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Ventricular fibrillation (VF) is a life-threatening electromechanical dysfunction of the heart associated
with complex spatiotemporal dynamics of electrical excitation and mechanical contraction of the heart
muscle. It has been hypothesized that VF is driven by three-dimensional rotating electrical scroll waves,
which can be characterized by filamentlike electrical phase singularities or vortex filaments, but visualizing
their dynamics has been a long-standing challenge. Recently, it was shown that rotating excitation waves
during VF are associated with rotating waves of mechanical deformation. Three-dimensional mechanical
scroll waves and mechanical filaments describing their rotational core regions were observed in the
ventricles by using high-resolution ultrasound. The findings suggest that the spatiotemporal organization
of cardiac fibrillation may be assessed from waves of mechanical deformation. However, the complex
relationship between excitation and mechanical waves during VF is currently not understood. Here, we
study the fundamental nature of mechanical phase singularities, their spatiotemporal organization, and their
relation with electrical phase singularities. We demonstrate the existence of two fundamental types of
mechanical phase singularities: “paired singularities,” which are colocalized with electrical phase
singularities, and “unpaired singularities,” which can form independently. We show that the unpaired
singularities emerge due to the anisotropy of the active force field, generated by fiber anisotropy in cardiac
tissue, and the nonlocality of elastic interactions, which jointly induce strong spatiotemporal inhomo-
geneities in the strain fields. The inhomogeneities lead to the breakup of deformation waves and create
mechanical phase singularities, even in the absence of electrical singularities, which are typically associated
with excitation wave break. We exploit these insights to develop an approach to discriminate paired and
unpaired mechanical phase singularities, which could potentially be used to locate electrical rotor cores
from a mechanical measurement. Our findings provide a fundamental understanding of the complex
spatiotemporal organization of electromechanical waves in the heart and a theoretical basis for the analysis
of high-resolution ultrasound data for the three-dimensional mapping of heart rhythm disorders.
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I. INTRODUCTION

The beating of the heart is initiated by nonlinear waves of
electrical excitation, which propagate through the cardiac
muscle and trigger a release of intracellular calcium, which,
in turn, triggers contractions of cardiac muscle cells.
During severe heart rhythm disorders, such as atrial or
ventricular fibrillation, the electrical excitation degenerates
into multiple disorganized, asynchronous electrical waves,
leading to irregular cardiac muscle contractions [1–4]. Both
spiral-shaped reentrant waves and focal waves are thought
to underlie those phenomena during high-frequency cardiac
arrhythmias. To date, however, the three-dimensional (3D)
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electrical wave phenomena that evolve rapidly within the
thickness of the heart muscle have never been imaged in
full. While fluorescence imaging provides high-resolution
measurements of vortexlike rotating spiral waves on the
heart surface, the underlying 3D dynamics remain elusive
and, based on numerical simulations, are conjectured to
take on the shapes of scroll vortex waves or 3D spiral waves
[5–11], which are generic self-organized nonlinear wave
structures of excitable media [1–4,12,13].
In a recent study, it was shown that the dynamical

processes underlying ventricular fibrillation can be char-
acterized by coupled electrical and mechanical phase
singularity dynamics [14]. By using trimodal voltage-
and calcium-sensitive fluorescence imaging, high-speed
4D ultrasound, and numerical motion analysis, it was
shown that the rapidly contracting, fibrillating heart muscle
exhibits vortexlike rotating strain fields, which are pro-
duced by electrical action potential and calcium spiral
waves. Consequently, it was demonstrated on the heart
surface that electrical phase singularities, which describe
the cores of rotating action potential and calcium waves,
appear in the vicinity of the cores of the rotating deforma-
tion patterns, which can equivalently be characterized by
mechanical phase singularities. It was furthermore shown
that electrical and mechanical phase singularities colocalize
and exhibit similar dynamics in terms of numbers, trajec-
tories, and lifetimes, providing for the first time evidence
for the existence of electromechanical rotors. The data
suggest that electrical and mechanical phase singularities
are both produced during ventricular fibrillation by electro-
mechanical scroll wave chaos and that a better under-
standing of the nature of these electromechanical phase
singularities could provide important new insights into the
3D spatiotemporal organization of cardiac fibrillation, since
electrical and mechanical phase singularities are closely
related to each other. Lastly, it was shown using high-
resolution 4D ultrasound that a 3D filamentlike structure of
mechanical phase singularities evolves throughout the heart
wall during fibrillation, suggesting that the spatiotemporal
organization of electrical scroll wave vortex filaments may
be inferred by the dynamics of mechanical vortex filaments
inside the heart muscle. The findings open the path to use
mechanical phase singularities to enhance the understand-
ing of the mechanisms underlying cardiac fibrillation.
However, despite the experimental advances, a fundamental
understanding of their relationship remains largely lacking.
Naively, one would expect mechanical waves to be

slaved to electrical excitation waves that cause contraction
via the well-established excitation-contraction coupling
mechanism, whereby calcium entry into the cell through
L-type calcium channels following electrical excitation
triggers calcium release from intracellular stores, which,
in turn, activates the contractile machinery of the cell,
thereby generating an active force along the long axis of
cardiomyocytes [15]. Consequently, the spatiotemporal

wave pattern of this active force is expected to generally
follow closely the wave pattern of electrical excitation,
except under extreme conditions where excitation-
contraction coupling fails (e.g., when calcium-induced-
calcium-release fails to keep up with electrical excitation
at very high frequencies).When normal excitation-
contraction coupling remains operative, excitation wave
propagation can itself be influenced by mechanical con-
traction due to mechanoelectrical feedback [16–18].
However, this feedback, which has been neglected in
most modeling studies of cardiac arrhythmia mechanisms
[1–3], does not cause the wave pattern of active force to
deviate from the wave pattern of electrical excitation. In
contrast, the resulting tissue deformation pattern, which is
imaged by high-resolution ultrasound, may differ mark-
edly from the active force pattern due to the nonlocality of
long-range elastic interactions, which can induce strain in
regions of the heart muscle that are not actively con-
tracting or, at the opposite, cause regions under large
active force to be under small strain. This raises the basic
question of whether mechanical phase singularities, i.e.,
spatiotemporal phase singularities of nonlocal strain
fields, track electrical wave singularities or exhibit a more
complex spatiotemporal organization.
In this article, we address this question by investigating

the strain field patterns generated by reentrant and focal
excitation-contraction waves in 2D and 3D cardiac tissue in
computer simulations. Our main finding is that mechanical
phase singularities, which we extract from phase maps
obtained of strain fields via the Hilbert transform, can both
colocalize with or form away from phase singularities of
excitation waves. The former “paired” mechanical singu-
larities exist only in the presence of reentrant waves, while,
remarkably, focal sources of waves or target patterns suffice
to create the latter “unpaired” mechanical singularities,
which can, therefore, exist in both the presence and absence
of reentrant waves. Furthermore, we find that paired and
unpaired singularities form by different mechanisms.
Paired ones originate from phase singularities associated
with the rotation of strain fields that remain essentially
slaved to excitation waves near the core of electrical
vortices. In contrast, unpaired ones originate from the
breakup of deformation waves caused by the combination
of long-range elastic interactions and the anisotropy of the
active force field.
We exploit these insights to develop an approach to

discriminate paired and unpaired mechanical phase singu-
larities based on observations of their surrounding strain
field. Our findings provide a fundamental understanding
of the complex spatiotemporal organization of electro-
mechanical wave activity during cardiac arrhythmias
and a theoretical basis for the interpretation of three-
dimensional imaging data of tachyarrhythmias obtained
with high-resolution ultrasound for diagnostic and thera-
peutic applications.
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II. METHODS

To explore the relationship between electrical and
mechanical singularities, we use two different approaches.
First, in Sec. II A, we analytically construct simple 2D
excitation wave patterns and compute the resulting strain
fields (deformation waves) by numerically solving the
equations of linear elasticity using the finite element
method (FEM). We should note that there is a large body
of literature dedicated to creating accurate representation
of the coupled electromechanical response of the heart
[19–22]. However, since our goal is to elucidate the
mechanism of mechanical singularity formation, we reduce
the problem to its most essential aspects. For the main
presentation in this article, we use quasistatic formulation
with homogeneous isotropic infinitesimal elasticity, with
anisotropic active strains and no electromechanical feed-
back. We also limit our presentation in the main text to
Poisson’s ratio of ν ¼ 0.4 which produces approximately
10% volumetric change (see Fig. 3). However, to show the
robustness of our findings, we provide an extended set
of simulations using ν ¼ 0.49, neo-Hookean material,
and transversely isotropic elasticity in Supplemental
Videos [23]. Under the assumption that the local active
force tracks the local electrical excitation, which is gen-
erally satisfied except when calcium release cannot keep up
with very high-frequency electrical waves, we do not need
to specify separately the electrical and mechanical signals.
We prescribe directly the spatiotemporal active strain fields
corresponding to standard excitation 2D wave patterns.
As generic examples of reentrant and focal excitations, we
consider both a rigidly rotating (i.e., nonmeandering)
Archimedean spiral wave and a target pattern generated
by a localized time-periodic focal source of waves, respec-
tively. This approach has the advantage that it provides the
simplest possible setting to investigate the relationship of
electrical and mechanical singularities in a perfectly elastic,
nearly incompressible, material where the strain field is
assumed to relax instantaneously to the active force field.
In this approach, “electrical singularities” are simply the
singularities of the prescribed active force fields, which are
present and absent for spiral and target waves, respectively,
and “mechanical singularities” are the singularities of the
numerically obtained linear elastic strain fields generated
by the active force fields.
Second, in Sec. II B, we simulate electromechanical

wave activity using a simplified two-variable ionic model
of electrical excitation [24,25] and a simple phenomeno-
logical relaxational kinetic equation to relate the active
force to electrical excitation [17]. In addition, we compute
the resulting strain fields by extending a mass-spring model
(MSM) of standard elasticity [26] to incorporate the active
force and describe a nearly incompressible viscoelastic
material with inertia. This approach has the advantage
of allowing us to efficiently explore the relationship
of excitation-contraction and deformation waves in

3D anisotropic tissue in a parameter limit of the MSM
where viscous and inertial effects are small and continuum
elastic properties are similar to those obtained by quasi-
static FEM solutions, with known continuum elastic
properties that can be derived analytically from the MSM.

A. Two-dimensional FEM computations
with analytically prescribed spiral
and target wave active force fields

We perform the computations using quasistatic linear
elasticity, where we implement active contraction by an
analogy to thermal stress with the incorporation of (stress-
free) eigenstrains. Our use of active strains ensures the
ellipticity of the elastic energy [27]. For domain Ω ⊂ R2,
we write the elastic energy as

EelðuÞ ¼
Z
Ω
Cijklðϵkl þ TaβklÞðϵij þ TaβijÞdV; ð1Þ

where Cijkl ¼ λδijδkl þ μðδikδjl þ δilδjkÞ is the fourth-
order isotropic elastic constitutive tensor, where δij is the
Kronecker delta and for plane-stress λ ¼ Eν=ð1 − ν2Þ and
μ ¼ E=½2ð1þ νÞ� are Lamé parameters, ϵij¼ðui;jþuj;iÞ=2
is the linearized strain tensor (i.e., symmetric displacement
gradient), 0 ≤ Ta ≤ 0.15 is the imposed spatiotemporally
varying active contraction field normalized by the elastic
modulus E, and β is a tensor whose form given below
depends on whether contraction is isotropic, as in the case
of randomly oriented cardiomyocytes in a tissue culture, or
anisotropic, as in the case of heart tissue with aligned fibers.
To obtain the quasistatic response, we find the displacement
field u� that minimizes the elastic energy, Eq. (1).
We assume cardiac tissue to be elastically isotropic in

all cases studied here with, i.e., Young’s modulus E and
Poisson’s ratio ν ¼ 0.4 to account for near incompressibil-
ity of the tissue, which results in an approximately 10%
maximum volume change in our FE simulations. This value
of the Poisson ratio is selected to correspond to the value
achieved by the MSM model given our choice of param-
eters (see the Appendix D). To assess the effect of volume
change on our findings, we duplicate our simulations
for higher Poisson’s ratio ν ¼ 0.49 (see Supplemental
Movies [23]). We investigate two different 2D cases.

