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Neutral-atom arrays have recently emerged as a promising platform for quantum information processing.
One important remaining roadblock for the large-scale application of these systems is the ability to perform
error-corrected quantum operations. To entangle the qubits in these systems, atoms are typically excited to
Rydberg states, which could decay or give rise to various correlated errors that cannot be addressed directly
through traditional methods of fault-tolerant quantum computation. In this work, we provide the first
complete characterization of these sources of error in a neutral-atom quantum computer and propose
hardware-efficient, fault-tolerant quantum computation schemes that mitigate them. Notably, we develop a
novel and distinctly efficient method to address the most important errors associated with the decay of
atomic qubits to states outside of the computational subspace. These advances allow us to significantly
reduce the resource cost for fault-tolerant quantum computation compared to existing, general-purpose
schemes. Our protocols can be implemented in the near term using state-of-the-art neutral-atom platforms
with qubits encoded in both alkali and alkaline-earth atoms.
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I. INTRODUCTION

Neutral-atom systems have recently emerged as a
promising platform for quantum information processing.
While the exceptional coherence times of their ground
states enable long-lived quantum memories, fast, high-
fidelity quantum operations can be achieved by individu-
ally addressing atoms with laser pulses and coupling them
to highly excited Rydberg states [1–3]. Furthermore, large
numbers of individual neutral atoms can be deterministi-
cally arranged with arbitrary geometry in two- and three-
dimensional systems [4–7]. Recent experiments have
demonstrated quantum manipulation in large arrays of
atoms for applications ranging from quantum computing
to quantum simulations and quantum metrology [8–18].
Several latest advances allowing for the dynamic recon-
figuration of atoms have even led to realization of logical
qubits encoded in color, surface, or toric codes, which is a
first step to performing quantum error correction (QEC) on
neutral-atom platforms [18].

While current experiments are already demonstrating
a remarkable level of quantum control, experimental
imperfections such as Rydberg state decay will eventually
limit the depth of accessible quantum operations. To scale
up the computation size, it is therefore essential to consider
QEC protocols [19]. In particular, such protocols should be
fault tolerant and protect against the key sources of errors
occurring within any of the computation, error detection,
and encoding and decoding stages. Multiple fault-tolerant
protocols have been proposed for generic quantum plat-
forms [20–28], but they do not address certain errors
present in Rydberg-atom setups. Indeed, Rydberg-atom
QEC seems to face a daunting challenge at first glance:
Rydberg states could decay into multiple other states,
which not only results in leakage errors out of the
computational space, but could also give rise to high-
weight correlated errors from ensuing undesired blockade
effects. Motivated by these considerations, we investigate
the effects of these intrinsic errors. Remarkably, by utilizing
the unique capabilities of Rydberg systems and the struc-
ture of the error model, we can design hardware-efficient,
fault-tolerant quantum computation (FTQC) schemes that
address these errors despite the aforementioned challenges
(Fig. 1). This tailored FTQC approach can even be much
more resource efficient than generic proposals [29,30]
(Tables I and II), which often require a larger number of
qubits and quantum operations with a smaller threshold
error than what is achievable in near-term experiments
to perform non-Clifford logical operations, either directly
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[25,31] or by using state distillation [20,32]. The high
overhead associated with such protocols is why experi-
mental demonstrations of QEC have thus far been limited
to only one or two logical qubits [33–37].
In this work, we first provide a detailed understanding,

from the QEC perspective, of the errors arising from the
finite lifetime of the Rydberg state or from imperfections in
Rydberg laser pulses. We then show that nine atoms—
seven data qubits and two ancilla qubits—are sufficient to

FIG. 1. Architecture for FTQC with Rydberg atoms. (a) Geometrical layout of atoms for FTQC using the seven-qubit encoding. Data
(D, blue) and ancilla (A, pink) atoms are placed on the vertices of a triangular lattice, with seven data atoms comprising a logical qubit
(blue dotted hexagons). The dotted gray line indicates the Rydberg interaction range required. (b) Circuit illustrating our procedure to
measure a stabilizer operator, X1X2X3X4, for the seven-qubit code supported on the four data atoms highlighted in (a). Optical pumping
(light blue, OP) is performed following every controlled-phase gate (black) to correct for leakage into other ground states. Ancilla qubit
A2 (darker pink) measures the stabilizer eigenvalue, while ancilla qubit A1 (lighter pink) is used to detect and correct for Rydberg
leakage errors (red). In this way, all gate errors are converted to Pauli-Z-type errors (purple) and do not spread to other qubits. (c) Level
diagram showing an example encoding of a qubit in the hyperfine clock states of 87Rb. The dominant intrinsic errors for this encoding
arise from blackbody radiation (BBR, red), radiative decay (RD, light blue), and intermediate state scattering (gray). Their effects can be
determined via dipole selection rules (purple), and the relevant leakage errors can be corrected by making use of the Rydberg blockade
effect or optical pumping. (d) Geometrical layout for quantum computation with leading-order fault tolerance using the three-atom
encoding. Data and ancilla atoms are placed on the vertices of a triangular lattice, with three data atoms comprising a logical qubit (blue
dotted triangles). In this case, two Rydberg states with different blockade radii, RB;1 and RB;2 (dark and light grey, respectively), are
required. (e) Our circuit for measuring a stabilizer operator, X1X2, of the repetition code supported on the two data atoms highlighted in
(d). By combining a novel entangling pulse sequence with Rydberg leakage correction and optical pumping, we implement a bias-
preserving CNOT gate (see Fig. 7), allowing us to perform QEC without introducing X or Y errors at any point in the computation.

TABLE I. Comparison of resource costs for fault-tolerant
measurement of all stabilizers to correct Pauli errors to first
order. Numbers in parentheses indicate the maximum number of
operations required in the unlikely scenario where an error is
detected. Details on how to obtain the gate counts for the Ryd-7
and Ryd-3 protocols can be found in the Appendix H.

Two-qubit
gates

Three-qubit
gates Ancillas

Seven-qubit flagged [24] 36 (48) 0 2
15-qubit flagged [24] 80 (112) 0 2
Ryd-7 24 (36) 0 2
Ryd-3 8 (16) 4 (8) 4

TABLE II. Comparison of resource costs for the highest-cost
fault-tolerant logical operation. CCZ denotes the three-qubit
controlled-controlled-phase gate, while H denotes the single-
qubit Hadamard gate. Numbers in parentheses indicate the
maximum number of operations required in the unlikely scenario
where an error is detected. For the Rydberg protocols, the gate
counts presented assume a blockade radius of 3d, where d is the
nearest-neighbor lattice spacing. Derivations of the gate counts
for the Ryd-7 and Ryd-3 protocols can be found in Appendix H,
while details on how to obtain the blockade radius requirement
can be found in Appendix I.

Two-qubit
gates

Three-qubit
gates Ancillas

Yoder, Takagi, and
Chuang [31] (CCZ)

162 21 72

Chao and Reichardt [25]
(CCZ)

1352 (1416) 84 4

Ryd-7 (CCZ) 0 (78) 27 (29) 2
Ryd-3 (CCZ) 0 (18) 27 (27) 4
Ryd-3 (H) 20 (28) 53 (57) 10
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encode each logical qubit fault-tolerantly based on the
seven-qubit Steane code [38]; we demonstrate how a
universal set of fault-tolerant quantum operations can be
performed. For atomic species with sufficiently large
nuclear spin and high-fidelity ground-state operations,
we show that quantum computation with leading-order
fault tolerance can be achieved even using a simple
three-atom repetition code [39]. We find that both the
seven-atom and three-atom codes can be implemented
on scalable geometries with atoms placed in a triangular
lattice configuration [Figs. 1(a) and 1(d)], allowing for their
demonstration and study in near-term experiments.
Our work provides an important advance over prior

methods by introducing a novel and distinctly efficient
approach to address the leakage of qubits out of the
computational subspace. For traditional QEC proposals,
such leakage is one of the most difficult and costly types
of errors to detect and address, making it unfavorable to
encode qubits in large multilevel systems such as neutral
atoms. Our method to address these leakage errors makes
use of techniques based on optical pumping, such that the
multilevel structure of each atom can be utilized as part of the
redundancy required for QEC. While we focus on neutral-
atom-based quantum information processors, these tech-
niques are adaptable to many other hardware platforms—for
example, they could also greatly facilitate the correction of
leakage-type errors in superconducting qubits or trapped
ions. For the Rydberg-atom systems we study, we design a
method that even converts all leading-order errors to Pauli-
Z-type errors [Fig. 1(c)], which then allows us to develop
particularly efficient FTQC protocols.
The manuscript is organized as follows: We begin in

Sec. II by outlining the key insights and main results of this
work. A detailed analysis of the error channels in the
Rydberg system is presented in Sec. III. Under this realistic
error model, we design FTQC schemes based on the seven-
qubit Steane code in Sec. IV. Furthermore, by utilizing
atomic species with high nuclear spin, we develop an
alternative, leading-order fault-tolerant protocol in Sec. V
based on a simple repetition code. We then show in Sec. VI
how the key ingredients of our proposals can be imple-
mented in near-term experiments. Finally, we present
conclusions and outlook in Sec. VII.

II. OVERVIEW OF MAIN RESULTS

We consider neutral atoms in a static magnetic field
B ¼ Bzẑ. Because of the nonzero nuclear spin I, the
electronic ground-state manifold consists of many suble-
vels split by hyperfine coupling and a finite B field. These
levels exhibit remarkably long lifetimes, making them
particularly good candidates for encoding qubits (or, more
generally, qudits) for quantum information processing.
Furthermore, although neutral atoms in ground electronic
states are effectively noninteracting, entangling gates
between nearby atoms can be performed by coupling

one of the qubit states (e.g., j1i) to a Rydberg nS state
jri with large n, which exhibits strong van der Waals
interactions [Fig. 2(a)]. Under certain conditions, these
interactions can be interpreted effectively as a blockade
constraint prohibiting simultaneous Rydberg population
within a blockade radius RB. These can be leveraged to
perform, for example, fast multicontrol, multitarget phase
gates RðC1; C2;…; Ca;T1; T2;…; TbÞ (sometimes also
referred to as “collective gates”), which are related to
the standard CaZb gates upon conjugating all control qubits
Cj and the first target qubit T1 by Pauli-X gates [1,12,40];
this is achieved by applying individually addressed, reso-
nant π and 2π pulses between the qubit j1i state and the
Rydberg state [Fig. 2(b)]. Such an operation is also related
to the gate CaNOTb by single-qubit unitaries and has been
demonstrated in recent experiments for small a and b [12].
While this procedure provides an efficient scheme to

entangle two or several atoms, for large-scale quantum
computations, the finite lifetime of Rydberg states presents
an important source of error even if the rest of the
experimental setup is perfect. This lifetime is determined
by several contributions. First, interactions with blackbody
photons can induce transitions from the nS state to nearby
Rydberg n0P states of higher or lower energy; such errors
are subsequently referred to as blackbody radiation-
induced (BBR) errors. Second, spontaneous emission of
an optical frequency photon can result in radiative decay

(a) (b)

FIG. 2. (a) Rydberg blockade mechanism. Δ is the Rydberg
laser detuning, and the Rydberg interaction strength U ∝ n11=r6,
where n is the principal quantum number and r is the atom
separation. (b) Protocol for performing a multiqubit entangling
Rydberg gate RðC1; C2;…; Ca;T1; T2;…; TbÞ on a set of atoms
which are all within one given blockade volume. Resonant π
pulses j1i ↔ jri are first applied to each control qubit (red
arrows), followed by 2π pulses on each target qubit (blue arrows).
The control qubits are then returned to the ground-state manifold
via the π pulses shown in orange. Labels on the arrows indicate
the ordering of pulses. This Rydberg gate is related to the more
conventional controlled-phase gate CaZb by conjugating all
control qubits and one target qubit by Pauli-X operations or
by applying Pauli-Z gates on both control and target qubits in
the special case of a ¼ b ¼ 1 [CZ ¼ RðC1;T1ÞZC1

ZT1
]. It can

also be used to implement CaNOTb from CaZb by conjugating
the target qubits by Hadamard gates. The Rydberg gate
RðC1; C2;…; Ca;T1; T2;…; TbÞ is sometimes referred to as a
collective gate.
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(RD) to a low-lying P state, which quickly relaxes into
the ground-state manifold. In addition, if a multiphoton
Rydberg excitation scheme is used for the Rydberg pulses,
another intrinsic source of error during Rydberg gates is
photon scattering from an intermediate state. These error
channels are illustrated in Fig. 1(c).
For the purposes of QEC, these errors can be formally

described as follows (see Sec. III): BBR errors give rise to
quantum jumps from the qubit j1i state to Rydberg P
states (corresponding to a leakage error), as well as
Pauli-Z errors within the qubit manifold, while RD and
intermediate state scattering may also result in quantum
jumps from j1i to the Rydberg nS state or other hyperfine
ground states. The relative error probabilities are deter-
mined by selection rules and branching ratios. In addition
to these intrinsic errors, we also study the errors in the
experimental setup such as Rydberg pulse imperfections
or finite atomic temperature. We find that these exper-
imental errors fall within a subset of the RD error model
and can, therefore, also be addressed using our tech-
niques. We note that, throughout this work, we assume
that the rotations within the hyperfine manifold have
much higher fidelity than the Rydberg pulses, as is
typically the case. Such errors can also be suppressed
to high orders by using existing experimental methods
such as composite pulse sequences or by incorporating
traditional QEC techniques such as concatenation.

A. Reduction to Pauli-Z errors

To protect against the errors mentioned above, three
critical observations are used [see Fig. 1(c)]. First, we note
that quantum jumps from j1i to Rydberg states associated
with BBR can be detected via the Rydberg blockade effect
by using a nearby ancilla qubit and subsequently converted
to a Pauli-Z-type error by ejecting the Rydberg atom and
replacing it with a fresh atom prepared in the j1i state [18].
Second, quantum jumps from j1i to ground-state sublevels
outside the qubit subspace can be corrected via optical
pumping techniques. This is particularly efficient, as it does
not require any qubit measurement for feed-forward cor-
rections, unlike traditional proposals for correcting leakage
errors [41]. Third, for atomic species with large enough
nuclear spin, dipole selection rules prevent a stretched
Rydberg state from decaying to certain ground-state sub-
levels. By making use of this multilevel structure of neutral
atoms along with the high-fidelity manipulations of hyper-
fine states, we can ensure that RD and intermediate state
scattering errors do not result in j1i → j0i transitions,
thereby eliminating X- and Y-type errors from the error
model. This reduction of error types can significantly
alleviate the resource requirement for FTQC.

