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Ventricular fibrillation (VF) is a life-threatening electromechanical dysfunction of the heart associated
with complex spatiotemporal dynamics of electrical excitation and mechanical contraction of the heart
muscle. It has been hypothesized that VF is driven by three-dimensional rotating electrical scroll waves,
which can be characterized by filamentlike electrical phase singularities or vortex filaments, but visualizing
their dynamics has been a long-standing challenge. Recently, it was shown that rotating excitation waves
during VF are associated with rotating waves of mechanical deformation. Three-dimensional mechanical
scroll waves and mechanical filaments describing their rotational core regions were observed in the
ventricles by using high-resolution ultrasound. The findings suggest that the spatiotemporal organization
of cardiac fibrillation may be assessed from waves of mechanical deformation. However, the complex
relationship between excitation and mechanical waves during VF is currently not understood. Here, we
study the fundamental nature of mechanical phase singularities, their spatiotemporal organization, and their
relation with electrical phase singularities. We demonstrate the existence of two fundamental types of
mechanical phase singularities: “paired singularities,” which are colocalized with electrical phase
singularities, and “unpaired singularities,” which can form independently. We show that the unpaired
singularities emerge due to the anisotropy of the active force field, generated by fiber anisotropy in cardiac
tissue, and the nonlocality of elastic interactions, which jointly induce strong spatiotemporal inhomo-
geneities in the strain fields. The inhomogeneities lead to the breakup of deformation waves and create
mechanical phase singularities, even in the absence of electrical singularities, which are typically associated
with excitation wave break. We exploit these insights to develop an approach to discriminate paired and
unpaired mechanical phase singularities, which could potentially be used to locate electrical rotor cores
from a mechanical measurement. Our findings provide a fundamental understanding of the complex
spatiotemporal organization of electromechanical waves in the heart and a theoretical basis for the analysis
of high-resolution ultrasound data for the three-dimensional mapping of heart rhythm disorders.
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The beating of the heart is initiated by nonlinear waves of
electrical excitation, which propagate through the cardiac
muscle and trigger a release of intracellular calcium, which,
in turn, triggers contractions of cardiac muscle cells.
During severe heart rhythm disorders, such as atrial or
ventricular fibrillation, the electrical excitation degenerates
into multiple disorganized, asynchronous electrical waves,
leading to irregular cardiac muscle contractions [1-4]. Both
spiral-shaped reentrant waves and focal waves are thought
to underlie those phenomena during high-frequency cardiac
arrhythmias. To date, however, the three-dimensional (3D)
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electrical wave phenomena that evolve rapidly within the
thickness of the heart muscle have never been imaged in
full. While fluorescence imaging provides high-resolution
measurements of vortexlike rotating spiral waves on the
heart surface, the underlying 3D dynamics remain elusive
and, based on numerical simulations, are conjectured to
take on the shapes of scroll vortex waves or 3D spiral waves
[5-11], which are generic self-organized nonlinear wave
structures of excitable media [1-4,12,13].

In a recent study, it was shown that the dynamical
processes underlying ventricular fibrillation can be char-
acterized by coupled electrical and mechanical phase
singularity dynamics [14]. By using trimodal voltage-
and calcium-sensitive fluorescence imaging, high-speed
4D ultrasound, and numerical motion analysis, it was
shown that the rapidly contracting, fibrillating heart muscle
exhibits vortexlike rotating strain fields, which are pro-
duced by electrical action potential and calcium spiral
waves. Consequently, it was demonstrated on the heart
surface that electrical phase singularities, which describe
the cores of rotating action potential and calcium waves,
appear in the vicinity of the cores of the rotating deforma-
tion patterns, which can equivalently be characterized by
mechanical phase singularities. It was furthermore shown
that electrical and mechanical phase singularities colocalize
and exhibit similar dynamics in terms of numbers, trajec-
tories, and lifetimes, providing for the first time evidence
for the existence of electromechanical rotors. The data
suggest that electrical and mechanical phase singularities
are both produced during ventricular fibrillation by electro-
mechanical scroll wave chaos and that a better under-
standing of the nature of these electromechanical phase
singularities could provide important new insights into the
3D spatiotemporal organization of cardiac fibrillation, since
electrical and mechanical phase singularities are closely
related to each other. Lastly, it was shown using high-
resolution 4D ultrasound that a 3D filamentlike structure of
mechanical phase singularities evolves throughout the heart
wall during fibrillation, suggesting that the spatiotemporal
organization of electrical scroll wave vortex filaments may
be inferred by the dynamics of mechanical vortex filaments
inside the heart muscle. The findings open the path to use
mechanical phase singularities to enhance the understand-
ing of the mechanisms underlying cardiac fibrillation.
However, despite the experimental advances, a fundamental
understanding of their relationship remains largely lacking.

Naively, one would expect mechanical waves to be
slaved to electrical excitation waves that cause contraction
via the well-established excitation-contraction coupling
mechanism, whereby calcium entry into the cell through
L-type calcium channels following electrical excitation
triggers calcium release from intracellular stores, which,
in turn, activates the contractile machinery of the cell,
thereby generating an active force along the long axis of
cardiomyocytes [15]. Consequently, the spatiotemporal

wave pattern of this active force is expected to generally
follow closely the wave pattern of electrical excitation,
except under extreme conditions where excitation-
contraction coupling fails (e.g., when calcium-induced-
calcium-release fails to keep up with electrical excitation
at very high frequencies).When normal excitation-
contraction coupling remains operative, excitation wave
propagation can itself be influenced by mechanical con-
traction due to mechanoelectrical feedback [16-18].
However, this feedback, which has been neglected in
most modeling studies of cardiac arrhythmia mechanisms
[1-3], does not cause the wave pattern of active force to
deviate from the wave pattern of electrical excitation. In
contrast, the resulting tissue deformation pattern, which is
imaged by high-resolution ultrasound, may differ mark-
edly from the active force pattern due to the nonlocality of
long-range elastic interactions, which can induce strain in
regions of the heart muscle that are not actively con-
tracting or, at the opposite, cause regions under large
active force to be under small strain. This raises the basic
question of whether mechanical phase singularities, i.e.,
spatiotemporal phase singularities of nonlocal strain
fields, track electrical wave singularities or exhibit a more
complex spatiotemporal organization.