1. Isotropic case

The “isotropic” case mimics a thin quasi-2D tissue
culture of randomly oriented cardiomyocytes with no
preferred direction of conduction or active contraction.
In this case, both the conduction and active strains are
assumed to be isotropic. Furthermore, we set

βij ¼ δij ð2Þ

to produce an isotropic contraction of unit magnitude.
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2. Anisotropic case

The “anisotropic” case represents normal 2D cardiac
tissue with cardiomyocytes aligned along a common fiber
axis where we assume the conduction along the fibers to be
5 times faster than conduction perpendicular to them. We
further assume that the active strain acts only along the
fiber. In this case, we choose the expansion tensor such that,
for a 1D fiber, the strains along the fiber converge to unit
magnitude without any change of fiber cross section. For a
domain with fibers along the first coordinate axis, and
assuming isotropic elasticity, this is achieved by choosing

β ¼
�−1 0

0 ν

�
: ð3Þ

We note that the above equations (2) and (3) are special
cases of a domain with arbitrary fiber orientation defined
by the unit vector f with components ðf1; f2Þ with β
defined by

Cijkl

λþ 2μ
βkl ¼ −fifj: ð4Þ

To perform the simulation, we explicitly impose the
active contraction field Ta using closed-form expressions in
the form of spatially diffuse Archimedean spirals and
expanding ellipsoidal pulses (see Appendix A) in an
L × L square domain discretized using 320 × 320 Q1
elements. We impose traction-free boundary conditions
on the edges of the domain (x ¼ �L and y ¼ �L) and
remove the rigid body modes (null space of elasticity) from
the obtained discrete set of equations. For our FEM
numerical implementation, we use libMesh [28] for finite
element bookkeeping and PETSc [29,30] for linear algebra.

B. Three-dimensional simulations using a two-variable
ionic model with active force generation coupled

to a mass-spring model

1. Reaction diffusion model for cardiac excitation

In 3D simulations, we assume a slab of ventricular
muscle with a defined fiber architecture. A two-variable
reaction-diffusion model presented in Refs. [24,25] is
utilized to simulate the cardiac excitation. The magnitude
of the active force is coupled phenomenologically to the
voltage field to mimic the typical rise and fall of this force
during an action potential [17]. The equations that describe
this model are

∂tU ¼ ∇ · ðD∇UÞ þ τ−1U fðU; vÞ; ð5Þ

∂tv ¼ τ−1v gðU; vÞ; ð6Þ

∂tTa ¼ χðUÞðKtU − TaÞ ð7Þ

subjected to the Neumann boundary condition

n̂ · ðD∇UÞ ¼ 0: ð8Þ

In these equations, U and v are the dimensionless represen-
tation of the transmembrane voltage and slow current gate
variables, respectively, τU=τv controls the relative abruptness
of the excitation, D is the diffusivity tensor, and n̂ is the unit
normal vector to the boundary. In Eq. (7) [similar to Eq. (1)],
Ta represents the ratio of the active contraction field and
elastic modulus. Kt controls the maximum amplitude of the
active contraction by coupling it to the transmembrane
voltageU, and χðUÞ is a step function that sets the timescale
of the contraction period with respect to U. Details about
functions f and g and the relation between diffusivity tensor
and the fiber architecture can be found in Refs. [25,31].
For convenience, these relations and more details about
Eq. (7) are briefly presented in Appendix B. Finally, with
no loss of generality, we assume that the conduction is
transversely isotropic; i.e., it is isotropic in the plane
perpendicular to fibers and is faster along the fiber direction.
We can, therefore, write D⊥1 ¼ D⊥2 ¼ D⊥, whereD⊥1 and
D⊥2 are the diffusivity perpendicular to the fiber axis in each
plane and Dk is the diffusivity along the fiber axis. This
simplifies the local electric current to

D∇U ¼ D⊥∇U þ ðDk −D⊥Þðf̂ · ∇UÞ; ð9Þ

where f̂ is the unit vector that is locally parallel to the fiber.
Here, we consider the anisotropic cases without fiber rotation
where f̂ is spatially uniform and with fiber rotation where f̂
rotates along one axis as in Refs. [25,31]. The set of
parameters that are used in this article is listed in Table I.

2. Three-dimensional lattice mass-spring model

In the 3D simulations, the elasticity of the tissue is
modeled by extending the MSM in Ref. [26] to cardiac
tissue. Our use of the discrete MSM model (as opposed to
discretizing a set of continuum-level equations) allows us to
easily integrate the equations of motion on massively
parallel graphical processing units. The schematic of a
single unit cell of the cubic lattice with edge length a is
shown in Fig. 1, and the tissue is constructed by stacking
several unit cells. The extension to cardiac tissue is
achieved by (i) adding Kelvin-type dampers [Fig. 1(b)]
to the MSM to account for the viscoelastic behavior of the
tissue, which produces damping forces proportional to the
relative velocity between two masses, (ii) a volumetric
penalty force to shift the elastic properties toward the
incompressible limit [Fig. 1(c)], and (iii) adding the active
contractile force [Fig. 1(d)]. For small and slowly spatially
varying deformations (i.e., varying on a scale much
larger than a) and in the absence of the volumetric penalty
forces, the MSM reduces in the continuum limit to standard
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isotropic linear elasticity with Lamè constants λ ¼ μ ¼ k=a
characteristic of a compressible material [26].
However, similar to other biological tissues, the myo-

cardium contains mostly water and can be considered as a
nearly incompressible material [19]. To account for this
near incompressibility in our model, we introduce a uni-
form penalty pressure p to keep the volume constant. This
pressure is applied to all faces of a unit cell and transmits a
force on each mass at the corners of the cell. A schematic of
the volumetric forces for the case that the volume decreases
is shown in Fig. 1(c). The magnitude of the volumetric
penalty force is chosen as

fv ¼
ffiffiffi
3

p
pa2

4

�
1 −

V
V0

�
; ð10Þ

where V0 ¼ a3 and V are the initial and current volume of
each cubical element, respectively. To ensure the balance of
the internal forces, we apply the volumetric forces on each
pair of diagonally opposite nodes along the line connect-
ing them.
This volume preservation method can be shown to

modify the bulk stiffness of the MSM. In the presence
of the volumetric pressure p, the first Lamé constant is
increased to λ ¼ k=aþ p, while the shear modulus remains
unchanged μ ¼ k=a. Therefore, we can write Young’s
modulus and Poisson’s ratio of the system as

E ¼ kð3apþ 5kÞ
aðapþ 2kÞ ; ð11Þ

ν ¼ apþ k
2apþ 4k

: ð12Þ

In the simulations, we choose p ¼ 15k=ð2aÞ correspond-
ing to a Poisson’s ratio ν ¼ 17=38 ≈ 0.45 close to the
incompressible limit. We should note that, while the value
of penalty forces [Eq. (10)] vary spatially, the underlying
model remains isotropic and homogeneous.
Next, we incorporate the active contraction in our

model. The active tension can be incorporated in two
ways: (i) using active strains by dynamically setting the rest
length of passive strains or (ii) using active stresses.
Because of its ease of use in the MSM model, we opt
for the latter option. We should note that these two options
are equivalent only at small strains and can produce
quantitatively different results at finite strains [27]. We
assume that contraction occurs only along the local fiber
axis. In each unit cell, we assume that there is a pair of
internal active forces oriented in the direction of the fiber
and choose the magnitude of these forces as jfaj ¼ T̄aEa2,
where T̄a ¼

P
8
i¼1 T

ithcell
a =8 represents the average contrac-

tile field in the cell. The active force contribution from each
cubical cell Tithcell

a at a corner is calculated using bilinear
interpolation based on the position where the fiber axis
intersects the plane containing the mass, as described
previously [32,33], and shown in Fig. 1(d). Finally, the
equation of motion for the ith mass is given by

m∂2
t ui ¼

X18
j¼1

fs þ
X18
j¼1

fd þ
X8
j¼1

fa þ
X8
j¼1

fv; ð13Þ

where the various forces shown are in Fig. 1. They include
the static spring forces fs ¼ k× (relative displacements of
masses linked by springs) and associated damping forces
fd ¼ c× (relative velocities) for the 18 dampers connected
to each mass and the active forces fa and volumetric forces
fv defined above for the eight cubical elements connected
to each mass. A detailed study of the mechanical properties
of the MSM is conducted and presented in Appendix D.
To study the electrical and mechanical singularities

in heart tissue, we perform the simulations on a cubic
lattice with 150 × 150 × 40 grid points. Adjusting for
the material properties, the lattice corresponds to a 4.5 ×
4.5 × 1.2 cm3 slab with a unit cell spacing Δx ¼ Δy ¼
Δz ¼ a ¼ 0.3 mm. To integrate the electrophysiology
equations [Eqs. (5)–(7)], we use an explicit Euler method.
To create a spiral wave initial condition, we use the
standard two-stimulus protocol that consists of first creating
a traveling plane wave along the y direction by exciting the
tissue uniformly on the y ¼ 0 plane and then depolarizing
half of the tissue (x < 2.25 cm) at t ¼ 0.35 s. In addition,
we integrate the equations of motion of the MSM using a
standard velocity Verlet algorithm.

(a) (b)

(c) (d)

FIG. 1. A cubical element of the MSM. (a) The mass of the
cube m is distributed equally among the eight cubes that meet at
one corner. The edge and diagonal springs have a stiffness of k=4
and k=2, respectively. (b) A Kelvin-Voigt-type damping system is
used where the edge and diagonal dampers have a damping
constant of c=4 and c=2, respectively. (c) To add volume
conservation to the model, a penalty pressure is applied to the
faces of the cube. This pressure results in forces at each corner.
(d) The compressive active contraction is applied along the fiber
direction in each cube, and, based on the distances a1 and a2 with
bilinear interpolation, it is redistributed on the masses.
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In a human heart with a density close to water ρ ≈
1000 kgm−3 and Young’s modulus approximately 125 MPa
[18], the elastic wave speed can be crudely estimated to be
C ≈ 353 ms−1. Furthermore, the period of excitation T
spans the range 0.1 to 1.0 s with the lower and upper
bounds corresponding to an electrical rotor and a normal
heartbeat, respectively. It follows that the distance CT
traveled by elastic waves during a contraction period is
much larger than the characteristic size L of the heart of a
few centimeters. This scale separation (L ≪ CT) makes it
possible to increase the computational efficiency of the time
integration algorithm by reducing the elastic wave speed.
Therefore, instead of setting the Young’s modulus to its
physical value, we set the characteristic elastic wave
speed C ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

equal to 5 ms−1 such that the inequality
L ≪ CT still holds, where ρ ¼ m=a3 is the tissue density.
The passive response of cardiac myocyte exhibits hys-

teresis cycles indicative of a viscoelastic behavior [34].
While these effects can create small quantitative differences
compared to the nonviscoelastic models, there is no
evidence that they can significantly change the response
of the tissue which is primarily driven by the active stresses
[21]. As such, in our implementation we neglect such
effects, and we choose the damping constant such that
the length of the system is much smaller than the spatial
decay length of linear elastic waves, or L ≪ ðCTÞ=ðπδÞ,
where tanðδÞ ¼ El=Es with El and Es the loss and storage
moduli, respectively, of our viscoelastic medium. In addi-
tion, we choose the elastic diffusion constant De ¼ η=ρ ¼
11 cm2 s−1, where η ¼ 5c=ð2aÞ is the Kelvin-Voigt damp-
ing constant. We present a more detailed justification for
these choices of parameters in Appendix C. The parameters
for the MSM model are summarized in Table I. Figure 1
implies that the sum of moments and forces in each cube
and, consequently, in the full system is always zero.
Therefore, all the forces in the system are internal, and
no additional mechanical boundary conditions need to be
applied to simulate stress-free boundaries of the tissue.