B. Fault-tolerant protocols

We now describe two FTQC protocols to address these
intrinsic errors in neutral Rydberg-atom platforms. The first

is based on the seven-qubit Steane code [38], while the
second uses the three-qubit repetition code; the latter is
more compact and efficient but has additional experimental
requirements such as control over multiple Rydberg states
and more complex encoding of logical operations. To
realize the seven-qubit code (Ryd-7), we notice that logical
state preparation, stabilizer measurements, and a universal
set of logical gates (Hadamard and Toffoli [42]) can be
implemented using only controlled-phase (CZ) or con-
trolled-controlled-phase (CCZ) gates, up to single-qubit
unitaries at the beginning and end of the operation. For
example, while the stabilizer measurements are typically
presented as a sequence of CNOT gates between the data
atoms and an ancilla atom, these CNOT gates can be
constructed by conjugating a CZ gate with Hadamard
gates on the target qubit. By mapping each Rydberg gate
error to a Pauli-Z error, we therefore ensure that it
commutes with all subsequent entangling gates in the
logical operation or stabilizer measurement, so it does
not spread to other qubits [Fig. 1(b)]. The resulting single-
qubit X or Z error can be corrected by the seven-qubit code
in a subsequent round of QEC. This eliminates the need for
“flag qubits,” which are otherwise necessary to prevent
spreading of errors as discussed in Refs. [24,25]. To further
reduce resource costs for experimental implementation, we
make additional use of the structure of the Rydberg error
model, stabilizer measurement circuits, and logical oper-
ations of the seven-qubit code. For instance, one of our key
findings is that leakage errors into other Rydberg states do
not need to be corrected after every Rydberg gate but can
be postponed to the end of a stabilizer measurement
[e.g., Fig. 1(b)]. This allows us to minimize the number
of intermediate measurements necessary for each FTQC
component, which is typically a limiting factor in state-of-
the-art neutral-atom experiments.
The simplified error model introduced by conversion of

all Rydberg gate errors to Pauli-Z errors motivates us to use
the three-qubit repetition code instead of the seven-qubit
code to design a leading-order fault-tolerant protocol
(Ryd-3). In this case, the stabilizer measurement circuits
are also comprised of CNOT gates on data atoms controlled
by the ancilla. However, the implementation of each CNOT

must be modified: When a CZ gate is conjugated by
Hadamard gates as in Fig. 1(b), a Pauli-Z-type error that
occurs during the CZ gate is converted to a Pauli-X error
after the Hadamard. Such an error can no longer be
corrected by the repetition code. Additional errors, such
as radiative decay of a control qubit prior to manipulation
of the target qubit, can lead to error spreading and
correlated errors.
These errors can be addressed via a protocol to directly

implement CNOT gates in a bias-preserving way, such that
these implementations do not generate any Pauli-X and Y
errors to leading order (Figs. 7 and 8). Our protocol makes
use of the rich multilevel structure of atoms with large
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nuclear spin (I ≥ 5=2, e.g., 85Rb; 133Cs; 87Sr;…), as well as
additional Rydberg states for shelving. Furthermore, we
leverage the fact that pulses between certain (i.e., hyperfine)
levels can be performed with very high fidelity, so that
leading-order errors involve only Rydberg state decay or
Rydberg pulse imperfections. This assumption is particularly
important, as Ref. [43] shows a no-go theorem stating that a
bias-preserving CNOT gate cannot be implemented in any
qudit system with a finite number of levels without such
structure in the error model. To circumvent this, our pulse
sequence directly implements a hyperfine Pauli-X gate on
the target qubit only if a nearby Rydberg atom is present
(without the need for subsequent Hadamard gates), and we
show that errors during this sequence can all be mapped to
Pauli-Z errors. Additionally, correlated errors due to control-
atom decay can be prevented by using multiple control
atoms, such that if one atom decays, the remaining atom(s)
still ensure proper gate operation on the target atom. This
bias-preserving CNOT protocol can be directly generalized to
implement a bias-preserving Toffoli operation, enabling a
leading-order fault-tolerant implementation of each opera-
tion of the three-atom repetition code. Throughout the
manuscript, we use the term “leading-order fault tolerance”
in referring to the Ryd-3 protocol, as our framework does not
inherently address all single-qubit errors, but existing exper-
imental techniques such as composite pulse sequences can
be used in conjunction with our protocol to suppress such
errors to higher orders (see Sec. III D).
Upon comparing our protocols with existing, general-

purpose FTQC proposals, we find that the number of
required physical qubits and gates for both of our
approaches is dramatically reduced (Tables I and II). For
example, as seen in Table II, performing the highest-cost
operation from our logical gate set, our Ryd-7 protocol
requires only two ancilla qubits compared with 72 ancillas
in Yoder, Takagi, and Chuang [31]. Likewise, Ryd-7 uses at
most 60 two-qubit gates (when errors are detected) to
perform this logical operation, instead of 1416 gates as in
Chao and Reichardt [25]. Such a significant reduction is
possible for our protocols because we leverage both the
special structure of the error model and the unique
capabilities of Rydberg setups.
Several aspects of the comparison above should be

considered. Specifically, we note that certain single-qubit
errors addressed in Refs. [25,31] cannot be corrected in our
protocols (e.g., Pauli-X errors arising from rotations in
the hyperfine manifold). However, we emphasize that
Refs. [25,31] also do not consider additional types of
errors such as leakage errors which are corrected by our
protocol. Indeed, incorporating leakage correction further
increases the resource cost for the earlier proposals con-
siderably. As such, Tables I and II must be interpreted as a
comparison of the cost ensuring fault tolerance against the
leading-order sources of error in a given setup. In the case
of Refs. [25,31], these errors include all single-qubit Pauli

errors but not leakage errors, while in Rydberg systems,
one must address leakage errors at leading order but can
neglect certain single-qubit errors.

C. Toward experimental implementation

For scalable implementation of our FTQC protocols, it is
important to consider the geometrical placement of atoms. In
addition, because Rydberg entangling gates can be imple-
mented only between atoms within the blockade radius RB,
each protocol defines a minimum value of RB (in units of d,
which is the smallest atom-atom separation). We find that
both the Ryd-7 and Ryd-3 protocols can be implemented
naturally when the atoms are placed on the vertices of a
triangular lattice as shown in Figs. 1(a) and 1(d). For both
protocols, the required Rydberg gates can be implemented
when the blockade radius (RB for Ryd-7, or the larger radius
RB;1 for Ryd-3) is greater than 3d, an interaction rangewhich
has already been demonstrated in recent experiments [8].
This requirement can be further reduced in both cases if it is
possible to move atoms in between certain operations while
preserving the coherence of hyperfine ground states, a
capability which has been recently realized [18].
Each component of our FTQC schemes can be imple-

mented in near-term experiments. For neutral alkali-atom
systems, recent experiments have already achieved high-
fidelity control and entanglement leading to remarkable
demonstrations of quantum simulations and computations
[3,9,12]. The near-deterministic loading of atoms into
lattice structures as shown in Fig. 1 has already been
realized in two and three dimensions [4–7].
To perform QEC in our protocol, an important require-

ment is the ability to measure individual qubits and/or detect
Rydberg population while preserving coherence in nearby
atoms, such that feed-forward correction can be performed.
Several approaches for performing fast measurements of
individual qubit states in selected atoms can be realized.
For example, these selected atoms can be moved into a
“readout zone” where their qubit state can be rapidly
detected via fast, resonant photon scattering on a cycling
transition. Alternatively, one could use arrays with two
species (such as two isotopes of the same atom or two
different atomic species), where the data atoms are encoded
in one atomic species and ancilla atoms are encoded in
another species that can be easily measured [44,45]. Finally,
the fast detection of Rydberg states has been recently
demonstrated in small atomic ensembles using Rydberg
electromagnetically induced transparency (EIT) [46]. These
could be integrated with the tweezer array platforms cur-
rently used for quantum information processing. In these
EIT-based procedures, the Rydberg blockade effect trans-
lates to clean signatures in the absorption spectrum, and the
collectively enhanced Rabi frequency allows for ultrafast
detection on a microsecond timescale [46].
While we focus primarily on neutral alkali atoms in this

work, significant developments have also been made using
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alkaline-earth atoms for Rydberg-based quantum compu-
tations [47,48]. The clock transition in these atoms allows
for high-fidelity qubit encodings, and the large nuclear spin
in fermionic species is particularly advantageous for our
protocols, so we conclude by discussing how our FTQC
schemes can be generalized and applied to these experi-
ments. More detailed experimental considerations are
discussed in Sec. VI.

III. ERROR CHANNELS IN RYDBERG ATOMS

In this section, we analyze dominant error mechanisms for
quantum operations involving Rydberg atoms [Fig. 1(c)].
Because the predominant errors in single-qubit operations
can be suppressed to high orders via composite pulse
sequences [18,49], we may primarily focus on errors
occurring during Rydberg-mediated entangling operations.
The decay channels of the Rydberg states include BBR
transitions and spontaneous RD transitions to lower-lying
states [50]. Depending on the specific choice of atomic
species, another source of error for Rydberg gates can be the
scattering from an intermediate state if a two-photon or
multiphoton excitation scheme is used; this is the case for
excitation of 87Rb or 85Rb to Rydberg nS states [8]. We
assume these effects are the predominant source of errors
that occur during the entangling operations, and we consider
contributions to the error model to leading order in the total
error probability.

A. Error modeling for BBR transitions

When a BBR transition occurs on one of the atoms
during an entangling gate, it signals that this atom has
started in the j1i state, since j0i is not coupled to jri. Such a
procedure corresponds to a “quantum jump” as discussed
in, for example, Ref. [51]. The resulting state predomi-
nantly is a nearby Rydberg state jr0i compatible with dipole
selection rules. Because of the relatively long lifetimes of
Rydberg states, we may assume that the atom does not
decay again within the timescale of several Rydberg gate
operations, as these would be higher-order processes. In
this case, because the states jr0i are not deexcited in the
ensuing operations, one serious consequence of BBR
quantum jumps is that the remaining Rydberg operations
on atoms within the interaction range are affected by
blockade, potentially resulting in multiple, correlated
Pauli-Z-type errors. Less intuitively, even if a quantum
jump does not occur during the gate operation, the atom’s
state is still modified due to evolution under a non-
Hermitian Hamiltonian: It is more likely that the atom
started out in the j0i state. More details on the theory of
quantum jumps can be found in Ref. [51].
For the purposes of QEC, it is useful to express the decay

channels in the Kraus operator form, where time evolution
of a density operator is given by ρ ↦

P
α MαρM

†
α and the

Kraus operators Mα satisfies the completeness relation

P
α M

†
αMα ¼ 1 [52]. For the BBR error model, there will

be one Kraus operator

Mr0 ∝ jr0ih1j ð1Þ

for each possible final Rydberg state jr0i, where the
proportionality constant is determined by the BBR tran-
sition rate from jri to jr0i (see Appendix A). In the absence
of quantum jumps, the evolution is given by the Kraus map

M0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − P

p
j1ih1j þ

X
jni≠j1i

jnihnj; ð2Þ

where P is the probability for a BBR transition to occur.
During entangling operations, these BBR errors can give

rise to correlated errors. For example, in the Rydberg gates
shown in Fig. 2, a target qubit can incur a BBR error only if
the control qubits are all in the j0i state. Thus, for the CaZb

gates shown in Fig. 2, the possible correlated errors may
involve one of the Kraus mapsMr0 orM0 occurring on one
of the qubits, together with Z-type errors on some or all of
the remaining qubits involved in that gate.
The rate of BBR transitions from a given Rydberg state

nL to another specific state n0L0 can be calculated from the
Planck distribution of photons at the given temperature T
and the Einstein coefficient for the corresponding transition
(see Ref. [50]). For 87Rb atoms excited to the 70S Rydberg
state, there are four dominant final states associated to
these BBR errors (see Appendix A); these are illustrated in
Fig. 1(c) as red arrows. The total rate of BBR transitions
summed over all possible final states is [53]

ΓBBR ¼ 4kBT
3c3n2eff

; ð3Þ

where kB is Boltzmann’s constant, c is the speed of
light, and neff is the effective principal quantum number
of the Rydberg state which determines its energy [3]:
EnL ∝ −1=ð2n2effÞ. We note that the overall rate of BBR
transitions can be suppressed by operating at higher neff or
operating at cryogenic temperatures.

B. Error modeling for RD transitions

The spontaneous emission events corresponding to RD
transitions can be modeled as quantum jumps involving the
emission of an optical-wavelength photon. Unlike BBR,
however, the resulting state is a low-lying P state, which
quickly decays back into the ground-state manifold. For the
stretched Rydberg state of 87Rb, the RD transitions are
almost entirely two- or four-photon decay processes to one
of the five states in the ground-state manifold indicated by
light blue arrows in Fig. 1(c) (see Appendix A for the
precise branching ratios). For the purpose of QEC, we
separately consider the cases of decay into the qubit j1i
state and decay into one of the other ground-state sublevels.
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Because the spontaneous emission event can occur any
time during the Rydberg laser pulse, the first type of decay
can result in a final state which is a superposition of j1i and
jri. Upon averaging over all possible decay times during
the entire pulse (see Appendix B), one finds that these
errors can be modeled using a combination of Z-type errors
and leakage into the jri state, with the Kraus operators

M0 ¼ jrihrj þ αj1ih1j þ βj0ih0j;
Mr ∝ jrih1j; M1 ∝ j1ih1j; M2 ∝ j0ih0j; ð4Þ

where α, β, and the proportionality constants depend
on the probability for the atom to incur an RD transition
to the j1i state and the specific Rydberg pulse being
performed.
At the same time, decay to one of the other ground-state

sublevels shown in Fig. 1(c) leads to leakage out of the
computational subspace as in the traditional QEC setting
(without influencing Rydberg operations on neighboring
atoms). That is, for each hyperfine state jfi ≠ j1i, we have
a Kraus operator

Mf ∝ jfih1j; ð5Þ

where the proportionality constant depends on the proba-
bility for an RD transition and the branching ratio from jri
to the specific state jfi (see Appendix A). Note that, due to
dipole selection rules, the number of RD channels with
non-negligible final state probability is minimized by
choosing to couple the j1i state to a so-called “stretched
Rydberg state” for entangling gates [54]. In particular, in
this analysis, the decay into the qubit j0i state is negligible
to leading order. Such an event, corresponding to the Kraus
operator M ∝ j0ih1j (or, equivalently, Pauli-X and Y
errors), is considered when we discuss methods to suppress
residual errors in our protocols.
As in the BBR case, the absence of quantum jumps

results in the atom’s population being shifted toward the
j0i state, which can be modeled using Pauli-Z errors. RD
errors can also give rise to correlated errors when they
occur during the primitive entangling gates illustrated
in Fig. 2. In this case, possible correlated errors may
involve one of the aforementioned Kraus maps occurring
on one of the qubits, together with Pauli-Z and/or jrih1j
errors on some or all of the remaining qubits involved in
that gate.
While, as noted above, the rate of BBR transitions

depends upon the temperature T and neff , the total RD
rate is temperature independent. Because of reduced over-
lap between the atomic orbitals, it scales as Γ0 ∼ 1=n3eff
[55]. Comparing this with the scaling for the BBR decay
rate, we see that, while both error rates decrease for larger n,
BBR processes dominate for large n, and RD processes
dominate for smaller n or very low T.

C. Errors from intermediate state scattering

Whenmultiphoton excitation is used to couple the j1i state
to the Rydberg state, scattering from an intermediate state can
give rise to another important intrinsic source of error. By
using σþ-polarized light in the first step of the excitation and
choosing the intermediate state to be a P3=2 state with the
lowest possible n, the intermediate state scattering channels
form a subset of the RD channels—they can result only in
decay into the qubit j1i state or two other hyperfine ground
states, as shown in gray in Fig. 1(c) [56]. Thus, whenever
intermediate state scattering is not explicitly mentioned in the
following sections, we assume it has been incorporated with
RD errors. We also note that this error rate can be suppressed
by increasing intermediate laser detuning in the multiphoton
transition while also increasing laser power.

D. Experimental imperfections

While BBR, RD, and intermediate state scattering
processes constitute the dominant errors for Rydberg-
mediated collective gates, it is also important to consider
other forms of error, such as technical imperfections in the
experimental setup. As discussed in Refs. [8,9,18], the most
significant errors of this kind are atom loss and fluctuations
in laser phase, intensity, and frequency. The Rydberg laser
fluctuations can all be modeled using Pauli-Z errors and
leakage into the jri state, so these errors can be addressed
together with the other errors discussed above. Finite
atomic temperature, resulting in velocity spread and
Doppler broadening on the Rydberg transition [9], likewise
leads to Pauli-Z errors and leakage into the jri state.
Temperature-induced positional spread causes similar
errors, and, due to the robustness of the blockade-based
gate, these errors can even be rendered negligible with
sufficiently large interaction strengths [12]. On the other
hand, atom loss forms a more complicated version of a
leakage error (called erasure in the quantum information
literature [22]). However, as discussed in Appendix C, we
find that such errors can also be addressed efficiently in the
present framework. In certain cases, the special properties
of these errors can be further leveraged to improve QEC
efficiency, as done in the recent proposal of Ref. [57].
Experimental imperfections can also affect the hyperfine

qubits used for storing quantum information and perform-
ing single-qubit gates; however, these primarily result in
Pauli-Z errors and leakage to other hyperfine states, which
group together with the error types described above.
Moreover, these tend to be significantly smaller sources
of error than the two-qubit gates [18]. By choosing a
magnetically insensitive transition for our qubit states, we
eliminate the leading-order errors arising from magnetic
field fluctuations. However, Z-type dephasing errors can
still arise from the differential light shift from the optical
trap. Finite atomic temperature, fluctuating tweezer power,
and atom heating can, thus, cause dephasing, although
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these can be alleviated to achieve qubit coherence times
T2 ∼ 1 s by applying standard dynamical decoupling
sequences [18]. Leakage to other hyperfine mF states can
also occur due to so-called Raman scattering from the
tweezer light, but these effects can be greatly suppressed
to timescales >10 s by sufficiently detuning the tweezer
light [18]. Since our qubit states are separated by ΔmF ¼ 2
(a nuclear-spin-flip transition), bit-flip X and Y error rates
from tweezer-induced scattering are even smaller. Finally,
temperature-induced Doppler effects, which could, in prin-
ciple, result in Z-type errors, are negligible, since the qubit
transition is of microwave frequency, and microwave phase
stability can be exceptional on the Raman laser used for
single-qubit manipulations.
At the same time, as noted earlier, certain experimental

imperfections associated with the hyperfine rotations are not
directly corrected with our protocol but can be minimized or
suppressed via other mechanisms such as composite pulse
sequences. For example, the primary source of single-qubit
gate errors in recent experiments involves laser amplitude
drifts or pulse miscalibrations, which can result in X-, Y-,
and Z-type errors [18]. However, these coherent errors can
be significantly suppressed by using composite pulse
sequences, as done in Ref. [18]: In particular, the BB1
pulse sequence suppresses pulse amplitude errors to sixth
order [49]. On the other hand, the error rates associated with
phase noise in single-qubit gates are typically much smaller:
For example, the phase noise in 171Ybþ hyperfine qubits is
shown to limit coherence to the order of 5000 s [58].
Although other sources of frequency fluctuations result in a
T�
2 of approximately 4 ms for the Rb qubit of Ref. [18],

thereby inducing pulse frequency errors, these errors are
strongly suppressed to second order due to the megahertz-
scale Raman Rabi frequencies, and they can be further
suppressed with improved cooling and microwave source
stability. Furthermore, they can be made completely negli-
gible by using appropriate composite pulse sequences [49].
Finally, incoherent scattering from the Raman beams used
for single-qubit rotations can also cause leakage and X, Y-
type errors, which can be on the 10−5 level [18] for far-
detuned Raman beams used for electron-spin-flip transitions
but may be higher for nuclear-spin-flip transitions as used for
the qubit states here. These remaining hyperfine qubit error
rates are significantly smaller than the primary sources of
error considered, and they can be further corrected via
concatenation of additional error correction codes.

