the multivariate state of the tropical Pacific Ocean at a given day from January 1979 to December 2019.
Projections have been standardized to unit variance.
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amplitude increases slightly in MPI, with the largest
changes in the OLR field, and substantially in EC-Earth,
impacting temperature, zonal velocity, and OLR fields. In
EC-Earth, OLR changes the most, with the ENSO-asso-
ciated anomalies extending over the whole tropical Pacific
Ocean. Surface wind changes are concentrated in the zonal
direction, and the Isomap-1 regression on the meridional
wind velocity is nearly zero.

C. Modes of variability: Multivariate or univariate?

The framework proposed allows for analyzing simulta-
neously many variables. Here we show the distinctive
advantage of doing so.
In Fig. 3 we compare the first Isomap component

obtained in the multivariate representation with the uni-
variate case, applying Isomap separately to each field in
ERA5. The corresponding figures for the models, looking
only at the anomalies, in both current and future periods,
can be found in Appendix E, Figs. 18 and 19. Reducing the
dimensionality in a multivariate representation corresponds
to fitting axis in the direction that maximizes the overall
variance. At times, the evolution of a single field reflects
the largest fraction of the dataset’s variance, leading to
small differences between the univariate and multivariate
cases. This is the case for the tropical Pacific, where the
variability is largely controlled by temperature anomalies.

In general, a multivariate approach helps to identify
which variable contributes the most to the dynamics of
interest. For example, when considering the seasonal cycle
(Fig. 13), the evolution on the torus in correspondence of
large El Niño events (1982-1983, 1997-1998, and 2015–
2016) does not follow the evolution of temperature, as
evident by comparing Isomap-1 in Fig. 3(e) (see also
Appendix E, Fig. 17). The multivariate representation
largely ignores the temperature contribution in 2015–
2016. The seasonal cycle variance is indeed largely
dominated by the velocity and OLR fields as shown in
Figs. 3(e)–3(h). In other words, the dimensionality reduc-
tion with or without embedding highlights the weighted (by
variance) relative contribution of each variable to the
system dynamics.
Looking again at the anomalies, Fig. 4 displays the

correlations between the univariate and multivariate rep-
resentations of the first three Isomap components in ERA5
and models in the two periods analyzed. A corresponding
figure but for the first three PCs can be found in
Appendix C, Fig. 14.
For the first component, the temperature field explains

the largest part of the variance in both models and
observations independently of the period analyzed, with
correlations higher than 0.85 in all cases. Both models
underestimate the relationship between the zonal wind u
and the multivariate case, and MPI shows larger differences
than EC-Earth in correspondence of the correlation for
meridional velocity v.
Under the SSP585 scenario the relationships among the

four variables are nearly invariant in MPI, but change in
EC-Earth, especially in the low level wind field, followed
by OLR. In EC-Earth the zonal component increases its
correlation with the multivariate, temperature-dominated
representation, while the opposite is verified in v (see also
Appendix D, Fig. 16). The correlations found for the

FIG. 3. First Isomap (X1) component for anomalies (panels a–
d) and raw data (panels e–h) in ERA5. In each case components
have been standardized so that the total variance is equal to 1.
Projections in the multivariate case are shown in blue and labeled
as “SP” (state space). Projections for each, univariate field are
shown in red. Atop of each plot is the correlation coefficient (in
absolute value) between the projections in the multivariate and
univariate cases.

FIG. 4. (a) Correlations (in absolute value) between the first
Isomap component of each variable (on the x axis) and the
multivariate case in ERA5 and models [signals in Figs. 3(a)–3(d)
for ERA5 and Figs. 18 and 19 for MPI and EC-Earth respec-
tively]. Rows (b) and (c) are the same as row (a) but for the second
and third Isomap components.
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second and third Isomap components [see Figs. 4(b)
and 4(d)] further elucidate how the relative role of the
variables differs in the modeled versus observed dynamics.
Isomap-2, for example, clearly indicates that both models
significantly underestimate all correlations between uni-
variate and multivariate representation but for v in historical
times. This behavior changes in the future for EC-Earth,
that displays even higher correlations than found in ERA5
for T, U, and OLR, but it is unaltered in MPI.

V. LOCAL PROPERTIES OF THE ATTRACTOR

A. Multivariate fields

We quantify local properties of the high-dimensional
flow through the local dimension dðζÞ and persistence θðζÞ
metrics introduced in Sec. III. Both metrics are calculated
in the state space of the tropical Pacific.
The scatter plots of dðζÞ versus θðζÞ are shown in Fig. 5.