In this article, we address this question by investigating
the strain field patterns generated by reentrant and focal
excitation-contraction waves in 2D and 3D cardiac tissue in
computer simulations. Our main finding is that mechanical
phase singularities, which we extract from phase maps
obtained of strain fields via the Hilbert transform, can both
colocalize with or form away from phase singularities of
excitation waves. The former “paired” mechanical singu-
larities exist only in the presence of reentrant waves, while,
remarkably, focal sources of waves or target patterns suffice
to create the latter “unpaired” mechanical singularities,
which can, therefore, exist in both the presence and absence
of reentrant waves. Furthermore, we find that paired and
unpaired singularities form by different mechanisms.
Paired ones originate from phase singularities associated
with the rotation of strain fields that remain essentially
slaved to excitation waves near the core of electrical
vortices. In contrast, unpaired ones originate from the
breakup of deformation waves caused by the combination
of long-range elastic interactions and the anisotropy of the
active force field.

We exploit these insights to develop an approach to
discriminate paired and unpaired mechanical phase singu-
larities based on observations of their surrounding strain
field. Our findings provide a fundamental understanding
of the complex spatiotemporal organization of electro-
mechanical wave activity during cardiac arrhythmias
and a theoretical basis for the interpretation of three-
dimensional imaging data of tachyarrhythmias obtained
with high-resolution ultrasound for diagnostic and thera-
peutic applications.
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II. METHODS

To explore the relationship between electrical and
mechanical singularities, we use two different approaches.
First, in Sec. I A, we analytically construct simple 2D
excitation wave patterns and compute the resulting strain
fields (deformation waves) by numerically solving the
equations of linear elasticity using the finite element
method (FEM). We should note that there is a large body
of literature dedicated to creating accurate representation
of the coupled electromechanical response of the heart
[19-22]. However, since our goal is to elucidate the
mechanism of mechanical singularity formation, we reduce
the problem to its most essential aspects. For the main
presentation in this article, we use quasistatic formulation
with homogeneous isotropic infinitesimal elasticity, with
anisotropic active strains and no electromechanical feed-
back. We also limit our presentation in the main text to
Poisson’s ratio of v = 0.4 which produces approximately
10% volumetric change (see Fig. 3). However, to show the
robustness of our findings, we provide an extended set
of simulations using v = 0.49, neo-Hookean material,
and transversely isotropic elasticity in Supplemental
Videos [23]. Under the assumption that the local active
force tracks the local electrical excitation, which is gen-
erally satisfied except when calcium release cannot keep up
with very high-frequency electrical waves, we do not need
to specify separately the electrical and mechanical signals.
We prescribe directly the spatiotemporal active strain fields
corresponding to standard excitation 2D wave patterns.
As generic examples of reentrant and focal excitations, we
consider both a rigidly rotating (i.e., nonmeandering)
Archimedean spiral wave and a target pattern generated
by a localized time-periodic focal source of waves, respec-
tively. This approach has the advantage that it provides the
simplest possible setting to investigate the relationship of
electrical and mechanical singularities in a perfectly elastic,
nearly incompressible, material where the strain field is
assumed to relax instantaneously to the active force field.
In this approach, “electrical singularities” are simply the
singularities of the prescribed active force fields, which are
present and absent for spiral and target waves, respectively,
and “mechanical singularities” are the singularities of the
numerically obtained linear elastic strain fields generated
by the active force fields.

Second, in Sec. IIB, we simulate electromechanical
wave activity using a simplified two-variable ionic model
of electrical excitation [24,25] and a simple phenomeno-
logical relaxational kinetic equation to relate the active
force to electrical excitation [17]. In addition, we compute
the resulting strain fields by extending a mass-spring model
(MSM) of standard elasticity [26] to incorporate the active
force and describe a nearly incompressible viscoelastic
material with inertia. This approach has the advantage
of allowing us to efficiently explore the relationship
of excitation-contraction and deformation waves in

3D anisotropic tissue in a parameter limit of the MSM
where viscous and inertial effects are small and continuum
elastic properties are similar to those obtained by quasi-
static FEM solutions, with known continuum elastic
properties that can be derived analytically from the MSM.

A. Two-dimensional FEM computations
with analytically prescribed spiral
and target wave active force fields

We perform the computations using quasistatic linear
elasticity, where we implement active contraction by an
analogy to thermal stress with the incorporation of (stress-
free) eigenstrains. Our use of active strains ensures the
ellipticity of the elastic energy [27]. For domain Q C R?,
we write the elastic energy as

E,(u) = Acijkl(ekl + T fu)e; + T pi)dv, (1)

where  Cjjy = 45,01 + (i1 + 6;9;) is the fourth-
order isotropic elastic constitutive tensor, where §;; is the
Kronecker delta and for plane-stress 1 = Ev/(1 — v?) and
u = E/[2(1 + v)] are Lamé parameters, €;; = (u; ;+u;;)/2
is the linearized strain tensor (i.e., symmetric displacement
gradient), 0 < 7, <0.15 is the imposed spatiotemporally
varying active contraction field normalized by the elastic
modulus £, and S is a tensor whose form given below
depends on whether contraction is isotropic, as in the case
of randomly oriented cardiomyocytes in a tissue culture, or
anisotropic, as in the case of heart tissue with aligned fibers.
To obtain the quasistatic response, we find the displacement
field #* that minimizes the elastic energy, Eq. (1).