E. Summary of error channels

We have shown that the multilevel nature of neutral
atoms gives rise to various complexities in the error model,
including a large number of decay channels and the
possibility for Rydberg leakage errors to influence many
future operations, resulting in high-weight correlated
errors. Despite these complications, one important feature
of our error model makes it substantially simpler than the

set of all Pauli errors studied in more generic setups—no
Pauli-X or Y-type errors are introduced during our Rydberg
gates. Indeed, in the following sections, we show how all
the additional leakage errors and correlated errors in our
error model can be converted into Z-type errors, and we use
this to design FTQC protocols with substantially reduced
resource costs. This reduction to Pauli-Z errors can be
found in Secs. IVA and IV B for the seven-qubit code and
Sec. VA for the repetition code.

IV. FTQC WITH THE SEVEN-QUBIT
STEANE CODE

Having established the error model for the Rydberg
operations, we now proceed to develop fault-tolerant
schemes to detect and correct these errors and perform a
universal set of logical operations. The key concept for this
construction is the ability to convert all errors described in
the previous section into Pauli-Z-type errors by introducing
ancilla qubits and using the blockade effect, dipole selection
rules, and optical pumping [see Fig. 1(c)]. We begin by
demonstrating the protocol when only BBR errors are
significant (i.e., in the limit of higher Rydberg principal
quantum number n), as the error model and QEC mecha-
nisms are simpler to understand in this case. The universal
gate set we develop comprises a logicalHadamard gate and a
logical controlled-controlled-phase (CCZ) or Toffoli gate
[42]. We then describe the more general case involving both
BBR andRD errors. Subsequently, we compare the resource
cost of our protocol against other fault-tolerant computation
schemes and discuss considerations for scalable computa-
tion. The final schemewe present in this section is referred to
as Ryd-7. Throughout this section, we use qubits encoded in
87Rb as a concrete example to illustrate our protocols.
While various equivalent definitions of FTQC are given

in the literature for traditional error models, to accommo-
date the possibility of Rydberg leakage errors—that is, any
Rydberg population remaining after the gate operation—
we must use the following, stricter one.
Definition.—A distance-d QEC code is fault tolerant if

after any round of error detection and correction, to the
order of ðptotÞt, at most t single-qubit Pauli errors are
present, where t ¼ bðd − 1Þ=2c and ptot is the sum of all
error probabilities. In addition, no Rydberg population can
be present after any round of error detection and correction.
The final requirement is important, because any remnant

Rydberg population could blockade future Rydberg gates.
In the following, we examine the case of code distance

d ¼ 3 and ptot ∼O½ðΓBBR þ Γ0Þ=Ω�. Our QEC proposal
has the following properties: To leading order in ptot,
(1) code states can be prepared with at most a single

physical qubit error, without leaving any final
Rydberg state population;

(2) after each round of error detection and correction,
there is atmost a single physical qubit error per logical
qubit, and there is no Rydberg state population;
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(3) each logical gate introduces at most a single physical
qubit error per involved logical qubit, without
leaving any final Rydberg state population.

It is straightforward to show that any distance-3 code
satisfying the above properties is fault tolerant.
Throughout the rest of the manuscript, we use the term

data qubit to refer to physical qubits used to encode a
logical qubit and ancilla qubit for physical qubits which are
used to perform stabilizer measurements or detect errors.

A. FTQC with BBR errors

1. Qubit encoding

Our quantum code is based on the seven-qubit Steane
code, which uses a logical state encoding derived from
classical binary Hamming codes [38]:

j0iL ¼ 1

2
ffiffiffi
2

p ðj0000000i þ j1010101i þ j0110011i

þ j1100110i þ j0001111i þ j1011010i
þ j0111100i þ j1101001iÞ; ð6Þ

j1iL ¼ 1

2
ffiffiffi
2

p ðj1111111i þ j0101010i þ j1001100i

þ j0011001i þ j1110000i þ j0100101i
þ j1000011i þ j0010110iÞ: ð7Þ

The stabilizer operators for this code are

g1 ¼ IIIXXXX; g2 ¼ IXXIIXX; g3 ¼ XIXIXIX;

g4 ¼ IIIZZZZ; g5 ¼ IZZIIZZ; g6 ¼ ZIZIZIZ: ð8Þ

In Eq. (8) and the rest of the manuscript when appro-
priate, we omit tensor product symbols and qubit indices
and assume that the jth operator in each product acts on
qubit j. Measurements of the stabilizers g1;…; g6 allow for
unique identification and correction of single-qubit X and Z
errors. For instance, the absence of any error corresponds to
all stabilizers gj ¼ þ1, and a Z error on the first qubit is
detected by g3 ¼ −1 and gj ¼ þ1 for all j ≠ 3. The error
can then be corrected via an appropriate single-qubit gate.

2. Error detection and correction

To fault-tolerantly detect and correct for the errors
associated with BBR events, we must be able to address
both Rydberg leakage and Pauli-Z errors. For the former
case, even though leakage errors in traditional QEC settings
can be particularly difficult to detect and correct, the
particular form of leakage caused by BBR errors makes
them much easier to identify—we can use an ancilla and
the blockade effect to detect the leaked Rydberg popula-
tion. Specifically, we prepare a nearby ancilla qubit in the
state jþi ¼ ð1= ffiffiffi

2
p Þðj0i þ j1iÞ and apply a 2π Rydberg

pulse to detect whether there is another Rydberg atom
within the blockade radius. Because of the blockade effect,
the ancilla is in the jþi (respectively, j−i) state if nearby
Rydberg population is (is not) present.
Once detected, such errors can be easily converted to

atom loss errors or Z-type errors. To convert the error to an
atom loss error, we notice that the Rydberg atom naturally
expels itself due to the antitrapping potential of the tweezer
[18] and can also be directly ejected in approximately
100 ns by pulsing a weak, ionizing electric field (approx-
imately 10 V=cm [57,59,60]) which removes the ion and
electron. The exact location of the ejected atom can be
determined by following the atom loss protocol outlined in
Appendix C and Fig. 13; subsequently, the error can be
corrected by replacing the ejected atom with a fresh atom
prepared in the j1i state [18] (thereby converting it to a
Z-type error) and applying another round of QEC. To
reduce the need for applying this atom loss correction
protocol, one could add a preventative step after every
entangling gate which incoherently repumps any remnant
population in several most probable Rydberg states into the
qubit j1i state. This procedure, along with more details on
the conversion of Rydberg population errors, is further
discussed in Appendix D.
For fault-tolerant error detection and correction, it is

important to note that the ancilla used to probe for
Rydberg population may also incur a BBR error. This can
be resolved by repeating the detection protocol upon finding a
BBR error and also using amultistepmeasurement procedure
for the ancilla qubit; details are given in Appendix E. Such a
protocol is assumed in all future sections when we use an
ancilla to detect for Rydberg population.
To fault-tolerantly detect and correct for Pauli errors, we

must measure the stabilizers (8) in a manner robust against
errors that may occur during the detection procedure. The
stabilizers for this seven-qubit code are either products of
Pauli-X operators or products of Pauli-Z operators, since
the Steane code is a Calderbank-Shor-Steane (CSS) code
[22]. The traditional (non-fault-tolerant) way to measure a
product of four Pauli-X operators (i.e., stabilizers g1, g2,
or g3) uses four controlled-phase gates conjugated by
Hadamards [Fig. 1(b), black parts]. Since Rydberg gate
errors can occur during this protocol, we utilize a second
ancilla qubit to detect for BBR errors after each entangling
operation and convert them to Z-type errors when detected.
The Z errors that occur during a Rydberg gate (or result

from conversion of a BBR error) commute with the
remaining CZ operations. Thus, the only errors that can
occur during a round of stabilizer measurements, to first
order in ptot, consist of a Pauli error acting on the ancilla
and a Pauli error on one of the data qubits [Fig. 1(b)]. By
resetting the ancilla and repeating the measurement proto-
col when a −1 measurement outcome is obtained, we can
eliminate the effect of the error on the ancilla qubit. An
analogous method can be used for the Z stabilizers. In this
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way, after each round of stabilizer measurements, the
correct stabilizer eigenvalues can be obtained to leading
order in ptot, while introducing at most one physical qubit
X or Z error.
While we present the fault-tolerant stabilizer measure-

ment protocol in the simplest form where Rydberg state
detection is performed after every physical gate, this is,
in fact, not necessary. Indeed, if we postpone all such
detection operations to the end of a circuit which measures
the stabilizer XαXβXγXδ (where Rydberg gates are applied
to data atoms in the order α, β, γ, δ), the only possible
correlated errors that can arise are XβXγXδ, XγXδ, or Xδ,
corresponding to BBR transitions on data atoms β, γ, or δ,
respectively. For the stabilizers in Eq. (8), these errors all
give rise to distinct error syndromes upon measuring Z⊗4

stabilizers and can, thus, be corrected (see Appendix F).
This can substantially reduce the number of measurements
required to implement our protocol, making it more
feasible for near-term experiments. A similar procedure
can be applied to measure the Z⊗4 stabilizers.

3. Logical operations

Logical Hadamard, Pauli, and S gates.—One particular
advantage of the Steane code is the transversality of the
logical Hadamard, Pauli, and S ¼ diagð1; iÞ gates [38].
Specifically, the logical Hadamard simply consists of a
Hadamard on each physical qubit:

HL ¼⊗7
j¼1 Hj: ð9Þ

These operations can be performed without ever populating
the Rydberg state and, hence, without introducing Rydberg
gate errors. Similar decompositions exist for the S gate and
the Pauli gates X, Y, and Z.
Logical controlled-phase gate.—The controlled-phase

gate in the Steane code is also transversal [38]:

CZAB ¼ ⊗
7

jA¼jB¼1
CZðjA; jBÞ: ð10Þ

We can thus implement a logical controlled-phase oper-
ation by performing only seven physical controlled-phase
operations and probing for BBR errors in between each
physical controlled-phase gate (to convert them to Z-type
errors). This eliminates the possibility of correlated multi-
qubit errors within a single logical qubit.
Logical Toffoli gate.—To implement the Toffoli gate

fault-tolerantly and complete our universal gate set, we
implement the logical CCZ gate where the target qubit is
conjugated by Hadamard gates. While this gate is not
transversal in the Steane code, it may still be decomposed
into a product of physical CCZ gates in a round-robin
fashion [31] (see Appendix J for a derivation):

CCZABC ¼
Y

jA;kB;lC∈f1;2;3g
CCZðjA; kB; lCÞ; ð11Þ

so that a logical CCZ operation can be implemented
using 27 physical CCZ operations. In the Rydberg setup,
this is implemented with the three-qubit Rydberg gate
RðjA; kB; lCÞ ¼ diagð1;−1;−1;−1;−1;−1;−1;−1Þ and
conjugating all involved data qubits by Pauli-X. To avoid
propagation of correlated errors resulting from an input X
error which does not commute with these Rydberg gates,
we begin by fault-tolerantly measuring all the Z⊗4 stabi-
lizers and correcting any detected errors; it is simple to
verify that this protocol can result only in single-qubit Z
errors. This can also be achieved in a more resource-
efficient manner by requiring that the stabilizer measure-
ments immediately preceding every logical CCZ gate be
done in a way which measures all Z⊗4 stabilizers last.
Furthermore, Rydberg population detection (followed by
conversion to Z-type errors, if necessary) is performed after
every Rydberg gate, but stabilizers do not need to be
measured until the very end; this is because only Z errors
occur during the gate operations. In this way, the logical
CCZ satisfies the fault-tolerance property.
Although the physical implementation of the CCZ gate is

not transversal, the physical gates may be reordered, as they
all commute with each other. In doing so, we can eliminate
some but not all of the intermediate Rydberg population
detection steps, to reduce the total number of measurement
operations as we do for the fault-tolerant stabilizer mea-
surements. Specifically, we group the three-qubit physical
Rydberg gates of the protocol into nine groups of three,
G1;…;G9, so that each physical qubit jA; kB; lC ∈ f1; 2; 3g
is used in every group. One example of such a grouping
G1;…;G9 is shown in Fig. 3. With this reordering, detection
for Rydberg leakage needs to be performed only after
each group Gi. This is because a Rydberg leakage error can
result only in the blockading of the last two, the last, or
no Rydberg gates within a group Gi, and these cases

FIG. 3. Reordering of physical gates in performing the logical
CCZ operation. For each logical qubit, only the first three data
qubits are shown, since the other data qubits are not involved
in the logical gate. Within each group Gi, the Rydberg gates
Rða; b; cÞ are ordered by increasing index of the physical control
qubit a (i.e., the data qubit of A involved in the gate).
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correspond to disjoint possible sets of stabilizer eigenvalues
ðg2; g3Þ for the three logical qubits (see Appendix F).
The Hadamard and CCZ gates together form a universal

gate set for quantum computation [42], so we have
demonstrated a scheme to construct any quantum operation
on the code space fault-tolerantly against BBR errors.

4. Logical state preparation

Finally, we show that we can prepare the logical j0iL
state in a fault-tolerant manner. The most straightforward
preparation of this state uses Steane’s Latin rectangle
encoding method, whose circuit is shown in Fig. 4 [38].
In the Rydberg setup, we replace controlled-NOT gates by
Rydberg controlled-phase gates with target qubit conju-
gated by Hadamard gates. Because the Z errors associated
with Rydberg gates commute with controlled-phase oper-
ations, to leading order in ptot, there is at most one Pauli-Z
error among the three data qubits initially in the jþi state
and at most one Pauli-X error among the four data qubits
initially in the j0i state. Although this could be a two-qubit
error, it is correctable, because the Steane code identifies
and corrects X and Z errors separately. In this procedure,
we assume that we detect for Rydberg population arising
from BBR errors after each physical entangling gate and
convert these errors to Z errors as necessary. In this way, by
applying one round of stabilizer measurements and error
correction, we obtain (to leading order in ptot) a logical j0iL
state with a Pauli error on at most one physical qubit.

B. FTQC with BBR and RD errors

To address RD errors and intermediate state scattering,
we must consider two new classes of leakage errors
following the discussion in Sec. III: (i) leakage into the
original Rydberg state jri and (ii) leakage into the other
hyperfine ground states, which we also call “non-Rydberg
leakage.” The first class of errors is similar to the quantum
jumps in the BBR error model and can be detected and
corrected in the same way using an ancilla qubit. In the
following sections, we group this error together with BBR
errors and refer to them as “Rydberg leakage” errors.

On the other hand, we demonstrate that leakage to other
states in the hyperfine manifold can be converted into
Pauli-Z-type errors using optical pumping. For example,
for 87Rb, we design the novel optical pumping protocol
shown in Fig. 5. One crucial property of this optical
pumping procedure is that it does not affect the qubit
coherence when there is no error. Furthermore, notice that,
while leakage in traditional QEC settings may be particu-
larly difficult to address, requiring additional entangling
gates or ancilla qubits, the particular multilevel structure of
neutral atoms allows for efficient correction of these errors.
Notably, this optical pumping can be performed without the
need for qubit measurement and feed-forward corrections,
allowing for efficient implementation in experiments.
The correction of non-Rydberg leakage errors can be

incorporated into the fault-tolerant protocols of the previous
section by performing this procedure between the Rydberg
entangling gates. Thus, our protocols from the previous
section are fault tolerant against generic intrinsic Rydberg
decay errors. Furthermore, note that, when considering this
full error model including both BBR and RD events, it is no
longer necessary to swap population between the j1i state
and the stretched ground state jF¼ Iþ1=2;mF¼ Iþ1=2i
when addressing Rydberg leakage errors (i.e., one can
omit steps 1 and 3 in Appendix D); instead, the Rydberg
population can be pumped directly to the jF ¼ I þ 1=2;
mF ¼ I þ 1=2i state, converting it into a non-Rydberg
leakage error which is corrected by optical pumping. The
full protocols for fault-tolerant stabilizer measurement, the

FIG. 4. Protocol to prepare the logical j0iL state for the Steane
code.