Each point encodes a day in the dðζÞ versus θðζÞ space and
is colored by its respective ENSO value, here defined by the
first Isomap component (Appendix D, Figs. 15 and 16). In
the observations the two metrics are strongly correlated
(r ¼ 0.81): days with lower local dimension are charac-
terized by a large mean residence time and higher predict-
ability [low values of θðζÞ]. Strong El Niños and, to a lesser
extent, La Niñas are characterized by low dðζÞ and θðζÞ
indicating that strong positive and negative ENSO events
can be, to a first approximation, interpreted as unstable
fixed points of the system. This analysis supports the
nonlinear oscillator theoretical framework to explain ENSO
dynamics [83] and the asymmetry between El Niños and La
Niñas [84]. The asymmetry in the strength of positive and
negative events is missed in both models, with the greater
predictability of strong El Niños compared to strong
La Niñas being reversed in MPI in the historical period.

Over the period 1979–2019, the correlation between dðζÞ
and θðζÞ is r ¼ 0.62 and 0.72 for MPI and EC-Earth,
respectively, therefore lower than in ERA5. Most impor-
tantly, the modeled values in the [dðζÞ, θðζÞ] diagram span
a smaller region than in the reanalysis.
Indeed, the region characterized by dðζÞ > 50 and

θðζÞ > 0.5 is very often explored in the reanalysis and is
occupied by the majority of ENSO-neutral days, but is
seldom visited by both MPI and EC-Earth. In other words,
the reanalysis captures higher-dimensional dynamics than
the models. These differences are shared by all ensemble
members analyzed. This analysis points to a large differ-
ence in predictability potential in both models compared to
observations, with the models’ anomalies being far more
predictable in neutral conditions. The difference is further
quantified by the histograms of both metrics in Fig. 6 and
by the four moments of each distributions summarized in
Appendix F.
In the future, both models shift toward greater predict-

ability potential, with lower values of dðζÞ and θðζÞ (see
Fig. 6). This shift to larger predictability in a warmer
climate has been termed as the “Hammam effect” and first
recognized in model simulations for the sea level pressure
at the midlatitudes [85], and in idealized aquaplanet
simulations [86]. These changes are subtle in MPI and
larger in EC-Earth, especially for persistence. In this model,
the regular, periodic behavior of its future ENSO (see
Appendix D, Fig. 16) causes the distribution of θðζÞ to shift
to lower average and skewness values (Fig. 6 and
Appendix F, Table II). In MPI, El Niños become more
predictable in the future and have a lower instantaneous
dimension than present ones, partially recovering the
asymmetry bias found in the historical period.
Figure 7 further visualizes the metrics and the differences

between models and observations in the 2D (first and

FIG. 5. (a) Scatter plot of stability θðζÞ and local dimension dðζÞ for observations (ERA5) and the two models (MPI and EC-Earth).
Each point represents a day in the period 1979–2019 (top panels) or 2060–2100 (bottom panels). Each point is colored according to its
value in the first (standardized) Isomap component, quantifying here the ENSO index and dashed (solid) lines indicate the 0.1 (0.5)
quantiles of dðζÞ and θðζÞ. The correlation r between each d and θ is also reported. The computation spans the full 17 092-dimensional
state space.
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second component) Isomap projections. Both metrics,
quantifying local geometry and stability, vary along the
manifold, with low values at the outer borders (El Niño and
La Niña regions) and high value close to the manifold
center.

B. Univariate fields and their scaling

The analysis so far shows that distributions of local
dimensions and persistence are biased toward lower values

in the modeled climate. A lower average dimension d
implies that the models analyzed are inherently less
complex; additionally, lower θ imply that anomalies in
the Pacific, on average, persist longer than in observations.
Climate models do not solve all scales and therefore

their intrinsic dimensionality (i.e., dimension of their
inertial manifold) is expected to be lower than in the
reanalysis, as suggested in Ref. [62]; however, in spite of
large differences in atmospheric horizontal resolution
(∼100 and ∼40 km for MPI and EC-Earth, respectively)
and in parametrization schemes, these two models have a
nearly identical attractor dimensionality (see Appendix F,
Table II).
We further investigate the source for this bias by

exploring the subspaces defined by each univariate field.
While lower dimensional, a model should properly capture
the observed scaling among local dimension and persist-
ence of each variable.
We compute local dimension and persistence for each

variable separately and quantify distances between ERA5
and models’ distributions using the Wasserstein distance
metric [87]. Results are presented in terms of pairwise
distance matrices. Crucially, we are interested in quantify-
ing how distances between distributions scale among each