We assume cardiac tissue to be elastically isotropic in
all cases studied here with, i.e., Young’s modulus £ and
Poisson’s ratio v = 0.4 to account for near incompressibil-
ity of the tissue, which results in an approximately 10%
maximum volume change in our FE simulations. This value
of the Poisson ratio is selected to correspond to the value
achieved by the MSM model given our choice of param-
eters (see the Appendix D). To assess the effect of volume
change on our findings, we duplicate our simulations
for higher Poisson’s ratio v = 0.49 (see Supplemental
Movies [23]). We investigate two different 2D cases.

1. Isotropic case

The “isotropic” case mimics a thin quasi-2D tissue
culture of randomly oriented cardiomyocytes with no
preferred direction of conduction or active contraction.
In this case, both the conduction and active strains are
assumed to be isotropic. Furthermore, we set

Pij = 6ij (2)

to produce an isotropic contraction of unit magnitude.
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2. Anisotropic case

The “anisotropic” case represents normal 2D cardiac
tissue with cardiomyocytes aligned along a common fiber
axis where we assume the conduction along the fibers to be
5 times faster than conduction perpendicular to them. We
further assume that the active strain acts only along the
fiber. In this case, we choose the expansion tensor such that,
for a 1D fiber, the strains along the fiber converge to unit
magnitude without any change of fiber cross section. For a
domain with fibers along the first coordinate axis, and
assuming isotropic elasticity, this is achieved by choosing

p= [‘01 O] (3)

We note that the above equations (2) and (3) are special
cases of a domain with arbitrary fiber orientation defined
by the unit vector f with components (fi,f,) with
defined by

Cijui
A+2u

B = ~fif j- (4)

To perform the simulation, we explicitly impose the
active contraction field 7', using closed-form expressions in
the form of spatially diffuse Archimedean spirals and
expanding ellipsoidal pulses (see Appendix A) in an
L x L square domain discretized using 320 x 320 Ql
elements. We impose traction-free boundary conditions
on the edges of the domain (x = £L and y = +L) and
remove the rigid body modes (null space of elasticity) from
the obtained discrete set of equations. For our FEM
numerical implementation, we use libMesh [28] for finite
element bookkeeping and PETSc [29,30] for linear algebra.

B. Three-dimensional simulations using a two-variable
ionic model with active force generation coupled
to a mass-spring model

1. Reaction diffusion model for cardiac excitation

In 3D simulations, we assume a slab of ventricular
muscle with a defined fiber architecture. A two-variable
reaction-diffusion model presented in Refs. [24,25] is
utilized to simulate the cardiac excitation. The magnitude
of the active force is coupled phenomenologically to the
voltage field to mimic the typical rise and fall of this force
during an action potential [17]. The equations that describe
this model are

0,U=V-(DVU) +15' f(U,v), (5)
o =1,'9(U,v), (6)
0T, =x(U)(K,U~-T,) (7)

subjected to the Neumann boundary condition
i (DVU) =0. (8)

In these equations, U and v are the dimensionless represen-
tation of the transmembrane voltage and slow current gate
variables, respectively, 7;, /7, controls the relative abruptness
of the excitation, D is the diffusivity tensor, and 7 is the unit
normal vector to the boundary. In Eq. (7) [similar to Eq. (1)],
T, represents the ratio of the active contraction field and
elastic modulus. K, controls the maximum amplitude of the
active contraction by coupling it to the transmembrane
voltage U, and y(U) is a step function that sets the timescale
of the contraction period with respect to U. Details about
functions f and g and the relation between diffusivity tensor
and the fiber architecture can be found in Refs. [25,31].
For convenience, these relations and more details about
Eq. (7) are briefly presented in Appendix B. Finally, with
no loss of generality, we assume that the conduction is
transversely isotropic; i.e., it is isotropic in the plane
perpendicular to fibers and is faster along the fiber direction.
We can, therefore, write D |, = D, = D, where D | and
D |, are the diffusivity perpendicular to the fiber axis in each
plane and D is the diffusivity along the fiber axis. This
simplifies the local electric current to

DVU =D, VU + (D - D,)(f - VU), 9)

where f is the unit vector that is locally parallel to the fiber.
Here, we consider the anisotropic cases without fiber rotation

where f is spatially uniform and with fiber rotation where f
rotates along one axis as in Refs. [25,31]. The set of
parameters that are used in this article is listed in Table L.

2. Three-dimensional lattice mass-spring model

In the 3D simulations, the elasticity of the tissue is
modeled by extending the MSM in Ref. [26] to cardiac
tissue. Our use of the discrete MSM model (as opposed to
discretizing a set of continuum-level equations) allows us to
easily integrate the equations of motion on massively
parallel graphical processing units. The schematic of a
single unit cell of the cubic lattice with edge length a is
shown in Fig. 1, and the tissue is constructed by stacking
several unit cells. The extension to cardiac tissue is
achieved by (i) adding Kelvin-type dampers [Fig. 1(b)]
to the MSM to account for the viscoelastic behavior of the
tissue, which produces damping forces proportional to the
relative velocity between two masses, (i) a volumetric
penalty force to shift the elastic properties toward the
incompressible limit [Fig. 1(c)], and (iii) adding the active
contractile force [Fig. 1(d)]. For small and slowly spatially
varying deformations (i.e., varying on a scale much
larger than @) and in the absence of the volumetric penalty
forces, the MSM reduces in the continuum limit to standard
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FIG. 1. A cubical element of the MSM. (a) The mass of the
cube m is distributed equally among the eight cubes that meet at
one corner. The edge and diagonal springs have a stiffness of k/4
and k/2, respectively. (b) A Kelvin-Voigt-type damping system is
used where the edge and diagonal dampers have a damping
constant of c¢/4 and c/2, respectively. (¢) To add volume
conservation to the model, a penalty pressure is applied to the
faces of the cube. This pressure results in forces at each corner.
(d) The compressive active contraction is applied along the fiber
direction in each cube, and, based on the distances a; and a, with
bilinear interpolation, it is redistributed on the masses.

isotropic linear elasticity with Lame constants 1 = y = k/a
characteristic of a compressible material [26].