We study two different fiber architectures: (i) all fibers
being uniformly aligned in the x direction and (ii) fibers
being organized in orthotropically stacked sheets, rotating
about the z axis through the thickness of the slab. For the
second case, we assume that the fibers are parallel to the x
axis at the bottom (endocardium) and parallel to the y axis
at the top surface (epicardium) with a total rotation angle
of 90°.

III. RESULTS

A. Two-dimensional isotropic and anisotropic tissues:
Emergence and properties of mechanical

phase singularities

We first study spiral-shaped and circular-shaped focal
electromechanical wave patterns in 2D isotropic tissues;
see Figs. 2–6. Before we begin to present the result, we
want to emphasize that the study conducted in this paper is
not limited to a particular strain signal such as TrðϵÞ or ϵxx
or any particular direction, but it works for any signal that
captures the mechanical response of the system. In this
article, we choose the strain along the fibers when there
exists a fiber architecture (anisotropic case) or TrðϵÞ when
there is not (isotropic case) to capture the mechanical
response of the system. In the isotropic case, there is no
particular fiber orientation [fi ¼ 1 in Eq. (4)], and active
tension occurs equally in all directions. Moreover, instead
of modeling the electrical spiral by using reaction-diffusion
kinetics, we directly derive the shape of the active con-
traction field Ta analytically using a closed-form expres-
sion presented in Eq. (A1) in Appendix A. Figures 2(a)
and 2(b) show the contraction field Taðx; yÞ and the
resulting deformation of the tissue displayed as strain
ϵðx; yÞ in material coordinates, respectively. Note that,
because the contraction is isotropic, we choose the trace
of the strain tensor TrðϵÞðx; yÞ ¼ ϵxx þ ϵyy to visualize the
strain as a scalar-valued field, where negative values
correspond to contracted tissue. In the isotropic case, it
can generally be observed that the spiral shape emerging in
the strain field matches the spiral shape in the active
contraction field very well. The high correlation between
the scalar-valued contraction field and a scalar-valued
representation of the strain furthermore manifests when
comparing time series obtained from individual tissue
segments: Over several rotations of the spiral, each local
rise and decline in active contraction TaðtÞ ∈ ½0; 0.15�
causes a corresponding shortening and elongation of the
same tissue segment, which can be measured as a corre-
spondingly oscillating strain signal sðtÞ ¼ TrðϵÞðtÞ which
aligns with the time course of the contraction variable TaðtÞ
for each and every material segment throughout the tissue.
However, despite the strong correlation between contrac-
tion and resulting strain, the spiral shape in the strain field
in Fig. 2(b) does not perfectly match the contraction spiral
in Fig. 2(a), and scaling the fields would be insufficient to

TABLE I. Parameters for the electrophysiology and MSM
models. n.u. stands for no unit.

Uh 3 n.u.
Uv 1 n.u.
U� 1.5415 n.u.
Kt 0.0415 n.u.
τU 2.5 ms
τv 250 ms
Re 0.8 or 1.0 n.u.
M 10 n.u.
Dk 1.1 cm2 s−1
D⊥ 0.22 cm2 s−1
C 500 cm2 s−1
De 11 cm2 s−1
a 0.03 cm
dt 3.27 μs
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map one pattern onto another. Upon close inspection, the
strain spiral pattern in Fig. 2(b) exhibits slight distortions
and deviations, which can be observed best close to the
tissue boundaries; cf. Fig. 3(b). This behavior is to be
expected, because the overall strain field results from a
superposition of several elastic phenomena which are all
long-range effects interacting with each other over long
distances throughout the entire medium: local contraction-
induced deformations, such as contracted or elongated
tissue regions pulling and pushing each other, and mechani-
cal boundaries restricting the deformation. Note that the
strain fields shown in Figs. 2–6 are obtained at equilibrium
and are fully relaxed.
Next, we use the Hilbert transform to assign a phase angle

ϕðtÞ and its complex amplitude AðtÞ to each deformation
state of each material segment throughout the medium
yielding a phase map ϕðx; y; tÞ and an amplitude map
Aðx; y; tÞ as shown in Figs. 2(c) and 2(d), respectively.
The phase ϕðtÞ and amplitude AðtÞ are calculated individu-
ally at each point ðx; yÞ, respectively:

ϕðtÞ ¼ arctan

�
ℑ½s̃ðtÞ�
ℜ½s̃ðtÞ�

�
; ð14Þ

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℑ½s̃ðtÞ�2 þℜ½s̃ðtÞ�2

q
; ð15Þ

where s̃ðtÞ ¼ H½sðtÞ� is the Hilbert transform of an
arbitrary signal sðtÞ, which is in our study either a
mechanical signal derived from a deformation tensor or
the time course of the transmembrane potential. The phase
angle ϕðtÞ continuously increases over time from −π to π
and uniquely represents the time course of the action
potential or a mechanical state, for instance, the defor-
mation state within a cycle defined by two consecutive
fully contracted states; see the isoline for ϕ ¼ −π in
Fig. 2(c). As stated above, with isotropic tissues, we
choose the mechanical signal to be the temporal evolution
of the rotationally invariant quantity sðtÞ ¼ TrðϵÞðtÞ. In
anisotropic tissues, we adjust the mechanical signal to
comprise only mechanical strains occurring along the
fiber direction. For instance, with a uniform linearly
transverse fiber orientation along the horizontal axis,
we choose the signal to be sðtÞ ¼ ϵxxðtÞ correspondingly.
In 3D anisotropic tissues, where the fiber direction rotates
throughout the thickness of the bulk, we choose the signal
to be the component of the Green-Lagrangian strain tensor

(a) (b)

(c) (d)

FIG. 2. A clockwise rotating spiral of active contraction and
strain in a 2D isotropic elastic tissue. (a) Analytically derived
active contraction field Taðx; yÞ. (b) The corresponding strain
field TrðϵÞðx; yÞ is isotropic and closely follows the contraction
field. (c) The mechanical phase map ϕðϵÞðx; yÞ reveals a
mechanical phase singularity at the center of the rotor (red
circle). (d) The complex amplitude Aðx; yÞ vanishes at the
position of the mechanical phase singularity.

(a) (b)

(c) (d)

FIG. 3. Focal active contraction and strain pattern in a 2D
isotropic elastic tissue. (a) Circular ring-shaped focal pattern of
active contraction Taðx; yÞ. (b) The corresponding strain field
TrðϵÞðx; yÞ is isotropic and closely follows the circular active
contraction field. (c) The mechanical phase map ϕðϵÞðx; yÞ
exhibits a focal pattern and does not exhibit a phase singularity
at any point. (d) The complex amplitude Aðx; yÞ does not vanish
at any point.
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corresponding to the local fiber axis, as later specified in
Sec. III B. Prior to computing the phase ϕ and amplitude
A, we subtract the temporal average of the mechanical
signal in each point:

sðtÞ ¼ s0ðtÞ − hs0ðtÞit ð16Þ

taken over the same time interval that the Hilbert trans-
form is computed, where s0 is the original mechanical
signal with a finite baseline. This procedure is used to
determine the signal amplitude oscillating around its mean
value at each point, because time-averaged values of
the signal can, in general, vary in space throughout the
medium. Phase singularities can then be found in the
phase maps ϕðx; yÞ by computing the line integral [9]:

I
∇ϕðr⃗Þds ¼ 2πðp − nÞ; ð17Þ

where the integral is taken over a closed path and p and n
are the numbers of positively and negatively charged
phase singularities inside the area enclosed by the path,
respectively.
In the anisotropic case, we additionally compute

mechanical phase singularities by a different method used
previously to identify the instantaneous tip position of
spiral waves of electrical activity [31]. In that context, the
spiral wave shape is defined as a contour of constant
transmembrane voltage U ¼ Uc, where Uc is a constant
chosen to lie in between the minimum and maximum
values of U corresponding to the resting voltage and the
peak voltage following depolarization. This contour then
separates resting and depolarized regions of the tissue, and
the spiral wave tip can be defined as the intersection of
U ¼ Uc contour at time t and tþ dt or, equivalently, as the
intersection of the U ¼ Uc and ∂tU ¼ 0 contours at time t.
Similarly, we define the position of mechanical singular-
ities as the intersection of the ϵxx ¼ ϵc and ∂tϵxx ¼ 0
contours with the constant ϵc defined as the average of
the minimum and maximum values of ϵxx. With this
definition, the ϵxx ¼ ϵc contour separates understrained
and overstrained regions of the tissue, and mechanical
singularities locate singular end points of this contour that
can be interpreted as instantaneous deformation wave tips.
The Hilbert transform and contour-intersection methods
produce almost identical locations of mechanical singular-
ities in most of the cases presented here where spatiotem-
poral patterns of voltage and mechanical activity are time
periodic. The contour intersection method is used here as
additional validation of the Hilbert transform method as well
as for physically interpreting the formation of unpaired
mechanical phase singularities in terms of deformation wave
breaks leading to the creation of deformation wave tips.
Figures 2(c) and 2(d) show the corresponding phase

map ϕ and amplitude map A of the strain pattern shown

in Fig. 2(b). The phase map in Fig. 2(c) reveals a pinwheel
pattern, which retains a similar spiral-like shape, as in
Figs. 2(a) and 2(b), and exhibits spiral-shaped lines of equal
phase merging at the center of the medium. Using Eq. (17),
one can detect a phase singular point (red dot) at the center
of the medium, describing a topological defect point in the
phase plane. At this point, the elastic medium may be
contracted or dilated, but the signal does not change with
time, and, consequently, the amplitude approaches zero; see
Fig. 2(d). Note that, due to the definition of amplitude
[Eq. (15)] in the Hilbert transformation and the fact that we
are working with the normalized response, amplitude being
close to zero means that there is almost no difference
between s̄ and its 90° shifted value (the difference between
the real and imaginary parts of the Hilbert transformed
signal). In other words, the signal remains almost constant
in time. We discuss this matter in more detail for the
anisotropic spiral case.
What is clear from this simulation is that, in the absence

of fiber architecture (and, consequently, force anisotropy),
the hydrostatic strain field TrðϵÞ follows the contraction
field closely. As a result, the only mechanical phase
singularity that we observe is due to the existing phase
singularity of the prescribed active contraction force field.
Therefore, we can hypothesize that, in tissue with isotropic
fiber architecture and no singularity of contraction field,
we must not observe any mechanical phase singularity. To
test this hypothesis, we apply an active contraction field of
circular ring-shaped focal patterns to the tissue with
isotropic fiber architecture. Again, the active contraction
field is derived analytically as presented in Eq. (A3) in
Appendix A, the results of which are presented in Fig. 3.
As one can see in Fig. 3, the contraction field Taðx; yÞ in
Fig. 3(a), the strain field trðϵÞðx; yÞ or trace of the strain
tensor in Fig. 3(b), and the phase map of the strain
ϕ½TrðϵÞ�ðx; yÞ in Fig. 3(c) all retain the circular shape,
and there is no phase singularity in the phase map.
Moreover, the amplitude of the transformed signal remains
relatively large everywhere inside the tissue.
In the cardiac muscle, the fiber architecture is anisotropic

and organized in a complex, orthotropic pattern.
Furthermore, the contracting active force is exerted only
along the local fiber direction. As the next step, we study
the effect of fiber anisotropy in the 2D tissue with a
clockwise rotating spiral of active contraction. With no loss
of generality, we assume that the fibers are aligned
uniformly along the x axis, and, therefore, the contractile
force occurs in this direction as well. The results for this
case are presented in Fig. 4. Figure 4(a) shows the active
contraction field Taðx; yÞ. Note that the active contraction
pattern is elongated along the horizontal x axis, which
reflects the underlying horizontal fiber anisotropy. The
elongation occurs in real myocardium, because the con-
duction is higher along the fiber direction, and, therefore,
electrical current propagates faster in this direction.