FIG. 7. In each row, from left to right: two-dimensional, Isomap projections of the high-dimensional state space dynamics; Isomap
projections with each point colored by its local dimension dðζÞ; Isomap projections with each point colored by its local stability θðζÞ.
(a)–(e) ERA5 reanalysis, MPI (1979–2019), EC-Earth (1979–2019), MPI (2060–2100), and EC-Earth (2060–2100).

FIG. 6. Histograms of local dimension dðζÞ and inverse of
persistency θðζÞ for ERA5, MPI, and EC-Earth. Top panels:
1979–2019 period. Bottom panels: period 2060–2100 under the
SSP585 scenario.
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other, rather than their absolute magnitude; therefore, each
pairwise distance matrix is further standardized by its total
standard deviation. This analysis is shown in Fig. 8 for
present and future periods.
In terms of local dimension, the distributions for ERA5

[Fig. 8(a), left-hand panel] show that the manifold dimen-
sionality of univariate fields is always smaller than the one
embedded in a multivariate space, as to be expected. The
lowest dimensionality characterizes the zonal velocity,
followed by the meridional component, while similar
average values (but not tails) are found for temperature
and OLR. The strong skewness at low values in the
temperature is linked to the most intense ENSO events,

as shown previously. In MPI the temperature and
velocity fields show similar values of local dimension with
almost overlapping distributions between T and v. The
OLR field has higher local dimensions. This lack of
differentiation among variables is partially corrected in
EC-Earth, but T and OLR distributions have different mean
values.
By the end of the 21st century, the distributions of local

dimension for temperature shift toward lower values in both
models, while changes are very limited for the other
variables. The increase in intrinsic predictability under
the warming scenario around the equator is therefore linked
to changes in the surface temperature field alone.

FIG. 8. (a)–(e) First and second columns: histograms of local dimension dðζÞ and inverse of persistence θðζÞ for the multivariate
representation (referred to as state space “SP”) and univariate fields (i.e., T, u, v, and OLR). Third and fourth columns: Wasserstein
distance between such histograms. For a given dataset, the variance among all distances is one. Rows (a)–(e): ERA5 reanalysis, MPI
(1979–2019), EC-Earth (1979–2019), MPI (2060–2100), and EC-Earth (2060–2100).
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Moving to persistence, distributions in ERA5 display
low mean values of θ for temperature and zonal velocity,
and more limited predictability (higher θ) for OLR and v.
EC-Earth again reproduces the relative scaling and the
relative distance among the distributions better than MPI.
In the future, the distributions shift to lower values in EC-
Earth, especially for temperature, while they remain nearly
unchanged in MPI. Pairwise distance matrices, character-
izing the degree of similarities among distributions, are
then shown in the third column of Fig. 8. They quantify
from a dynamical perspective the relative ranking among
MPI and EC-Earth noticed in Ref. [41]. EC-Earth is indeed
in better agreement with the reanalysis in terms of its
representation of the relative contributions of each field to
the multivariable distribution.

VI. ROBUSTNESS OF DYNAMICAL SYSTEMS
METRICS: INTERNAL VARIABILITY AND

RESOLUTION

We conclude the presentation by analyzing the robust-
ness of the dynamical system metrics to the internal
variability of the (modeled) system and to the resolution
chosen for the analysis.

A. Internal variability

We compute the local dimension and persistence metrics
for four ensemble members in EC-Earth and in MPI. For
the period 2060–2100 in MPI, we rely only on two
members. For simplicity, this analysis focuses only on
the temperature variable. Results are shown in Fig. 9.
Chaotic trajectories of the same dynamical system are
bounded to live on the same manifold and manifold
properties are largely independent of the ensemble member,

provided that we sample such object well enough. The
similarities among members are further quantified by the
first four moments of the distributions in Table I. This
analysis further shows that the 40 years considered are
sufficient to characterize the attractor.