FIG. 5. Illustration of the optical pumping protocol to convert
non-Rydberg leakage errors to Pauli-Z errors in a 87Rb atom.
First, we apply π pulses j1i ↔ jF ¼ 2; mF ¼ 2i and j0i ↔ jF ¼
2; mF ¼ −2i (red arrows). In the second step, we use σþ light to
excite states in the F ¼ 1 ground-state manifold to the 5P3=2

F ¼ 2manifold (orange arrows). These states decay quickly back
into the ground-state manifold, as indicated by light blue wavy
arrows. Third, we apply resonant π pulses jF ¼ 2; mFi ↔ jF ¼
1; mFi (gray arrows). The second and third steps are repeated
until all population with mF ≥ −1 is transferred to the stretched
state jF ¼ 2; mF ¼ 2i. Finally, the first step (red) is repeated to
restore the qubit state populations.
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logical controlled-phase gate, and the logical CCZ gate are
given in Algorithms 1–3.
While the above discussion focuses on intrinsic RD errors,

the nonintrinsic errors in Sec. III D can also be incorporated
into our FTQC protocols. Specifically, the errors resulting
from Rydberg laser imperfections such as intensity and
phase fluctuations cause only Pauli-Z errors and single-qubit
Rydberg leakage errors, so they are already addressed within
our current framework. Similarly, atom loss can be detected
by using an ancilla qubit and performing a small leakage
detection circuit; this is discussed in Appendix C. In this

case, if a reservoir of atoms is available, we can also convert
the atom loss error into a single-qubit Pauli-X or Z error, for
instance, by replacing the lost atom with a new atom
initialized to the j0i state.

C. Comparison to existing fault-tolerant quantum
computing protocols

To demonstrate the significance of our Ryd-7 FTQC
protocol and emphasize the importance of considering
specific error models when designing QEC approaches,

Algorithm 1. Fault-tolerant method to measure X⊗4 stabilizers for Rydberg seven-qubit code.

(1) For each X⊗4 stabilizer XαXβXγXδ

a. Initialize ancilla qubit A2 to jþi state.
b. Apply gate ZjHj to all data qubits j ∈ fα; β; γ; δg.
c. For each j ∈ fα; β; γ; δg, apply the Rydberg gate RðA1;DjÞ. If j ¼ δ, use ancilla qubit A1 to detect for Rydberg population as

described in Sec. IVA; if a Rydberg leakage error is detected, convert it to a non-Rydberg leakage error
jF ¼ I þ 1=2; mF ¼ I þ 1=2ih1j. Finally, use the optical pumping technique in Sec. IV B to convert any possible non-Rydberg
leakage error into a possible single-qubit Z error.

d. Apply Hadamard gates to all data qubits j ∈ fα; β; γ; δg.
e. Measure A2 in the X basis.
f. If A2 measurement yields −1, break.

(2) If any stabilizers are measured to be −1:
a. Measure all X⊗4 stabilizers again, this time in the unprotected way and without checking for leakage. Either there is already an

error in the input, or an error occurs in the initial measurement process. The resulting outcomes then are the correct stabilizer
values to leading order in ptot.

Algorithm 2. Fault-tolerant logical CZ for Rydberg seven-qubit code.

(1) Apply single-qubit Z gates to all physical control and target qubits.
(2) For each j ¼ 1; 2;…; 7:

a. Apply the two-qubit Rydberg gate RðCj;TjÞ.
b. Use ancilla qubit A1 to detect for Rydberg population as described in Sec. IVA.
c. If a Rydberg leakage error is detected, convert it to a non-Rydberg leakage error jF ¼ I þ 1=2; mF ¼ I þ 1=2ih1j.

(3) Use the optical pumping technique in Sec. IV B to convert any possible non-Rydberg leakage error into a possible single-qubit Z
error.

Algorithm 3. Fault-tolerant logical CCZABC for Rydberg seven-qubit code.

(1) Apply X gate to all physical qubits jA; kB; lC ∈ f1; 2; 3g.
(2) For each group Gi of physical three-qubit Rydberg gates to apply (where Gi are ordered as discussed in the main text or Fig. 3):

a. Apply gates in Gi.
b. Use ancilla qubit A1 to detect for Rydberg population as discussed in Sec. IVA. If Rydberg leakage is detected:

(i) Convert this leakage error to a possible single-qubit X error.
(ii) Measure stabilizer eigenvalues g2 and g3 for each logical qubit in an unprotected way. This is safe, because an error already

occurred.
(iii) Apply the appropriate correction circuit for the correlated error (since the possible correlated errors all result in disjoint sets

of possible syndromes; see Appendix F).
(iv) Measure Z⊗4 stabilizers for all logical qubits in an unprotected way to detect for a possible single-qubit X error induced by

step (i) above; correct this error if found.
(v) The remaining three-qubit Rydberg gates needed to implement the logical CCZ operation can all be applied in an

unprotected way.
c. Use the optical pumping technique in Sec. IV B to convert any possible non-Rydberg leakage error into a possible single-qubit

Z error.
(3) Apply X gate to all physical qubits jA; kB; lC ∈ f1; 2; 3g.
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we now compare our model with existing general-purpose
FTQC schemes proposed in Refs. [24,25,31]. Specifically,
we compare the costs of measuring stabilizers and imple-
menting fault-tolerant logical operations, using as metrics
the number of two- and three-qubit entangling operations
required for the physical qubits and the minimum number
of ancilla qubits needed. Details on how these numbers
can be obtained for the Ryd-7 protocol are provided in
Appendix H.
Table I compares the minimum number of two-qubit

gates and ancilla qubits required for fault-tolerant stabi-
lizer measurement (and associated error correction) in
various QEC proposals. The results for general-purpose
FTQC protocols for the seven- and 15-qubit CSS and
Hamming codes are based on the “flagged syndrome
extraction” procedures presented in Refs. [23–25]. For
each protocol, we separately present the resource cost for
cases without any errors and the worst-case cost when an
error is present (numbers in parentheses), as the former
case is typically much more probable. While the number
of ancilla qubits required is the same for all cases, we find
that our protocol requires the smallest number of entan-
gling operations in either case even though we must
detect for leakage, an additional kind of error not
considered in Refs. [23–25].
Similarly, Table II demonstrates this comparison for the

fault-tolerant logical CCZ gate, where our improvements
are striking. The general-purpose implementation of
this non-Clifford gate for three logical qubits in the
seven-qubit Steane code is given by Yoder, Takagi, and
Chuang [31]; while this implementation requires only a
modest number of physical two- and three-qubit gates,
it requires a considerable overhead of 72 additional ancilla
qubits, making an experimental demonstration very chal-
lenging. On the other hand, while Chao and Reichardt’s
proposal [25] for a fault-tolerant Toffoli gate using the
½½15; 7; 3�� code significantly reduces the ancilla qubit
count, the number of physical entangling operations is
substantial. Our protocol uses only two ancilla qubits
compared with 72 required in Yoder, Takagi, and Chuang
[31] while using significantly fewer entangling operations
(e.g., 60 two-qubit gates) than Chao and Reichardt
[25] (1416 two-qubit gates) even in the unlikely scenario
where we must correct for an error. We note that, while
our protocol does use more three-qubit entangling gates
than Ref. [31], such gates are nearly as straightforward to
implement as two-qubit CZ gates in the Rydberg-atom
setup (see Sec. II).
These results clearly demonstrate the advantage of

considering a hardware-specific error model and leveraging
the unique capabilities of the Rydberg setup when design-
ing FTQC schemes. In particular, even though we must
correct for additional errors not considered in traditional
settings, we can still dramatically reduce the required
number of entangling gates or ancilla qubits.

D. Scalable implementation

We now discuss some more details regarding the scalable
implementation of our protocols, including potential geo-
metrical layouts of physical qubits, resource trade-offs, and
residual error rates.

1. Geometrical considerations

One particular advantage of the Rydberg-atom platform
is the flexibility in allowing arbitrary geometrical arrange-
ments of atoms. Motivated by recent experimental dem-
onstrations of near-deterministic loading and rearrange-
ment of neutral atoms into regular lattice structures, we
propose scalable FTQC architectures in which logical
qubits form a coarser lattice on top of the lattice of physical
atoms. For the Ryd-7 scheme, one natural layout in a two-
dimensional atomic array setup could comprise placing
physical atoms on the vertices of a triangular lattice
[Fig. 1(a)]. In this geometry, the hexagonally shaped logical
qubits (dark blue dotted hexagons) form a coarser triangu-
lar lattice, with ancilla qubits (A, pink) placed on the edges
of this coarser lattice to mediate error correction and logical
gates. Fault-tolerant universal quantum computation can
be performed if nearest-neighbor logical qubits can be
entangled; because physical entangling gates can be imple-
mented only between atoms within a blockade radius RB,
this defines a minimum required value of RB in terms of the
closest atom-atom separation d. Upon examining the
physical gates required to implement the logical operations
for the seven-qubit code, we find that the requirement in
this case is RB > 3d (dotted gray line), an interaction range
which has already been demonstrated in recent experiments
[8]. Details on the derivation of this minimal blockade
radius can be found in Appendixes I and J. This require-
ment on RB can be further reduced if atoms can be moved
in between certain logical operations while preserving
coherence between the hyperfine ground states [18].

2. Resource trade-offs

For any experiment, resource trade-offs may be made to
minimize the total logical error probability. For instance, if
the timescale of one round of measurements is much larger
than typical gate times (as is the case in certain atomic
setups), one may wish to reduce the number of measure-
ment shots required at the expense of performing additional
operations. This can be incorporated into our protocol by
incoherently driving Rydberg states to the low-lying P state
after each entangling gate to convert any possible Rydberg
leakage error into the non-Rydberg leakage jF ¼ I þ 1=2;
mF ¼ I þ 1=2ih1j. In this case, ancilla measurements are
no longer necessary to detect and correct for Rydberg
leakage errors, but this incoherent pumping is done after
every gate, regardless of whether an error actually occurs.
Alternatively, the number of entangling gates can be further
reduced at the cost of additional measurements.
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3. Improvements

The FTQC protocol presented in this section relies upon
selection rules which impose restrictions on the possible
RD error channels. Specifically, as mentioned in Sec. III,
to leading order in the error probability, we ignore the
decay channel j0ih1j arising from RD. Given the low
branching ratio (determined numerically to be approx-
imately 10−3 in 87Rb; see Appendix A) from the stretched
Rydberg state to j0i, this is already a reasonable
assumption; however, several approaches can be taken
to suppress the probability of such errors even further.
First, this probability can be reduced by a factor of
roughly 3 or 4 by employing a “shelving” procedure in
which population in the j0i state is swapped with the
stretched ground state jF ¼ −mF ¼ I þ 1=2i before and
after each entangling gate, due to the lower branching
ratio from jri to this stretched state. To avoid errors arising
from near-degenerate Rydberg transitions in this case,
one also transfers population in the j1i state to jF ¼
I − 1=2; mF ¼ 1i to perform Rydberg excitation in this
case, instead of exciting out of the F ¼ I þ 1=2 manifold.
Moreover, by utilizing higher magnetic fields to reduce the
branching ratio for RD processes involving large jΔmFj or
by using a species with higher nuclear spin (e.g., 85Rb) where
the shelving state can be further separated from the stretched
Rydberg state, one can suppress the probability of such
errors to even higher orders.

V. LEADING-ORDER FAULT TOLERANCE
WITH A REPETITION CODE

Given that all Rydberg errors can be converted to the Z
type, one may naturally ask whether the full seven-qubit
Steane code is even necessary to detect and correct these
errors; in particular, one may be tempted to simply use a
three-qubit repetition code in the X basis to detect and
correct Z-type errors. In such a code, the logical states are

jþiL ¼ j þ þþi;
j−iL ¼ j − −−i; ð12Þ

and stabilizer operators are

g1 ¼ X1X2; g2 ¼ X2X3: ð13Þ

However, direct application of such a repetition code for
FTQC is challenging even with this biased noise model, as
one must be able to implement every physical gate in the
encoding, decoding, stabilizer measurement, and logical
gate procedures without introducing Pauli-X or Y-type
errors at any stage—that is, each gate must be implemented
in a bias-preserving way. This requirement can easily be
satisfied for certain physical gates such as the Rydberg
controlled-phase or collective gates (after all leakage errors
are mapped to Pauli-Z type) but is much more difficult to

fulfill for other gates. Specifically, measurement of the
stabilizers of Eq. (13) requires performing controlled-NOT
(CNOT) gates as shown in orange in Fig. 1(e).
While a standard implementation of the CNOT gate in a

Rydberg setup comprises the Rydberg controlled-phase
gate conjugated by single-qubit Hadamard gates on the
target qubit, this is not bias preserving: For example, a Z
error on a target qubit during a controlled-phase gate
becomes an X error once the final Hadamard gate is
applied (Fig. 6). In other setups, where a π rotation of
the target qubit about the x̂ axis on the Bloch sphere can be
performed conditioned on the state of the control qubit
(e.g., by engineering a Hint ¼ ZX interaction), an over-
rotation or underrotation error also translates to an X error
and violates the bias-preserving constraint.
Indeed, the implementation of a bias-preserving CNOT

may seem unfeasible at first, in light of a no-go theorem
proven in Ref. [43]: A bias-preserving CNOT gate is not
possible between two qubits encoded in systems where the
underlying Hilbert space is finite dimensional, because the
identity gate cannot be smoothly connected to CNOT while
staying within the manifold of bias-preserving operations.
One way to circumvent this no-go theorem was recently
developed for circuit QED systems in Refs. [43,61], where
the qubits can be encoded in the continuous phase space of
the photon field, and the dominant source of error—photon
loss—can be manipulated via parametric driving schemes
to cause only Z-type errors. In our setup, we circumvent the
no-go theorem using the special fact that certain pulses in
our finite-dimensional atomic system—the pulses between
hyperfine states—can be implemented at very high fidel-
ities, so that our leading-order errors arise only from
Rydberg pulse imperfections and Rydberg state decay.
This allows us to develop a novel laser pulse sequence
for entangling Rydberg atoms that directly implements a
CNOT or Toffoli gate while preserving the noise bias. Our
protocol can be applied on any atomic species with
sufficiently high nuclear spin (I ≥ 5=2). For concreteness,
we illustrate the protocol using the example case of 85Rb
throughout the section.