However, similar to other biological tissues, the myo-
cardium contains mostly water and can be considered as a
nearly incompressible material [19]. To account for this
near incompressibility in our model, we introduce a uni-
form penalty pressure p to keep the volume constant. This
pressure is applied to all faces of a unit cell and transmits a
force on each mass at the corners of the cell. A schematic of
the volumetric forces for the case that the volume decreases
is shown in Fig. 1(c). The magnitude of the volumetric
penalty force is chosen as

fo (10)

1——
4 Vo

(13,

where V) = a® and V are the initial and current volume of
each cubical element, respectively. To ensure the balance of
the internal forces, we apply the volumetric forces on each
pair of diagonally opposite nodes along the line connect-
ing them.

This volume preservation method can be shown to
modify the bulk stiffness of the MSM. In the presence
of the volumetric pressure p, the first Lamé constant is
increased to A = k/a + p, while the shear modulus remains
unchanged u = k/a. Therefore, we can write Young’s
modulus and Poisson’s ratio of the system as

g kBap +5K) )
alap + 2k)
ap+k
== . 12
YT 2ap 4k (12)

In the simulations, we choose p = 15k/(2a) correspond-
ing to a Poisson’s ratio v = 17/38 x 0.45 close to the
incompressible limit. We should note that, while the value
of penalty forces [Eq. (10)] vary spatially, the underlying
model remains isotropic and homogeneous.

Next, we incorporate the active contraction in our
model. The active tension can be incorporated in two
ways: (i) using active strains by dynamically setting the rest
length of passive strains or (ii) using active stresses.
Because of its ease of use in the MSM model, we opt
for the latter option. We should note that these two options
are equivalent only at small strains and can produce
quantitatively different results at finite strains [27]. We
assume that contraction occurs only along the local fiber
axis. In each unit cell, we assume that there is a pair of
internal active forces oriented in the direction of the fiber
and choose the magnitude of these forces as |f,| = T,Ead?,

where T, = S8 | 77!l /8 represents the average contrac-
tile field in the cell. The active force contribution from each

cubical cell 77" at a corner is calculated using bilinear
interpolation based on the position where the fiber axis
intersects the plane containing the mass, as described
previously [32,33], and shown in Fig. 1(d). Finally, the
equation of motion for the i,, mass is given by

18 18 8 8
mfu; = fo+ > fat Y fat D fo (13)
j=1 j=1 j=1 j=1

where the various forces shown are in Fig. 1. They include
the static spring forces f, = kx (relative displacements of
masses linked by springs) and associated damping forces
fa = cx (relative velocities) for the 18 dampers connected
to each mass and the active forces f, and volumetric forces
[, defined above for the eight cubical elements connected
to each mass. A detailed study of the mechanical properties
of the MSM is conducted and presented in Appendix D.

To study the electrical and mechanical singularities
in heart tissue, we perform the simulations on a cubic
lattice with 150 x 150 x 40 grid points. Adjusting for
the material properties, the lattice corresponds to a 4.5 x
4.5 x 1.2 cm® slab with a unit cell spacing Ax = Ay =
Az =a =03 mm. To integrate the -electrophysiology
equations [Egs. (5)—(7)], we use an explicit Euler method.
To create a spiral wave initial condition, we use the
standard two-stimulus protocol that consists of first creating
a traveling plane wave along the y direction by exciting the
tissue uniformly on the y = 0 plane and then depolarizing
half of the tissue (x < 2.25 cm) at ¢t = 0.35 s. In addition,
we integrate the equations of motion of the MSM using a
standard velocity Verlet algorithm.
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In a human heart with a density close to water p =
1000 kg m~ and Young’s modulus approximately 125 MPa
[18], the elastic wave speed can be crudely estimated to be
C ~353 ms—!. Furthermore, the period of excitation T
spans the range 0.1 to 1.0 s with the lower and upper
bounds corresponding to an electrical rotor and a normal
heartbeat, respectively. It follows that the distance CT
traveled by elastic waves during a contraction period is
much larger than the characteristic size L of the heart of a
few centimeters. This scale separation (L <« CT) makes it
possible to increase the computational efficiency of the time
integration algorithm by reducing the elastic wave speed.
Therefore, instead of setting the Young’s modulus to its
physical value, we set the characteristic elastic wave
speed C = \/E/p equal to 5 ms~! such that the inequality
L < CT still holds, where p = m/a> is the tissue density.

The passive response of cardiac myocyte exhibits hys-
teresis cycles indicative of a viscoelastic behavior [34].
While these effects can create small quantitative differences
compared to the nonviscoelastic models, there is no
evidence that they can significantly change the response
of the tissue which is primarily driven by the active stresses
[21]. As such, in our implementation we neglect such
effects, and we choose the damping constant such that
the length of the system is much smaller than the spatial
decay length of linear elastic waves, or L < (CT)/(%5),
where tan(6) = E;/E; with E; and E| the loss and storage
moduli, respectively, of our viscoelastic medium. In addi-
tion, we choose the elastic diffusion constant D, = n/p =
11 cm?s~!, where = 5¢/(2a) is the Kelvin-Voigt damp-
ing constant. We present a more detailed justification for
these choices of parameters in Appendix C. The parameters
for the MSM model are summarized in Table I. Figure 1
implies that the sum of moments and forces in each cube
and, consequently, in the full system is always zero.
Therefore, all the forces in the system are internal, and
no additional mechanical boundary conditions need to be
applied to simulate stress-free boundaries of the tissue.

TABLE 1. Parameters for the electrophysiology and MSM
models. n.u. stands for no unit.