B. Resolution dependence

To compute the dynamical system metrics we first define
an observable as gðXðtÞ; ζÞ ¼ − logðδðXðtÞ; ζÞÞ, where
XðtÞ ∈ RT;N represents the high-dimensional trajectory
in a state space of dimensionality N (Sec. III). Here the
function δðXðtÞ; ζÞ represents the Euclidean distance
between a state space point ζ and the trajectory XðtÞ.
Computations of distances in high dimensions are affected
by the known “curse of dimensionality” [75], and it is
therefore important to check how results differ with the
fields’ resolution.
Here we focus on the d and θ metrics in the multivariate

and univariate representations at two different resolutions.
For ERA5 we consider the following.
(i) The upscaled resolution of 1° in latitude and 1.5° in

longitude adopted in most of our analysis. This
implies a multivariate embedding in a N ¼ 17 092-
dimensional state space and a univariate embedding
in a N ¼ 4273-dimensional state space.

(ii) A higher resolution with 0.5° in both latitude and
longitude. This implies a multivariate embedding in

FIG. 9. Histograms of local dimension dðζÞ and inverse of
persistence θðζÞ for the temperature field in EC-Earth and MPI.
(a),(b) Results for EC-Earth. (c),(d) Results for MPI. The analysis
is performed for the temperature variable.

TABLE I. First four moments of the distributions of local
dimensions and persistence. μ, σ, γ, κ are the mean, standard
deviation, skewness, and kurtosis of the different histograms,
respectively. The subscript d or θ indicates whether the analysis
focuses on local dimension or persistence. Note that skewness
and kurtosis for a normal distribution equal 0 and 3, respectively.
“MPI mi” or “EC-E. mi” indicates the ith member of the
respective model ensemble.

μd σd γd κd μθ σθ γθ κθ

1979–2019
MPI m1 25.72 4.95 −0.26 3.38 0.42 0.06 −0.86 4.35
MPI m2 26.15 4.53 −0.13 3.17 0.43 0.05 −0.55 3.55
MPI m9 26.92 4.63 −0.05 3.22 0.44 0.05 −0.61 3.58
MPI m10 25.98 4.58 −0.11 3.14 0.42 0.05 −0.55 3.28
EC-E. m1 30.05 5.36 −0.3 3.42 0.43 0.06 −0.79 4.2
EC-E. m3 29.23 5.87 −0.49 3.39 0.42 0.07 −0.95 3.89
EC-E. m4 27.22 6.21 −0.55 3.32 0.39 0.07 −0.97 3.86
EC-E. m6 27.34 6.68 −0.58 3.27 0.39 0.08 −1.05 3.91

2060–2100
MPI m1 24.39 4.83 −0.37 3.43 0.4 0.06 −0.84 3.99
MPI m2 25.26 4.87 −0.2 3.09 0.4 0.06 −0.72 3.55
EC-E. m1 21.54 5.16 0.00 2.67 0.32 0.07 −0.46 2.84
EC-E. m3 22.91 5.87 −0.21 2.50 0.34 0.08 −0.53 2.54
EC-E. m4 20.76 4.89 −0.10 2.90 0.3 0.06 −0.58 3.18
EC-E. m6 23.01 5.43 0.05 2.86 0.34 0.07 −0.26 2.57
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a N ¼ 100 956 state space and a univariate embed-
ding in a N ¼ 25 239-dimensional state space.

Results are independent of resolution, given that the
system has a large-scale imprinting which is captured in
both cases (as shown in Fig. 10).
The same is verified in the models, where we compare

the multivariate state space dynamics for the upscaled
resolution of 1° in latitude and 1.5° in longitude and the
original model resolution, for which N ¼ 52 780 for EC-
Earth and N ¼ 28 344 for MPI. The analysis is shown in
Fig. 11. Differences among models with original or
upscaled resolutions are minimal. For reference, we also
plot the ERA5 results for the low and high resolution case.

VII. DISCUSSION AND FUTURE WORK

This work introduces a powerful framework stemming
from dynamical system theory to investigate climate
variability and account for its spatiotemporal and multi-
variable dependency. The methodology is based on the
assumption that the high-dimensional trajectory of the
climate system lives on a lower-dimensional mani-
fold [3,19].
Characterizing the topology and quantifying the geo-

metrical properties of the climate attractor, alongside
dynamical properties of the trajectories on the manifold,
offers a much-needed, robust framework for dimensionality