FIG. 6. Circuit to measure the stabilizer X1X2 for the repetition
code. CNOT gates must be performed between the ancilla qubit
and data qubits 1 and 2. A standard implementation of the CNOT

gate using Rydberg controlled-phase gates conjugated by single-
qubit Hadamard gates on the target qubits would not be bias
preserving, as a Z error on a target qubit during a controlled-
phase gate becomes an X error once the final Hadamard gate is
applied (purple).
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A. Bias-preserving CNOT in a Rydberg-atom setup

As shown in Fig. 6, the standard implementation of a
CNOT gate in a Rydberg system is not bias preserving. In
particular, given the error model for Rydberg gates, X
errors on the target qubit can be induced in two ways. First,
the target qubit could directly undergo a Rydberg error
(e.g., radiative decay) during the controlled-phase gate,
resulting in a Pauli-Z error that is transformed into an X
error after the Hadamard gate (purple in Fig. 6).
Alternatively, the control atom could decay from the
Rydberg state to the ground state at some point during
the controlled-phase gate, so that the target qubit Rydberg
pulses, which should have been blockaded, are now
resonant during the controlled-phase gate. This results in
a two-qubit correlated error between the control and target
atoms, where the target atom undergoes an X-type error.
Here, we begin by introducing a novel entangling gate

pulse sequence for Rydberg atoms to address the target atom
X errors. In this discussion, we first assume that the Rydberg
pulses on the target atom are either all resonant or all
blockaded; that is, we ignore the possibility of a neighboring
Rydberg atom decaying during the target atom sequence. We
then include this effect and also eliminate the correlated
errors by introducing an ancilla qubit and making use of two
Rydberg states with different blockade radii.
To remove the target atom X errors, we wish to design an

entangling gate protocol which uses Rydberg states to

conditionally swap j0i and j1i population directly, without
the change of basis from Hadamard gates. This can be
accomplished for atomic species with high enough nuclear
spin (I ≥ 5=2). We consider qubits encoded in the 85Rb
clock states j1i≡ jF ¼ I þ 1=2; mF ¼ þ1i, j0i≡ jF ¼
I − 1=2; mF ¼ −1i (orange levels in Fig. 7), which have
a magnetic-field-insensitive transition frequency at low
fields. The protocol then proceeds as illustrated in Fig. 7.
The first step of the procedure aims to transfer population

in the qubit state j1i (respectively, j0i) to the Rydberg state
jdþi≡ jnD3=2; mJ ¼ 3=2; mI ¼ I ¼ 5=2i (respectively,
jd−i≡ jnD−3=2; mJ ¼ −1=2; mI ¼ −I ¼ −5=2i) condi-
tionally, dependent on the state of a control atom. This
is achieved because the Rydberg pulses from the qubit
states to jd�i are resonant if and only if there are no
neighboring atoms in jr�i or nearby Rydberg states. Since
each stretched Rydberg state predominantly decays only
into ground states with jΔmFj ¼ jΔðmJ þmIÞj ≤ 2 during
RD processes, the j0i and j1i populations are not mixed by
Rydberg state decay; however, due to the possible decay
channels jF ¼ 2; mF ¼ 2ihdþj and jF ¼ 3; mF ¼ −2ihd−j,
it is possible that the first step fails to excite the atom into a
Rydberg state even in the absence of nearby Rydberg
population. Consequently, in the second step, we again
attempt to transfer the qubit states to Rydberg states, this
time using resonant π pulses j1i↔ jnS1=2;mJ¼1=2;mI ¼
3=2i and j0i ↔ jnS1=2; mJ ¼ −1=2; mI ¼ −3=2i. Then, in

FIG. 7. Pulse sequence for the target atom in a bias-preserving CNOT gate between 85Rb atoms. Rydberg pulses are resonant if and only
if no nearby Rydberg population is present; otherwise, the Rydberg levels are shifted due to the blockade effect (dotted levels). This
pulse sequence eliminates target atom X errors in the standard implementation of CNOT shown in Fig. 6. Step 1: coherent transfer of
population from the qubit states to stretched Rydberg states jd�i≡ jnD3=2; mJ ¼ 3=2; mI ¼ I ¼ 5=2i. To do this, we first apply
hyperfine π pulses j1i ↔ jF ¼ 2; mF ¼ 2i and j0i ↔ jF ¼ 3; mF ¼ −2i, then apply Rydberg π pulses jF ¼ 2; mF ¼ 2i ↔ jdþi,
jF ¼ 3; mF ¼ −2i ↔ jd−i, and finally reapply the hyperfine π pulses j1i ↔ jF ¼ 2; mF ¼ 2i and j0i ↔ jF ¼ 3; mF ¼ −2i (orange
arrows). Step 2: apply resonant π pulses from the qubit states to the Rydberg states j1i ↔ jnS1=2; mJ ¼ 1=2; mI ¼ 3=2i and j0i ↔
jnS1=2; mJ ¼ −1=2; mI ¼ −3=2i (red arrows). Step 3: apply a resonant π pulse between the j0i and j1i ground states (thick pink arrow).
Step 4: repeat step 1, but use −π instead of π pulses on all transitions. Step 5: incoherently drive any remaining Rydberg population into
stretched ground states (thick blue arrows). Specifically, send Rydberg states withmJ þmI > 0 (respectively,<0) to a stretched 5P state
with F ¼ mF ¼ I þ 3=2 (F ¼ −mF ¼ I þ 3=2), which decays quickly and only to the stretched ground state with F ¼ mF ¼ I þ 1=2
(F ¼ −mF ¼ I þ 1=2). Step 6: use optical pumping techniques (see Appendix L for details) to map states outside the computational
subspace with mF > 0 (respectively, mF < 0) to the qubit state j1i (j0i) (thin blue arrows).
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the third step, the population in the qubit states is swapped
via the π pulse j0i ↔ j1i. We note that this swaps
population only if nearby Rydberg atoms prevent transfer
out of the qubit manifold in steps 1 and 2. Step 4 then acts
to invert the first step.
After step 4, we find that, if no Rydberg errors have

occurred, the atomic state is restored to the original qubit
state (identity map) when no nearby Rydberg population
is present or to the opposite qubit state j0i ↔ j1i
otherwise. Rydberg errors can occur only if the pulses
of step 1 are resonant (i.e., if no nearby Rydberg atoms are
present); moreover, because transitions from jdþi (respec-
tively, jd−i) result in only states withmF > 0 (mF < 0), any
Pauli errors must be of Z type (for example, projectors
j0ih0j, j1ih1j), and any leakage error must be of the form
jmF > 0ih1j or jmF < 0ih0j. One can then verify that after
the pumping steps (5 and 6) the resulting state is the same
as in the error-free case, up to a local error of Z type (e.g.,
j0ih0j, j1ih1j). As before, the error channels for intermedi-
ate state scattering and other Rydberg pulse imperfections
can be captured by our error model which contains BBR
and RD errors.
Having eliminated X errors arising from target qubit

Rydberg errors, we now proceed to address the second type
of potential X error arising from control qubit decay. The
crux here is to utilize multiple Rydberg atoms (e.g., a
control atom and an ancilla atom) to blockade the target
atom if the control is in the j1i state; in this way, if one of
the atoms decays, the remaining Rydberg atom(s) can still
ensure (to leading order in the total error probability) that
the Rydberg pulses on the target atom do not become
resonant. For the simplest case, the bias-preserving CNOT

gate can be implemented with one ancilla qubit. Let us
assume that the control (C), target (T), and ancilla (A)
atoms are placed evenly along a line, with the target atom in
between the control and ancilla atoms; the ancilla atom is
initialized in the state j0i. We can make use of two sets
of Rydberg states, jr1;�i and jr2;�i, with blockade radii
RB;1 and RB;2, respectively, such that RB;1 > 2d and
d < RB;2 < 2d, where d is the distance between neighbor-
ing atoms (i.e., between C and T or T and A); as such,
atoms C and A are within the blockade radius RB;1 but
beyond RB;2, whereas neighboring atoms are within the
blockade radius RB;2. The full bias-preserving CNOT gate
between the control and target atoms then consists of the
three-step procedure illustrated in Fig. 8, followed by
correction of Rydberg leakage errors (as discussed in
Appendix D) and optical pumping to eliminate non-
Rydberg leakage errors (Fig. 5). The Rydberg transitions
addressed in each step in Fig. 8 are listed in Table III.
This protocol is robust against control atom decay errors,

as the Rydberg pulses on atom T are resonant only if
neither C nor A is excited to the Rydberg state, and one can
see that, to leading order in the total error probability, this
can occur only if C starts in the j0i state: First, if C begins

in the j0i state, Amust also remain in j0i, so the state of T is
not flipped. On the other hand, if C begins in the j1i state
and no decay events occur during step (a), jC;Ai ¼ j1; 1i
after this step. The Rydberg pulses for T are blockaded in
step (b), so its state is flipped. Finally, if C begins in the j1i
state but decays during the first step, jC;Ai ¼ j1; 1i or
j1; 0i after this step. The Rydberg pulses for T are still
blockaded in step (b), so its state is flipped. Finally,

(a) (b) (c)

FIG. 8. Using an ancilla qubit and multiple Rydberg states to
eliminate X-type errors arising from control qubit decay. The
atoms are positioned on a line, such that atom T is in the middle,
and the distance between neighboring atoms is d≡ dCT ¼ dAT .
The ancilla qubit is initially prepared in the j0i state. The protocol
consists of three steps, labeled (a)–(c), and can be visualized as a
quantum circuit. We use two different pairs of Rydberg S states,
jr1;�i and jr2;�i, with blockade radii RB;1 and RB;2, respectively,
such that RB;1 > 2d and d < RB;2 < 2d. Steps (a) and (c): apply a
CNOT gate with C as control and A as target. This is done by
applying a π pulse j1i ↔ jr1;þi on atom C, performing the pulse
sequence in Fig. 7 on atom A, and applying a −π pulse j1i ↔
jr1;þi on atom C, so that the Rydberg pulses on A are resonant
only if C is not in jr1;þi (or a nearby Rydberg state). For these
steps, the Rydberg levels jr�i in Fig. 7 are chosen to be jr1;�i (see
Table III). Step (b): apply a three-atom gate between C, A, and T.
This is done by applying π pulses j1i ↔ jr2;þi on both atom C
and atom A, performing the pulse sequence in Fig. 7 on atom T,
and applying −π pulses j1i ↔ jr2;þi on both atom C and atom A,
so that the Rydberg pulses on T are resonant only if neither C nor
A is in jr2;þi (or a nearby Rydberg state). For this step, the
Rydberg levels jr�i in Fig. 7 are chosen to be jr2;�i (see
Table III).

TABLE III. Rydberg transitions used to implement the bias-
preserving CNOT gate between two atoms C and T as shown in
Fig. 8. Within each step, one Rydberg transition (j1i ↔ jr1;þi or
j1i ↔ jr2;þi) is addressed for each “control” atom, while two
Rydberg transitions (j0i ↔ jr1;−i, j1i ↔ jr1;þi or j0i ↔ jr2;−i,
j1i ↔ jr2;þi) are addressed for each “target” atom. jr1;�i and
jr2;�i have different blockade radii RB;1 and RB;2 as explained in
the main text and in the caption in Fig. 8.

Rydberg transitions addressed

Step Atom C Atom T Atom A

(a), (c) j1i ↔ jr1;þi None j0i ↔ jr1;−i
j1i ↔ jr1;þi

(b) j1i ↔ jr2;þi j0i ↔ jr2;−i
j1i ↔ jr2;þi

j1i ↔ jr2;þi
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Rydberg decay errors in step (c) result in projections of the
form j0ih0j or j1ih1j, which can be expressed in terms of Z
errors. In this way, we eliminate any possible source
of X errors arising from the CNOT gate, to leading order
in the total error probability. The protocol can also be
generalized to implement a bias-preserving Toffoli gate
(see Appendix G and Fig. 14). Potential improvements
leading to suppression at higher orders are discussed in
Sec. V C.
The ability to couple atoms to two sets of Rydberg states

jr1;�i and jr2;�i in our bias-preserving CNOT implementa-
tion allows atom C to interact with atom A during steps (a)
and (c) in Fig. 8, but not during step (b). Alternatively, this
tunability of interaction could be achieved with only a
single set of addressable Rydberg states jr1;�i if the atoms
can be rearranged while preserving coherence between
hyperfine ground states [18]. In this case, one could move
atoms in between steps (a) and (b) to further separate C, T,
and A from each other such that the distance between C
and A becomes greater than RB;1, while the distance
between either of them and atom T remains less than
RB;1. The atoms can then be returned to their original
configuration after step (b) to allow for interaction between
C and A during step (c).

B. Leading-order fault tolerance
with the repetition code

The bias-preserving operations discussed above allow
for a direct implementation of each component of the three-
atom repetition code to perform quantum computation
with leading-order fault tolerance on a Rydberg setup. In
particular, logical states (12) can be prepared or measured
fault-tolerantly in the X basis by transversally preparing or
measuring each atom. The measurement of stabilizers (13)
can be achieved using the circuit in Fig. 1(e), where each
controlled-NOT gate is done in the bias-preserving way
described above; for robustness against errors occurring
during this circuit, one must repeat the stabilizer measure-
ment if either g1 or g2 is measured to be −1.
A universal set of logical operations can be achieved by

implementing a logical Toffoli gate and a logical Hadamard
gate as in the seven-qubit case, using the bias-preserving
pulse sequences presented above. While not strictly neces-
sary, we also discuss the implementation of logical con-
trolled-phase and CCZ gates. These may be of use for
simplifying the implementation of certain quantum algo-
rithms, as they do not require the new bias-preserving pulse
sequences and can be implemented using the standard
method for performing Rydberg-mediated entangling gates
as described in Fig. 2.

1. Logical Toffoli gate

One important feature of the encoding (12) is that the
logical j0iL (respectively, j1iL) state consists of an equal

superposition of states with an even (odd) number of
physical qubits in the j1i state:

j0iL ¼ 1

2
ðj000i þ j110i þ j101i þ j011iÞ;

j1iL ¼ 1

2
ðj111i þ j001i þ j010i þ j100iÞ: ð14Þ

From this observation, one can see that the Toffoli gate
CCXABC with logical control qubits A and B and logical
target qubit C can be implemented as a product of nine
physical Toffoli gates:

CCXABC ¼
Y

jA;kB∈f1;2;3g
lC¼jA

CCXðjA; kB; lCÞ: ð15Þ

Each physical Toffoli gate can be implemented in a bias-
preserving fashion as described previously, resulting in at
most one physical Z error in each logical qubit, assuming
that Rydberg and non-Rydberg leakage errors are converted
to possible Z errors after each physical gate. In this case,
however, while Z errors on the control qubits A or B
commute with remaining Toffoli gates, a Z error on one of
the physical qubits of C could spread to multiple Z errors
within A or B after subsequent Toffoli gates if uncorrected.
To address this, we order the physical gates as shown
in Fig. 9 and perform error correction after every three
physical Toffoli operations by measuring the stabilizers
(13); this follows the pieceable fault-tolerant implementa-
tions of nontransversal gates discussed in Refs. [31,43]. In
this way, after the entire logical gate, there is at most one
physical qubit Z error per involved logical qubit.

2. Logical Hadamard gate

Unlike the Steane code, the repetition code is not a CSS
code, and its logical Hadamard gate is not transversal.
However, as discussed in Ref. [43], the logical Hadamard
gate can be implemented using a logical Toffoli gate
combined with fault-tolerant measurements in the X basis,

FIG. 9. Pieceable fault-tolerant implementation of the Toffoli
gate in the repetition code.
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as shown in Fig. 10. The logical Hadamard gate combined
with the logical Toffoli or CCZ gate forms a universal set of
logical operations.

3. Logical controlled-phase gate

A logical controlled-phase operation in the three-qubit
code can be implemented using the standard Rydberg pulse
sequences for controlled-phase gates between each pair
ðjA; kBÞ of physical qubits, where jA and kB belong to the
encoding of logical qubits A and B, respectively:

CZAB ¼
Y

jA;kB∈f1;2;3g
CZðjA; kBÞ: ð16Þ

To correct for the errors that occur during gates, one should
remove any Rydberg population and apply the optical
pumping scheme to convert non-Rydberg leakage errors
into possible Z errors after each physical controlled-phase
operation. The stabilizers need to be measured only after
the entire logical operation, since Rydberg gates can
produce only Z errors which commute with all the physical
CZ gates being performed (and, hence, do not spread to
higher-weight errors).

4. Logical CCZ gate

Similarly, a logical controlled-controlled-Z operation
between logical qubits A, B, and C,

CCZABC¼1A1B−
1

4
ðZA−1AÞðZB−1BÞðZC−1CÞ; ð17Þ

can be implemented as a sequence of physical CCZ
operations:

CCZABC ¼
Y

jA;kB;lC∈f1;2;3g
CCZðjA; kB; lCÞ: ð18Þ

As with the case of logical CZ, Rydberg and non-Rydberg
leakage errors should be converted to possible Z errors after
each physical gate. Notice that, even though the logical
CCZ is not transversal, this implementation is leading-
order fault tolerant, because any given physical gate can
result in at most one physical qubit Z error per logical qubit;
since Z errors commute with the remaining gates applied,
they do not propagate to become multiqubit errors.

While the CCZ gate is not strictly needed for the universal
gate set given a leading-order fault-tolerant implementation
of the logical Toffoli gate, it requires fewer resources to
implement than the logical Toffoli, as it uses the standard,
simpler Rydberg gates RðC1; C2;TÞ instead of the more
complicated bias-preserving CNOT pulse sequences (see
Table II). Thus, this operation may be useful for reducing
the resource cost of certain quantum algorithms.

C. Scalable implementation

We now discuss some important considerations for the
scalable implementation of our Ryd-3 protocol, including
the geometrical layout, resource requirements, and poten-
tial improvements.

1. Geometrical layout

Based on the implementations of logical gates, stabilizer
measurement, and the underlying bias-preserving CNOT

given in the previous sections, we find that a convenient
geometry is to place data and ancilla atoms on the vertices
of a triangular lattice as shown in Fig. 1(d), with three data
atoms comprising a logical qubit. In this configuration, the
logical qubits form a coarser triangular lattice, as in the case
of Ryd-7. As discussed in Sec. VA, two Rydberg states
with different blockade radii RB;1 > RB;2 are required to
implement the bias-preserving CNOT gate. Based on the
interaction ranges required for performing fault-tolerant
stabilizer measurements and logical operations as described
previously, we find that the larger blockade radius must be
greater than 3d [dark gray in Fig. 1(d)], where d is the
nearest-neighbor spacing on the square lattice; this is
required for some of the physical gates in the logical
CCZ and Toffoli gates. On the other hand, the smaller
blockade radius RB;2 should be strictly between d and 2d
for efficient implementation of the bias-preserving CNOT

and fault-tolerant stabilizer measurements [light gray
in Fig. 1(d)]. Details on how to obtain the requirement
RB;1 > 3d can be found in Appendix I.
Alternatively, the data and ancilla atoms can be placed on

the vertices of a square lattice in an alternating fashion (see
Appendix K). In this case, the blockade radius require-
ments are RB;1 > 3.61d and d < RB;2 < 2d. For both the
triangular lattice and square lattice geometries, experimen-
tal developments allowing for rearrangement of atoms
while preserving the coherence of hyperfine ground states
could be used to further reduce the requirement on RB;1 and
eliminate the need for a second set of Rydberg states with
blockade radius RB;2.