A. MOLAVI TABRIZI et al. PHYS. REV. X 12, 021052 (2022)

021052-8



Since active contraction is slaved to electrical current, the
active contraction propagates faster and elongates along the
same axis as well. Correspondingly, in the anisotropic

simulation, the contractile force is exerted only along the
horizontal x axis, which represents myocardial muscle
tissue more accurately than the isotropic simulations shown
in Figs. 2 and 3. To identify mechanical phase singularities
while accounting for the effects caused by the fiber
anisotropy, we analyze the corresponding strain along
the fiber orientation, which in this case is ϵxx. Because
of the effects of force anisotropy along the horizontal axis,
the strain pattern in Fig. 4(b) is distorted compared to
Fig. 2(b), and the generated strains are generally larger in
the vertical arms. In other words, while the contraction field
is similar in both vertical and horizontal spiral arms in both
the anisotropic and isotropic cases, the strain is signifi-
cantly diminished in the horizontal parts of the spiral arms
in the anisotropic case, because the tissue cannot generate
sufficient contractile force perpendicularly to the fiber
orientation. In comparison to the isotropic case, the phase
map ϕðx; yÞ in Fig. 4(c) is more complex, and it does not
retain a simple pinwheel shape. The phase map reveals that,
next to a mechanical phase singularity close to the core of
the spiral pattern, additional mechanical phase singularities
form at a distance from the central phase singularity in the
horizontal spiral arms. The central mechanical phase
singularity colocalizes with the rotational core or tip of
the electrical (or active contraction) spiral pattern shown in
Fig. 4(a), but the additional mechanical phase singularities
do not colocalize with any phase singularities in the active
contraction field (movies are available in Supplemental
Material [23]). In this example [see Fig. 4(c)], two pairs
of additional mechanical phase singularities form in the
vertical direction on each side of the core. The two
singularities in each pair exhibit opposite topological
charges but do not exhibit vorticity as the central stationary
phase singularity does. Overall, one notices an underlying
pinwheel pattern, as in Figs. 2(b) and 2(c), but the pattern is
topologically discontinuous in the space between each
of the singularity pairs. Furthermore, the amplitude A in
Fig. 4(d) vanishes in the vicinity of the mechanical phase
singularities, independently of whether they are paired
or unpaired with singularities of the contraction field.
However, in the surrounding neighborhood of paired and
unpaired mechanical phase singularities, the spatial dis-
tribution of the amplitude A differs significantly. Near
paired singularities, the amplitude increases rapidly with
distance from the singular point, while the amplitude
vanishes at the center of the singular point in Fig. 4(d).
Near unpaired singularities, the amplitude remains small
over a spatially extended region surrounding the singular
point [black and red regions in Fig. 4(d)]. As we show later,
the property that the amplitude of oscillation grows rapidly
or slowly away from paired or unpaired singularities,
respectively, can be exploited to distinguish between those
two different types of mechanical phase singularities.
To better understand the nature of unpaired mechanical

phase singularities, we examine the strain’s temporal

(a)

(c)

(b)

(d)

(e) (f)

FIG. 4. Strain spiral wave pattern in an anisotropic 2D medium
with fibers aligned along the x axis. (a) Clockwise rotating spiral
wave pattern of active contraction Taðx; yÞ. (b) Strain along the
fibers ϵxx vanishes in the horizontally aligned arms. Red circles and
black stars with a white edge indicate the location of mechanical
phase singularities calculated via the Hilbert transform and as the
intersection of the ϵxx ¼ ϵc contour (thin red dashed lines) and
∂tϵxx ¼ 0 contours (thin blue lines), respectively, where ϵc is the
average of the minimum and maximum values of ϵxx. (c) Phase
map of the strain ϕ½ϵxxðx; yÞ� shows one colocalized mechanical
phase singularity at the center of the rotor pattern in (a) and two
additional pairs in the top and bottom horizontally aligned spiral
arms. (d) The amplitude A of the complex transformed signal
vanishes in the vicinity to all mechanical singularities (black
regions). (e) Time series of ϵxx for points 1 and 2 in (b). (f) Phase
diagram at points 1 and 2 from (e) derived via the Hilbert
transform, where the horizontal axis is the original signal and
the vertical axis is the signal shifted by π=2.
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evolution (measured along ϵxx, here aligned with the fiber
direction) close to and further away from an unpaired
singularity; see Fig. 4(e). One can observe that in the
vicinity of an unpaired mechanical singularity (e.g.,
point 1) the amplitude of ϵxx vanishes over the entire
period, whereas further away at a nonsingular site ϵxx
exhibits large oscillations (e.g., point 2); cf. Fig. 4(b). The
inset in Fig. 4(e) shows how the corresponding trajectories
of these two time series look in a two-dimensional complex
phase space with the real and imaginary parts of the signal
on the x and y axis, respectively: The nonvanishing time
series of the strain with finite amplitudes corresponds to a
circular trajectory, whereas the strain with vanishing ampli-
tude reduces to a point in phase space, which prohibits
defining a phase angle ϕðϵxxÞ. This behavior is rather
unexpected for an unpaired singularity as shown in point 1
in Fig. 4(e). As we discuss next for the simpler case of a
focal excitation, this property is the result of the combined
effects of fiber anisotropy and the nonlocality of elastic
interactions that can cause ϵxx to remain constant in time.
The strain field resulting from a focal excitation wave in

an anisotropic medium is shown in Fig. 5. The contraction

field Taðx; yÞ and the strain field measured along the fiber
axis ϵxxðx; yÞ are shown in Figs. 5(a) and 5(b), respectively.
Note that the thickness of the focal contraction wave is not
uniform due to the differences in conduction speed of the
excitation wave along the horizontal and vertical directions,
respectively, similarly as in Fig. 4. As a result, the wave is
thicker in regions in which it propagates in parallel to the
fiber axis than in regions in which it propagates perpen-
dicularly to that axis. As can be seen in Fig. 5(b), the strain
in the vertically traveling parts of the elliptical wave is
diminished. Importantly, Fig. 5(c) shows that the elliptical
focal contraction wave produces four unpaired mechanical
phase singularities in the tissue. These four phase singu-
larities emerge in pairs and are aligned symmetrically
around the focal center of the wave and travel along a
confined closed loop (movies are available in Supplemental
Material [23]). Lastly, Fig. 5(d) shows that the amplitude A
of the transformed signal vanishes in the neighborhood of
these phase singularities, as is the case with the anisotropic
spiral wave pattern shown in Fig. 4.
To gain further insight into the mechanism of the

formation of unpaired singularities, we pace an anisotropic
tissue with a periodic wave train of electrical plane waves
propagating from bottom to top along the y direction while
the fibers are aligned uniformly along the x axis perpen-
dicularly to the wave. A snapshot of this simulation is
shown in Figs. 6(a) and 6(b). While the active tension is
spatially uniform parallel to the fiber axis in the depolarized
contracting region of tissue [see Fig. 6(a)], the resulting
deformation wave measured by ϵxx is “broken” in the
middle region [see Fig. 6(b)]. This wave break gives rise
to the formation of two mechanical singularities located at
the tips of the ϵxx ¼ ϵc contours (thin red dashed lines)
separating understrained and overstrained regions of
tissue shown in green and red in Fig. 6(b), respectively.
This wave break occurs because the active force in the
central region of tissue is contracting against large regions
of passive surrounding tissue, thereby producing small
strains, while less-constrained regions closer to the stress-
free boundaries of the tissue produce a larger strain. In
contrast, with fixed displacement boundary conditions on
all edges of the tissue (ux ¼ uy ¼ 0), ϵxx ¼ 0 in the whole
tissue is the trivial solution of linear elasticity under the
same plane wave of active tension that does not produce
any strain inhomogeneities.
However, unpaired mechanical singularities form inde-

pendently of the particular mechanical boundary conditions
with more complex wave patterns, such as the spiral and
focal wave patterns. Figures 6(c)–6(f) show how unpaired
mechanical phase singularities emerge with a focal wave
with both stress-free boundary conditions [Fig. 6(d)]
and fixed displacement ux ¼ uy ¼ 0 boundary conditions
[Fig. 6(f)]. With stress-free boundary conditions, the
tissue can contract freely without being restricted by the
boundaries. All simulations in Figs. 2–5 are obtained with

(a) (b)

(c) (d)

FIG. 5. Focal wave in anisotropic medium with fibers aligned
along the x axis. (a) Active contraction field Taðx; yÞ of an
elliptical ring-shaped focal pattern. (b) Strain ϵxx is stronger in the
vertical than the horizontal arms due to fiber anisotropy. Red
circles and blue stars indicate the location of phase singularities
calculated by the Hilbert and contour-intersection method as in
Fig. 4, respectively. (c) The phase map shows mechanical
singularities emerge in the absence of electrical singularities.
(d) The signal amplitude A vanishes close to and around these
singular points (black region).
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stress-free boundary conditions. With fixed displacement
boundary conditions, the boundaries are fixed in space
and accordingly do not give in to contractions occurring
within the tissue. Figures 6(d) and 6(f) show that unpaired
mechanical singularities emerge in both cases even though
the strain fields are significantly different with the two
mechanical boundary conditions. All maps presented in
this study so far are shown in undeformed coordinates. To
illustrate the effect of the boundary conditions on the
deformation, Figs. 6(g) and 6(h) show the corresponding
deformation caused by the focal wave in Fig. 6(c) in
deformed coordinates. With stress-free boundary condi-
tions, the tissue’s deformations are clearly visible, whereas
with fixed boundary conditions the tissue’s outer bounda-
ries appear static while further inside the tissue deforms.
The results show that, independently of the choice of
boundary conditions, four unpaired mechanical singular-
ities are formed by the breakup of the two elongated thin
regions of the elliptical target wave propagating upward
and downward. Breakup occurs because regions of the
elliptical target wave propagating along the fiber axis are
thicker and, hence, exert a larger net contractile force that
overstrains those regions. In contrast, regions propagating
perpendicular to this axis are thinner, thereby exerting a
smaller net contractile force. Those regions are also more
elongated, thereby contracting against a larger region of
passive tissue. Both factors contribute to causing those
thinner elongated regions to be understrained. A similar
mechanism is seen to underlie the formation of unpaired
mechanical singularities in the case of reentrant spiral
waves (see Fig. 4) that, like elliptical target waves, exhibit
both thicker and thinner regions propagating parallel and
perpendicular to the fiber axis.
We further investigate how the number of unpaired

mechanical phase singularities increases with tissue size.
Figure 7 shows the number of mechanical phase singular-
ities per period as a function of ratio L=λs of tissue size and
spiral wavelength for a single spiral wave rotating in a 2D
medium with anisotropic fiber architecture. The results
show an increase in the number of mechanical phase
singularities with system size. For small values of L=λs
(L=λs ¼ 1, 2), the only mechanical phase singularity
appears at the core of the spiral, which is associated with
the colocalized singularity at the tip of the spiral. As
L=λs ¼ 3, the number of singularities jumps to 5, which
accounts for the formation of two additional pairs of
noncolocalized singularities. This case (L=λs ¼ 3) is the
same as the one presented in Fig. 4. As L=λs increases
further, the mechanical state of the medium becomes more
complex, and pairs of mechanical phase singularities are
created and annihilated during each period, thereby causing
the number of unpaired singularities to fluctuate during one
period. However, the average number of phase singularities