reduction in climate studies. Here we considered the
tropical Pacific and four variables that are key to its
variability, and explored the high-dimensional system’s
dynamics in an observational dataset, ERA5, and in
realizations of two state-of-the-art climate models, MPI
and EC-Earth. The analysis studied the high-dimensional
tropical Pacific dynamics through manifold learning algo-
rithms and dynamical system metrics. This provided a first
estimate of the dimensionality of the tropical Pacific
manifold, which is ∼50 for ERA5, and around 39 in the
models.
A first, important result is that in ERA5 the nonlinear

algorithm always shows a faster saturation of the resi-
dual variance compared to PCA, so that the dynamics
can be projected onto fewer dimensional components.
Independent of the dataset, the dynamics lives on a torus
if the seasonal cycle is included. While the torus is
topologically similar among datasets, large excursions in
correspondence of El Niño events are found in the
observations but are absent in the models. Furthermore,
the spatial signature of the seasonal cycle, described by the
first Isomap component, is biased in both models. By
analyzing the anomalies, we showed that the two models
have qualitative and quantitative similarities in the geo-
metrical properties of their manifold, despite different
resolutions and different choices in the representation of
small-scale, unresolved processes. The PCA residual vari-
ance shares similarities among observational and modeled
datasets, while the Isomap residual variance differs from
that of PCA in the reanalysis while remaining similar in
both models. This implies that both MPI and EC-Earth
struggle in capturing the nonlinear topological character-
istics of the observed manifold, and they do so in a similar
way. Differences between the observed and modeled
ENSO, on the other hand, are model dependent and larger
in MPI for the historical period.
We stress that a key aspect of this work is the inclusion of

multiple variables for a more comprehensive and robust
quantification of the system’s dynamics and feedbacks. The
comparison between multivariate and univariate properties
of the attractors quantifies the relative contribution of each
field and allows for evaluating how this contribution may
change over time. In the tropical Pacific the temperature
field dominates the variance in both models and reanalysis,
but the correlation between each field and the embedded
trajectory differs in the models compared to the reanalysis
and evolves differently in the two models in the scenario
considered. It is also interesting to see how the relative role
of the variables differs among the models, while contrib-
uting to a similar attractor in the historical periods, when
models can be tuned through parameter choices toward the
observations.
This work opens the way to evaluating the attractor

trajectories over time and comparing them to observations,
to better constrain climate sensitivity and the evolution of

FIG. 10. Histograms of local dimension dðζÞ and inverse of
persistence θðζÞ for the multivariate representation (referred to as
state space “SP”) and univariate fields (i.e., T, u, v, and OLR) in
ERA5. Dashed lines: univariate and SP representations living in
N ¼ 25 239 and N ¼ 100 956, respectively. Solid lines: univari-
ate and SP representations living in N ¼ 4273 and N ¼ 17 092,
respectively.

FIG. 11. Histograms of local dimension dðζÞ and inverse of
persistence θðζÞ for the multivariate representation in the two
models. Dashed lines: high resolution case, with ERA5, EC-
Earth, and MPI state space dimensionality N equal to 100956,
527809, and 28344, respectively. Solid lines: upscaled (same)
resolution N ¼ 17 092 for ERA5 and both models.
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climate feedbacks, both imperative to predict the likelihood
of tipping points in the system.
By adopting the local geometry and persistence metrics

to characterize the attractor’s properties, we neatly visual-
ized the day-to-day predictability potential during ENSO
events, the El Niño and La Niña asymmetry, and model
biases with regard to both aspects. Differences between the
attractor in the models and reanalysis are not limited to
strong ENSO events. Indeed, the region with both high
dðζÞ and θðζÞ, which is the most explored in the reanalysis
and corresponds to ENSO-neutral days, is very seldom
occupied by the models, implying that the representation of
locally unstable motions and their influence on large-scale
climate dynamics continues to elude current climate mod-
els, and such elusion is not amended in EC-Earth, despite
being run at higher resolution than MPI.
These results point to topological (global, in state space)

and geometrical (local, in state space) differences between
observationally based data and climate model outputs,
which can be evaluated considering one simulation, with-
out the need for computationally expensive ensembles. The
local scale chaoticity of the climate modeled system
remains underestimated in both models, notwithstanding
their different resolutions. Furthermore, the relationships
among variables, which set their contribution to the global
attractor and are fundamental to the evolution of the climate
systems, are misrepresented, in different ways, in both
models, and more so in MPI. The quantification of these
relationships is a key, novel outcome of this work.
The framework we propose can be adopted to evaluate in

a straightforward, robust way the impact of parametriza-
tions on the (modeled) climate manifold and therefore
assessing their impact on the large-scale dynamics. Most
importantly, the analysis sets the stage for manifold
learning approaches to climate modeling and climate
prediction based not only on small-scale process under-
standing (machine learning application to subgrid scale
parametrizations), but also on the characterization of the
global climate system topology and the relations among
variables (relational probabilistic models [88]). In the
future, novel approaches stemming from data-driven
dynamics and control (see, e.g., Refs. [89,90]) could be
adopted to learn reduced-order models governing the
evolution of the effective degrees of freedom of the system,
therefore providing a useful alternative to the traditional
partial differential equation approaches adopted in climate
science.