2. Resource comparison

We now compare the resource cost of our Ryd-3 protocol
with our Ryd-7 approach and the traditional general-
purpose proposals of Refs. [25,31]. Compared to the
seven-qubit approaches, we find that the number of

FIG. 10. Implementing the logical Hadamard in the repetition
code using the logical Toffoli gate, as discussed in Ref. [43].
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entangling gates required for extraction of all stabilizers for
error correction is significantly reduced due to the smaller
number of data atoms and stabilizers per logical qubit,
without a substantial increase in the number of required
ancillas (Table I). On the other hand, while the cost of
performing a logical CCZ gate is essentially the same as in
Ryd-7, the number of gates required for a logical Hadamard
is larger (Table II), because the Hadamard gate is not
transversal using the repetition code. Notice that each CNOT

gate in a stabilizer measurement translates to two two-atom
entangling gates and one three-atom entangling gate in the
bias-preserving implementation; this is reflected in Tables I
and II (more details on obtaining the Ryd-3 resource costs
can be found in Appendix H). Nevertheless, the number of
required gates is still very modest compared to logical
operations in other universal FTQC gate sets. As a result,
we believe that the substantial resource cost reduction for
stabilizer measurements and the improved efficiency in
using fewer atoms make the three-atom approach very
promising for near-term implementation.

3. Improvements

While our bias-preserving CNOT suppresses X-type errors
to leading order, the amount of bias preservation is ultimately
limited by the decay rate of the stretched Rydberg D state
into the qubit states. To further suppress these errors, one can
shelve to stretched Rydberg states with higher angular
momentum, which have a lower decay rate to the qubit
states. Alternatively, one can also use an atomic species with
higher nuclear spin, where the qubit states can be separated
from the stretched Rydberg state by a larger amount jΔmFj.
Likewise, one could also increase the magnetic field in the
experimental setup to suppress the rate of transitions with
high jΔmFj. To achieve suppression beyond the leading
order, one can then use more Rydberg shelving states in the
target atom pulse sequence in Fig. 7 and more ancillas to
suppress the effects of control atom decay.
The Ryd-3 hardware-tailored FTQC approach inherently

addresses errors due to Rydberg pulse imperfections in
addition to those arising from the finite Rydberg state
lifetime, as these errors fall within a subset of the radiative
decay errors. As in the Ryd-7 case, the Ryd-3 approach can
also be enhanced to further protect against atom loss errors
at the expense of additional physical operations by incor-
porating the atom loss detection scheme described in
Appendix C in between Rydberg operations.

VI. FURTHER CONSIDERATIONS TOWARDS
EXPERIMENTAL IMPLEMENTATION

In this section, we discuss further considerations on how
our FTQC protocols can be implemented in near-term
experiments. Recent experiments using neutral alkali atom
systems have already achieved near-deterministic trapping,
loading, and rearrangement of tens to hundreds of atoms into

two-dimensional lattice structures such as the triangular
lattice needed for our protocol [4,5,14,62]. Furthermore,
high-fidelity manipulations within the ground-state manifold
and two- and three-atom Rydberg blockade-mediated entan-
gling gates have been demonstrated [9,12,13]. Blockade
interactions between Rydberg atoms separated by 3 times the
lattice spacing, which is the interaction range required for
both of our protocols, have also been realized [8].

A. Measurements and feed-forward corrections

To perform QEC, an important ingredient is the ability to
measure the states of ancilla qubits and/or detect Rydberg
population and perform feed-forward corrections. Several
approaches can be considered. One promising way to
rapidly measure individual qubit states is to resonantly
drive a cycling transition and detect the scattered photons
[63]. At lattice spacings of a few microns, this detection
scheme could be limited by atom heating and crosstalk
from the reabsorption of scattered photons by neighboring
atoms [64]. To this end, recent developments in coherent
transport of entangled atom arrays [18] can be used to
mitigate these effects by moving the selected ancillary
atom(s) into a detection zone far away from the rest of the
array before it is measured.
To estimate the maximum speeds of coherent transport

before atom loss and heating become significant, one can
consider the harmonic oscillator potential (i.e., the optical
tweezer) that the atom is trapped in. Following the analysis
in Refs. [18,65], the average energy increase to the atom is
ΔE ¼ mjãðω0Þj2=2, where m is the particle mass and
ãðω0Þ is the Fourier transform of the acceleration profile
aðtÞ evaluated at the trap frequency ω0. When aðtÞ is linear
in time, this energy depends on the total displacement D
and the time of movement T as approximately ΔE ¼
36mD2=ðω2

0T
4Þ. Based on this estimate, it is reasonable to

achieve substantial atom displacements D> 50 μm within
250 μs for performing feed-forward applications: For
typical trap frequencies ω0 ≈ 2π × 50 kHz, the atom’s
vibrational quantum number increases by only ΔN < 1.
Indeed, such transport has been demonstrated in Ref. [18]
without significant decoherence or atom loss due to
heating. Moving the atoms by a distanceD then suppresses
reabsorption rates during ancilla readout to σ=ð4πD2Þ,
where σ is the absorption cross section [64]. Moreover,
detuning the optical transitions for ancilla atoms by Δ
further suppresses reabsorption by a factor of approxi-
mately ðΓ=2ΔÞ2, where Γ is the resonance linewidth, and
Δ> 10Γ can be readily achieved with moderate powers of
a light-shifting beam [64]. Between moving and light
shifting the ancillary atoms, crosstalk errors on the data
qubits can be suppressed by 5 or more orders of magnitude,
to negligible levels.
Alternatively, the measurement of ancilla qubit states can

be achieved by using two different atomic species for the
data and ancilla atoms (such as two different isotopes of
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the same atom or two different atomic species). In this
approach [44,45], the ancilla atoms can still interact with
the data atoms when both are coupled to Rydberg states,
while they can be measured independently without dis-
turbing the data atom states.
Finally, fast detection schemes were recently demon-

strated in experiments with small atomic ensembles using
Rydberg electromagnetically induced transparency (EIT)
[46]. These could be potentially utilized to identify
Rydberg population after entangling gates. These schemes
could be incorporated into the tweezer array platforms by
creating larger, elongated traps at selected locations con-
taining optically dense atomic ensembles. In this approach,
the Rydberg blockade effect leads to a sharp signature
in the absorption spectrum of a weak EIT probe beam
depending on whether a nearby Rydberg atom is present.
Because of the collectively enhanced Rabi frequency, the
detection time can be reduced to approximately 6 μs [46],
comparable to the duration of an entangling gate. This
ultrafast, nondestructive Rydberg-atom detector thus pro-
vides a promising implementation for the measurement and
feed-forward corrections needed for our protocols.

B. Implementation with alkaline-earth(-like) atoms

In this work, we focus primarily on developing FTQC
protocols for neutral alkali atoms coupled to Rydberg
states. Recently, significant progress has also been made
toward using alkaline-earth(-like) atoms such as Sr and Yb
for Rydberg-based quantum computations [47,48]. In this
section, we show how our methods can also be applied for
such setups. While we focus on an example of 87Sr for
concreteness, our discussion is generic for fermionic
species of alkaline-earth(-like) atoms.
For alkaline-earth(-like) atoms, the 1S0 ground states have

no electronic orbital or spin angular momentum, so the only
source of degeneracy is the nonzero nuclear spin (which can
be quite large; e.g., I ¼ 9=2 for 87Sr). For our protocols, a
most convenient qubit encoding uses the stretched ground
states: j0i≡ jmI ¼ −Ii, j1i≡ jmI ¼ þIi. In this encoding,
strong cooling and state readout can be implemented via
the 1S0 ↔ 1P1 transition, while narrow-line cooling can be
performed on the 1S0 ↔ 3P1 transition. Entangling gates can
be implemented by selectively exciting the j1i state to a
stretched Rydberg 3S1 state. This state selectivity can be
achieved by coherently mapping one of the qubit states to
the 3P0 clock state, performing Rydberg pulses between the
clock state and the Rydberg state, and mapping back to the
1S0 ground state, where we utilize the linear Zeeman shift in
the clock transition arising from hyperfine coupling between
the 3P0 and 3P1 states [66]. The relevant level diagram is
shown in Fig. 11 for the case of 87Sr (see also Ref. [67]).
During these entangling operations, an atom in the

Rydberg state may undergo various errors such as BBR
transitions, RD, or intermediate state scattering as described

in Sec. III. For alkaline-earth(-like) atoms, the resulting
Kraus operators can be described by Pauli-Z errors and
quantum jumps to Rydberg states, 1S0 ground states, or
metastable 3P states as allowed by dipole selection.
Following our approach for alkali atoms, we must convert

all such errors to Pauli-Z errors to apply our FTQC
protocols. By using ancilla atoms and the blockade effect,
the quantum jumps to Rydberg states can be corrected in the
same fashion as for alkali atoms. However, due to the
presence of metastable 3P levels, the correction of non-
Rydberg leakage errors is more complicated, and the optical
pumping must be done in two stages (see Fig. 11): (i) Use
σþ-polarized light from the 3P0;2 states to the triplet excited
3S1 state to repump all 3P states to the 3P1 manifold; these
states decay back into the 1S0 ground states. (ii) Use σþ-
polarized light on the narrow-line cooling transition 1S0 ↔
3P1 to pump ground states with mF > −I to the stretched
ground state j1i ¼ jmI ¼ þIi. After these two steps, all
non-Rydberg leakage errors are mapped to the error j1ih1j,
which is expressible in terms of Pauli-Z errors. We note
that, while Pauli-X errors could, in principle, arise from
polarization impurities in the 1S0 ↔ 3P1 beam in the second
stage, this would require several consecutive polarization
imperfections, each of which has a very low probability of
roughly 0.2%–0.5%; thus, the overall probability of Pauli-X
errors arising from imperfect polarization is negligible.
Therefore, by using this optical pumping scheme to convert
all non-Rydberg leakage errors to Z errors, the FTQC
schemes in Secs. IV and V can be implemented in alka-
line-earth(-like) atoms.

FIG. 11. Relevant level diagram for implementing our FTQC
protocols with neutral alkaline-earth Rydberg atoms such as 87Sr.
The qubit is encoded in the stretched 1S0 ground state (orange).
Transitions to a 5SnS, 3S1 Rydberg state can be driven by first
coherently mapping one of the qubit states to the 3P0 clock state
and then exciting the clock state to the Rydberg state (R, black).
Optical pumping to correct for non-Rydberg leakage is imple-
mented in two stages by driving the light blue transitions (P1)
followed by the dark blue transition (P2). State readout and
strong cooling for state initialization are implemented via the
1S0 ↔ 1P1 transition (C, red), while narrow-line cooling can be
implemented via the P2 transition.
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VII. CONCLUSIONS AND OUTLOOK

In this work, we have presented a detailed analysis of the
dominant error channels arising in quantum computation
using neutral Rydberg atoms. We show that, although the
multilevel nature of atoms and the complex decay channels
for Rydberg states lead to many additional types of errors not
considered in traditional QEC settings, the specific structure
of the error model allows us to design hardware-efficient
FTQC protocols based on the seven-qubit and hardware-
tailored three-qubit codes with significantly reduced over-
head compared to general-purpose schemes. The crux of
these results is the ability to convert the complicated error
model to Pauli-Z errors by introducing ancilla atoms and
making use of the Rydberg blockade effect, dipole selection
rules, and new schemes for optical pumping. To use the
three-atom repetition code, we designed a new laser pulse
sequence to implement bias-preserving CNOT and Toffoli
gates. For both protocols, we propose simple, scalable
geometrical layouts and demonstrate feasibility of all com-
ponents of FTQC for near-term implementation.
Our results provide an important step toward building

large-scale quantum computers based on neutral-atom setups
and highlight the importance of designing FTQC schemes
based on the specific structure of the error model and the
unique capabilities of the hardware platform. Compared
to some general-purpose FTQC protocols, our hardware-
efficient approaches for Rydberg systems enable an order-of-
magnitude improvement in resource overhead in terms of the
number of physical gates or required ancillas. We believe
many of the ideas developed in this work, such as the
exploitation of themultilevel structure of the physical system,
are transferable to other quantum computing platforms such
as trapped ions and superconducting qubits. In the former
case, an optical pumping-based protocol to mitigate leakage
in ions with low nuclear spin such as 171Ybþ was recently
developed and realized experimentally [68]; we believe that
insights from our work would be helpful for developingmore
general leakage correction methods in such setups and
incorporating them into FTQC protocols.
Several interesting extensions can be considered. For

example, while we have primarily quantified the resource
cost for FTQC proposals by studying the number of qubits
and gates required, another related and commonly used
metric is the error threshold, which amounts to the physical
qubit and gate fidelities required to produce logical error
rates that are lower than the physical error rate. One may
estimate the error thresholds for two- and three-qubit gates
directly by using the numbers presented in Tables I and II
and requiring each logical operation or stabilizer measure-
ment step to have at most a single error, but it can be more
useful to obtain the precise numbers for these thresholds via
numerical simulation.
A more detailed study of the error threshold would be

especially helpful if one intends to extend our work to
codes with distance greater than 3 and compare the relative

performance and scalability of these approaches with our
current proposal. One particularly intriguing direction
could be to evaluate the performance and resource cost
of existing FTQC protocols based on topological codes
such as surface codes or color codes [41,69–73] upon
applying our techniques to address Rydberg and non-
Rydberg leakage errors. Indeed, one recent work has
already demonstrated ultrahigh error threshold in the sur-
face code when the underlying noise model is biased [74];
this motivates the use of surface codes in a Rydberg system
where dominant errors have all been converted to Pauli-Z
type. For near-term implementations, more detailed studies
considering a combination of current experimental capa-
bilities and specific technical imperfections together with
the intrinsic Rydberg state decay errors may also allow for
improved error rates in encoded qubits and operations.
Finally, after eliminating all of the Rydberg-specific leak-
age errors using our FTQC protocols, one could concat-
enate our codes with more traditional QEC approaches to
address any higher-order Pauli-X or Y-type errors that were
neglected in our studies or to further suppress the logical
error rate to even higher orders.
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APPENDIX A: NUMERICAL COMPUTATION OF
BRANCHING RATIOS AND TRANSITION RATES

In this section, we present the results of numerical
computation of branching ratios for BBR and RD tran-
sitions out of the stretched Rydberg state 70S1=2,mJ¼1=2,
mI ¼ 3=2 for 87Rb.
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1. Blackbody radiation-induced transitions

To quantify the relative probability of transitioning into
different nearby Rydberg P states, we compute the rate
WðnL → n0L0Þ of BBR transitions from a given Rydberg
state nL to other Rydberg states n0L0 using the Planck
distribution of photons at the given temperature T and the
Einstein coefficient for the corresponding transition:

WðnL → n0L0Þ ¼ AðnL → n0L0Þn̄ω; ðA1Þ

where ω ¼ EnL − En0L0 is the transition frequency (EnL and
En0L0 are energies of the initial and final states, respecti-
vely) and

AðnL → n0L0Þ ¼ 4ω3

3c3
Lmax

2Lþ 1
R2ðnL → n0L0Þ: ðA2Þ

In the above equations, ℏ ¼ 1, Lmax ¼ maxðL;L0Þ, and
RðnL → n0L0Þ is the radial matrix element for the electric
dipole transition nL → n0L0.
For this work, we use analytic formulas from

Refs. [75,76] to numerically compute the radial dipole
matrix elements for single-photon BBR transitions from the
stretched Rydberg state 70S1=2, mJ ¼ 1=2, mI ¼ 3=2 of
87Rb. We then compute the corresponding transition rates
using Eq. (A1) and normalize these by the total BBR rate
ΓBBR [see Eq. (3)] to obtain the branching ratios. The
branching ratios for P states with mJ ¼ 3=2 and mJ ¼ 1=2
are plotted in Fig. 12 as empty orange circles and filled
blue diamonds, respectively. Indeed, we find that the atom
decays primarily to the 69P and 70P states as illustrated
in Fig. 1(c).