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. Mechanism of formation of unpaired mechanical
singularities in anisotropic tissue with fibers aligned along the
x axis. Active tension (a) and strain ϵxx (b) for a plane wave
traveling in the þy direction in a tissue with stress-free boundary
conditions. Active tension (c) and strain ϵxx (d) for a target wave
expanding in a tissue with stress-free boundary conditions. Active
tension (e) and strain ϵxx (f) for a target wave expanding in a
tissue with fixed boundary conditions (ux ¼ uy ¼ 0 on all
boundaries). Red circles and blue stars indicate the location of
phase singularities calculated by the Hilbert and contour-inter-
section method as in Figs. 4 and 5, respectively. (g) and (h) show
the same strain patterns as (d) and (f), respectively, in deformed
coordinates.
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increases roughly linearly with the number of turns of the
spiral wave that increases proportionally to L=λs. This
behavior is expected based on our physical interpretation of
the formation of unpaired singularities based on deforma-
tion wave breaks.
In summary, our 2D simulations demonstrate that

mechanical phase singularities colocalize with the tip of
electrical spiral waves and characterize the center of an
electromechanical rotor. In addition, unpaired mechanical
phase singularities can form with both reentrant and focal
waves, which then characterize the tip location of broken
deformation waves. Wave breakup occurs due to the
creation of overstrained and understrained regions of tissue
that form preferentially along thicker and thinner regions
of waves propagating parallel and perpendicular to the fiber
axis, respectively. Since those waves can emanate from a
focal source of excitation or a spiral wave center, the
formation of an unpaired mechanical singularity does not
necessitate an electrical singularity to be present, thereby
leading to a dissociation of a strict paired organization of
electrical and mechanical phase singularities. In addition,
mechanical boundary conditions can influence the forma-
tion of unpaired mechanical singularities, e.g., by facili-
tating their formation near stress-free surfaces during plane
wave propagation, but unpaired singularities form inde-
pendently of the boundary conditions in the case of
reentrant or focal excitation waves.

B. Three-dimensional dynamics

Phase singular points in 2D correspond to lines of phase
singularity in 3D. Vortex dynamics in three-dimensional

excitable media are frequently characterized using lines of
phase singularity, where the lines or vortex filaments
indicate the rotational core regions of three-dimensional
scroll waves [31]. Figure 8 depicts electromechanical
phase singularities in a three-dimensional bulk tissue
(1.2 × 1.2 × 1.2 cm3) with (a) uniformly horizontally
aligned fibers or linearly transverse fiber architecture and
(b) fibers being rotated by 90° along the z axis, where at the
bottom face of the bulk they are aligned along the x axis
and at the top surface they are aligned along the y axis.
The tissue is deformed by a single electrical scroll wave.
The electrical scroll wave, which is simulated using the
reaction-diffusion model presented in Sec. II B 1, can be
described by a straight electrical vortex filament (black)
being aligned vertically along the short axis in the center
of the bulk in between its upper and lower surfaces. The
electrical vortex filament does not bend or twist, and,
accordingly, the scroll wave remains stable. There are
colocalized mechanical phase singularities (red filaments)
for both cases shown in Figs. 8(a) and 8(b). However, in the
case of no fiber rotation, one extra unpaired mechanical
phase singularity in the form of a filament attached to the
boundary can be observed.
In these simulations, the ratio between the size of the

tissue and the spiral wavelength falls in the left part of the
graph shown in Fig. 7. Therefore, there is only one pair of
colocalized electrical and mechanical phase singularities
describing the scroll wave core, if we ignore the one
mechanical filament attached to the boundary. To study the
effect of tissue size and wavelength on the spatial organi-
zation of mechanical filaments, we carry out a simulation
with the same parameters as in Fig. 8, but in a larger tissue
with size 4.5 × 4.5 × 1.2 cm; see Fig. 9. The filaments

FIG. 7. Number of mechanical phase singularities for a clock-
wise rotating spiral in a heart muscle with anisotropic fiber
architecture (fibers are along the x axis) as a function of tissue
size and tissue size to spiral wavelength ratio L=λs. Different
vertical circles show the different numbers of phase singularities
observed in one period. The intensity of the color in each circle
exhibits the frequency of occurrence of that number of phase
singularities. For instance, for (L=λs ¼ 15) during one period, 15,
17, and 19 phase singularities are observed. The color density of
the circles shows that most of the time there are 17 phase
singularities in the domain. The red squares show the average
number of singularities during one period.

(a) (b)

FIG. 8. Electromechanical phase singularities in the presence of
a single scroll wave in a 3D tissue (1.2 × 1.2 × 1.2 cm). (a) All
fibers are uniformly aligned along the x axis. (b) Fibers ortho-
tropically stacked and rotating by 90°, parallel to the x axis at the
bottom and parallel to the y axis at the top surface, respectively.
Red lines represent lines of mechanical phase singularity or
mechanical filaments, and the black line at the center represents
the electrical filament or scroll wave core. The isosurface is
presenting Ēf ¼ Ēxx ¼ 0, where Ēf is the normalized strain
along the fiber that is used to calculate the phase.
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shown in Fig. 9 for a single scroll wave are obtained with
no fiber rotation as in Fig. 8(a). A colocalized pair of an
electrical and a mechanical filament mark the core region of
the scroll wave at the center of the medium. Additionally,
one can see that there are several unpaired mechanical
phase singularities outside of the core region in analogy to
the 2D anisotropic case shown in Fig. 4.
The excitation, contraction, and strain fields together with

the phase, singularities, and amplitude on the top surface of
the tissue are illustrated in Fig. 10. Figure 10(a) shows the
electrical excitation U (dimensionless normalized units n.u.)
on the top surface of the ventricular tissue slab intersected by
the vortex filament. Because of the orientation of the scroll
wave within the bulk, the near-surface electrical pattern
corresponds to a clockwise rotating spiral wave pattern, and
the tip of the spiral coincides with the intersection point of
the vortex filament with the surface. In addition, the
electrical wave propagates faster along the x axis parallel
to the fibers (white arrow). This leads to a stretched spiral
wave pattern in both electrical excitation U, as shown in
Fig. 10(a), and active contraction Ta, as shown in Fig. 10(b).
To derive the strain field in Fig. 10(c), we compute the
Green-Lagrangian strain tensor E as

E ≔
1

2
ðFTF − IÞ; ð18Þ

where F ¼ ½Fij� ¼ ½δij þ ∂ui=∂xj� is the deformation gra-
dient tensor and I is the identity. Unlike in 2D, the 3D
simulations exhibit large strains. The strain pattern is derived
by computing the strain along the fiber, here denoted as Ef,
which in this case coincides with Exx, similarly as shown in
Fig. 4(b). Note that the strain along the fiber, i.e., Ef, is a
simple transformation of the strain tensor where the x axis
rotates to match the fiber direction. However, because the
wavelength of the spiral is small in comparison to the
medium size, the spiral is curled up more, and the anisotropic
strain pattern can be observed not only in the near field of the
spiral wave core, but for multiple wavelengths. The phase
and amplitude maps presented in Figs. 10(d) and 10(e),
respectively, show the existence of one central paired
electromechanical singularity and a large number of
mechanical phase singularities outside the spiral wave
core that form because of the ratio of the tissue size to
wavelength is sufficiently large in this simulation (similarly
to Fig. 7 in 2D).
The spatial organization of unpaired singularities away

from the central paired electromechanical singularity in
Fig. 10 can be interpreted using the insights from Fig. 6 that
highlight the roles of 2D wave patterns (plane waves or
focal excitations) and mechanical boundary conditions in
the formation of unpaired singularities. The unpaired
mechanical singularities forming far from the spiral core
form preferentially near the stress-free surfaces of the tissue
due to the breakup of nearly plane waves of deformation by
a mechanism directly analogous to Figs. 6(a) and 6(b),
while mechanical singularities closer to the spiral core

(a) (b)

(d) (e)

(c)

FIG. 10. Electromechanical organization of filamentlike phase
singularities on the surface of a 3D slab with a single scroll wave
with small wavelength and fibers in the x direction. (a) Trans-
membrane voltage in dimensionless units. (b) Contraction field
enslaved to voltage. (c) Strain depicted as largest compressive
eigenstrain Exx. (d) Phase map ϕðEÞ from the Hilbert transform
of the normalized strain signal. (e) Amplitude map AðEÞ from
Hilbert transform of the normalized strain signal. Amplitude
vanishes in the neighborhood of phase singular points.

FIG. 9. Electromechanical phase singularities in the presence of
a single scroll wave with short wavelength in a 3D tissue
(4.5 × 4.5 × 1.2 cm; inset figure is the top view) with all fibers
being aligned along the x axis. Red lines represent lines of
mechanical phase singularity or mechanical filaments, and the
black line at the center represents the electrical vortex filament or
scroll wave core. The isosurface is presenting Ēf ¼ Ēxx ¼ 0,
where Ēf is the normalized strain along the fiber that is used to
calculate the phase.
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region form by a mechanism analogous to the one
illustrated in Figs. 6(c) and 6(d) for a focal excitation,
which also pertains to reentrant waves. Furthermore, the
migration of unpaired mechanical singularities closer to
stress-free surfaces with distance from the spiral core in
Fig. 10(d) can be interpreted as a transition between the
near-core formation mechanism, which is insensitive to
mechanical boundary conditions, and the far-core plane-
wave breakup mechanism where stress-free surfaces favor
the formation of unpaired singularities.
Finally, Fig. 11 depicts electromechanical vortex fila-

ment dynamics for the more realistic case that fibers are
organized orthotropically and the fiber direction rotates
along the z axis through the thickness of the ventricular
wall. In Figs. 11(a)–11(f), with no loss of generality and for
simpler visualizations, we show the normalized strain along
the fiber Ēf. This measure is consequently used for further
analysis using the Hilbert transform. At the bottom of the
bulk at z ¼ 0, the fibers are aligned uniformly along the x
axis. At the top, they are aligned along the y axis. This
results in a 90° rotation over the thickness of the bulk of
1.2 cm. Figures 11(a) and 11(b) show the electromechanical
filaments being produced by one clockwise rotating

electrical scroll wave pattern. The comparison of Figs. 11(a)
and 11(b) and Fig. 9 shows that the fiber rotation causes a
more complex structure with bent filaments, but a qualita-
tively similar organization with a central paired electro-
mechanical singularity (black and red) surrounded by
additional unpaired mechanical singularities (red).
Next, Figs. 11(c) and 11(d) show the filament dynamics

in the regime of electrical wave turbulence corresponding
to steeper action potential duration restitution slope
[Re ¼ 1 instead of 0.8; see Eq. (B8)]. In this regime,
scroll wave breakup leads to a multiplication of electrical
filaments. Interestingly, the results in Figs. 11(c) and 11(d)
show that the electrical (black) and mechanical filaments
(red) are not as well colocalized in the scroll wave breakup
regime compared to the single stable scroll wave regime in
Figs. 11(a) and 11(b). However, paired electromechanical
singularities can still be distinguished from unpaired
singularities that are not colocalized with any electrical
filaments. Lastly, we show in Figs. 11(e) and 11(f) the
results obtained with a 3D focal wave after pacing the bulk
at the center of its top surface. The results confirm that
unpaired mechanical singularities can exist without the
presence of electrical singularities as a direct extension of
the 2D results shown in Fig. 5.
To conclude the results section, we present a method to

distinguish between paired electromechanical singularities
and unpaired mechanical singularities, which we base
on our observations of the behavior of the complex
amplitude maps surrounding the mechanical singularities;
see Figs. 4(d) and 10(e). We exploit that the amplitude of
deformation waves is significantly smaller in the vicinity
of unpaired mechanical singularities compared to paired
electromechanical phase singularities. To do so in a
consistent way, we first normalize the amplitude map
between 0 and 1 at each time step. Then