U, 3 n.u.
U, 1 n.u.
U* 1.5415 n.u.
K, 0.0415 n.u.
Ty 2.5 ms
T, 250 ms
Re 0.8 or 1.0 n.u.
M 10 n.u.
Dy 1.1 cm? s~ !
D, 0.22 cm?s~!
C 500 cm? ™!
D, 11 cm?s~!
a 0.03 cm
dt 3.27 us

We study two different fiber architectures: (i) all fibers
being uniformly aligned in the x direction and (ii) fibers
being organized in orthotropically stacked sheets, rotating
about the z axis through the thickness of the slab. For the
second case, we assume that the fibers are parallel to the x
axis at the bottom (endocardium) and parallel to the y axis
at the top surface (epicardium) with a total rotation angle
of 90°.

III. RESULTS

A. Two-dimensional isotropic and anisotropic tissues:
Emergence and properties of mechanical
phase singularities

We first study spiral-shaped and circular-shaped focal
electromechanical wave patterns in 2D isotropic tissues;
see Figs. 2—-6. Before we begin to present the result, we
want to emphasize that the study conducted in this paper is
not limited to a particular strain signal such as Tr(¢) or €,
or any particular direction, but it works for any signal that
captures the mechanical response of the system. In this
article, we choose the strain along the fibers when there
exists a fiber architecture (anisotropic case) or Tr(e) when
there is not (isotropic case) to capture the mechanical
response of the system. In the isotropic case, there is no
particular fiber orientation [f; = 1 in Eq. (4)], and active
tension occurs equally in all directions. Moreover, instead
of modeling the electrical spiral by using reaction-diffusion
kinetics, we directly derive the shape of the active con-
traction field 7', analytically using a closed-form expres-
sion presented in Eq. (Al) in Appendix A. Figures 2(a)
and 2(b) show the contraction field 7,(x,y) and the
resulting deformation of the tissue displayed as strain
€(x,y) in material coordinates, respectively. Note that,
because the contraction is isotropic, we choose the trace
of the strain tensor Tr(e)(x,y) = €, + €,, to visualize the
strain as a scalar-valued field, where negative values
correspond to contracted tissue. In the isotropic case, it
can generally be observed that the spiral shape emerging in
the strain field matches the spiral shape in the active
contraction field very well. The high correlation between
the scalar-valued contraction field and a scalar-valued
representation of the strain furthermore manifests when
comparing time series obtained from individual tissue
segments: Over several rotations of the spiral, each local
rise and decline in active contraction 7,(¢) € [0,0.15]
causes a corresponding shortening and elongation of the
same tissue segment, which can be measured as a corre-
spondingly oscillating strain signal s(¢) = Tr(¢)(¢) which
aligns with the time course of the contraction variable T, ()
for each and every material segment throughout the tissue.
However, despite the strong correlation between contrac-
tion and resulting strain, the spiral shape in the strain field
in Fig. 2(b) does not perfectly match the contraction spiral
in Fig. 2(a), and scaling the fields would be insufficient to
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FIG. 2. A clockwise rotating spiral of active contraction and
strain in a 2D isotropic elastic tissue. (a) Analytically derived
active contraction field 7, (x,y). (b) The corresponding strain
field Tr(e)(x,y) is isotropic and closely follows the contraction
field. (c) The mechanical phase map ¢(e)(x,y) reveals a
mechanical phase singularity at the center of the rotor (red
circle). (d) The complex amplitude A(x,y) vanishes at the
position of the mechanical phase singularity.

map one pattern onto another. Upon close inspection, the
strain spiral pattern in Fig. 2(b) exhibits slight distortions
and deviations, which can be observed best close to the
tissue boundaries; cf. Fig. 3(b). This behavior is to be
expected, because the overall strain field results from a
superposition of several elastic phenomena which are all
long-range effects interacting with each other over long
distances throughout the entire medium: local contraction-
induced deformations, such as contracted or elongated
tissue regions pulling and pushing each other, and mechani-
cal boundaries restricting the deformation. Note that the
strain fields shown in Figs. 2—6 are obtained at equilibrium
and are fully relaxed.

Next, we use the Hilbert transform to assign a phase angle
@(t) and its complex amplitude A(7) to each deformation
state of each material segment throughout the medium
yielding a phase map ¢(x,y,7) and an amplitude map
A(x,y,t) as shown in Figs. 2(c) and 2(d), respectively.
The phase ¢(¢) and amplitude A(¢) are calculated individu-
ally at each point (x,y), respectively:

P(1) = arctan{;[é((g]]} (14)

\o /

— =
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[ |
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FIG. 3. Focal active contraction and strain pattern in a 2D

isotropic elastic tissue. (a) Circular ring-shaped focal pattern of
active contraction T,(x,y). (b) The corresponding strain field
Tr(e)(x,y) is isotropic and closely follows the circular active
contraction field. (c) The mechanical phase map ¢(e)(x,y)
exhibits a focal pattern and does not exhibit a phase singularity
at any point. (d) The complex amplitude A(x, y) does not vanish
at any point.

A1) =SB +REEP, (15)

where 35(r) = H[s(z)] is the Hilbert transform of an
arbitrary signal s(¢), which is in our study either a
mechanical signal derived from a deformation tensor or
the time course of the transmembrane potential. The phase
angle ¢(¢) continuously increases over time from —z to z
and uniquely represents the time course of the action
potential or a mechanical state, for instance, the defor-
mation state within a cycle defined by two consecutive
fully contracted states; see the isoline for ¢ = —x in
Fig. 2(c). As stated above, with isotropic tissues, we
choose the mechanical signal to be the temporal evolution
of the rotationally invariant quantity s(z) = Tr(e)(¢). In
anisotropic tissues, we adjust the mechanical signal to
comprise only mechanical strains occurring along the
fiber direction. For instance, with a uniform linearly
transverse fiber orientation along the horizontal axis,
we choose the signal to be s(7) = €,,(f) correspondingly.
In 3D anisotropic tissues, where the fiber direction rotates
throughout the thickness of the bulk, we choose the signal
to be the component of the Green-Lagrangian strain tensor
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corresponding to the local fiber axis, as later specified in
Sec. III B. Prior to computing the phase ¢ and amplitude
A, we subtract the temporal average of the mechanical
signal in each point:

s(t) = (1) = (s"(1)), (16)

taken over the same time interval that the Hilbert trans-
form is computed, where s’ is the original mechanical
signal with a finite baseline. This procedure is used to
determine the signal amplitude oscillating around its mean
value at each point, because time-averaged values of
the signal can, in general, vary in space throughout the
medium. Phase singularities can then be found in the
phase maps ¢(x,y) by computing the line integral [9]:

%V(ﬁ(?)ds =2x(p —n), (17)

where the integral is taken over a closed path and p and n
are the numbers of positively and negatively charged
phase singularities inside the area enclosed by the path,
respectively.