2. Radiative decay

As shown in Fig. 1(c) in the main text, the radiative
decay transitions from the stretched 70S1=2, mJ ¼ 1=2,

mI ¼ 3=2 Rydberg state of 87Rb are almost entirely two- or
four-photon decay processes to one of the five states in the
ground-state manifold; this fact is important for converting
all Rydberg errors to Z type for fault-tolerant quantum
computation. To justify this, we numerically compute the
branching ratios for multiphoton spontaneous emission
processes by evaluating the ratios of individual transition
rates for each decay channel, which are given by the Einstein
A coefficients in Eq. (A2). Because of the cubic dependence
of these coefficients on the transition frequency, the primary
contributions arise from dipole-allowed transitions to states
near the ground-state manifold. The dipole matrix elements
for such transitions scale with the effective principal quan-
tum number neff of the Rydberg state as approximately
1=n1.5eff . The total RD rate is then given by a sum over
Einstein coefficients for all possible target states:

1

τ0
¼ Γ0 ¼

X
n0L0∶EnL>En0L0

AðnL → n0L0Þ: ðA3Þ

By computing the radial dipole matrix elements using
analytic formulas from Refs. [75,76], we evaluate the
branching ratios for RD processes out of the 70S1=2,
mJ ¼ 1=2, mI ¼ 3=2 stretched Rydberg state for 87Rb.
The results of this computation are shown in Table IV.

Indeed, we find that the branching ratios for the remaining
three states are each on the order of 10−3, significantly
smaller than those for the dominant five transitions. If the
total error probability is already very small, these three
processes (in particular, the decay to the stretched state with
minimal mF ¼ −2) are highly unlikely.

APPENDIX B: AN EXAMPLE OF
MASTER EQUATION SOLUTION FOR

RADIATIVE DECAY

In Sec. III B, we argue that the Kraus operators corre-
sponding to spontaneous emission events from the Rydberg
state jri to the qubit j1i are

TABLE IV. Branching ratios for transition to each ground state
of 87Rb for radiative decay processes from the 70S1=2, mJ ¼ 1=2,
mI ¼ 3=2 stretched Rydberg state, accounting for transitions
involving up to four-photon emission processes. The contribution
from transitions of even higher order is less than 2.5 × 10−4.

F mF Branching ratio

2 2 0.534
2 1 0.177
2 0 0.055
2 −1 0.003
2 −2 0.001
1 1 0.168
1 0 0.059
1 −1 0.003

FIG. 12. Branching ratios for BBR transitions between
Rydberg states of 87Rb, from the stretched 70S1=2 state with
mJ ¼ 1=2, mI ¼ 3=2 to different P states with mJ ¼ 3=2 (empty
orange circles) or mJ ¼ 1=2 (filled blue diamonds).
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M0 ¼ jrihrj þ αj1ih1j þ βj0ih0j;
Mr ∝ jrih1j; M1 ∝ j1ih1j; M2 ∝ j0ih0j; ðB1Þ

where α, β, and the proportionality constants depend on the
specific Rydberg pulse being performed and the probability
for an atom in the Rydberg state to decay to the j1i state.
We now proceed to derive these constants for the special
case of a 2π pulse on the Rydberg transition j1i ↔ jri by
analytically solving the quantum master equation. For this
example calculation, we ignore BBR transitions and RD
transitions to other hyperfine states; these can be included
as a straightforward extension.
The master equation for this driven three-level system is

(setting ℏ ¼ 1)

dρ̂
dt

¼ −i½Ĥd; ρ̂� −
γ

2
ðĉ†ĉ ρ̂þρ̂ĉ†ĉ − 2ĉ ρ̂ ĉ†Þ; ðB2Þ

where ρ̂ denotes the density matrix of the system, Ĥd ¼
iΩðjrih1j − j1ihrjÞ is the driving Hamiltonian, ĉ ¼ j1ihrj is
the quantum jump operator corresponding to spontaneous
emission jri ↦ j1i, and γ is the probability for an atom in
the Rydberg state to decay to j1i. We assume the qubit is
initially encoded in the hyperfine manifold Spanfj0i; j1ig,
so that the initial density matrix can be written as

ρ̂0 ¼

2
64
0 0 0

0 ρ11 ρ10

0 ρ01 ρ00

3
75 ðB3Þ

(we order the matrix columns and rows as fjri; j1i; j0ig).
Upon solving the resulting coupled first-order differential
equations, we find that the final state after the 2π pulse with
decay is, to leading order in γ=Ω,

ρ̂f¼

2
64
3γtπρ11=4 0 0

0 ð1−3γtπ=4Þρ11 −e−γtπ=2ρ10
0 −e−γtπ=2ρ01 ρ00

3
75: ðB4Þ

Here, tπ ¼ ½π=ð2ΩÞ� is the duration of a π pulse. Indeed,
Eq. (B4) confirms our intuition from Sec. III B that the
coherences ρr1 and ρ1r vanish upon “averaging” over all
possible transition times during the 2π pulse.
One can then verify that, to leading order in γ=Ω, the

Kraus operators

M0 ¼ jrihrj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
j0ih0j

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − p1Þð1 − p2Þ

p
j1ih1j; ðB5Þ

Mr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1ð1 − p2Þ

p
jrih1j; ðB6Þ

M1 ¼
ffiffiffiffiffi
p2

p j1ih1j; ðB7Þ

and

M2 ¼
ffiffiffiffiffi
p2

p j0ih0j ðB8Þ

give rise to the desired evolution from ρ0 to ρf provided we
take p1 ¼ 3γtπ=4 and p2 ¼ γtπ=8.

APPENDIX C: ATOM LOSS ERRORS

As mentioned in Sec. III D in the main text, neutral-atom
setups can also suffer from atom loss errors if the trapping
is imperfect or if the trapping lasers need to be turned off
during Rydberg excitation (e.g., as done for 87Rb in
Ref. [8]). Fortunately, such errors can also be detected
and corrected within our FTQC framework at the cost of
one ancilla qubit and some extra gates for each operation.
In particular, an atom loss event can be detected by
applying the circuit in Fig. 13 for each data qubit after
using the optical pumping technique to correct for leakage
out of the computational subspace. The ancilla measure-
ment then producesþ1 in the presence of atom loss and −1
if such an error does not occur. Once detected, an atom loss
error can be converted to a single-qubit Pauli-Z or X-type
error if a reservoir of atoms is available, for instance, by
replacing the lost atom with a new atom initialized to the
j0i state.
We now discuss the steps needed for establishing

robustness against errors occurring during this circuit.
As in the case of fault-tolerant Rydberg leakage detection
discussed in Appendix D, to protect against ancilla errors
in Fig. 13, we again adopt a multistep ancilla measure-
ment protocol and require two positive ancilla measure-
ments to confirm an atom loss error. On the other hand,
any phase-flip error on the data qubit cannot propagate to
more than a single physical qubit error per logical qubit
in the universal gate set implementations for Ryd-7 or
Ryd-3. Leakage errors (Rydberg or non-Rydberg) can be
addressed by repeating the respective repumping proce-
dures after applying the atom loss detection circuit. Thus,
by incorporating this circuit into the implementation of
fault-tolerant stabilizer measurements and logical oper-
ations in Secs. IV and V, we can also address atom loss
errors in our FTQC protocols.
Notice that this circuit can be used for atom loss after

correcting for leakage into atomic states outside the
computational subspace by using the blockade effect and
optical pumping techniques. In addition, this approach does
not distinguish between atom loss and leakage into other
hyperfine states, so it can also be used to suppress any
residual hyperfine leakage errors.

FIG. 13. Circuit for detecting atom loss.
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APPENDIX D: CONVERTING RYDBERG
LEAKAGE TO PAULI ERRORS

Once a Rydberg leakage error is detected, it can be
converted to an atom loss error by ejecting the Rydberg
atom, which is naturally done by the antitrapping potential
from the tweezer [18] and can be expedited by pulsing a
weak, ionizing electric field [57,59,60]. The exact location
of the ejected atom can be determined by following the
atom loss protocol outlined in Appendix C and Fig. 13 [77];
subsequently, the ejected atom can be replaced with a fresh
atom prepared in the j1i state. Although this process simply
replaces the Rydberg atom by an atom in the j1i state, by
using the operator identity j1ih1j ¼ 1

2
ð1 − ZÞ, it is straight-

forward to see that the resulting state is now a superposition
of the original state without error and the same state with a
Z error on this physical qubit. Such Z-type errors can be
detected and corrected for using stabilizer measurements in
both the seven-qubit and three-qubit codes. This procedure
can also be modified to convert the Rydberg leakage error
to a Pauli-X-type error by applying Hadamard gates at the
beginning and end; this is used in the logical CCZ gate for
Ryd-7 (see Algorithm 3).
To reduce the need for applying the atom loss correction

circuit, one could add a preventative step after every
entangling gate which incoherently repumps any remnant
population in several most probable Rydberg states into the
qubit j1i state. This repumping can be implemented via the
following three-step procedure.
(1) Swap the population in j1i and the stretched ground

state jF ¼ I þ 1=2; mF ¼ I þ 1=2i.
(2) For the most probable final states jr0i of a BBR

transition (or the Rydberg state jri in the case of RD),
perform a Rydberg laser pulse that sends jr0i (or jri)
to a short-lived P state. In particular, we choose the P
state with the smallest possible n, largest possible F,
and largest possible mF. This state quickly decays to
the stretched state jF ¼ I þ 1=2; mF ¼ I þ 1=2i and
cannot decay to any other ground state.

(3) Repeat step 1.
By applying this procedure preventatively, one can
convert a large fraction of Rydberg leakage errors to
Z-type errors without the need for the atom loss correction
circuit in Fig. 13.

APPENDIX E: FAULT-TOLERANT DETECTION
OF RYDBERG LEAKAGE ERRORS

As mentioned in the main text, for fault-tolerant error
detection and correction, it is important to address any
errors that may occur on an ancilla used to probe for
Rydberg population. This can be done by using a multistep
measurement procedure to detect leakage for the
ancilla qubit.
(1) Perform a Hadamard gate on the ancilla.

(2) Check whether the ancilla is in the j1i state (e.g., by
coupling j1i to a cycling transition and detecting
fluorescence).

(3) Perform an X gate on the ancilla.
(4) Check for j1i population again.

If neither the second nor the last step yields j1i, the ancilla
atom must have undergone a leakage error. In that case,
we convert any possible ancilla atom Rydberg error to a
possible Z-type error as described in Appendix D.
Similarly, because the Rydberg pulses can potentially cause
a phase-flip error on the ancilla qubit, if a Rydberg leakage
error is detected by the ancilla, the detection protocol must
be repeated once more to ensure that the outcome does not
result from such an error.

APPENDIX F: ERROR SYNDROMES WITH
POSTPONED MEASUREMENTS

In Sec. IVA, we discuss how Rydberg leakage detection
can be postponed in the Ryd-7 stabilizer measurement and
controlled-phase gate protocols to facilitate experimental
implementation. This relies on the ability to use stabilizer
measurements to distinguish between the possible corre-
lated errors that can result from postponed detection of a
Rydberg leakage error. Here, we present details on how to
use error syndromes to identify the corresponding corre-
lated error in each case. As in the main text, we assume the
stabilizers for the Steane code are ordered as

g1¼ IIIXXXX; g2¼ IXXIIXX; g3¼XIXIXIX;

g4¼ IIIZZZZ; g5¼ IZZIIZZ; g6¼ZIZIZIZ: ðF1Þ

For the stabilizer measurement, we consider (without
loss of generality) the measurement of g1 on qubits 4–7
using a circuit of the form shown in Fig. 1(b). If a Rydberg
leakage error occurs on the ancilla atom at any point, the
data atoms do not suffer any correlated errors. On the other
hand, if a data atom suffers a Rydberg leakage error during
the circuit, the possible correlated errors that can result are
X5X6X7, X6X7, or X7. These errors can be distinguished by
measuring the Z⊗4 stabilizers of the seven-qubit code; the
corresponding error syndromes are shown in Table V.

TABLE V. Using error syndromes to distinguish between
correlated errors resulting from postponed detection of Rydberg
leakage during measurement of the X4X5X6X7 stabilizer in the
Ryd-7 FTQC protocol. Because the possible correlated errors are
all products of Pauli-X errors, we show the corresponding values
of Z⊗4 stabilizer measurements.

Error g4 g5 g6

X5X6X7 −1 þ1 þ1
X6X7 þ1 þ1 −1
X7 −1 −1 −1
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For the case of the logical CCZ gate, we group the 27
physical Rydberg gates into groups Gi of three and perform
Rydberg leakage detection after each group. Without loss
of generality, we consider the group G1 in Fig. 3. There
are two possible correlated errors that could result from
the delayed detection of Rydberg leakage in this case
(up to a single-qubit error within each logical qubit):
Rð2A; 2B; 2CÞRð3A; 3B; 3CÞ and Rð3A; 3B; 3CÞ. By writing
the Rydberg gate as

Rðj; k; lÞ ¼ ð1þ ZjÞð1þ ZkÞð1þ ZlÞ − 1; ðF2Þ

we find that the two cases can be distinguished by
measuring the stabilizers g2 and g3 for each of the logical
qubits. In the former case, at least one of the logical qubits
has either a Z2 or Z2Z3 error, giving rise to stabilizer
eigenvalues ðg2; g3Þ ¼ ð−1;þ1Þ or ðþ1;−1Þ, while in the
latter scenario, all three sets of stabilizer measurements
yield ð−1;−1Þ or ðþ1;þ1Þ.

APPENDIX G: IMPLEMENTATION OF A
BIAS-PRESERVING TOFFOLI GATE

In Fig. 8, we show how an ancilla atom can be used to
eliminate X-type errors resulting from control atom decay
in the implementation of a bias-preserving CNOT gate.
Analogously, a bias-preserving Toffoli gate can be imple-
mented by making use of two ancilla atoms which lie on
either side of the target atom. This protocol is illustrated
in Fig. 14.
As with the case of the bias-preserving CNOT, the choice

of Rydberg states differs throughout the procedure. By
coupling the atoms to jr2;�i during the third gate in Fig. 14
and using ancilla atoms on opposite sides of the target
atom, we ensure that the ancilla atoms do not interact with
each other via Rydberg blockade during this gate; this is

important in case one of the ancilla atoms undergoes a
radiative decay transition during this gate. On the other
hand, the other entangling gates in Fig. 14 all use the
Rydberg states jr1;�i, due to larger distances between the
atoms during these gates. We note that the two control
atoms may interact with each other during these four gates
if the distance between them is less than one blockade
radius, which is different from the case of the third gate.
This is acceptable, because Rydberg errors can occur
during at most one of these four gates, so at least one
ancilla atom generates the correct interaction with the target
atom during the third gate.

APPENDIX H: COMPUTING RESOURCE COSTS
FOR RYDBERG FTQC PROTOCOLS

We now provide details on how to obtain the resource
costs for Ryd-7 and Ryd-3 presented in Tables I and II.
For the Ryd-7 protocol, each stabilizer measurement

requires four two-qubit Rydberg gates in the absence of
errors (see Algorithm 1); thus, 24 two-qubit gates are
required to measure all stabilizers. If an error occurs, the
worst-case scenario for the stabilizer measurement is when
the first five stabilizers all have þ1 eigenvalues, while the
very last stabilizer is measured to be −1. In this case, g4, g5,
and g6 need to be remeasured, which requires 12 additional
two-qubit gates. The logical CCZ gate for Ryd-7 is
implemented using 27 physical three-qubit gates in the
absence of error, as described in Algorithm 3. The worst-
case error in this case is a Rydberg leakage error that
occurred during the first entangling gate in the final group
G9 in Fig. 3. In this scenario, identifying the location of the
Rydberg leakage error requires up to 18 additional two-
qubit gates, while measuring the stabilizers g2; g3;…; g6 for
all three logical qubits amounts to 60 additional two-qubit