H
AðrÞdl is

calculated around a mechanical phase singular point, where
A is the amplitude and l is a closed path around that point.
This closed path is one grid square, i.e.,I

Ai;jðrÞdl ¼ Ai;j þ Aiþ1;j þ Aiþ1;jþ1 þ Ai;jþ1: ð19Þ

A singular point is then selected as being paired to an
electrical singularity or unpaired depending on whether the
amplitude is larger or smaller than some threshold (e.g.,
0.15). Figure 12 shows how paired and unpaired mechani-
cal phase singularities can be discriminated using this
filtering method. The figure shows the spatiotemporal
organization of electrical and mechanical phase singular-
ities on the top surface of the bulk tissue. Figure 12(a)
depicts the case of a single spiral and linear transverse fiber
alignment or no fiber rotation; cf. Fig. 9. Figure 12(b)
presents the same case but with fiber rotation; cf. Fig. 11(a).
Lastly, Fig. 12(c) depicts the case of multiple scroll waves
due to electrical wave break in the tissue with fiber rotation;
cf. Fig. 11(b). In this figure, the electrical and mechanical

(a) (b)

(c) (d)

(e) (f)

FIG. 11. Organization of electromechanical filaments in the
presence of fiber rotation: (a),(b) Single electrical scroll wave. (c),
(d) Composition of multiple scroll waves due to electrical wave
break. (e),(f) Focal wave pattern after application of a pulse at
the center of the top surface. The isosurface is presenting
Ēf ¼ Ēxx ¼ 0, where Ēf is the normalized strain along the fiber.
Insets show colocalized electromechanical filaments. In the case
that electrical waves remain stable, one can see a clear coloc-
alization between mechanical and electrical filaments. However,
as scroll waves break, a more complex mechanism can be
observed, but many of electrical filaments are still paired with
a mechanical one.
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phase singularities emerge on the surface of the bulk tissue
(sampled over a short time interval approximately 0.4 s)
and are shown as black circles and red crosses, respectively,
and the filtered mechanical phase singularities are shown as
blue circles. One can see that in cases (a) and (b), where
there is a single scroll wave and no electrical wave break,
the filtering method accurately selects the paired mechani-
cal phase singularities. In the wave turbulence regime, the
method is still reasonably effective at eliminating the
unpaired mechanical phase singularities, and the reduced
accuracy can be attributed to the aforementioned weaker
colocalization of paired electrical and mechanical singu-
larities in this regime. In summary, it is possible to
automatically distinguish paired from unpaired mechanical
singularities using only information about the temporal
evolution of the strain in proximity to a singularity.

IV. DISCUSSION

In this study, we show that electromechanical phase
singularities are an integral and universal phenomenon in
elastic excitable media and result from the dynamics and
coupling between cardiac excitation waves, anisotropic
contraction, and tissue strain. Electromechanical phase
singularities are composed of electrical and mechanical
phase singularities, which emerge in the tissue’s electro-
physiology and elasticity, respectively. They describe
similar features of the respective dynamics and have a
distinct relationship to each other while exhibiting separate
characteristics pertaining to the particular physics of
excitation waves and tissue strain, respectively. While
we find that electrical and mechanical phase singularities
can emerge as colocalized pairs, in which case they equally
describe the core of an electrical spiral or scroll wave, we
also find that mechanical phase singularities can further-
more form independently from electrical ones. Our study
provides for the first time a systematic and detailed

description of the behavior of electromechanical phase
singularities in a range of situations, in 2D and 3D media
with and without muscle fiber anisotropy and different
boundary conditions, with simple and more complex
dynamics, such as focal waves, spiral waves, and scroll
wave chaos, and with fully relaxed analytically derived
strain fields versus strain fields obtained in reaction-
diffusion-mechanics simulations. We are particularly inter-
ested in the properties of mechanical phase singularities
and in the questions of (i) whether they follow a similar
organization as electrical ones and (ii) how reliably they
can be used to locate the core region of the electrical spiral
and scroll waves that underlie cardiac fibrillation [9,10,14].
Our study demonstrates that mechanical phase singular-

ities are topological defects, which emerge in the strain
dynamics of contracting cardiac tissue due to both rota-
tional electrical excitation waves and muscle fiber
anisotropy. Because active contraction is exerted along
muscle fibers, the deformation resulting from a particular
excitation wave pattern is highly anisotropic, which man-
ifests as a polarized strain field when measuring tissue
strain. The anisotropy and polarization lead to mechanical
wave breaks, which are characterized by mechanical
singularities. Importantly, mechanical singularities can
also emerge in electrical regimes, which do not exhibit
electrical phase singularities: Focal excitation waves can
produce mechanical phase singularities in the presence
of anisotropy.We should emphasize that in this article we
focus on elucidating the mechanism for the creation of
mechanical singularities using minimal representations of
the electrophysiology and mechanical response. This
allows us to rigorously dissect the problem. There is no
question that our approach neglects the complex hetero-
geneous structure and geometry of the anatomical heart.
However, we believe that our extensive set of simulations
clearly shows that mechanical wave breaks are the origins
of these singularities.
For instance, in the linearly transverse anisotropic case,

an elliptical ring-shaped excitation wave produces two
mechanical waves propagating in opposite directions along
the fiber direction away from the focus, while the strain
vanishes in the perpendicular direction to the fiber direc-
tion; see Figs. 5(b), 6(d), and 6(f). The elliptical excitation
wave and the two resulting mechanical waves are charac-
terized by four mechanical phase singularities, organized in
two pairs surrounding the focus, where each pair describes
one of the mechanical waves, and the phase singularities
indicate the mechanical wave break locations, respectively.
In the generic situations that we study in Figs. 2–5,

electromechanical phase singularities can be divided into
paired or unpaired electrical and mechanical singularities.
However, in more complex situations, their relationship can
be more complicated. Paired electrical and mechanical
singularities are colocalized, exist only in the presence of
spiral and scroll waves, and emerge equally with and

(a) (b) (c)

FIG. 12. Automated separation of paired (blue dots) from
unpaired mechanical singularities (red crosses). Paired mechani-
cal singularities colocalize with electrical singularities (black
dots). The separation is performed by analyzing the temporal
evolution of the strain surrounding a mechanical singularity.
Phase singularities sampled over a short time interval (approx-
imately 0.4 s) on the surface of 3D tissue during dynamics as
shown in Figs. 9–11: (a) single scroll wave with fibers aligned
along the x axis; (b) single scroll wave with fibers rotated by 90°;
(c) scroll wave chaos with wave breakup.
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without anisotropy; cf. Figs. 2 and 4. Paired mechanical
singularities originate from the rotation of a strain field
that is enslaved to the rotation of an electrical excitation
wave, where the pairing occurs close to the tip or core
region of the electrical spiral or scroll wave, which is
typically characterized by an electrical singularity.
Unpaired mechanical and electrical singularities occur in
the presence of anisotropy with both focal and spiral or
scroll waves, because, in anisotropic tissues, focal waves
inherently produce mechanical singularities, and spiral or
scroll waves produce additional unpaired mechanical
singularities outside of their core regions, as shown in
Figs. 4(b), 4(c), 8, and 9. However, during three-
dimensional chaotic scroll wave dynamics, we observe
neither purely paired nor unpaired but instead partially
paired electromechanical filaments close to the scroll
wave’s core. The degree of coalignment of the partially
paired filaments varies in space and over time, respectively;
see Figs. 11(c) and 11(d). At this point, we can only
speculate about the origins of this phenomenon; it could be
that scroll wave drift or the complex fiber rotation cause the
partial dissociation, or it could be that the local strain field
is distorted by neighboring waves and their contractions,
and the phenomenon needs further investigation.
From an electrophysiological perspective, mechanical

phase singularities may carelessly be disregarded as an
ambiguous, even unreliable concept to describe electrical
rotors, because unpaired mechanical singularities do not
colocalize with electrical singularities and could accord-
ingly be interpreted as false positives. Furthermore, paired
mechanical singularities are merely proxies for the posi-
tions of electrical singularities. However, while we dem-
onstrate that it is possible to automatically distinguish
paired from unpaired mechanical singularities (see Fig. 12),
therefore demonstrating that the localization of electrical
singularities via paired mechanical singularities would be
practically feasible, our research also shows that mechani-
cal singularities are much more than a mere description of
electrical phenomena. They constitute a more generalized
way to characterize electromechanical tissue dynamics,
because they simultaneously reflect the topology of exci-
tation wave patterns, strain dynamics, and interactions of
the excitation with the underlying mechanical substrate.
The spatiotemporal organization of tissue deformation is
far more complex than the spatiotemporal organization
of electrical waves, and mechanical phase singularities
reflect this more complex organization. This is exemplified
by spiral and focal excitation waves, each producing a very
characteristic strain and mechanical singularity pattern.
Mechanical singularities encode both the principal mor-
phology of the excitation wave pattern as well as the
underlying organization of muscle fibers and the deforma-
tion state of the muscle. For instance, single high-frequency
focal sources produce a complex pattern of unpaired
mechanical filaments [see Figs. 11(e) and 11(f)], and the

filaments are a signature of this particular activation pattern
together with a specific underlying muscle fiber organization
and not just spurious topological defects. To further avoid the
impression that mechanical singularities are poor proxies for
electrical singularities, we would like to emphasize that
unpaired mechanical singularities are numerous only in a
regime exemplified in Figs. 9 and 10 where the tissue size far
exceeds the spiral wavelength, which is uncommon during
ventricular fibrillation. Figures 4 and 8 are more represen-
tative of an episode of polymorphic ventricular tachycardia
or fibrillation with fewer unpaired mechanical singularities
when the wavelength of reentrant waves is comparable to
the tissue size. Therefore, we expect the number of unpaired
singularities to be typically comparable to the number of
paired singularities during high-frequency cardiac arrhyth-
mias. Unpaired singularities may even be completely absent
for slower forms of anatomical tachycardias with large
wavelengths.
One limitation of the present study is that it rests on the