A PYTHON implementation of dynamical system metrics
is freely available [91]. For the PCA and Isomap algorithm
we adopted the implementation in the Scikit-learn library
[92]. A Github repository with examples and updates on
current work can be found at Ref. [93].
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APPENDIX A: IS THE MANIFOLD
NONLINEAR? EUCLIDEAN VERSUS

GEODESIC DISTANCES

To prove that the tropical Pacific manifold is indeed
nonlinear, we compute the Euclidean and geodesic dis-
tances between all pairs of points A;B ∈ RN , where N is
the dimensionality of the state space. Under the assumption
that the high-dimensional data live on a low-dimensional
object M ∈ Rd (with d ≪ N), we face two possibilities.

(i) The manifoldM is linear. In this case the Euclidean
distances between each pair of points A and B have
to be equal to their geodesic distances along the
manifold.

(ii) The manifold M is nonlinear (i.e., M is a curved
object). In this case the geodesic distances along the
manifold between each pair of points A and B are
always greater than their Euclidean distances. This
follows from the simple fact that the Euclidean
distance is the shortest distance between two points.

Computing the geodesic distance is an important step of
the Isomap algorithm [42].
To compute the geodesic distances along the manifold

we assume that, while nonlinear, the manifold is locally flat
around a radius of K points. It follows that the distances
between each pair of points inside their K neighborhood is
the Euclidean distance δE. We can therefore construct a
weighted graph such that (a) each point i and j is connected
if inside their K neighborhood and (b) their connection is
weighted by the distance δEði; jÞ. The geodesic distance
δGði; jÞ is then the shortest path between each pair ði; jÞ.
For the shortest path computation we adopted the Floyd-
Warshall algorithm [95].
We show the result in Fig. 12 for the period 1979–2019.

Euclidean and geodesic distances are on the x and y axis,
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respectively. As points are above the diagonal, we can
conclude that the manifold is indeed nonlinear for all three
datasets analyzed. In this paper, K ¼ 10 days. Note of
caution: the raw data include trends while the dataset with
anomalies has been linearly detrended.

APPENDIX B: SEASONAL CYCLE

In Fig. 13(a), we consider the first Isomap component as
described in Sec. IVA. This component represents the

seasonal cycle. The Pearson correlation across datasets
is always higher than 0.95, indicating that the temporal
characteristics of the seasonal cycle are well captured by
the two models. Independent of the dataset we find
correlations higher than 0.98 between the first compo-
nents of Isomap and PCA. Similarities across datasets in
this first component do not imply similar spatial
projections (i.e., the seasonal component of a model
may be linked to biased regional processes even if
highly correlated to observations). Spatial projections
are visualized as the linear regression of an Isomap
component onto each variable, and they therefore
capture differences in variance. In Fig. 13(b) we show
the spatial signature of the first Isomap component for
ERA5 and the differences between MPI and EC-Earth.
All time series in this analysis are standardized to unit
variance. Future studies will focus on differences in the
signals’ amplitudes.

APPENDIX C: MULTIVARIATE PCA

In Fig. 14 we compare the first three PCs obtained in the
multivariate representation with the univariate case.

APPENDIX D: ENSO: PROJECTIONS,
SPECTRAL PROPERTIES, AND

SPATIAL SIGNATURES

In Figs. 15(a)–15(c), 16(a), and 16(b) we show the first
Isomap and PCA components and their Fourier spectra in
the periods 1979–2019 and 2060–2100, respectively. Both
components have been standardized to unit variance for
comparison. Figures 15(d)–15(f), 16(c), and 16(d) show the
spatial signature of the Isomap component on the four
fields analyzed.