In the anisotropic case, we additionally compute
mechanical phase singularities by a different method used
previously to identify the instantaneous tip position of
spiral waves of electrical activity [31]. In that context, the
spiral wave shape is defined as a contour of constant
transmembrane voltage U = U, where U, is a constant
chosen to lie in between the minimum and maximum
values of U corresponding to the resting voltage and the
peak voltage following depolarization. This contour then
separates resting and depolarized regions of the tissue, and
the spiral wave tip can be defined as the intersection of
U = U, contour at time ¢ and 7 + dt or, equivalently, as the
intersection of the U = U, and 0,U = 0 contours at time z.
Similarly, we define the position of mechanical singular-
ities as the intersection of the ¢, = ¢, and 0., =0
contours with the constant ¢, defined as the average of
the minimum and maximum values of e,. With this
definition, the €, = €. contour separates understrained
and overstrained regions of the tissue, and mechanical
singularities locate singular end points of this contour that
can be interpreted as instantaneous deformation wave tips.
The Hilbert transform and contour-intersection methods
produce almost identical locations of mechanical singular-
ities in most of the cases presented here where spatiotem-
poral patterns of voltage and mechanical activity are time
periodic. The contour intersection method is used here as
additional validation of the Hilbert transform method as well
as for physically interpreting the formation of unpaired
mechanical phase singularities in terms of deformation wave
breaks leading to the creation of deformation wave tips.

Figures 2(c) and 2(d) show the corresponding phase
map ¢ and amplitude map A of the strain pattern shown

in Fig. 2(b). The phase map in Fig. 2(c) reveals a pinwheel
pattern, which retains a similar spiral-like shape, as in
Figs. 2(a) and 2(b), and exhibits spiral-shaped lines of equal
phase merging at the center of the medium. Using Eq. (17),
one can detect a phase singular point (red dot) at the center
of the medium, describing a topological defect point in the
phase plane. At this point, the elastic medium may be
contracted or dilated, but the signal does not change with
time, and, consequently, the amplitude approaches zero; see
Fig. 2(d). Note that, due to the definition of amplitude
[Eq. (15)] in the Hilbert transformation and the fact that we
are working with the normalized response, amplitude being
close to zero means that there is almost no difference
between 5 and its 90° shifted value (the difference between
the real and imaginary parts of the Hilbert transformed
signal). In other words, the signal remains almost constant
in time. We discuss this matter in more detail for the
anisotropic spiral case.

What is clear from this simulation is that, in the absence
of fiber architecture (and, consequently, force anisotropy),
the hydrostatic strain field Tr(e) follows the contraction
field closely. As a result, the only mechanical phase
singularity that we observe is due to the existing phase
singularity of the prescribed active contraction force field.
Therefore, we can hypothesize that, in tissue with isotropic
fiber architecture and no singularity of contraction field,
we must not observe any mechanical phase singularity. To
test this hypothesis, we apply an active contraction field of
circular ring-shaped focal patterns to the tissue with
isotropic fiber architecture. Again, the active contraction
field is derived analytically as presented in Eq. (A3) in
Appendix A, the results of which are presented in Fig. 3.
As one can see in Fig. 3, the contraction field 7', (x, y) in
Fig. 3(a), the strain field r(e)(x,y) or trace of the strain
tensor in Fig. 3(b), and the phase map of the strain
@[Tr(e)](x,y) in Fig. 3(c) all retain the circular shape,
and there is no phase singularity in the phase map.
Moreover, the amplitude of the transformed signal remains
relatively large everywhere inside the tissue.

In the cardiac muscle, the fiber architecture is anisotropic
and organized in a complex, orthotropic pattern.
Furthermore, the contracting active force is exerted only
along the local fiber direction. As the next step, we study
the effect of fiber anisotropy in the 2D tissue with a
clockwise rotating spiral of active contraction. With no loss
of generality, we assume that the fibers are aligned
uniformly along the x axis, and, therefore, the contractile
force occurs in this direction as well. The results for this
case are presented in Fig. 4. Figure 4(a) shows the active
contraction field 7, (x, y). Note that the active contraction
pattern is elongated along the horizontal x axis, which
reflects the underlying horizontal fiber anisotropy. The
elongation occurs in real myocardium, because the con-
duction is higher along the fiber direction, and, therefore,
electrical current propagates faster in this direction.
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FIG. 4. Strain spiral wave pattern in an anisotropic 2D medium
with fibers aligned along the x axis. (a) Clockwise rotating spiral
wave pattern of active contraction 7, (x,y). (b) Strain along the
fibers €, vanishes in the horizontally aligned arms. Red circles and
black stars with a white edge indicate the location of mechanical
phase singularities calculated via the Hilbert transform and as the
intersection of the ¢,, = €, contour (thin red dashed lines) and
0,€, = 0 contours (thin blue lines), respectively, where €. is the
average of the minimum and maximum values of €,,. (c) Phase
map of the strain ¢[e,.(x,y)] shows one colocalized mechanical
phase singularity at the center of the rotor pattern in (a) and two
additional pairs in the top and bottom horizontally aligned spiral
arms. (d) The amplitude A of the complex transformed signal
vanishes in the vicinity to all mechanical singularities (black
regions). (e) Time series of ¢, for points 1 and 2 in (b). (f) Phase
diagram at points 1 and 2 from (e) derived via the Hilbert
transform, where the horizontal axis is the original signal and
the vertical axis is the signal shifted by /2.