assumption that the calcium transient, and, hence, mechani-
cal contraction, is in phase with electrical excitation. This
assumption remains valid as long as calcium release from
intracellular calcium stores is triggered by calcium entry
into the cell via L-type calcium channels following mem-
brane depolarization. The fact that spiral waves can be
imaged in heart tissue from an optical mapping of the
calcium signal [35] provides direct evidence that this
calcium-induced-calcium-release (CICR) mechanism,
which underlies normal physiological function [15], can
remain operative during reentrant cardiac arrhythmias.
However, in other settings, the calcium transient may be
suppressed if the activation interval is too short for intra-
cellular stores to refill with calcium during the action
potential or may no longer be in phase with the voltage
signal, e.g., if the calcium transient occurs by spontaneous
release from intracellular stores instead of CICR following
membrane depolarization. In those settings, even paired
mechanical singularities may cease to exist. Another
limitation of the present study is that it neglects mecha-
noelectrical feedback [16]. This feedback, which is com-
plex and still not completely understood, originates from
the fact that stretch can modify passive constitutive proper-
ties such as membrane capacitance and electrical coupling
and activate mechanosensitive ion channels. This feedback
is shown to influence properties of excitation waves, such
as action potential duration restitution and conduction
velocity, and to even induce spiral drift [18]. However,
even in the presence of mechanoelectrical feedback, the
wave pattern of active force still tracks closely the one of
electrical excitation as long as CICR remains operative;
e.g., a drifting spiral wave of excitation induces a drifting
pattern of active force. The resulting field of tissue
deformation, however, still exhibits a different spatiotem-
poral organization including wave breaks due to the non-
locality of elastic interactions. Therefore, we do not expect
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that mechanoelectrical feedback would qualitatively
change our main finding of the existence of both paired
and unpaired mechanical singularities.
In the future, our findings could play an important role in

the interpretation of ultrasound imaging data of the fibril-
lating heart. Mechanical phase singularities could be used
to characterize the three-dimensional tissue dynamics
during ventricular or atrial fibrillation and could provide
estimates of the anchoring sites of electrical spiral or scroll
waves deep within the tissue. To further assess the
feasibility of a mechanics-based arrhythmia imaging tech-
nique, we aim to study similar electromechanical phenom-
ena beyond the generic setting in physiologically detailed
models, explore potential limitations, and determine the
effect of heterogeneity and tissue anatomy, as mechanics
will be substantially altered in fibrotic or scar tissue.
Lastly, we want to better understand the dissociated
electromechanical filament dynamics encountered during
scroll wave chaos, which is likely caused by the long-range
character of elastic forces. This requires addressing the
fundamental question of whether the inverse mapping
between the observed deformation wave pattern and the
excitation-contraction wave pattern causing the deforma-
tion is unique. In recent work, it is shown in silico that it is
possible to compute even complicated electrical excitation
wave patterns, such as chaotic scroll waves, from tissue
deformation [33,36], suggesting that it could also be

possible to find a unique mapping between electrical and
mechanical filaments.
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APPENDIX A: ANALYTICAL EXPRESSIONS
FOR SPIRAL AND TARGET WAVES

The active contraction field, Ta for an n-turn
Archimedean spiral, rotating at angular frequency ω for
isotropic conduction is given by

Taðx; y; tÞ ¼
Xn
i¼0

exp

�
−

1

σ2s

��
x −

½θðx; y; tÞ þ 2iπ�λs cos½θðx; y; tÞ þ ωt�
2π

�
2

þ
�
y −

½θðx; y; tÞ þ 2iπ�λs sin½θðx; y; tÞ þ ωt�
2π

�
2
��

; ðA1Þ

where

θðx; y; tÞ ¼ arctan

�
−x sinωtþ y cosωt
x cosωtþ y sinωt

�
: ðA2Þ

λs ¼ ð2πcÞ=ω is the spiral wavelength, and c is the
conduction velocity. σs represents the thickness of the
spiral arms.
For the pacing case, the active contraction field is shaped

as a target wave pattern generated by a sequence of n
stimuli delivered at ðx ¼ 0; y ¼ 0Þ with period T. The
contraction field of the isotropic pacing case is

Taðx; y; tÞ ¼
Xn−1
i¼0

exp

�
−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

− riðtÞ
σs

�2�
; ðA3Þ

where σs is the wave thickness as in the spiral wave
case, riðtÞ ¼ cðt − iTÞΘðt − iTÞ is the radius of the

ith concentric wave, c is the conduction velocity, and
ΘðxÞ is the Heaviside step function defined by ΘðxÞ ¼ 1
for x ≥ 0 and ΘðxÞ ¼ 0 for x < 0.
The anisotropic case where fibers are aligned along the x

axis can simply be achieved by rescaling the x coordinate
(x → x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dk=D⊥

p
) in Eqs. (A1) and (A3). In this rescaling,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dk=D⊥
p

is the ratio of the diffusivity parallel and

perpendicular to the fiber direction, chosen equal to
ffiffiffi
5

p
in our simulations.

APPENDIX B: REACTION-DIFFUSION MODEL

The main reaction-diffusion equations to model the
electric field have the form

∂tU ¼ ∇ · ðD∇UÞ þ τ−1U fðU; vÞ ½Eq: ð5Þ revisited�;
∂tv ¼ τ−1v gðU; vÞ ½Eq: ð6Þ revisited�;

∂tTa ¼ χðUÞðKtU − TaÞ ½Eq: ð7Þ revisited�:
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The diffusivity tensor D is defined as

D ¼

2
64
D11 D12 0

D21 D22 0

0 0 D⊥2

3
75 ðB1Þ

with the matrix elements

D11 ¼ Dk cos2 θðzÞ þD⊥1 sin2 θðzÞ; ðB2Þ

D22 ¼ Dk sin2 θðzÞ þD⊥1 cos2 θðzÞ; ðB3Þ

D12 ¼ D21 ¼ ðDk −D⊥1Þ cos θðzÞ sin θðzÞ; ðB4Þ

where Dk is the voltage diffusivity parallel to the fiber axis,
D⊥1 andD⊥2 are the diffusivity perpendicular to this axis in
each plane, and θðzÞ is the fiber angle with respect to the y
axis in the thickness of the tissue. The other functions in
Eqs. (5) and (6) are defined as

fðU; vÞ ¼ −U þ fU� −DðvÞghðUÞ; ðB5Þ

gðU; vÞ ¼ RðvÞΘðU −UvÞ − f1 − ΘðU −UvÞgv; ðB6Þ

hðUÞ ¼ f1 − tanhðU −UhÞg
U2

2
; ðB7Þ

where ΘðxÞ is the standard Heaviside step function. Note
that the rest state of the membrane corresponds to U ¼ 0
and v ¼ 0. The functionsRðvÞ andDðvÞ are the restitution
and dispersion functions, respectively, and are defined as

RðvÞ ¼ 1 − ½1 − e−Re�v
1 − e−Re

; ðB8Þ

DðvÞ ¼ vM; ðB9Þ

where Re is the parameter that controls the restitution
properties. Increasing Re makes the slope of the action
potential duration restitution curve steeper at the short
diastolic interval, thereby promoting spiral or scroll wave
breakup. The parameterM controls the conduction velocity
restitution curve, and increasingM flattens this curve. In all
of the results that are presented in this article except one
case, Re ¼ 0.8 andM ¼ 10, which corresponds to a regime
where a single spiral or scroll wave propagates and does
not break up. The only exception is the investigation of a
3D parallelepipedal slab of tissue with rotation anisotropy
where Re ¼ 1.0 produces scroll wave breakups. More
details about this model and the effect of each parameter
can be found in Ref. [25].
In Eq. (7), χðUÞ is a step function that sets the timescale

of the contraction period with respect to U. It is set as
χðUÞ ¼ 5 if U ≥ Uh; otherwise, χðUÞ ¼ 20. The set of
parameters that are used in this article are listed in Table I.

A characteristic pulse and contraction structure based on
these parameters are shown in Fig. 13. In this figure, a 1D
discretization of Eqs. (5)–(7) is solved using the forward
Euler method. One can see that, during a single pulse, the
voltage surges immediately to its maximum. However, the
contracting force starts to develop slower than the voltage,
and it reaches its maximum when the voltage almost starts
to decrease. Even though this model is phenomenological,
it reproduces qualitatively the delayed peak contractile
force following depolarization.

APPENDIX C: ANALYSIS OF 1D CABLE

In a human heart with density ρ ≈ 1000 kgm−3 and
Young’s modulus E ≈ 125 MPa [18], the elastic wave
speed can be crudely estimated to be C ≈ 353 ms−1.
Furthermore, the period of excitation T spans the range
of 0.1–1.0 s with the lower and upper bounds correspond-
ing to an electrical rotor and a normal heartbeat, respec-
tively. It follows that the distance CT traveled by elastic
waves during a contraction period is much larger than the
characteristic size L of the heart of a few centimeters. This
scale separation (L ≪ CT) makes it possible to rescale
the equations for the computational efficiency of the time
integration algorithm.

1. Spatial decay rate of elastic waves

To choose our model parameters to be in a regime where
L ≪ CT, we compute the spatial decay rate of elastic
waves starting from the 1D elastodynamics equation with
Kelvin-Voigt damping and no external force:

FIG. 13. Characteristic electrical impulse and contraction
shapes exhibited by the electrophysiology model described in
Sec. II B 1 and Appendix B. In this graph, a 1D representation of
the equations is solved using the forward Euler method. In this
simulation, D ¼ 1.1 cm2 s−1, Re ¼ 0.8, dx ¼ 3 × 10−2 cm, and
dt ¼ 2.0 × 10−4 s. Other parameters can be found in Table I. The
left vertical axis corresponds to the variables U or v, and the right
vertical axis represents the dimensionless magnitude of the active
contracting strain Ta. The horizontal axis is time in the units of
milliseconds.
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ρ∂2
t u ¼ E∂2

xuþ η∂2
x _u; ðC1Þ

or, equivalently,

∂2
t u ¼ E

ρ
∂2
xuþ η

ρ
∂2
x _u ¼ C2∂2

xuþDe∂2
x _u: ðC2Þ

Before computing the decay rate, it is useful to first derive
expressions for the storage and loss moduli in a setting
where a one-dimensional cable is held fixed at one end
(x ¼ 0) and periodically displaced at the other end (x ¼ L)
corresponding to the boundary condition

uð0Þ ¼ 0; uðLÞ ¼ A cosðωtÞ; ðC3Þ

where E and η are the Young’s modulus and damping of
the system, respectively, C ¼ ffiffiffiffiffiffiffiffi

E=ρ
p

is the characteristic
wave speed of the system, De ¼ η=ρ is the elastic diffusion
constant of the system, and L is the length of the cable.
With L ≪ CT (T ¼ 2π=ω), Eq. (C1) is reduced to

E∂2
xuþ η∂2

x _u ¼ 0: ðC4Þ

One solution that satisfies this equation has the form of

uðxÞ ¼ Ax
L

cosðωtÞ; ðC5Þ

which, together with ρ∂2
t u ¼ ∂xσ, yields

σ ¼ E∂xuþ η∂x _u ¼ EA
L

fcosðωtÞ − τRω sinðωtÞg; ðC6Þ

where τR ¼ η=E is the retardation time. Further using the
trigonometry identity cosðωtþ δÞ ¼ cosðωtÞ − δ sinðωtÞ
in the limit of small δ, we have

σ ¼ EA
L

cosðωtþ δÞ ¼ σ0 cosðωtþ δÞ; ðC7Þ

where δ ¼ ηω=E and σ0 ¼ EA=L. Using Eq. (C5), the
strain in the cable is

ϵ ¼ ∂xu ¼ A
L
cosðωtÞ ¼ ϵ0 cosðωtÞ; ðC8Þ

where ϵ0 ¼ A=L. In Eq. (C7), δ is the phase lag between
stress and strain. Using Eqs. (C7) and (C8), the storage and
loss moduli are, respectively,