FIG. 13. (a) First (standardized) Isomap component for obser-
vations (ERA5) and the two CMIP6 models (MPI and EC-Earth).
Each component is standardized to unit variance. Correlations
with the first principal component is higher than 0.98 indepen-
dent of the dataset. (b), top row: linear regression of the first
Isomap component onto ERA5. (c,d), bottom rows: differences
between spatial projections of ERA5 and the two models. Note
that the projections are spatial signatures of a single eigenvector
and not four.

FIG. 14. First row: correlations (in absolute value) between the
first PC of each variable (on the x axis) and the multivariate case
in ERA5 and models. Second and third rows: same as first row
but for the second and third Isomap components.

FIG. 12. Top: schematic to explain differences between geo-
desic (along the manifold) and Euclidean distances. In the
schematic the state space is two dimensional and the manifold
M is simply a line. Bottom: geodesic (along the manifold) and
Euclidean distances between each pair of points in each dataset
for anomalies (no seasonality and no trends) in the period 1979–
2019. Points are above the diagonal, therefore quantifying the
intrinsic nonlinearity of the low-dimensional manifold. Distances
are computed in the full 17 092-dimensional state space. Mean μ
and standard deviation σ for all three datasets are reported in the
case of raw and anomalies. Raw data include trends.
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FIG. 15. (a)–(c), left-hand column: first (standardized) Isomap (X1) and principal component (PC1) for observations (ERA5) and the
two CMIP6 models (MPI and EC-Earth). Red (blue) lines represent the median of positive (negative) values in the 0.1 quantile (10th
percentile) of the joint PDF of d and θ (see Fig. 5). Right-hand column: correspondent Fourier spectra. The spectral significance has
been tested under the null hypothesis of red noise [96–98]. (d)–(f) Projection of the first (embedded) Isomap component on the various
datasets.
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APPENDIX E: MULTIVARIATE OR
UNIVARIATE?

Figure 17 shows the first Isomap for the temperature
field in ERA5. The seasonal cycle deviates from its
canonical behavior in correspondence to large El Niño
events. In Figs. 18 and 19 we compare the first
Isomap component obtained in the multivariate repre-
sentation with the univariate case, for MPI and EC-
Earth, respectively.

FIG. 16. (a),(b), left-hand column: first (standardized) Isomap (X1) and principal component (PC1) for the two CMIP6 models (MPI
and EC-Earth). Red (blue) lines represent the median of positive (negative) values in the 0.1 quantile (10th percentile) of the joint PDF of
d and θ (see Fig. 5). Right-hand column: Fourier spectra. The spectral significance has been tested under the null hypothesis of red noise
[96–98]. (c),(d) Projection of the first (embedded) Isomap component on the modeled datasets. The period analyzed is 2060–2100 under
the SSP585 scenario.

FIG. 17. First Isomap component of temperature anomalies in
the ERA5 dataset.

FIG. 18. First Isomap (X1) component for anomalies in periods
1979–2019 and 2060–2100 in the MPI model in panels (a–d) and
(e–h) respectively. In each case components have been standard-
ized so that the total variance is equal to 1. Projections in the
multivariate case are shown in blue and labeled as “SP” (state
space). Projections for each univariate field are shown in red. Atop
of each plot we report the correlation coefficient (in absolute value)
between the projections in the multivariate and univariate cases.
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APPENDIX F: FIRST FOUR MOMENTS OF THE
DISTRIBUTIONS OF LOCAL DIMENSIONS AND

PERSISTENCE

In Table II, we show the first four moments of the
distributions in Fig. 6. The fourth moment (i.e., kurtosis) in
ERA5 highlights the presence of larger values in the tails of
both the d and θ distributions.

APPENDIX G: DEPENDENCE ON q

We tested the robustness of the dynamical system
metrics under the choice of threshold q (see Sec. III) for

the multivariate case. Robustness is evaluated for the range
q ∈ ½0.95; 0.99�. We propose two analyses: first we com-
pute histograms of both d and θ and, second, we compare
the temporal variability of the two metrics by looking at
their correlation. The analysis is shown in Fig. 20. We first
look at the average manifold dimension. Values vary from
∼42 to ∼56. This is quite a small range as we started from a
noisy, ∼17 000-dimensional dynamical system. In terms of
variability [see Fig. 20(b)]. we see large correlations
independently of the d or θ variable. The largest outlier
is q ¼ 0.99.
We choose the value of q ¼ 0.98, as it gives similar

results with the q ¼ 0.95, 0.96, 0.97 thresholds while still
being a very high quantile (preferred as we are quantifying
statistics of extremes).
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