Since active contraction is slaved to electrical current, the
active contraction propagates faster and elongates along the
same axis as well. Correspondingly, in the anisotropic

simulation, the contractile force is exerted only along the
horizontal x axis, which represents myocardial muscle
tissue more accurately than the isotropic simulations shown
in Figs. 2 and 3. To identify mechanical phase singularities
while accounting for the effects caused by the fiber
anisotropy, we analyze the corresponding strain along
the fiber orientation, which in this case is €,,. Because
of the effects of force anisotropy along the horizontal axis,
the strain pattern in Fig. 4(b) is distorted compared to
Fig. 2(b), and the generated strains are generally larger in
the vertical arms. In other words, while the contraction field
is similar in both vertical and horizontal spiral arms in both
the anisotropic and isotropic cases, the strain is signifi-
cantly diminished in the horizontal parts of the spiral arms
in the anisotropic case, because the tissue cannot generate
sufficient contractile force perpendicularly to the fiber
orientation. In comparison to the isotropic case, the phase
map ¢(x,y) in Fig. 4(c) is more complex, and it does not
retain a simple pinwheel shape. The phase map reveals that,
next to a mechanical phase singularity close to the core of
the spiral pattern, additional mechanical phase singularities
form at a distance from the central phase singularity in the
horizontal spiral arms. The central mechanical phase
singularity colocalizes with the rotational core or tip of
the electrical (or active contraction) spiral pattern shown in
Fig. 4(a), but the additional mechanical phase singularities
do not colocalize with any phase singularities in the active
contraction field (movies are available in Supplemental
Material [23]). In this example [see Fig. 4(c)], two pairs
of additional mechanical phase singularities form in the
vertical direction on each side of the core. The two
singularities in each pair exhibit opposite topological
charges but do not exhibit vorticity as the central stationary
phase singularity does. Overall, one notices an underlying
pinwheel pattern, as in Figs. 2(b) and 2(c), but the pattern is
topologically discontinuous in the space between each
of the singularity pairs. Furthermore, the amplitude A in
Fig. 4(d) vanishes in the vicinity of the mechanical phase
singularities, independently of whether they are paired
or unpaired with singularities of the contraction field.
However, in the surrounding neighborhood of paired and
unpaired mechanical phase singularities, the spatial dis-
tribution of the amplitude A differs significantly. Near
paired singularities, the amplitude increases rapidly with
distance from the singular point, while the amplitude
vanishes at the center of the singular point in Fig. 4(d).
Near unpaired singularities, the amplitude remains small
over a spatially extended region surrounding the singular
point [black and red regions in Fig. 4(d)]. As we show later,
the property that the amplitude of oscillation grows rapidly
or slowly away from paired or unpaired singularities,
respectively, can be exploited to distinguish between those
two different types of mechanical phase singularities.

To better understand the nature of unpaired mechanical
phase singularities, we examine the strain’s temporal
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evolution (measured along e¢,,, here aligned with the fiber
direction) close to and further away from an unpaired
singularity; see Fig. 4(e). One can observe that in the
vicinity of an unpaired mechanical singularity (e.g.,
point 1) the amplitude of ¢,, vanishes over the entire
period, whereas further away at a nonsingular site €,
exhibits large oscillations (e.g., point 2); cf. Fig. 4(b). The
inset in Fig. 4(e) shows how the corresponding trajectories
of these two time series look in a two-dimensional complex
phase space with the real and imaginary parts of the signal
on the x and y axis, respectively: The nonvanishing time
series of the strain with finite amplitudes corresponds to a
circular trajectory, whereas the strain with vanishing ampli-
tude reduces to a point in phase space, which prohibits
defining a phase angle ¢(e,,). This behavior is rather
unexpected for an unpaired singularity as shown in point 1
in Fig. 4(e). As we discuss next for the simpler case of a
focal excitation, this property is the result of the combined
effects of fiber anisotropy and the nonlocality of elastic
interactions that can cause €,, to remain constant in time.

The strain field resulting from a focal excitation wave in
an anisotropic medium is shown in Fig. 5. The contraction

[ €
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FIG. 5. Focal wave in anisotropic medium with fibers aligned
along the x axis. (a) Active contraction field 7,(x,y) of an
elliptical ring-shaped focal pattern. (b) Strain €, is stronger in the
vertical than the horizontal arms due to fiber anisotropy. Red
circles and blue stars indicate the location of phase singularities
calculated by the Hilbert and contour-intersection method as in
Fig. 4, respectively. (c) The phase map shows mechanical
singularities emerge in the absence of electrical singularities.
(d) The signal amplitude A vanishes close to and around these
singular points (black region).

field T, (x, y) and the strain field measured along the fiber
axis €, (x, y) are shown in Figs. 5(a) and 5(b), respectively.
Note that the thickness of the focal contraction wave is not
uniform due to the differences in conduction speed of the
excitation wave along the horizontal and vertical directions,
respectively, similarly as in Fig. 4. As a result, the wave is
thicker in regions in which it propagates in parallel to the
fiber axis than in regions in which it propagates perpen-
dicularly to that axis. As can be seen in Fig. 5(b), the strain
in the vertically traveling parts of the elliptical wave is
diminished. Importantly, Fig. 5(c) shows that the elliptical
focal contraction wave produces four unpaired mechanical
phase singularities in the tissue. These four phase singu-
larities emerge in pairs and are aligned symmetrically
around the focal center of the wave and travel along a
confined closed loop (movies are available in Supplemental
Material [23]). Lastly, Fig. 5(d) shows that the amplitude A
of the transformed signal vanishes in the neighborhood of
these phase singularities, as is the case with the anisotropic
spiral wave pattern shown in Fig. 4.