FIG. 14. Using two ancilla qubits and multiple Rydberg states to implement a bias-preserving Toffoli gate between control atoms C1

and C2 and target atom T. The ancilla atoms (A1 and A2) are chosen to lie on either side of the target atom. The dotted boxes indicate the
most natural bias-preserving three-qubit gate for Rydberg systems, where π pulses j1i ↔ jrþi are applied to each of the first two (i.e.,
the upper two) involved atoms, the bias-preserving pulse sequence in Fig. 7 is applied to the third (lower) atom, and −π pulses
j1i ↔ jrþi are applied to the first two qubits; the Rydberg states jr�i are chosen to be either jr1;�i or jr2;�i for each such gate. In this
circuit, we set jr�i ¼ jr1;�i in the first, second, fourth, and fifth cases while choosing jr�i ¼ jr2;�i for the third one. With this choice of
Rydberg levels, the two ancillas do not interact with each other during the third Rydberg gate. However, we note that the two control
atoms may interact with each other during the first, second, fourth, and fifth entangling gates if the distance between them is less than
one blockade radius; this is not problematic, because Rydberg errors can occur during at most one of these gates, so at least one ancilla
atom generates the correct interaction with the target atom during the third gate.
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gates; the correction circuit could require up to two addi-
tional three-qubit gates.
In the Ryd-3 protocol, each of the two stabilizer

measurements requires two bias-preserving CNOT gates
[Fig. 1(e)], and each bias-preserving CNOT gate is broken
down to two two-atom gates and one three-atom entangling
gate (see Sec. VA). Thus, in the absence of error, the
stabilizer measurements require eight two-qubit gates and
four three-qubit gates. If an error occurs, the worst-case
scenario is if the second stabilizer is measured to be −1; in
this case, both stabilizers need to be remeasured, and the
gate cost is doubled. The Ryd-3 CCZ gate can be
implemented in a round-robin fashion in the same way
as the Ryd-7 CCZ, which is bias preserving and uses 27
physical three-qubit gates.
Finally, the Ryd-3 Hadamard gate consists of a fault-

tolerant, bias-preserving Toffoli gate followed by single-
qubit measurements and rotations (Fig. 10). The pieceable
fault-tolerant Toffoli gate in the Ryd-3 code consists of nine
physical bias-preserving Toffoli gates and two rounds of
error correction. As discussed above, each round of error
correction involves eight two-atom Rydberg gates and four
three-atom Rydberg gates. When the data atoms within
each logical qubit are indexed as in Fig. 15(b) and we are
implementing a logical Toffoli gate CCXABC between the
three qubits A, B, and C highlighted in bold, the number of
Rydberg gates required to implement each physical Toffoli
gate depends on the blockade radius RB;1. If the blockade
radius RB;1 is larger than 3.61d, each physical Toffoli gate
can be implemented using two ancilla atoms (one on either
side of the target atom) and five three-atom Rydberg gates,
as described in Appendix G; this is because the distance
between any physical control atom Ci and any ancilla Aj in
Fig. 14 is always less than the blockade radius RB;1, so the
entangling gates can be implemented directly. In this case,
each physical Toffoli gate involves five three-atom Rydberg
gates, so the total gate count (upon including the QEC
steps) is 16 two-atom gates and 53 three-atom gates in the
absence of errors. On the other hand, if we wish to reduce
the blockade radius requirement to RB;1 > 3d, there are
two physical Toffoli gates (corresponding to the choices
jA ¼ lC ¼ 1, kB ¼ 2 and jA ¼ lC ¼ 3, kB ¼ 2), where the
distance between one of the physical control atoms and one
of the ancilla atoms [2B and A3 in Fig. 15(b)] is too large to
directly implement a Rydberg entangling gate required for
the physical Toffoli gate. Instead, in place of the first
(respectively, second) three-atom Rydberg gate involving
A3, we implement a Rydberg gate with the same two
control atoms and one of the ancilla atoms A1 or A2,
whichever is not involved in the rest of the Fig. 14 circuit,
followed (respectively, preceded) by a bias-preserving
CNOT gate between that ancilla and A3. These gates can
be implemented directly, because both A1 and A2 are within
the blockade radius of 2B, 1A, 2A, 3A, and A3. In this way,
four extra two-atom gates are required for the logical

Toffoli (two for the physical Toffoli with jA ¼ lC ¼ 1,
kB ¼ 2 and two for the physical Toffoli with jA ¼ lC ¼ 3,
kB ¼ 2), which increases the total gate count to 20 two-
atom gates and 53 three-atom gates in the absence of error,
as shown in Table II. With errors, the worst-case scenario is

(b)

(a)

FIG. 15. Example labeling of atoms for the Ryd-7 and Ryd-3
FTQC protocols used to derive the gate counts and blockade
radius requirements. As in Fig. 1, data atoms are shown in blue,
while ancilla atoms are shown in pink. (a) In the Ryd-7 protocol,
each logical qubit consists of seven data atoms (blue dotted
hexagons). For each data atom, a number is used to indicate
which physical qubit of the seven-qubit logical state the atom
encodes. With this labeling, the blockade radius RB is defined by
the interaction range needed to perform a logical CCZ gate
between three neighboring logical qubits such as A, B, and C.
Using the specific CCZ protocol given in Algorithm 3, the
blockade radius requirement is then RB > 3.61d, where d is the
spacing between nearest neighbors on the lattice; this is deter-
mined by the distance between physical atoms 3A and 1C (thinner,
light gray dotted line). However, by using a different set of
physical CCZ gates to implement the logical CCZ, this require-
ment can be reduced to RB > 3d (thicker, dark gray dotted line).
(b) In the Ryd-3 protocol, each logical qubit consists of three data
atoms (blue dotted triangles). For each data atom, a number is
used to indicate which physical qubit of the three-qubit logical
state the atom encodes. With this labeling, the larger blockade
radius RB;1 is determined by the interaction range required for
performing a logical Toffoli gate between three neighboring
logical qubits such as A, B, and C. In this case, there are two
possibilities for RB;1—either RB;1 > 3.61d (thinner, light gray
dotted line) or RB;1 > 3d (thicker, dark gray dotted line). When
the larger blockade radius of 3.61d can be realized, the resource
cost for the logical Toffoli and Hadamard gates can be reduced by
four two-qubit entangling gates compared to the numbers
presented in Table II (see also Appendix I).
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if the final stabilizer measurement in the second round of
QEC yields −1, in which case the stabilizers need to be
measured again; this adds another eight two-atom gates and
four three-atom gates to the total resource cost.

APPENDIX I: COMPUTING RYDBERG
BLOCKADE RADIUS REQUIREMENTS FOR

RYDBERG FTQC PROTOCOLS

To obtain the blockade radius requirement for the
Rydberg FTQC protocols, we must identify each physical
qubit with an atom on the lattice and then determine the
maximum distance between two atoms which must interact
with each other during a Rydberg gate. When the under-
lying atoms are placed in a triangular lattice, Fig. 15 depicts
convenient identifications for both the Ryd-7 and Ryd-3
codes. In this figure, numbers are used to indicate the
indices of data atoms within each logical qubit. [The index
of a physical qubit within each logical qubit is the position,
counting from the left, of that qubit in the definition of the
logical states; see Eqs. (6) and (7) for the seven-qubit code
or Eq. (12) for the three-qubit code.]
In the Ryd-7 protocol, the blockade radius is defined by

the interaction range needed to perform a logical CCZ gate
between three neighboring logical qubits such as A, B,
and C. Using the specific protocol given in Algorithm 3,
which involves 27 physical CCZ gates between atoms
jA; kB; lC ∈ f1; 2; 3g, we find the largest interaction range
is required to perform the physical CCZ gate between
farthest-separated triples such as ðjA; kB; lCÞ ¼ ð3; 3; 1Þ.
For this specific case, the distances between atom pairs are
distðjA; kBÞ ¼ 3d, distðjA; lCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7=2Þ2þ 3=4

p
d≈ 3.61d,

and distðkB; lCÞ ¼ 4d. To apply the three-qubit Rydberg
gate RðjA; kB; lCÞ as defined in Sec. II, this would require a
blockade radius of RB > 4d. However, this is not entirely
necessary for our purposes: Instead, it is sufficient that two
out of the three distances distðjA; kBÞ, distðjA; lCÞ, and
distðkB; lCÞ be less than the blockade radius. To see this, let
us suppose, for example, that the distance between the two
control atoms jA and kB is greater than RB. In this case,
applying the same pulse sequence as illustrated in Fig. 2(b)
results in a three-qubit gate R ¼ diagð1;−1;−1;−1;−1;
−1; 1; 1Þ, which can also be obtained from the CCZ gate by
single-qubit unitaries [R ∝ Y1Y2ðCCZÞX1X2].
The argument above allows the blockade radius require-

ment for Ryd-7 to be reduced to RB > 3.61d (thinner, light
gray dotted line in Fig. 15). In fact, by modifying the
implementation of the logical CCZ gate, it is possible to
further reduce this requirement to RB > 3d (thicker, dark
gray dotted line in Fig. 15); this is shown in Appendix J.
In the Ryd-3 protocol, the blockade radius RB;1 is

determined by the interaction range required to implement
the logical Toffoli gate between neighboring logical qubits
(e.g., A, B, and C in Fig. 15). As discussed in Appendix H,
there are two possibilities in this case. To directly imple-
ment every physical bias-preserving Toffoli gate using the

circuit in Fig. 14, the distance between 2B and A3 must
be less than RB;1; this requires RB;1 >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7=2Þ2 þ 3=4

p
d ≈

3.61d (thinner, light gray dotted line in Fig. 15). However,
this requirement can be reduced to RB;1 > 3d (thicker,
dark gray dotted line in Fig. 15) at the expense of four
additional two-atom entangling gates per logical Toffoli or
Hadamard operation.

APPENDIX J: BLOCKADE RADIUS
REDUCTION FOR RYD-7

To reduce the blockade radius requirement from RB ¼
3.61d to RB ¼ 3d in the Ryd-7 protocol, we must modify
the implementation of the logical CCZ operation. Recall
that Algorithm 3 implements a logical CCZ gate using 27
physical CCZ gates between the first three physical qubits
of every logical qubit. This round-robin decomposition
makes use of Eq. (11), which we now derive:

CCZABC ¼
Y

jA;kB;lC∈f1;2;3g
CCZðjA; kB; lCÞ: ðJ1Þ

To begin the derivation, we first recall that the logical
states (6) and (7) of the seven-qubit code have well-defined
parity: The number of physical qubits in the j1i state is
always even for j0iL and odd for j1iL. It then follows that
the logical CCZ gate can be implemented in a fully round-
robin fashion involving all physical qubits:

CCZABC ¼
Y

jA;kB;lC∈f1;2;…;7g
CCZðjA; kB; lCÞ: ðJ2Þ

This is because the round-robin implementation results
in a −1 phase accumulation for each triple ðjA; kB; lCÞ of
physical qubits in the j1i state, and the number of such
triples is odd if all logical qubits are in the j1iL logical state,
while it is even if at least one logical qubit is in the j0iL
state. To reduce this to Eq. (J1), we notice that for each
choice of jA and kB, the product

Y
lC∈f4;5;6;7g

CCZðjA; kB; lCÞ ðJ3Þ

acts as an identity operation on the logical qubits, because
g4 ¼ Z4Z5Z6Z7 is a stabilizer of the seven-qubit code. We
then multiply both sides of Eq. (J2) by this operator and use
the fact that all the CCZ gates commute with each other
and square to the identity operator. In this way, the product
over lC in the logical CCZ gate can be reduced from
lC ∈ f1; 2;…; 7g to lC ∈ f1; 2; 3g. Because the CCZ gate
is symmetric in the three involved qubits, this same
argument can be applied to reduce the products over jA
and kB to obtain Eq. (J1).
To reduce the blockade radius requirement from

RB ¼ 3.61d to RB ¼ 3d, we can replace the product (J3) by
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Y
lC∈f1;2;4;7g

CCZðjA; kB; lCÞ ðJ4Þ

in our derivation for one of the logical qubits, say, qubit C.
This is because the single-qubit operator Z1Z2Z4Z7 ¼ g2g3
is the product of two stabilizers, so the operator (J4) also
acts trivially on the logical subspace. It follows that

CCZABC ¼
Y

jA;kB∈f1;2;3g
lC∈f3;5;6g

CCZðjA; kB; lCÞ: ðJ5Þ

Thus, the 27 physical CCZ gates in Algorithm 3 may be
replaced by the 27CCZ gates used in the right-hand side
in Eq. (J5).
Given the geometrical layout of individual atoms within

each logical qubit shown in Fig. 15(a), we see that the
required interaction range for implementing the logical
CCZ operation using these 27 gates is smaller than the
interaction range required to perform the 27 gates in
Algorithm 3. Furthermore, following the observation made
in Appendix I, we notice that these nine physical qubits
need not all be within the blockade radius of each other,
so long as every physical qubit jA ∈ f1; 2; 3g is within
distance RB of every lC ∈ f3; 5; 6g, and every kB ∈
f1; 2; 3g is within distance RB of every lC ∈ f3; 5; 6g.
This requirement is satisfied for any RB > 3d, as shown
in Fig. 15(a).

APPENDIX K: SQUARE LATTICE
GEOMETRY FOR RYD-3

As mentioned in Sec. V C in the main text, the Ryd-3
protocol can also be implemented when the underlying
physical atoms are placed on a square lattice. In this case,
the data and ancilla atoms are placed on the vertices of the
lattice in an alternating fashion as shown in Fig. 16. The
stabilizer measurements can be implemented as discussed
in Sec. V B if the smaller blockade radius RB;2 satisfies
d < RB;2 < 2d. The logical operation requiring the largest
interaction range is the logical CCZ gate

CCZABC ¼
Y

jA;kB;lC∈f1;2;3g
CCZðjA; kB; lCÞ; ðK1Þ

which is implemented from 27 physical CCZ gates. To
implement each physical gate, the distance between every
pair ðjA; lCÞ and ðkB; lCÞ must be less than the larger
blockade radius RB;1, as discussed in Appendix I. The
longest such distance is

ffiffiffiffiffi
10

p
d as shown in the dark gray

dotted line in Fig. 16, so the corresponding blockade radius
requirement for this geometry is RB;1 >

ffiffiffiffiffi
10

p
d.

With these blockade radii, the protocols in Sec. V B
can be directly applied to perform all logical operations.
We note that the higher density of ancilla atoms in this
arrangement allows us to implement every physical Toffoli

gate in the logical Toffoli operation directly using the
circuit in Fig. 14, without the need for additional ancilla
atoms or CNOT gates (as is the case for two physical Toffoli
operations under the triangular lattice geometry). In this
way, for the square lattice geometry, the number of two-
qubit entangling operations required for the logical
Hadamard or Toffoli operations may be reduced by four
compared to the numbers shown in Table II.

APPENDIX L: OPTICAL PUMPING PROCEDURE
FOR THE BIAS-PRESERVING CNOT

To implement the bias-preserving CNOT pulse sequence
shown in Fig. 7 in the main text, it is important that the
optical pumping procedure in the final step pumps only the
mF > 0 states to the j1i state and only the mF < 0 states to
the j0i state. This requirement is essential to ensuring that
the CNOT does not generate any X- or Y-type errors. For
magnetic field regimes typically used in alkali atom
Rydberg experiments, this state selectivity may not be
straightforward to implement, as the level separation
between different mF states within a single hyperfine
manifold may be much smaller than the linewidth of the
lasers used for optical pumping. To address this challenge,
we can utilize a Rydberg state as a shelving state (due to its
long lifetime) to avoid unwanted pumping of mF < 0
(respectively, mF > 0) states to j1i (j0i). Thus, in step 6
in Fig. 7, the optical pumping of mF > 0 states into the j1i
state can be implemented for 85Rb as follows.
(1) Swap the population between the j1i state and the

stretched ground state jF ¼ I þ 1=2; mF ¼ I þ 1=2i.

FIG. 16. Square lattice geometry for the Ryd-3 FTQC protocol.
Data (blue) and ancilla (pink) atoms are placed on the vertices of a
square lattice in an alternating fashion, with three data atoms
comprising a logical qubit (blue dotted boxes). The numbers
on each data atom indicate the index of that atom within each
logical qubit; this is relevant for the implementation of stabilizer
measurements and logical operations. Two Rydberg states with
different blockade radii are required to implement the bias-
preserving CNOT and Toffoli gates. The larger blockade radius
RB;1 must be larger than

ffiffiffiffiffi
10

p
d (dark gray), where d is the nearest-

neighbor spacing on the lattice, while the smaller blockade radius
must satisfy d < RB;2 < 2d (light gray). The interaction range
RB;1 is needed to perform a logical CCZ gate between the three
logical qubits indicated in bold.
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(2) Swap the population between the j0i state and the
ground state jF ¼ 3; mF ¼ 0i.

(3) Apply a resonant π pulse to shelve any population
in the jF ¼ 2; mF ¼ −2i state into the Rydberg
state jnS1=2; mJ ¼ −1=2; mI ¼ −5=2i.

(4) Use σþ light to excite states in the F ¼ 2 ground-
state manifold to the 5P3=2 F ¼ 3 manifold; these
excited states decay quickly back to the ground state.

(5) Apply resonant π pulses jF¼3;mF¼1i↔ jF¼2;
mF¼1i and jF ¼ 3; mF ¼ 2i ↔ jF ¼ 2; mF ¼ 2i.

(6) Repeat steps 4 and 5 as necessary; after several
iterations, all population that start withmF > 0 are in
the jF ¼ 3; mF ¼ 3i state.

(7) Repeat steps 1–3.
Because the jF ¼ 2; mF ¼ −2i state can be populated

only if a Rydberg error occurred in one of the earlier steps
of the bias-preserving CNOT, to leading order in the total
error probability, we may assume that the Rydberg state
jnS1=2; mJ ¼ −1=2; mI ¼ −5=2i does not decay if it is
populated in the above procedure. In this way, the only
F ¼ 2 states that can be populated at the beginning of
step 4 above are the mF > 0 states, so the optical pumping
works in the same way as the protocol described in
Sec. IV B (Fig. 5). An analogous procedure can then be
applied to pump the mF < 0 states into j0i. In this latter
case, it is not necessary to shelve population in the Rydberg
state, as all mF > 0 population already has been transferred
to the j1i state.
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