Es ¼
σ0
ϵ0

cosðδÞ; ðC9Þ

El ¼
σ0
ϵ0

sinðδÞ: ðC10Þ

Next, to calculate the spatial decay rate of elastic waves,
we substitute a traveling wave solution of the form

u ≈ eikxþiωt ðC11Þ

into the full elastodynamics equation including inertia
[Eq. (C1)], which yields

−ρω2 ¼ −Ek2 − iωηk2; ðC12Þ

or

k2 ¼ ρω2

Eþ iωη
→ k ¼ ω

C

�
1 −

1

2

iωη
E

þ � � �
�

¼ kR þ ikI;

ðC13Þ

where the magnitude of the imaginary part of k,

jkIj ¼
ω2η

2EC
; ðC14Þ

determines the decay rate

λd ¼
1

jkIj
¼ 2EC

ω2η
¼ CT

πδ
: ðC15Þ

2. Choice of model parameters

In our simulations, we set C ¼ 5 ms−1, and the size of
the tissue is 4.5 × 4.5 × 1.2 cm3. Therefore, in the limits of
1 and 0.1 s periods, we have

T ¼ 1 s→ L¼ 4.5 cm≪CT ¼ 500
cm
s
×1 s¼ 500 cm;

T ¼ 0.1 s→L¼ 4.5 cm≪CT ¼ 500
cm
s
× 0.1 s¼ 50 cm:

It is obvious that the assumption of L ≪ CT is valid for
both cases. With ρ ¼ 1000 kgm−3, the Young’s modulus
of the tissue is E ¼ C2 × ρ ¼ 25 × 103 Nm−2.
Now, we need to confirm that, with our assumptions, the

size of the tissue is much less than the decay rate of
the elastic waves. In our simulations, the diffusivity of the
tissue isD ¼ 1.1 × 10−4 m2 s−1. If we setDe in Eq. (C2) to
1.1 × 10−3 m2 s−1, i.e., De=D ¼ 10, and further use the
relations De ¼ η=ρ, δ ¼ ηω=E, and ω ¼ 2π=T, we obtain

δ ¼ Deω

C2
¼ 2.76 × 10−4

T
: ðC16Þ

Note that in Eq. (C16) 2.76 × 10−4 has the unit of seconds.
Substituting the excitation period over the range encom-
passing a normal heart rhythm and fibrillation, we obtain
the estimates
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T ¼ 1 s → L ¼ 4.5 cm ≪
CT
πδ

≈ 2.89 × 106 cm;

T ¼ 0.1 s → L ¼ 4.5 cm ≪
CT
πδ

≈ 2.89 × 104 cm:

Those estimates are consistent with our assumption that the
distance CT traveled by elastic waves during a contraction
period is much larger than the characteristic size L of the
heart of a few centimeters.

3. Adimensionalization

In this section, we adimensionalize Eqs. (C2) and (13) of
the MSM using a characteristic length L0 ¼ a, where a is
the lattice size, a characteristic time, τel ¼ L0=C, and ρ.
Substituting these characteristic values into Eq. (C2) and
simplifying, one has

∂2
t̄ ū ¼ ∂2

x̄ūþ De

Ca
∂2
x̄
_̄u: ðC17Þ

In this fashion, the dimensionless characteristic wave speed
of the system is unity, and the dimensionless damping of
the system is De=ðCaÞ. The corresponding discrete elas-
todynamics equation for the 1D MSM is

F ¼ m∂2
t uþ c∂tuþ ku; ðC18Þ

where F is the sum of active and volumetric forces applied
to the mass. Let us adimensionalize Eq. (C18) [the same
adimensionalization holds in 3D for Eq. (13)] by the
characteristic length of the lattice size a, E the Young’s
modulus of the tissue, τel the characteristic time of the
system, and ρ the density of the material, yielding

F̄ ¼ ρa2

Eτ2el
m̄∂2

t ūþ ρa2

Eτ2el
c̄∂tūþ ρa2

Eτ2el
k̄ ū : ðC19Þ

Further substituting τel ¼ L0=C into ðρa2Þ=ðEτ2elÞ reduces
Eq. (C19) to

F̄ ¼ m̄∂2
t ūþ c̄∂tūþ k̄ ū : ðC20Þ

For the electrophysiology model, it is more convenient to
adimensionalize time in Eq. (C1) with τ ¼ a2=D instead
of τel where D is the diffusion coefficient of membrane
voltage in the electrophysiology model. In this case, the
dimensionless elastic wave speed is τ=τel, and the dimen-
sionless damping constant is De=D. The rescaled con-
tinuum elastodynamics equation becomes

∂2
t̄ ū ¼

�
τ

τel

�
2∂2

x̄ūþDe

D
∂2
x̄
_̄u: ðC21Þ

At the discrete level of the MSM, Eq. (C19) becomes

�
τ

τel

�
2

F̄ ¼ m̄∂2
t ūþ c̄∂tūþ

�
τ

τel

�
2

k̄ ū : ðC22Þ

This change in normalizing time becomes important in
setting the proper time step to carry out the numerical
integration. In all the 3D simulations in this article, we set
C ¼ 5 ms−1, dx ¼ 3 × 10−4 m, D ¼ 1.1 × 10−4 m2 s−1,
and De ¼ 11 × 10−4 m2 s−1. Those choices yield the time
constants and adimensionalized elastic wave speed C̄:

τ ¼ dx2

D
¼ ð3 × 10−4Þ2

1.1 × 10−4
¼ 8.18 × 10−4 s;

τel ¼
dx2

De
¼ 3 × 10−4

5
¼ 6 × 10−5 s;

C̄ ¼ τ

τel
¼ 8.181819 × 10−4

6 × 10−5
¼ 13.6:

APPENDIX D: MECHANICAL PROPERTIES
OF THE MSM

To characterize the mechanical properties of the mass-
spring model, such as stress-strain relation or storage and
loss modulus, we conduct a series of numerical studies. To
approximate one-dimensional settings, we model a long bar
on a cubic lattice where all the simulation parameters are
presented in Table II. We use ρ, E, and a to adimensionalize
the equation of motion utilizing equations presented in
part 3 in Appendix C.
As shown in Fig. 14(a), a pair of tensile displacements

along the x axis is applied on both ends of the bar with
traction-free boundary conditions on the top and the bottom
surfaces. To calculate the Young’s modulus and Poisson
ratio, for a given imposed strain, we obtain the quasistatic
configuration by letting velocities and accelerations of all
masses vanish. To speed the simulations, we set the
adimensionalized damping constant De=ðCaÞ ¼ 100,
where De ¼ η=ρ is the elastic diffusivity and η is the

TABLE II. Parameters for MSM model used in Appendix D.
n.u. stands for no unit.

E 125 × 106 Pa
η 353553 Nsm−2
ρ 1000 kgm−3
C 353.553 ms−1
a 0.01 m
τel 2.828 × 10−5 s
k 5 × 105 Nm−1
c 1414.212 Nsm−1
dt 0.01128 μs
nx 60 n.u.
ny 6 n.u.
nz 6 n.u.
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damping ratio. Note that the small time step is because of
the large damping we use for the simulations.
First, we investigate the effect of the volume conserva-

tion penalty pressure on the elastic properties of the MSM.
The analytic equations for these relations for infinitesimal
strains are presented in Eqs. (11) and (12). We study these
properties of the MSM for strains ϵxx ¼ ux=L ¼ 0.001,
0.15. The former represents the infinitesimal strain elas-
ticity limit, and the latter can be considered as the large
deformation limit. The 0.15 strain limit is chosen because,
during a traveling electrical wave, cardiac cells experience
about 15% compression strain along their fibers [18]. In
these simulations, stresses are calculated by adding all the
reaction forces at one end and dividing it by the engineering
cross section (5a × 5a). Using the calculated stress and
applied strain, the Young’s modulus of the MSM is
calculated as E ¼ σxx=ϵxx. In addition, we calculate the
Poisson’s ratio by finding the ratio between the transverse
strain at the middle of the bar and the applied longitudinal
strain, i.e., ν ¼ −ϵyy=ϵxx. Results as a function of the
volumetric pressure are presented in Fig. 15.
In the small strain limit ϵ ¼ 0.1%, the simulation results

follow the analytical equations (11) and (12) perfectly.
However, for large strain cases, due to geometric non-
linearities, the MSM exhibits a hyperelastic behavior with
higher Young’s modulus and lower Poisson’s ratio. In our
simulations for the heart tissue, we assume p̄ ¼ p=E ¼ 3
that yields the Poisson’s ratio range between 0.41 and 0.45
for the strain range between 0.1% and 15%.
To study the stress-strain relation of the MSM, we

incrementally increase the applied displacement (strain)
while volumetric penalty pressure is kept constant at a
given values 0 ≤ p̄ ≤ 3. The results, depicted in Fig. 16,
clearly show that the presented MSM has a hyperelastic
response, where increasing the volumetric penalty pressure
increases the nonlinearity of the model.

Finally, in the small deformation limit we study the
viscoelastic properties of the MSM. We apply a sinusoidal
displacement (strain) with 1 Hz frequency at x ¼ L
while the degrees of freedom at x ¼ 0 are fixed. We then
calculate the stresses from the reaction forces at x ¼ L [see
Fig. 14(b)]. We define the mechanical transfer function (the
complex modulus of the system) as Ẽ ¼ σ̃xx=ϵ̃xx, where σ̃xx
and ϵ̃xx are Fourier transformed axial stress and strain,
respectively. We then define the storage modulus as the real

FIG. 14. A long bar with aspect ratio 59=5 is used to study the
mechanical properties of the MSM. (a) Two equal and opposite
displacements along the bar’s long axis are applied to the ends of
the bar. This loading is used to find the relation of the Young’s
modulus and Poisson ratio with the penalty volumetric pressure
and to find the stress-strain relation of the MSM. In this loading
case, no boundary condition is introduced, because at all times
the bar is in force and moment equilibrium. (b) A periodic
displacement is applied to one end of the bar while the other end
is kept fixed. This loading is used to investigate the storage and
loss modulus of the MSM.

FIG. 15. (Top) Young’s modulus and (bottom) Poisson’s ratio
of the MSM at small strain ϵ ¼ 0.1% and large strain ϵ ¼ 15%

as a function of dimensionless volumetric pressure p̄ ¼ p=E. Ēv

is the dimensionless Young’s modulus which is equal to Ēv ¼
Ev=E. Ev is from Eq. (11), and νv is from Eq. (12).

FIG. 16. Stress-strain curve of the MSM model. p̄ represents
the dimensionless volumetric pressure. Including the volumetric
pressure increases the hyperelasticity.

SPATIOTEMPORAL ORGANIZATION OF ELECTROMECHANICAL … PHYS. REV. X 12, 021052 (2022)

021052-21



part Es ¼ ReðẼÞ and the loss modulus as the imaginary
part El ¼ ImðẼÞ of the complex modulus. In a viscoelastic
material, the ratio between the loss and storage modulus is a
measure of damping in the material. This ratio as a function
of dimensionless elastic diffusion is shown in Fig. 17. The
elastic diffusion can be defined as the damping coefficient
divided by the density of the material (see Appendix C,
part 3). As expected, with zero damping there is no loss
modulus, and the ratio between loss and storage modulus
change linearly with the damping of the system. The effect
of volumetric penalty pressure is not significant. Details are
discussed in Appendix C.
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