To gain further insight into the mechanism of the
formation of unpaired singularities, we pace an anisotropic
tissue with a periodic wave train of electrical plane waves
propagating from bottom to top along the y direction while
the fibers are aligned uniformly along the x axis perpen-
dicularly to the wave. A snapshot of this simulation is
shown in Figs. 6(a) and 6(b). While the active tension is
spatially uniform parallel to the fiber axis in the depolarized
contracting region of tissue [see Fig. 6(a)], the resulting
deformation wave measured by e, is “broken” in the
middle region [see Fig. 6(b)]. This wave break gives rise
to the formation of two mechanical singularities located at
the tips of the ¢,, = €, contours (thin red dashed lines)
separating understrained and overstrained regions of
tissue shown in green and red in Fig. 6(b), respectively.
This wave break occurs because the active force in the
central region of tissue is contracting against large regions
of passive surrounding tissue, thereby producing small
strains, while less-constrained regions closer to the stress-
free boundaries of the tissue produce a larger strain. In
contrast, with fixed displacement boundary conditions on
all edges of the tissue (1, = u, = 0), €, = 0 in the whole
tissue is the trivial solution of linear elasticity under the
same plane wave of active tension that does not produce
any strain inhomogeneities.

However, unpaired mechanical singularities form inde-
pendently of the particular mechanical boundary conditions
with more complex wave patterns, such as the spiral and
focal wave patterns. Figures 6(c)-6(f) show how unpaired
mechanical phase singularities emerge with a focal wave
with both stress-free boundary conditions [Fig. 6(d)]
and fixed displacement u, = u, = 0 boundary conditions
[Fig. 6(f)]. With stress-free boundary conditions, the
tissue can contract freely without being restricted by the
boundaries. All simulations in Figs. 2-5 are obtained with
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FIG. 6. Mechanism of formation of unpaired mechanical
singularities in anisotropic tissue with fibers aligned along the
x axis. Active tension (a) and strain €,, (b) for a plane wave
traveling in the +y direction in a tissue with stress-free boundary
conditions. Active tension (c) and strain €,, (d) for a target wave
expanding in a tissue with stress-free boundary conditions. Active
tension (e) and strain €., (f) for a target wave expanding in a
tissue with fixed boundary conditions (#, = u, =0 on all
boundaries). Red circles and blue stars indicate the location of
phase singularities calculated by the Hilbert and contour-inter-
section method as in Figs. 4 and 5, respectively. (g) and (h) show
the same strain patterns as (d) and (f), respectively, in deformed
coordinates.

stress-free boundary conditions. With fixed displacement
boundary conditions, the boundaries are fixed in space
and accordingly do not give in to contractions occurring
within the tissue. Figures 6(d) and 6(f) show that unpaired
mechanical singularities emerge in both cases even though
the strain fields are significantly different with the two
mechanical boundary conditions. All maps presented in
this study so far are shown in undeformed coordinates. To
illustrate the effect of the boundary conditions on the
deformation, Figs. 6(g) and 6(h) show the corresponding
deformation caused by the focal wave in Fig. 6(c) in
deformed coordinates. With stress-free boundary condi-
tions, the tissue’s deformations are clearly visible, whereas
with fixed boundary conditions the tissue’s outer bounda-
ries appear static while further inside the tissue deforms.
The results show that, independently of the choice of
boundary conditions, four unpaired mechanical singular-
ities are formed by the breakup of the two elongated thin
regions of the elliptical target wave propagating upward
and downward. Breakup occurs because regions of the
elliptical target wave propagating along the fiber axis are
thicker and, hence, exert a larger net contractile force that
overstrains those regions. In contrast, regions propagating
perpendicular to this axis are thinner, thereby exerting a
smaller net contractile force. Those regions are also more
elongated, thereby contracting against a larger region of
passive tissue. Both factors contribute to causing those
thinner elongated regions to be understrained. A similar
mechanism is seen to underlie the formation of unpaired
mechanical singularities in the case of reentrant spiral
waves (see Fig. 4) that, like elliptical target waves, exhibit
both thicker and thinner regions propagating parallel and
perpendicular to the fiber axis.

We further investigate how the number of unpaired
mechanical phase singularities increases with tissue size.
Figure 7 shows the number of mechanical phase singular-
ities per period as a function of ratio L /4, of tissue size and
spiral wavelength for a single spiral wave rotating in a 2D
medium with anisotropic fiber architecture. The results
show an increase in the number of mechanical phase
singularities with system size. For small values of L/A
(L/2; =1, 2), the only mechanical phase singularity
appears at the core of the spiral, which is associated with
the colocalized singularity at the tip of the spiral. As
L/A; = 3, the number of singularities jumps to 5, which
accounts for the formation of two additional pairs of
noncolocalized singularities. This case (L/A; = 3) is the
same as the one presented in Fig. 4. As L/A, increases
further, the mechanical state of the medium becomes more
complex, and pairs of mechanical phase singularities are
created and annihilated during each period, thereby causing
the number of unpaired singularities to fluctuate during one
period. However, the average number of phase singularities
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FIG. 7. Number of mechanical phase singularities for a clock-
wise rotating spiral in a heart muscle with anisotropic fiber
architecture (fibers are along the x axis) as a function of tissue
size and tissue size to spiral wavelength ratio L/A,. Different
vertical circles show the different numbers of phase singularities
observed in one period. The intensity of the color in each circle
exhibits the frequency of occurrence of that number of phase
singularities. For instance, for (L /A, = 15) during one period, 15,
17, and 19 phase singularities are observed. The color density of
the circles shows that most of the time there are 17 phase
singularities in the domain. The red squares show the average
number of singularities during one period.

increases roughly linearly with the number of turns of the
spiral wave that increases proportionally to L/A,. This
behavior is expected based on our physical interpretation of
the formation of unpaired singularities based on deforma-
tion wave breaks.

In summary, our 2D simulations demonstrate that
mechanical phase singularities colocalize with the tip of
electrical spiral waves and characterize the center of an
electromechanical rotor. In addition, unpaired mechanical
phase singularities can form with both reentrant and focal
waves, which 